
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Text Filtering and Ranking for Security Bug
Report Prediction

Fayola Peters, Thein Than Tun, Member, IEEE, Yijun Yu, Member, IEEE,
and Bashar Nuseibeh, Member, IEEE

Abstract—Security bug reports can describe security critical vulnerabilities in software products. Bug tracking systems may contain
thousands of bug reports, where relatively few of them are security related. Therefore finding unlabelled security bugs among them can
be challenging. To help security engineers identify these reports quickly and accurately, text-based prediction models have been
proposed. These can often mislabel security bug reports due to a number of reasons such as class imbalance, where the ratio of
non-security to security bug reports is very high. More critically, we have observed that the presence of security related keywords in
both security and non-security bug reports can lead to the mislabelling of security bug reports. This paper proposes FARSEC, a
framework for filtering and ranking bug reports for reducing the presence of security related keywords. Before building prediction
models, our framework identifies and removes non-security bug reports with security related keywords. We demonstrate that FARSEC
improves the performance of text-based prediction models for security bug reports in 90% of cases. Specifically, we evaluate it with
45,940 bug reports from Chromium and four Apache projects. With our framework, we mitigate the class imbalance issue and reduce
the number of mislabelled security bug reports by 38%.

Index Terms—security cross words, security related keywords, security bug reports, text filtering, ranking, prediction models, transfer
learning.

F

1 INTRODUCTION

Bug tracking systems help developers maintain software
products by allowing reporters to submit any bugs en-
countered while using these software products. Some bug
reports can describe security vulnerabilities which could be
exploited by attackers if they are exposed before they are
fixed. A security bug is a security vulnerability that allows
a user to have inappropriate access to the system and thus
cause harm or damage to the software or to persons using
the software [1]. Vendors usually request that bug reporters
do not disclose any suspected security vulnerabilities in
public bug tracking systems. Instead, they suggest that
suspected security vulnerabilities be reported directly and
privately to security engineers who assess them and, when
necessary, provide patches to customers before an attacker
discovers and exploits the vulnerability. Once a patch has
been disseminated, vulnerabilities are often documented
and disclosed via the bug tracking system [2].

In reality, because of the lack of security domain knowl-
edge on the part of some bug reporters [3], or others
who simply ignore the request from vendors and security
engineers, suspected security bug reports are often publicly
disclosed before they are assessed and fixed [4]. To help
security engineers identify security bug reports quickly
and accurately, text-based prediction models have been
proposed, and implemented in industry [1], [3], [4]. These
prediction models are a combination of labelled bug reports

• F. Peters and B. Nuseibeh are with Lero - The Irish Software Research
Centre, University of Limerick, Limerick, Ireland.
E-mail: {fayola.peters, bashar.nuseibeh}@lero.ie

• T. T. Tun, Y. Yu and B. Nuseibeh are with the Department of Computing
and Communications, The Open University, Milton Keynes, United
Kingdom.
E-mail: {thein.tun, yijun.yu, bashar.nuseibeh}@open.ac.uk

and machine learning algorithms. However, there is one
underlying issue not fully explored in these models, which
we call security cross words. Security cross words denote the
use of the same security related keywords in both security and
non-security bug reports. We have observed that text-based
prediction models can mislabel security bug reports when
security cross words are present. The problem is magnified
if there is class imbalance where non-security bug reports
outnumber security bug reports by a large margin. For
instance, among the 45,940 bug reports studied in this paper,
only 0.8% are known to be security bug reports.

We propose FARSEC, a framework composed of a combi-
nation of Filtering And Ranking methods to reduce the misla-
belling of SECurity bug reports by text-based prediction models.
When building prediction models, FARSEC automatically
identifies and removes non-security bug reports containing
security cross words. It begins by finding security related
keywords from the security bug reports of a project (Sec-
tion 3.1). Each security related keyword is scored according
to its frequency in both security and non-security reports.
Using the keyword scores of bug reports, we remove non-
security reports with scores as high as those of security bug
reports (Section 3.2). The remaining bug reports are used
to build prediction models (Section 3.3). Finally, FARSEC
uses the results of the prediction models to present security
engineers with ranked lists of bug reports where most of
the actual security bug reports are closer to the top of the
ranked lists than at the bottom.

To illustrate how FARSEC works, consider the exam-
ple in Figure 1. When the data was downloaded on May
5th, 2017, the report was labelled as a non-security bug
report (NSBR) by researchers (see Section 4.1). However,
in the official bug tracking system of the Ambari project,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Descrip(on:	
Yarn	smoke	test	uses	REST	api	exposed	by	
ResourceManager	to	get	its	status.	A<er		
configuring	web	authen@ca@on	yarn	client		
that	is	assigned	yarn	service	check	needs	to	
nego@ate	401	HTTP	authen@ca@on	response	
received	while	using	REST	api.	

AMBARI-3153	
Secure	cluster:	Yarn	service	check	fails	a<er	configuring	

yarn	for	spnego	authenBcaBon			

Secure	cluster:	Yarn	service	check	fails	a<er	
configuring	yarn	for	spnego	authen@ca@on.	

Fig. 1. Ambari-3153 is a bug report mislabelled as non-security.

Ambari-3153 was described as a security bug report
(SBR)1. Such mislabelling of security reports could not only
lead to the exploitation of the particular vulnerability in-
volved, but also make prediction models based on this data
to mislabel future SBRs. Filtering and ranking capabilities of
FARSEC would remove reports such as Ambari-3153 from
its training data.

We evaluate FARSEC with a total of 41,940 bug reports
from Chromium and four Apache projects (Section 4.1) each
containing 1000 reports. We also use five machine learning
algorithms (Section 4.3) and six performance measures (Sec-
tion 4.4) to evaluate our approach. We then consider the
following research questions:

RQ1: Can security cross words lead to mislabelled secu-
rity bug reports by prediction models?
We look at the number of security cross words
present before and after using FARSEC. We then
consider these numbers in conjunction with the pre-
diction of SBRs using prediction models. The results
indicate that security cross words can contribute to
mislabelled SBRs (Section 5.1).

RQ2: How do we build effective prediction models for
security bug reports when data scarcity is an issue?
To build effective prediction models we need suffi-
cient data from both security and non-security bug
reports. When data scarcity is an issue, one solution
is to use data from other projects to build prediction
models. Results show better performance in favour
of using FARSEC and data from other projects (Sec-
tion 5.2).

RQ3: How do we generate useful lists of ranked bug
reports?
FARSEC produces ranked lists of bug reports. We
view the usefulness of the ranked lists as having
more actual SBRs at the top of the lists than at the
bottom. Our results show that for all the projects,
FARSEC lists are more useful than non-FARSEC lists
(Section 5.3).

FARSEC is a framework designed to reduce the mis-
labelling of security bug reports by text-based prediction
models. It makes the following contributions:

1. https://issues.apache.org/jira/browse/AMBARI-3153

1) An approach to automatically identify security re-
lated keywords and security cross words from secu-
rity bug reports.

2) An automatic filtering and ranking method to build
better text-based prediction models for security bug
reports by removing NSBRs with security cross
words from the prediction model. Better prediction
models reduce the mislabelling of security bug re-
ports.

3) A tractable method to use both bug reports from
within a single project and bug reports from other
projects to build text-based prediction models for
security bug reports.

4) A ranking capability used to generate a useful
ranked list of bug reports where most of the actual
security bug reports are closer to the top of the list.

2 BACKGROUND AND RELATED WORK

Existing research has proposed prediction models to detect
security vulnerabilities in both the pre- and post-release
phases of software development. In the pre-release phase
the source code is used to build prediction models [5]–[10]
while bug reports are used in the post-release phase [1], [3],
[4]. Although the data used in these phases are different,
the process for building the prediction models face the same
issues of class imbalance, cross words, and insufficient data.

2.1 Security Vulnerability Models with Source Code

Source code can be used to derive metric-based and text-
based prediction models. Metric-based models are fash-
ioned after defect prediction models. Similarly, they use
code metrics such as code churn, complexity, coupling
and cohesion metrics, and code coverage [5]–[7], [9], [10].
Zimmermann et al. [5] and Shin et al. [6], [7] investigated
the feasibility of these metrics (classical metrics) for security
vulnerability prediction. The former performed their study
on Windows Vista and found that the metrics had a low
correlation with vulnerabilities and could predict them with
good precision but with very low recall. In addition they
found that the use of dependencies for prediction worked
better than the code metrics in terms of better recall.

Studies by Shin et al. were done on open source projects,
namely the Mozilla Firefox web browser and the Red Hat
Enterprise Linux kernel. Out of 28 metrics, 24 were dis-
criminative for security vulnerabilities in both projects [6].
Later they found that their vulnerability prediction model
from Mozilla had a recall of 83% and precision of 12% at a
classification threshold 0.5 [7].

Text-based models use terms and their frequencies in
source code to build prediction models for security vulner-
abilities. In their study of 20 android applications, Scandari-
ato et al. [8] used text-based models to predict vulnerabil-
ities in software components. Walden et al. [9] compared
metric-based models with text-based models for source code
and found that the text-based models performed best with
higher recall in three web applications.

Class imbalance affects the performance of machine
learning algorithms in the presence of under-represented
data and severe class distribution skews [11]. A study by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Morrison et al. [10] has noted that while Microsoft product
teams have adopted defect prediction models, they have not
adopted vulnerability prediction models. This was due to
their poor performance in terms of precision and recall with
highly imbalanced data.

In this paper we focus on security vulnerability pre-
dictors built with bug reports (described in the following
section). We face the same issue of class imbalance where
out of the 45,940 bug reports studied, only 0.8% are security
bug reports.

2.2 Security Vulnerability Models with Bug Reports

Building security vulnerability models with the natural lan-
guage text of bug reports is a text-mining task. First, relevant
keywords are identified with semi-automatic methods and
then prediction models are built using these as a feature
set along with their frequencies in each document. An early
work on this topic by Gegick et al. [3] highlighted the prob-
lem of SBRs being mislabelled as NSBRs because of (say) the
lack of security domain knowledge of bug reporters. Their
research resulted in an approach that leveraged the natural
language descriptions of bug reports to train a statistical
model in an effort to identify SBRs that were manually
mislabelled as NSBRs. Security engineers could use their
model to automate the classification of bugs. Their evalua-
tion was based on a proprietary software system from Cisco.
In this paper our evaluations are done with open source data
(Table 1), allowing our experiments to be reproducible.

Later research by Wijayasekara et al. [4] focused on the
problem of hidden impact vulnerabilities where security
bug reports are only identified after being made public. In
an analysis they revealed that among the discovered vul-
nerabilities in the Linux kernel and MySQL, 32% and 62%
respectively were hidden impact vulnerabilities. They also
showed that these values increased in the following years.
The authors proposed a vulnerability discovery methodol-
ogy where they distinguished between long and short bug
reports prior to applying text-mining methods. A base-rate
fallacy evaluation was used to acknowledge the issue of
class imbalance. This measure allows security engineers to
choose prediction models based on the false positive alarm
rates they would be willing to accept. For example, if a
prediction model has a precision of 0.01, it means that out
of 100 predicted SBRs, one will be an actual SBR.

2.2.1 Methods for Finding Security Related Keywords
For many researchers, identifying security related keywords
usually starts with a seed list which is expanded semi-
automatically using external sources. For instance Gegick
et al. [3] mentioned in their configuration file preparation
phase that they obtained terms from bug reports to pop-
ulate start, stop and synonym keyword lists. The authors
described manually adding terms such as vulnerability and
attack from security bug reports to start lists. Also included
were terms, which were not explicitly security related, such
as crash and excessive. In a similar vein, Pletea et al. [12] used
an iterative process to construct a set of security relevant
keywords, which they called a keyword-based approach. They
started with a seed list derived from the existing literature
and their own security expertise. Their seed list contained

keywords such as security, ssl, encryption and authentication,
which is expanded using co-occurring tags from Stack Over-
flow.

In the analysis of software maintenance techniques, Hin-
dle et al. [13] created three keyword lists using external
sources independent of the data used in their study. Using
an ontology for software quality measurement and the
ISO9126 taxonomy 2, they associated keyword lists with
six labels from the standard for non-functional requirements
(namely, maintainability, functionality, portability, efficiency,
usability, and reliability). One of the labels is functionality, to
which security is associated. Hindle et al. [13] then expanded
the keyword lists using WordNet and a random analysis of
mailing list messages from an open source project, where
any word considered to be associated with a non-functional
requirement is added to the keyword list. In this paper
we automatically identify security related keywords using
the text in SBRs and tf-idf (Section 3.1), and without using
external sources. Nevertheless, many of our keywords are
similar to those found in other studies [3], [12], [13].

2.2.2 Transfer Learning and Prediction Models
One fundamental assumption of traditional machine learn-
ing algorithms is that the training (past) data and present
(test) data have the same features and distribution. This
assumption does not hold, for example, when the training
data and present data come from different projects. Transfer
learning aims to bridge this gap by extracting useful knowl-
edge from past data and applying it to different present
data. This is especially useful when the target data is new
and has not been examined by domain experts [14].

Following defect prediction models, some vulnerability
prediction approaches use code metrics. One line of re-
search on defect prediction is cross project defect prediction
(CPDP), which uses data from external sources to build
models [15]. CPDP is useful because for many companies
that are relatively small or have new products, local data
may not be readily available. With the use of better selection
tools for training data and transfer learning techniques,
researchers found it possible to predict defects for “data
starved” software projects by using data from external
sources [16]–[24].

Results from existing studies of SBRs are currently incon-
clusive [3], [8]. The ability to use data from other sources to
predict security bugs has been studied with mixed results.
For example, Gegick et al. [3] recommended that the trained
model should not be applied to software systems in which
the SBRs describe different types of security bugs than those
that were used to train the model [3]. On the other hand,
Scandariato et al. [8] found that some models built on a
single application can predict which software components
are vulnerable in other applications. However, they admit
that they do not have a technique to identify which appli-
cations have data that can be used to produce the general
vulnerability prediction models.

Chawla et al. [1], used tf-idf (a statistic for weighting key-
words described in Section 3.1) and the semantic similarity
of the keywords found with tf-idf in order to generate their

2. ISO/IEC 25010:2011 has recently added “security” as one of the
main characteristics of software qualities.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

1.  Tokenize	SBRs	
2.  Keep	Top	Tf-idf	Terms	
3.  Make	Train	Data	Matrix*	

with	Top	Terms	

Iden&fy	Security		
Related	Keywords	

Filtering	

1.  Score	Terms	
2.  Score	Bug	Reports	
3.  Remove	NSBRs	with	high	

Scores	

Make	Test	Data	Matrix		
with	Top	Terms	

Ranking	

1.  Sort	by	Report	
PredicGon	

1	 2	 3	

Scoring	and	PredicGon	of		
Test	Data	Matrix	

*In	a	Data	Matrix	each	row	represents	a	bug	report.	

SBR	PredicGon	
Model	

Train	

Test	

Fig. 2. Overview of the FARSEC approach

keyword lists. Their Multinomial Naive Bayes predictor
was able to label bug reports as security, regression, polish
and cleanup. Similarly, they used Chromium bug reports in
their evaluation and hinted at (security) cross words when
they described manually removing keywords from the four
different categories of Chromium, which appeared in the
top 50 keywords of each category. Their intuition was that
these keywords did not seem to provide a discriminative
contribution. In this paper we automatically identify secu-
rity cross words, but we do not remove all of them from
our feature set because at least 74% of the security related
keywords identified in our study are cross words. Instead
we use them to remove NSBRs from the data sets in order
to improve the prediction of SBRs.

To conclude, this paper proposes a novel method for
constructing text-based prediction models for security bug
reports, focusing on the issue of security cross words. Our
results show that appropriately dealing with security cross
words provides a foundation for dealing with other issues
such as insufficient data, feature selection and class imbal-
ance.

3 FARSEC DESIGN AND OPERATION

With FARSEC, our goal is to improve text-based prediction
models for SBRs. When building prediction models, FAR-
SEC automatically identifies and removes NSBRs containing
security cross words. Figure 2 shows the three main stages of
FARSEC: 1) identifying security related keywords (Section 3.1);
2) filtering via the scoring of security related keywords and
bug reports (Section 3.2); and 3) ranking based successive
sorting and prediction (Section 3.3). The result is a sorted
list of predicted bug reports where most, if not all, SBRs are
expected to appear above NSBRs.

3.1 Identifying Security Related Keywords

To identify security related keywords and security cross
words from bug reports, we first tokenize the SBRs and then
calculate the tf-idf values of each term (explained in Step 4
below). We consider the hundred terms with the highest
tf-idf values to be security related keywords. Of these 100

terms, we consider those found in NSBRs to be security
cross words. The security related keywords are then used
to build term-document matrices using the following steps
(keywords and terms are used interchangeably):

1) Tokenize text: This is a frequently used method
in text mining, which involves splitting text into
sentences and words [25]. In addition, it is common
to extract token features that are usually categorical
functions of tokens such as types of capitalization,
punctuation and special characters [25]. As part
of tokenizing text in this paper, we make all terms
lowercase.

2) Remove stop words: Stop words are common words
that are irrelevant to the classification task [25]
and are therefore removed. Some examples of En-
glish stop words include: a, again, on, the,
their, will. In this paper we use the English
stop words list included with the Natural Language
Toolkit 3.

3) Remove unwanted terms: In this paper we go be-
yond stop words, and also remove unwanted terms.
For bug reports used in this paper, we describe
unwanted terms as those that contain punctuation
and other non-alphanumeric characters. We remove
unwanted terms based on the assumption that they
may appear infrequently and only in a small per-
centage of bug reports when transfer learning is
considered. Therefore, as features, the unwanted
terms would lead to sparse data matrices. As a
result of removing these unwanted terms, it is
possible that interesting ones will be lost, such as
integer-overflow. Examples of unwanted terms
which appear in the projects studied in the paper are
online 4.

4) Calculate term frequency-inverse document fre-
quency (tf-idf): tf-idf [26] is a statistic used to weight
the importance of terms to a document in a corpus.

3. http://preview.tinyurl.com/yanmtk34
4. https://tinyurl.com/y96dhqp7

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

We use the following equations from Manning et
al. [27], [28] to calculate tf-idf.

tf(t, d) = 0.5 +
0.5× f(t, d)

max{f(w, d) : w ∈ d}
(1)

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(2)

tf -idf(t, d,D) = tf(t, d)× idf(t,D) (3)

In Equations 1-3, N is the total number of docu-
ments, t represents a term, d represents a document
in the set of documents D. In Equation 1, the term
frequency tf(t, d) represents how often a word ap-
pears in a document, normalized by the maximum
frequency of each keyword in a document, f(w, d).
Inverse document frequency idf(t,D), is the log
of the number of documents in which the word
appears (Equation 2). In this work we choose the
top 100 terms in SBRs with the highest tf -idf values
as our feature set. We restrict the feature set to 100
based on work by Bozorgi et al. [2], which found
that the top 100 features spanned nearly all of the
feature families in their study. The feature families
represented the 28 parts of the vulnerability reports,
for example the title and description.

5) Construct term-document frequency matrix: This
involves creating data matrices from the 100 secu-
rity related keywords where each row represents a
document in a corpus and the columns represent the
terms in the feature set.

3.2 Filtering Bug Reports
FARSEC filtering is about removing NSBRs with security
related keywords from the term-document matrix. Filtering
is based on the scoring of the terms in the feature set. Using
these scores we calculate an overall score for bug reports,
which contain all, some, or none of the terms in the feature
set.

This is similar to text filtering approaches used to classify
emails into spam and non-spam [29], [30]. FARSEC filtering
method is based on Graham’s Bayesian filter [30].

Algorithm 1 shows how we score each keyword in our
feature set. The result is a dictionary of keywords mapped
to their scores (Line 9). The function ScoreWords accepts
as input a dataset with a header row of security related
keywords (Section 3.1) from a feature set and a support
function. We partition the data into SBRs, NSBRs, and the
keywords (Line 2). For each keyword, the algorithm calcu-
lates the probability of the keyword appearing in SBRs and
NSBRs. We then calculate the score of the keyword using
the equations in Line 3 to Line 7.

In order to reduce false positives (mislabelled non-spam
emails), Graham [30] biased the probabilities by trial and
error and found that multiplying the frequency of non-spam
emails by two was a good way to achieve a good bias.
Similarly, work by Jalali et al. [31] found that the equation
in Line 6 was a poor ranking heuristic for low frequency
evidence. To alleviate this problem, their support function
involved squaring the numerator of the equation (Algo-
rithm 1, Line 7). In order to reduce mislabelled SBRs, we
apply support functions to the frequency of the words found

Algorithm 1 Score keywords.
1: ScoreWords(B, support) {B is the bug reports data with a feature

set, and support adds bias in favour of SBRs.}
2: Partition(B) 7→ {S, NS, W} {S is SBR data, NS is NSBR data and

W is the feature set.}
3: for w in W do
4: {w represents each word in the feature set.}
5: P(Sw)←Min (1, support(tf(Sw))

|S|)

6: P(NSw)←Min(1, tf(NSw)
|NS|)

7: Score(w)← Vector(w, Max(0.01, Min(0.99 , P (Sw)
P (Sw)+P (NSw)

)))
8: end for
9: return Hashmap(Score(w)) {Returns dictionary of w mapped to

Score(w).}

in SBRs (Algorithm 1, Line 5). This allows us to investigate
three versions of filtering for FARSEC. They are denoted in
our experiments as: 1) farsecsq, applying the Jalali et al. [31]
support function to the frequency of words found in SBRs;
2) farsectwo, the Graham [30] version of multiplying the
frequency by two and; 3) farsec, which offers no support.
They are collectively referred to as FARSEC filters.

In addition, following Graham [30], in cases where
words appearing in SBRs do not appear in NSBRs, probabil-
ity 0.99 is assigned as their scores. Conversely, when words
appearing in NSBRs do not appear in SBRs, probability 0.01
is assigned.

Algorithm 2 shows how we calculate the overall score
for a bug report. The ScoreReport function accepts three
inputs, the bug report to be scored, a dataset, and support
function used by ScoreWords to create a dictionary of
scored keywords. For each term in the bug report, we get
its score from the dictionary. If the term is not present in the
dictionary, the returned score is zero. All the scores for the
bug report are added to M and their complement scores are
added to M ′ (Lines 5-11). We perform the product of the
scores of each set and calculate the overall score of the bug
report (Line 12).

NSBRs are selected using the threshold score of ≥ 0.75
because those with higher scores are likely to be false
positives. The threshold value is based on our experience
with the datasets that reports with scores in the mid-range
(between 0.4 and 0.6) are less likely to be SBRs. The reason
for the effectiveness of this threshold value is not yet clear
and is an issue for future work.

Algorithm 2 Score bug report.
1: ScoreReport(R, B, support) {R is a bug report and B is the bug

reports data with a feature set, and support adds bias in favour of
SBRs.}

2: M← ScoreWords(B, support)
3: M∗ ← ∅ {Initialized list of scores for security related keywords in

R.}
4: M′ ← ∅ {Initialized list of complement scores for security related

keywords in R.}
5: for w in R do
6: P(w) ← GetScore(w, M) {Returns score for each keyword (w) if

present in dictionary and a score of zero if not present.}
7: M∗ ← P(w)
8: end for
9: for m in M∗ do

10: M′ ← 1−m
11: end for

12: return

∏|M∗|
i=1

mi∏|M∗|
i=1

mi+
∏|M′|

i=1
(1−mi)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

3.3 Ranking Bug Reports
When dealing with imbalanced data, the results of predic-
tion models can yield a large number of false positives
i.e. NSBRs predicted as SBRs. Therefore, after identifying
predicted SBRs, we generate a useful list of ranked bug
reports so that the majority of actual SBRs are closer to the
top of the list.

We rank bug reports based of the idea of ensemble learning
where the results of multiple machine learning models are
combined for better predictions [32], [33]. The idea is that
with ensembles even the weaker models are useful. There are
three main ways to build ensembles: 1) boosting, 2) bagging
and 3) blending. Boosting uses successive learning models,
which focus on the misclassified data of the previous model
while bagging creates subsets of the data (with replace-
ment) to create different models [33]. The results are then
combined using a voting strategy. Blending is a stacking
method [32], which combines predictions from multiple
models using another (called a meta-learner).

FARSEC ranking is similar to blending, but instead of
applying a meta-learner it ranks them by successively sort-
ing the prediction results with one of the FARSEC filters
or non-filtered training data. Notice that when prediction
results are equal for any two bug reports, they are ordered
in the chronological order in which they were entered into
the bug tracking system.

For example, if we are ranking the test bug reports
according to the prediction results of the farsecsq filter, we
use two sorting steps as follows (we ensure that the input
bug reports are initially sorted in chronological order):

• Step 1: (Sort by prediction in descending order): The
prediction result used here is selected from non-
filtered training data or the other FARSEC filters.
The chosen result is the one with the least number
of predicted SBRs. It is used only if the number of
predicted SBRs is less than that of farsecsq.

• Step 2: (Sort by prediction of farsecsq): We preserve
the order from Step 1 or the chronological order if
Step 1 is not used.

The result is a ranked list of predicted bug reports where
SBRs are closer to the top of the list than NSBRs.

3.4 Time Complexity for FARSEC
We look at the time complexity of how FARSEC is used for
both offline and online computation. In this paper, when
we use the training data to find the top security related
keywords from the SBRs (feature set), this is an offline
process which occurs once with the complexity O(S × TS),
where S represents the number of SBRs and TS represents
the total number of terms in the SBRs. In addition, building
the dictionary of keywords and scores in Algorithm 1 also
involves an offline computation with the linear complexity
O(W), where W is the number of security related keywords
in the feature set. Therefore, the offline computation yields
an overall complexity of O(S × TS) +O(W) which reduces
to O(S×TS) since TS > W . The online computation occurs
when scoring bug reports. In the worst case, this is an
O(N ×W) operation, where N is the number of bug reports
in the training data.

The time complexity for the ranking of bug reports in
test data is seen as an offline computation with an overall
complexity of O(log(N’)), where N’ is the number of bug
reports in the test data. This log complexity is due to the
Quicksort algorithm [34] used for Step 1 and Step 2 in
Section 3.3.

4 EXPERIMENT SETUP

Prediction models are created with labelled historical data
and machine learning algorithms. In this section, we de-
scribe 1) the data and the data pre-processing steps we
use to get the top 100 security related keywords for each
project; 2) a noise detection algorithm used in defect pre-
diction and how it compares with the FARSEC filters, and
3) the machine learning algorithms used and the different
performance measures of the prediction models. The code
used in our experiments along with the data and results are
available online 5.

4.1 Data
To conduct experiments and answer the research questions
posed in this paper, we need projects with historical bug
reports, which are labelled as SBRs or NSBRs. We use a total
of five projects: four from Ohira et al. [35] and a subset of
bug reports from the Chromium project. Table 1 shows the
domain of each project, the submit date of the first and last
bug reports, the number of reports for each project, and the
number and percentage of SBRs. The entries are sorted in
ascending order of SBR (%).

There are six kinds of high impact bugs reports in
the datasets from Ohira et al. [35]. These include, surprise,
dormant, blocking, security, performance and breakage. Each of
these four open source Apache projects uses JIRA 6 as its
bug tracking system and each project is from a different
application domain. Since Ohira et al. [35] focused on high
impact bugs, they randomly selected one thousand bug
reports with a BUG or IMPROVEMENT label for each
project. Graduate students and faculty members labelled
these bug reports. The Chromium dataset comes from the
2011 mining challenge of the Mining Software Repositories
conference 7. Here security bugs are labelled as Bug-Security
when they are submitted to the system. In this paper we
focus on the prediction of security bug reports, therefore
we treat all other types of bug reports as non-security bug
reports.

The bug reports from Ohira et al. [35] are supplied as
comma separated value (CSV) files. Each row represents a
bug report and the columns are features of the reports such
as bug id, title, description, and date and time a report was sub-
mitted and fixed. In contrast, the Chromium bug reports are
supplied as a directory of html files. For uniformity, we first
convert Chromium’s html files into a single CSV file with the
column headers, id, date, report, and security. Like
the datasets of Ohira et al. [35], each row represents a bug
report. From each report we extracted the date created and
the security label with values represented as 1 for SBRs and

5. https://bitbucket.org/fayola21-lero/farsec47
6. JIRA: https://www.atlassian.com/software/jira/
7. http://2011.msrconf.org/msr-challenge.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1
Characteristics of the projects and bug reports

Project Domain Start Date End Date BRs SBRs SBRs(%)
Chromium Web browser called Chrome. Aug 30 2008 Jun 11 2010 41,940 192 0.5
Wicket Component-based web application framework for the Java programming. Oct 20 2006 Nov 9 2014 1,000 10 1.0
Ambari Hadoop management web UI backed by its RESTful APIs. Sep 26 2011 Aug 8 2014 1,000 29 3.0
Camel A rule-based routing and mediation engine. Jul 8 2007 Sep 18 2013 1,000 32 3.0
Derby A relational database management system. Sep 28 2004 Sep 17 2014 1,000 88 9.0

0 for NSBRs. The ids came from the names of the html files.
For the textual reports we stripped the html tags from the
files, and removed comments about the initial bug report.

Originally, there are 49, 986 bug reports downloaded for
Chromium. We reduce this number to 41, 940 by exclud-
ing those reports which show a 404 not found error (e.g.
46314.html and higher) and those which require a user-
name and password to gain access (e.g. 43307.html and
44868.html).

To further prepare the data for our experiments, we
scrubbed the files by selecting only the necessary columns.
From the data of Ohira et al. [35], we selected issue_id,
description, summary and Security. We then com-
bined description and summary columns. At this point the
data of each project is partitioned into two parts according
to the dates the reports were created. The first part (past)
is used for training while the second part (present) is used
for testing. Security related keywords are identified from
the training data and used to produce text-by-frequency
matrices for each project (Section 3.1).

4.2 Noise Detection

To evaluate FARSEC filters, we include a comparison with
the noise detection algorithm Closest List Noise Identifi-
cation (CLNI). Kim et al. [36] proposed this method for
dealing with noise in defect prediction, which they found
to have reasonable accuracy. CLNI works as follows: For
each instance I, compute its euclidean distance from other
instances. Select the N nearest neighbors of I and find
portion θ of them with a different label from I. If θ is greater
than a specified threshold, then I has a high probability
of being noisy. The noisy instances are removed at each
iteration. The above process continues until the similarity
(ε) between the set of noisy instances from the previous
iteration and the current iteration is greater than or equal
to 0.99.

In order to have a fair comparison with FARSEC filters,
CLNI is modified and used in our experiments as follows.
To deal with the issue of imbalanced data as well as the
complexity of the algorithm, we first elected to only remove
noisy NSBRs, i.e. NSBRs with security cross words. Hence
we kept all the SBRs in the filtered datasets. This matches
what we do with FARSEC filters. Second, while Kim et al.
[36] suggested that θ = 0.6, the percentage of SBRs in our
training data only range from 0.5 to 9%, therefore we use
θ = SBRs

NSBRs+SBRs for each project. We use the suggested
default values of all other input to CLNI, i.e. N = 5 and
ε = 0.99.

Second, the use of the nearest neighbor algorithm in
CLNI causes its time complexity to be dependent on the

number of reports in a dataset. While noisy instances are
removed for smaller datasets like Ambari in a few minutes,
it can take hours for the larger Chromium dataset to com-
plete. To help reduce the complexity of the algorithm, we
first select the 100 nearest NSBR neighbors of each SBR.
These NSBRs have the most potential to be considered as
noisy reports by CLNI.

Finally, we create three additional FARSEC filters using
CLNI. We apply each FARSEC filter to the CLNI filtered data
by removing any NSBRs with scores above 0.75. We denote
these as clnifarsec, clnifarsectwo and clnifarsectwo. These
comparisons will provide additional evidence about the
impact of the presence security cross words on prediction
results.

4.3 Machine Learning Algorithms

For our experiments we use five machine learning algo-
rithms, namely, Random Forest, Naive Bayes, Logistic Re-
gression, Multilayer Perceptron and K-Nearest Neighbor.
We chose these because they are used widely in the soft-
ware defect prediction literature [37]. In a benchmark study,
Lessmann et al. [37], found that out of 22 machine learning
algorithms, the top 17 had no significant difference in their
predictive performance. Therefore, we restrict our experi-
ments to four algorithms out of the top 17 and K-Nearest
Neighbor, which is the top performer of the remaining
five algorithms. We now give a brief overview of these
algorithms and their use in this work.
1: Random Forest is shown to be relatively better than 21
other algorithms in the study by Lessmann et al. [37] and it
works well on imbalanced data [38]. Breiman [39] described
Random Forest as a combination of tree predictors such that
each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees
in the forest. In other words, it is a collection of trees, where
each tree is grown from a bootstrap sample (randomly
sampling the data with replacement). Additionally, the at-
tributes used to find the best split at each node is a randomly
chosen subset of the total number of attributes. Each tree in
the collection is used to classify a new instance. The forest
then selects a classification by choosing the majority result.
2: Naive Bayes is generally regarded as one of the most
efficient and effective algorithms in machine learning [40],
despite the feature independence assumption, which rarely
seems to hold in real-world applications. Menzies et al. [41]
and Lessmann et al. [37] reported in separate studies that it
performed well for software defect prediction compared to
more complex learning algorithms.
3: Logistic Regression is generally appropriate when the
dependent variable is dichotomous (e.g. either fault-prone

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

or non-fault-prone) [42] and was used by Zimmermann et
al. [15] and Weyuker et al. [43] for software defect predic-
tions.
4: Multilayer Perceptron is a neural network classifier and
has the ability to solve problems stochastically. It is a feed-
forward neural network with one or more layers between
input and an output layer [44]. It is trained with a back-
propagation learning algorithm and can solve problems that
are not linearly separable. The network nodes are sigmoid
unless the class is numeric so the nodes become linear units.
5: K Nearest Neighbor is a simple instance based classifier.
Cover and Hart [45] described K-Nearest Neighbor as a sim-
ple non-parametric decision procedure which classifies x, an
unknown instance in the category of its nearest neighbor. It
is one of the simplest algorithms and is used to set a baseline
in our work.

We use the Weka implementations of these machine
learning algorithms with their default parameter values [46].
When using Logistic Regression, the default threshold value
is 0.5, thus false negatives and false positives are treated
equally. Also, in Weka, K Nearest Neighbor is represented
by Ib-k, an instance based method, where k=1.

4.4 Performance Measures
To evaluate the performance of the prediction models built
with FARSEC filtered data, as well as the ranked bug
reports, we use the measures shown in Figure 3. For the per-
formance of the prediction models, the confusion matrix in
Figure 3 is used, where TP, TN, FP and FN are true positive,
true negative, false positive and false negative respectively.
We report the probability of detection pd, probability of false
alarm pf, precision, f-measures and g-measures. Probability
of detection measures the fraction of the actual SBRs the
predictor finds The probability of false alarm measures the
fraction of the NSBRs that are incorrectly predicted as SBRs.
Precision (prec) measures the fraction of actual SBRs in the
predicted SBRs.

Actual

SBRs NSBRs

Predict
SBRs TP FN

NSBRs FP TN

pd TP
TP+FN

pf FP
FP+TN

prec TP
TP+FP

f-measure 2∗pd∗prec
pd+prec

g-measure 2×pd×(100−pf)
pd+(100−pf)

Rank
APn

∑n
k=1

P (k)
n

MAPn

∑N
i=1

APni

N

Fig. 3. Confusion matrix: Definitions of pd, pf, prec, g-measure and the
mean average precision (MAP).

The f-measure and g-measure are calculated using the pd,
prec and pf values. The f-measure is the harmonic mean
between pd and prec. The optimal f-measure value is 100%.
The g-measure is the harmonic mean of pd and (100-pf).
100-pf represents a value is known as specificity (not predict-
ing NSBRs as SBRs). Specificity is used together with pd to
form the G-mean2 measure, which is the geometric mean of

the pds for both the majority and the minority classes [47].
In our case, we use these to form the g-measure. Finally,
to measure any significant differences between the non-
filtered and FARSEC filtered results, we use a two-tailed
Mann Whitney statistical test with 95% confidence [48].

To determine the usefulness of FARSEC for ranked lists
of bug reports, we use mean average precision (MAP) [49].
MAP is a metric used in information retrieval to measure
the relevance of the top n results of a query. We use MAP
to show that FARSEC ranking can return results with actual
SBRs closer to the top of the list of all predicted SBRs. The
formulas to calculate MAP are shown in the last row of
Figure 3, where the average precision (AP) and then MAP are
calculated. The average precision is measured cumulatively
up to n which is the number of predicted SBRs, P (k) is
the precision at point k in the list of bug reports. For our
experiments, we divided the test data into deciles and the
MAPn is calculated cumulatively for each decile.

5 EXPERIMENT DESIGN AND RESULTS

To evaluate FARSEC, we use both the within and transfer
learning techniques for building prediction models (recall
Section 2.2.2). We denote these as Within Project Prediction
(WPP) and Transfer Project Prediction (TPP) respectively. In
our context, WPP uses labelled, historical bug reports from
a project to predict SBRs in the unlabelled bug reports of the
same project. TPP uses labelled bug reports from one project
(but could be from many projects), to predict unlabelled bug
reports of another project. We refer to the labelled data from
other projects as the source and the unlabelled data for the
project we are building the predictor for, as the target.

In this paper we build WPP and TPP models using
datasets that are unfiltered, FARSEC filtered, and CLNI
filtered. WPP can be used when a project has enough
historical data to build prediction models. TPP is used for
projects with insufficient data available to build prediction
models. When preparing data for TPP, we use security
related keywords from the source to construct the term-
document frequency matrix and the predictor for the target
project.

Table 2 shows the outcome of applying different filters
in terms of the number of remaining bug reports and the
SBR %. Since we only remove NSBRs with a score above
0.75, the number of SBRs remain the same with and without
filtering. This allows for an increase in the percentage of
SBRs for building prediction models. There are four interest-
ing cases shown in the table. The first two are the farsecsq
and clnifarsecsq filters for Derby. The prediction models are
built with training data where the majority are SBRs, 81%
and 96% respectively. The last two cases concern the limited
reduction with farsectwo and farsec for Chromium. This is
due to the threshold used to distinguish between NSBRs and
SBRs. There are few Chromium reports with scores ≥ 0.75.

All experiments are designed around the research ques-
tions posed in the Section 1.

• RQ1: Can security cross words lead to mislabelled
security bug reports by prediction models?

• RQ2: How do we build effective prediction models for
security bug reports when data scarcity is an issue?

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2
Characteristics of the training data

Source Filter #SBRs #BRs SBRs(%)
Chromium train 77 20970 0.4

farsecsq 14219 0.5
farsectwo 20968 0.4
farsec 20969 0.4
clni 20154 0.4
clnifarsecsq 13705 0.6
clnifarsectwo 20152 0.4
clnifarsec 20153 0.4

Wicket train 4 500 0.8
farsecsq 136 2.9
farsectwo 143 2.8
farsec 302 1.3
clni 392 1.0
clnifarsecsq 46 8.7
clnifarsectwo 49 8.2
clnifarsec 196 2.0

Ambari train 22 500 4.4
farsecsq 149 14.8
farsectwo 260 8.5
farsec 462 4.8
clni 409 5.4
clnifarsecsq 76 28.9
clnifarsectwo 181 12.2
clnifarsec 376 5.9

Camel train 14 500 2.8
farsecsq 116 12.1
farsectwo 203 6.9
farsec 470 3.0
clni 440 3.2
clnifarsecsq 71 19.7
clnifarsectwo 151 9.3
clnifarsec 410 3.4

Derby train 46 500 9.2
farsecsq 57 80.7
farsectwo 185 24.9
farsec 489 9.4
clni 446 10.3
clnifarsecsq 48 95.8
clnifarsectwo 168 27.4
clnifarsec 435 10.6

• RQ3: How do we generate useful lists of ranked bug
reports?

To answer the research questions we first generate
datasets for our experiments by organizing the bug reports
into training and test data (see Section 4.1). We then apply
the text mining steps described in Section 3.1. Recall that
some suspected SBRs have been publicly disclosed due to
the lack of security domain knowledge of some bug re-
porters [3] and also by those with knowledge who disregard
requests to submit these reports privately [4]. Therefore, for
our experiments we use past data to predict the present.
The present represents any new unlabelled or mislabelled
bug reports entering the bug tracking system. Once in the
system, they are available publicly, therefore to avoid any
suspected SBRs being made public before they are accessed,
it is important to identify them and direct them to the
security engineers.

Table 3 shows the total number of experiments per-
formed. With five machine learning algorithms, eight treat-
ments and four sources for WPP and TPP, we perform a

TABLE 3
Number of prediction models for each dataset

Treatments Prediction Models Total
WPP 1 data set ×

5 machine learning algorithms ×
8 (train + FARSEC filtering + CLNI) 40

TPP 1 data set ×
4 sources ×
5 machine learning algorithms ×
8 (train + FARSEC filtering + CLNI) 160

Total 200

total of 200 experiments on each project. The following
section describes the approach and results which answer
each research question.

5.1 RQ1: Can security cross words lead to mislabelled
security bug reports by prediction models?

Approach. To determine whether security cross words can
cause bug reports to be mislabelled by prediction models,
we compare FARSEC filters with the CLNI filter. While FAR-
SEC filters are designed to reduce the number of security
cross words in prediction models, the CLNI filter removes
noisy NSBRs. We do two comparisons between the two filter
types. The first is in terms of the reduction of the number of
security cross words in the training data after filtering. The
second is in terms of the number of SBRs mislabelled by the
prediction models, which are created with the filtered data.

To determine the number of security cross words in
training data, we first need to generate the feature sets for
each project (Section 3.1). From the feature sets, we use tf-idf
as an indicator for security cross words. Any keyword with
a tf-idf value above zero is considered to be a security cross
word, i.e. present in both SBRs and NSBRs. The number of
mislabelled SBRs are found by building WPP models with
the filtered training data and machine learning algorithms
(described in Section 4.3). The models are then evaluated
with the test data.

Results. FARSEC filters reduce the number of security
cross words in training data leading to fewer mislabelled
SBRs by WPP models. Table 4 shows the number of security
cross words present in the NSBRs of the training data before
and after filtering. It also shows the top 100 security related
keywords, sorted in descending order of their tf-idf values,
for each project (feature sets) used in this paper. Highlighted
are the keywords that are not security cross words before
filtering. Notably, while the number of security cross words
in Chromium has minor reductions with FARSEC filters, the
other projects have reductions to as low as one word for
Derby (the word is create). Overall, the median percentage
decrease of security cross words for the CLNI filter is 0.4%
while for FARSEC filters it is 39%.

When viewing these reductions in conjunction with WPP
results in Table 5, we see that in most cases, the FARSEC
filters reduces the number of mislabelled SBRs (shown in
the FN column). In most cases, the CLNI filter either main-
tains or increases the number of mislabelled SBRs when
compared with the non-filtered results (train). The exception
is Camel where the CLNI reduced the mislabelled reports
from 16 to 15.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 4
Top 100 security related keywords with the number of security cross words (the highlighted keywords are not security cross words)

Source Security Cross Words (SCWs) Security Related Keywords
Filter # SCWs

Chromium train
farsecsq
farsectwo
farsec
clni
clnifarsecsq
clnifarsectwo
clnifarsec

100
95
100
100
100
95
100
100

file security chrome page http download user starred person notified changes may see url site
bug open google browser like windows window https web code one memory firefox function
tests problem seems tab also version use would using view used make users chromium crash
click password think vulnerability sure browsers link attached attacker data get fix const content
something safari new error javascript lcamtuf malicious please could risk release try found allow
expected time example corruption test back access crashes urls int without know versions way
uses cause fail want system still files arbitrary html details ssl need loaded might

Wicket train
farsecsq
farsectwo
farsec
clni
clnifarsecsq
clnifarsectwo
clnifarsec

74
12
13
40
74
12
13
40

statelesshomepage attached calls dataprovider regards component limited files count jan couple
database integer entries reason page get first java error unknown source signinform jetty
requestlistenerinterface credentialsexpected params http exception interfacerequest homepage
manually become inform stateful listener happends statelesschecker insucceeded creates
causes sucessfull opensactual final abstractlistener quickstart mvn login analysis open unpack
temporary enter sign valuemap happy statelessproblem signinpanel requestcycle occured fix
delete deleting fails upload org webapplication hole space created handle example secu-
rity server find important method multipart easy hope makes incomplete cancelled think
workaround uploading parserequest want really anyone disk large eating bug throw posting
developers call threads servletwrapper

Ambari train
farsecsq
farsectwo
farsec
clni
clnifarsecsq
clnifarsectwo
clnifarsec

95
25
57
88
94
25
57
88

security wizard service secure fails permissions allow start validation user cluster cannot
set make page configs datanode add use default property name request instead enable web
ssl password used services error disable fix permission options executed setup http nagios
registration hosts also change url configuration try enabling check disabled host install time
return provide call script issue file failures principal touched incorrect artifacts assignments
slaves side username directory path customized effects mode unwanted false causes broken
primary testmode mapred names working httpd state missing navigation ganglia prepare
locked master ambari smoke wrong hbase node test zookeeper back need either true

Camel train
farsecsq
farsectwo
farsec
clni
clnifarsecsq
clnifarsectwo
clnifarsec

88
27
47
82
88
27
47
82

message http endpoint header org would uri component files also issue stop expose see static
jetty endpoints specified port processing login route file error one messages headers support
server lines using throws provide currently instance ftp sent means use issues ignore license
dsl interfaces opened host fails redelivery auth interceptsendtoendpoint used connection check
memory heap nabblehttp bundles consumer pass path new case based classes however default-
errorhandler pushing expectedbody resultendpoint exchange following exception else apache
null inoptionalout handler token custom ignores servers something like protected sftpendpoint
remove jms concatenated delegate underlying ssh data copy ftpcomponent method second csv
results mockendpoint false

Derby train
farsecsq
farsectwo
farsec
clni
clnifarsecsq
clnifarsectwo
clnifarsec

95
1
72
90
94
1
70
89

org security server test derby permission java using access tests error support denied junit
file exception database code user read manager locale run fails need version fail running
securitymanager network following files call required statement source table connect class
thread block securityexception would used like failed problem privileged client see jdbc set
method filepermission trying granted authentication needs directory connection new think
encryption sun jar policy start stack unknown rows revoke found information alpha thrown
without name one create end update http could make trigger though native contains looks two
key mode results sql use int classpath message incorrectly check

Taking a closer look at the results in Table 5, the farsec
filter has a relatively similar performance to CLNI. For
three out of five projects, their numbers of mislabelled SBRs
match. This could be due to the fact that the filter does not
use a bias on the keywords found in the SBRs (Section 3.2).
However for Wicket and Derby, the farsec filter produces
fewer mislabelled SBRs than the CLNI filter. This could be
due to the average percentage decrease of security cross
words for the farsec filter, which is 32 times larger than that
of CLNI.

There are other notable results that can be gleaned from
Table 5. First, there is no significant difference in the f-
measure and g-measure results for each filter over the five
projects. We used a two-tailed Mann Whitney test at 95%
confidence. The results of the statistical test are not robust
when the population size is less than 10. Therefore, we are
cautious about conclusions formed based on this. Second,
there does not seem to be any preference for a machine
learning algorithm. Although each project has one dominant
algorithm preference, others also contribute. An interesting

case is ib_k which only appears for Derby and only in
the cases where the SBRs are the majority in the training
data, i.e. with filters farsecsq and clnifarsecsq (Table 2).
Finally, the bold results in the table show that the FARSEC
filters (clnifarsecsq and farsectwo) overall, had relatively
better performance than the other filters according to the
g-measures.

5.2 RQ2: How do we build effective prediction models
for security bug reports when data scarcity is an issue?
Approach. When data scarcity is an issue, transfer learning
is used to build prediction models (Section 2.2.2). We define
an effective TPP model as one whose performance is com-
parable to or better than that of WPP models. Therefore, to
build effective TPP models for SBRs, we use the training
data from the previous experiment for WPP models as the
source and generate new test data based on their feature
sets. For example, if the Wicket project is new and has little
or no data to build a prediction model, we can use Ambari
or another project as the source. Therefore the feature set

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 5
WPP results with FARSEC and CLNI filtering (those with the highest g-measures are highlighted)

Target Filter Learner TN TP FN FP pd pf prec f-measure g-measure
Chromium train logistic regression 20815 18 97 40 15.7 0.2 31.0 20.8 27.1

farsecsq random forest 20801 17 98 54 14.8 0.3 23.9 18.3 25.7
farsectwo logistic regression 20815 18 97 40 15.7 0.2 31.0 20.8 27.1
farsec logistic regression 20815 18 97 40 15.7 0.2 31.0 20.8 27.1
clni logistic regression 20808 18 97 47 15.7 0.2 27.7 20.0 27.1
clnifarsecsq multilayer perceptron 20066 57 58 789 49.6 3.8 6.7 11.9 65.4
clnifarsectwo logistic regression 20808 18 97 47 15.7 0.2 27.7 20.0 27.1
clnifarsec logistic regression 20808 18 97 47 15.7 0.2 27.7 20.0 27.1

Wicket train naive bayes 459 1 5 35 16.7 7.1 2.8 4.8 28.3
farsecsq logistic regression 305 4 2 189 66.7 38.3 2.1 4.0 64.1
farsectwo logistic regression 313 4 2 181 66.7 36.6 2.2 4.2 65.0
farsec logistic regression 454 2 4 40 33.3 8.1 4.8 8.3 48.9
clni naive bayes 467 0 6 27 0.0 5.5 0.0 0.0 0.0
clnifarsecsq logistic regression 368 2 4 126 33.3 25.5 1.6 3.0 46.1
clnifarsectwo logistic regression 357 2 4 137 33.3 27.7 1.4 2.8 45.6
clnifarsec logistic regression 442 3 3 52 50.0 10.5 5.5 9.8 64.2

Ambari train multilayer perceptron 485 1 6 8 14.3 1.6 11.1 12.5 24.9
farsecsq random forest 422 3 4 71 42.9 14.4 4.1 7.4 57.1
farsectwo random forest 478 4 3 15 57.1 3.0 21.1 30.8 71.9
farsec multilayer perceptron 469 1 6 24 14.3 4.9 4.0 6.3 24.8
clni multilayer perceptron 480 1 6 13 14.3 2.6 7.1 9.5 24.9
clnifarsecsq random forest 455 4 3 38 57.1 7.7 9.5 16.3 70.6
clnifarsectwo random forest 471 2 5 22 28.6 4.5 8.3 12.9 44.0
clnifarsec random forest 493 1 6 0 14.3 0.0 100.0 25.0 25.0

Camel train logistic regression 464 2 16 17 11.1 3.5 10.5 10.8 19.9
farsecsq random forest 426 3 15 55 16.7 11.4 5.2 7.9 28.1
farsectwo logistic regression 280 9 9 201 50.0 41.8 4.3 7.9 53.8
farsec logistic regression 448 3 15 33 16.7 6.9 8.3 11.1 28.3
clni naive bayes 422 3 15 59 16.7 12.3 4.8 7.5 28.0
clnifarsecsq multilayer perceptron 415 3 15 67 16.7 13.9 4.3 6.8 27.9
clnifarsectwo multilayer perceptron 445 2 16 37 11.1 7.7 5.1 7.0 19.8
clnifarsec logistic regression 458 3 15 24 16.7 5.0 11.1 13.3 28.4

Derby train naive bayes 427 16 26 31 38.1 6.8 34.0 36.0 54.1
farsecsq ib k 321 23 19 137 54.8 29.9 14.4 22.8 61.5
farsectwo random forest 401 20 22 57 47.6 12.4 26.0 33.6 61.7
farsec naive bayes 429 16 26 29 38.1 6.3 35.6 36.8 54.2
clni random forest 456 10 32 2 23.8 0.4 83.3 37.0 38.4
clnifarsecsq ib k 321 23 19 137 54.8 29.9 14.4 22.8 61.5
clnifarsectwo random forest 416 15 27 42 35.7 9.2 26.3 30.3 51.3
clnifarsec naive bayes 427 16 26 31 38.1 6.8 34.0 36.0 54.1

of Ambari is used by Wicket to calculate the frequencies of
each keyword for each bug report. In the end we have a test
set for Wicket based on the feature set of another project.
Note that in the context of our experiments, scarcity can
also mean little or no SBRs present for building the models.

As shown in Table 3, we build 160 TPP models in our ex-
periments, including the use of filtered sources. To evaluate
the effectiveness of these models, we compare them with the
WPP models. Specifically, we determine if the performance
of the TPP models has degraded or improved from the WPP
models in terms of f-measure, g-measure and the number of
mislabelled SBRs. We use the Mann Whitney statistical test
for comparison.

Results. When data scarcity is an issue, other sources
can be used to build effective prediction models. Table 6
shows the best TPP results with FARSEC and CLNI filtering
(according to f-measures). From these results, the bold ones
indicate those with the highest g-measures.

Overall, there is no significant difference in TPP model
performances when compared with WPP models. This is
the case for the f-measures, g-measures and the number of
mislabelled SBRs. However, a closer look at the results in
Table 6 reveals five notable points:

1) TPP models for train and CLNI improve the f-
measures and g-measures for the projects with the
lowest number of SBRs in their training data (i.e.
Wicket, Ambari and Camel). This confirms the use-
fulness of TPP when dealing with data scarcity,
especially when SBRs are few. Furthermore, for
Chromium and Derby, the CLNI filter TPP model
has higher g-measures than its WPP counterparts.

2) The pfs for the TPP models are all below 25% while
some of the FARSEC filtering WPP models have pfs
above 25%. Namely Wicket, Camel and Derby.

3) No single source stands out. FARSEC filtered
Chromium is the best source for Ambari and Derby.
Ambari works best for Chromium, Derby is best
for Camel and Camel is best for Wicket. However
Wicket only works well for Derby, but it is not the
best result.

4) Similar to the WPP result, there is no preference for
a particular machine learning algorithm. However,
except for Wicket, each project has a dominant al-
gorithm. For Chromium it is random_forest and
for Ambari it is multilayer_perceptron. Camel
and Derby work best with naive_bayes. Unlike
the WPP results, ib_k, does not appear for any of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 6
TPP results with FARSEC and CLNI filtering (those with the highest g-measures are highlighted)

Target Source Filter Learner TN TP FN FP pd pf prec f-measure g-measure
Chromium Derby train random forest 20835 2 113 20 1.7 0.1 9.1 2.9 3.4

Ambari farsecsq random forest 19279 34 81 1576 29.6 7.6 2.1 3.9 44.8
Ambari farsectwo random forest 20454 53 62 401 46.1 1.9 11.7 18.6 62.7
Derby farsec multilayer perceptron 20502 12 103 353 10.4 1.7 3.3 5.0 18.9
Camel clni logistic regression 20262 25 90 593 21.7 2.8 4.0 6.8 35.5
Ambari clnifarsecsq random forest 19817 56 59 1038 48.7 5.0 5.1 9.3 64.4
Derby clnifarsectwo random forest 20332 26 89 523 22.6 2.5 4.7 7.8 36.7
Camel clnifarsec multilayer perceptron 20590 8 107 265 7.0 1.3 2.9 4.1 13.0

Wicket Camel train naive bayes 437 3 3 57 50.0 11.5 5.0 9.1 63.9
Chromium farsecsq multilayer perceptron 475 1 5 19 16.7 3.8 5.0 7.7 28.4
Camel farsectwo random forest 490 1 5 4 16.7 0.8 20.0 18.2 28.5
Camel farsec naive bayes 431 3 3 63 50.0 12.8 4.5 8.3 63.6
Ambari clni multilayer perceptron 476 1 5 18 16.7 3.6 5.3 8.0 28.4
Chromium clnifarsecsq random forest 493 1 5 1 16.7 0.2 50.0 25.0 28.6
Camel clnifarsectwo random forest 489 1 5 5 16.7 1.0 16.7 16.7 28.5
Camel clnifarsec naive bayes 433 3 3 61 50.0 12.3 4.7 8.6 63.7

Ambari Derby train multilayer perceptron 484 2 5 9 28.6 1.8 18.2 22.2 44.3
Chromium farsecsq multilayer perceptron 474 3 4 19 42.9 3.9 13.6 20.7 59.3
Chromium farsectwo naive bayes 472 3 4 21 42.9 4.3 12.5 19.4 59.2
Camel farsec multilayer perceptron 492 1 6 1 14.3 0.2 50.0 22.2 25.0
Derby clni multilayer perceptron 477 2 5 16 28.6 3.2 11.1 16.0 44.1
Chromium clnifarsecsq random forest 492 1 6 1 14.3 0.2 50.0 22.2 25.0
Chromium clnifarsectwo naive bayes 474 2 5 19 28.6 3.9 9.5 14.3 44.1
Camel clnifarsec multilayer perceptron 492 1 6 1 14.3 0.2 50.0 22.2 25.0

Camel Derby train naive bayes 457 3 15 24 16.7 5.0 11.1 13.3 28.4
Chromium farsecsq naive bayes 401 7 11 80 38.9 16.6 8.0 13.3 53.0
Derby farsectwo naive bayes 371 8 10 110 44.4 22.9 6.8 11.8 56.4
Ambari farsec logistic regression 439 5 13 42 27.8 8.7 10.6 15.4 42.6
Ambari clni logistic regression 444 5 13 37 27.8 7.7 11.9 16.7 42.7
Chromium clnifarsecsq naive bayes 402 7 11 79 38.9 16.4 8.1 13.5 53.1
Ambari clnifarsectwo random forest 455 3 15 26 16.7 5.4 10.3 12.8 28.3
Derby clnifarsec multilayer perceptron 473 2 16 8 11.1 1.7 20.0 14.3 20.0

Derby Ambari train naive bayes 393 13 29 65 31.0 14.2 16.7 21.7 45.5
Chromium farsecsq naive bayes 370 19 23 88 45.2 19.2 17.8 25.5 58.0
Ambari farsectwo random forest 454 6 36 4 14.3 0.9 60.0 23.1 25.0
Wicket farsec naive bayes 354 19 23 104 45.2 22.7 15.4 23.0 57.1
Ambari clni naive bayes 400 12 30 58 28.6 12.7 17.1 21.4 43.1
Chromium clnifarsecsq naive bayes 372 19 23 86 45.2 18.8 18.1 25.9 58.1
Ambari clnifarsectwo random forest 449 8 34 9 19.0 2.0 47.1 27.1 31.9
Wicket clnifarsec naive bayes 363 18 24 95 42.9 20.7 15.9 23.2 55.6

the projects.
5) Apart from Wicket, the FARSEC filtered models

worked best for all the projects (according to their g-
measures shown in Table 6). In addition, these best
results had lower numbers of mislabelled SBRs than
the train and CLNI models. For Wicket, the farsec
and clnifarsec filters are comparable to the best
result (train) with matching number of predicted
SBRs (TPs).

5.3 RQ3: How do we generate useful lists of ranked
bug reports?

Approach. Results in Table 5 and Table 6, show that some
of the best results with FARSEC filtering have high FPs,
while results without filtering tend to have lower FPs. For a
security engineer, using an approach with high FPs is akin to
“finding a needle in a haystack” [5], and is not useful even
if there are more SBRs in the results. In order to alleviate
this problem we generate useful lists of ranked bug reports,
sorted according to the steps described in Section 3.3. For
non-filtered WPP and TPP models we rank the bug reports
using Step 1 and Step 2 described in Section 3.3. For the
models built with FARSEC filtered data, we follow both

steps in Section 3.3. This sorts the prediction results with the
least number of predicted SBRs with those from the FARSEC
filters. This ranking method takes advantage of the lower
FPs even if there is only one actual SBR present. We evaluate
it using the cumulative mean average precision (MAP) over
10 deciles (see Figure 3).

Results. SBRs are ranked relatively highly with FAR-
SEC. The cumulative MAPs over deciles of the best predic-
tion results for each project are shown in Table 7. The left
column shows the results for WPP and the right column,
TPP. Each chart has a baseline, train (non-filtered results) and
CLNI results. The baseline is the bug reports ranked chrono-
logically (i.e., ascending order of the bug report numbers).
For clarity, we have generated four charts for each project to
show any differences in results for FARSEC filters with and
without CLNI. The ranked lists with the higher MAP values
show that more actual SBRs are closer to the top of the lists.

Overall, FARSEC ranking shows promise, outperform-
ing train and CLNI results in nine out of ten cases Table 7.
The exception is the CLNI results for Derby shown in the
charts q and r, where CLNI at the first decile outperforms
train and the FARSEC filters. However from the second
decile onward, farsectwo has the highest MAP.

Other notable results include:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 7
The cumulative MAPs over deciles of the best prediction results for each project.

WPP TPP

(a) Chromium MAP (b) Chromium MAP (c) Chromium MAP (d) Chromium MAP

(e) Wicket MAP (f) Wicket MAP (g) Wicket MAP (h) Wicket MAP

(i) Ambari MAP (j) Ambari MAP (k) Ambari MAP (l) Ambari MAP

(m) Camel MAP (n) Camel MAP (o) Camel MAP (p) Camel MAP

(q) Derby MAP (r) Derby MAP (s) Derby MAP (t) Derby MAP

1) The CLNI ranking for Wicket performs worse than
the baseline. This agrees with the results in Table 5,
which shows zero predicted actual SBRs.

2) For Chromium and Derby, their TPP rankings are
relatively worse than WPP. For Wicket, Ambari and
Camel, the opposite is true. Their TPP ranking for
train, CLNI and the FARSEC filters were relatively
better than their WPP rankings.

3) For a few cases where the best results in Table 5
and Table 6 show high FPs, we found that they did

not produce the best ranked results in Table 7. In-
stead they were generally inferior to other FARSEC
ranked results. For instance, Table 5 showed Wicket
to achieve the best result with farsectwo, however,
both farsec and clnifarsec had better rankings. An-
other example in WPP is Camel, where farsectwo is
out-ranked by the other FARSEC ranked results. For
the best TPP results with high FPs, Chromium and
Camel are out-ranked by farsectwo and farsecsq
respectively. This shows that FARSEC ranking can

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

increase the number of actual SBRs at the top of
a ranked list of predicted bug reports with less FPs.
This blending of results can sometimes yield a better
outcome than one best result.

6 DISCUSSION AND THREATS TO VALIDITY

In this section we discuss our findings and how they relate
to results from related studies. We also discuss the threats to
validity of our work.

6.1 Discussion
The findings from our experiments show that removing
NSBRs with security cross words mitigates the class im-
balance issue. This is supported by the results of our text-
based prediction models which produced useful results for
security engineers.

The enhanced prediction models also alleviate the issue
of mislabelled SBRs. An examination of the top ranked
bug reports of Ambari has revealed two SBRs labelled as
a NSBRs. Recall that Ambari is one of the four datasets
collected and manually labelled by graduate students and
faculty [35]. At the time we downloaded the data for our
experiments (May 5, 2017), bug report #32928 was man-
ually labelled as a NSBR, however it was labelled as a
SBR by a prediction model built with the farsecsq filter
and multilayer_perceptron algorithm. In addition, the
report is also at position 3 in the first of the 10 deciles in the
FARSEC ranked results for Ambari (Table 7k). An excerpt of
the report is as follows:

Earlier dfs.web.authentication.kerberos.keytab field was
being used for NameNode and SNameNode component.

Even when the models failed to detect mislabelled SBRs,
the ranking capability of FARSEC proved useful. Another
bug report (#3153 shown in Figure 1) was manually misla-
belled as a NSBR, but FARSEC ranked it at position 30, in
the first of the 10 deciles in the ranked results for Ambari
(Table 7k). Below is an excerpt from the description of the
report:

After configuring web authentication yarn client that
is assigned yarn service check needs to negotiate 401
HTTP authentication response received while using
REST api.

This shows that FARSEC can detect mislabelled SBRs
through prediction and ranking.

However, mislabelling of SBRs is not completely elim-
inated in models built with FARSEC filters (we reduced
the number of mislabelled SBRs by 38%). We found that
some SBRs had low scores (below the set threshold of 0.75),
while others had scores, which matched those of NSBRs.
Therefore, if we forego the machine learning algorithms in
favour of report scores, it results in either low FNs with high
FPs or low FPs and high FNs (Table 8). When we removed
all NSBRs with at least one security cross word, none were
left. This meant that the training data would only contain
SBRs leaving us with a one-class classification problem [50].
Since we use traditional classification to build prediction
models in this work, where the presence of both SBRs and

8. https://issues.apache.org/jira/browse/AMBARI-3292

NSBRs are required in the training data, all bug reports in
the test data would be labelled as SBRs. In future work
we can use one-class classification solutions which would
define a boundary around the SBRs, such that it correctly
labels as much of them as possible, while minimizing the
chance of accepting NSBRs [50].

Developing and applying Transfer Project Prediction
(TPP) models for security bugs has been recognized as a
challenging problem [3]. Our study has found that TPP can
be effective, and with relatively better results that Within
Project Prediction (WPP) especially when SBRs are scarce.
This result justifies the purpose of TPP, which is to provide
useful models for projects with little or no labelled data.
In this paper Wicket, Ambari and Camel have the fewest
number of SBRs to build prediction models and both the
filtered and non-filtered TPP models (Table 7 right column)
helped to generate ranked lists of bug reports with higher
MAP values than WPP models (Table 7 left column). This
suggests that SBR prediction can be generalized, and that
there exists a core set for security related keywords which
can predict SBRs for any project.

TABLE 8
Predicting SBRs in test data using the bug report scores with different
Support(x) functions and a threshold of 0.75. The x represents the

frequency of each word present in SBRs.

Target Support(x) TN TP FN FP f-measure g-measure
Chromium x2 13370 104 11 7485 2.7 75.0

x × 2 20854 0 115 1 0.0 0.0
x 20855 0 115 0 0.0 0.0

Wicket x2 140 5 1 354 2.7 42.3
x × 2 151 4 2 343 2.3 41.9
x 286 4 2 208 3.7 62.0

Ambari x2 87 5 2 406 2.4 28.3
x × 2 215 5 2 278 3.4 54.2
x 441 2 5 52 6.6 43.3

Camel x2 66 18 1 415 8.0 24.0
x × 2 142 15 4 339 8.0 43.0
x 419 3 16 62 7.1 26.7

Derby x2 9 42 0 449 15.8 3.9
x × 2 134 37 5 324 18.4 43.9
x 454 12 30 4 41.4 44.4

6.2 Threats to Validity
With any empirical study, biases can affect the final results.
Therefore, conclusions drawn from this work must be con-
sidered with threats to validity in mind. We now report on
the external, construct and internal validity of our work.

6.2.1 External Validity
Sampling bias threatens any classification experiment be-
cause what happens in one domain may not happen in
another. Generalizing our results require multiple projects
from different domains with labelled bug reports. Replica-
tion experiments are needed in order to repeat, refute, or
improve our results.

In addition, the choice of machine learning algorithms
for classification could be an issue. Classification is a large
and active field and any single study can only use a small
subset of the known classification algorithms. The subset
chosen in this study is drawn from a benchmark study of 22
algorithms [37] where the results showed that there was no

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

significant difference in the performance of the top 17. We
used four algorithms from the top 17, while the fifth (ib-k)
was the top performer of the remainder.

6.2.2 Construct Validity
Mislabelling in the training data is an issue for prediction
models although results could be improved with manual
correction by domain experts [3]. It is possible that some
of the reports used to create the prediction models could
be mislabelled. To mitigate this, our experiments included
multiple datasets, which were labelled by different groups
of people.

The use of security cross words that are independent of
and specific dataset also helps deal with the issue of mis-
labelling. As described in related work (Section 2.2.1), there
are several methods for creating and expanding keyword
lists. This is mitigated somewhat by the transfer learning,
where different security related keywords are used on dif-
ferent projects to build prediction models.

6.2.3 Internal Validity
In this study, we did not consider the context in which
security cross words appear in both SBRs and NSBRs, and
how it may affect prediction results. More work is needed
to determine if the use of context as a pre- and/or post-
processing mechanism will improve the filtering and rank-
ing capabilities of FARSEC and therefore further reduce
the number of mislabelled SBRs by text-based prediction
models.

In addition, based on the tf-idf values of each term, we
choose the top 100 terms as security related keywords for
our experiments. A more exhaustive exploration of whether
better results can be achieved by a different number of terms
warrant further research.

7 CONCLUSIONS AND FUTURE WORK

When mislabelled security bug reports are publicly dis-
closed in bug tracking systems before security engineers can
address them, it presents malicious actors with a window
of opportunity to exploit the security vulnerabilities. With
bug tracking systems containing thousands of bug reports,
with only a tiny fraction of those described as security
bugs, security engineers are faced with the problem of
trying to find a needle in a haystack [5]. In other words,
to find actual SBRs, security engineers may need to comb
through hundreds or thousands of bug reports. To help ease
the burden of the search, they employ prediction models,
usually based on text mining methods.

This paper presented FARSEC, a novel approach to
reduce the mislabelling of security bug reports by text-based
prediction models. Our approach is based on the observa-
tion that it is the presence of security related keywords in
both security and non-security bug reports, which leads
to mislabelling. Based on this observation we developed
a method for automatic identification of these keywords
and for scoring bug reports according to how likely they
are to be labelled as SBRs. We suggest that the ‘marriage’
of filtering and ranking presents an effective and usable
solution for reducing the mislabeling of SBRs in both WPP
and TPP models.

There are a number of directions in which this work can
be extended. In future work, we plan to:

• incorporate additional information contained in the
bug reports, such as who were assigned bug reports,
time stamps showing how much time it took to fix
bug reports as well as comments and feedback on
bug reports;

• identify the context of security keywords in SBRs as
a post processing step to see if they can also improve
on the ranking capability in FARSEC;

• find an automatic way to determine the threshold
for the removal of NSBRs with high scores (this
threshold could vary with different projects);

• find an automatic way to determine the best number
of security related keywords to use when creating
data matrices for each project.

ACKNOWLEDGMENT

The authors would like to thank Keerthi Thomas, Arosha
Bandara and Blaine Price for their initial contributions to
this work. We would also like to thank the anonymous
reviewers for their insightful comments and suggestions for
improvements to an earlier draft. This work was funded
supported in part by Science Foundation Ireland grant
13/RC/2094, by the European Research Council (Advanced
Grant 291652 - ASAP) and by the EPSRC, UK.

REFERENCES

[1] I. Chawla and S. Singh, “Automatic bug labeling using semantic
information from LSI,” in Seventh International Conference on Con-
temporary Computing (IC3), Aug 2014, pp. 376–381.

[2] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond
heuristics: Learning to classify vulnerabilities and predict ex-
ploits,” in 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’10. New York, NY, USA:
ACM, 2010, pp. 105–114.

[3] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in 7th IEEE Working
Conference on Mining Software Repositories (MSR), May 2010, pp.
11–20.

[4] D. Wijayasekara, M. Manic, J. Wright, and M. McQueen, “Mining
bug databases for unidentified software vulnerabilities,” in 5th
International Conference on Human System Interactions (HSI), June
2012, pp. 89–96.

[5] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a
needle in a haystack: Predicting security vulnerabilities for win-
dows vista,” in Third International Conference on Software Testing,
Verification and Validation (ICST), April 2010, pp. 421–428.

[6] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indi-
cators of software vulnerabilities,” IEEE Transactions on Software
Engineering, vol. 37, no. 6, pp. 772–787, Nov 2011.

[7] Y. Shin and L. Williams, “Can traditional fault prediction models
be used for vulnerability prediction?” Empirical Software Engineer-
ing, vol. 18, no. 1, pp. 25–59, 2013.

[8] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Pre-
dicting vulnerable software components via text mining,” IEEE
Transactions on Software Engineering, vol. 40, no. 10, pp. 993–1006,
Oct 2014.

[9] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in IEEE 25th Inter-
national Symposium on Software Reliability Engineering (ISSRE), Nov
2014, pp. 23–33.

[10] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges
with applying vulnerability prediction models,” in Symposium and
Bootcamp on the Science of Security, ser. HotSoS ’15. New York, NY,
USA: ACM, 2015, pp. 4:1–4:9.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[11] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, Sept 2009.

[12] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
Sentiment analysis of security discussions on github,” in 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: ACM, 2014, pp. 348–351.

[13] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos,
“Automated topic naming to support cross-project analysis of
software maintenance activities,” in 8th Working Conference on
Mining Software Repositories, ser. MSR ’11. New York, NY, USA:
ACM, 2011, pp. 163–172.

[14] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp.
1345–1359, Oct 2010.

[15] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data
vs. domain vs. process,” in 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ser. ESEC/FSE ’09.
New York, NY, USA: ACM, 2009, pp. 91–100. [Online]. Available:
http://doi.acm.org/10.1145/1595696.1595713

[16] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the
relative value of cross-company and within-company data for
defect prediction,” Empirical Software Engineering, vol. 14, pp. 540–
578, 2009.

[17] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the ”impre-
cision” of cross-project defect prediction,” in 20th International
Symposium on the Foundations of Software Engineering. New York,
NY, USA: ACM, 2012, pp. 61:1–61:11.

[18] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-
company software defect prediction,” Information and Software
Technology, vol. 54, no. 3, pp. 248 – 256, 2012.

[19] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation
on the feasibility of cross-project defect prediction,” Automated
Software Engineering, vol. 19, pp. 167–199, 2012.

[20] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus global lessons
for defect prediction and effort estimation,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 822–834, June 2013.

[21] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in
International Conference on Software Engineering (ICSE), ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 382–391.

[22] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-
source projects: An empirical study on defect prediction,” in
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, Oct 2013, pp. 45–54.

[23] F. Peters and T. Menzies, “Privacy and utility for defect prediction:
Experiments with morph,” in International Conference on Software
Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press,
2012, pp. 189–199.

[24] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy
and utility in cross-company defect prediction,” IEEE Transactions
on Software Engineering, vol. 39, no. 8, pp. 1054–1068, Aug 2013.

[25] R. Feldman and J. Sanger, The Text Mining Handbook: Advanced
Approaches in Analyzing Unstructured Data. Cambridge University
Press, 2007.

[26] D. Jurafsky and J. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguis-
tics, and Speech Recognition, ser. Prentice Hall series in artificial
intelligence. Pearson Prentice Hall, 2009.

[27] C. D. Manning, P. Raghavan, and H. Schtze, Scoring, term weight-
ing, and the vector space model. Cambridge University Press, 2008,
p. 100123.

[28] E. Rochester, Clojure Data Analysis Cookbook - Second Edition, ser.
EBL-Schweitzer. Packt Publishing, 2015.

[29] D. Heckerman, E. Horvitz, M. Sahami, and S. Dumais, “A bayesian
approach to filtering junk e-mail,” in Proceeding of AAAI-98 Work-
shop on Learning for Text Categorization, 1998, pp. 55–62.

[30] P. Graham, Hackers & Painters: Big Ideas from the Computer Age.
O’Reilly Media, 2004.

[31] O. Jalali, T. Menzies, and M. Feather, “Optimizing requirements
decisions with keys,” in 4th International Workshop on Predictor
Models in Software Engineering, ser. PROMISE ’08. New York,
NY, USA: ACM, 2008, pp. 79–86.

[32] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5,
no. 2, pp. 241–259, 1992.

[33] J. R. Quinlan, “Bagging, boosting, and c4.5,” in In Proceedings of
the Thirteenth National Conference on Artificial Intelligence. AAAI
Press, 1996, pp. 725–730.

[34] C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM, vol. 4,
no. 7, pp. 321–, Jul. 1961.

[35] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda,
N. Limsettho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto, “A
dataset of high impact bugs: Manually-classified issue reports,” in
12th Working Conference on Mining Software Repositories, ser. MSR
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 518–521.

[36] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in de-
fect prediction,” in International Conference on Software Engineering
(ICSE), May 2011, pp. 481–490.

[37] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485 –496, july-aug. 2008.

[38] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L. Williams,
“Approximating attack surfaces with stack traces,” in 37th Interna-
tional Conference on Software Engineering - Volume 2, ser. ICSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 199–208.

[39] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[40] H. Zhang, “The optimality of naive bayes,” in Proceedings of the
Seventeenth Florida Artificial Intelligence Research Society Conference.
AAAI Press, 2004, pp. 562–56.

[41] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2 –13, jan. 2007.

[42] W. Afzal, “Using faults-slip-through metric as a predictor of fault-
proneness,” in Asia Pacific Software Engineering Conference, ser.
APSEC ’10, 2010, pp. 414–422.

[43] E. Weyuker, T. Ostrand, and R. Bell, “Do too many cooks spoil
the broth? using the number of developers to enhance defect
prediction models,” Empirical Software Engineering, vol. 13, pp.
539–559, 2008.

[44] C. M. Bishop, Neural networks for pattern recognition. Oxford
university press, 1995.

[45] T. Cover and P. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21 –27,
january 1967.

[46] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
SIGKDD Explor. Newsl., vol. 11, pp. 10–18, November 2009.

[47] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault
prediction models,” Empirical Software Engineering, vol. 13, no. 5,
pp. 561–595, 2008.

[48] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals
of mathematical statistics, pp. 50–60, 1947.

[49] W. Su, Y. Yuan, and M. Zhu, “A relationship between the average
precision and the area under the roc curve,” in Proceedings of the
2015 International Conference on The Theory of Information Retrieval,
ser. ICTIR ’15. New York, NY, USA: ACM, 2015, pp. 349–352.

[50] D. Martinus and J. Tax, “One-class classification: Concept-learning
in the absence of counterexamples,” Ph.D. dissertation, PhD thesis,
Delft University of Technology, 2001.

Fayola Peters is a Post Doctoral Researcher at
Lero - The Irish Software Research Centre. She
conducted her PhD research on data sharing for
cross project defect prediction in software en-
gineering. Her current research focuses on ex-
ploring adaptive data privacy, data sharing and
data mining for users of software applications.
Specifically allowing users to consider the trade-
off between the benefits of data sharing and
potential privacy breaches. She has published at
top software engineering venues like ICSE, IEEE

TSE, and ESEM and is a co-author of to book “Sharing Data and Models
in Software Engineering”.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Thein Than Tun is a Research Associate in the
Computing and Communications Department of
the Open University, UK. His current research
interests lie at the intersections of software en-
gineering, system security and digital forensics.
His research on security requirements and digi-
tal forensics has won several award and is sup-
ported by multiple grants from EPSRC, NCSC,
QNRF and the British Council. He has worked
on the design and implementation of software
systems for telecommunication and policing in-

dustries. He is a fellow of the BCS.

Yijun Yu is a Senior Lecturer in Computing at
the Open University whose research focuses on
improving aviation security through DLT, which
has led to intensive media coverage in the wake
of missing flight MH370 (e.g., BBC) and Mi-
crosoft and Amazon Research Awards in 2017.
His research on requirements-driven adaptation
was recognised by a 10 year Most Influential
Paper Award from IBM CASCON in 2016, and
8 Best Paper Awards. He has managed knowl-
edge transfer projects with industry partners

(IBM, CA, Microsoft, Huawei) and is co-investigator (Co-I) for projects
funded by EPSRC, ERC, EU and the QNRF. He is a member of IEEE
and AIAA, chair of BCS RESG, and a founding member of World Forum
on IoT. He serves on editorial board of Software Quality Journal.

Bashar Nuseibeh is Professor of Computing
at The Open University (Director of Research
2001-2008) and a Professor of Software Engi-
neering at Lero - The Irish Software Research
Centre (Chief Scientist 2009-2012, and 2017-).
Previously he was a Reader in Computing at Im-
perial College London and Head of its Software
Engineering Laboratory. He is a Visiting Profes-
sor at University College London and the Na-
tional Institute of Informatics (NII), Tokyo, Japan.
His current research interests lie at the inter-

section of requirements engineering, adaptive systems, and security
and privacy. He is Editor-in-Chief of ACM Transactions on Autonomous
and Adaptive Systems, and has served as Editor-in-Chief of IEEE
Transactions on Software Engineering and of the Automated Software
Engineering Journal. He chaired the Steering Committee of the Inter-
national Conference on Software Engineering (ICSE) and IFIP Working
Group 2.9 on Requirements Engineering. He received an ICSE Most
Influential Paper Award, a Philip Leverhulme Prize, a Senior Research
Fellowship of the Royal Academy of Engineering, and an IET Innovation
Award for Cybersecurity. He received an ACM SIGSOFT Distinguished
Service Award and an IFIP Outstanding Service Award. He holds a
Royal Society-Wolfson Merit Award and two European Research Coun-
cil (ERC) grants, including an Advanced Grant on Adaptive Security and
Privacy. He is Fellow of the BCS, ICS, ASE and the IET, and a Member
of Academia Europaea.

