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Abstract—Data is one of an organization’s most valuable and strategic assets. Testing the relational database schema, which protects

the integrity of this data, is of paramount importance.Mutation analysis is ameans of estimating the fault-finding “strength” of a test suite.

Aswith programmutation, however, relational database schemamutation results inmany “ineffective”mutants that both degrade test suite

quality estimates andmakemutation analysis more time consuming. This paper presents a taxonomy of ineffectivemutants for relational

database schemas, summarizing the root causes of ineffectivenesswith a series of key patterns evident in database schemas. On the

basis of these, we introduce algorithms that automatically detect and remove ineffectivemutants. In an experimental study involving the

mutation analysis of 34 schemas usedwith three popular relational databasemanagement systems—HyperSQL, PostgreSQL, and

SQLite—the results show that our algorithms can identify and discard large numbers of ineffectivemutants that can account for up to

24 percent ofmutants, leading to a change inmutation score for 33 out of 34 schemas. The tests for seven schemaswere found to achieve

100 percent scores, indicating that they were capable of detecting and killing all non-equivalentmutants. The results also reveal that the

execution cost of mutation analysis may be significantly reduced, especially with “heavyweight” DBMSs like PostgreSQL.

Index Terms—software testing, software quality, software tools, relational databases
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1 INTRODUCTION

FOR many different organizations, including large multi-
national firms such as Google and Facebook, data forms

a strategic asset that must be carefully curated and pro-
tected [1]. Indeed, fields such as healthcare, science, and
commerce often rely on information that is stored in data-
bases [2]. While non-relational “NoSQL” systems have been
gaining in popularity, relational databases remain perva-
sive. For instance, Skype, the widely used video-call soft-
ware, uses the PostgreSQL database management system
(DBMS) [3] while Google makes use of the SQLite DBMS
in Android-based phones [4]. Moreover, relational data-
bases form the backbone of Internet web browsers such as
Chrome1 and Firefox,2 mobile applications [5], and even
software powering political campaigns [6].

According to DB-Engines.com, the three most popular
storage systems are relational in nature [7]. Another way to
gauge the popularity of data management technologies is

through an analysis of the tags assigned to questions posted
on the popular Stack Overflow question and answer web
site [8]. Examining the tags attached to the questions posted
to Stack Overflow from January 2008 to August 2016 reveals
that, while those about relational databases (e.g., “SQL”) are
attached to between one and three percent of all questions on
StackOverflow, only one tag aboutNoSQL (i.e., “MongoDB”)
is assigned to more than half a percent of questions. Indeed,
the sum of the percentages for the top tags about relational
databases (e.g., “Database”, “PostgreSQL”, and “SQLite”)
are connectedwith nearly nine percent of all questions posted
during the studied period. In contrast, the NoSQL tags (e.g.,
“Cassandra”, “HBase”, and “CouchDB”) are attached to less
than one percent of Stack Overflow’s questions. These results
clearly indicate that relational databases, and their schemas
that are the subject of this paper, are a technology that practic-
ing programmers anddatabase administrators frequently use
and discuss.

In addition to being favored because their schema clearly
documents the structure of the data [9], relational databases
are also commonly adopted because a schema protects the
validity and consistency of the stored data through the spec-
ification and enforcement of integrity constraints. Integrity
constraints encode logic ensuring that the data values are:
distinct as dictated by an application (e.g., usernames); not
absent from a database (e.g., a part must have an identifica-
tion number); maintain referential integrity with other data
values (e.g., the identifier in different parts of the schema
must match if they refer to the same entity); and uphold
other domain-specific conditions. Prior work has shown
that real-world schemas are complex and often include fea-
tures such as composite keys and multi-column foreign key
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relationships [10]. Given the importance of data and its con-
sistency—and the role that these complex integrity con-
straints play in preserving its veracity—testing database
schemas is a recommended industry practice [11]. This has
led to the creation of testing strategies, coverage criteria,
automatic test suite generators, and mutation analysis meth-
ods tailored for database schemas [12], [13], [14], [15].

Yet, it is important to ensure that any tests are sophisti-
cated enough to find flaws in a relational database’s schema.
Although there are several methods for assessing the qual-
ity of a test suite (e.g., measuring how well the tests cover
the entities in the relational schema [12], [16]), many of
them may be limited in their capability to characterize a test
suite’s fault-exposing potential. As an alternative, mutation
analysis is a method that estimates the fault-finding
“strength” of a test suite by generating copies of an artifact
under test and seeding small faults, known as “mutants”,
into those copies [17]. Mutation analysis then repeatedly
runs the test suite against each mutant to see if one or more
of its test cases are capable of distinguishing between the
mutant and the original—that is, whether a test case fails on
the mutant that passed with the original. The intuition here
is that if a test suite cannot reveal the difference between the
mutant and the original then it cannot detect this fault if it
appears in subsequent versions of this artifact [18]. The per-
centage of mutants killed is known as the “mutation score”
of the test suite; the higher the mutation score, the stronger
the suite is judged to be at trapping real faults [17].

Nevertheless, mutation analysis can result in the genera-
tion of many mutants that are useless for the purpose of
evaluating a test suite, which we refer to as “ineffective”
mutants in this paper. Mutants may be generated that are
invalid, known as “stillborn” mutants, or are equivalent to
the original artifact or some other generated mutant, called
“equivalent” and “redundant” mutants, respectively [19].
Not only can such mutants reduce the usefulness of the final
mutation score, they also incur an execution time overhead
that is effectively wasted [17]. Moreover, some ineffective
mutants, such as those that are equivalent, also have an
associated human cost: following mutation analysis, testers
often have to manually inspect test cases, mutants, and the
original schema to determine why a mutant is still alive [17].
In the context of programs, where 45 percent of undetected
mutants are equivalent, the manual study and classification
of a mutant takes about fifteen minutes [20]. In summary,
ineffective mutants have been a long-standing problem in
program mutation [21], and, as this paper shows, they are
also a concern for database schema mutation.

In the context of relational database schema mutation,
ineffectiveness can manifest itself in a variety of ways. For
instance, PRIMARY KEY constraints ensure the uniqueness of
database table rows, which is also a property of UNIQUE con-
straints—for example, this fact leads to a source of equivalent
mutants in the SQLite DBMS. In this paper, we identify a
wide range of representative root causes of ineffectiveness in
the mutants of relational database schemas. We summarize
these root causes into a number of patterns in database sche-
mas that can be used for ineffective mutant detection. Not
only do we identify sources of stillborn, equivalent, and
redundant mutants (as has been previously done for
programmutants), we find and classify a new type of ineffec-
tive mutant: the “impaired” mutant. Impaired mutants are

similar to stillborn mutants, in that they represent infeasible
database schemas, but are not damaged to the extent that
they are completely invalid and as such automatically
rejected by a DBMS. They are nevertheless of little worth in
mutation analysis as they are always trivially killed by test
cases that attempt to interact with them.

On the basis of these representative patterns, we then
present algorithms that are capable of statically analyzing
mutants, identifying those that are ineffective and removing
them from the mutant pool used in mutation analysis. We
implemented them into our test generation and mutation
analysis tool for database schema testing, the open-source
system called SchemaAnalyst [22], and used it to perform an
empirical study that incorporated 34 database schemas and
three popular and widely used DBMSs—HyperSQL, Post-
greSQL, and SQLite. The experiments focused on the testing
of many real-world schemas, including those used in the
Mozilla Firefox Internet browser and the database backend
of the Stack Overflow web site. For the 34 schemas in this
study, the experiments performed mutation analysis on a
total of 186 tables, 1044 columns, and 590 constraints.

The results of the experimental study show that, in prac-
tice, the presented algorithms are capable of detecting and
removing large numbers of ineffective mutants. Excluding
ineffective mutants from the mutant pool means that muta-
tion scores obtained for test suites become more useful,
because, for instance, mutants that are the same as the origi-
nal artifact—and thus cannot be killed—no longer prevent
test suites from achieving 100 percent mutation scores.
Removing ineffective mutants also ensures that
redundant mutants are not double counted. In this paper’s
study, we found that all but one of the schemas we studied
had a test suite that experienced a change in mutation score
following ineffective mutant removal. The test suites for the
one remaining schema always killed all mutants, and as
such had already attained a “perfect” mutation score that
could not be improved upon. While only 15 percent of the
schemas that we studied had at least one test suite with a
perfect score before removing ineffective mutants, a further
21 percent of schemas had test suites—previously thought
to have suboptimal scores—that achieve 100 percent scores
after discounting ineffective mutants, primarily due to the
elimination of equivalent mutants.

We also investigated the efficiency ofmutation analysis fol-
lowing the removal of ineffective mutants by the presented
algorithms, finding that key parts of the analysis become
significantly faster to run. In particular, eliminating
stillborn mutants using our algorithms is always an order of
magnitude faster than relying on the DBMS to “throw out”
invalid schemas during the mutation analysis process. The
improved efficiency of mutation analysis for other types of
mutant depends on the numbers of that type of mutant
involved, and whether the upfront time needed to detect and
remove them is recouped by not having to consider themdur-
ing mutation analysis. For instance, the time taken to identify
and eliminate redundant mutants is rarely recouped, since
the algorithms need to compare every mutant against every
other mutant. While savings were indeed possible for several
schemas, the overall process took longer for others. Neverthe-
less, the benefit in these cases is still, as discussed earlier in
this section, the increased usefulness of the mutation score.
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These results also varied depending on the DBMS with
which mutation analysis was performed. For fast, light-
weight, and in-memory DBMSs, like SQLite, savings are
harder to achieve, since tests can be processed quickly. Yet,
for an enterprise, disk-based DBMS, such as PostgreSQL,
significant time savings are often realizable.

Therefore, the important contributions of this paper are:

1) A study and taxonomy of ineffective mutants for rela-
tional database schemas—mutants that do not make a
useful contribution during mutation analysis, because
they are “stillborn” (i.e., invalid), equivalent to the orig-
inal schema, equivalent to some other mutant, (i.e.,
“redundant”), or fall into a new class of mutants, those
that are “impaired”. The study presents a collection of
root causes that lead to ineffectiveness in database
schemamutants, explicated as a series of 10 representa-
tive patterns common tomutant schemas (Section 3).

2) A family of algorithms that statically analyze relational
database schemas and remove ineffective mutants
(Section 4) and are implemented as a part of our open-
source testing tool called SchemaAnalyst (Section 5).

3) The results of an empirical study, incorporating
34 diverse schemas and three well-known and repre-
sentative DBMSs, that both evaluates the efficiency
and effectiveness of the methods for detecting and
removing the four types of ineffective mutants and
reveals how their removal influences the final muta-
tion score for a relational database schema’s test
suite. The study includes a manual analysis of the
generated mutants that discerns whether any of
those not detected by the automated methods are
actually still ineffective (Section 6).

This paper is organized as follows. We begin by detailing
key background to database schemas, testing methods, and
mutation analysis in Section 2. Then, Section 3 introduces a
taxonomy of mutant types and a series of root causes and
patterns that lead to a mutant schema being ineffective. Fol-
lowing this, Section 4 presents algorithms to detect each pat-
tern of ineffectiveness, allowing these mutants to be
removed from the mutant pool used in mutation analysis.
Section 6 then presents the results of the empirical study,
showing how the presented technique can detect large num-
bers of ineffective mutants, and how their removal increases
the usefulness of mutation scores while potentially decreas-
ing the execution costs of mutation analysis. Finally, we dis-
cuss related work in Section 7 and close with concluding
remarks and avenues for future work in Section 8.

2 BACKGROUND

This section details the form and structure of relational
database schemas, and the integrity constraints that form
part of their definition. Since integrity constraints encode
vital logic designed to protect the validity and authenticity
of database data, it is important that they are tested. To this
end, we discuss coverage criteria that have been previously
proposed for this purpose, and further explain techniques
for the automatic generation of a database-aware test suite.
Finally, we introduce mutation analysis, initially in the con-
text of program mutation, showing how it may be applied
to relational database schemas for the purpose of estimating
the “strength” of the tests used to exercise them.

2.1 Relational Schemas and Integrity Constraints

The schema of a relational database defines the structure and
type of data that will reside within it, declaring any relation-
ships between pieces of data that may exist. A relational
database is composed of two-dimensional tables. Tables
are organized by columns, each of which have a specified
data type. The schema may also include further restrictions
on what data can be added to the database, expressed
as one or more integrity constraints. There are five
common types of constraints expressed in a schema [2].
PRIMARY KEY constraints ensure that the values in the given
column(s) are unique, such that they individually identify
each row. As only one PRIMARY KEY can be declared per
table, UNIQUE constraints can also enforce additional row-
uniqueness properties. A NOT NULL constraint specifies that
a NULL value cannot be stored in a specific column.
FOREIGN KEYs enforce that each row in one tablemust have a
matching row in another table, connected according to the val-
ues in one or more corresponding pairs of columns. Lastly,
CHECK constraints provide a means of defining arbitrary
predicates that each rowmust satisfy. These can include bool-
ean algebra operators like conjunction, disjunction, and nega-
tion, as well as relational operators and database operations,
such as “x ISNULL”, “x> y” and “x IN (y, ...)”.

Fig. 1 shows fragments of three different database sche-
mas, highlighting each of the main five types of integrity con-
straints, and showing differences in declaration style. A
segment of the relational database schema of the popular
WordNet database, a large online lexical database of words in
the English language,3 is shown by Fig. 1a. The snippet
involves four tables (i.e., lexlinkref, linkdef, synset,
and word) each declared by a separate CREATE TABLE SQL
statement.Within each table declaration appear the definition
of different columns (e.g., synsetid and word1id for the
lexlinkref table). Each column is specifiedwith a datatype
(e.g., varchar(80), representing a variable length character
string containing up to 80 characters).

The segment also shows a variety of integrity con-
straints declared by the relational database schema,
which Fig. 1 also highlights. These include several
NOT NULL constraints and a PRIMARY KEY for each table.
For instance, the lexlinkref table has a primary key
that involves all of its columns, meaning that the combi-
nation of values for every row must be unique. Alterna-
tively, the word table defines the uniqueness of its rows
through the wordid column.

Data is inserted into relational database tables through
SQL INSERT statements. Given the integrity constraints
defined for the lexlinkref table, the following
INSERT statement would be initially accepted by the
DBMS for an empty database (i.e., the DBMS would
admit the data); however, it would be rejected by the
DBMS (i.e., the values would not be admitted) if it were
attempted a second time, as the set of column values
would no longer be unique:

(1) INSERT INTO lexlinkref

(synset1id, word1id, synset2id, word2id, linkid)

VALUES (0, 0, 0, 0, 0, 0);

3. https://wordnet.princeton.edu/
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Instead, a distinct set of values would be needed, such as in the

following INSERT statement:

(2) INSERT INTO lexlinkref

(synset1id, word1id, synset2id, word2id, linkid)

VALUES (0, 0, 0, 0, 0, 1);

A database table can only have one primary key, so where
further constraints are necessary to enforce distinctness of
certain values for certain columns, the UNIQUE constraint
can be used. For example, in the WordNet schema of
Fig. 1a, a UNIQUE is defined on the lemma column in the
word table. As such, following INSERT statement 3,
INSERT statement 4 will be rejected since the value of
lemma is repeated:

Accepted?

(3) INSERT INTO word(wordid, lemma)

VALUES (1, ‘x’);

@@

(4) INSERT INTO word(wordid, lemma)

VALUES (2, ‘x’);

••

Fig. 1b shows a schema fragment from the freely avail-
able Million Song dataset [23], which contains 280 GB of
data. This fragment involves two tables, artists and
similarity, that contain three integrity constraints. There
is a single PRIMARY KEY, defined on the artists table—
and in a different style to primary keys declared for the
WordNet schema, as this time it is declared inline with the
column definition for artist_id. The schema also con-
tains two FOREIGN KEY constraints designed to ensure that
each target and similar value in the “source” table,
similarity, refer to an existing artist_id value in the
“referenced” table, artists. With these constraints, the
following INSERT statements 5 and 6 would be accepted

into a empty database, while statement 7 would be rejected.
Accepted statement 6 uses a value for both target and
similar that has already been inserted for artist_id in
the artists table. Yet, rejected statement 7 uses a value
for similar that does not refer to an existing artist_id

value in the referenced table:

Accepted?

(5) INSERT INTO word(wordid, lemma)

VALUES (‘x’);

@@

(6) INSERT INTO similarity(target, similar)

VALUES (‘x’, ‘x’);

@@

(5) INSERT INTO similarity(target, similar)

VALUES (‘x’, ‘y’);

••

Finally, Fig. 1c shows the NistWeather database schema,
a part of the NIST SQL conformance test suite [24]. This
schema also contains a FOREIGN KEY, although declared
inline to the ID column of the Stats table. This particular
schema features a number of CHECK constraints. For exam-
ple, the MONTH column of the Stats table has a
CHECK constraint defined on it that ensures an integer
MONTH value can only be between 1 and 12. Any
INSERTs involving values for MONTH outside of this legal
range will be rejected by the DBMS.

2.2 Mistakes Leading to Faults in Database
Schemas

Given that integrity constraints encode important logic used
to protect the validity and consistency of data in a database,
it is also important that these constraints are properly tested,
in accordance with industry advice [11]. Broadly speaking, a
database designer may make mistakes when specifying a
relational database schema in two different ways.

Fig. 1. Fragments of different real-world relational database schemas, showing differences in declaration style and highlighting different integrity con-
straint types (e.g., a CHECK constraint in the Station table, a FOREIGN KEY in the Similarity or Stats tables, a NOT NULL in the synset or
word tables, a PRIMARY KEY in the lexlinkref or linkdef tables, and a UNIQUE in the word table). Note that the creators of these schemas
declared some of the columns and tables with quotation marks surrounding the variable name, which is permitted by the SQL standard.
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Different DBMSs have different implementations of the
SQL standard and, additionally, may offer features not spe-
cifically required by the standard. A programmer moving
from one DBMS to another is therefore open to making mis-
takes when specifying schemas, since the behavior of
DBMSs varies greatly, as will be further demonstrated in
Section 3. This is increasingly the case when an engineering
team uses a different DBMS for development, in-house test-
ing, and deployment. For example, programmers may pre-
fer the speed and flexibility of a DBMS like SQLite for
development, but choose a robust enterprise DBMS, such as
PostgreSQL, for use with the deployed application.

One instance of differences in DBMS behavior concerns
how PRIMARY KEY constraints are handled by the
PostgreSQL and SQLite DBMSs.With PostgreSQL, PRIMARY
KEY constraints reject NULL values (as well as ensuring col-
umn values are distinct). Yet, for SQLite, NULL values may
be admitted for primary key columns. As such, a program-
mer familiar with PostgreSQL may reasonably expect that
the specification of a primary key in SQLite will defend the
database against NULL values for the key. However, unless
they remember to also additionally specify NOT NULL

constraints on the columns of the key, this will not be the
case. Thus, the behavior of the database schema must be
tested to ensure it is consistent with what the developer
intended.

There are other ways in which a programmer maymisun-
derstand SQL dialects. For instance, the treatment of
NULL values in columns denoted as UNIQUE operates in one
way for PostgreSQL, SQLite, and HyperSQL and in another
manner for the MS SQL Server DBMS, which only allows
one instance of a NULL value in a UNIQUE column, on the
basis that it is not distinct from other NULL values. Yet, the
three other aforementioned DBMSs treat NULL values as
meaning “unknown” and therefore still distinct from one
another. As such, PostgreSQL, SQLite, and HyperSQL
permit multiple instances of NULL in columns constrained
by a UNIQUE.

Instead of misunderstanding the dialect of SQL that a
DBMS supports, a developer may also make mistakes when
specifying the schema by, for example, forgetting to add a
PRIMARY KEY or UNIQUE constraint on a field for usernames
that controls a system’s login. If the database designer omits
a PRIMARY KEY constraint on the username column in a
database table, then theDBMS hosting this tablewould allow
INSERT statements to create two users who have the same
name. Or, if the designer of a schema neglects to add CHECK

constraints on fields such as prices or product stock levels to
ensure they can never be negative, then it may be possible
for INSERT or UPDATE statements to corrupt the database’s
state. Finally, a designer could specify constraints on the
wrong columns, thus, for instance, leading to a database
table having thewrong PRIMARY KEY column.

2.3 Database Schema Testing

It is important to perform testing to identify the two broad
categories of faults described in Section 2.2. The goal of prior
work has been to create a test case that consists of a sequence
of SQL INSERT statements that aim to fulfill a test adequacy
criterion [13]. The first work on testing integrity constraints,
due to Kapfhammer et al. [12], introduced a search-based

technique that automatically generates data for composing
tests of INSERTs that exercise a database’s schema. A test
case “passes” when its INSERTs are accepted by the DBMS,
as expected, and the data is admitted into the database since
it satisfies the constraints of the relational schema. A test case
may also pass when its INSERTs are, as anticipated, rejected
by the DBMS because the data was generated with the goal
of violating the schema’s integrity constraints.

2.3.1 Coverage Criteria.

McMinn et al. [13] followed up the work in [12] by defining
a family of coverage criteria for testing relational database
schema integrity constraints. Organized into subsumption
hierarchies, these criteria range from simple measures with
few coverage goals to more intricate criteria with substan-
tially more test requirements. Each criterion centers on the
reformulation of the integrity constraints of a database table
as a boolean predicate, referred to as the acceptance predicate
for the table. This is because the predicate evaluates to true
when the data in an INSERT statement will be accepted for
the table by a particular DBMS (i.e., the data is admitted
into the database). Conversely, an INSERT statement will
be rejected by a DBMS if the data within it causes the accep-
tance predicate to evaluate to false. “Acceptance Predicate
Coverage” (APC), therefore, requires the acceptance predi-
cate for each table to have been exercised as true and false by
the test suite. As such, each table should have had data in
an INSERT statement admitted to it at least once, and have
had an INSERT statement rejected at least once [13].

APC does not, then, require that each particular integrity
constraint has been properly exercised, because the
INSERT statement may be rejected by the violation of just
one of the integrity constraints defined for the table. “Active
Integrity Constraint Coverage” (AICC) addresses this limi-
tation. For this criterion, a test case is required that satisfies
the acceptance predicate (i.e., all integrity constraints are
satisfied), followed by tests that exercise the portion of the
predicate corresponding to each integrity constraint as false,
while ensuring the rest of the predicate evaluates to true
(i.e., each integrity constraint is violated in isolation).
“Clause-Based Active Integrity Constraint Coverage” (Clau-
seAICC) takes this further, requiring that each individual
clause of the acceptance predicate be exercised as false [13].
A clause could correspond to a single aspect of a particular
integrity constraint, for example the uniqueness of a column
as part of a multi-column PRIMARY KEY constraint.

Further criteria defined by McMinn et al. include “Active
Unique ColumnCoverage” (AUCC), which requires that test
cases be produced that exercise each column of each table
with unique and non-unique values, while maintaining sat-
isfaction of the acceptance predicate. Finally, “Active Null
Column Coverage” (ANCC) requires that test cases be pro-
duced that exercise each column of each database table with
NULL and non-NULL values, while also maintaining satisfac-
tion of the acceptance predicate [13].

2.3.2 Automatic Test Case Generation

Kapfhammer et al. [12] presented an extension of Korel’s
Alternating Variable Method (AVM) [25] for the automatic
generation of data for INSERT statements that form part of
test cases for schemas. McMinn et al. [13] extended this
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approach to generate test suites according to their coverage
criteria. In that paper and the remainder of this one, a test
suite is a collection of test cases, each of which contains its
own INSERT statements designed to fulfill a testing objec-
tive. The paper also introduced a random approach, referred
to as Randomþ, that utilizes constants mined from the data-
base schema’s definition. An empirical study conducted by
McMinn et al. revealed that theAVM tends to reliably gener-
ate database-aware test suites that provide full coverage of
the criteria, while Randomþ is more erratic and cannot guar-
antee such high levels of test coverage [13].

2.4 Mutation Analysis of Schema Integrity
Constraints

Mutation analysis is a useful method for estimating the
“strength” of a test suite—that is, its potential fault-finding
capability [17]. The process of mutation works by producing
copies of the artifact under test—traditionally a program—
and making minor changes to them so as to simulate faults.
The altered copies of the original artifact are called
“mutants”. Fig. 2 shows two examples of mutants for a max

function implemented in the syntax of a Java-like program-
ming language. Part (b) of this figure shows how the rela-
tional operator in the conditional statement of the original
function in part (a) is changed, resulting in the predicate
being mutated from “if x > y” to “if x < y”.

If a test suite can distinguish between the original artifact
and the mutant (i.e., a test case fails on the mutant that previ-
ously passed on the original), then the mutant is said to be
“killed”, else it is “live” [17]. For instance, the mutant in part
(b) of Fig. 2 is easily distinguished from the original. A test
case with the inputs x=1, y=2 gives the output 2 with the
original program and 1with the mutant, and so the test case
kills the mutant. A test case with the inputs x=1, y=1would
not kill themutant, however, since the result is 1 for both ver-
sions of the program. The percentage of mutants killed by a
test suite is compiled into a metric known as its “mutation
score”. The higher the mutation score a test suite has, the
stronger it is estimated to be. A test suite is said to be
mutation-adequate if it kills all mutants, that is, it achieves a
“perfect” mutation score of 100 percent [17]. Intuitively, if a
test suite cannot kill a mutant then this means that it would
not be able to detect this type of programming error if it was
subsequently introduced into the program under test [18].

While mutation analysis was originally proposed for
traditional programs [17], it has recently been adopted for
a wider range of software artifacts. For instance,
Deng et al. and Lindstr€om et al. proposed the use of muta-
tion analysis to assess the adequacy of test suites for

Android apps [26], [27]. Mutation testing has also recently
been used to measure the effectiveness of test suites for web
sites [28], [29], [30]. Additionally, mutation testing has been
applied in other diverse domains such as mobile software
agents (e.g., [31], [32]) and security policies (e.g., [33], [34]).

In the context of databases, while Bowman et al. focused
on the use of mutation testing to assess test suites for an
entire database management system [35], Kapfhammer et al.
[12] were the first to propose and evaluate mutation opera-
tors for the integrity constraints expressed in a relational
database schema. These proposed operators createdmutants
by adding, removing, and replacing columns in the defini-
tions of PRIMARY KEY and UNIQUE constraints, while also
adding and removing NOT NULL constraints from other col-
umns in the schema’s tables. An operator was also proposed
to remove CHECK constraints from schema definitions.
Wright et al. [15] extended this set by adding operators that
mutate the predicates of CHECK constraints (e.g., by replac-
ing a relational operator such as > with >=) while also add-
ing operators to mutate the columns featuring in a relational
database schema’s definition of FOREIGN KEY constraints.

Fig. 3 shows an example of a mutation to a PRIMARY

KEY. For the solitary table of the original schema, shown by
part (a), the column x is the sole primary key column. For
the mutant, shown by part (b), the column y is also a part of
the key. With integrity constraint mutation, a mutant is
“killed” when INSERTs made to a database instantiating
the mutant schema behave differently compared to a data-
base instantiating the original schema. As highlighted by
the fact that the original and mutated schemas lead to differ-
ent outcomes (i.e., an •• indicating rejection and a @@meaning
acceptance, respectively), the following INSERT statements
are capable of distinguishing between the original and the
mutant for an initially empty database:

Original Mutant
(8) INSERT INTO t(x, y) VALUES (0, 0); @@ @@
(9) INSERT INTO t(x, y) VALUES (1, 0); @@ @@
(10) INSERT INTO t(x, y) VALUES (0, 1); •• @@

The data in statements (8) and (9) are successfully
inserted into the database because the value of x is distinct,
thereby satisfying the PRIMARY KEY constraint of the origi-
nal schema, while the combination of x and y are distinct,
satisfying the PRIMARY KEY of the mutant. For statement
(10), however, the value for x is not distinct for the column,
thereby causing the INSERT statement’s rejection. The com-
bination of x and y values is still unique for the mutated
PRIMARY KEY, however, and thus statement (10) is
accepted, leading to the mutant being killed, as indicated by
the •• for the original schema and the @@ for the mutated one.

Like program mutation, mutation analysis of a relational
database schema is a costly process that takes a long time to

Fig. 2. An example of program mutation. This figure highlights the fact
that equivalent mutants cannot be distinguished from the original pro-
gram as there is no input to the max function for the mutant in part (c)
that will produce a different output to the original program in part (a).
Additionally, part (b) of this figure highlights a non-equivalent mutant in
the max function that is semantically different from the original program.

Fig. 3. An example of a relational database schema integrity constraint
mutant. As seen in part (b), the PRIMARY KEY on the table is mutated
from the original schema (part (a)) to include the column y as well as x.
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complete, due to the many mutants that may be created,
and the fact that the test suite must be run against each
mutant to determine if it is killed or remains live. Further-
more, mutation can result in many “ineffective” mutants
that do not contribute to the mutation score or make it less
useful, while still consuming valuable execution time. The
most famous of these—and most widely studied for pro-
gram mutation—is the “equivalent” mutant [17]. As with
all mutants, equivalent mutants correspond to seeded
changes—but they do not result in any change in behavior.
An example of an equivalent mutant for program mutation
is shown by Fig. 2c. The relational operator of the condi-
tional statement has been changed, but the mutant pro-
gram behaves exactly the same as the original one. That is,
there is no input to the mutant that will produce an output
different from that of the original. Thus, as previously
noted, it is impossible for a test to distinguish between
them. Equivalent mutants will always remain “live” fol-
lowing mutation, thereby preventing the tests from achiev-
ing a perfect mutation score [17].

In addition, there may be equivalence between pairs of
mutants themselves. This means that the same mutants may
be considered more than once; Just et al. [36] label these
mutants as “redundant” while Papadakis et al. call them
“duplicate” and note that they are problematic for mutation
testing [37]. Even though the removal of these equivalent
and redundant mutants would make mutation testing more
efficient, the detection of equivalent mutants for programs
is generally undecidable due to the halting problem [17].
Finally, mutation may introduce another type of ineffective
mutant, known as the stillborn mutant. These mutants are
ones where the seeded change has caused it to become
invalid—for example, producing a program that does not
compile [38]. Stillborn mutants slow down the process of
mutation analysis, since there is an execution cost associated
with finding them to be invalid (e.g., due to a compilation
error) and removing them from the mutant pool so that
they receive no further consideration. Overall, as these
examples demonstrate, ineffective (i.e., equivalent, redun-
dant, and stillborn) mutants are also a problem for the
mutation of the integrity constraints in a schema. The next
section explains how these mutants can arise, and, along
with identifying a new type of ineffective mutant, define
patterns common to schemas that are the direct cause of
mutant ineffectiveness.

3 CLASSIFYING THE INEFFECTIVE MUTANTS OF

INTEGRITY CONSTRAINTS IN DATABASE

SCHEMAS

In this section we describe and define four different types of
ineffective mutants produced during the mutation of the
integrity constraints encoded in a relational database schema.

We give examples of how they occur, and additionally iden-
tify common patterns in database schemas that summarize
the root cause of their ineffectiveness. Three types of mutant
that are ineffective for relational database schemas are also
found in program mutation—equivalent, redundant and
stillborn mutants [17], [36], [39], [40]. We further identify and
explain a fourth type of ineffective mutant for relational data-
base schemas, namely the impairedmutant.

3.1 Equivalent Relational Database Schema
Mutants

As with program mutation, equivalent mutants for rela-
tional database schemas are mutants that have the same
behavior as the original artifact, and as such cannot be dis-
tinguished by a test. In SQL, it is possible to express the
same two schemas by stating their definition, at the syntac-
tic level, in a slightly different manner. As an example,
Fig. 4 shows the definition of three schemas that are actually
the same. Each schema consists of one table, t, with one col-
umn, c, with a PRIMARY KEY constraint defined on that col-
umn. Yet, the SQL declaration of the PRIMARY KEY

constraint is expressed in three different ways. For the
schema shown by part (a), the keyword “PRIMARY KEY”
appears on the definition of the column. For the schema
shown by part (b), the PRIMARY KEY declaration appears
before the end of the table’s definition. In the final schema
of part (c), the PRIMARY KEY constraint definition appears
after the creation of the table via an ALTER statement. We
refer to schemas that are identical, but which are possibly
declared in different ways, as structurally equivalent. We
define this property as:

Definition 1 (Structural Equivalence). Two relational data-
base schemas s1 and s2 are said to be structurally equivalent, if,
following declaration, the tables, columns, and integrity con-
straints that exist for schema s1 are identical to those of schema s2.

It is also possible to express schemas that are structurally
different but are functionally equivalent, and so also indis-
tinguishable by a test case. This is because different types of
integrity constraints have similar or identical behaviors, or
can be combined to have the same effect as another. Since
SQLite does not enforce the standard that a PRIMARY KEY

should also imply a NOT NULL [41], PRIMARY KEY and
UNIQUE constraints are, for this DBMS, identical in terms of
accepting and rejecting the same INSERT statements. Fig. 5
shows an example of two schemas, which are the same but
for the fact that one has a PRIMARY KEY constraint defined
for the c column for the schema shown in part (a) of this
figure, while the other, shown in part (b), has a UNIQUE con-
straint defined on the column instead. The functional
behavior of these two schemas is the same: when distinct
values for c are inserted into the table, the DBMS will accept

Fig. 4. Three relational database schemas that are identical, and there-
fore equivalent, but declared in different, but valid, ways in the SQL.

Fig. 5. Two relational database schemas that are different, but function-
ally equivalent, for SQLite, since, for this DBMS, primary keys reject
non-unique values in the same way as is done by UNIQUE constraints.
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them. Alternatively, when an INSERT statement contains a
value that is already in the database for c, it will be rejected.

However, these database schemas are not equivalent for
most other DBMSs (e.g., HyperSQL and PostgreSQL),
where PRIMARY KEY constraints also reject the insertion of
NULLs in addition to non-distinct values. As such, the two
schemas shown in Fig. 5 behave differently when managed
by these DBMSs: one schema will be responsible for reject-
ing NULL values submitted for the c column (i.e., the
schema in part (a) of the figure) while the other schema will
admit them (i.e., the schema in part (b) of the same figure).
Therefore, the equivalence of database schemas is a prop-
erty that varies depending on the DBMS in question. This
leads to the following definition of behavioral equivalence:

Definition 2 (Behavioral Equivalence). Two relational
database schemas s1 and s2 are said to be behaviorally equiva-
lent for a relational database management system D if when,
following their instantiation, for two initially empty (and
separate) databases d1 and d2, using D, no sequence of
INSERT statements I ¼ hi1; . . . ; iqi exists such that there is an
ij 2 hi1; . . . ; iqi that is accepted by d1 but rejected by d2.
Note that, according to this previous definition, struc-

tural equivalence is a type of behavioral equivalence: all
database schemas that are structurally equivalent to one
another are also behaviorally equivalent. As explained in
the following definition, an equivalent mutant therefore
refers to a mutant that is behaviorally equivalent with the
original database schema from which it was created:

Definition 3 (Equivalent Relational Database Schema
Mutant). A mutant meqv of a database schema s is said to be
equivalent if s andmeqv are behaviorally equivalent.

Where equivalent mutants exist, mutation scores are
artificially deflated [19], thus, for instance, potentially
compromising the comparison of different data generation
techniques through mutation analysis. Equivalent mutants
also have an associated human cost: following mutation
analysis, testers often have to manually inspect test cases,
mutants, and the original schema to determinewhy amutant
is still alive. In the context of programs, where 45 percent of
undetected mutants are equivalent, the manual study and
classification of a mutant takes about fifteen minutes [20].
Since it is impossible to kill an equivalent mutant, such diag-
nostic effort on the part of testers is essentially wasted.

Combined with the execution cost per mutant, this makes
the detection and discarding of these mutants, known as the
equivalent mutant problem [17], an important issue for the
mutation of both relational database schemas and programs.
Since the large number of equivalent mutants and the high
costs of human inspection make it infeasible to manually
detect equivalent mutants [20], there are many approaches
that attempt to automatically detect them for programs (e.g.,
[40], [42], [43]). This motivates our work to identify causes of
equivalence for database schemas.

Structural equivalence, which occurs at the syntactic
level, is one source of equivalent mutants for database
schemas that we defined in Definition 1. Behavioral equiv-
alence following integrity constraint mutation is due to the
functional equivalence of integrity constraints or between
combinations of integrity constraints. We now identify six

representative patterns that encapsulate the ways in which
behavioral equivalence can manifest.

Pattern BE-1: UNIQUE constraints and PRIMARY KEY s
Pattern BE-1 expresses the form of equivalence demon-

strated in Fig. 5, where, for DBMSs like SQLite, there is no
behavioral difference between PRIMARY KEYs and UNIQUEs.
Schemas that are identical but for a UNIQUE instead of a
PRIMARY KEY defined on the same column set are equivalent.

Pattern BE-2: PRIMARY KEY s and UNIQUE constraints
paired with NOT NULL constraints

For DBMSs where PRIMARY KEYs and UNIQUE constraints
do not behave in the same way, because PRIMARY KEYs do
not admit NULL values and UNIQUE constraints do (e.g., for
DBMSs such as HyperSQL and PostgreSQL), the following
two relational database schemas are behaviorally equivalent.
If the columns involved in a UNIQUE constraint also have
NOT NULL constraints defined on them, the combined behav-
ior is the same as that of a PRIMARY KEY constraint:

Pattern BE-3: PRIMARY KEY s and PRIMARY KEY s paired
with NOT NULL constraints

Following from the last rule, and for DBMSs where PRI-

MARY KEYs do not allow NULL values, NOT NULL

constraints defined on primary key fields are superfluous.
Thus, a schema without NOT NULL constraints on primary
key fields is behaviorally equivalent to an identical schema
but with additional NOT NULL constraints defined. That is, the
following two database schemas are behaviorally equivalent:

Pattern BE-4: Extraneous UNIQUE constraints
If a set of columnsCsub is declared as UNIQUE, any further

UNIQUE constraints involving the same columns (i.e., a set
Csup; Csub � Csup) are extraneous. That is, the following two
relational database schemas are behaviorally equivalent:

Column values for c1 will be unique, due to the “UNIQUE
(c1)” declaration. Therefore the combination of any further
column value (i.e., c2) paired with a unique value for c1

will also be unique. This means that the additional con-
straint “UNIQUE(c1, c2)” in the right-hand schema is
superfluous, and the two database schemas are equivalent.

Note that removing “UNIQUE(c1)” from the right-hand
schema would not have the same effect: The constraint
“UNIQUE(c1, c2)” on its own does not guarantee that c1
is individually unique. It only guarantees that the combina-
tion of c1 and c2 are unique. As such, removing “UNIQUE
(c1)” rather than “UNIQUE(c1, c2)” would change the
behavior of the right-hand schema, and it would no longer
be equivalent. It is also important to note that one of the
integrity constraints could be a PRIMARY KEY (as it is not
possible for a table to have two primary keys), since primary
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keys are equivalent to UNIQUE constraints under certain con-
ditions, as already discussed in Patterns BE-1 and BE-2.

An exception to the rule occurs when another table in the
schema has a foreign key referencing the constraint with
the greater number of columns (i.e., Csup). In this case, the
superset constraint is not redundant, as it is preventing the
schema from being invalid. We expand on the issue of
foreign keys and schema validity in Section 3.3.

Pattern BE-5: NOT NULL constraints and CHECK ... IS NOT

NULL constraints
The effect of a CHECK constraint of the form “CHECK c IS

NOT NULL” for some column c is equivalent to defining a
NOT NULL constraint on the column, as in the following
example:

Pattern BE-6: Behaviorally equivalent CHECK constraints
Since CHECK constraints can encode arbitrary constraints,

it is possible for them to be specified in different ways while
being behaviorally equivalent, as in the following example.

3.2 Redundant Mutants

In the context of program mutation, Just et al. describe a
mutant of a conditional expression with one logical operator
as being redundant if it leads to the same boolean outcome
as other mutants that are better suited for efficiently assess-
ing test suite effectiveness [36]. In this paper, we use the
term more broadly: While equivalent mutants are behavior-
ally the same as the original artifact, a mutant is redundant
with respect to another mutant if they are behaviorally
equivalent to one another. This leads to the next definition:

Definition 4 (Redundant Relational Database Schema
Mutant). A mutant mred of a relational database schema s is
said to be redundant with respect to some other mutant m of s
ifm andmred are behaviorally equivalent.

Patterns of redundancy are the same as for equivalence,
except that the relationship holds between mutants rather
than between a mutant and the original artifact. When a
redundant mutant pair is found, one of the mutants may be
safely discarded, as it replicates the other mutant in the pair
and only serves to artificially inflate mutation scores [37].

3.3 Stillborn Mutants

In the context of programmutation, stillbornmutants are pro-
grams that do not compile due to a mutation operator mak-
ing it syntactically or semantically invalid [38]. Suchmutants
cannot be used during mutation analysis, since they do not
represent an artifact against which any tests can be run. Still-
born mutants are also possible for relational database
schema mutation, taking the form of syntactically invalid
SQL declarations and also arising from semantic invalidity.
The submission of SQL statements relating to the CREATE

TABLE declarations for an invalid schema, and therefore a
stillborn mutant, will be rejected by these DBMSs. Thus, we
define the concept of a stillbornmutant4 as:

Definition 5 (Stillborn Relational Database Schema
Mutant). A mutant mstb of a relational database schema s is
said to be stillborn for a DBMS D if any SQL declaration
relating to the definition of mstb is rejected by D.

We now define two patterns that are a source of semanti-
cally invalid database schemas during integrity constraint
mutation, thus leading to stillborn mutants.

Pattern SB-1: PRIMARY KEY and UNIQUE constraints
Some DBMSs, such as HyperSQL, do not allow UNIQUE

constraints to be defined on the same column sets as the
table’s primary key. An attempt to submit a database schema
such as the following results in an error. That is, any mutant
where UNIQUE constraint columns replicate those of the pri-
mary keywill be stillborn, as in the following example:

Pattern SB-2: Foreign key misalignment
Many DBMSs require that, for foreign keys appearing in

schemas, the column or columns in the referenced table
must be the primary key of that table, or be declared in a
UNIQUE. We refer to this property as foreign key alignment:

Definition 6 (Foreign Key Alignment). A relational data-
base schema s for a relational database management system D
is said to exhibit foreign key alignment when for each foreign
key fk ¼ ðt; htc1 . . . tcni; r; hrc1 . . . rcniÞ, where tc1 . . . tcn are
columns of the table t on which the key is defined, and
rc1 . . . rcn are the columns of the referenced table r for the key,
a PRIMARY KEY or UNIQUE constraint exists on r for the col-
umns rc1 . . . rcn, and the pairs of columns ðtc1; rc1Þ . . .
ðtcn; rcnÞ have compatible types for a specific relational DBMS
D. A relational database schema is said to exhibit foreign key
misalignment when the foreign key alignment property does
not hold.

As stated by this definition, column pairs must have
compatible types, a property that depends on the DBMS in
use. For example, SQLite has a weak typing mechanism
allowing any column type to be mapped to any other in a
foreign key. In contrast, PostgreSQL is more strongly typed:
It will allow a column of type INTEGER to be mapped to a
column of type DECIMAL for example, but the pairing of
VARCHAR and INTEGER types, for instance, is not allowed
by this DBMS. An example of a database schema with cor-
rect foreign key alignment, and a mutant with foreign key
misalignment is shown by Fig. 6. The original schema
(part (a) of the figure) has a foreign key defined on the table
t2, mapping the column id in table t2 to the id column of
table t1. Since the id column in t1 is a primary key col-
umn, the schema is correctly aligned. However, the mutated

4. In previous work we referred to stillborn mutants as “quasi”
mutants [15], since it was always the case that, in practice, a mutant
that was stillborn for one DBMS was not for another. In this paper, we
revert to the original “stillborn” term, since we now know that the
effective/ineffectiveness status of other types of mutants—for example,
equivalent mutants—also varies across different DBMSs.
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version of the schema (part (b) of the figure) has had the pri-
mary key column changed from id to age. This schema is
misaligned, since the foreign key in table t2 of the mutant
is still referencing the non-primary key column id.

Mutants with foreign key misalignment are problematic
for most database management systems. For instance,
DBMSs such as PostgreSQL and HyperSQL, will reject the
second CREATE TABLE statement in Fig. 6b. Other DBMSs,
such as SQLite, do not reject database schemas with foreign
key misalignment, but simply reject all data that is
attempted to be inserted into the table with the misaligned
foreign key definition. This leads to a fourth category of
ineffective mutant, heretofore not mentioned in the litera-
ture and described in the next section.

3.4 Impaired Mutants

For database schemamutation, impairedmutants can be cre-
ated when an integrity constraint is mutated such that satis-
faction of the collective system of integrity constraints for
that table is not possible. That is, even though the schema
will be accepted by the DBMS in use, no INSERT will ever
result in a new row of data being added to the database’s
table.We nowdiscuss how this can occur in terms of patterns
found in a definition of a relational database schema.

Pattern IM-1: Foreign key misalignment
Database schemas with incorrect foreign key alignment,

that are stillborn for most DBMSs, are impaired for others,
such as for SQLite. This DBMS accepts the table definition
as valid, but then refuses to accept data into the table with
the misaligned foreign key when foreign keys are enabled
for the DBMS. IM-1 is identical to SB-2 except that mutants
are identified as impaired rather than stillborn.

Pattern IM-2: Infeasible CHECK constraints
For most DBMSs, a similar situation can occur with infea-

sible CHECK constraints. Infeasible CHECK constraints can
occur as a result of schema mutation, as shown by the exam-
ple in Fig. 7. The mutation of the relational operator in the
second CHECK results in an infeasible set of constraints, and
as a result, every INSERT will be rejected. Since infeasibility
of constraints is generally undecidable [40], [44], [45], this
type of impairment is hard to detect automatically.

We name these mutants “impaired” mutants. While they
are valid relational schemas as far as the DBMS is con-
cerned—and as such do not qualify as being “stillborn”—
they have been damaged by the mutation process. Impaired

mutants have little use in mutation analysis, due to the ease
withwhich they are killed—essentially any syntactically valid
test case will kill this type of mutant. We therefore categorize
them as ineffective, and formally define them as follows:

Definition 7 (Impaired Relational Database Schema
Mutant) A mutant mimp of a relational database schema s is
said to be impaired for a relational database management sys-
tem D if there is some table t defined for mimp for which no
INSERT statements are accepted byD.

To the best of our knowledge, the concept of an
“impaired” mutant has not been defined previously in the
literature. An analogous ineffective mutant for program
mutation might be a software component that is altered such
that whenever it is used or accessed, it returns the same
result or throws exceptions, and as such is trivially killed.

3.5 Ineffective Mutant Classification Summary

Fig. 8 summarizes our categorization of mutants for data-
base schemas. Out of those produced, only some will be
“effective”. “Ineffective” mutants are ones that are either
equivalent to the original; redundant, since they are the same
as an already produced effective mutant; represent an
invalid schema for the DBMS concerned, that is they are still-
born; or, INSERTs will always fail for one or more tables of

Fig. 6. A relational database schema (in part (a)) and a mutant schema
(in part (b)) with foreign key misalignment. With the mutant, the primary
key column for t1 has changed (as highlighted) meaning the column ref-
erenced by the foreign key for t2 is no longer distinct.

Fig. 7. A schema and an impaired mutant. The mutation changes the
relational operator in the second CHECK (highlighted for the mutant in
part (b)), rendering the constraint infeasible. No data can be inserted
into the table of the mutant, and as such we describe it as “impaired”.

Fig. 8. A taxonomy of database schema mutant types. In this figure,
boxes with rounded corners represent a type of mutant and a box with
non-rounded corners denotes an artifact that plays a role in determining
whether or not a mutant is ineffective. The box with a double border
shows that these effective mutants will be used in a subsequent muta-
tion analysis. The light gray box highlights the fact that this paper is the
first to draw attention to this type of mutant; boxes with a dark gray back-
ground correspond to types of ineffective mutant that have been previ-
ously reported in the mutation testing literature for programs.
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the mutant schema, that is, they are impaired. Additionally,
this section defines representative patterns that describe the
four different types of ineffective mutants: there are six pat-
terns each for equivalent and redundant mutants and two
patterns each for stillborn and impaired mutants, respec-
tively. The next section explains how to use these patterns to
automatically detect and remove ineffectivemutants.

4 AUTOMATICALLY DETECTING AND REMOVING

INEFFECTIVE DATABASE SCHEMA MUTANTS

Ineffective mutants decrease the usefulness of the mutation
score, and may also increase the time taken to perform
mutation analysis. This section describes our techniques for
automatically removing certain classes of ineffective mutant
that can be identified in advance of mutation analysis,
thereby improving the usefulness of the mutation scores
obtained and potentially decreasing analysis costs. The pre-
sented techniques rely on an abstract representation of rela-
tional database schemas, which greatly simplifies the
analysis that needs to be performed, while not losing key
information needed to identify the ineffective mutants.
After describing this abstract representation, we then intro-
duce our algorithms that use it when detecting and remov-
ing stillborn and impaired mutants. To avoid further
unnecessary and potentially costly checks involving data-
base schema comparisons, these types of mutants are auto-
matically removed before applying the algorithms that
identify and extract the equivalent and redundant mutants.

4.1 Abstract Representation of Database Schemas

First, our technique parses the SQL statements that declare a
relational database schema and creates a model, which we
refer to as the “abstract representation” of a schema. This
representation abstracts away the syntactic details of an SQL
definition that also make the semantic analysis of schemas
for ineffectiveness harder to undertake. This step is impor-
tant both because, as discussed in Section 3.1, SQL can be
used to express the same schema property in a variety of
ways and, furthermore, SQL dialects vary across DBMSs

In our model, a schema s is a sextuple s ¼ ðT;CC; FK;
NN;PK;UCÞ, where T is a set of tables, CC is a set of CHECK
constraints, FK is a set of FOREIGN KEY constraints,NN is a
set of NOT NULL constraints,PK is a set of PRIMARY KEY con-
straints, and UC is a set of UNIQUE constraints. A table t 2 T
is a pair ðidt; CÞ where idt is a unique string identifier (i.e.,
8t0 ¼ ðid0t; C0Þ 2 T; t 6¼ t0; idt 6¼ id0t) and C is a set of columns.
The function cols can be used to obtain the columns for a
table (i.e., colsðtÞ ¼ C). A column c 2 C is a pair ðidc; typeÞ,
where idc is a unique string identifier for the column in the
table (i.e., 8c0 ¼ ðid0c; type0Þ 2 C; c0 6¼ c; idc 6¼ id0c), and type is a
label indicating the data type of the column (e.g., INT).

A CHECK constraint cc 2 CC is a pair ðtcc; pÞ, where tcc is
the table to which the CHECK constraint applies, tcc 2 T , and
p is a predicate over the subset of columns colsðtccÞ.

A FOREIGN KEY constraint fk 2 FK is a quadruple
ðtfk; TCfk; rfk; RCfkÞ, where tfk 2 T is the table on which the
key is defined, and rfk 2 T is the table that it references.
TCfk ¼ htc1; . . . ; tcleni and RCfk ¼ hrc1; . . . ; rcleni are two
lists of columns of equal length len, ftc1; . . . ; tcleng �
colsðtfkÞ and frc1; . . . ; rcleng � colsðrfkÞ.

A NOT NULL constraint nn 2 NN is a pair ðtnn; cnnÞwhere
tnn and cnn are the table and column on which the constraint
is defined, cnn 2 colsðtnnÞ.

A PRIMARY KEY constraint pk 2 PK is a pair ðtpk; CpkÞ
where tpk and Cpk are the table and columns on which the
constraint is defined, where Cpk � colsðtpkÞ. Only one pri-
mary key can be specified per table, that is, 8pk 2 PK;
@pk0 ¼ ðt0pk; C0pkÞ 2 PK such that pk 6¼ pk0 ^ tpk ¼ t0pk.

Finally, a UNIQUE constraint uc 2 UC is a pair ðtuc; CucÞ
where tuc and Cuc are the table and columns on which the
constraint is defined, Cuc � colsðtucÞ.

4.2 Stillborn Mutants

As described in Section 3.3, stillborn mutants are mutants
that will be rejected by the DBMS and may negatively influ-
ence the efficiency of mutation analysis. This paper’s static
analysis approach involves identifying stillborn mutants on
the basis of different patterns. Following the parsing of the
relational database schema into the abstract representation
described in the previous section, the technique applies dif-
ferent checks to each mutant produced by each of the muta-
tion operators. If the check passes, then the technique
removes the mutant. The checks undertaken depend on the
DBMS in use during mutation analysis and are as follows.

Algorithm 1. Detecting PRIMARY KEY and UNIQUE con-
straints on Identical Column Sets for a Schema s

function UNIQUEONPRIMARYKEYðs ¼ ð. . . ; PK;UCÞÞ
for all pk ¼ ðtpk; CpkÞ 2 PK do
for all uc ¼ ðtuc; CucÞ 2 UC do
if tpk ¼ tuc ^ Cpk ¼ Cuc then
return true

end if
end for

end for
return false

end function

Check 1: PRIMARY KEY and UNIQUE constraints. This check
applies to the mutant types characterized by Pattern SB-1
described in Section 3.3 (i.e., UNIQUE constraints defined on
exactly the same column set as a PRIMARY KEY in the same
table of a schema). Thesemutants can be detected at the level
of the abstract representation using the function UNIQUEON-

PRIMARYKEY shown by Algorithm 1. Mutants flagged by this
detector can then be removed from the pool that is subse-
quently used duringmutation analysis.

Check 2: Foreign key misalignment. This check investigates
mutants for possible foreign key misalignment according to
Pattern SB-2 (Section 3.3) for DBMSs that reject these types
of schemas (i.e., HyperSQL and PostgreSQL). This check is
automatically performed using the abstract representation
of the mutant schema and the function DETECTFKMISALIGN-

MENT in Algorithm 2. If there is misalignment, then the
mutant can be removed from the pool used during the sub-
sequent mutation analysis.

4.3 Impaired Mutants

Our checks detect and remove impaired mutants according
to Patterns IM-1 and IM-2. Pattern IM-1 (foreign key mis-
alignment) is the same as Pattern SB-2, except it is applied
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at a different stage for DBMSs that regard mutants with mal-
formed foreign keys as impaired rather than stillborn (e.g.,
SQLite). Therefore our check for IM-1 re-uses Algorithm 2.

The problem of detecting infeasible CHECKs (Pattern IM-
2) is generally undecidable [40], [44], [45], although some
simple analyses, with limited generality, may be possible.
As stated in Section 8, this task is outside of the scope of this
paper and thus we leave it for future work.

4.4 Equivalent and Redundant Mutants

Detection of equivalent and redundant mutants involves the
same static analysis checks—that are applied to different
mutants—since the basic problem is to detect whether two
mutants behave identically (or are identical). In the case of
equivalent mutants, the checks for equivalence take place
between the original schema and a mutant, while for
redundantmutants, the checks occur for each createdmutant.

Algorithm 2. Detecting foreign key misalignment for a
Schema s and a DBMS D (The function COMPATIBLE

returns true if two columns have compatible types for
the DBMS D, else it returns false)

function DETECTFKMISALIGNMENTðs ¼ ð. . . ; FK; . . . ; PK;UCÞ;DÞ
for all fk ¼ ðtfk; htc1; . . . ; tcleni; rfk; hrc1; . . . ; rcleniÞ 2 FK do
compatible true
for i ¼ 1 . . . len do
if :compatibleðD; tci; rciÞ then
compatible false

end if
end for
Cfk  frc1; . . . ; rcleng
foundPK  false
for all pk ¼ ðtpk; CpkÞ 2 PK do
if rfk ¼ tpk ^ Cfk ¼ Cpk then
foundPK  true

end if
end for
foundUC  false
for all uc ¼ ðtuc; CucÞ 2 UC do
if rfk ¼ tuc ^ Cfk ¼ Cuc then
foundUC  true

end if
end for
if :compatible _ :ðfoundPK _ foundUCÞ then
return false

end if
end for
return true

end function

As for stillborn and impairedmutants, the presented solu-
tion for detecting equivalence involves the comparison of the
abstract representation for a pair of schemas s1 and s2. This
structural equivalence is trivial to detect as it is simply the
check s1 ¼ s2. Finding behaviorally equivalent mutants is
more challenging, however. The presented method converts
schemas already in the abstract representation into a normal-
ized form, aiming to produce a single common form of the
schema such that behaviorally equivalent mutants will be
structurally equivalent. Equivalent mutants can then be
removed from the mutant pool used in a later mutation

analysis. For a pair of identical mutants, one of the mutants
is redundant and can be removed from the pool.

Normalization of schemas involves a series of transfor-
mation steps, which are linked to the patterns of equiva-
lence identified in Section 3.1. We describe these as
follows, furnishing algorithms in terms of our abstract
representation and illustrating the algorithms with exam-
ples, which, for ease of understanding, we demonstrate
as if the abstract schema were written back out into SQL
CREATE TABLEs. For clarity, we use before and after
examples of database schemas to fully illustrate each of
the transformation steps.

Transformation Step 1: Conversion of PRIMARY KEY s
The first transformation step corresponds to the equiva-

lence patterns BE-1 and BE-2, converting primary keys to
equivalent UNIQUEs. The transformation depends on the
DBMS’s “understanding” of how primary keys should
behave. If, like HyperSQL and PostgreSQL, primary key col-
umn values should also be not NULL, the conversion involves
also adding NOT NULL constraints to the columns concerned.
If NULL values can be inserted into primary key columns, as
for SQLite, this step is ignored, as Algorithm 3 shows.

Algorithm 3 The Conversion of PRIMARY KEY con-
straints for a Schema s and a DBMS D (The nature of the
conversion depends on the DBMS being used. If a DBMS
D— such as HyperSQL or PostgreSQL—rejects NULL as
a primary key value, the function PKSARENOTNULL

returns true and NOT NULL constraints are added to each
of the PRIMARY KEY constraints converted to UNIQUE

constraints. For DBMSs that accept NULL as a primary
key value (e.g., SQLite), the function PKSARENOTNULL

returns false, and this particular step is ignored)

function CONVERTPKSðs ¼ ð. . . ; PK;UCÞ; DÞ
for all pk ¼ ðtpk; CpkÞ 2 PK do
PK  PK n fpkg
UC  UC [ fðtpk; CpkÞ}
if pksAreNotNullðDÞ then
for all pkc 2 Cpk do
NN  NN [ fðtpk; pkcÞg

end for
end if

end for
end function

The next example illustrates how, for SQLite, the follow-
ing two schemas, which are behaviorally equivalent as
described by pattern BE-1, are normalized into a structurally
equivalent form by the transformation step. The right-hand
database schema, involving a PRIMARY KEY constraint is
affected by the change, and is normalized such that it is now
structurally equivalent to the left-hand schema:

The next two examples show database schemas that will
be submitted to a DBMS that mandates primary key

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 5, MAY 2019



columns should not involve NULL values (e.g.,
HyperSQL and PostgreSQL). In the first example, the
two schemas are behaviorally equivalent according to
pattern BE-2. The right-hand schema is normalized by
Algorithm 3, and becomes structurally equivalent to the
left-hand schema:

Algorithm 4. Removing Extraneous UNIQUE constraints
Involving a Superset of Columns for Some Existing
UNIQUE constraint Defined on Some Table for a Schema s

function CONVERTUCSðs ¼ ð. . . ; FK; . . . ; UCÞÞ
for all uc ¼ ðtuc; CucÞ 2 UC do
for all uc0 ¼ ðt0uc; C0ucÞ 2 UC; uc 6¼ uc0 do
if @fk ¼ ðtfk; TCfk; rfk;RCfkÞ 2 FK, rfk ¼ tuc ^RCfk ¼ Cuc

then
if C0uc � Cuc then
UC  UC n fuc0g

end if
end if

end for
end for

end function

The second example involves a pair of relational data-
base schemas that are behaviorally equivalent according
to pattern BE-3. Again, the transformation step converts
these schemas into structural equivalents. In this exam-
ple, both schemas are affected. In the right-hand schema,
a NOT NULL constraint is not added since one is already
present for the column c in the set NN for the database
schema.

Transformation Step 2: Remove extraneous UNIQUE con-
straints. Transformation step 2 removes extraneous
UNIQUEs defined on schemas—constraints that are
superfluous since there is already some other UNIQUE

constraint defined on the same table involving a subset of
columns (Pattern BE-4 in Section 3.1). Algorithm 4 imple-
ments this step, with its third line ensuring that it does
not remove a UNIQUE that is involved in a FOREIGN KEY.
Note that this algorithm need not be concerned if one of
the constraints is a PRIMARY KEY, since these will already
have been converted in the previous step (transformation
step 1). The following example shows two schemas that
are behaviorally equivalent, as described by equivalence
pattern BE-4. The right-hand schema has an extraneous
UNIQUE that is removed by the algorithm, such that the
two schemas become structurally equivalent:

Transformation Step 3: Replace instances of CHECK ... IS NOT

NULL with NOT NULL constraint
As described by equivalence pattern BE-5, CHECK con-

straints of the form CHECK ... IS NOT NULL are behavior-
ally equivalent to NOT NULL constraints. Algorithm 5
describes how they may be removed in the abstract
representation.

The following example shows how such CHECK

constraints are removed by the algorithm so that the two
schemas involved become structurally equivalent:

Finally, we do not handle behavioral equivalence pattern
BE-6 in this paper, due to the undecidability of identifying
equivalent constraint systems [40], [44], [45]. While simple
cases of the problem could be handled by customizing the
presented algorithms, we intend, as noted in Section 8, to
more generally tackle this task as part of future work.

Algorithm 5 Converting NOT NULL Predicates in CHECK

constraints to NOT NULL constraints for a Schema s (The
function assumes that the predicate of each CHECK con-
straint is in conjunctive normal form. The function
REMOVE removes a conjunct from a predicate, returning
the modified predicate or ? if no conjuncts remain)

function CONVERTCHECKNULLSðs ¼ ð. . . ; CC; . . . ; UC; . . .ÞÞ
for all cc ¼ ðtuc; p ¼ p1 ^ . . . ^ pmaxÞ 2 UC do
for all c 2 cols ðtucÞ do
for conjunct ¼ 1 . . .max do
if pconjunct ¼ “c IS NOT NULL” then
p removeClauseðp; conjunctÞ
NN  NN [ fðtuc; cÞg

end if
end for
if p ¼ ? then
CC  CC n fccg

end if
end for

end for
end function

5 MUTATION ANALYSIS WITH SCHEMAANALYST

We implemented mutation analysis (i.e., the generation of
mutants and the repeated execution of the test suite to deter-
mine the mutants’ kill status) and the ineffective mutant
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removal algorithms into our SchemaAnalyst tool [22], which
supports the SQLite, PostgreSQL, and HyperSQL DBMSs.
Although SchemaAnalyst also performs the automatic gener-
ation of test suites for relational schemas [22], since it is the
primary focus of this paper, Fig. 9 only shows the different
steps involved in mutant production with SchemaAnalyst,
whichwe describe in the following sections.

5.1 Automated Relational Schema Parsing

SchemaAnalyst begins by parsing the SQL declarations of the
relational schema (i.e., the CREATE TABLE statements) into
the abstract, DBMS-independent schema representation
described in Section 4.1 (Step 1 of Fig. 9). To control the
threats to validity that may arise from incorrectly breaking
down SQL commands, SchemaAnalyst performs parsingwith
the General SQL Parser (GSP),5 a commercial tool that han-
dles SQL for a variety of database management systems,
including the three used in the empirical study of Section 6.

5.2 Automated Generation of Mutants

After the schema is parsed into the abstract representation,
the tool applies mutation operators to produce mutant sche-
mas (Step 2 of Fig. 9). Table 1 summarizes 13 different muta-
tion operators that we apply in this paper and which are
implemented into SchemaAnalyst. Designed to model the
types of mistakes that database designers might make when
specifying a schema, as outlined in Section 2.2, these opera-
tors were originally proposed by Kapfhammer et al. [12]
and Wright et al. [15] for introducing synthetic faults into
the integrity constraints of a relational schema. We designed
these operators according to the following principles:

� Operators should make the smallest possible
changes to the integrity constraints in a relational
database schema.

� Operators should be as general as possible, applying
to a wide range of DBMSs and vendor interpreta-
tions of the SQL standard. Thus, it is not an oper-
ator’s responsibility to avoid the production of
mutants that may be ineffective for one DBMS but
effective for another.

� An operator should not create mutants that are trivi-
ally redundant with respect to its other produced
mutants.

� An operator should be usable independently of other
operators, thus enabling it to work in either a selec-
tive or a higher-order mutation strategy. It is there-
fore not an operator’s concern as to whether the
mutants it produces are redundant or not with
respect to mutants that may or may not be produced
by other operators.

While prior work has defined mutation operators for
other parts of a database application (e.g., the SQL SELECT

statements created by a program [46]), SchemaAnalyst does
not incorporate them since they do not adhere to the afore-
mentioned design principles. Notably, operators that
manipulate the SELECTs cannot directly process the CRE-

ATE TABLE statements that define a relational schema.
Section 8 explains that, in future work, we will customize
these SELECT-based operators so that they can manipulate
schemas.

For brevity and ease of identification, we assign each
operator a name according to the constraint it targets and the
modification it makes. For example, the “Primary Key Col-
umnAddition” operator is abbreviated to “PKColumnA”.
The “addition” and “removal” operators add and remove
components, respectively, while the “exchange” operators
swap some component for another.

Fig. 9. The inputs and outputs of automatic mutation analysis in the SchemaAnalyst tool. In this figure, a dark square represents the tool and its con-
stituent parts, an arrow stands for a process, a rectangle is a SQL representation, and circle symbolizes a relational database schema.

TABLE 1
The Mutation Operators Studied in This Paper

Operator Name Description

CInListElementR Removes an element from an IN (...)

of a CHECK constraint
CR Removes a CHECK constraint
CRelOpE Exchanges a relational operator in the

predicate of a CHECK constraint
FKColumnPairR Removes a column pair from a FOREIGN KEY

FKColumnPairE Exchanges a column in a FOREIGN KEY

NNA Adds a NOT NULL constraint to a column
NNR Removes a NOT NULL constraint from a column
PKColumnA Adds a column to a PRIMARY KEY

PKColumnR Removes a column from a PRIMARY KEY

PKColumnE Exchanges a column in a PRIMARY KEY

UColumnA Adds a column to a UNIQUE constraint
UColumnR Removes a column from a UNIQUE constraint
UColumnE Exchanges a column in a UNIQUE constraint

In this table, the naming convention for the mutation operators follows a system
according to the constraint type being mutated (e.g., Primary Key), the aspect
being mutated (that is generally a column in a table of the database), and how
the aspect is beingmutated (i.e., Added, Removed, or Exchanged with another).5. General SQL Parser is available at http://sqlparser.com.
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The first three operators mutate CHECK constraints. The
“CInListElementR” operator removes individual elements
from the list of an IN expression (e.g., “CHECK month IN

(1, 2, 3 ...)”). The second, “CRelOpE”, produces
mutants by replacing the relational operator (i.e., =, <, >,
<=, and >=) in an expression of a CHECK constraint with
each other possible relational operator. Finally, the third
operator, called “CR”, simply removes a CHECK from the
definition of a schema.

The next two operators mutate FOREIGN KEY con-
straints. Foreign key definitions require pairs of columns
that map values in a column in the table on which the
FOREIGN KEY is defined, referred to as the “source” table,
to a column in the “referenced” table. “FKColumnPairR”,
in contrast, performs the reverse operation, removing a
pair of columns from an existing FOREIGN KEY constraint.
The “FKColumnPairE” operator exchanges one of the col-
umns in one of the pairs of the key (that is, the column
that is changed can be on the source table side of the
pair, or on the referenced table side of the pair).
Wright et al. [15] also proposed an “FKColumnPairA”
operator, which added a pair of columns to an existing for-
eign key. However, due to foreign key misalignment, this
operator only produces non-stillborn or impaired mutants
in a very narrow set of circumstances [47]. It does not
result in any effective mutants for the representative sche-
mas that we study in the experiments of Section 6 and
thus, to forestall artificially inflating the significance of the
results, we omitted it from the empirical evaluation.

Two operators mutate NOT NULL constraints. The “NNA”
operator adds a NOT NULL constraint to a column that did
not previously have one, while the “NNR” operator removes
an existing NOT NULL constraint from a table’s column.

Three additional operators mutate PRIMARY KEY con-
straints. The “PKColumnA” operator adds a column to an
existing PRIMARY KEY constraint, or creates a new one from
a column should a table not already have a primary key
defined. The “PKColumnR” operator performs the reverse
operation of removing a column from an existing primary
key, while the “PKColumnE” operator exchanges a column
in an existing key for another one in the table.

The final three operators mutate UNIQUEs in much the
same way as primary keys are mutated: adding columns to
an existing UNIQUE constraint or creating new constraints
(“UColumnA”), removing columns from existing columns
(“UColumnR”), and exchanging them (“UColumnE”).

In contrast to program mutation, which makes small
changes to program code at the syntactic level, these operators
apply mutation at a semantic level, automatically processing
the abstract representation provided by the SchemaAnalyst
tool. This method has clear advantages as it avoids the pro-
duction of many kinds of ineffective mutants from the outset.
Stillborn mutants that result from syntactical issues are not
possible, while structurally equivalent mutants, such as those
illustrated in Fig. 4, cannot be generated.

By definition, each of these operators cannot produce a
mutant that is structurally equivalent to the original schema.
However, some operators (i.e., “UColumnE”) employ addi-
tional checks to ensure that structurally equivalent pairs of
mutants (i.e., where one of the pair is redundant) are not pro-
duced. In adherence to our design principles, each operator

does not knowwhich other operators are being used together,
nor does it have a notion of behavioral equivalence or invalid-
ity as these concepts are DBMS specific. Therefore, ineffective
mutants may be produced that are stillborn, equivalent,
redundant, or impaired. As such, we implemented the algo-
rithms described in the last section to automatically remove
these ineffective mutants. The next section introduces the
details of this implementation.

5.3 Automatic Removal of Ineffective Mutants

Following the tool’s automatic generation of mutants, the
stage that is novel to this paper removes the ineffective (i.e.,
the stillborn, impaired, equivalent, and redundant database
schema mutants), as discussed in Section 3, and according
to the algorithms described in Section 4. The algorithms
detailed in that section occupy steps 3–6 of Fig. 9.

Step 3 (removal of stillborn mutants), consists of apply-
ing Checks 1 and 2 (described in Section 4.2) for HyperSQL.
For PostgreSQL, SchemaAnalyst only applies Check 2, the
only relevant check for this DBMS; for SQLite, no
stillborn mutants can be identified, so the tool does not per-
form any checks. Any mutants found to be stillborn by these
checks are removed from the mutant pool. In the Fig. 9 and
in the experiments of Section 6, this is the set of mutants
referred to as �S, since it contains all of the generated
mutants, minus those the tool identified as stillborn.

Step 4 (removal of impaired mutants) applies to SQLite,
since SchemaAnalyst only needs to check for mutants with
foreign key misalignment for this DBMS. In Fig. 9 and in
Section 6’s experiments, this is the set of mutants denoted
�ðS þ IÞ, since it contains all of the generated mutants,
minus those identified as being stillborn and impaired.

Step 5 (removal of equivalent mutants) normalizes the
remaining mutants according to the transformation steps
described in Section 4.4. It then compares mutants with the
(normalized) original schema for structural equivalence.
SchemaAnalyst removes mutants identified as equivalent
from the mutant pool. In Fig. 9 and in the experiments of
Section 6, this is the set of mutants referred to as
�ðS þ I þ EÞ, since it contains all the mutants generated,
minus those the tool identified as being stillborn,
impaired as well as those equivalent to the original schema.

Step 6 (removal of redundant mutants) uses the normal-
ized mutants in checks for equivalence between the mutants
themselves. Where two mutants are found to be structurally
identical, one of the mutants is marked as redundant and
removed from the mutant pool. In Fig. 9 and in the experi-
ments of Section 6, this is the set of mutants referred to as
�ðS þ I þ E þRÞ, since it contains all the mutants gener-
ated, minus those automatically identified by the tool as
stillborn, impaired, equivalent, and redundant with respect
to some other mutant with which it is equivalent in the
mutant pool.

5.4 Automated Mutation Analysis

Once it completes the phases in Fig. 9, SchemaAnalyst then
outputs the mutant schemas in the form of SQL CREATE

TABLE statements, following a standardized SQL-writing
process tailored to the DBMS in use in step 7. Mutation
analysis can then begin, as described in Section 2.4.
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SchemaAnalyst applies its automatically generated suites of
INSERT statements to the original and mutant schemas,
checking whether the INSERTs are accepted or rejected by a
DBMS in the same way for the two schemas. If there is any
difference, then the mutant is killed, else it is deemed to be
alive. Using this information, SchemaAnalyst computes the
higher-is-bettermutation score for the test suite.

6 EMPIRICAL STUDY

In order to evaluate Section 4’s technique that automatically
detects and removes ineffective mutants for database sche-
mas, we designed an empirical study with the aim of
answering the following three research questions:

RQ1: Ineffective Mutants Detected by Static Analysis. How
many stillborn, impaired, equivalent, and redundant
relational database schema mutants are detected using
SchemaAnalyst’s automated static analysis approach?
Do any ineffective mutants remain that were not identi-
fied by the presented method, and how are they
characterized?

RQ2: Efficiency of the Approach. How does the up-front time
cost of statically identifying and removing impaired,
equivalent, and redundant database schema mutants
compare to the time savings made in not having to ana-
lyze them during mutation analysis? In other words, is
mutation analysis more efficient overall with or without
the use of automatic ineffective mutant identification
and removal?

RQ3: Impact on the Mutation Score. How does the automatic
removal of impaired, equivalent, and redundant
mutants influence the mutation score for the schema’s
tests? That is, how often does the removal of ineffective
mutants cause a test suite’s mutation score to increase
or decrease? Does ineffective mutant removal ever
enable a previously non-adequate test suite to achieve a
perfect mutation score?

6.1 Methodology

We now describe the methodology that we used to conduct
our experiments with SchemaAnalyst, beginning with our
choice of database schemas to use in mutation analysis with
and without the removal of the ineffective mutants.

6.1.1 Subject Schemas

In order to answer the aforementioned research questions,
we constructed a representative set of 34 database schemas,
over double the size of the set of subjects that featured in the
conference version of this paper [15], and larger than in pre-
vious work on testing database schemas (e.g., [12], [13], [14]).
Houkjær et al. notes that complex real-world relational sche-
mas often include features such as composite keys and
multi-column foreign-key relationships [10]. As such, the
schemas chosen for this paper’s study reflect a diverse set of
features, from simple instances of each of the main types
of integrity constraint (i.e., PRIMARY KEY constraints,
FOREIGN KEY constraints, UNIQUE constraints, NOT NULL

constraints, and CHECK constraints) to more complex exam-
ples involving many-column foreign key relationships.
Additionally, the set of subjects that we used in this study

involve database schemas drawn from a range of sources.
Further details are shown by Table 2: the number of tables in
each relational database schema varies from 1 to 42, with a
range of just 3 columns in one of the smallest schema, to 309
in the largest. Collectively, the 186 tables and 1044 columns
feature each of the main types of database schema integrity
constraint that ourmutation operators seek tomanipulate.

Several schemas were taken from real-world projects. For
example, ArtistSimilarity and ArtistTerm are schemas that
underpin part of the Million Song dataset, a freely available
research dataset of song metadata [23] (a fragment of which
we introduced earlier in Fig. 1b). Cloc is a schema for the
database used in a popular open-source application that
counts the number of various types of lines in code for
many different programming languages (http://cloc.
sourceforge.net). IsoFlav_R2 belongs to a plant compound
database from the U.S Department of Agriculture. JWhois-
Server is used in an open-source, Java-based implementation
of a server for the Internet WHOIS protocol (http://
jwhoisserver.net). MozillaExtensions and MozillaPermissions
were both extracted from SQLite databases that are a part of

TABLE 2
The 34 Relational Database Schemas Studied in This Paper
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ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BookTown 22 67 2 0 15 11 0 28
BrowserCookies 2 13 2 1 4 2 1 10
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
CustomerOrder 7 32 1 7 27 7 0 42
DellStore 8 52 0 0 39 0 0 39
Employee 1 7 3 0 0 1 0 4
Examination 2 21 6 1 0 2 0 9
Flights 2 13 1 1 6 2 0 10
FrenchTowns 3 14 0 2 13 0 9 24
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
IsoFlav_R2 6 40 0 0 0 0 5 5
iTrust 42 309 8 1 88 37 0 134
JWhoisServer 6 49 0 0 44 6 0 50
MozillaExtensions 6 51 0 0 0 2 5 7
MozillaPermissions 1 8 0 0 0 1 0 1
NistDML181 2 7 0 1 0 1 0 2
NistDML182 2 32 0 1 0 1 0 2
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS748 1 3 1 0 1 0 1 3
NistXTS749 2 7 1 1 3 2 0 7
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14
RiskIt 13 57 0 10 15 11 0 36
StackOverflow 4 43 0 0 5 0 0 5
StudentResidence 2 6 3 1 2 2 0 8
UnixUsage 8 32 0 7 10 7 0 24
Usda 10 67 0 0 31 0 0 31
WordNet 8 29 0 0 22 8 1 31

Total 186 1044 38 49 357 122 24 590
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the Mozilla Firefox Internet browser. RiskIt is a database
schema that forms part of a system for modeling the risk of
insuring an individual (http://sourceforge.net/projects/
riskitinsurance). StackOverflow is the underlying schema
used by a popular programming question and answer web-
site, as previously studied in a conference data mining chal-
lenge [48]. UnixUsage is taken from an application for
monitoring and recording the use of Unix commands, while
WordNet is the database schema used in a graph visualizer
for the WordNet lexical database (a fragment of which was
introduced earlier in Fig. 1a). While some of these database
schemas are from real-world applications not used in prior
experiments, we chose others because they featured in pre-
vious studies of various testing methods (e.g., RiskIt, Uni-
xUsage [49], and JWhoisServer [50]).

The six “Nist–” schemas are drawn from the SQL Confor-
mance Test Suite of the National Institute of Standards and
Technology (NIST) [24], and have featured in past studies
such as those conducted by Tuya et al. [46] (the NistWeather
schema in particular is shown by Fig. 1c). DellStore, French-
Towns, Iso3166, and Usda were taken from the samples for
the PostgreSQL DBMS, available from the PgFoundry.org
website. iTrust is a large schema that was designed as part
of a patient records medical application to teach students
about software testing methods. It previously featured in a
mutation analysis experiment of Java code [51]. The remain-
ing schemas (e.g., BankAccount, BookTown, CoffeeOrders, Cus-
tomerOrder, Person, and Products) were extracted from the
textbooks, assignments, and online tutorials in which they
were provided as examples. While simpler than some of the
other schemas used in our study, they nevertheless proved
challenging for open-source database analysis tools such as
the DBMonster data generator [12].

Since many of the database schemas studied in this
paper’s experiments contain many lines of complex SQL
code, we do not include them in this paper. However, all
of the schemas used as subjects are available from the
web site for the SchemaAnalyst tool [22]. Moreover, the
SchemaAnalyst tool parsed the SQL for each of these sche-
mas into the abstract representation that was previously
described in Section 5. Once in this abstract form, the tool
wrote the SQL out again for each of the particular DBMSs
featured in our study, regardless of minor differences in
the version of SQL used; the abstract representation of
each schema is also available for download from
SchemaAnalyst’s web site [22].

6.1.2 Subject DBMSs

We performed experiments using the HyperSQL, Post-
greSQL, and SQLite DBMSs. Each of these database manage-
ment systems is supported by our SchemaAnalyst tool [22];
theywere chosen for their performance differences and vary-
ing design goals. PostgreSQL is a full-featured, extensible,
and scalable DBMS, while HyperSQL is a lightweight, small
DBMS that supports an “in-memory” mode that avoids disk
writing. SQLite is a lightweight DBMS that differs in its inter-
pretation of the SQL standard in subtly different ways from
HyperSQL and PostgreSQL. All three of these DBMSs are
used in a wide variety of real-world programs from many
diverse application domains.

6.1.3 Automatic Generation of the Example Test Suites

To study the effect of removing ineffective mutants on the
usefulness and cost of mutation analysis, we needed exam-
ple test suites on which to perform mutation analysis. Since
none of the chosen schemas are accompanied by a suite of
tests that contain a sequence of INSERT statements, we gen-
erated suites with SchemaAnalyst using the approach
described in our prior work [13]. In that paper, we detailed a
series of coverage criteria and automated techniques that
aim to generate tests to fulfill them. Importantly, the number
of tests generated by the techniques from our prior work is a
function of the chosen coverage criteria and not a parameter
whose values are controlled by the empirical study’s design.

We used Randomþ and AVM to automatically generate
test cases with the aim of satisfying the coverage criteria
combination of “ClauseAICC”, “AUCC”, and “ANCC”, as
previously introduced in Section 2.3. Since our previous
work showed that these two test generators satisfy these
particular criteria to different degrees [13], resulting in tests
with medium to strong mutant killing power, we deemed
them highly suited to the task of assessing the relative use-
fulness and costs of mutation analysis with and without
ineffective mutant removal. Since both methods rely on ran-
dom number generation, we generated 30 test suites for
each database schema using each of the two techniques and
while always employing a different random seed [52].

6.1.4 Experimental Procedure

RQ1: Ineffective Mutants Detected by Static Analysis. To answer
RQ1, we ran the automated static analysis approach for
detecting ineffective mutants on each of the schemas when
hosted by every DBMS, recording the numbers of mutants
detected for each of the four category types—stillborn,
impaired, equivalent, and redundant. Our static analysis
procedure follows rules consistent with each DBMS such
that false positives are unlikely to occur, unless there are
bugs in our implementation of SchemaAnalyst or in the data-
base management system itself (see Section 6.2 for more
details about howwe addressed the former in mitigating the
threats to the validity of our experimental study).

Although we judge that SchemaAnalyst is capable of iden-
tifying large numbers of mutants as ineffective, its checks
are not exhaustive, and as such false negatives are still pos-
sible—that is, there may be mutant schemas that are ineffec-
tive, yet missed by our approach. For stillborn mutants,
false negatives are easy to find in the course of standard
mutation analysis—any mutant not identified as stillborn is
rejected by the DBMS. For equivalent mutants, we manually
analyzed the live mutants following mutation analysis, as a
mutant that is killed by a test suite cannot be equivalent.
For this purpose, a mutant is counted as “live” if it was not
killed by any test suite. Since the number of live mutants
is relatively few in number, an exhaustive manual
analysis of these mutants is possible. For impaired and
redundant mutants, however, no automated DBMS checks
exist, nor is the set of mutants naturally reduced to a tracta-
ble number for manual checking through our implemented
and tested mutation analysis procedure. Thus, we further
checked our results through an intensive manual spot-check
of the database schema mutants.
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To do so, we selected a subset of non-stillborn mutants
produced by SchemaAnalyst for each schema and DBMS and
manually generated INSERT statements with the aim of
checking the classification of each mutant by our tool as
either equivalent, redundant, impaired, or normal (i.e.,
effective). We selected an initial 50 mutants at random. We
then added a further seven mutants to this pool to ensure
that it contained at least one representative mutant for each
schema, DBMS, mutation operator, and ineffective mutant
pattern, as detailed in Section 3. Where possible, we selected
these additional mutants at random from a constrained set
(e.g., all mutants produced by a particular operator or for a
schema, if fixing one of these aspects was an important
property). Finding an exemplar mutant for Pattern IM-2
(i.e., infeasible CHECK constraints) was less straightforward,
however, since we were unaware if such mutants existed in
the set of mutants SchemaAnalyst generated for our schemas,
and if they did, which ones they were. The process we
adopted was therefore as follows: We manually reasoned
about the 13 subject schemas involving CHECK constraints
listed in Table 2, first concluding that removing elements of
IN expressions through the CInListElementR operator, or
complete constraints through the CR operator, would not
result in infeasible constraints for any of these schemas. This
left mutants produced by the CRelOpE operator, which was
applicable to eight of our schemas (i.e., BookTown, Browser-
Cookies, Employee, Examination, NistXTS748, NistXTS749,
Products, and StudentResidence), as they involve CHECK con-
straints with relational expressions. Two of these schemas
(i.e., BrowserCookies and Products) have expressions of suffi-
cient complexity that they could be sources of infeasibility
followingmutation. The rest involve expressions that simply
compare a column with a constant. We performed an
exhaustive manual analysis of the mutants produced by
CRelOpE for BrowserCookies (15 mutants) and Products
(20 mutants). We found three mutants for Products with
infeasible CHECKs following mutation and selected one to
use in ourmanual spot-check of mutants.

The first author then produced a JUnit test suite for each
of the 57 mutants for our manual spot-check analysis. Each
test suite consisted of INSERT statements that could be
automatically checked against mutants with the intention of
asserting whether that mutant was correctly classified as
“effective” or “ineffective”, and, if ineffective, what type of
ineffective mutant it was. To rule out the possibility of a
mutant being “impaired”, the first author devised INSERTs
to show that data could be added to each table. To eliminate
the possibility of manually classifying a mutant as equiva-
lent to the original schema, INSERTs were crafted to show a
difference in behavior for the original schema and the
selected mutant (that is, a difference in the acceptance/
rejection pattern of the INSERTs with the mutant compared
to the original schema for the DBMS concerned).

Finally, to rule out the conclusion that the mutant was
equivalent to another mutant (i.e., it was redundant) further
INSERT statements were written to ensure a difference
between the mutant and each other mutant produced for the
schema in question. To assist this process, the first author
wrote utility methods that could be used by each JUnit test
suite to automatically instantiate databases with the original
and mutant schemas, submit INSERT statements, and

compare the DBMS responses. If we could not construct
INSERT statements to refute a particular type of ineffective-
ness, the mutant was labeled accordingly, and the manually
derived conclusion cross-checked against the mutant’s clas-
sification as automatically computed by SchemaAnalyst using
the static detection routines. As noted in Section 6.2, all of the
aforementioned test suites, classifications, and crosschecks
produced by the first author are available for download from
a replication package accompanying this paper.6

RQ2: Efficiency of the Approach. To answer RQ2, we split up
our analysis to specifically investigate (a) stillborn mutants
and (b) impaired, equivalent, and redundant mutants.
We treat these two sets of mutants separately since
stillborn mutants may also be identified using the database
management system, while the other three types of ineffec-
tive mutants cannot. If a mutant is stillborn, the DBMS
will reject its CREATE TABLE statements. There are no
such DBMS checks for impaired, equivalent, and
redundant mutants. So, we compare the performance
of our algorithms against the use of the DBMS for
stillborn mutants, while for the other types of mutants, we
compare the execution cost of mutation analysis with and
without their inclusion. As background processes on the
workstation could lead to small differences in the timings
collected to answer this research question, we always ran 30
repeat trials for each experiment [52].

(a) Stillborn Mutants. For the first part of our investiga-
tion, relating specifically to stillborn mutants, we ran three
experiments. First, we recorded the time taken to submit
each of the CREATE TABLE statements for each mutant for
each subject schema to every DBMS (i.e., HyperSQL, Post-
greSQL, and SQLite). We then verified whether the DBMS
accepted the mutant schema or rejected it as invalid. This
particular scenario represents the simplest method of per-
forming mutation analysis for database schemas, since sche-
mas are identified during the process as stillborn by relying
on the DBMS to report an error when the schema is invalid.

Second, we recorded the time taken to perform the same
process, but this time by wrapping the CREATE TABLEs
for each mutant schema inside SQL transactions. This
represents a potentially faster method of detecting stillborn
mutants using the DBMS. Transactions leverage the “roll
back” feature of a DBMS to remove any successfully created
tables in the event of DBMS rejection of some later CREATE
TABLE [53], rather than individually removing the parts of the
schema that were successfully created. This is important since
all fragments of a schema need to be removed from the DBMS
in preparation for the analysis of the nextmutant.

Finally, we recorded the time taken to perform the
stillborn mutant checking process using SchemaAnalyst’s
automated static analysis approach. That is, the tool identi-
fied stillborn mutants ahead of the mutation analysis pro-
cess, and then removed them from the mutant pool. Since,
to our knowledge, stillborn mutants for database schema
integrity constraints cannot be created for SQLite with the
operators studied—and as a result there is no need for
static analysis checks for this particular DBMS—we ran
SchemaAnalyst for this analysis with only HyperSQL and
PostgreSQL.

6. https://github.com/schemaanalyst/ineffectivemutants
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(b) Impaired, Equivalent, and Redundant Mutants. To address
the second part of the investigation, relating to impaired,
equivalent, and redundant mutants, we first studied the time
taken to run the detection and removal algorithms with each
combination of schema and DBMS to achieve the four sets of
mutants introduced in Section 5.3: “�S”, which corresponds
to all mutants that are produced except those identified
by the algorithms as stillborn; “�ðS þ IÞ”, which further
excludes mutants identified as impaired; “�ðS þ I þ EÞ”,
which additionally excludes equivalent mutants; and finally
“�ðS þ I þ E þRÞ”, which also excludes redundant
mutants, and as such excludes all ineffective mutants found
by the algorithms. Fig. 9 showed the sequencing of these
removals implemented in SchemaAnalyst.

To find the times taken to produce every set of ineffective
mutants, we timed how long SchemaAnalyst took to execute
each of the steps 4–6 as described in Section 5.3 and
depicted in Fig. 9. The time needed to produce the
�ðS þ I þ E þRÞ set of mutants corresponds to the com-
plete time (i.e., for steps 4–6 inclusively). To obtain the time
for �ðS þ I þEÞ, we subtracted the time spent in step 6. For
�ðS þ IÞ, we subtracted the time spent in steps 5 and 6;
while for �S the time is zero, since mutation analysis will
always take place with stillborn mutants removed, regard-
less of which of the three different methods studied in part
(a) of this research question is used to remove them.

We ran SchemaAnalyst to perform mutation analysis with
all non-stillborn mutants produced by its operators (i.e., the
set “�S”), recording the time taken to evaluate each indi-
vidual mutant. Then it calculated the time taken to perform
mutation analysis for each of the four different sets of
mutants (i.e., �S, �ðS þ IÞ, �ðS þ I þ EÞ, and �ðS þ I þ
E þRÞ) by summing the evaluation times for each of the
mutants in each of those particular sets. We repeated muta-
tion analysis 30 times for each combination of schema,
DBMS (i.e., HyperSQL, PostgreSQL, and SQLite) and test
generation method (i.e., the AVM and Randomþ) using dif-
ferent tests generated with a different random seed, thus
minimizing the possibility of random chance, during test
generation, affecting the results [52]. To produce a total
time to perform mutation analysis with each of the four
mutant sets, we added the time to produce each respective
set of mutants with the time needed to perform mutation
analysis with it.

RQ3: Impact on the Mutation Score. To answer RQ3, we
used SchemaAnalyst to compute the mutation scores for each
of the four sets of mutants (i.e., �S, �ðS þ IÞ, �ðS þ I þ EÞ,
and �ðS þ I þE þRÞ) as evaluated during mutation analy-
sis for the experiments that we conducted to answer RQ2.

We performed all of the experiments with our
SchemaAnalyst tool [12], [13], [15], [22], as described in Sec-
tion 5, compiled with the Java Development Kit 7 compiler
and executed with the Linux version of the 64-bit Oracle Java
1.7 virtual machine. Experiments were executed on a dedi-
cated Ubuntu 14.04workstation, with a 3.13.0-44 GNU/Linux
64-bit kernel, a quad-core 2.4GHz CPU, and 12GB RAM. All
input (i.e., relational database schemas) and output (i.e., data
files) were stored on the workstation’s local disk. We used
the default configuration of PostgreSQL version 9.3.5,
HyperSQL version 2.2.8, and SQLite 3.8.2. HyperSQL and
SQLitewere usedwith “in-memory”mode enabled.

6.1.5 Evaluating the Impact on Timing and

Mutation Score

For each experiment, we computed the means of mutation
scores and timings, over each of the experiment’s 30 repeti-
tions. To gauge the efficiency implications of ineffective
mutant removal, we compared the time taken, and the muta-
tion scores obtained, for mutation analysis with and without
ineffective mutants. For timing data, where a type of mutant
was removed from the mutant pool, we include the time
required for the static analyses to run, detect, and remove
ineffective mutants, thereby producing the different mutant
sets described in Section 5.3 (i.e., “�S” and “�ðS þ IÞ”).

Given two sets of data (obtained for either timing ormuta-
tion score, one set with an ineffective mutant type and one
without), we checked for statistical significancewith theWil-
coxon Rank-Sum test, using p < 0:05 as the significance
threshold [52]. Then, we calculated the Vargha-Delaney
Â statistic to measure effect size, thereby determining the
average probability that one approach outperforms
another [54]. In the tables of timing data andmutation scores
(i.e., Tables 9–14), we annotate large effect sizes (that is, Â
< 0.29 or> 0.71) with a “?”. Statistically significant decreases
are annotated by a “Ï” symbol, while statistically significant
increases are annotated by a “4” symbol. If timings are sub-
ject to a significant decrease, this means that the process is
more efficient with the removal of the ineffective mutants.
Conversely, if timings are subject to a significant increase,
the exclusion of ineffective mutants is slower than when it
includes them. With mutation scores, a significant increase
means that test suites killed a more favorable percentage of
mutants following the removal of an ineffective mutant,
while a significant decrease indicates that test suites killed a
less favorable percentage of mutants.

For assessing the implications of removing stillborn
mutants, we only present standard deviations computed for
the 30 runs of each experiment, as shown by Table 8. Due to
the large differences in the means, and the relatively small
standard deviations involved, the trend was clearly evident
and thus further statistical analysis was not necessary.

6.2 Threats to Validity

We now detail some threats to the validity of our empirical
study, and explain how we sought to mitigate them as part
of our experimental design. At the outset, it is important to
note that the SchemaAnalyst tool and all of the relational
database schemas used in this paper’s study are available
from the tool’s web site.7 The availability of the data genera-
tion and mutation analysis tools, in addition to the SQL
source code for each schema listed in Table 2, permits both
the replication of this paper’s experiments and the external
confirmation that we correctly controlled many of the
threats to validity discussed in this section.

Also, all of the data sets and each of the datamanipulation,
statistical analysis, and table-creation routines—implemented
separately by two different authors of the paper in two
distinct programming languages—are available for download

7. The web site https://github.com/schemaanalyst/schemaanalyst
features a Git version control repository containing all of the relational
database schemas used in the experiments in addition to the docu-
mented version of SchemaAnalyst’s source code and test suite.
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from the web site for this paper’s replication package.8 Along
with supporting the external confirmation that we appropri-
ately controlled some of the validity threats mentioned in the
remainder of this section, the availability of this replication
package enables the recreation of all of the paper’s data tables
and statistical analyses [55]. In summary, alongwith releasing
all of the software used to arrive at this paper’s conclusions,
we identified and handled the following validity threats for
the experimental study.

� The schemas used may not generalize. While it impossi-
ble for us to claim that our schemas are representa-
tive of all of the characteristics of all possible
relational database schemas, the set of subjects we
have collected is larger than previously consid-
ered [12], [13], [14], [15] and contains schemas drawn
from a wide range of sources, including the produc-
tion systems detailed in Section 6.1.1. Table 2 shows
the diversity captured by the 34 schemas that vary in
size and their coverage of each of the main types of
integrity constraint.

� The DBMSs used are not representative. While it is the
case that there are some popular DBMSs that we
did not include in the experiments, we note that
our choice of DBMSs provides a good coverage of
the different design goals (i.e., high performance
through in-memory data storage or stability by
keeping data on disk) and adherence to the SQL
standard of many DBMSs used in practice, as we
explained in Section 6.1.2. Although the results may
vary for different DBMSs, the patterns observed for
other management systems are likely to be similar
to those seen for the chosen DBMSs as long as their
features are similar—which several recent compari-
sons suggest is, in fact, largely the case.9

� The test suites used may bias the results. To ensure a
diverse set of tests in each of our test suites, we chose
to generate test suites with two different test data
generation techniques—the AVM and Randomþ—
with their differing approaches to obtaining cover-
age, as explained in Section 6.1.3. These two methods
are stochastic, and so further diversity can be
achieved by repeating experiments using a different
random seed, which we did for each experiment and
test data generator. Finally, since none of the chosen
database schemas were accompanied by tests, we
could not study how these types of test influenced
the detection and removal of ineffective mutants;
Section 8 notes that this may be a promising area for
future work as more database designers start to test
relational schemas.

� The mutation operators may not generalize. Since prior
work has shown that real-world relational schemas
are complex and often include features such as

composite keys and multi-column foreign-key rela-
tionships [10], our operators specifically target these
aspects of relational database schemas. Yet, different
results may be obtained with different types of oper-
ators, and our results may not generalize to those
operators. For instance, this paper does not focus on
the identification and removal of ineffective higher-
order mutants. However, Section 8 notes that we
plan, as part of future work, to further control this
threat by extending the set of mutation operators
used by the SchemaAnalyst tool.

� The mutants are not representative of real faults.
According to the “competent programmer” hypoth-
esis [56], programmers are likely to produce pro-
grams that are nearly correct, implying that real
faults will frequently be the result of small mistakes.
By making small changes to each type of constraint,
the mutation operators that we used were designed
to model such faults in the context of relational
database schemas. They implement operators for
both the addition and removal of columns, and as
such model faults of both omission and commis-
sion, further improving the range of mistakes in
database schema that they can represent.

� Background tasks interfering with timings. The timing of
the processes for detecting and removing ineffective
mutants, and performing the mutation analysis itself,
are subject to interference from background tasks. To
minimize the impact of background tasks, we
repeated the experiments and recorded all timings.

� Defects in the SchemaAnalyst tool.Tomitigate this threat,
we have implemented a JUnit test suite in parallelwith
the development of the SchemaAnalyst tool itself. Fur-
thermore, we have extensively hand checked the
results obtained to ensure that they are correct. In
addition, as part of the methodology of the experi-
ments, we manually-checked the classification of
57mutants, further confirming the tool’s correctness.

� Mistakes made as part of the manual analysis. Although
the INSERT statements and JUnit tests used to find
false positives in RQ1 of the experimental study
were manually written by an author of this paper,
they were automatically checked against the behav-
ior of the DBMS and other mutants, and in each
case our conclusions agreed with the result pro-
duced by the static analysis algorithms for ineffec-
tive mutant detection.

� The statistical tests used. We cannot be certain that
our data is normally distributed, and as a result, we
used non-parametric statistical tests, including the
Wilcoxon Rank-Sum (Mann-Whitney U) Test and
the Vargha-Delaney Â statistic for measuring effect
size. These two statistical tests are commonly
adopted for analysing results arising from the study
of software engineering methods that employ ran-
domness [52], thereby mitigating concerns that our
conclusions are incorrect.

� Defects in the statistical analysis tools. Since it is possible
that we made a mistake during the manipulation and
statistical analysis of the empirical results, we took
several steps to control this threat to validity. For

8. Along with providing the source code for all of the data analysis
and manipulation routines and all of the raw data files, https://github.
com/schemaanalyst/ineffectivemutants also furnishes the manually
created JUnit tests used in answering RQ1.

9. The web site available at http://goo.gl/7pzxeV provides a regu-
larly-updated “DBMS comparison” table revealing that different data-
base management systems now offer many of the same features.
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instance, two authors of this paper separately imple-
mented the data analysis routines and then compared
the outputs, ultimately finding agreement in the final
data tables and outcomes of the statistical tests.

6.3 Characterizing the Test Suites

Since none of the database schemas came with a test suite,
we automatically generated tests using the AVM and
Randomþ methods provided by the SchemaAnalyst tool.
Table 3 characterizes the test suites created by both of these
techniques, revealing that it is rare for theAVM to not achieve
full coverage of the test requirements. In fact, in cases where
AVM does not cover all of the requirements, we found that
this was due to an infeasibility in the constraints that the test
data generator must cover. This table also shows that test
suites created by AVM are of a higher coverage—and often
comprised of more tests—than those created by Randomþ,
thereby suggesting that they will also have a higher mutation
score and a longer mutation analysis time than those that are
produced by the randommethod.

6.4 Answers to Research Questions

RQ1: Ineffective Mutants Detected by Static Analysis

Table 4 shows the number of mutants produced for each
database schema, and the ineffective mutants identified for
each. Table 5 breaks the data down by mutation operator.

The number of mutants produced for each database
schema depends on the number and type of integrity con-
straints it has, all information that is shown in Table 2. If a
type of integrity constraint is not present for a schema, then
certain operators cannot be applied (e.g., the NNR operator
cannot be used to produce mutants with NOT NULL con-
straints removed, if there are no NOT NULL constraints in
the first instance). Certain types of integrity constraints will
yield more mutants with certain operators than others. For
example, the PKColumnA operator will produce four differ-
ent mutants for a table with a single column primary key
with five columns, where each mutant is the original pri-
mary key with another column in the table added to it.

Responding to this research question, we now discuss
the results for each of the types of ineffective mutant.

Stillborn Mutants. The tables show that SchemaAnalyst’s
use of the abstract representation and static analysis checks
leads to the identification of many stillborn mutants for the
34 schemas and the HyperSQL and PostgreSQL DBMSs. For
stillborn mutants, it is possible to automatically verify the
results by submitting each mutant to the DBMS and check-
ing to see if was rejected as invalid. This process confirmed
that the static analysis correctly identified all stillborn
mutants. The stillborn mutants found are identified as a
result of the foreign key misalignment rule (as discussed
in Section 3.3) and the rule for HyperSQL that detects

TABLE 3
Mean Coverage and Size of the Test Suites that were Automatically Generated by Randomþ and the AVM

HyperSQL PostgreSQL SQLite

Randomþ AVM Randomþ AVM Randomþ AVM

Schema Cov. # Tests Cov. # Tests Cov. # Tests Cov. # Tests Cov. # Tests Cov. # Tests

ArtistSimilarity 59.3 10.7 100.0 18.0 59.3 10.7 100.0 18.0 61.2 11.7 100.0 19.0
ArtistTerm 59.5 23.9 100.0 40.0 59.5 23.9 100.0 40.0 62.0 26.9 100.0 43.0
BankAccount 84.6 26.4 100.0 31.0 84.6 26.4 100.0 31.0 87.0 32.4 100.0 37.0
BookTown 91.8 247.4 99.0 266.0 91.8 247.4 99.0 266.0 91.8 250.4 99.0 269.0
BrowserCookies 57.8 42.0 100.0 72.0 57.8 42.0 100.0 72.0 58.6 42.0 100.0 71.0
Cloc 92.1 36.9 100.0 40.0 92.1 36.9 100.0 40.0 92.1 36.9 100.0 40.0
CoffeeOrders 57.1 44.4 100.0 77.0 57.1 44.4 100.0 77.0 61.6 55.7 100.0 90.0
CustomerOrder 41.1 49.9 100.0 120.0 41.1 49.9 100.0 120.0 41.3 52.7 100.0 126.0
DellStore 93.0 165.4 100.0 177.0 93.0 165.4 100.0 177.0 93.0 165.4 100.0 177.0
Employee 88.8 31.3 100.0 35.0 88.8 31.3 100.0 35.0 89.9 34.3 100.0 38.0
Examination 82.4 85.4 100.0 103.0 82.4 85.4 100.0 103.0 83.3 89.6 100.0 107.0
Flights 58.4 38.8 100.0 66.0 58.4 38.8 100.0 66.0 57.8 36.1 100.0 62.0
FrenchTowns 34.1 18.4 100.0 53.0 34.1 18.4 100.0 53.0 34.1 18.4 100.0 53.0
Inventory 95.3 15.3 100.0 16.0 95.3 15.3 100.0 16.0 96.0 17.3 100.0 18.0
Iso3166 84.5 7.7 100.0 9.0 84.5 7.7 100.0 9.0 88.5 10.7 100.0 12.0
IsoFlav_R2 87.1 155.0 100.0 177.0 87.1 155.0 100.0 177.0 87.1 155.0 100.0 177.0
iTrust 91.1 1334.8 100.0 1458.0 91.1 1334.8 100.0 1458.0 91.6 1395.4 100.0 1517.0
JWhoisServer 85.9 131.5 100.0 152.0 85.9 131.5 100.0 152.0 86.5 137.5 100.0 158.0
MozillaExtensions 87.3 198.5 100.0 226.0 87.3 198.5 100.0 226.0 87.5 201.5 100.0 229.0
MozillaPermissions 95.3 30.7 100.0 32.0 95.3 30.7 100.0 32.0 95.3 31.7 100.0 33.0
NistDML181 63.1 23.6 100.0 37.0 63.1 23.6 100.0 37.0 64.2 24.7 100.0 38.0
NistDML182 62.0 110.0 100.0 176.0 62.0 110.0 100.0 176.0 65.0 124.0 100.0 190.0
NistDML183 100.0 34.0 100.0 34.0 100.0 34.0 100.0 34.0 100.0 34.0 100.0 34.0
NistWeather 56.8 29.8 100.0 52.0 56.8 29.8 100.0 52.0 75.2 42.3 100.0 56.0
NistXTS748 100.0 16.0 100.0 16.0 100.0 16.0 100.0 16.0 100.0 16.0 100.0 16.0
NistXTS749 85.0 31.7 100.0 37.0 85.0 31.7 100.0 37.0 85.9 30.2 100.0 35.0
Person 92.8 17.7 100.0 19.0 92.8 17.7 100.0 19.0 93.7 18.7 100.0 20.0
Products 69.3 32.8 97.0 46.0 69.3 32.8 97.0 46.0 78.3 41.9 98.0 52.0
RiskIt 67.9 167.8 100.0 245.0 67.9 167.8 100.0 245.0 69.7 175.2 100.0 250.0
StackOverflow 95.5 164.2 100.0 171.0 95.5 164.2 100.0 171.0 95.5 164.2 100.0 171.0
StudentResidence 70.0 21.0 100.0 30.0 70.0 21.0 100.0 30.0 73.2 25.1 100.0 34.0
UnixUsage 49.6 73.6 100.0 147.0 49.6 73.6 100.0 147.0 51.8 76.6 100.0 147.0
Usda 89.6 222.4 100.0 247.0 89.6 222.4 100.0 247.0 89.6 222.4 100.0 247.0
WordNet 89.5 114.4 100.0 127.0 89.5 114.4 100.0 127.0 88.6 105.5 100.0 118.0

In this table, the abbreviation “Cov.” stands for the higher-is-better coverage score of the suite created by the test generator, while “# Tests” is the number of test cases.
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Ineffective Mutants by Database Schema
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H 13 2 0 1 2 5 8 38.5 H 190 6 0 6 0 12 178 6.3
ArtistSimilarity P 13 1 0 2 2 5 8 38.5 JWhoisServer P 190 0 0 12 0 12 178 6.3

S 13 0 1 1 4 6 7 46.2 S 190 0 0 6 0 6 184 3.2

H 29 6 0 3 0 9 20 31.0 H 364 4 0 2 12 18 346 4.9
ArtistTerm P 29 3 0 6 0 9 20 31.0 MozillaExtensions P 364 0 0 4 13 17 347 4.7

S 29 0 3 3 4 10 19 34.5 S 364 0 0 2 28 30 334 8.2

H 42 14 0 2 0 16 26 38.1 H 31 1 0 1 0 2 29 6.5
BankAccount P 42 12 0 4 0 16 26 38.1 MozillaPermissions P 31 0 0 2 0 2 29 6.5

S 42 0 10 2 0 12 30 28.6 S 31 0 0 1 0 1 30 3.2

H 235 11 0 13 2 26 209 11.1 H 33 13 0 2 0 15 18 45.5
BookTown P 235 0 0 24 2 26 209 11.1 NistDML181 P 33 13 0 2 0 15 18 45.5

S 235 0 0 13 29 42 193 17.9 S 33 0 11 0 4 15 18 45.5

H 114 30 0 3 3 36 78 31.6 H 351 255 0 15 0 270 81 76.9
BrowserCookies P 114 29 0 4 3 36 78 31.6 NistDML182 P 351 270 0 15 0 285 66 81.2

S 114 0 21 1 3 25 89 21.9 S 351 0 240 0 17 257 94 73.2

H 30 0 0 0 0 0 30 0.0 H 31 11 0 0 0 11 20 35.5
Cloc P 30 0 0 0 0 0 30 0.0 NistDML183 P 31 11 0 0 0 11 20 35.5

S 30 0 0 0 10 10 20 33.3 S 31 0 11 0 6 17 14 54.8

H 101 45 0 5 0 50 51 49.5 H 48 14 0 3 1 18 30 37.5
CoffeeOrders P 101 40 0 10 0 50 51 49.5 NistWeather P 48 13 0 4 1 18 30 37.5

S 101 0 40 5 0 45 56 44.6 S 48 0 13 1 2 16 32 33.3

H 183 92 0 7 0 99 84 54.1 H 19 1 0 0 1 2 17 10.5
CustomerOrder P 183 87 0 14 0 101 82 55.2 NistXTS748 P 19 0 0 0 2 2 17 10.5

S 183 0 71 7 0 78 105 42.6 S 19 0 0 1 2 3 16 15.8

H 156 0 0 0 39 39 117 25.0 H 38 13 0 3 2 18 20 47.4
DellStore P 156 0 0 0 39 39 117 25.0 NistXTS749 P 38 12 0 4 2 18 20 47.4

S 156 0 0 0 52 52 104 33.3 S 38 0 10 1 2 13 25 34.2

H 45 1 0 1 0 2 43 4.4 H 23 1 0 1 0 2 21 8.7
Employee P 45 0 0 2 0 2 43 4.4 Person P 23 0 0 2 0 2 21 8.7

S 45 0 0 1 0 1 44 2.2 S 23 0 0 1 0 1 22 4.3

H 138 26 0 2 0 28 110 20.3 H 67 16 0 4 0 20 47 29.9
Examination P 138 24 0 4 0 28 110 20.3 Products P 67 14 0 6 0 20 47 29.9

S 138 0 16 2 0 18 120 13.0 S 67 0 14 2 2 18 49 26.9

H 84 36 0 4 2 42 42 50.0 H 347 148 0 12 4 164 183 47.3
Flights P 84 36 0 4 2 42 42 50.0 RiskIt P 347 138 0 22 4 164 183 47.3

S 84 0 31 0 2 33 51 39.3 S 347 0 123 10 8 141 206 40.6

H 128 30 0 0 35 65 63 50.8 H 129 0 0 0 5 5 124 3.9
FrenchTowns P 128 22 0 8 35 65 63 50.8 StackOverflow P 129 0 0 0 5 5 124 3.9

S 128 0 18 8 36 62 66 48.4 S 129 0 0 0 43 43 86 33.3

H 21 3 0 1 1 5 16 23.8 H 45 7 0 2 0 9 36 20.0
Inventory P 21 0 0 2 2 4 17 19.0 StudentResidence P 45 5 0 4 0 9 36 20.0

S 21 0 0 1 4 5 16 23.8 S 45 0 4 2 0 6 39 13.3

H 11 1 0 1 0 2 9 18.2 H 192 98 0 8 3 109 83 56.8
Iso3166 P 11 0 0 2 0 2 9 18.2 UnixUsage P 192 92 0 14 3 109 83 56.8

S 11 0 0 1 0 1 10 9.1 S 192 0 67 6 7 80 112 41.7

H 219 3 0 0 0 3 216 1.4 H 201 0 0 0 31 31 170 15.4
IsoFlav_R2 P 219 0 0 0 3 3 216 1.4 Usda P 201 0 0 0 31 31 170 15.4

S 219 0 0 3 37 40 179 18.3 S 201 0 0 0 67 67 134 33.3

H 1458 51 0 44 22 117 1341 8.0 H 107 6 0 16 6 28 79 26.2
iTrust P 1458 21 0 74 22 117 1341 8.0 WordNet P 107 0 0 20 8 28 79 26.2

S 1458 0 19 30 46 95 1363 6.5 S 107 0 0 4 8 12 95 11.2

H 5223 945 0 162 171 1278 3945 24.5
Total P 5223 843 0 271 179 1293 3930 24.8

S 5223 0 723 115 423 1261 3962 24.1

In this table, “Produced” is the number of mutants produced for a relational database schema, while “Stillborn”, “Impaired”, “Equivalent”, and “Redundant”
indicate the numbers of these mutants that are ineffective by their differing type. The “Ineffective” column denotes the total number of ineffective mutants, while
“Effective” indicates the total number of remaining effective mutants. Finally, the “Reduction” columns indicates the overall reduction in the number of mutants
needed for mutation analysis following the removal of ineffective mutants. In this table, “H” = HyperSQL, “P” = PostgreSQL, and “S” = SQLite.
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PRIMARY KEY constraints and UNIQUE constraints with
identical column sets, which are disallowed for this DBMS.
Since neither issue affects SQLite, no stillborn mutants were
found for this DBMS.

Table 4 shows that the NistDML182 schema resulted in
the most stillborn mutants with the mutation operators.
This schema has one foreign key with 15 columns, leading
to many instances of foreign key misalignment when
SchemaAnalyst applies the mutation operators. The RiskIt,
UnixUsage, and CustomerOrder schemas also have high

numbers of stillborn mutants. As Table 2 shows, these sche-
mas have the highest number of foreign keys (10, 7, and 7,
respectively), which again causes foreign key misalignment.
As seen from Table 5, approximately 80 percent of mutants
produced by the FKColumnPairE operator are stillborn. In
order to create a mutant that maintains a correctly aligned
foreign key, this operator has to exchange a column where
the modified column set in the referenced table corresponds
to an existing PRIMARY KEY or UNIQUE constraint so that
the mutant is valid. However, this happened relatively
infrequently. Moreover, approximately a third of mutants
are stillborn for the FKColumnPairR operator. Since FKCo-
lumnPairR removes a pair of columns from the foreign key
(i.e., a column in the foreign key table and its associated col-
umn in the referenced table), valid mutants tend not to be
produced except for when the foreign key involves a single
column pair, in which case the entire constraint is removed.

Impaired mutants. For SQLite, mutant schemas with for-
eign key misalignment are impaired, rather than stillborn.
Accordingly, many mutants that would have been classified
as stillborn for HyperSQL and PostgreSQL are identified as
impaired for SQLite. An example of this phenomenon is
given in Table 5, where, for SQLite, operators like FKCo-
lumnPairE and PKColumnA, and PKColumnE produce no
stillborn mutants and, respectively, 415, 102, and 111
impaired mutants. Also, there are fewer impaired mutants
for SQLite than stillborn mutants for HyperSQL and Post-
greSQL because SQLite does not regard mutants with
UNIQUE constraints and PRIMARY KEYs on the same sets of
columns as invalid, as does HyperSQL, and type mis-
matches between columns in mutated, yet correctly-aligned,
FOREIGN KEYs are of no concern for this DBMS. (As dis-
cussed in Section 3.3, SQLite has a weak typing mechanism
where, for example, a column of type TEXT can form a for-
eign key with a column of type INTEGER.) Since there is no
need for static checks for impaired mutants with HyperSQL
and PostgreSQL, no impaired mutants were identified for
these DBMSs.

Yet, our manual analysis did reveal impaired mutants
that escaped the automated analysis. For themutants of sche-
mas with CHECKs, we found three that had constraints that
were infeasible, and are therefore impaired. Involving Prod-
ucts, these mutants were produced by CRelOpE, which is
responsible for changing the relational operator in a CHECK.
This database schema has a table involving the three CHECK
constraints shown by Fig. 10. The operator mutated the first
constraint to price = 0, price < 0, and price <= 0,
respectively. Because of the second constraint, mandating
that discounted_price be greater than zero, the third
constraint price> discounted_price can never be true.

It is worth noting that our manual analysis involved an
exhaustive search for mutants with infeasible CHECK con-
straints, and resulted in us finding only three mutants—a
very small percentage of the total number of mutants pro-
duced for the subject schemas. As reported in Tables 4 and
5, a total of 5223 mutants were produced, meaning that only

TABLE 5
Ineffective Mutants by Mutation Operator
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H 282 0 0 0 0 0 282 0.0
CInListElementR P 282 0 0 0 0 0 282 0.0

S 282 0 0 0 0 0 282 0.0

H 38 0 0 0 0 0 38 0.0
CR P 38 0 0 0 0 0 38 0.0

S 38 0 0 0 0 0 38 0.0

H 110 0 0 0 0 0 110 0.0
CRelOpE P 110 0 0 0 0 0 110 0.0

S 110 0 0 0 0 0 110 0.0

H 643 518 0 0 0 518 125 80.6
FKColumnPairE P 643 535 0 0 0 535 108 83.2

S 643 0 415 0 0 415 228 64.5

H 67 23 0 0 2 25 42 37.3
FKColumnPairR P 67 23 0 0 2 25 42 37.3

S 67 0 23 0 2 25 42 37.3

H 687 0 0 71 0 71 616 10.3
NNA P 687 0 0 71 0 71 616 10.3

S 687 0 0 2 0 2 685 0.3

H 357 0 0 91 0 91 266 25.5
NNR P 357 0 0 91 0 91 266 25.5

S 357 0 0 0 0 0 357 0.0

H 884 114 0 0 99 213 671 24.1
PKColumnA P 884 102 0 8 103 213 671 24.1

S 884 0 102 12 338 452 432 51.1

H 568 114 0 0 0 114 454 20.1
PKColumnE P 568 111 0 0 0 111 457 19.5

S 568 0 111 0 0 111 457 19.5

H 160 51 0 0 23 74 86 46.2
PKColumnR P 160 51 0 0 24 75 85 46.9

S 160 0 51 0 33 84 76 52.5

H 1167 109 0 0 28 137 1030 11.7
UColumnA P 1167 8 0 101 28 137 1030 11.7

S 1167 0 8 101 28 137 1030 11.7

H 223 12 0 0 14 26 197 11.7
UColumnE P 223 9 0 0 14 23 200 10.3

S 223 0 9 0 14 23 200 10.3

H 37 4 0 0 5 9 28 24.3
UColumnR P 37 4 0 0 8 12 25 32.4

S 37 0 4 0 8 12 25 32.4

H 5223 945 0 162 171 1278 3945 24.5
Total P 5223 843 0 271 179 1293 3930 24.8

S 5223 0 723 115 423 1261 3962 24.1

(Please refer to Table 4 for a description of each heading)

Fig. 10. CHECK constraints of the Products schema.
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3
5233 = 0.06 percent of mutants escaped the automated analy-
sis. Nevertheless, as discussed in Section 8, future work will
automatically identify cases of infeasibility in CHECKs and
remove them from the subsequent mutation analysis.

Equivalent mutants. Tables 4 and 5 show that a significant
number of mutants were identified as equivalent to the orig-
inal schema by the automated analysis. Following the
removal of stillborn and impaired mutants from the total of
5223 mutants produced for all subject schemas, SchemaAna-
lyst identified 162 (3), 271 (5), and 115 (2 percent) of these as
equivalent for the HyperSQL, PostgreSQL, and SQLite
DBMSs, respectively.

Using the mutation operators with SQLite results in the
fewest equivalent mutants of all three DBMSs detected by
the static analysis checks (115 mutants). As shown by
Table 5, the NNA and NNR operators do not produce
equivalent mutants for SQLite—even though they do so
with PostgreSQL and HyperSQL. This is because of the dif-
ference in PRIMARY KEY behavior between SQLite and the
other two DBMSs. For PostgreSQL and HyperSQL, a
NOT NULL can be added to or removed from a column that
is already part of a PRIMARY KEY, and it will have no effect
on the behavior of the PRIMARY KEY constraint, since for
these DBMSs, primary key columns also have an implicit
NOT NULL defined on them. As such, the NNA and NNR
operators produce mutants that are indistinguishable in
behavior from the original schema. However, for SQLite,
values in primary key columns may be NULL, so adding
and removing NOT NULL constraints on these columns
changes the behavior of the schema.

As shown in Table 4, the number of equivalent mutants
detected for HyperSQL (162 mutants) is lower than that for
PostgreSQL (271 mutants). This phenomenon is evident
because many mutants that are equivalent for the Post-
greSQL DBMS are stillborn for HyperSQL, and thus they
were previously removed from the mutant pool. This set of
mutants corresponds to schemas where a PRIMARY KEY

and a UNIQUE constraint involve an identical set of col-
umns, and, as Table 5 shows, is largely the result of the
UColumnA operator, where a column is added to an exist-
ing UNIQUE constraint or a new single-column UNIQUE is
created that is identical to the database table’s primary key.

With the goal of finding equivalent mutants that were not
detected by our static analysis approach, we investigated
mutants not killed following all of the mutation analysis
runs, in adherence to the methodology detailed in Section
6.1.4. Table 6 summarizes this data, showing the numbers of
remaining live mutants for each schema and operator after
mutation analysis with each of the three chosen DBMSs. We
manually studied each live mutant to try and ascertain
whether it was a genuine equivalent mutant that was missed
by our automated analysis, or whether the test suites used
had simply failed to kill it. Following this investigation, we
found that only three mutants were genuinely equivalent for
each of the DBMSs. The first equivalent mutant is the one
produced by the CR operator for Products, as listed in Table 6.
This operator mutated the CHECK constraints shown by
Fig. 10. For this schema, the first constraint is actually super-
fluous, since price must be greater than zero, if, according to
constraint (2), discounted_price is greater than zero,
and price must be greater than discounted_price as

per constraint (3). Therefore, when the CR operator produces
a mutant by removing constraint (1), the mutant is equiva-
lent to the original. Two further equivalent mutants occur
with the Products schema and CRelOpE, accounting for two
of the three mutants listed for CRelOpE in Table 6. The first
mutant changes the expression of CHECK constraint (1) to
price != 0 while the second changes it to price >= 0.
Again, these constraints add nothing further to constraints
(2) and (3), and are thus equivalent to the original schema.

Manual analysis of the remaining live mutants revealed
that the automatically generated test suites were incapable
of distinguishing each of these mutants from their corre-
sponding original schema. That is, the mutants were in the-
ory killable by a test suite, and they were not actually
equivalent. This is a shortcoming of the generated test suites
and not the technique for detecting equivalent mutants. We
refer the reader to our prior work on test data generation
for relational database schemas [13] for a discussion of why
the test suites generated with the chosen coverage criteria
cannot kill all of the mutants that the operators produce.

In summary, the automated analysis approach detects a
significant number of equivalent mutants. However, due to
the arbitrary nature of CHECK constraints, some mutants
related to this type of constraint are not detected. As for
impaired mutants, this is a small number (i.e., 3 of 5223
mutants), and is related to the fact that the current imple-
mentation does not analyze CHECK constraints. As men-
tioned in Section 8, wewill address this issue in future work.

Redundant mutants. Tables 4 and 5 show the number of
schema mutants found to be redundant using the auto-
mated analysis. These tables show that, following the
removal of stillborn, impaired, and equivalent mutants
from the initial total of 5223 mutants produced for all sub-
ject schemas, SchemaAnalyst identified 171 (3), 179 (3) and
423 (7 percent) of these as redundant for the HyperSQL,
PostgreSQL, and SQLite DBMSs, respectively.

In practice, redundant mutants can be caused by the
same or two different operators producing two identical

TABLE 6
Live Mutants Following Mutation Analysis with All Test Suites

C
R

C
R
el
O
p
E

P
K
C
o
lu
m
n
A

U
C
o
lu
m
n
A

T
o
ta
l

Schema H P S H P S H P S H P S H P S

BankAccount 0 0 0 0 0 0 3 3 4 0 0 0 3 3 4

BrowserCookies 0 0 0 1 1 1 0 0 6 4 4 4 5 5 11

CoffeeOrders 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3

CustomerOrder 0 0 0 0 0 0 4 4 4 0 0 0 4 4 4

FrenchTowns 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6

iTrust 0 0 0 0 0 0 2 2 1 0 0 0 2 2 1

NistWeather 0 0 0 0 0 0 2 2 2 0 0 0 2 2 2

Products 1 1 1 2 2 2 0 0 0 0 0 0 3 3 3

RiskIt 0 0 0 0 0 0 0 0 9 0 0 0 0 0 9

UnixUsage 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

WordNet 0 0 0 0 0 0 2 2 4 0 0 0 2 2 4

Total 1 1 1 3 3 3 13 13 34 10 10 10 27 27 48

A mutant is said to be “live” if it was not killed by any of the test suites gener-
ated by SchemaAnalyst as part of the experimental study. In this table, “H”
= HyperSQL, “P” = PostgreSQL, and “S” = SQLite.
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mutants. One mutant is kept, while the other is removed
from the mutant pool. Table 5 lists the mutants removed
according the operator that produced them. Table 7 gives
another view of redundant mutants, showing the pairs of
operators that were responsible for producing the identical
mutant pairs. The operators listed on each row are the ones
that produced the mutant that was removed, while the
operators listed on each column are those that produced the
identical mutant that SchemaAnalyst retained. The cells of
the table contain numbers of identical mutant pairs pro-
duced by each pair of operators for a particular DBMS.

Tables 4 and 5 show that more redundant mutants were
produced for SQLite than for HyperSQL and PostgreSQL.
Table 7 reveals that this was due to the overlapping effects
of PKColumnA and UColumnA and the fact that SQLite
does not force primary key values to also not be NULL. As
such, these two operators can produce schemas with the
same behavior for this DBMS. Since HyperSQL and Post-
greSQL do require primary key values to not be NULL, the
same effect does not occur, except when primary key col-
umns are also declared as NOT NULL—that is, the addition
of either a PRIMARY KEY or a UNIQUE constraint to a col-
umn would have had an identical effect in terms of the
schema’s behavior.

Table 7 shows that redundant mutants can be placed into
two categories: redundant mutants that were caused by two
operators that mutate the (a) same or (b) a different type of
integrity constraints. In category (a) are redundant mutants
caused by operators that add, remove, and exchange col-
umns from foreign keys, primary keys, and UNIQUE con-
straints have overlapping effects that are detected using the
automated analysis. An example of this can occur when a

table has two single-column UNIQUE constraints. The col-
umn of the first constraint is exchanged with that of the sec-
ond by the UColumnE operator, which effectively removes
the first constraint. This replicates UColumnR when it pro-
duces a mutant that removes the same constraint, resulting
in behaviorally identical schemas. Yet, these mutants are a
small proportion of the original pool of 5223, with the exact
numbers depending on the DBMS used in each case.

In category (b) are redundant mutants generated by
PKColumnR and UColumnA. Again, these mutants happen
in relatively rare situations (i.e., 23 to 30 mutants, depend-
ing on the DBMS), as Table 7 indicates. An example of such
a situation is when a mutant is produced that removes a col-
umn from a multi-column primary key on columns (A, B)
with PKColumnR, making it a primary key on just A. A
behaviorally identical mutant is produced with UColumnA
by adding a UNIQUE constraint to the column A. Although
this mutant still has the primary key on (A, B), it now
behaves the same as the UNIQUE constraint on A, for the rea-
sons explained in Section 3’s presentation of Pattern BE-4.
Other mutants in this category are created by PKColumnA
and NNA for PostgreSQL. This occurs when the operators
add a primary key and a NOT NULL, respectively, to a col-
umn already declared as UNIQUE. (For HyperSQL, adding a
primary key to a UNIQUE column makes it stillborn,
whereas for SQLite, primary keys are not also required to
be not NULL—hence the two schemas have different behav-
iors for this DBMS).

Finally, our carefulmanual analysis of the 57mutants cho-
sen to verify SchemaAnalyst’s automated approach revealed
no redundantmutants not already found by our tool.

Conclusion for RQ1. The automated static analyses
detected many ineffective mutants, the majority of which
are stillborn or impaired, accounting for as many as 18 per-
cent of mutants with HyperSQL. The tool also detected sig-
nificant numbers of equivalent and redundant mutants.
Our manual analysis of these mutants revealed that there
were some ineffective mutants that our approach did not
detect, but that they were relatively few in number and
were associated with complex CHECKs. Analysis of arbitrary
constraints for infeasibility and equivalence is undecidable
in general [40], [44], [45], rendering these types of ineffective
mutant hard to detect automatically. Yet, if the schema is
free of CHECKs, the static analyses can reliably detect all
ineffective mutants. If the schema does involve CHECKs,
then some ineffective mutants may be missed, particularly
where the constraints are relational expressions and there
are multiple constraints involving the same columns, both
of which contributed to mutants with infeasible constraints
when applying the operators. Overall, our technique was
able to identify approximately 24 percent of mutants as inef-
fective, regardless of the DBMS being used.

RQ2: Efficiency of the Approach

Stillborn Mutants. Table 8 shows the times taken for each
of the three methods devised to identify stillborn mutants
for HyperSQL and PostgreSQL (i.e., “DBMS”, “DBMS-
Transacted”, and “Static”), as detailed by the methodology
described in Section 6.1.4. Since no stillborn mutants are
produced by our operators for SQLite—as confirmed by the

TABLE 7
Redundant Mutants by Pairs of Operators That Produced Them
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H 2 0 0 0 0 0 0
FKCColumnPairR P 2 0 0 0 0 0 0

S 2 0 0 0 0 0 0

H 0 0 0 1 98 0 0
PKCColumnA P 0 4 0 1 98 0 0

S 0 0 0 3 335 0 0

H 0 0 0 0 23 0 0
PKCColumnR P 0 0 1 0 23 0 0

S 0 0 3 0 30 0 0

H 0 0 0 0 9 3 16
UCColumnA P 0 0 0 0 9 3 16

S 0 0 0 0 9 3 16

H 0 0 0 0 0 14 0
UCColumnE P 0 0 0 0 0 14 0

S 0 0 0 0 0 14 0

H 0 0 0 0 0 5 0
UCColumnR P 0 0 0 0 0 8 0

S 0 0 0 0 0 8 0

In this table, “H” = HyperSQL, “P” = PostgreSQL, and “S” = SQLite.
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answer to the last research question—there is no need for
static analysis checks, and thus there are no results to report
for this DBMS.

This table shows that using a DBMS is significantly more
time consuming than using static analysis (in fact, due to
the clarity of this result, we do not furnish a statistical analy-
sis of these data points). This is the case even when attempt-
ing to use the DBMS to check schemas as efficiently as
possible, by wrapping CREATE TABLE statements in trans-
actions. Static analysis only takes a fraction of a second for
any of the schema and DBMS combinations. For HyperSQL,
it requires two milliseconds or less for four schemas
(i.e., Cloc, DellStore, StackOverflow, and Usda) and, with
PostgreSQL, less than one millisecond for 15 schemas
(i.e., for just under half of the schemas). The longest time
was recorded for NistDML182 with HyperSQL, at just
265 milliseconds. In contrast, relying on the DBMS to reject
schemas takes several orders of magnitude longer, with
the use of transactions only marginally decreasing the
time overhead. The longest time recorded is with the

non-transacted method for iTrust, which requires over eight
seconds to process with HyperSQL, and over one hour with
PostgreSQL. As Table 8 shows, more processing time was
required for the database schemas when used in conjunc-
tion with PostgreSQL as opposed to HyperSQL, whether it
be with the DBMS method (i.e., non-transacted) or with the
DBMS-Transacted version.

Further analysis of each technique’s longest processing
times sheds light on how schema characteristics influence
running time. For the static analysis checks, the schemas
with the longest processing times (for HyperSQL and
PostgreSQL, respectively) are NistDML182 (257 ms and
265 ms), RiskIt (208 ms and 199 ms), UnixUsage (149 ms
and 141 ms), and CustomerOrder (144 ms and 138 ms).
These are also the schemas with the greatest number of
foreign keys (c.f. Table 2) or the most complex foreign key
relationships—as discussed in the answer to the last
research question—and which, therefore, require the most
foreign key misalignment checks needed for detecting the
stillborn mutants.

TABLE 8
Mean Times Taken to Detect Stillborn Database Schema Mutants (in Milliseconds)

HyperSQL PostgreSQL

DBMS DBMS-Transacted Static DBMS DBMS-Transacted Static

Schema Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

ArtistSimilarity 461 62 449 5 28 < 1 2811 312 2563 126 27 4
ArtistTerm 537 8 531 2 37 < 1 15059 769 13351 453 32 < 1
BankAccount 550 7 546 3 43 1 6261 387 5594 257 39 < 1
BookTown 2072 12 2069 13 40 1 244112 15297 185449 1335 < 1 < 1
BrowserCookies 768 4 766 4 63 1 33613 1133 31620 655 59 < 1
Cloc 477 4 476 2 1 < 1 2345 161 2123 179 < 1 < 1
CoffeeOrders 1000 10 991 11 87 2 35357 1571 28307 545 79 1
CustomerOrder 1906 21 1905 57 144 1 95346 3393 75280 1191 138 1
DellStore 1574 13 1571 12 1 < 1 38694 826 28500 668 < 1 < 1
Employee 499 3 497 2 27 < 1 3746 234 3665 269 < 1 < 1
Examination 856 4 853 6 59 1 21451 812 18810 547 54 < 1
Flights 729 4 724 6 67 1 12764 556 10821 462 65 < 1
FrenchTowns 1087 11 1080 9 72 1 63723 1601 59590 768 62 1
Inventory 446 3 444 2 29 < 1 2569 151 2600 221 < 1 < 1
Iso3166 442 4 442 3 26 < 1 986 107 984 62 < 1 < 1
IsoFlav_R2 1056 11 1054 15 30 1 153139 4083 137529 1646 < 1 < 1
iTrust 8313 83 8258 104 124 2 4625197 18668 3785693 60134 67 2
JWhoisServer 1796 21 1796 15 37 1 111755 3703 97565 1233 < 1 < 1
MozillaExtensions 1278 21 1274 13 35 1 286327 4926 259820 2211 < 1 < 1
MozillaPermissions 464 1 463 3 26 < 1 4104 235 4234 281 < 1 < 1
NistDML181 486 3 482 3 41 < 1 6775 381 6128 214 40 < 1
NistDML182 1011 6 978 10 257 2 30688 1352 24817 712 265 2
NistDML183 485 3 481 2 39 1 3382 257 2864 126 38 < 1
NistWeather 628 2 626 5 43 1 7450 543 6552 396 40 1
NistXTS748 452 4 450 4 27 1 1641 120 1707 175 < 1 < 1
NistXTS749 523 6 517 3 42 2 7514 403 6842 287 39 1
Person 471 3 470 3 27 < 1 1927 168 1970 142 < 1 < 1
Products 738 3 735 3 48 < 1 18198 884 16054 459 44 < 1
RiskIt 2309 17 2282 23 208 2 256171 5611 203354 2340 199 2
StackOverflow 872 6 872 3 1 < 1 35407 1619 30343 732 < 1 < 1
StudentResidence 565 3 563 3 35 < 1 6801 410 6025 284 31 1
UnixUsage 1467 54 1442 9 149 1 91778 3526 71117 1148 141 2
Usda 1761 10 1760 9 2 < 1 68873 1296 50764 925 < 1 < 1
WordNet 1169 12 1169 12 34 < 1 79787 2986 68046 993 < 1 < 1

This table compares the times taken to detect stillborn mutants by using the DBMS (i.e., the columns labeled “DBMS”) versus using the static analysis approach
(i.e., the columns labeled “Static”), which makes a series of checks on each mutated schema. The data for the columns labeled “DBMS-Transacted” are for the
approach that also uses the DBMS to identify stillborn mutants, but groups SQL statements in transactions in order to speed up the process. “SD” refers to the
standard deviation for each set of 30 times recorded. Since our mutation operators do not produce stillborn mutants with SQLite, only figures for HyperSQL and
PostgreSQL are recorded.
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For the DBMS-based methods, the schemas with lengthy
processing times tend to be those that are the largest and/or
result in the greatest number of mutants—that is, the ones
that will require the most setup on the host DBMS and/or
the most DBMS-based validity checks. For example, iTrust,
MozillaExtensions, RiskIt, and BookTown produce the longest
times for the (non-transacted) DBMS method with Post-
greSQL (46, 2.9, 2.6, and 2.4 �105 ms respectively). These
are the schemas that produce the most mutants (first is
iTrust, with 1458 mutants; second is MozillaExtensions with
364, as shown by Table 4), or are the largest in terms of the
number of tables (first is iTrust, with 42 tables; second is
BookTown with 22; third is RiskIt with 13, as shown by
Table 2). While the times required for the DBMS-based
methods are related to the schema’s size or the number of
mutants which result from it, the cost of the static checks is
more closely related to the number of stillborn mutants pro-
duced by the operators.

Impaired, Equivalent, and Redundant Mutants. Following
the notational conventions given in Section 6.1.4, Tables 9

and 10 report meanmutation analysis times with tests gener-
ated using AVM and Randomþ, respectively, with the exclu-
sion of different sets of mutants to form the mutant pool
used in mutation analysis. Each subsequent column in the
table for a DBMS involves the removal of a particular type of
ineffective mutant, and, for the purposes of statistical testing
and effect size computation, can be compared with the left-
most adjacent column for timing differences. For example,
the �ðS þ I þ E þRÞ column shows mean times when all
ineffective mutants have been removed, and can be con-
trasted with the �ðS þ I þ EÞ column to draw conclusions
about the effect of removing redundant mutants. As given in
Table 11, we summarize this information in the following
discussion by counting the number of database schemas
where times significantly improve (i.e., times decrease) or
become significantlyworse (i.e., times increase), highlighting
the greatest increases and decreases in mutation analysis
time for a database schema as appropriate.

Impaired Mutants. Since only SQLite has automatic checks
for impaired mutants, as originally discussed in Section 5.3,

TABLE 9
Mean Mutation Analysis Times (in Milliseconds) for Test Suites Generated with Randomþ

HyperSQL PostgreSQL SQLite

Schema

Stillborn

�S
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þ RÞ
Stillborn

�S
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þ RÞ
Stillborn

�S
Impaired

�ðS þ IÞ
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
ArtistSimilarity 125 ? 4 144 ? 4 153 5190 ? Ï 4348 ? Ï 3532 61 ? 4 84 ? 4 114 ? 4 137

ArtistTerm 714 718 ? 4 840 30256 ? Ï 23422 23546 397 407 ? 4 473 ? 4 552

BankAccount 725 ? 4 753 ? 4 899 24367 ? Ï 21226 21371 456 ? Ï 419 ? 4 500 ? 4 694

BookTown 22063 ? Ï 21164 ? 4 25154 1529847 ? Ï 1374219 Ï 1365462 30572 30572 ? Ï 29311 29877

BrowserCookies 1786 ? 4 1880 ? 4 2251 109640 ? Ï 104543 Ï 100974 1216 ? Ï 1118 ? 4 1270 ? 4 1693

Cloc 875 ? 4 939 ? 4 1058 25883 25948 26067 325 325 ? 4 390 ? 4 416

CoffeeOrders 2182 ? Ï 2135 ? 4 2511 85352 ? Ï 71440 71828 1709 ? Ï 1324 ? 4 1429 ? 4 1888

CustomerOrder 3144 3190 ? 4 3896 190678 ? Ï 162563 163239 3576 ? Ï 2951 ? 4 3116 ? 4 4440

DellStore 7393 ? 4 7604 ? Ï 5986 539668 539878 ? Ï 405741 7121 7121 7336 ? Ï 6213

Employee 785 ? 4 855 ? 4 1054 24892 ? Ï 23662 23860 348 348 ? 4 452 ? 4 649

Examination 3110 ? 4 3251 ? 4 3801 246915 ? Ï 237505 238059 3313 ? Ï 3135 3275 ? 4 3906

Flights 1426 1434 ? 4 1646 44565 40840 39227 936 ? Ï 704 ? 4 854 ? 4 1199

FrenchTowns 1565 ? 4 1725 1616 96648 ? Ï 89527 ? Ï 57964 844 829 ? 4 954 ? 4 1204

Inventory 222 ? 4 245 ? 4 311 9509 ? Ï 8670 ? Ï 7863 104 104 ? 4 162 ? 4 227

Iso3166 71 ? 4 84 ? 4 109 2512 ? Ï 2084 2109 35 35 ? 4 77 ? 4 101

IsoFlav_R2 6735 ? 4 6929 ? 4 9008 941703 941922 931542 8349 8349 8431 8702

iTrust 1384595 ? Ï 1346515 ? 4 2641232 81471300 ? Ï 77147636 77233244 2061300 2045496 ? Ï 2008114 ? 4 3195904

JWhoisServer 7228 4 7318 ? 4 9287 578919 ? Ï 542861 544821 7349 7349 7450 ? 4 9346

MozillaExtensions 14287 14465 ? 4 19777 1969632 1948320 ? Ï 1883958 21881 21881 22050 ? 4 25958

MozillaPermissions 633 ? 4 671 ? 4 790 24046 ? Ï 22519 22639 274 274 ? 4 349 ? 4 468

NistDML181 442 450 ? 4 560 14919 ? Ï 13468 13577 268 ? Ï 239 ? 4 318 ? 4 427

NistDML182 2674 ? Ï 2492 ? 4 3175 207688 ? Ï 169772 170305 9040 ? Ï 4579 ? 4 4805 ? 4 7215

NistDML183 630 ? 4 686 ? 4 784 19524 19579 19677 332 ? Ï 292 ? 4 365 ? 4 399

NistWeather 868 903 ? 4 1059 23592 ? Ï 20981 20495 569 ? Ï 485 ? 4 600 ? 4 799

NistXTS748 228 ? 4 263 ? 4 320 6636 6672 ? Ï 5955 76 76 ? 4 132 ? 4 200

NistXTS749 719 718 ? 4 785 24891 ? Ï 21032 ? Ï 19256 374 ? Ï 341 ? 4 429 ? 4 579

Person 350 ? 4 389 ? 4 499 8529 ? Ï 7829 7940 132 132 ? 4 206 ? 4 318

Products 1384 1426 ? 4 1759 49173 ? Ï 43066 43400 827 ? Ï 768 ? 4 898 ? 4 1253

RiskIt 11389 ? Ï 11072 ? 4 14924 1141541 ? Ï 1020890 ? Ï 1003204 28729 ? Ï 22702 ? Ï 22096 ? 4 30407

StackOverflow 5074 ? 4 5221 ? 4 5438 497848 497998 ? Ï 478979 5069 5069 ? 4 5218 ? Ï 4007

StudentResidence 681 ? 4 749 ? 4 955 21297 ? Ï 18904 19112 349 ? 4 357 ? 4 453 ? 4 677

UnixUsage 3613 3659 ? 4 4259 278588 ? Ï 239667 ? Ï 232038 5640 ? Ï 4761 4 4885 ? 4 6364

Usda 10889 ? 4 11092 ? 4 11388 983728 983933 ? Ï 834074 13225 13225 13432 ? Ï 11439

WordNet 3788 ? Ï 3647 ? 4 3980 324839 ? Ï 264274 ? Ï 240764 3131 3131 ? 4 3270 ? 4 3681

This table reports the mean mutation times for mutation analysis following the removal of a type of ineffective mutant from the mutant pool (resulting in one of
the different sets of mutants used in our experiments, i.e., “�S, �ðS þ IÞ ...”, etc., as described in Section 5.3). A figure with an accompanying “Ï” symbol
denotes that mutation analysis times significantly decreased (i.e., mutation analysis became faster) with the removal of the ineffective mutant type, while “4”
denotes that mutation analysis times significantly increased (i.e., mutation analysis became slower). A “?” indicates that the effect size was large. (See Section
6.1.5 for more information about the computation of the statistical significance and effect size measures reported in this table.)
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Tables 9 through 11 report figures for the �ðS þ IÞ set of
mutants (i.e., the set of mutants following removal of
impaired mutants) for this DBMS. To analyze the effect
of removing impaired mutants, we contrast times in this
column with the preceding �S column of the same table.

For Randomþ, SchemaAnalyst performs mutation analysis
significantly faster for 14 schemas after removing impaired
mutants, with a large effect size in each case. With the
AVM, mutation analysis is significantly faster overall for the
same 14 schemas as Randomþ, and additionally, French-
Towns. The effect size is large for 12 of these 15 schemas, of
which RiskIt sees the greatest performance improvement.
With SQLite, a comparison of the value for RiskIt in
Table 9’s “Impaired” column to its “Stillborn” column
shows that SchemaAnalyst achieved a mean saving of 6 sec-
onds when using Randomþ. The mean saving for the AVM
is just under 8 seconds, as observed from the corresponding
values in Table 10.

Table 4 shows that 19 schemas have impaired mutants,
meaning that there were four schemas with impaired
mutants (i.e., ArtistSimilarity, ArtistTerm, iTrust, and Studen-
tResidence) for which mutation analysis did not become sig-
nificantly faster following their removal. In fact, Tables 9

and 10 reveal that mutation analysis time increased, in a sta-
tistically significant fashion and with large effect size, for
two schemas (i.e., ArtistSimilarity and StudentResidence) with
Randomþ and also for ArtistSimilarity with AVM. Notably
for ArtistSimilarity, the cost of finding and removing its sin-
gle impaired mutant leads to a time increase. It is clear that
these schemas did not have a sufficient number of impaired
mutants to make mutation analysis significantly faster.

Equivalent Mutants. In contrast to impaired mutants,
SchemaAnalyst supports, with the methods described in
Sections 4 and 5, the removal of equivalent mutants for all
three DBMSs. The �ðS þ I þEÞ columns of Tables 9 and 10
show mean mutation analysis times for the mutant pool
with equivalent mutants removed. We compare this column
with the preceding �S column (for HyperSQL and Post-
greSQL) or the �ðS þ IÞ column (for SQLite) of the same
data table to study the effect of removing equivalent
mutants from the mutant pool on the time taken for muta-
tion analysis.

The summary information in Table 11 reveals that, for
HyperSQL, mutation analysis times significantly improve
for 6 schemas with test suites generated using Randomþ, and
an additional 6 with test suites generated by the AVM (i.e.,

TABLE 10
Mean Mutation Analysis Times (in Milliseconds) for Test Suites Generated with the AVM

HyperSQL PostgreSQL SQLite

Schema
Stillborn

�S
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þ RÞ
Stillborn

�S
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
Stillborn

�S
Impaired

�ðS þ IÞ
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
ArtistSimilarity 237 ? 4 246 ? Ï 232 8721 ? Ï 7295 ? Ï 5862 118 ? 4 138 ? 4 164 ? 4 167

ArtistTerm 1128 ? Ï 1095 ? 4 1216 49333 ? Ï 38090 38214 636 637 ? 4 690 ? 4 710

BankAccount 847 ? 4 867 ? 4 1013 29174 ? Ï 25335 25480 549 ? Ï 487 ? 4 566 ? 4 760

BookTown 23488 ? Ï 22507 ? 4 26486 1646118 ? Ï 1478688 ? Ï 1468870 32808 32808 ? Ï 31432 ? Ï 30957

BrowserCookies 2128 ? 4 2229 ? 4 2601 204301 ? Ï 194419 ? Ï 187244 2098 ? Ï 1936 ? 4 2080 ? 4 2475

Cloc 968 ? 4 1032 ? 4 1151 27872 27936 28056 381 381 ? 4 445 ? 4 450

CoffeeOrders 2598 ? Ï 2517 ? 4 2893 187003 ? Ï 156504 156892 2899 ? Ï 2370 ? 4 2395 ? 4 2854

CustomerOrder 5146 ? Ï 5090 ? 4 5795 542150 ? Ï 461932 462608 9495 ? Ï 8041 7913 ? 4 9238

DellStore 7448 ? 4 7658 ? Ï 6069 589502 589711 ? Ï 447365 7622 7622 ? 4 7836 ? Ï 6398

Employee 899 ? 4 966 ? 4 1165 28533 ? Ï 27102 27300 409 409 ? 4 512 ? 4 709

Examination 3566 ? 4 3700 ? 4 4250 312234 ? Ï 300155 300708 4244 ? Ï 4027 ? 4 4158 ? 4 4789

Flights 1918 1919 ? 4 2080 88541 ? Ï 80846 ? Ï 77390 1594 ? Ï 1225 ? 4 1374 ? 4 1701

FrenchTowns 2439 ? 4 2599 ? Ï 2317 244147 ? Ï 225622 ? Ï 144442 2385 ? Ï 2288 2298 ? Ï 2099

Inventory 231 ? 4 253 ? 4 318 9656 ? Ï 8748 ? Ï 7895 114 114 ? 4 172 ? 4 234

Iso3166 85 ? 4 96 ? 4 121 2762 ? Ï 2291 2317 51 51 ? 4 93 ? 4 117

IsoFlav_R2 7413 ? 4 7607 ? 4 9686 1045369 1045588 ? Ï 1033437 8999 8999 9041 ? 4 9141

iTrust 1512846 ? Ï 1470576 ? 4 2763257 91935913 ? Ï 86593001 86648519 2222324 2208819 ? Ï 2167725 ? 4 3350112

JWhoisServer 7722 ? 4 7793 ? 4 9761 674101 ? Ï 630688 632648 8640 8640 8641 ? 4 10538

MozillaExtensions 14909 15086 ? 4 20372 2142353 ? Ï 2117573 ? Ï 2044416 22814 22814 23004 ? 4 26736

MozillaPermissions 670 ? 4 706 ? 4 825 24469 ? Ï 22795 22916 301 301 ? 4 375 ? 4 494

NistDML181 697 ? Ï 676 ? 4 785 23293 ? Ï 21012 21121 444 ? Ï 377 ? 4 456 ? 4 539

NistDML182 3296 ? Ï 3029 ? 4 3712 362090 ? Ï 293206 293739 12802 ? Ï 6710 ? 4 6935 ? 4 9048

NistDML183 644 ? 4 700 ? 4 798 19906 19961 20059 350 ? Ï 306 ? 4 379 ? 4 408

NistWeather 1340 ? Ï 1331 ? 4 1472 48448 ? Ï 42817 ? Ï 41644 775 ? Ï 656 ? 4 769 ? 4 957

NistXTS748 212 ? 4 246 ? 4 305 6465 6501 ? Ï 5873 84 84 ? 4 140 ? 4 206

NistXTS749 853 ? Ï 837 ? 4 894 29727 ? Ï 24974 ? Ï 22826 459 ? Ï 412 ? 4 498 ? 4 642

Person 392 ? 4 429 ? 4 539 8934 ? Ï 8176 8287 162 162 ? 4 235 ? 4 347

Products 1765 1789 ? 4 2122 76111 ? Ï 66182 66516 1038 ? Ï 968 ? 4 1088 ? 4 1437

RiskIt 15333 ? Ï 14744 ? 4 18509 1920017 ? Ï 1715760 ? Ï 1682656 41185 ? Ï 33360 ? Ï 32111 ? 4 40123

StackOverflow 5269 ? 4 5416 ? 4 5615 511428 511578 ? Ï 492259 5436 5436 ? 4 5585 ? Ï 4175

StudentResidence 959 ? 4 1013 ? 4 1220 31906 ? Ï 28314 28522 524 523 ? 4 610 ? 4 835

UnixUsage 5523 ? Ï 5387 ? 4 5971 723963 ? Ï 622293 ? Ï 601248 11805 ? Ï 10293 10164 ? 4 11316

Usda 11797 ? 4 12001 ? 4 12179 1111570 1111775 ? Ï 942597 13889 13889 ? 4 14096 ? Ï 11629

WordNet 4058 ? Ï 3870 ? 4 4193 358214 ? Ï 290945 ? Ï 264849 3780 3780 ? 4 3903 ? 4 4268

(Please see the caption of Table 9 for a description of this table’s headings)
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12 in total), with large effect sizes in each case. When
SchemaAnalyst uses either Randomþ or the AVM, the
iTrust schema sees the greatest decrease in mutation analysis
time for HyperSQL,with time savings of about 38 and 42 sec-
onds, respectively. Yet, for HyperSQL with both the AVM
and Randomþ, times are significantly worse for 19 schemas.

For PostgreSQL, mutation analysis times never become
significantly worse, and become significantly better for 25
schemas with test suites generated by Randomþ, and 27
schemas with the tests from AVM. For each configuration,
significance is coupled with a large effect size. As with the
HyperSQL DBMS, the iTrust schema demonstrates the
greatest decrease in mutation analysis time, with SchemaA-
nalyst saving 72 and 89 minutes when it uses tests by Ran-
domþ and the AVM, respectively. Finally, for SQLite,
mutation analysis times become significantly better for 3
schemas with tests from the AVM and Randomþ, but signifi-
cantly worse for 25. Yet, all three cases of significant
improvement are coupled with a large effect size. Notably,
SchemaAnalyst experiences the greatest decrease in mutation
analysis time with the iTrust schema, respectively saving
about 37 and 41 seconds with the test suites generated by
Randomþ and the AVM.

Removing equivalent mutants involves comparing each
mutated schema against the original schema. The cost of
this comparison depends on the complexity of the schema
under analysis, and tends to be slower than the automated
checks that identify impaired mutants. As with impaired
mutants, the differences by schema are explained by the
number of equivalent mutants removed from the pool.
Therefore, the timings vary depending on how many
mutants SchemaAnalyst removes. When equivalent mutants
are abundant, the overall time required for SchemaAnalyst to
perform mutation analysis is reduced significantly. In fact,
the schemas that experienced significant improvement in
times for all three DBMSs (i.e., BookTown, iTrust, and RiskIt)
had some of the greatest numbers of equivalent mutants
identified out of all the subjects (c.f. Table 2). Yet, when
equivalent mutants are few in number, the mutation analy-
sis is significantly slower.

Yet, the choice of DBMS has the greatest effect on the
mutation analysis times with or without the equivalent
mutants. For PostgreSQL, mutation analysis times never
become significantly worse, whereas for the other two
DBMSs it depends on howmany equivalentmutants are pro-
duced by the operators. This is primarily due to the way that

the DBMSs are designed and work: PostgreSQL is an enter-
prise DBMS that uses disk-based storage, thus making it
slow at evaluatingmutants. The cost of evaluating extra inef-
fective mutants dominates that of detecting and eliminating
them. In contrast, HyperSQL and SQLite store databases in
memory, allowing for mutants to be evaluated quickly—
meaning that the numbers of equivalent mutants involved
must be high before the cost of running the removal algo-
rithmsmay be recouped and additional time saved.

Redundant Mutants. The �ðS þ I þE þRÞ columns of
Tables 9 and 10 show the mean times for mutation analysis
when the pool of mutants excludes those that are redundant.
We compare this column with the preceding �ðS þ I þ EÞ
column of the corresponding table to study the effect of
removing redundant mutants from the mutant pool on the
time taken to performmutation analysis with a schema.

The summary information in Table 11 shows that, for
HyperSQL and the removal of redundant mutants, only one
schema (i.e., DellStore) experienced a significant decrease in
mutation analysis time with tests generated by either Ran-
domþ or AVM. While almost all of the other schemas saw a
significant increase in mutation analysis time (i.e., 32 with
Randomþ and 31 with AVM), the effect size for DellStore is
large, representing a time savings of about one second for
HyperSQL and the tests from either Randomþ or AVM. For
PostgreSQL, 14 schemas experienced a significant decrease
in mutation analysis time with Randomþ and 17 with the
AVM. In contrast to mutation analysis with HyperSQL, no
schemas are subject to a significant increase in time for this
DBMS. With PostgreSQL, Usda saw the greatest reduction
in time, saving about two minutes when it used tests from
either Randomþ or AVM. Finally, for SQLite, three schemas
exhibit a significant improvement in mutation analysis time
for Randomþ (all with a large effect size), with five for AVM
(again, all with a large effect size). Most of the remaining
schemas (i.e., 29) saw a significant increase in time. Again,
Usda sees the greatest reduction in mutation analysis time,
with savings of about one and two seconds when it uses
SQLite and tests from Randomþ and AVM, respectively.

The identification of redundant mutants is potentially
more costly than for equivalent mutants: each mutant must
be compared not just against one other schema (i.e., the
original schema under test), but against every other mutant.
Therefore, overall savings are less frequent with this type of
ineffective mutant, since more mutants need to be removed
to recoup the upfront cost of the analysis. For the majority

TABLE 11
Summary of Significance and Effect Size Results for Mutation Analysis Times

Randomþ AVM

Impaired
�ðS þ IÞ

Equivalent
�ðS þ I þEÞ

Redundant
�ðS þ I þ E þRÞ

Impaired
�ðS þ IÞ

Equivalent
�ðS þ I þEÞ

Redundant
�ðS þ I þ E þRÞ

Ï 4 Ï 4 Ï 4 Ï 4 Ï 4 Ï 4

HyperSQL - - 6 (6) 19 (18) 1 (1) 32 (32) - - 12 (12) 19 (19) 3 (3) 31 (31)
PostgreSQL - - 25 (25) 0 (0) 14 (12) 0 (0) - - 27 (27) 0 (0) 17 (17) 0 (0)
SQLite 14 (14) 2 (2) 3 (3) 25 (24) 3 (3) 29 (29) 15 (15) 1 (1) 3 (3) 25 (25) 5 (5) 29 (29)

This table gives the number of database schemas for which mutation analysis became significantly faster (i.e., times decreased) when a type of impaired mutant
was removed consideration in our experiments, denoted by columns headed “Ï”, while columns headed “4” denote the number of schemas for which mutation
analysis became significantly slower (i.e., times increased). Figures in parentheses indicate the number of times that significance was accompanied by a large effect
size. (See Section 6.1.5 for more information about the computation of the statistical significance and effect size measures reported in this table.) Note that there is
no data for the removal of impaired mutants for the HyperSQL and PostgreSQL DBMSs, as they do not need automated checks to identify this type of mutant.
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of schemas, the overall mutation analysis process becomes
significantly slower, except for when PostgreSQL is used.
Here, as for equivalent mutants, the use of disk-based stor-
age makes this DBMS slow at evaluating mutants, and thus
the cost of performing the static analysis never leads to a
significantly negative effect on mutation times.

Finally, it is worth noting that when mutation analysis
uses tests created by Randomþ, SchemaAnalyst has fewer sig-
nificant timing improvements than it does when it leverages
AVM’s tests. This trend is evident because Randomþ makes
smaller test suites that cover fewer test coverage require-
ments than those suites created by the AVM, as shown in
Table 3. Consequently, mutants are faster to evaluate with
Randomþ than AVM, which in turn renders the removal of
ineffective mutants less beneficial—particularly for faster,
memory-based DBMSs like HyperSQL and SQLite.

Conclusion for RQ2. Checking for stillborn mutants by
submitting mutated schemas to the DBMS is a time-
consuming process, even when using transactions. In con-
trast, static analysis checks for invalid schemas are fast, tak-
ing on the order of milliseconds, rather than seconds,

minutes, or even hours. The removal of impaired mutants,
a step that the algorithms only perform for SQLite, is simi-
larly fast. When mutation operators produce many
impaired mutants for a schema, the speed of mutation
analysis generally improves significantly when SchemaAna-
lyst removes them. Table 11 illustrates this trend, revealing
that, for test suites created by either Randomþ or AVM, the
detection and removal of impaired mutants respectively
reduces mutation analysis times, with a large effect size,
for 14 and 15 database schemas.

For tests generated by both Randomþ and AVM, the
summary in Table 11 makes it clear that, when using
PostgreSQL, the removal of equivalent mutants decreases
mutation analysis time, with a large effect size, for 25 and
27 of the 34 schemas. While the further removal of redun-
dant mutants is less beneficial, this table shows that, for
Randomþ and AVM respectively, 12 and 17 schemas still
see mutation analysis times drop with a large effect size.
These trends are evident because PostgreSQL is a disk-
based DBMS, meaning that the cost of the static checks
for ineffective mutant detection is outweighed by the

TABLE 12
Mean Mutation Scores Obtained with Test Suites Generated by Randomþ

HyperSQL PostgreSQL SQLite

Schema Stillborn

�S
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
Stillborn

�S
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
Stillborn

�S
Impaired

�ðS þ IÞ
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
ArtistSimilarity 74.5 ? 4 82.0 ? Ï 77.5 68.3 ? 4 82.0 ? Ï 77.5 64.6 ? Ï 61.7 ? 4 67.3 ? 4 74.3

ArtistTerm 69.9 ? 4 80.3 80.3 61.8 ? 4 80.3 80.3 62.5 ? Ï 58.2 ? 4 65.8 ? 4 79.3

BankAccount 69.2 ? 4 74.5 74.5 64.6 ? 4 74.5 74.5 68.3 ? Ï 58.4 ? 4 62.3 62.3

BookTown 84.5 ? 4 89.7 89.9 80.5 ? 4 89.7 89.9 80.9 80.9 ? 4 85.6 4 86.9

BrowserCookies 51.8 ? 4 53.7 ? 4 55.8 51.2 ? 4 53.7 ? 4 55.8 55.8 ? Ï 45.8 46.3 ? 4 47.9

Cloc 89.8 89.8 89.8 89.8 89.8 89.8 79.6 79.6 79.6 ? 4 84.7

CoffeeOrders 42.0 ? 4 46.1 46.1 38.5 ? 4 46.1 46.1 66.6 ? Ï 44.8 ? 4 48.8 48.8

CustomerOrder 34.0 4 36.9 36.9 31.9 ? 4 37.3 37.3 59.9 ? Ï 34.6 36.9 36.9

DellStore 87.1 87.1 ? 4 90.1 87.1 87.1 ? 4 90.1 85.2 85.2 85.2 ? 4 88.9

Employee 87.0 89.0 89.0 85.0 ? 4 89.0 89.0 86.4 86.4 88.4 88.4

Examination 87.4 89.0 89.0 85.9 ? 4 89.0 89.0 78.9 76.2 77.4 77.4

Flights 40.8 44.5 46.3 40.8 44.5 46.3 66.5 ? Ï 47.0 47.0 48.6

FrenchTowns 23.0 23.0 26.0 21.3 23.0 26.0 32.6 ? Ï 21.6 23.3 26.6

Inventory 79.6 ? 4 84.3 ? 4 87.5 74.6 ? 4 82.5 ? 4 88.2 79.4 79.4 ? 4 83.3 ? 4 87.5

Iso3166 69.7 77.4 77.4 63.3 ? 4 77.4 77.4 61.5 61.5 67.7 67.7

IsoFlav_R2 56.3 56.3 56.3 56.9 56.9 56.3 49.3 49.3 50.0 ? Ï 47.2

iTrust 87.1 ? 4 90.0 90.1 85.3 ? 4 90.0 90.1 85.5 85.4 ? 4 87.2 87.4

JWhoisServer 85.4 ? 4 88.3 88.3 82.7 ? 4 88.3 88.3 85.9 85.9 ? 4 88.7 88.7

MozillaExtensions 60.2 60.5 61.3 59.9 60.6 61.5 59.7 59.7 60.1 60.7

MozillaPermissions 92.4 ? 4 95.6 95.6 89.5 ? 4 95.6 95.6 92.7 92.7 ? 4 95.8 95.8

NistDML181 64.7 ? 4 71.9 71.9 64.7 ? 4 71.9 71.9 73.2 ? Ï 59.8 59.8 ? 4 72.0

NistDML182 66.0 ? 4 78.2 78.2 60.5 ? 4 74.2 74.2 89.9 ? Ï 68.2 68.2 ? 4 80.5

NistDML183 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NistWeather 44.9 49.2 50.7 43.6 49.2 50.7 72.7 ? Ï 62.6 ? 4 64.4 ? 4 67.6

NistXTS748 94.3 94.3 ? Ï 93.9 94.6 94.6 ? Ï 93.9 89.3 89.3 ? 4 94.3 ? Ï 93.5

NistXTS749 75.2 ? 4 85.5 86.7 72.3 ? 4 85.5 86.7 82.3 ? Ï 76.0 78.8 79.2

Person 88.0 92.2 92.2 84.2 ? 4 92.2 92.2 88.6 88.6 92.6 92.6

Products 55.8 ? 4 60.5 60.5 53.6 ? 4 60.5 60.5 76.9 ? Ï 70.8 73.6 74.8

RiskIt 63.5 ? 4 67.6 68.3 60.5 ? 4 67.6 68.3 76.5 ? Ï 63.6 ? 4 66.5 ? 4 67.9

StackOverflow 94.8 94.8 94.5 94.8 94.8 94.5 89.5 89.5 89.5 ? 4 92.1

StudentResidence 83.1 ? 4 87.7 87.7 78.9 ? 4 87.7 87.7 76.2 ? Ï 73.9 ? 4 77.7 77.7

UnixUsage 45.4 ? 4 49.7 ? 4 51.4 42.7 ? 4 49.7 ? 4 51.4 69.4 ? Ï 53.0 ? 4 55.7 ? 4 59.1

Usda 80.9 80.9 ? 4 85.5 80.9 80.9 ? 4 85.5 75.6 75.6 75.6 ? 4 81.7

WordNet 69.8 ? 4 83.0 82.4 67.3 ? 4 82.8 82.4 76.5 76.5 ? 4 79.4 78.8

Mutation scores are reported for each schema with each DBMS following the removal of a type of impaired mutant from mutation analysis (resulting in one of the
different sets of mutants used in our experiments, i.e., “�S, �ðS þ IÞ ...”, etc., as described in Section 5.3). A figure with an accompanying “Ï” symbol denotes
that mutation scores significantly decreased with the removal of the ineffective mutant type, while “4” denotes that mutation score significantly increased. A “?”
indicates that the effect size was large. (See Section 6.1.5 for more information on the statistical tests and effect size measures used.)
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expense of creating the mutants and running tests during
mutation analysis.

The picture for equivalent mutants, and the HyperSQL
and SQLite DBMSs, is mixed and depends on whether the
mutation of a schema generates enough ineffective mutants
so that the time taken to check for and remove them from
the pool is recouped by not having to consider them later in
mutation analysis. Table 11 reveals that, while there are
more schemas that do not benefit from removing equivalent
mutants than do, 6 and 12 schemas, respectively, see a
decrease in mutation analysis time with HyperSQL and
tests from Randomþ and AVM. Yet, only three schemas, for
tests generated by both Randomþ and AVM, experience a
reduction in mutation analysis time with SQLite.

Table 11 shows that the further exclusion of redundant
mutants, for both HyperSQL and SQLite, leads to few
decreases in mutation analysis time. While Tables 9 and 10
point out that small reductions in mutation analysis time
are possible, Table 11 reveals, for tests generated by both
Randomþ and AVM, that this happens for relatively few
schemas. For instance, only 1 and 3 schemas, respectively,
see decreased mutation analysis time with tests from Ran-
domþ when run with HyperSQL and SQLite. The trend is

similar for tests generated by the AVM, with only 3 and 5
schemas, respectively, seeing time reductions with these
two DBMSs. Overall, these results are evident since redun-
dant mutant removal requires the comparison of a mutant
to all others in the pool, making it expensive and thus less
likely to decrease the overall cost of mutation analysis.

In summary, Tables 9 through 11 point out that, while the
removal of impaired and equivalent mutants often speeds
upmutation analysis, there is a point of diminishing returns.
Yet, importantly, there are other benefits to the removal of
ineffective mutants. As explained in the answer to the next
research question, finding and removing these mutants can
also lead to desirable changes in themutation score.

RQ3: Impact on the Mutation Score

Tables 12 and 13 show how themeanmutation score changes
as a result of removing different types of ineffective mutants
for the tests generated by Randomþ and the AVM, respec-
tively. The AVM achieves higher mutation scores than does
Randomþ. On average, its mutation score never drops below
85 percent over all schemas when stillborn mutants are not
considered, regardless of the DBMS. In contrast, the average

TABLE 13
Mean Mutation Scores Obtained with Test Suites Generated by the AVM

HyperSQL PostgreSQL SQLite

Schema Stillborn

�S
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
Stillborn

�S
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
Stillborn

�S
Impaired

�ðS þ IÞ
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þRÞ
ArtistSimilarity 90.9 ? 4 100.0 100.0 83.3 ? 4 100.0 100.0 92.3 ? Ï 91.7 ? 4 100.0 100.0

ArtistTerm 87.0 ? 4 100.0 100.0 76.9 ? 4 100.0 100.0 89.7 ? Ï 88.5 ? 4 100.0 100.0

BankAccount 82.1 ? 4 88.5 88.5 76.7 ? 4 88.5 88.5 85.7 ? Ï 81.2 ? 4 86.7 86.7

BookTown 92.0 ? 4 97.6 ? Ï 97.6 87.7 ? 4 97.6 ? Ï 97.6 82.6 82.6 ? 4 87.4 ? Ï 85.5

BrowserCookies 89.3 ? 4 92.6 ? Ï 92.3 88.2 ? 4 92.6 ? Ï 92.3 88.6 ? Ï 86.0 ? 4 87.0 ? Ï 86.5

Cloc 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

CoffeeOrders 91.1 ? 4 100.0 100.0 83.6 ? 4 100.0 100.0 92.1 ? Ï 86.9 ? 4 94.6 94.6

CustomerOrder 86.8 ? 4 94.0 94.0 80.2 ? 4 93.9 93.9 93.4 ? Ï 89.3 ? 4 95.2 95.2

DellStore 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Employee 93.2 ? 4 95.3 95.3 91.1 ? 4 95.3 95.3 82.2 82.2 ? 4 84.1 84.1

Examination 95.5 ? 4 97.3 97.3 93.9 ? 4 97.3 97.3 86.2 ? Ï 84.4 ? 4 85.8 85.8

Flights 87.5 ? 4 95.5 ? Ï 95.2 87.5 ? 4 95.5 ? Ï 95.2 90.5 ? Ï 84.9 84.9 ? Ï 84.3

FrenchTowns 88.8 88.8 ? Ï 82.5 82.1 ? 4 88.8 ? Ï 82.5 85.2 ? Ï 82.7 ? 4 89.2 ? Ï 83.3

Inventory 83.3 ? 4 88.2 ? Ï 87.5 81.0 ? 4 89.5 ? Ï 88.2 76.2 76.2 ? 4 80.0 ? Ï 75.0

Iso3166 70.0 ? 4 77.8 77.8 63.6 ? 4 77.8 77.8 72.7 72.7 ? 4 80.0 80.0

IsoFlav_R2 87.0 87.0 87.0 87.2 87.2 ? Ï 87.0 85.8 85.8 ? 4 87.0 ? Ï 84.4

iTrust 92.8 ? 4 95.8 ? Ï 95.7 90.9 ? 4 95.8 ? Ï 95.7 82.6 ? Ï 82.4 ? 4 84.2 ? Ï 83.6

JWhoisServer 76.1 ? 4 78.7 78.7 73.7 ? 4 78.7 78.7 74.2 74.2 ? 4 76.6 76.6

MozillaExtensions 82.2 ? 4 82.7 ? Ï 82.1 81.9 ? 4 82.8 ? Ï 82.1 73.1 73.1 ? 4 73.5 ? Ï 71.3

MozillaPermissions 96.7 ? 4 100.0 100.0 93.5 ? 4 100.0 100.0 74.2 74.2 ? 4 76.7 76.7

NistDML181 90.0 ? 4 100.0 100.0 90.0 ? 4 100.0 100.0 100.0 100.0 100.0 100.0

NistDML182 84.4 ? 4 100.0 100.0 81.5 ? 4 100.0 100.0 100.0 100.0 100.0 100.0

NistDML183 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NistWeather 85.3 ? 4 93.5 ? Ï 93.3 82.9 ? 4 93.5 ? Ï 93.3 93.8 ? Ï 91.4 ? 4 94.1 ? Ï 93.8

NistXTS748 88.9 88.9 ? Ï 88.2 89.5 89.5 ? Ï 88.2 84.2 84.2 ? 4 88.9 ? Ï 87.5

NistXTS749 84.0 ? 4 95.5 ? Ï 95.0 80.8 ? 4 95.5 ? Ï 95.0 92.1 ? Ï 89.3 ? 4 92.6 ? Ï 92.0

Person 77.3 ? 4 81.0 81.0 73.9 ? 4 81.0 81.0 78.3 78.3 ? 4 81.8 81.8

Products 79.7 ? 4 86.5 86.5 76.7 ? 4 86.5 86.5 87.6 ? Ï 84.3 ? 4 87.6 ? Ï 87.1

RiskIt 93.5 ? 4 99.5 ? Ï 99.5 89.0 ? 4 99.5 ? Ï 99.5 90.8 ? Ï 85.7 ? 4 89.7 ? Ï 89.3

StackOverflow 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

StudentResidence 89.5 ? 4 94.4 94.4 85.0 ? 4 94.4 94.4 84.4 ? Ï 82.9 ? 4 87.2 87.2

UnixUsage 91.5 ? 4 100.0 100.0 86.0 ? 4 100.0 100.0 95.8 ? Ï 93.6 ? 4 98.3 ? Ï 98.2

Usda 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

WordNet 79.2 ? 4 94.1 ? Ï 93.7 76.6 ? 4 94.3 ? Ï 93.7 85.0 85.0 ? 4 88.3 ? Ï 87.4

(Please see the caption of Table 12 for a description of this table’s headings)
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mutation score of Randomþ’s test suites, over all schemas,
never increases beyond 75 percent, regardless of the DBMS.

We now discuss the effect of removing different types of
ineffective mutant on the mutation scores for the database
schemas, leveraging Table 14’s summary data. At the outset,
it is worth noting that a decrease in a test suite’s mutation
score is not a negative outcome per se—the lower score now
gives a more useful understanding of its effectiveness. Since
stillborn mutants do not contribute to mutation scores, we
start by analyzing the effect of removing impaired mutants.

Impaired Mutants. Because impaired mutants artificially
inflate the mutation scores, their removal can only lead to
a decrease in the resulting scores. The algorithms are only
designed to detect impaired mutants for the SQLite DBMS,
and 19 of the subject schemas feature them, as shown by
Table 4.

With tests generated by the AVM, the mutation scores of
16 of these 19 significantly decreased (with large effect sizes)
following SchemaAnalyst’s removal of impaired mutants, as
summarized by Table 14 and seen in Tables 12 and 13 by
comparing the �S (i.e., stillborn) and �ðS þ IÞ (i.e.,
impaired) columns for this DBMS. The mutation scores of
the remaining three schemas with impaired mutants (i.e.,
NistDML181, NistDML182, and NistDML183) did not
change, because their test suites killed all other mutants,
and as such had perfect mutation scores (i.e., 100 percent)
before (and after) their removal. The killed-to-total propor-
tion remained the same for the other schemas without any
impaired mutants.

Tests suites generated by Randomþ for NistDML181 and
NistDML182 did not obtain perfect mutation scores before
SchemaAnalyst removed impaired mutants (as can be seen
by comparing their mutation scores in Tables 12 and 13
under the �S column for SQLite). Overall, 18 of the 19 sche-
mas with impaired mutants saw a decrease in mutation
score with this test generator. Of these 18 schemas, 16 saw
significant decreases, with a large effect size.

Equivalent Mutants.As equivalent mutants are impossible
to kill, and thus artificially deflate mutation scores, schemas
with these mutants saw their mutation scores increase for
all of the test suites generated by both the AVM and Ran-
domþ. This effect can be seen by looking at Tables 12 and 13
and, for SQLite, comparing the scores in the �ðS þ IÞ (i.e.,

impaired) column to the �ðS þ I þ EÞ (i.e., equivalent) col-
umn. Additionally, for HyperSQL and PostgreSQL, the
comparison is between the scores in �S (i.e., stillborn) and
�ðS þ I þ EÞ (i.e., equivalent) columns. The summary in
Table 14 shows that the tests for 15 to 23 schemas experi-
enced a significant increase in mutation score when they
were generated by Randomþ, while test scores for 26 to 27
schemas significantly increased if the AVM generated them.
The removal of equivalent mutants had a further interesting
effect: when using the AVM, tests for seven schemas with
HyperSQL and PostgreSQL, and five schemas with SQLite,
which were previously thought to have suboptimal muta-
tion scores, changed to scores of 100 percent. That is, every
mutant was killed after removing equivalent mutants from
the mutant pool.

Redundant Mutants. The removal of redundant mutants
cannot cause test suites to change to 100 percent mutation
scores, even if all other mutants are killed. Either the redun-
dant mutant pair is killed, and thus the score must already
be 100%, or the pair is not killed, in which case one member
of the pair will still remain alive in the mutant pool. When
the pair is not killed, the mutation score always increases
when one of the mutants in the pair is removed, as the total
number of mutants (i.e., the denominator of the mutation
score equation) is now less. When the pair is killed, the
mutation score always decreases when a mutant in the pair
is removed, as the numerator and denominator always
decrease by one.

Since the AVM’s tests are good at killing mutants, suites
generated by this technique tend to experience a decrease in
mutation score when redundant mutants are removed from
the pool. Table 14 shows that test suites for 12 to 15 schemas
experience a significant drop, depending on the DBMS in
use. In contrast to the AVM, Randomþ generates tests that
are not as good at killing mutants and thus suites for 2 sche-
mas exhibited a significant decrease in their score, with 5 to
14 seeing a significant increase in their score.

Conclusion for RQ3. As shown in Table 14, the removal of
impaired, equivalent, and redundant mutants generally
changes the mutation score of a test suite. In particular,
removing equivalent mutants always affects test suites, and
can cause a test suite to “gain” a perfect mutation score,
where previously it was thought to have one that was

TABLE 14
Summary of Mutation Score Changes

Randomþ AVM

Stillborn

�S
Impaired

�ðS þ IÞ
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þ RÞ
Stillborn

�S
Impaired

�ðS þ IÞ
Equivalent

�ðS þ I þ EÞ
Redundant

�ðS þ I þ E þ RÞ

} Ï 4 } Ï 4 } Ï 4 } } Ï 4 } Ï 4 } Ï 4 }

HyperSQL 1 (2.9%) - - 0 (0) 19 (18) 1 (2.9%) 2 (2) 5 (5) 1 (2.9%) 5 (14.7%) - - 0 (0) 26 (26) 12 (35.3%) 12 (12) 0 (0) 12 (35.3%)

PostgreSQL 1 (2.9%) - - 0 (0) 23 (23) 1 (2.9%) 2 (2) 5 (5) 1 (2.9%) 5 (14.7%) - - 0 (0) 27 (27) 12 (35.3%) 13 (13) 0 (0) 12 (35.3%)

SQLite 1 (2.9%) 16 (16) 0 (0) 1 (2.9%) 0 (0) 15 (15) 1 (2.9%) 2 (2) 14 (13) 1 (2.9%) 7 (20.6%) 16 (16) 0 (0) 7 (20.6%) 0 (0) 26 (26) 9 (26.5) 15 (15) 0 (0) 9 (26.5%)

This table reports the numbers of schemas whose tests, generated by either Randomþ or the AVM, experienced a decrease or increase for a specific DBMS follow-
ing the removal of a type of impaired mutant from mutation analysis (resulting in one of the different sets of mutants used in the experiments—for instance,
“�S, �ðS þ IÞ ...”—described in Section 5.3). “Ï” denotes the number of schemas for which the mutation score significantly decreased following the removal of
an impaired mutant type, while “4” denotes the numbers of schemas for which the mutation score significantly increased. The value following this number in
parentheses is the number of schemas for which the significant change was accompanied by a large effect size. “} ” denotes the number of schemas that experienced
a 100 percent mutation score after the removal of the impaired mutants. Of the 34 schemas used in the experiments, the percentage of schemas with a 100 percent
score is shown in parentheses. Since there are no automated checks to identify impaired mutants for HyperSQL and PostgreSQL , there is no data for this mutant
type and these DBMSs.
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suboptimal, due to a mutant that was impossible to kill. In
summary, this paper’s technique can help testers of data-
base schemas achieve a more precise understanding of the
quality of their test suites.

The effect of removing impaired and redundant mutants
on a test suite’smutation score depends on the initial strength
of the generated tests. If a test suite originally achieves a 100
percent score, then removing these mutants cannot improve
the score any further; moreover, their removal cannotmake it
any worse. However, if a test suite has a sub-100 percent
score, then it is likely to experience a change in its score. This
means that the removal of these types of ineffective mutants
has more of an effect on the weaker test suites generated by
the Randomþ test data generator than it does for the AVM’s
test suites, which are stronger and more likely to therefore
achieve 100 percentmutation scores.

Overall, automatically finding and removing ineffective
mutants lead to 33 of the 34 schemas having a significantly
changed mutation score for at least one DBMS and one test
generation method. The only schema that didn’t undergo a
significant change—NistDML183—had a consistent 100 per-
cent score before any ineffective mutants were removed.

7 RELATED WORK

Much like this paper, there has been an extensive amount of
work that aims to make mutation analysis more efficient
and/or more useful. Due to the voluminous nature of work
in this area, we survey some representative papers that are
related to this paper’s technique and its experimental study;
a more comprehensive treatment can be found in the survey
by Jia and Harman [17]. To start, Wong and Mathur pre-
sented an early empirical study that evaluated different
strategies for reducing the cost of mutation testing by ran-
domly selecting certain mutants for analysis. Mresa and
Bottaci [57] and Offutt et al. [58] followed up this study
with new experiments that investigated how selective
mutation could speed-up mutation testing by reducing
the number of mutants subject to analysis; McCurdy
et al. subsequently released an open-source tool to support
further experimentation with these techniques [59]. Finally,
Ma and Kim showed how clustering can reduce the cost of
mutation testing by identifying similar mutants, facilitating
the analysis of only the representative ones [60]. While all of
these prior papers present ways to improve the efficiency of
mutation analysis by discarding mutants, they may yield a
mutation score that differs from the original; in contrast, the
method presented in this paper will never compromise the
mutation score because it only removes ineffective mutants.

Many related papers have attempted to improve the per-
formance of mutation analysis by using either specialized
computer hardware or integrated software tools. In early
work, both Offutt et al. [61] and Byoungju and Mathur [62]
proposed a technique for high-performancemutation testing
on a parallel computer. Attempting to improve the software
that performs mutation analysis, both DeMillo et al. [63] and
Just et al. [64] developed methods that were directly inte-
grated into the compiler for a specific programming lan-
guage. In an effort to make the generation of program
mutants faster, Untch et al. [65], Ma et al. [66], and
Just et al. [67] explored the use of configurable “templates”

when manipulating the source code of program mutants.
While each of these prior papers improves the efficiency of
mutation testing, it does so at the expense of requiring either
specialized hardware (e.g., a parallel computer) or custom-
ized software (e.g., a Java compiler). This paper’s method is
distinguished from these prior works in that it creates and
executes mutants without needing to modify the DBMS or
any other systems software. It is also worth noting that other
prior work, like that of Zhang et al. [68] and Just et al. [69],
obviate the need for a customized execution environment by
applying regressing testing methods [70] that improve the
efficiency of mutation testing by reordering the tests. While
these methods could be customized for relational database
schemas, to date and to the best of our knowledge, none of
them can yet handle this new domain.

In the context of using mutation analysis to compare test
suite quality, the detection of equivalent programmutants is
known to be generally undecidable [71]. Since there is a con-
siderable human and computational cost associated with
deciding if a mutant is equivalent [20], prior work has devel-
oped approaches that use genetic algorithms [42], compiler
optimization [37], [39], constraint-based testing [40], and
coverage analysis [20] to detect and remove some equivalent
mutants. In addition, Hierons et al. explained how to use
program slicing to reduce the computational and human
effort needed to determine if a mutant is equivalent [72].
Applying it to the equivalent mutant problem, Hierons and
Merayo also presented an algorithm for detecting equiva-
lence between pairs of probabilistic stochastic finite state
machines [73]. While these methods may be adapted for
databases, none of them currently handle database schema
mutants. Moreover, the term redundant mutant was previ-
ously used by Just et al. [36] to describe Java program
mutants that should be removed because they are subsumed
by other mutants. We use this term more generally to mean
all mutants that are equivalent to other mutants. Finally,
Papadakis et al. point out that ineffective mutants—like the
ones that this paper’s methods can identify and remove—are
a validity threat for experiments using mutation analysis to
assess the effectiveness of testing techniques [21].

As previously mentioned in Section 2, most work involv-
ing the implementation, improvement, and evaluation of
mutation analysis methods was originally focused on tradi-
tional programs, like those written in programming lan-
guages such as Fortran, C, and Java [66], [74], [75].
However, mutation has recently been adopted for a wider
range of software artifacts. For instance, the technique
developed by Gligoric et al. considers concurrent pro-
grams [76]. Moving beyond traditional programs, work
such as that of Deng et al. and Lindstr€om et al., proposed
the use of mutation analysis to assess the adequacy of test
suites for Android apps [26], [27]. Others have recently
applied mutation analysis to the measurement of test suite
effectiveness for web sites [28], [29], [30]. Mutation testing
has additionally been applied in other diverse domains
such as mobile software agents (e.g., [31], [32]) and security
policies (e.g., [33], [34]). Like these examples of related
work, this paper considers mutation testing for a new
domain—in this case, relational database schemas. Yet,
unlike the aforementioned papers, this one’s focus is on the
automatic identification and removal of the ineffective
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mutants that may result in misleading mutation scores and
an inefficient mutation analysis.

Since many organizations maintain large databases [2]
and the quality of the data in these databases is highly val-
ued by consumers [77], it is worth noting that several exam-
ples of prior work have motivated the need for efficient and
effective mutation analysis methods for relational database
schemas. Experimentally observing that the schema of the
database in real-world applications changes frequently,
Qui et al. both demonstrated the important role that the
relational database schema plays in ensuring the correctness
of an application and motivated the need for extensive
schema testing [78]. The empirical results of Qui et al. are
amplified by Guz’s remark that one of the key mistakes in
testing database applications is “not testing [the] database
schema” [11]. These aforementioned papers also stressed
the importance of efficiently testing relational database
schemas with adequate tests; this paper’s automated tech-
nique for identifying and removing ineffective mutants
help testers achieve this goal by making database schema
mutation analysis both faster and more useful than it was
when performed with prior methods (e.g., [12]).

While Bowman et al. focused on using mutation analysis
to assess test suites for an entire database management sys-
tem [35], Kapfhammer et al. [12] were the first to propose
mutation operators for the integrity constraints expressed in
a relational database schema. These suggested operators cre-
ated mutants by adding, removing, and replacing columns
in the definitions of PRIMARY KEY and UNIQUE constraints,
while also adding and removing NOT NULL constraints from
other columns in the schema’s tables. An operator was also
proposed to remove CHECK constraints from database
schema definitions. Wright et al. [15] extended this set with
operators that mutated the predicates of CHECK constraints
(e.g., by replacing a relational operator such as > with >=),
while also introducing operators to mutate the columns in
the definition of FOREIGN KEY constraints.

Other prior work by this paper’s authors furnished meth-
ods, such as mutant schemata and parallel execution, for
speeding up the mutation analysis of database schemas [14].
Wright’s dissertation presented a unified treatment of these
approaches to efficient schema mutation testing [47]. While
this dissertation, and the author’s aforementioned work
(e.g., [12], [14], [15]), focused on mutating the CREATE

TABLE statements that produce the schema, other prior
work has proposed mutation operators for the SQL SELECT

statements used by applications to retrieve data stored in a
database [46], [79]. The idea of mutation analysis for data-
base queries was later incorporated into a tool for instru-
menting and testing database applications written in the
Java programming language, potentially mutating any exe-
cuted SELECT statement [80]. Chan et al. also proposed
mutation operators for the entity-relationship model man-
aged by a database application [81]. Yet, unlike these afore-
mentioned papers, this paper’s methods concentrate on the
database schema and are designed to remove the ineffective
mutants that make mutation testing slower and less useful.

8 CONCLUSIONS AND FUTURE WORK

Since data is a key driver in business and science, its
integrity is of obvious importance [53]. Relational database

schemas help to ensure the validity of data through integ-
rity constraints [1]. However, mistakes can be made while
specifying schemas, or by misunderstanding the dialect of
SQL understood by the DBMS of concern. Therefore, it is
important to test relational schemas, as has been recently
recommended by industrial practitioners [11]. Since test
cases for database schemas may not be equally capable at
finding faults, mutation analysis offers a way to evaluate
the “strength” of test suites by inserting potential defects
and then checking to see if the tests can find them [12], [13].

Although mutation analysis is known to effectively char-
acterize the quality of tests for programs [82], it is subject to
certain concerns [17], to which mutation analysis for sche-
mas is also vulnerable. One issue is the production of use-
less, ineffective mutants. For instance, a mutant is
ineffective if it is equivalent to the original program under
test [83]. In the context of using mutation analysis to assess
the quality of a program’s tests, the detection of equivalent
program mutants is known to be generally undecidable [71]
and costly from a human perspective [20]. Since these con-
cerns for program mutation also apply to the mutation anal-
ysis of database schemas, in this paper we have identified
patterns of ineffectiveness in database schemas that lead to
equivalent, redundant, and stillborn mutants. We have also
discovered a new type of ineffective mutant not heretofore
observed in program mutation: the impaired mutant. These
impaired mutants are similar to stillborn mutants in that the
schema is infeasible. However, instead of being rejected by
the database management system (or failing to compile, as
would be the case for stillborn mutants with program muta-
tion), they are live until trivially killed by a test.

This paper presented general-purpose algorithms,
designed to be run before mutation analysis and imple-
mented in the SchemaAnalyst tool, that statically analyze the
mutants of database schemas to check if they are ineffective.
In an empirical study, focusing on 34 representative database
schemas comprising a total of 186 tables, 1044 columns, and
590 constraints that were hosted by the well-known
HyperSQL, PostgreSQL, and SQLite DBMSs, we found that a
significant number of ineffective mutants could be identified
with this automated approach. We also discovered that
removing them from the mutant pool often significantly
decreased the time needed to performmutation analysis.

In particular, the prior identification and removal of
stillborn mutants was shown to be an order of magnitude
faster than relying on the DBMS to reject them during muta-
tion analysis. The efficiency benefits of removing other
types of mutant depended on their numbers, and whether
the time taken to detect and eliminate them was regained in
the course of not having to analyze significant numbers of
them later, which could lead to further time savings. Finally,
the results also revealed that the removal of ineffective
mutants generally changed the mutation score, making it
more useful to testers assessing the quality of their tests. In
particular, the removal of equivalent mutants sometimes
lead to a test suite achieving a perfect mutation score.

Although this paper presents and empirically evaluates a
comprehensive suite of methods for automatically detecting
and removing ineffective mutants in database schemas, sev-
eral avenues for future work remain. Yet, these methods
could not identify some equivalent and infeasible
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impaired mutants due to the existence of arbitrary predicates
in the database schema’s CHECK constraints. Even though
the equivalence and infeasibility of predicates is a generally
undecidable problem [17], [40], future work will develop
methods that can automatically detect simple forms and use
them as the basis for removing such mutants—for example,
by using a constraint solver. Moreover, even after the
removal of ineffective mutants, many mutants remain that
are costly to analyze. Future work needs to develop
approaches that can speed up their analysis (e.g., through
further investigation of virtual execution approaches [84]);
or with techniques to reduce the number of mutants that
need to be considered by selecting a representative sample,
as has been previously proposed for programmutation (e.g.,
[42], [57], [58]) and preliminarily developed and evaluated
for schema mutation [59]. Additionally, we will investigate
how this paper’s presented methods for the identification
and removal of ineffective mutants could be applied to other
domains, such as traditional programs andweb sites.

There are also many ways in which we intend to improve
the empirical study presented in this paper. For instance, we
will extend the experiments by considering new database
schemas and database-aware mutation operators. This sec-
ond extension will involve, along with the development of
higher-ordermutation operators for schemas, the customiza-
tion of the mutation operators for SQL SELECTs [46] so that
they ultimately work for database schemas. We will also
more thoroughly investigate how both automatically and
manually created tests influence the detection and removal
of ineffective mutants. These new experimental configura-
tions will serve to further control the threats to the validity of
this paper’s experimental study, leading to, for instance, fur-
ther confirmation of the generalizability of the results.

Once completed, we will integrate all of the new
techniques into the existing repository for the SchemaAnalyst
tool.10 Overall, the combination of this paper’s automated
method for handling ineffective mutants, and the improve-
ments completed during future work, will yield an effective
way to assess the quality of the test suites for the integrity
constraints in a database schema. Ultimately, the use of the
algorithms presented in this paper will support the produc-
tion of better tests suites for schemas, leading to the creation
of high-quality relational databases that store the data sets
arising in fields such as science and business.
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