
ar
X

iv
:1

70
3.

06
21

8v
4

 [
cs

.S
E

]
 2

1
Ja

n
20

18
1

Bellwethers: A Baseline Method

For Transfer Learning

Rahul Krishna, Member, IEEE, Tim Menzies, Member, IEEE

Abstract—Software analytics builds quality prediction models for software projects. Experience shows that (a) the more projects studied, the more varied are the

conclusions; and (b) project managers lose faith in the results of software analytics if those results keep changing. To reduce this conclusion instability, we propose the use

of “bellwethers”: given N projects from a community the bellwether is the project whose data yields the best predictions on all others. The bellwethers offer a way to mitigate

conclusion instability because conclusions about a community are stable as long as this bellwether continues as the best oracle. Bellwethers are also simple to discover

(just wrap a for-loop around standard data miners). When compared to other transfer learning methods (TCA+, transfer Naive Bayes, value cognitive boosting), using just

the bellwether data to construct a simple transfer learner yields comparable predictions. Further, bellwethers appear in many SE tasks such as defect prediction, effort

estimation, and bad smell detection. We hence recommend using bellwethers as a baseline method for transfer learning against which future work should be compared.

Index Terms—Transfer learning, Defect Prediction, Bad smells, Issue Close Time, Effort Estimation, Prediction.

✦

1 INTRODUCTION

Researchers and industrial practitioners routinely make extensive

use of software analytics for many diverse tasks such as

• Estimating how long it takes to integrate new code [1];

• Predicting where bugs are most likely [2], [3];

• Determining how long it takes to build new code [4], [5].

Large organizations like Microsoft routinely practice data-driven

policy development where organizational policies are learned from

an extensive analysis of large datasets collected from develop-

ers [6], [7]. For more examples of software analytics, see [8], [9].

A premise of software data analytics is that there exists data

from which we can learn models. When local data is scarce,

sometimes it is possible to use data collected from other projects

either at the local site, or other sites. That is, when building

software quality predictors, it might be best to look at more than

just the local data. To do this, recent research has been exploring

the problem of transferring data from one project to another for

the purposes of data analytics. These research have focused on two

methodological variants of transfer learning: (a) dimensionality

transform based techniques by Nam, Jing et al. [10], [11], [12]

and (b) the similarity based approaches of Kocaguneli, Peters and

Turhan et al. [13], [14], [15], [16]. One problem with transfer

learning is conclusion instability which may be defined as follows:

The more data we inspect from more projects, the more

our conclusions change.

The problem with conclusion instability is that the assump-

tions used to make prior policy decisions may no longer hold.

Conclusion instability in software engineering, specifically in

transfer learning, is well documented. For example, Zimmermann

et al. [17] learned defect predictors from 622 pairs of projects

project1, project2. In only 4% of pairs, predictors from project1

worked on project2. Also, Turhan [18] studied defect prediction

results from 28 recent studies, most of which offered widely

differing conclusions about what most influences software defects.

From the perspective of transfer learning, this instability means

that learners that rely on the source of data would also become

The authors are with the Department of Computer Science, North Carolina State

University, USA. E-mail: i.m.ralk@gmail.com, tim@menzies.us

Manuscript received XXXX XX, 20XX; revised XXXX XX, 20XX.

unreliable. Conclusion instability is very unsettling for software

project managers struggling to find general policies. Hassan [19]

cautions that managers lose faith in the results of software an-

alytics if those results keep changing. Such instability prevents

project managers from offering clear guidelines on many issues

including (a) when a certain module should be inspected; (b) when

modules should be refactored; (c) where to focus expensive testing

procedures; (d) what return-on-investment might be expected after

purchasing an expensive tool; etc.

How to support those managers, who seek stability in their

conclusions, while also allowing new projects to take full benefit

of the data from recent projects? Perhaps if we cannot generalize

from all data, a more achievable goal is to slow the pace of

conclusion change. While it may be a fool’s errand to wait for

globally stable SE conclusions, one approach is to declare one

project as the “bellwether”1 which should be used to make

conclusions about all other projects. Note that conclusions are

stable for as long as this bellwether continues to be the best oracle

for that community. This “bellwether” project would also act as

an excellent source to perform transfer learning.

In this paper, we first identify a bellwether effect and show

that it may be used to generate stable conclusions. We offer the

following definition:

• The bellwether effect states that when a community works on

software, then there exists one exemplary project, called the

bellwether, which can define predictors for the others.

From this bellwether effect we show that we may construct a

baseline transfer learner called the bellwether method to bench-

mark other more complex transfer learners. In other words,

• In the bellwether method, we search for the exemplar bell-

wether project and construct a transfer learner with it. This

transfer learner is then used to predict for effects in future

data for that community.

This work presents a significant extension to our initial find-

ings on bellwethers [20]:

1) Generalizing Transfer Learners: Much of the prior work

on transfer learning, including our initial work [20] only

1. According to the Oxford English Dictionary, the “bellwether” is the leading sheep of
a flock, with a bell on its neck.

http://arxiv.org/abs/1703.06218v4

2

explored one domain (defect prediction). Here, we study the

effectiveness of transfer learning for

• Code smells detection (specifically God Class and Feature

Envy);

• Effort estimation;

• Issue lifetime estimation; and

• Defect Prediction.

2) Bellwethers as a baseline transfer learner: Our initial

work [20] compared bellwethers against two other transfer

learners invented by ourselves. In this paper, we explore other

state-of-the-art algorithms such as:

• Transfer Component Analysis (referred to henceforth as

TCA+) [10];

• Transfer Naive Bayes (hereafter referred to as TNB) [21];

and

• Value Cognitive Boosting Learner [22].

In doing the above, we identified that the transfer learning

literature lacks a simple baseline to compare and contrast the

various transfer learners. To address this, we use the bell-

wether effect to construct a baseline transfer learner (using

the bellwether method). To the best of our knowledge, this

is the first report to offer a baseline for transfer learning and

to undertake a case study of all the state-of-the-art transfer

learners and validate their usability in domains other than

defect prediction with respect to this baseline.

3) Addressing Conclusion Instability with Bellwethers: We

show that depending on the source dataset, there can be large

variances in the performance of transfer learner. Further, we

show that different source datasets can lead to different (and

often contradicting) conclusions. We show that these issues

can be potentially addressed using the bellwether dataset.

4) Richer Replication Package: We have made available

a updated and a much richer replication package at

https://goo.gl/jCQ1Le. The newer replication package con-

sists of all the datasets used in this paper, in addition to

mechanisms for computation of other statistical measures.

Additionally, this paper makes the following empirical,

methodological, and pragmatic contributions. Empirically, the key

contribution of this paper is the discovery that simple methods

can find general conclusions across multiple SE projects. While

we cannot show that this holds for all SE domains, we can

report that it has offer satisfactory results on three out of the four

domains that we have studied so far; i.e. code smell detection,

effort estimation, and defect prediction. In one of our domains,

issue lifetime estimation, the evidence supporting the usefulness

bellwethers was unsatisfactory. But our results show that seeking

bellwethers may be a simple starting point to begin to reason about

software projects.

Pragmatically, we assert that simple methods should always be

preferred to more complex ones– particularly if we hope for those

methods to be used widely in the industry. Other researchers agree

with our assertion. In a recent paper, Xu et al. [23] discuss the

cost of increasing software complexity: as complexity increases

users use fewer and fewer of the available configuration options;

i.e. they tend to utilize less and less of the power of that software.

This is relevant to transfer learning since standard methods, other

than bellwethers, come with so many configuration options that

even skilled users have trouble exploiting them all.

Methodologically, the simplicity associated with the discovery

and the use of bellwethers is encouraging for further research in

software engineering. Initial experiments with transfer learning in

SE built quality predictors from the union of data taken from mul-

tiple projects. That approach lead to poor results, so researchers

turned to relevancy filters to find what small subset of the data was

relevant to the current problem [15] and then the dimensionality

transform methods of Nam, Jing et al were developed. In this

paper, we demonstrate the use “bellwethers” as a baseline transfer

learning method for software analytics. As described in the next

section, bellwethers have all the properties desirable for a baseline

method such as simplicity of implementation and broad applica-

bility. In the case of transfer learning, such a baseline would have

greatly assisted in justifying the need for increasingly complex

methods [10], [11], [12], [13], [14], [15], [16]. While we cannot

claim that such simple baselines are always better (they fail in the

case of issue lifetime estimation), the experiments of this paper

demonstrate that in some cases other cases (code smell detection

and effort estimation) bellwethers can perform better than more

complex algorithms.

The rest of this paper is structured as follows. In §2, we

discuss the need for baselines and how the bellwether effect can

be used for this. In §3, we present the research questions this paper

attempts to answer. Following this, in §4, we present an overview

of conclusion instability in software engineering. This is followed

by §5, there we discuss some work on transfer learning and our

proposed approach (the bellwether method) and their implications

to software engineering. §6 provides an overview of all the target

domains that are studied in this paper. Additionally, for each

sub-domain, we discuss our choice of datasets. §7 discusses the

research methodology. In §8, we answer each of the research

questions that we introduced in section 3. In §9, we discuss the

implications of our findings and attempt to answer some other

frequently asked questions. In §10, some of the threats to validity

of our findings are discussed. Finally, in §11, we conclude this

paper with the following statement: bellwethers may not always be

the best choice for transfer learning. That said, since bellwethers

are so simple to discover and use, it is a reasonable first choice

for benchmarking other approaches. To aid in that benchmarking

process, all our scripts and sample problems are available on-line

in Github2. Also, to simplify all future references to this material,

the same content has been assigned a digital object identifier in a

public-domain repository3.

2 BASELINING WITH BELLWETHERS

Different domains can require different approaches. According to

Wolpert & Macready [24], no single algorithm can ever be best for

all problems. They caution that for every class of problem where

algorithm A performs best, there is some other class of problems

where A will perform poorly. Hence, when commissioning a

transfer learner for a new domain, there is always the need for

some experimentation to match the particulars of the domain to

particular transfer learning algorithms.

When conducting such commissioning experiments, it is

methodologically useful to have a baseline method; i.e. an algo-

rithm which can generate floor performance values. Such baselines

let a developer quickly rule out any method that falls “below

the floor”. With this, researchers and industrial practitioners can

achieve fast early results, while also gaining some guidance in

2. https://goo.gl/jCQ1Le

3. http://doi.org/10.5281/zenodo.891082

3

all their subsequent experimentation (specifically: “try to beat the

baseline”).

Using baselines for analyzing algorithms has been endorsed

by several experienced researchers. For example, in his text-

book on empirical methods for artificial intelligence, Cohen [25]

strongly recommends comparing supposedly sophisticated sys-

tems against simpler alternatives. In the machine learning com-

munity, Holte [26] uses the OneR baseline algorithm as a scout

that runs ahead of a more complicated learners as a way to judge

the complexity of up-coming tasks. In the software engineering

community, Whigham et al. [27] recently proposed baseline meth-

ods for effort estimation (for other baseline methods in effort

estimation, see Mittas et al. [28]). Shepperd and Macdonnel [29]

argue convincingly that measurements are best viewed as ratios

compared to measurements taken from some minimal baseline

system. Work on cross-versus within-company cost estimation has

also recommended the use of some very simple baseline (they

recommend regression as their default model) [30].

In their recent article on baselines in software engineering,

Whigham et al. [27] propose guidelines for designing a baseline

implementation that include:

1) Be simple to describe and implement;

2) Be applicable to a range of models;

3) Be publicly available via a reference implementation and

associated environment for execution;

In addition to this, we suggest that baselines should also:

4) Offer comparable performance to standard methods. While

we do not expect a baseline method to out-perform all state-

of-the-art methods, for a baseline to be insightful, it needs to

offer a level of performance that often approaches the state-

of-the-art.

We note that the use of bellwether method for transfer learning

satisfies all the above criteria. The bellwether method is very

simple in that it just uses the bellwether dataset to construct a

prediction model (without any further complex data manipulation).

As to being applicable to a wide range of domains, in this

paper we apply the bellwether method to several sub-domains

in SE, i.e., code-smell detection, effort estimation, issue lifetime

estimation, and defect prediction.

As to public availability, a full implementation of bellwethers

including all the case studies presented here (including working

implementations of other transfer learning algorithms and our

evaluation methods) are available on-line.

In terms of comparative performance, for each model, we

compared the bellwether method’s performance against the the

established state-of-the-art transfer learners reported in the liter-

ature. In those comparative results, bellwethers were usually as

good, and sometimes even a little better, than the state-of-the art.

The use of bellwethers benefits practitioners and researchers

attempting transfer learning in several ways:

1) Researchers can use results of bellwethers as the “sanity

checker”. Experiments shows that the use of bellwethers for

transfer learning is comparable to, and in some cases better

than, other complex transfer learners. Consequently, when

designing new transfer learners, researchers can compare their

results to bellwether’s as a baseline.

2) Practitioners can also use bellwethers as an “off-the-shelf”

transfer learner. For example, in three out of the four domains

studied here (code-smells, issue lifetimes, effort estimation),

there are no established transfer learners. In such cases, we

show that practitioners can simply use bellwethers as transfer

learners instead of having to develop new transfer learner (or

adapt existing ones from other domains).

3 RESEARCH QUESTIONS

RQ1: How prevalent are “Bellwethers”?

Motivation: If bellwethers occur infrequently, we cannot rely on

them. Hence, this question explores how common bellwethers are.

Approach: To answer this question, we explore four SE domains:

defect prediction, effort estimation, issue lifetime estimation,

and detection of code smells. Each domain contains multiple

“communities” of datasets. For each domain, we ensured that the

datasets were as diverse as possible. To this end, data was gathered

according to the following rules:

• The data has been used in a prior paper. Each of our datasets

for defects, code smells, effort estimation, and issue lifetime

estimation has been used previously;

• The communities are quite diverse; e.g. the NASA projects from

the effort estimation datasets are proprietary while the others are

open source projects. Similarly, the God Class is a class level

smell and Feature Envy is a method level design smell.

• In addition, where relevant, the projects also vary in their

granularity of data description (in case of defect prediction, we

have defects at file, class, or at a function level granularity).

Results: In a result consistent with bellwethers being prevalent, we

find that three out of these four domains have a bellwether dataset;

i.e. a single dataset from which a superior quality predictor can be

generated for the rest of that community.

RQ2: How does the bellwether dataset fare against within-

project dataset?

Motivation: One premise of transfer learning is that using data

from other projects are as useful, or better, than using data from

within the same project. This research questions tests that this

premise holds for bellwethers.

Approach: To answer this question, we reflect on datasets with

temporal within-project data. One of our communities in defect

prediction (APACHE) comes in multiple versions. Here, each

version is a historical release where version i was written before

version j where j > i. For this community, RQ2 was explored as

follows:

• The last version (version N) of each project was set aside as a

hold-out.

• Using an older version (N −1) we find the bellwether dataset.

• A defect predictor was then constructed on the bellwether

dataset.

• The predictor was applied to the latest version (version N).

We compare the above to using the within-project data; i.e. for

each project:

• The last version (N) of that project was set aside as a hold-out;

• The older version (N − 1) of that project was then used to train

a defect predictor.

• The predictor was then applied to the latest data (N).

Results: In our experiments, the bellwether predictions proved to

be as good or better than, those generated from the local data. Note

that, as of now, this has been verified only in defect prediction.

4

RQ3: How well do transfer learners perform across different

domains?

Motivation: Our reading of the literature is that for homogeneous

transfer learning, the current state of the art is to use TCA+.

However, note that this result has only been reported for defect

prediction and only for a limited number of datasets. In our pre-

vious work we reported that Bellwether was better than relevancy

based filtering methods. Here we ask if this is true given newer

transfer learning methods and different datasets.

Approach: To answer this question, we compare the “bell-

wether” method [20] against 3 other standard transfer learners:

(1) TCA+ [10]; (2) Transfer Naive Bayes [21]; and (3) Value

Cognitive Boosting [22]. In addition we modify these learners

appropriately for different sub-domains under study.

Results: Our simple bellwether method’s predictions were ob-

served to be superior than those of other transfer learners in two

domains: effort estimation and code smell detection. Bellwether

method’s predictions were a close second in defect prediction.

RQ4: How much data is required to find the bellwether dataset?

Motivation: Our proposal to find bellwethers is to compare the

performance of pairs of datasets from different projects in a round

robin fashion. However, conclusion instability (as presented in

the introduction and further explored in §4) is a major issue in

SE and the primary cause of such conclusion instability is the

constant influx of new data [31]. Given this, a natural question

that arises from our experimental approach is the amount of data

that is required to find the bellwether dataset given the influx of

new data.

Approach: To answer this research question, we again consider

datasets with historical versions of data similar to RQ3. To

discover how much bellwether data is required, we incrementally

increase the size of the bellwether dataset. We stop increments

when (a) we notice no statistical improvement in using additional

version data, or (b) we notice that there is a deterioration of perfor-

mance scores using additional version data. Specifically, assuming

that the bellwether project contains versions 1, ...,N, we construct

a prediction model with version N and measure the performance

scores, then we repeat this by including versions N, N −1 and so

on. With this, we hope to offer some empirical evidence as to how

much data is required to discover the bellwether.

Results: Our experiments show that program managers need not

wait very long to find their bellwethers – when there are multiple

versions of the bellwether project, project managers need to only

use the latest version of that project to perform analytics. Another

interesting finding is that in cases with no historical logs, only a

few hundred samples usually are sufficient for creating and testing

candidate bellwethers.

RQ5: How effectively do bellwethers mitigate for conclusion

instability?

Motivation: In the previous research questions, we established

the prevalence of bellwethers (RQ1), we showed its efficacy in

constructing a baseline transfer learner (RQ3), and we also showed

empirically that we can discover bellwethers early in the project’s

life-cycle (RQ4). Since one of the primary motivation for seeking

bellwethers is due to existence of conclusion instability, in this

final research question, we ask how one might use the bellwether

effect to mitigate the two sources of instability we identify in §4.1:

(a) performance instability, and (b) source instability.

Approach: To answer this question, we take two steps:

• To verify if the bellwether effect can be used to mitigate

performance variations, we reflect on the results of the compar-

ison of various transfer learners (note that, these also includes

bellwethers as a baseline approach). First, we try to determine

if different sources of data to construct the transfer learners

produces variances in the performance. Then, we determine if

the use of bellwethers can address these variances.

• Next, to verify if bellwethers can be used to derive stable lessons

in the presence of a variety of data sources. We determine if

using different sources of data can lead to different conclusions.

Then, we determine how the use of bellwethers can offer stable

conclusion.

Results: Our experiments show that all the datasets we have

explored in the four domains studied here exhibit both perfor-

mance instability and source instability. Performance instability

causes large variances in performance scores of transfer learners

depending on source of the data used. By using the bellwether

effect, we may identify the bellwether data set which can then

be used as a stable source to construct transfer learners. Further,

we show that transfer learners constructed using the bellwether

dataset offer statistically and significantly greater performance

scores compared to other data sources. The existence of source

instability causes different lessons to be derived from different

data sources. Bellwether effect can be used to tackle this by

identifying a bellwether dataset from the available data sources.

The bellwether dataset can then be used to learn lessons. As long

as the bellwether dataset remains unchanged, we will (a) obtain

the same performance scores for a transfer learner, and (b) the

same conclusions from the bellwether dataset.

4 CONCLUSION INSTABILITY IN SE

4.1 What is conclusion instability?

As and when new data arrives, there is a sudden and an unpre-

dictable change in conclusions that are derived from that data

source. This uncertainty accompanying a change in data is termed

as conclusion instability. It manifests itself as large variances in

conclusions and these instabilities usually challenges the validity

of the policy decisions made prior to arrival of new data. In

addition to making generating general policies very difficult, it

also causes practitioners to distrust decisions made from software

analytics tools [19]. In this paper, we define and categorize

conclusion instability into two forms: (a) performance instability,

and (b) source instability.

(a) Performance Instability: This can be noticed during ranking

studies undertaken to pick a reliable data miner. For instance,

many researchers run ranking studies where performance scores

are collected from many classifiers which are ranked for tasks such

as defect prediction [65], [66], [67], [68], [69], [70], [71], [72],

[73], [74], [75], [76], [77], [78], [79], [80]. These rankings are

then used to identify the “best” defect predictor. However, these

prediction tasks assume that future events to be predicted will be

near identical to past events. Therefore, given data in the from

{xtrain,ytrain}, prediction algorithms use this for training in order

to form a joint distribution P(X ,Y) = P(Y |X)P(Y) and estimate

the conditional P̂(Y |Xtest). These predictions will be good as long

as the data is a close approximation of the underlying distribution.

As the source of the data changes, the joint distribution P(X ,Y)
changes to reflect this new data. This gradual change in the

underlying distribution of training data with the arrival of new

5

[3
2
]

an
d

[3
3
]

[3
4

]

[3
5
]

[3
6

]

D
ev

.
S

u
rv

Alt. Classes with Diff. Interfaces
Combinatorial Explosion [33]

Comments 11 VL
Conditional Complexity [33] 14 ?

Data Class
Data Clumps

Divergent Change

Duplicated Code 1 VH

Feature Envy 8

Inappropriate Intimacy L
Indecent Exposure [33] ?

Incomplete Library Class

Large Class 4 VH

Lazy Class/Freeloader 7

Long Method 2 VH

Long Parameter List 9 L
Message Chains H

Middle Man
Oddball Solution [33]

Parallel Inheritance Hierarchies
Primitive Obsession

Refused Bequest

Shotgun Surgery
Solution Sprawl [33]

Speculative Generality L
Switch Statements L

Temporary Field ?

Fig. 1: Bad smells from different sources. Check

marks () denote a bad smell was mentioned.

Numbers or symbolic labels (e.g. ”VH”) denote

a priorization comment (and “?” indicates lack of

consensus). Empty cells denote some bad smell

listed in column one that was not found relevant

in other studies. Note: there are many blank cells.

ref cbo rfc lcom dit noc wmc #
p
ro

je
ct

s

size

[37] + + + - - + 6 95-201
[38] + + + - - + 12 86 classess (3-12kloc)
[39] + + - 1 1700 (110kloc)
[40] + + - + + + 8 113
[41] + + - + + + 8 114
[42] + + + + - 1 83
[43] + + 1 32
[44] + - 1 42-69
[45] + - - - - - 1 85
[46] - + - - + 3 92
[47] + + + - + + 1 123 (34kloc)
[48] + + + 1 706
[49] + + + - + + 1 145
[50] + + + + - + 1 3677
[51] + + + + 1 ?
[52] + + + + + + 3 ?
[53] - + + - - + 8 113
[54] + + + + 2 64
[55] - - - - 1 3344 modules (2mloc)
[56] + + + - - + 5 395
[57] + + - - + 1 1412
[58] + + - - + 2 9713
[59] + + - - - + 1 145
[60] + - 1 145
[61] - - - - - - 1 174
[62] - - 0 50
[63] + + - - - + 1 145
[64] + + + 2 294

total + 18 20 11 11 8 17

total - 4 3 7 14 16 4 KEY: Strong consensus (over 2/3rds)

Total percents: “*” denotes majority conclusion in each column Some consensus (less than 2/3rds)

+ * 64% * 71% * 39% 39% 29% * 61% Weak consensus (about half)

- 14% 11% 25% * 50% * 57% 14% No consensus

Fig. 2: Contradictory conclusions from OO-metrics studies for defect prediction.

Studies report significant (“+”) or irrelevant (“-”) metrics verified by univariate

prediction models. Blank entries indicate that the corresponding metric is not

evaluated in that particular study. Colors comment on the most frequent conclusion of

each column. CBO= coupling between objects; RFC= response for class (#methods

executed by arriving messages); LCOM= lack of cohesion (pairs of methods refer-

encing one instance variable, different definitions of LCOM are aggregated); NOC=

number of children (immediate subclasses); WMC= #methods per class.

data is called data drift. It is widely accepted that this drift is the

leading cause of instability of prediction models [81], [82], [83].

Performance instability can result in large variances in the quality

of predictions. Numerous researchers [80], [84] have shown that

changing only the data and retaining the same defect predictor can

result in statistically significant differences.

(b) Source Instability: This arises due to the constant influx of

potential new data sources. In methods such as transfer learning,

where we translate quality predictors learned in one data set to

another, arrival of new data would require changing models all the

time as the transfer learners continually exchange new models to

the already existing ones. However, as demonstrated in subsequent

parts of this section, each new data source can produce completely

different and often contradicting conclusions. Identifying a reliable

source of data from all the available options is a pressing issue;

more so for methods such as transfer learning since they place an

inherent faith in quality the data source. If a change in data source

can also change the conclusions, then not being able to identify

a reliable data source would limit one from leveraging the full

benefits of transfer learning.

Impact of these instabilities can be observed in several do-

mains within software engineering. The studies explored in the rest

this section sample some instances of instability and its prevalence

in the domains of software engineering studied here4. Note the vast

contradictions in conclusions in each of these domains.

4.2 Code Smells

Research on software refactoring endorses the use of code-smells

as a guide for improving the quality of code as a preventative

maintenance. However, as discussed below, a lot of the research

on bad-smells suffers from conclusion instability.

There is much contradictory evidence on whether program-

mers should take heed of these guidelines or ignore them. For

instance, a systematic literature review conducted by Tufano et

al. [85] lists dozens of papers that recommend tools for repair

and detection of code smells. On the other hand, several other

researchers cast doubt on the value of code smells and their use as

triggers for change [86], [36], [87].

Further, this contradiction is also frequently seen among

domain experts. Researchers caution that developers’ cognitive

biases can lead to misleading assertions that some things are

important when they are not. According to Passos et al. [88],

developers often assume that the lessons they learn from a few

past projects are general to all their future projects. They com-

ment, “past experiences were taken into account without much

consideration for their context” [88]. This warning is echoed by

4. Note: Due to relatively recency of the research on estimating lifetime of open issues
and comparatively fewer papers, we omit it from this survey of conclusion instability.

6

Jørgensen & Gruschke [89]. They report that the supposed soft-

ware engineering experts seldom use lessons from past projects to

improve their future reasoning and that such poor past advice can

be detrimental to new projects. [89].

Other studies have shown some widely-held views are now

questionable given new evidence. Devanbu et al. examined re-

sponses from 564 Microsoft software developers from around the

world. They comment programmer beliefs can vary with each

project, but do not necessarily correspond with actual evidence

in that project [90].

The above remarks seem to hold true for bad smells. As shown

in Figure 1, there is a significant disagreement on which bad smells

are important and relevant to a particular project. In that figure,

the first column lists commonly mentioned bad smells and comes

from Fowler’s 1999 text [32]. The other columns show conclusions

from other studies about which bad smells matter most5. From this

figure, it is easy to note the lack of consensus among developers,

text books, and tools. They all disagree on which bad smells are

important; just because one developer strongly believes in the

importance of a bad smell, it does not mean that the same belief

transfers to other developers.

In summary, we seek methods like bellwethers in order to draw

stable conclusions. A particular challenge in each of the study

in Figure 1 is the lack of consistent data source over the period

of time these studies were undertaken. In such cases, bellwether

datasets can be particularly useful.

4.3 Defect Prediction

In the area of defect prediction too there are several examples

of conclusion instability. As motivating examples, consider the

following two findings: (a) Zimmermann et al. [91] showed that

when they learned defect predictors from 622 pairs of projects,

in only 4% of pairs, the defect predictors learned from one

project pair worked in another. These contradictory conclusions

extend to OO metrics as well; and (b) In our previous work,

we conducted a large scale systematic literature review [92]. We

distilled our findings into a list of 28 studies. We noted that they

offered contradictory conclusions regarding the effectiveness of

OO metrics. These findings are tabulated in Figure 2. The figure

offers a troubling prospect for managers of a software project.

The only concrete finding they can derive from this figure is that

response for class is often a useful indicator of defects. Each

study makes a clear, but usually different, conclusion regarding

the usefulness of other metrics.

In a study of conclusion instability, Turhan [93] showed that

the reason for this inconsistency is due to dataset drift. That work

reported different kinds of data drift within software engineering

data, such as: (1) Source component shift; (2) Domain Shift;

(3) Imbalanced Data, etc. Further, he noted that all contribute

significantly to the issue of conclusion instability. In our previous

work, we offered further evidence to such a drift by demonstrating

that different clusters within the data provided completely different

models [92]. Further, the models built from specialized regions

within a specific data set sometimes perform better than those

learned across all data. However, new data is constantly arriving,

and finding these specialized regions with new data turns into an

arduous task. In such cases, tools like bellwethers offer a way to

5. The developer survey column shows the results of an hour-long whiteboard session
with a group of 12 developers from a Washington D.C. web tools development company.
Participants worked in a round robin manner to rank the bad smells they thought were
important (and any disagreements were discussed with the whole group)

draw conclusions from a stable project. As long as the bellwether

project remains unchanged so does the conclusions we derive from

that project.

4.4 Effort Estimation

As with code smell detection and defect prediction, conclusion

instability seems to be an inherent property of the datasets com-

monly explored in this area [94]. For example, consider stability

tests conducted on Boehm’s COCOMO software effort estimation

model by Menzies et al. [94]. There, it was found that only the

coefficient on lines of code (loc) was stable while the variance in

dozens of other coefficients were extremely large. In fact, in the

case of five coefficients, the values even changed from positive to

negative across different samples in a cross-validation study.

Other studies on effort estimation also report very similar

findings. Jørgensen [95] compared model-based to expert-based

methods in 15 different studies. That study reported that: five

studies favored expert-based methods, five found no difference,

and five favored model-based methods. Similarly, Kitchenham et

al. [96] reviewed seven studies to check the effect of data imported

from other organizations as compared with local data for building

effort models. Of these seven studies, three found that models

from other organizations were not significantly worse than those

based on local data, while four found that they were significantly

worse. MacDonell and Shepperd [97] also performed a review on

effort estimation models by replicating Kitchenham et al. [96].

From a total of 10 studies, two were found to be inconclusive,

three supported global models, and five supported local models.

Similarly, Mair and Shepperd [98] compared regression to analogy

methods for effort estimation and found conflicting evidence.

From a total of 20 empirical studies, (a) seven recommended

regression for building effort estimators; (b) four were indifferent;

and (c) nine favored analogy.

5 BELLWETHERS IN SOFTWARE ENGINEERING

Bellwethers offer a simple solution to mitigating conclusion in-

stability. Rather than exploring all available data for some eternal

conclusions in SE, we seek bellwether datasets that can offer stable

solutions over longer stretches of time. When we notice the dataset

failing, we may seek different bellwethers. In addition to this, the

ability of bellwethers to offer stable conclusions over long periods

of time also simplifies another widely explored problem in SE; i.e.,

the problem of transfer learning. In this section, we summarize the

standard approaches to transfer learning, then discusses how we

may simplify transfer learning by using bellwethers as a baseline

transfer learner.

5.1 Transfer Learning

When there is insufficient data to apply data miners to learn defect

predictors, transfer learning can be used to transfer lessons learned

from other source projects S to the target project T .

Initial experiments with transfer learning offered very pes-

simistic results. Zimmermann et al. [17] tried to port models

between two web browsers (Internet Explorer and Firefox) and

found that cross-project prediction was still not consistent: a model

built on Firefox was useful for Explorer, but not vice versa, even

though both of them are similar applications. Turhan’s initial

experimental results were also very negative: given data from

10 projects, training on S = 9 source projects and testing on

7

T = 1 target projects resulted in alarmingly high false positive

rates (60% or more). Subsequent research realized that data had to

be carefully sub-sampled and possibly transformed before quality

predictors from one source are applied to a target project. That

work can be divided two ways:

• Homogeneous vs heterogeneous;

• Similarity vs dimensionality transform.

Homogeneous, heterogeneous transfer learning operates on

source and target data that contain the same, different attribute

names (respectively). This paper focuses on homogeneous transfer

learning, for the following reason. As discussed in the introduc-

tion, we are concerned with an IT manager trying to propose

general policies across their IT organization. Organizations are

defined by what they do—which is to say that within one or-

ganization there is some overlap in task, tools, personnel, and

development platforms. This overlap justifies the use of lessons

derived from transfer learning.

Hence, all our dataset contain overlapping attributes. In our

case these attributes are the metrics gathered for each of the

projects. As evidence for this, the datasets explored in this paper

fall into 4 domains; each domain contains so called “communities”

of data sets. Each dataset within a community share the same

attributes (see Figure 4).

As to other kinds of transfer learning, similarity approaches

transfer some subset of the rows or columns of data from source

to target. For example, the Burak filter [15] builds its training

sets by finding the k = 10 nearest code modules in S for every

t ∈ T . However, the Burak filter suffered from the all too com-

mon instability problem (here, whenever the source or target is

updated, data miners will learn a new model since different code

modules will satisfy the k = 10 nearest neighbor criteria). Other

researchers [13], [14] doubted that a fixed value of k was appropri-

ate for all data. That work recursively bi-clustered the source data,

then pruned the cluster sub-trees with greatest “variance” (where

the “variance” of a sub-tree is the variance of the conclusions in its

leaves). This method combined row selection with row pruning (of

nearby rows with large variance). Other similarity methods [99]

combine domain knowledge with automatic processing: e.g. data

is partitioned using engineering judgment before automatic tools

cluster the data. To address variations of software metrics between

different projects, the original metric values were discretized by

rank transformation according to similar degree of context factors.

Similarity approaches uses data in its raw form and as high-

lighted above, it suffers from instability issues. This prompted

research on Dimensionality transform methods. These methods

manipulate the raw source data until it matches the target. In the

case of defect prediction, a “dimension” was one of the static code

attributes of Figure 5.

An initial attempt on performing transfer learning with Di-

mensionality transform was undertaken by Ma et al. [21] with

an algorithm called transfer naive Bayes (TNB). This algorithm

used information from all of the suitable attributes in the training

data. Based on the estimated distribution of the target data, this

method transferred the source information to weight instances the

training data. The defect prediction model was constructed using

these weighted training data.

Nam et al. [10] originally proposed a transform-based method

that used TCA based dimensionality rotation, expansion, and

contraction to align the source dimensions to the target. They also

proposed a new approach called TCA+, which selected suitable

normalization options for TCA.

Figure 3.A: Discover
Discover the bellwether dataset for a given community. In a
community C, for all pairs of data from projects Pi,Pj ∈ C, do the
following: Construct a prediction model with data from project
Pi and predict for the target variable in Pj using this model.
Note: The term target variable refers to defects, code-smells,
issue lifetime, or effort, depending on the community under
consideration. Report a bellwether if one Pi generates the best
predictions in a majority of Pj ∈C. Note: The quality of prediction is
measured using G-Score for defect-prediction, code smell estimation,
and issue-lifetime estimation and by SA for effort estimation.

1def discover(datasets):
2”Identify Bellwether Datasets”
3for data_1, data_2 in datasets:
4def train(data_1):
5”Construct quality predictor”
6return predictor
7def predict(data_1):
8”Predict for quality”
9return predictions
10def score(data_1, data_2):
11”Return accuracy of Prediction”
12return accuracy(train(data_1),\
13test(data_2))
14
15”Return data with best prediction score”

Figure 3.B: Transfer Using the bellwether, construct a transfer

learner. Construct a transfer learner on the bellwether data. The
choice of transfer learners may include any transfer learner used in
the literature. For more details on this, see §5.1. Now, apply it to
future projects.

1def transfer(datasets):
2”Transfer Learning with Bellwether Dataset”
3bellwether = discover(datasets)
4def learner(data):
5”””
6Construct Transfer Learner, using:
71. TCA+; 2. TNB; 3. VCB; 4. Bellwether method
8”””
9def apply_learner(datasets, learner):
10”Apply transfer learner”
11model = learner(bellwether)
12for data in datasets:
13if data != bellwether:
14train(model)
15test(data)
16yield score(model, data)

Figure 3.C: Monitor Keep track of the performance of Bellwethers
for transfer learning. If the transfer learner constructed in TRANS-
FER starts to fail, go back to DISCOVER and update the bellwether.

1def transfer(datasets):
2”Transfer Learning with Bellwether Dataset”
3def fails(data):
4”Return True if predictions deteriorate”

Fig. 3: The Bellwether Framework

The above researchers failed to address the imbalance of

classes in datasets they studied. In SE, when a dataset is gathered

the samples in them tend to be skewed toward one of the classes. A

systematic literature review on software defect prediction carried

out by Hall et al. [66] indicated that data imbalance may be

connected to poor performance. They also suggested more studies

should be aware of the need to deal with data imbalance. More

importantly, they assert that the performance measures chosen can

hide the impact of imbalanced data on the real performance of

classifiers.

8

An approach proposed by Ryu et al. [22] showed that using

Boosting-SVM combined with class imbalance learner can be used

to address skewed datasets. They showed improved performance

compared to TNB. More recently, in our previous work [20], we

showed that a very simplistic transfer learner can be developed

using the “bellwether” dataset with Random Forest. We reported

highly competitive performance scores.

When there are no overlapping attributes (in heterogeneous

transfer learning) Nam et al. [11] found they could dispense with

the optimizer in TCA+ by combining feature selection on the

source/target following by a Kolmogorov-Smirnov test to find

associated subsets of columns. Other researchers take a similar

approach, they prefer instead a canonical-correlation analysis

(CCA) to find the relationships between variables in the source

and target data [12].

Considering all the attempts at transfer learning sampled

above, our reading of these literature suggests a surprising lack

of consistency in the choice of datasets, learning methods, and

statistical measures while reporting results of transfer learning.

Further, there was no baseline approach to compare the algorithms

against. This partly motivated our study.

5.2 Bellwether Method

In the above section, we sampled some of the work on transfer

learning in software engineering. This rest of this paper asks the

question “is the complexity of §5.1 really necessary?” We believe

the answer is no. To assert this, we propose a framework that

assumes some software manager has a watching brief over N

projects (which we will call the community “C”). As part of those

duties, they can access issue reports and static code attributes

of the community. Using that data, this manager will apply the

a framework described in Figure 3 which comprises of three

operators– DISCOVER, TRANSFER, MONITOR.

1) DISCOVER: Using cross-project data within a community,

check if that community has a bellwether dataset.

• For all pairs of data from projects in a community Pi,Pj ∈
C;

• Predict for defects/smells/issue-lifetime/effort in Pj using

prediction model from data taken from Pi;

• A bellwether exists if one Pi generates the most accurate

predictions in a majority of Pj ∈C.

2) TRANSFER: Using the bellwether, generate prediction mod-

els on new project data. That is, having learned the bellwether

on past data, we now apply it to future projects.

3) MONITOR: Go back to step 1 if the performance statistics

seen for new projects during TRANSFER start decreasing.

Specifically,

• As new data arrives to the projects in a community ...

• When we note that the prediction performance of bell-

wether is statistically poorer than it was before ...

• Then we can declare that the bellwether has failed6, that

is when we would ideally eschew that bellwether and look

for a newer bellwether using the DISCOVER step.

On line 3 in Figure 3.A, we just wrap a for-loop around some

all pairs of datasets in a community, i.e, data we try every dataset

6. we refrained from proposing a numerical threshold because this is a subjective
measure. Even with a fixed dataset, it is still subject to vary with several other factors such
as the prediction algorithm, the transfer learner, hyper-parameters of several algorithms
used here, etc. We therefore recommend a more conservative approach to declaring that
the bellwether has failed.

in a round-robin fashion and report the best performing dataset as

the bellwether. It is important to note that this will not necessarily

lead to a bellwether. Consider a case where all the datasets have

very similar performance scores in such a case it would not be

possible to report any dataset as being the bellwether. To identify

such similarities in performance, we may use statistical methods

such as Scott-Knott tests. If, according to Scott-Knott tests, all the

datasets in a community as ranked the same, then we cannot claim

that there is a bellwether dataset in that community. However, as

discussed later on in this paper, we note that this was not the case

in any of the four sub-domains we study here. In all cases there is

a clear distinction between the best dataset and the worst dataset.

In addition to this simplicity of Figure 3. An additional

benefit of this DISCOVER-TRANSFER-MONITOR methodology

is the ability to optionally replace the Bellwether Method in the

TRANSFER stage with any other transfer learner (like TCA+,

VCB, TNB, etc.).

6 TARGET DOMAINS

The rest of this paper attempts to discover bellwethers and as-

sesses the performance of bellwethers as baseline transfer learning

method. For this, we explore 4 domains in SE: code smells, issue

lifetime estimation, effort estimation, and defect prediction.

6.1 Code Smells

According to Fowler [32], bad smells (a.k.a. code smells) are

“a surface indication that usually corresponds to a deeper prob-

lem”. Studies suggest a relationship between code smells and

poor maintainability or defect proneness [100], [101], [102] and

therefore, smell detection has become an established method to

discover source code (or design) problems to be removed through

refactoring steps, with the aim to improve software quality and

maintenance. Consequently, code smells are captured by popular

static analysis tools, like PMD7, CheckStyle8, FindBugs9, and

SonarQube10. Until recently, most detection tools for code smells

make use of detection rules based on the computation of a set of

metrics, e.g., well-known object-oriented metrics. These metrics

are then used to set some thresholds for the detection of a code

smell. But these rules lead to far too many false positives making

it difficult for practitioners to refactor code [103].

Recently, the research community is changing rapidly in terms

of defining novel methodologies that incorporate additional infor-

mation to detect code-smells. Much progress has been made in

towards adopting machine learning tools to classify code smells

from examples, easing the build of automatic code smell detec-

tors, thereby providing a better-targeted detection. Kreimer [104]

proposes an adaptive detection to combine known methods for

finding design flaws Large Class and Long Method on the basis

of metrics. Khomh et al. [105] proposed a Bayesian approach

to detect occurrences of the Blob antipattern on open-source

programs. Khomh et al. [106] also presented BDTEX, a GQM

approach to build Bayesian Belief Networks from the definitions

of antipatterns. Yang et al. [107] study the judgment of individual

users by applying machine learning algorithms on code clones.

These studies were not included in our comparison as the data

was not readily available for us to reuse.

7. https://github.com/pmd/pmd

8. http://checkstyle.sourceforge.net/

9. http://findbugs.sourceforge.net/

10. http://www.sonarqube.org/

9

Defect

Community Dataset
of instances

metrics Nature
Total Bugs (%)

AEEEM

EQ 325 129 (39.81)

61 Class
JDT 997 206 (20.66)

LC 399 64 (9.26)

ML 1826 245 (13.16)

PDE 1492 209 (13.96)

Relink

Apache 194 98 (50.52)

26 FileSafe 56 22 (39.29)

ZXing 399 118 (29.57)

Apache

Ant 1692 350 (20.69)

20 Class

Ivy 704 119 (16.90)

Camel 2784 562 (20.19)

Poi 1378 707 (51.31)

Jedit 1749 303 (17.32)

Log4j 449 260 (57.91)

Lucene 782 438 (56.01)

Velocity 639 367 (57.43)

Xalan 3320 1806 (54.40)

Xerces 1643 654 (39.81)

Code Smells

Community Dataset
of instances

metrics Nature
Samples Smelly (%)

Feature Envy

wct 25 18 (72.0)

83 Method

itext 15 7 (47.0)

hsqldb 12 8 (67.0)

nekohtml 10 3 (30.0)

galleon 10 3 (30.0)

sunflow 9 1 (11.0)

emma 9 3 (33.0)

mvnforum 9 6 (67.0)

jasml 8 4 (50.0)

xmojo 8 2 (25.0)

jhotdraw 8 2 (25.0)

God Class

fitjava 27 2 (7.0)

62 Class

wct 24 15 (63.0)

xerces 17 11 (65.0)

hsqldb 15 13 (87.0)

galleon 14 6 (43.0)

xalan 12 6 (50.0)

itext 12 6 (50.0)

drjava 9 4 (44.0)

mvnforum 9 2 (22.0)

jpf 8 2 (25.0)

freecol 8 7 (88.0)

Effort Estimation

Community Dataset Samples Range (min-max) # metrics

Effort

coc10 95 3.5 - 2673

24
nasa93 93 8.4 - 8211

coc81 63 5.9 - 11400

nasa10 17 320 - 3291.8

cocomo 12 1 - 22

Issue Lifetime

Community Dataset
of instances

metrics
Total Closed (%)

camel

1 day

5056

698 (14.0)

18

7 days 437 (9.0)

14 days 148 (3.0)

30 days 167 (3.0)

cloudstack

1 day

1551

658 (42.0)

18

7 days 457 (29.0)

14 days 101 (7.0)

30 days 107 (7.0)

cocoon

1 day

2045

125 (6.0)

18

7 days 92 (4.0)

14 days 32 (2.0)

30 days 45 (2.0)

node

1 day

2045

125 (6.0)

18

7 days 92 (4.0)

14 days 32 (2.0)

30 days 45 (2.0)

deeplearning

1 day

1434

931 (65.0)

18

7 days 214 (15.0)

14 days 76 (5.0)

30 days 72 (5.0)

hadoop

1 day

12191

40 (0.0)

18

7 days 65 (1.0)

14 days 107 (1.0)

30 days 396 (3.0)

hive

1 day

5648

18 (0.0)

18

7 days 22 (0.0)

14 days 58 (1.0)

30 days 178 (3.0)

ofbiz

1 day

6177

1515 (25.0)

18

7 days 1169 (19.0)

14 days 467 (8.0)

30 days 477 (8.0)

qpid

1 day

5475

203 (4.0)

18

7 days 188 (3.0)

14 days 84 (2.0)

30 days 178 (3.0)

Fig. 4: Datasets from 4 chosen domains.

More recently, Fontana et al. [108] in their study of several

code smells, considered 74 systems for their analysis and val-

idation. They experimented with 16 different machine learning

algorithms. They made available their dataset, which we have

adapted for our applications in this study. These datasets were

generated using the Qualitas Corpus (QC) of systems [109].

The Qualitas corpus is composed of 111 systems written in

Java, characterized by different sizes and belonging to different

application domains. Fontana et al. [108] selected a subset of 74

systems for their analysis. The authors computed a large set of

object-oriented metrics belonging to class, method, package, and

project level. A detailed list of metrics and their definitions are

available in appendices of [108]. The code smells repository we

use comprises of 22 datasets for two different code smells: Feature

envy and God Class. The God Class code smell class level code

smell that refers to classes that tend to centralize the intelligence

of the system. Feature Envy is a method level smell that tends to

use many attributes of other classes (considering also attributes

accessed through accessor methods).

The number of samples in these datasets are particularly small.

For our analysis, we retained only datasets with at least 8 samples

so that the transfer learners used here function reliably. This lead

us to a total of 22 datasets shown in Figure 4.

6.2 Issue Lifetime Estimation

Open source projects use issue tracking systems to enable ef-

fective development and maintenance of their software systems.

Typically, issue tracking systems collect information about system

10

Size Complexity Cohesion Coupling Encapsulation Inheritance

Label Description Label Description Label Description Label Description Label Description Label Description

LOC Lines Of Code CYCLO Cyclomatic

Complexity

LCOM Lack of Cohe-

sion

FANOUT/IN Fan Out/In LAA Locality of

Attribute

Accesses

DIT Depth of In-

heritance Tree

LOCNAMM LOC (without

accessor or

mutator)

WMC Weighted

Methods

Count

TCC Tight Class

Cohesion

ATFD Access to For-

eign Data

NOAM Number of

Accessor

Methods

NOI Number of

Interfaces

NOM No. of Meth-

ods

WMCNAMM Weighted

Methods

Count

(without

accessor or

mutator)

CAM Cohesion

Among

classes

FDP Foreign Data

Providers

NOPA Number

of Public

Attribute

NOC Number of

Children

NOPK No. of Pack-

ages

AMW Average Meth-

odsWeight

RFC Response for a

Class

NMO Number of

Methods

Overridden

NOCS No. of Classes AMWNAMM Average

Methods

Weight

(without

accessor or

mutator)

CBO Coupling Be-

tween Objects

NIM Number of

Inherited

Methods

NOMNAMM Number of

Not Accessor

or Mutator

Methods

MAXNESTING Max Nesting CFNAMM Called Foreign

Not Accessor

or Mutator

Methods

NOII Number of

Implemented

Interfaces

NOA Number of At-

tributes

CLNAMM Called Local

Not Accessor

or Mutator

Methods

CINT Coupling In-

tensity

NOP Number of Pa-

rameters

MaMCL Maximum

Message

Chain Length

NOAV Number of

Accessed

Variables

MeMCL Mean

Message

Chain Length

ATLD Access to Lo-

cal Data

CA/CE/IC Afferent/ Ef-

ferent/ Inheri-

tance coupling

NOLV Number of

Local Variable

CM Changing

Methods

WOC Weight Of

Class

CBM Coupling

between

Methods

MAX CC/AVG CC Maximum/

Average

McCabe

Fig. 5: Static code metrics used in defects and code smells data sets.

Commit Comment Issue

nCommitsByActorsT meanCommentSizeT issueCleanedBodyLen

nCommitsByCreator nComments nIssuesByCreator

nCommitsByUniqueActorsT nIssuesByCreatorClosed

nCommitsInProject nIssuesCreatedInProject

nCommitsProjectT nIssuesCreatedInProjectClosed

nIssuesCreatedProjectClosedT

nIssuesCreatedProjectT

Misc. nActors, nLabels, nSubscribedByT

Fig. 6: Metrics used in issue lifetimes data.

Personnel Product System Other

Label Description Label Description Label Description Label Description

ACAP Analyst

Capability

CPLX Prod.

Complexity

DATA Database

size

DOCU Documentation

APEX Applications

Exp.

SCED Dedicated

Schedule

PVOL Platform

volatility

TOOL Use of

software

tools

LEXP Language

Exp.

SITE Multi-side

dev.

RELY Required

Reliability

MODP Modern

Prog.

Practices

TURN turnaround

time

RUSE Required

Reuse

PCAP Programmer

Capability

STOR % RAM

PLEX Platform

Exp.

TIME % CPU

time

VEXP Virtual

Machine

Exp.

VIRT Machie

volatility

PCON Personnel

Continuity

Fig. 7: Metrics used in effort estimation dataset.

failures, feature requests, and system improvements. Based on this

information and actual project planing, developers select the issues

to be fixed. Predicting the time it may take to close an issue has

multiple benefits for the developers, managers, and stakeholders

involved in a software project. Predicting issue lifetime helps soft-

ware developers better prioritize work; helps managers effectively

allocate resources and improve consistency of release cycles; and

helps project stakeholders understand changes in project timelines

11

and budgets. It is also useful to be able to predict issue lifetime

specifically when the issue is created. An immediate prediction

can be used, for example, to auto-categorize the issue or send a

notification if it is predicted to be an easy fix.

As an initial attempt, Panjer [110] used logistic regression

models to classify bugs as closing in 1.4, 3.4, 7.5, 19.5, 52.5,

and 156 days, and greater than 156 days. He was able to achieve

an accuracy of 34.9%. Giger et al. [111] used models constructed

with decision trees to predict for issue lifetimes in Eclipse, Gnome,

and Mozilla. They were able obtain a peak precision of 65%

by dividing time into 1, 3, 7, 14, 30 days. Zhang et al. [112]

developed a comprehensive system to predict lifetime of issues.

They used a Markov model with a kNN-based classifier to perform

their prediction. More recently, Rees-Jones et al [113] showed that

using Hall’s CFS feature selector and C4.5 decision tree learner a

very reliable prediction of issue lifetime could be made.

Figure 4 shows a list of 8 projects used to study issue lifetimes.

These projects were selected by our industrial partners since they

use, or extend, software from these projects. It forms a part of

an ongoing study on prediction of issue lifetime by Rees-Jones et

al. [113]. The authors note that one issue in preparing their data

was a small number of sticky issues. They define sticky issues

as one which was not yet closed at the time of data collection. As

recommended by Rees-Jones et al. [113], we removed these sticky

issues from our datasets.

In raw form, the data consisted of sets of JSON files for

each repository, each file contained one type of data regarding the

software repository (issues, commits, code contributors, changes

to specific files). In order to extract data specific to issue lifetime,

we did similar preprocessing and feature extraction on the raw

datasets as suggested by [113].

6.3 Effort Estimation

The nature of effort estimation and the corresponding data is

unlike that of other domains. Firstly, while domains like defect

prediction datasets often store several thousand samples of defec-

tive and non-defective samples, effort data is usually smaller with

only a few dozen samples at most. Secondly, unlike defect dataset

or code smells, effort is measured using, say man-hours, which is a

continuous variable. These differences requires us to significantly

modify existing transfer learning techniques to accommodate this

kind of data.

Transfer learning attempts have been made in defect prediction

before albeit with limited success. Kitchenham et al. [30] reviewed

7 published transfer studies in effort estimation. They found that in

most cases, transferred data generated worse predictors than using

within-project information. Similarly, Ye et al. [114] report that

the tunings to Boehms COCOMO model have changed radically

for new data collected in the period 2000 to 2009. Kocaguneli et

al. [14] used analogy-based effort estimation with relevancy filter-

ing using a method called TEAK for studying transfer learning in

effort estimation. He found that it outperforms other approaches

such as linear regression, neural networks, and traditional analogy-

based reasoners. Since then, however, newer more sophisticated

transfer learners have been introduced. Krishna et al. [20] suggest

that relevancy filtering (for defect prediction tasks) would never

have been necessary in the first place if researchers had instead

hunted for bellwethers. Therefore, in this paper, we revisit transfer

learning in effort estimation keeping in mind these changing

trends.

For our experiments, we consider effort estimation data ex-

pressed in terms of the COCOMO ontology: 23 attributes de-

scribing a software project, as well as aspects of its personnel,

platform, and system features (see Figure 7 for details). The

data is gathered using Boehm’s 2000 COCOMO model. The data

was made available by Menzies et al. [115] who show that this

model works better than (or just as well as) other models they’ve

previously studied. We use 5 datasets shown in Figure 4. Here,

COC81 is the original data from 1981 COCOMO book [116].

This comes from projects dated from 1970 to 1980. NASA93

is NASA data collected in the early 1990s about software that

supported the planning activities for the International Space Sta-

tion. The other datasets are NASA10 and COC05 (the latter is

proprietary and cannot be released to the research community).

The non-proprietary data (COC81 and NASA93 and NASA10)

are available at http://tiny.cc/07wvjy.

6.4 Defect Prediction

Human programmers are clever, but flawed. Coding adds function-

ality, but also defects, so software will crash (perhaps at the most

awkward or dangerous time) or deliver wrong functionality. Since

programming introduces defects into programs, it is important to

test them before they are used. Testing is expensive. According

to Lowry et al. software assessment budgets are finite while

assessment effectiveness increases exponentially with assessment

effort [117]. Exponential costs quickly exhaust finite resources,

so standard practice is to apply the best available methods only

on code sections that seem most critical. One such approach is

to use defect predictors learned from static code attributes. Given

software described in the attributes of Figures 5, 6, and 7, data

miners can learn where the probability of software defects is

highest. These static code attributes can be automatically col-

lected, even for very large systems [118]. Although other methods

like manual code reviews are much more accurate in identifying

defects, they take much higher effort to find a defect and also are

relatively slower. For example, depending on the review methods,

8 to 20 LOC/minute can be inspected and this effort repeats for

all members of the review team, which can be as large as four

or six people [119]. This is complementary to defect prediction

techniques. These techniques enable developers to target defect-

prone areas faster, but do not guide developers toward a particular

fix. The defect prediction models are easier to use in that sense

that they prioritize both code review and testing resources (these

areas complement each other).

Moreover, defect predictors often find the location of 70%

(or more) of the defects in code [120]. Defect predictors have

some level of generality: predictors learned at NASA [120] have

also been found useful elsewhere (e.g. in Turkey [121], [122]).

The success of this method in predictors in finding bugs is

markedly higher than other currently-used industrial methods such

as manual code reviews. For example, a panel at IEEE Metrics

2002 [123] concluded that manual software reviews can find

≈60% of defects. In another work, Raffo documents the typical

defect detection capability of industrial review methods: around

50% for full Fagan inspections [124] to 21% for less-structured

inspections.

Not only do static code defect predictors perform well com-

pared to manual methods, they also are competitive with cer-

tain automatic methods. A recent study at ICSE’14, Rahman et

al. [125] compared (a) static code analysis tools FindBugs, Jlint,

http://tiny.cc/07wvjy

12

and Pmd and (b) static code defect predictors (which they called

“statistical defect prediction”) built using logistic regression. They

found no significant differences in the cost-effectiveness of these

approaches. Given this equivalence, it is significant to note that

static code defect prediction can be quickly adapted to new

languages by building lightweight parsers that find information

like Figure 5. The same is not true for static code analyzers–

these need extensive modification before they can be used on new

languages.

For the above reasons, researchers and industrial practition-

ers use static attributes to guide software quality predictions.

Defect prediction has been favored by most transfer learning

researchers. Further, defect prediction models have been reported

at Google [126]. Verification and validation (V&V) textbooks

[127] advise using static code complexity attributes to decide

which modules are worth manual inspections.

The defect dataset we have used come from 18 projects

grouped into 3 communities taken from previous transfer learning

studies. The projects measure defects at various levels of granular-

ity ranging from function-level to file-level. Figure 4 summarizes

all the communities of datasets used in our experiments.

For the reasons discussed in §5.1, we explore homogeneous

transfer learning using the attributes shared by a community. That

is, this study explores intra-community transfer learning and not

cross-community heterogeneous transfer learning.

The first dataset, AEEEM, was used by [11]. This dataset

was gathered by D’Amborse et al. [128], it contains 61 metrics:

17 object-oriented metrics, 5 previous-defect metrics, 5 entropy

metrics measuring code change, and 17 churn-of-source code

metrics.

The RELINK community data was obtained from work by

Wu et al. [129] who used the Understand tool 11, to measure 26

metrics that calculate code complexity in order to improve the

quality of defect prediction. This data is particularly interesting

because the defect information in it has been manually verified

and corrected. It has been widely used in defect prediction

[11][129][130][131][132].

In addition to this, we explored two other communities of

datasets from the SEACRAFT repository12. The group of data

contains defect measures from several Apache projects. It was

gathered by Jureczko et al. [133]. This dataset contains records

the number of known defects for each class using a post-release

bug tracking system. The classes are described in terms of 20 OO

metrics, including CK metrics and McCabes complexity metrics.

Each dataset in the Apache community has several versions. There

are a total of 38 different datasets. For more information on this

dataset see [103].

7 METHODOLOGY

7.1 Learning Methods

In our datasets, the class variable (defects, code-smells, closed

issues, and effort) belong to two categories:

1) Discrete classes: The classes in the case of defect prediction,

detection of code-smells, and close time of issues have

two discrete classes. We therefore use learners as binary

classifiers.

11. http://www.scitools.com/products/

12. https://zenodo.org/communities/seacraft/

2) Continuous classes: The class variable in the case of effort

estimation takes on continuous values. Here we use learners

as regression algorithms.

There are many binary classifiers to predict defects (smells or

issue lifetime). A comprehensive study on defect prediction was

conducted by Lessmann et al. [65]. They endorsed the use of

Random Forests [134] for defect prediction over several other

methods. This was also true in detecting code smells [108].

When a specific transfer learner did not endorse the use of any

classification/regression scheme, we used Random Forests (Note:

If an explicit reference was made regarding using a specific

prediction algorithm by the authors of other transfer learners used

in this paper, we use those predictors instead of random forest.

e.g., VCB endorses the use of SVMs).

Random Forests is an ensemble learning method that builds

several decision trees on randomly chosen subsets of data. The

final reported prediction is the mode of predictions by the trees.

When the class variable if discrete (as in binary classification),

it is known that the fraction of “positive” class samples in the

training data affects the performance of predictors. Figure 4 shows

that in most datasets, the percentage of “positive samples” (i.e.,

samples that are defective, smelly, or closed) vary between 10%

to 40% (except in a few, projects like log4j for instance where it is

58%). Handling this class imbalance has been shown to improve

the quality of prediction.

Pelayo and Dick [135] report that the defect prediction is

improved by SMOTE [136]. SMOTE works by under-sampling

majority-class examples and over-sampling minority class ex-

amples to balance the training data prior to applying prediction

models.

After an extensive experimentation, in this study, we randomly

sub-sampled examples until the training data had only positive and

negative classes in a ratio of 1:2.

Important methodological notes:

1) sub-sampling was only applied to training data (so the test

data remains unchanged).

2) Authors of several transfer learners studied here recommend

using different predictors. When replicating their studies, we

adhere to their recommendations.

3) SMOTE is only applicable for classification problems (defect

prediction, code smell detection, and issue lifetime predic-

tion). When performing regression for estimation of effort,

we don’t apply SMOTE.

7.2 Evaluation Strategy

7.2.1 Evaluation for Continuous Classes

For the effort estimation data in Figure 4, the dependent attribute

is development effort, measured in terms of calendar hours (at 152

hours per month, including development and management hours).

For this, we use the same learning methods as in §7.1 used as a

regressor instead of a classifier.

To evaluate the quality of the learners used for regression,

we make use of Standardized Accuracy (SA). The use of SA has

been endorsed by several researchers in SE [137], [138] Standard

Accuracy is computed as below:

SA = 1−
MAR

2
n2 ∑n

i=1 ∑
j<i
j=1 |yi − y j|

×100 (1)

Where, MAR is the mean of the absolute error for the predictor

of interest. E.g. for software project estimation, the average of the

13

absolute difference between the effort predicted and the actual

effort the project took.

Higher values of SA are considered to be better. Note: Some

researchers have endorsed the use other metrics such as MMRE

to measure the quality of regressor in effort estimation. We have

made available a replication package13 with this and other metrics.

Interested readers are encouraged to use these.

7.2.2 Evaluation for Discrete Classes

In the context of discrete classes, we define positive and negative

classes. With defects, instances with one or more defects are

considered to belong to the “positive class” and non-defective in-

stances are considered to belong to the “negative class”. Similarly

in code smell detection (smelly samples belong to “positive class”)

and in issue lifetime estimation (closed issues belong to “positive

class”). Prediction models are not ideal, they therefore need to be

evaluated in terms of statistical performance measures.

For classification problems we construct a confusion matrix,

with this we can obtain several performance measures such as: (1)

Accuracy: Percentage of correctly classified classes (both positive

and negative); (2) Recall or pd: percentage of the target classes

(defective instances) predicted. The higher the pd the better ;

(3) False alarm or pf : percentage of non-defective instances

wrongly identified as defective. Unlike pd, lower the pf implies

better quality; (4) Precision: probability of predicted defects being

actually defective. Either a smaller number of correctly predicted

faulty modules or a larger number of erroneously predicted defect-

free modules would result in a low precision.

There are several trade-offs between the metrics described

above. There is a trade-off between recall rate and false alarm rate

where attempts to increase recall leads to larger false alarm, which

is undesirable. There is also a trade-off between precision and re-

call where increasing precision lowers recall and vice-versa. These

measures alone do not paint a complete picture of the quality of

the predictor. Therefore, it is very common to apply performance

metrics that incorporate a combination of these metrics. As a

result, some authors generally resort to using metrics such as F1

score to assess learners [139], [140], [120], [141]. However, there

exists a peculiar challenge with using F-measure that is specific

to some software engineering problem – the large imbalance

between class variables in the datasets commonly studied here.

For instance, consider the datasets studied in this paper shown in

Figure 4. There, a number of datasets have highly skewed samples.

In these cases, several researchers caution against use of common

performance metrics such as precision or F-measure. Menzies et

al. [3] in their 2007 paper showed the negative impact of using

these metrics. They caution researchers against the use precision

when assessing their detectors. They recommend other more stable

measures especially for highly skewed data sets. This concern is

echoed by several other researchers in SE [142], [143], [144].

Kubat & Matwin found that the effect of the negative classes (in

our context this refers to bug-free/smell-free/closed issues) has a

profound impact on the outcome of these metrics. As a remedy,

these authors recommend a new evaluation scheme that combines

reliable metrics such as recall (pd) and false-alarm (p f).

One such approach that can combine these metrics is to build

a Receiver Operating Characteristic (ROC) curve. ROC curve is

a plot of Recall versus False Alarm pairing for various predictor

cut-off values ranging from 0 to 1. The best possible predictor

13. https://goo.gl/jCQ1Le

is the one with an ROC curve that rises as steeply as possible

and plateaus at pd=1. Ideally, for each curve, we can measure

the Area Under Curve (AUC), to identify the best training dataset.

Unfortunately, building an ROC is not straight forward in our case.

We have used Random Forest for predicting defects owing to it’s

superior performance over several other predictors [65]. Note that

Random Forest lacks a threshold parameter, since this threshold

parameter is required in order to generate a set of points to plot the

ROC curve, Random Forest is not capable of producing an ROC

curve, instead we produce just one point on the ROC curve. It is

therefore not possible to compute AUC.

In a previous work, Ma and Cukic [145] have shown that other

metrics that measure the distance from perfect classification can

be substituted for AUC in cases where a ROC curve cannot be

generated. Accordingly, we use the the ”G-Score” for combining

Pd and Pf. Several authors [3], [144] have previously shown

that such a measure is justifiably better than other measures

when the test samples have imbalanced distribution in terms

of classes. G-Score can by computed by measuring the mean

(geometric/harmonic) between the Probability of True Positives

(Pd) and Probability of true negatives (1-Pf). The choice of using

geometric mean or harmonic mean depends on the variance in

Pd/Pf values. Mathematically, it is known that in cases where

samples tend to take extreme values (such as Pd=0 or Pf=1)

harmonic mean provides estimates that are much more stable and

also more conservative in it’s estimate compared to geometric

mean [146]. Therefore, we propose the use of G-Score, measured

as follows:

G =
2×Pd × (1−P f)

1+Pd−P f
(2)

In this work, for the sake of consistency with other SE

literature, we report the measures of Pd and Pf reported in terms

of the G-Score. Also, note that with the formulation in Equation 2,

larger G-scores are better.

7.3 Statistics

To overcome the inherent randomness introduced by Random

Forests and SMOTE, we use 30 repeated runs, each time with

a different random number seed (we use 30 since that is the

minimum needed samples to satisfy the central limit theorem).

Researchers have endorsed the use of repeated runs to gather

reliable evidence [147]. Thus, we repeat the whole experiment

independently several times to provide evidence that the results are

reproducible. The repeated runs provide us with a sufficiently large

sample size (of size 30) to statistically compare all the datasets.

Each repeated run collects the values of Pd and Pf which are then

used to estimate the G-Score using Equation 2. (Note: We refrain

from performing a cross validation because the process tends to

mix the samples from training data (the source) and the test data

(other target projects), which defeats the purpose of this study.)

To rank these 30 numbers collected as above, we use the

Scott-Knott test recommended by Mittas and Angelis [28]. Scott-

Knott is a top-down clustering approach used to rank different

treatments. If that clustering finds an statistically significant splits

in data, then some statistical test is applied to the two divisions

to check if they are statistically significant different. If so, Scott-

Knott recurses into both halves.

To apply Scott-Knott, we sorted a list of l = 40 values of

Equation 2 values found in ls = 4 different methods. Then, we

14

split l into sub-lists m,n in order to maximize the expected value

of differences in the observed performances before and after

divisions. E.g. for lists l,m,n of size ls,ms,ns where l = m∪n:

E(∆) =
ms

ls
abs(m.µ − l.µ)2 +

ns

ls
abs(n.µ − l.µ)2

We then apply a statistical hypothesis test H to check if m,n
are significantly different. In our case, the conjunction of boot-

strapping and A12 test. Both the techniques are non-parametric in

nature, i.e., they do not make gaussian assumption about the data.

As for hypothesis test, we use a non-parametric bootstrapping

test as endorsed by Efron & Tibshirani [148, p220-223]. Even

with statistical significance, it is possible that the difference can

be so small as to be of no practical value. This is known as a

“small effect”. To ensure that the statistical significance is not

due to “small effect” we use effect-size tests in conjunction with

hypothesis tests. A popular effect size test used in SE literature is

the A12 test. It has been endorsed by several SE researchers [149],

[150], [151], [152], [153], [154]. It was first proposed by Vargha

and Delany [155]. In our context, given the performance measure

G, the A12 statistics measures the probability that one treatment

yields higher G values than another. If the two algorithms are

equivalent, then A12 = 0.5. Likewise if A12 ≥ 0.6, then 60% of

the times, values of one treatment are significantly greater that the

other. In such a case, it can be claimed that there is significant

effect to justify the hypothesis test H. In our case, we divide the

data if both bootstrap sampling and effect size test agree that a

division is statistically significant (with a confidence of 99%) and

not a small effect (A12 ≥ 0.6). Then, we recurse on each of these

splits to rank G-scores from best to worst.

7.4 Experimental Setup

• Discovering the bellwether:

1) For each community in every sub-domain, we pick a project

Pi. We use this as the training set to construct a quality

prediction model according to the learning method described

in §7.1.

2) Next, we pick another project Pj /∈ Pi and retain this as a

holdout dataset.

3) Then, for every other project Pk where k ∈ 1, . . . ,n; k /∈ {i, j},

that belong to the same community as {Pi,Pj}, we evaluate

the performance of Pi for Pk according to the evaluation

strategy discussed in §7.2.

4) We repeat steps 1,2, and 3 for all pairs of projects in a

community.

This whole process is repeated 30 times, with different random

number seeds. Then, we use the statistical test described in §7.3

to rank each project Pi. For every holdout dataset in step 2

above, if there exists one project that returns consistently high

performance scores, we label that as the bellwether.

• Discovering the best transfer learner:

1) For each community in every sub-domain, we pick a project Pi

as in §7.4.A. We then use this as the training data to construct

the transfer learners (TCA+, TNB, VCB, and Bellwether

Method).

2) For every other project Pj where j ∈ 1, . . . ,n; j /∈ i, that belong

to the same community as Pi, we evaluate the performance of

each of the transfer learners and use the evaluation strategy

discussed in §7.2 to evaluate their performance.

Similar to above, the above steps are repeated 30 times, with

different random number seeds. Then, we use the statistical test

from §7.3 to rank each transfer learner.

7.5 Understanding These Results

In presenting our results for experiments in §7.4, we adopted a

convention that includes tabulated results. The following remarks

need to be made regarding our tables:

• In Figure 8, we list the results of performing the experiment

in §7.4. The column labeled “Holdout” represents the holdout

dataset. The column labeled “Test” represents the test data,

i.e., all the remaining data in the community except the

holdout. The column “Bellwether(s)” shows the dataset that

was ranked the best from among the test data (and therefore

it is the bellwether dataset). Finally, the column “G-score(s)”

is the G-score of training on the bellwether and testing on the

holdout dataset.

• In Figures 10, 11, 12, and 13, we list the results of per-

forming the experiment in §7.4 where we compare the

bellwether method with other transfer learners. In these

figures, the column labeled “source” (the second column)

indicates the source from which a transfer learner is built.

The remaining datasets within the community are then used

as target datasets. The numeric values indicate the median

performance scores (Standardized Accuracy in case of effort

estimation, G-score in the rest), when model is constructed

with a “target” dataset and tested against all the “source”

datasets, and this processes repeated 30 times for reasons

discussed in §5.5.

8 RESULTS

RQ1: How prevalent is the “Bellwether Effect”?

The bellwether effect points to an exemplar dataset to con-

struct quality predictors from. Ideally, given an adequate transfer

learner, such a dataset should produce reasonably high perfor-

mance scores. Figure 8 documents our findings. We use the

setup described in §7.4 to discover bellwethers. It is immediately

noticeable that for each community there is at least one dataset

that provides consistently better predictions when compared to

other datasets. For example:

1) Code Smells datasets: Here we have two datasets which are

frequently ranked high: Xerces and Xalan. But note that

Xerces is ranked the best in all the cases. Thus, this would be

a bellwether dataset for predicting for the existence of God

Classes; this was followed by hsqldb with a G-score of 88%.

Additionally, when Xalan or Xerces were absent in Feature

Envy, mvn f orum was a bellwether with a G-score of 92%.

2) Effort Estimation: When performing effort estimation, we

found that cocomo was the bellwether with remarkably high

Standardized Accuracy scores of 98%.

3) Defect datasets: In the case of defect prediction, Jureczko’s

bellwether is Lucene (with a G-Score of 69%); AEEEM’s

bellwether is LC (with a G-Score of 75%); and Relink’s

bellwether is ZXing (with a G-Score of 68%).

4) Issue Lifetime: Finally when predicting for lifetime of issues,

we discovered the following bellwethers: camel for close

time of 1 day with G-Scores of around 55%, o f biz for close

time of 7 days with a G-score of around 47%, qpid for 14

15

Defect

Community Holdout Test Bellwether(s)
G-Score(s)

med iqr

AEEEM

EQ ∀p 6= EQ LC 74 4

JDT ∀p 6= JDT LC 75 3

ML ∀p 6= ML LC 75 3

PDE ∀p 6= PDE LC 75 4

Relink

Apache ∀p 6= Apache Zxing 67 5

Safe ∀p 6= Sa f e Zxing 66 5

Apache

Ant ∀p 6= Ant Lucene 66 5

Ivy ∀p 6= Ivy Lucene, Poi 64 5

Camel ∀p 6=Camel Lucene, Poi 69 7

Poi ∀p 6= Poi Lucene, Poi 59 6

Jedit ∀p 6= Jedit Lucene 66 4

Log4j ∀p 6= Log4 j Lucene, Poi 65 5

Velocity ∀p 6=Velocity Lucene 67 7

Xalan ∀p 6= Xalan Lucene, Poi 68 8

Xerces ∀p /∈ Xerces Lucene 68 5

Code Smells

Community Holdout Test Bellwether(s)
G-Score(s)

med iqr

Feature

Envy

wct ∀p 6= wct mvnforum 92 3

itext ∀p 6= itext mvnforum 92 2

hsqldb ∀p 6= hsqldb mvnforum 91 4

nekohtml ∀p 6= nekohtml mvnforum 89 4

galleon ∀p 6= galleon mvnforum 90 2

sunflow ∀p 6= sun f low mvnforum 90 3

emma ∀p 6= emma mvnforum 92 1

jasml ∀p 6= jasml mvnforum 92 2

xmojo ∀p 6= xmo jo mvnforum 92 1

jhotdraw ∀p 6= jhotdraw mvnforum 92 1

God

Class

fitjava ∀p 6= f it java xerces, xalan 88 3

wct ∀p 6= wct xerces, xalan 88 3

hsqldb ∀p 6= hsqldb xerces 87 2

galleon ∀p 6= galleon xerces, xalan 90 2

xalan ∀p 6= xalan xerces 91 2

itext ∀p 6= itext xerces 90 3

drjava ∀p 6= dr java xerces, xalan 88 2

mvnforum ∀p 6= mvn f orum xerces, xalan 90 3

jpf ∀p 6= jp f xerces, xalan 90 3

freecol ∀p 6= f reecol xerces 90 4

Effort Estimation

Community Holdout Test Bellwether(s)
G-Score(s)

med iqr

Effort

coc10 ∀p 6= coc10 cocomo 98 2

nasa93 ∀p 6= nasa93 cocomo 99 1

coc81 ∀p 6= coc81 cocomo 98 2

nasa10 ∀p 6= nasa10 cocomo 98 3

Issue Lifetime

Community Holdout Test Bellwether(s)
G-Score(s)

med iqr

1 Day

cloudstack ∀p 6= cloudstack camel 55 6

cocoon ∀p 6= cocoon camel 54 8

node ∀p 6= node camel 49 11

dl4j ∀p 6= dl4 j camel, qpid 55 5

hadoop ∀p 6= hadoop camel 57 5

hive ∀p 6= hive camel 55 7

ofbiz ∀p 6= o f biz camel 54 4

qpid ∀p 6= qpid camel, node 55 7

7 Days

camel ∀p 6= camel ofbiz 47 7

cloudstack ∀p 6= cloudstack ofbiz 47 8

cocoon ∀p 6= cocoon ofbiz 48 7

node ∀p 6= node ofbiz 48 8

dl4j ∀p 6= dl4 j ofbiz 47 8

hadoop ∀p 6= hadoop ofbiz 46 9

hive ∀p 6= hive ofbiz 46 9

qpid ∀p 6= qpid ofbiz 47 8

14 Days

camel ∀p 6= camel qpid 38 5

cloudstk ∀p 6= cloudstk qpid 38 5

cocoon ∀p 6= cocoon qpid 39 6

node ∀p 6= node qpid 37 4

dl4j ∀p 6= dl4 j qpid 37 4

hadoop ∀p 6= hadoop qpid 36 6

hive ∀p 6= hive qpid 38 6

ofbiz ∀p 6= o f biz qpid 38 4

qpid ∀p 6= qpid qpid 39 5

30 Days

camel ∀p 6= camel qpid 46 6

cloudstk ∀p 6= cloudstk qpid 48 5

cocoon ∀p 6= cocoon qpid 47 5

node ∀p 6= node qpid 46 6

dl4j ∀p 6= dl4 j qpid 46 7

hadoop ∀p 6= hadoop qpid 47 4

hive ∀p 6= hive qpid 48 4

ofbiz ∀p 6= o f biz qpid 47 5

qpid ∀p 6= qpid qpid 46 6

Fig. 8: Discovering Bellwether datasets with a holdout data. We use the experimental setup mentioned in §7.4 to discover these

bellwethers.

Bellwether Local

(Lucene) Train Test

(G-score) G-Score

Xalan 82 2.6 2.7 56

Ant 68 1.6 1.7 54

Ivy 67 1.4 2 63

Camel 62 1.4 1.6 51

Velocity 57 1.5 1.6 32

Jedit 61 4.2 4.3 77

Log4j 56 1.1 1.2 75

Xerces 58 1.3 1.4 66

Fig. 9: Bellwether dataset (Lucene) vs. Local Data. Performance

scores are G-scores so higher values are better. Cells highlighted

in gray indicate datasets with superior prediction capability. Out

of the eight datasets studied here, we note that in five cases

the prediction performance of bellwether dataset was superior to

within-project dataset.

days and 30 days with G-score of around 38%, and 47% s

respectively.

Note that in the case of issue lifetime estimation, the G-Scores

are particularly low. Here recommend that practitioners monitor

the performance of bellwethers and eschew current ones in favor

of other better bellwether datasets.

In summary, in three out of the four domains studied here,

there was a clear bellwether dataset for every community. In

the case of issue lifetimes, although there was a bellwether, the

performances were particular low. Note that this may/may not

hold true for other sub-domains of SE. The study on these other

domains are beyond the scope of this work but what we can say

now is:

Result 1

Bellwethers are common in several domains of software

engineering studied here. ie., in defect prediction, effort

estimation, and code-smell detection.

16

Source Baseline TCA TNB

God Class

xerces 90 75 48

xalan 89 73 39

hsqldb 88 0 0

galleon 87 61 55

wct 81 58 67

drjava 80 58 56

jpf 79 59 65

mvnforum 74 43 57

freecol 69 0 0

fitjava 68 40 0

itext 62 72 30

W/T/L 10/0/1 1/0/10 0/0/11

Source Baseline TCA TNB

Feature Envy

mvnforum 92 57 61

galleon 84 59 0

hsqldb 81 57 0

jhotdraw 81 35 64

nekohtml 81 52 57

wct 81 47 0

itext 74 66 0

xmojo 74 0 0

emma 70 74 37

jasml 66 79 0

sunflow 47 0 0

W/T/L 10/0/1 1/0/10 0/0/11

Fig. 10: Code Smells: This figure compares the prediction performance of the bellwether dataset (xalan,mvnforum) against other

datasets (other rows). Bellwether Method against Transfer Learners (columns) for detecting code smells. The numerical value seen here

are the median G-scores from Equation 2 over 30 repeats where one dataset is used as a source and others are used as targets in a

round-robin fashion. Higher values are better and cells highlighted in gray produce the best Scott-Knott ranks. The last row in each

community indicate Win/Tie/Loss(W/T/L). The bellwether Method is the overall best.

Source Baseline TCA+ TNB VCB

1 Day

camel 17 2 55 10

node 44 24 55 17

ofbiz 29 14 53 8

qpid 44 34 49 19

deeplearning 51 42 42 15

cocoon 7 6 34 13

cloudstack 55 32 32 11

hive 11 1 22 23

hadoop 17 0 10 19

W/T/L 2/0/7 0/0/9 7/0/2 2/0/7

7 Days

ofbiz 17 3 49 11

camel 34 6 47 20

cloudstack 8 27 38 7

qpid 7 16 38 20

node 15 33 36 13

deeplearning 15 20 29 10

cocoon 0 3 22 16

hadoop 23 0 18 19

hive 3 0 7 14

W/T/L 2/0/7 0/0/9 7/0/2 2/0/7

Source Baseline TCA+ TNB VCB

14 Days

qpid 0 0 39 6

cloudstack 8 8 36 8

hadoop 0 0 31 22

deeplearning 4 6 30 17

camel 1 6 29 18

cocoon 0 0 19 8

node 5 4 16 4

ofbiz 2 2 7 12

hive 0 0 0 14

W/T/L 0/0/9 0/0/9 7/0/2 2/0/7

30 Days

qpid 1 5 47 17

cloudstack 1 13 38 19

node 2 10 32 16

camel 1 1 30 17

deeplearning 1 2 29 14

cocoon 2 1 24 12

ofbiz 4 5 13 5

hadoop 0 0 7 2

hive 16 2 6 9

W/T/L 1/0/8 0/0/9 8/0/1 0/0/9

Fig. 11: Issue Lifetime: This figure compares the prediction performance of the bellwether dataset (qpid) against other datasets

(rows) and various transfer learners (columns) for estimating issue lifetime. The numerical value seen here are the median G-scores

from Equation 2 over 30 repeats where one dataset is used as a source and others are used as targets in a round-robin fashion.

Higher values are better and cells highlighted in gray produce the best Scott-Knott ranks. The last row in each community indicate

Win/Tie/Loss(W/T/L). TNB has the overall best Win/Tie/Loss ratio.

RQ2: How does the bellwether dataset fare against within-

project dataset?

Having established in RQ1 that bellwethers are prevalent in the

sub-domains studied here. In Figure 9, we compare the predictors

built on within-project data against those built with a bellwether.

For this question, we only used data from the Apache community

since it has releases ordered historically (which is required to test

older data against newer data). Since other sub-domains did not

have historically data similar to Apache, we were unable to use

them for this research question. For the Apache community, the

bellwether dataset was Lucene.

As seen in Figure 9, the prediction scores with the bellwether is

very encouraging in case of the Apache datasets. In 5 out of 8 cases

(Ant, Camel, Ivy, Xalan, and Velocity), defect prediction models

constructed with Lucene as the bellwether performed better than

within-project data. In 3 out of 8 cases (Jedit, Xerces, and Log4 j),

the performance scores of bellwether data were statistically worse

than within-project data. Note again that this is true in only one out

of our the four domains studied, i.e., defect prediction. Therefore,

the following answer to the this research question is limited this

domain.

Result 2

For projects in the Apache Community that were evaluated with

the same quality metrics, training a quality prediction model

with the Bellwether is better than using within-project data in

majority of the cases.

RQ3: How well do transfer learners perform across different

domains?

Figures 10, 11, 12, 13 show the results of transferring data between

different projects in a community for code smell detection, issue

lifetime estimation, defect prediction, and effort estimation.

17

Source Baseline TCA+ TNB VCB

Apache

Lucene 63 69 57 64

Xalan 57 64 59 62

Camel 60 63 59 44

Velocity 58 63 51 63

Ivy 60 62 61 48

Log4j 60 62 58 62

Xerces 57 54 58 65

Ant 61 52 45 55

Jedit 58 43 57 49

W/T/L 2/0/7 6/0/3 0/0/9 1/2/06

ReLink

Zxing 68 67 53 64

Safe 38 34 36 31

Apache 31 31 32 31

W/T/L 0/1/1 0/1/1 1/0/2 0/1/2

LC 75 75 73 61

ML 73 73 67 51

PDE 70 71 60 57

JDT 63 64 68 53

EQ 59 61 59 57

AEEEM

W/T/L 0/2/3 2/2/1 1/0/4 0/0/5

Fig. 12: Defect Datasets: This figure compares the prediction

performance of the bellwether dataset (Lucene,Zxing,LC) against

other datasets (other rows). Bellwether Method against Transfer

Learners (columns) for detecting defects. The numerical value

seen here are the median G-scores from Equation 2 over 30 repeats

where one dataset is used as a source and others are used as

targets in a round-robin fashion. Higher values are better and cells

highlighted in gray produce the best Scott-Knott ranks. The last

row in each community indicate Win/Tie/Loss(W/T/L). TCA+ is

the overall best transfer learner.

Source Baseline TCA TNB

cocomo 98 90 90

nasa93 93 85 35

nasa10 90 53 65

coc81 83 85 60

coc10 55 75 73

FPA

W/T/L 3/0/2 2/0/3 0/0/5

Fig. 13: Effort Estimation: This figure compares the performance

of the bellwether dataset (cocomo) against other datasets (rows)

and Transfer Learners (columns) for estimating effort. The nu-

merical value seen are the median Standardized Accuracy scores

from Equation 3 over 40 repeats. Bellwether Method has the best

Win/Tie/Loss ratio.

Note that of the three transfer learners studied here, value

cognitive boosting (VCB) has some methodological constrains

that prevents us from translating it to all the domains. VCB

was initially designed for defect prediction. To enable it to

work efficiently, the authors propose the use of under-sampling

techniques to complement transfer learning. This under-sampling

required that the datasets have discrete class variables (#de f ects)

and that the datasets are sufficiently large. Two of the domains

considered in this paper do not satisfy these constraints. We could

not use VCB in code smell detection because our datasets had

small sample size (see Figure 4) and therefore under-sampling

could not be performed. We could not use VCB in effort estimation

either because the class variable was a continuous in nature. Other

transfer learners did not have these constraints, therefore we were

able to translate them to all the domains relatively easily.

These results are expressed in terms of win/tie/loss (W/T/L)

ratios:

1) Code Smells dataset: From Figure 10 we note that the base-

line transfer learner constructed using the bellwether dataset

outperforms the other two approaches with a W/T/L of 10/0/1

in both cases.

2) Issue lifetime dataset: From Figure 11, we see that, in this

case, TNB outperforms the other three methods. We note a

W/T/L ratio for TNB at 7/0/2. The baseline approach has

W/T/L of 2/0/7 (for 1 and 7 days), 1/0/8 (for 14 days), and

0/0/9 (30 days).

3) Defects dataset: In the case of Figure 12, we note that

TCA+ was generally better than the other three methods

with an overall W/T/L ratio of 8/3/5. The was followed by

the baseline transfer learner with a W/T/L ratio of 2/3/11.

Note that this behavior of TCA+ corroborates with previous

findings by other researchers [10].

4) Effort datasets: In the case of effort estimation, our results

are tabulated in Figure 13. In this case, the baseline transfer

learner once again outperforms the other two methods with a

W/T/L ratio of 3/0/2.

The key point from the above is that no transfer learning method

is best in all domains (though we would boast that our bellwether

method works best more often than the other transfer learners).

Hence, when faced with a new community, software analysts will

have to explore multiple transfer learning methods. In that context,

it is very useful to have an ordering of methods such that simpler

baseline methods are run first before more complex approaches.

Note that:

• When such an ordering of methods is available then if the

simpler methods achieve acceptable levels of performance, an

analyst might decide to stop explore more complex methods.

• We would argue that bellwethers fall very early in that

ordering; i.e. bellwethers should be the first simplest transfer

learning method tried before other approaches.

That is, although we can’t endorse a transfer learner in general,

we can offer the bellwether method as a baseline transfer learner

which can be used to benchmark other complex transfer learners

and seek newer transfer learners that can outperform this baseline.

Hence, our answer to this question is:

Lucene 2.4 Lucene 2.4, 2.2 Lucene 2.4, 2.2, 2.0

G (mean) G (iqr) G (mean) G (iqr) G (mean) G (iqr)

Xalan 83 3 82 3 84 3

Poi 73 5 71 4 72 3

Ivy 69 3 66 2 69 2

Ant 67 2 68 1 70 1

Jedit 62 4 63 3 62 3

Xerces 56 9 52 5 58 5

Velocity 55 4 52 4 55 3

Camel 52 2 54 2 53 2

Log4j 52 6 48 6 50 8

Lucene 2.4 Lucene 2.4, 2.2 Lucene 2.4, 2.2, 2.0

Samples 341 587 782

Defect % 59 59 55

Fig. 14: Experiments with incremental discovery of bellwethers.

Note that the latest version of lucene (lucene-2.4) has statistically

similar performance to using the other older versions of lucene.

18

Result 3

There is no universal best transfer learner that works across

multiple domains. Simpler baseline methods like bellwethers

show comparable performances in several domains.

RQ4: How much data is required to find the bellwether dataset?

One of our defect dataset allows for a special kind of analysis –

the the Apache community (see Figure 4) in the defect datasets

has data available as historical versions. Using this dataset, we

performed an empirical study to establish the required amount

of bellwether data to make reliable predictions. We conducted

experiments by incrementally updating the versions of the bell-

wether dataset until we find no significant increase in performance,

i.e., starting from version N (the latest version) we construct a

prediction model and measure the performance using G-Score.

Next, we include an older version N − 1 to and construct a

prediction model to measure the performance. This process is

repeated by incrementally growing the size of the bellwether data

by including older versions of the bellwether project. With this,

the following empirical observations can be made:

• Figure 14 documents the results of this experiment. As

previously mentioned, we used the defect datasets from the

Apache community in Figure 4. In RQ1, it was found the

Lucene was the bellwether dataset for that community. In

experimenting with different versions of Lucene, we found

that using only the latest version of Lucene produced statis-

tically similar results to including the older versions of the

data. Also, note that we required only 341 samples to achieve

good G-scores.

• In cases where datasets were not available in the form of past

versions, we observed that the size of the bellwether dataset is

very small. For instance, consider the code-smells dataset, the

bellwether datasets had no more than 12 samples. Similarly,

in the case of effort estimation, the bellwether dataset had

only 12 samples.

Result 4

Not much data is required to find bellwether dataset. In the case

of defect prediction, bellwethers can be found by analyzing only

the latest version of the project. Even in domains which lack

data in the form if historical versions, we were able to discover

bellwethers with as few as 25 samples.

RQ5: How effectively do bellwethers mitigate for conclusion

instability?

In §4.1, we discussed two sources of conclusion instability, namely

performance instability and source instability. We can use the

bellwether effect to mitigate these two instabilities as follows:

1) Performance instability causes data mining tools such as

prediction algorithms to offer unreliable results (their per-

formance depends on the data source). To address this issue,

in this paper, we propose the use of the bellwether effect.

This effect can be used to discover the bellwether data and

we can use this data set as a reliable source to construct

prediction models. Figures 10, 11, 12, and 13 reveal that the

bellwether data set can be discovered in three out of the four

domains we have studied here. Additionally, the performance

of an appropriate transfer learner (as identified in RQ3) with

the bellwether dataset is statistically and significantly better

than using other datasets. As long as the bellwether dataset

remains unchanged, so will the performance of data mining

tools such as transfer learners.

2) Source instability causes vastly different and often contra-

dicting conclusions to be derived from a data source. This

sort of instability is very prevalent in several domains of

software engineering. An example of source instability in

the case of defect prediction14 is shown in Figure 15. This

figure shows the rankings of top 5 features that contributed

to the construction of the transfer learner (TCA+) for defect

prediction tasks. It can be noted that, with every data source,

the feature rankings are very different. For instance, if ant

was used to construct TCA+, one may conclude that rfc

(response for class) is the most important feature, but if

TCA+ was constructed using lucene, then we would find that

loc is the most important feature (rfc is only the 5th most

important feature). This sort of instability can be addressed

by identifying a reliable data source to construct a transfer

learner. The bellwether dataset is one such example of a

stable data source. As long as the bellwether data is reliable

(which can be established using the MONITOR step of

Figure 3) and the bellwether data remains unchanged, so will

the conclusions derived from it.

In summary, we may answer this research question as follows:

Result 5

The Bellwether Effect can be used to mitigate conclusion

instability because as long as the bellwether dataset remains

unchanged, we can (a) obtain consistent performance for

a transfer learner, and (b) consistent conclusions from the

bellwether dataset.

9 DISCUSSION

When reflecting on the findings of this work, there may be four

additional questions that arise. These are discussed below:

1) Can bellwethers mitigate conclusion instability permanently?

No- and we should not expect them to. The aim of bell-

wethers is to slow, but do not necessarily stop, the pace

of new ideas in software engineering (e.g. as in the paper,

new quality prediction models). Sometimes, new ideas are

essential. Software engineering is a very dynamic field with

a high churn in techniques, platforms, developers and tasks.

In such a dynamic environment it is important to change with

the times. That said, changing more than what is necessary is

not desirable– hence this paper.

2) How to detect when bellwether datasets need updating? The

conclusion stability offered by bellwether datasets only lasts

as long as the bellwether dataset remains useful. Hence, the

bellwether dataset’s performance must always be monitored

and, if that performance starts to dip, then seek a new

bellwether dataset.

3) What happens if a set of data has no useful bellwether

dataset? In that case, there are numerous standard transfer

learning methods that could be used to import lessons learned

14. Space limitations do not permit us to show these for the other three domains. As a
result, we have made available a replication package with instructions to replicate these
for all the other domains.

19

Feature Ranks

Project 1st 2nd 3rd 4th 5th

Apache

ant rfc loc cam ce cbo

lucene loc cbo amc ce rfc

jedit loc rfc amc lcom avg cc

xerces cbo loc cam rfc ca

xalan loc amc cbo lcom3 rfc

camel ca mfa cbo loc amc

velocity mfa cbo cam loc rfc

poi loc ce lcom cbm rfc

log4j wmc cbo rfc amc loc

ivy loc rfc cam ce amc

AEEEM

JDT ce wmc nbugs lwmc cle

PDE ntb cwe lloc ce cle

EQ cee loc cle ce cbo

LC cwe nbugs ce cle lloc

ML fanOut CvsLinEntropy loc lloc npm

Relink

Apache CountLineCodeExe CountLine CountLineCode RatioCommentToCode AvgEssential

Safe CountStmt SumCyclomaticStrict CountLineCode CountStmtDecl CountLineCodeExe

Zxing CountLineCodeDecl CountLineCode AvgLine CountLine CountStmtDecl

Fig. 15: An example of source instability in defect datasets studied here. The rows highlighted in gray indicate the bellwether dataset.

Note: Space limitations prohibit showing these for the other communities. Interested readers are encouraged to use our replication

package to see more examples of source instability in other communities.

from other data [13], [14], [156], [15], [16], [10], [11], [12].

That said, the result here is that all the communities of data

explored by this paper had useful bellwether datasets. Hence,

we would recommend trying the bellwether method before

moving on to more complex methods.

10 THREATS TO VALIDITY

10.1 Sampling Bias

Sampling bias threatens any classification experiment; what mat-

ters in one case may or may not hold in another case. For example,

even though we use 100+ open-source datasets in this study which

come from several sources, they were all supplied by individuals.

That said, this paper shares this sampling bias problem with

every other data mining paper. As researchers, all we can do is

document our selection procedure for data (as done in §3) and

suggest that other researchers try a broader range of data in future

work.

10.2 Learner Bias

For building the quality predictors in this study, we elected to

use random forests. We chose this learner because past studies

shows that, for prediction tasks, the results were superior to other

more complicated algorithms [65]. We note that recent studies

showed that different classifiers are highly complementary, de-

spite obtaining similar performances. Thus, the usage of Random

Forests is not bulletproof; but it can certainly act as a baseline

for other algorithms. Exploration of these learners is part of our

future work. Apart from this choice, one limitation to our current

study is that we have focused here on homogeneous transfer

learning (where the attributes in source and target are the same).

The implications for heterogeneous transfer learning (where the

attributes in source an target have different names) are not yet

clear. We have some initial results suggesting that a bellwether-

like effect occurs when learning across the communities but those

results are very preliminary. Hence, for the moment, we would

conclude:

• For the homogeneous case, we recommend using bellwethers

rather than similarity-based transfer learning.

• For the heterogeneous case, we recommend using dimension-

ality transforms.

10.3 Evaluation Bias

This paper uses one measure of prediction quality, G (see Equa-

tion 2). Other quality measures often used in software engineering

to quantify the effectiveness of prediction [145] [3] [139] (dis-

cussed in §7.2). A comprehensive analysis using these measures

may be performed with our replication package.

10.4 Random Bias

With random forest and SMOTE, there is invariably some degree

of randomness that is introduced by both the algorithms. Random

Forest, as the name suggests, randomly samples the data and

constructs trees which it then uses in an ensemble fashion to make

predictions.

To mitigate these biases, we run the experiments 30 times (the

reruns are equal to 30 in keeping with the central limit theorem).

Note that the reported variations over those runs were very small.

Hence, we conclude that parameter bias is theoretically a threat, as

researchers we have used the default parameters in all situations.

As researchers, all we can do is document our selection procedure

for data (as done in §3) and suggest that other researchers try a

broader range of data in future work.

10.5 Parameter Bias

With all the transfer learners and predictors discussed here, there

are a number of internal parameters that have been set by default.

The result of changing these parameters may (or may not) have

a significant impact on the outcomes of this study. However, it

must be noted that the possible number of combinations of these

parameters is combinatorial in nature. There do however exist a

growing number of literature on parameter optimization in SE.

However, a encompassing this beyond the scope of this current

paper.

20

Hence, we conclude that although parameter bias is a possible

threat, as researchers we have used the default parameters in

all situations sake of consistency. We recommend that other

researchers attempt to toggle these parameters with the use of

tuning algorithms in to validate (or possibly refute) our findings.

11 CONCLUSION

In this paper, we have undertaken a detailed study of transfer

learners. Our results show that regardless of the sub-domain

of software engineering (code smells, effort, defects or issue

lifetimes) or granularity of data (file, class, or method), there exists

a bellwether dataset that can be used to train relatively accurate

quality prediction models and these bellwethers do not require

elaborate data mining methods to discover (just a for-loop around

the data sets) and can be found very early in a project’s life cycle.

We show that bellwether method is a simple baseline for trans-

fer learning. The baseline performance offered by the bellwether

method would be especially useful for researchers attempting to

develop better transfer learners for different domains in software

engineering. Further, bellwethers satisfy all the criteria of a base-

line method, introduced in §2; i.e., they are simple to code and are

applicable to a wide range of domains.

Hence, from a pragmatic engineering perspective there are two

main reasons to use bellwethers: (a) they slow down the pace of

conclusion change; and (b) they can be use to construct a simple

baseline transfer learner with comparable performance to the state-

of-the-art.

Finally, we remark that much of the prior work on homoge-

neous transfer learning, including some of the authors own papers,

may have needless complicated the homogeneous transfer learning

process. We strongly recommend that when building increasingly

complex automatic methods, researchers should pause and com-

pare their supposedly more sophisticated method against simpler

alternatives. Going forward from this paper, we would recommend

that the transfer learning community uses bellwethers as a baseline

method against which they can test more complex methods.

ACKNOWLEDGEMENTS

The work is partially funded by NSF awards #1506586 and

#1302169.

REFERENCES

[1] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev, “Crane: Failure
prediction, change analysis and test prioritization in practice – experiences from
windows,” in Software Testing, Verification and Validation (ICST), 2011 IEEE

Fourth International Conference on, march 2011, pp. 357 –366.
[2] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” in ISSTA ’04:

Proceedings of the 2004 ACM SIGSOFT international symposium on Software

testing and analysis. New York, NY, USA: ACM, 2004, pp. 86–96.
[3] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems

with Precision: A Response to ”Comments on ’Data Mining Static Code
Attributes to Learn Defect Predictors’”,” IEEE Transactions on Software

Engineering, vol. 33, no. 9, pp. 637–640, sep 2007. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4288197

[4] B. Turhan, A. Tosun, and A. Bener, “Empirical evaluation of mixed-project defect
prediction models,” in Software Engineering and Advanced Applications (SEAA),

2011 37th EUROMICRO Conference on. IEEE, 2011, pp. 396–403.
[5] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung, “Exploiting the es-

sential assumptions of analogy-based effort estimation,” IEEE Transactions

on Software Engineering, vol. 28, pp. 425–438, 2012, available from
http://menzies.us/pdf/11teak.pdf.

[6] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data scientists
in software engineering,” in Proceedings of the 36th International Conference

on Software Engineering (ICSE 2014). ACM, June 2014. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=208800

[7] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L. Williams, “Approximating
attack surfaces with stack traces,” in ICSE’15, 2015.

[8] T. Zimmermann and T. Menzies, “Software analytics: So what?” IEEE Software,
vol. 30, no. 4, pp. 0031–37, 2013.

[9] C. Bird, T. Menzies, and T. Zimmermann, The Art and Science of Analyzing

Software Data. Elsevier, 2015.
[10] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings -

International Conference on Software Engineering, 2013, pp. 382–391.
[11] J. Nam and S. Kim, “Heterogeneous defect prediction,” in Proc. 2015

10th Jt. Meet. Found. Softw. Eng. - ESEC/FSE 2015. New York,
New York, USA: ACM Press, 2015, pp. 508–519. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2786805.2786814

[12] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Heterogeneous Cross-Company Defect
Prediction by Unified Metric Representation and CCA-Based Transfer Learning
Categories and Subject Descriptors,” Proceeding of the 10th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering (ESEC/FSE 2015), pp. 496–507, 2015.
[13] E. Kocaguneli and T. Menzies, “How to find relevant data for effort estimation?”

in Empirical Software Engineering and Measurement (ESEM), 2011 International

Symposium on. IEEE, 2011, pp. 255–264.
[14] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort

estimation,” Empirical Software Engineering, vol. 20, no. 3, pp. 813–843, jun
2015. [Online]. Available: http://link.springer.com/10.1007/s10664-014-9300-5

[15] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value
of cross-company and within-company data for defect prediction,” Empirical

Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.
[16] F. Peters, T. Menzies, and L. Layman, “LACE2: Better privacy-preserving data

sharing for cross project defect prediction,” in Proceedings - International Confer-

ence on Software Engineering, vol. 1, 2015, pp. 801–811.
[17] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project

defect prediction: a large scale experiment on data vs. domain vs. process,” in
Proceedings of the the 7th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software

engineering. ACM, 2009, pp. 91–100.
[18] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok,

“Local vs. global models for effort estimation and defect prediction,”
in 2011 26th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2011). IEEE, nov 2011, pp. 343–351. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6100072

[19] A. Hassan, “Remarks made during a presentation to the ucl crest open workshop,”
March 2017.

[20] R. Krishna, T. Menzies, and W. Fu, “Too Much Automation? The Bellwether Effect
and Its Implications for Transfer Learning,” in ASE’16, 2016.

[21] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company
software defect prediction,” Information and Software Technology, vol. 54, no. 3,
pp. 248–256, 2012.

[22] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a
support vector machine for cross-project defect prediction,” Empir.

Softw. Eng., vol. 21, no. 1, pp. 43–71, feb 2016. [Online]. Available:
http://link.springer.com/10.1007/s10664-014-9346-4

[23] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
you have given me too many knobs!: Understanding and dealing with
over-designed configuration in system software,” in Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2015. New York, NY, USA: ACM, 2015, pp. 307–319. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786852

[24] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”
Trans. Evol. Comp, vol. 1, no. 1, pp. 67–82, Apr. 1997. [Online]. Available:
http://dx.doi.org/10.1109/4235.585893

[25] P. R. Cohen, Empirical Methods for Artificial Intelligence. MIT Press, 1995.
[26] R. C. Holte, “Very Simple Classification Rules Perform Well on Most Commonly

Used Datasets,” Machine Learning, vol. 11, p. 63, 1993.
[27] P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A baseline model for

software effort estimation,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 3, pp.
20:1–20:11, May 2015. [Online]. Available: http://doi.acm.org/10.1145/2738037

[28] N. Mittas and L. Angelis, “Ranking and clustering software cost estimation models
through a multiple comparisons algorithm,” IEEE Trans. Software Eng., vol. 39,
no. 4, pp. 537–551, 2013.

[29] M. J. Shepperd and S. G. MacDonell, “Evaluating prediction systems in software
project estimation,” Information & Software Technology, vol. 54, no. 8, pp. 820–
827, 2012.

[30] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus
within-company cost estimation studies: A systematic review,” IEEE Trans.

Softw. Eng., vol. 33, no. 5, pp. 316–329, May 2007. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2007.1001

[31] J. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein, “Tracking concept drift of
software projects using defect prediction quality,” in Mining Software Repositories,

2009. MSR’09. 6th IEEE International Working Conference on. IEEE, 2009, pp.
51–60.

[32] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving

the Design of Existing Code. Boston, MA, USA: Addison-Wesley Longman,
1999.

[33] J. Kerievsky, Refactoring to Patterns. Addison-Wesly Professional, 2005.
[34] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using Software

Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented

Systems. Springer Verlag, 2006.
[35] A. Campbell, “SonarQube: Open source quality management,” 2015, website:

tiny.cc/2q4z9x.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4288197
http://menzies.us/pdf/11teak.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=208800
http://dl.acm.org/citation.cfm?doid=2786805.2786814
http://link.springer.com/10.1007/s10664-014-9300-5
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6100072
http://link.springer.com/10.1007/s10664-014-9346-4
http://doi.acm.org/10.1145/2786805.2786852
http://dx.doi.org/10.1109/4235.585893
http://doi.acm.org/10.1145/2738037
http://dx.doi.org/10.1109/TSE.2007.1001

21

[36] A. Yamashita and L. Moonen, “Do developers care about code smells? an ex-
ploratory survey,” in Reverse Engineering (WCRE), 2013 20th Working Conference

on, Oct 2013, pp. 242–251.
[37] H. Olague, L. Etzkorn, S. Gholston, and S. Quattlebaum, “Empirical validation

of three software metrics suites to predict fault-proneness of object-oriented
classes developed using highly iterative or agile software development processes,”
Software Engineering, IEEE Transactions, vol. 33, no. 6, pp. 402–419, 2007.

[38] K. Aggmakarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical analysis for
investigating the effect of object-oriented metrics on fault proneness: a replicated
case study,” Software Process: Improvement and Practice, vol. 14, no. 1, January
2009.

[39] E. Arisholm and L. Briand, “Predicting fault prone components in a JAVA
legacy system,” 2006 ACM/IEEE international symposium on Empirical software

engineering, p. 17, 2006.
[40] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented design metrics

as quality indicators,” Software Engineering, IEEE Transactions, vol. 22, no. 10,
pp. 751–761, 1996.

[41] L. Briand, J. Wust, J. Daly, and D. V. Porter, “Exploring the relationships between
design measures and software quality in object-oriented systems,” Journal of

Systems and Software, vol. 51, no. 3, pp. 245–273, 2000.
[42] L. Briand, J. Wust, and H. Lounis, “Replicated case studies for investigating quality

factors in object-oriented designs,” Empirical Software Engineering, vol. 6, no. 1,
pp. 11–58, 2001.

[43] M. Cartwright and M. Shepperd, “An empirical investigation of an object-oriented
software system,” Software Engineering, IEEE Transactions, vol. 26, no. 8, pp.
786–796, 2000.

[44] K. el Emam, W. Melo, and J. Machado, “The prediction of faulty classes using
object-oriented design metrics,” Journal of Systems and Software, vol. 56, no. 1,
pp. 63–75, 2001.

[45] K. el Emam, S. Benlarbi, N. Goel, and S. Rai, “A validation of object-oriented
metrics,” National Research Council of Canada, NRC/ERB,, vol. 1063, 1999.

[46] M. Tang, M. Kao, and M. Chen, “An empirical study on object-oriented metrics,”
Software Metrics Symposium, vol. Proceedings. Sixth International, pp. 242–249,
1999.

[47] P. Yu, T. Systa, and H. Muller, “Predicting fault-proneness using oo metrics an
industrial case study,” Sixth European Conference on Software Maintenance and

Reengineering, pp. 99–107, 2002.
[48] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for object-

oriented design complexity: implications for software defects,” IEEE Transactions

on Software Engineering, vol. 29, no. 4, pp. 297–310, April 2003.
[49] Y. Zhou and H. Leung, “Empirical analysis of object-oriented design metrics for

predicting high and low severity faults,” Software Engineering, IEEE Transactions,
vol. 32, no. 10, pp. 771–789, 2006.

[50] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented
metrics on open source software for fault prediction,” Software Engineering, IEEE

Transactions, vol. 31, no. 10, pp. 897–910, 2005.
[51] T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj, and A. Zeller,

“Predicting defects in SAP Java code: An experience report,” Software Engi-

neering - Companion Volume, 2009. ICSE-Companion 2009. 31st International

Conference, pp. 172–181, 2009.
[52] R. Shatnawi and W. Li, “The effectiveness of software metrics in identifying error-

prone classes in post-release software evolution process,” Journal of Systems and

Software, vol. 81, no. 11, pp. 1868–1882, 2008.
[53] F. Fioravanti and P. Nesi, “A study on fault-proneness detection of object-

oriented systems,” Software Maintenance and Reengineering, 2001. Fifth European

Conference, pp. 121–130, 2001.
[54] M. Thongmak and P. Muenchaisri, “Predicting faulty classes using design metrics

with discriminant analysis,” Software Engineering Research and Practice, pp. 621–
627, 2003.

[55] G. Denaro, L. Lavazza, and M. Pezze, “An empirical evaluation of object oriented
metrics in industrial setting,” The 5th CaberNet Plenary Workshop, Porto Santo,

Madeira Archipelago, Portugal, 2003.
[56] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and G. Succi, “Identifi-

cation of defect-prone classes in telecommunication software systems using design
metrics,” Information Sciences, vol. 176, no. 24, pp. 3711–3734, 2006.

[57] M. English, C. Exton, I. Rigon, and B. Cleary, “Fault detection and prediction in
an open-source software project,” Proceedings of the 5th International Conference

on Predictor Models in Software Engineering, no. 1-11, 2009.
[58] R. Shatnawi, “A quantitative investigation of the acceptable risk levels of object-

oriented metrics in open-source systems,” IEEE Transactions on Software Engi-

neering, vol. 36, no. 2, pp. 216–225, 2010.
[59] Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of object-oriented

metrics for predicting fault proneness models,” Software Quality Journal, vol. 18,
no. 1, pp. 3–35, 2010.

[60] D. Glasberg, K. el Emam, W. Memo, and N. Madhavji, “Validating object-oriented
design metrics on a commercial JAVA application,” NRC 44146, 2000.

[61] K. el Emam, S. Benlarbi, N. Goel, and S. Rai, “The confounding effect of
class size on the validity of object-oriented metrics,” Software Engineering, IEEE

Transactions, vol. 27, no. 7, pp. 630–650, 2001.
[62] M. Thapaliyal and G. Verma, “Software defects and object oriented metrics-an

empirical analysis,” International Journal of Computer Applications, vol. 9/5,
2010.

[63] J. Xu, D. Ho, and L. Capretz, “An empirical validation of object-oriented design
metrics for fault prediction,” Journal of Computer Science, pp. 571–577, July 2008.

[64] G. Succi, “Practical assessment of the models for identification of defect-prone
classes in object-oriented commercial systems using design metrics,,” Journal of

Systems and Software, vol. 65, no. 1, pp. 1–12, January 2003.

[65] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Trans. Softw. Eng.,
vol. 34, no. 4, pp. 485–496, jul 2008. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4527256

[66] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineering,” IEEE

Transactions on Software Engineering, vol. 38, no. 6, pp. 1276–1304, Nov 2012.
[67] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using

support vector machines,” JSS, vol. 81, no. 5, pp. 649–660, 2008.
[68] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener, “Defect

prediction from static code features: current results, limitations, new approaches,”
Automated Software Engineering, vol. 17, no. 4, pp. 375–407, 2010.

[69] I. Gondra, “Applying machine learning to software fault-proneness prediction,”
Journal of Systems and Software, vol. 81, no. 2, pp. 186–195, 2008.

[70] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault prediction
metrics: A systematic literature review,” Information and Software Technology,
vol. 55, no. 8, pp. 1397–1418, 2013.

[71] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault prediction models,”
Empirical Software Engineering, vol. 13, no. 5, pp. 561–595, 2008.

[72] S. Wang and X. Yao, “Using class imbalance learning for software defect predic-
tion,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–443, 2013.

[73] T. Mende and R. Koschke, “Revisiting the evaluation of defect prediction models,”
in Proceedings of the 5th International Conference on Predictor Models in

Software Engineering. ACM, 2009, p. 7.
[74] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, “Sample-based software defect prediction

with active and semi-supervised learning,” Automated Software Engineering,
vol. 19, no. 2, pp. 201–230, 2012.

[75] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and imbalanced
data: Problems in software defect prediction,” in Tools with Artificial Intelligence

(ICTAI), 2010 22nd IEEE International Conference on, vol. 1. IEEE, 2010, pp.
137–144.

[76] Y. Jiang, J. Lin, B. Cukic, and T. Menzies, “Variance analysis in software fault
prediction models,” in Software Reliability Engineering, 2009. ISSRE’09. 20th

International Symposium on. IEEE, 2009, pp. 99–108.
[77] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of classification

techniques on the performance of defect prediction models,” in 37th ICSE-Volume

1. IEEE Press, 2015, pp. 789–800.
[78] Y. Jiang, B. Cukic, and T. Menzies, “Can data transformation help in the detection

of fault-prone modules?” in Proceedings of the 2008 workshop on Defects in large

software systems. ACM, 2008, pp. 16–20.
[79] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “Automated

parameter optimization of classification techniques for defect prediction models,”
in ICSE 2016. ACM, 2016, pp. 321–332.

[80] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it really
necessary?” IST, vol. 76, pp. 135–146, 2016.

[81] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence,
Dataset shift in machine learning. The MIT Press, 2009.

[82] D. J. Hand, “Classifier Technology and the Illusion of Progress,” ArXiv Mathemat-

ics e-prints, Jun. 2006.
[83] A. Storkey, “When training and test sets are different: Charac-

terizing learning transfer,” in Dataset Shift in Machine Learning.
The MIT Press, dec 2008, pp. 2–28. [Online]. Available:
https://doi.org/10.7551/mitpress/9780262170055.003.0001

[84] A. Agrawal and T. Menzies, “”better data” is better than ”better data miners”
(benefits of tuning SMOTE for defect prediction),” CoRR, vol. abs/1705.03697,
2017. [Online]. Available: http://arxiv.org/abs/1705.03697

[85] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, and D. Poshyvanyk, “When and Why Your Code
Starts to Smell Bad,” in 2015 IEEE/ACM 37th IEEE Int. Conf.

Softw. Eng. IEEE, May 2015, pp. 403–414. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7194592

[86] M. Mantyla, J. Vanhanen, and C. Lassenius, “Bad smells - humans as code critics,”
in Software Maintenance, 2004. Proceedings. 20th IEEE International Conference

on, Sept 2004, pp. 399–408.
[87] D. Sjoberg, A. Yamashita, B. Anda, A. Mockus, and T. Dyba, “Quantifying

the effect of code smells on maintenance effort,” Software Engineering, IEEE

Transactions on, vol. 39, no. 8, pp. 1144–1156, Aug 2013.
[88] C. Passos, A. P. Braun, D. S. Cruzes, and M. Mendonca, “Analyzing the impact of

beliefs in software project practices,” in ESEM’11, 2011.
[89] M. Jørgensen and T. M. Gruschke, “The impact of lessons-learned sessions

on effort estimation and uncertainty assessments,” Software Engineering, IEEE

Transactions on, vol. 35, no. 3, pp. 368 –383, May-June 2009.
[90] P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence in empirical software

engineering,” in Proceedings of the 38th International Conference on Software

Engineering. ACM, 2016, pp. 108–119.
[91] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project

defect prediction,” in ESEC/FSE’09, August 2009.
[92] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok, “Local vs. global

models for effort estimation and defect prediction,” in Proceedings of the 2011 26th

IEEE/ACM International Conference on Automated Software Engineering. IEEE
Computer Society, 2011, pp. 343–351.

[93] B. Turhan, “On the dataset shift problem in software engineering prediction
models,” Empirical Software Engineering, vol. 17, pp. 62–74, 2012.

[94] T. Menzies, Z. Chen, D. Port, and J. Hihn, “Simple software cost estimation: Safe
or unsafe?” in Proceedings, PROMISE workshop, ICSE 2005, 2005, available from
http://menzies.us/pdf/05safewhen.pdf.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4527256
https://doi.org/10.7551/mitpress/9780262170055.003.0001
http://arxiv.org/abs/1705.03697
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7194592
http://menzies.us/pdf/05safewhen.pdf

22

[95] M. Jorgensen, “Realism in assessment of effort estimation uncertainty: It matters
how you ask,” IEEE Trans. Softw. Eng., vol. 30, no. 4, pp. 209–217, 2004.

[96] B. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus within-company
cost estimation studies: A systematic review,” IEEE Trans. Softw. Eng., vol. 33,
no. 5, pp. 316–329, 2007, member-Kitchenham, Barbara A.

[97] S. G. MacDonell and M. J. Shepperd, “Comparing local and global software effort
estimation models – reflections on a systematic review,” in Proceedings of the First

International Symposium on Empirical Software Engineering and Measurement,
ser. ESEM ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 401–
409.

[98] C. Mair and M. Shepperd, “The consistency of empirical comparisons of regres-
sion and analogy-based software project cost prediction,” in Empirical Software

Engineering, 2005. 2005 International Symposium on, nov. 2005, p. 10 pp.
[99] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building

a universal defect prediction model with rank transformed predictors,”
Empirical Software Engineering, pp. 1–39, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10664-015-9396-2

[100] A. Yamashita and S. Counsell, “Code smells as system-level indicators of main-
tainability: An empirical study,” Journal of Systems and Software, vol. 86, no. 10,
pp. 2639–2653, 2013.

[101] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell relations
on software maintainability: An empirical study,” in Proceedings of the 2013

International Conference on Software Engineering. IEEE Press, 2013, pp. 682–
691.

[102] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the impact of
design debt on software quality,” in Proceedings of the 2nd Workshop on Managing

Technical Debt. ACM, 2011, pp. 17–23.
[103] R. Krishna, T. Menzies, and L. Layman, “Less is More: Minimizing Code

Reorganization using XTREE,” CoRR, vol. abs/1609.03614, 2016. [Online].
Available: http://arxiv.org/abs/1609.03614

[104] J. Kreimer, “Adaptive Detection of Design Flaws,” Electronic Notes in Theoretical

Computer Science, vol. 141, no. 4, pp. 117–136, 2005. [Online]. Available:
//www.sciencedirect.com/science/article/pii/S1571066105051844

[105] F. Khomh, S. Vaucher, Y. G. Guhneuc, and H. Sahraoui, “A bayesian approach for
the detection of code and design smells,” in 2009 Ninth International Conference

on Quality Software, Aug 2009, pp. 305–314.
[106] F. Khomh, S. Vaucher, Y.-G. Guhneuc, and H. Sahraoui, “Bdtex: A

gqm-based bayesian approach for the detection of antipatterns,” Journal

of Systems and Software, vol. 84, no. 4, pp. 559 – 572, 2011, the
Ninth International Conference on Quality Software. [Online]. Available:
//www.sciencedirect.com/science/article/pii/S0164121210003225

[107] J. Yang, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Filtering clones for
individual user based on machine learning analysis,” in 2012 6th International

Workshop on Software Clones (IWSC), June 2012, pp. 76–77.
[108] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and

experimenting machine learning techniques for code smell detection,” Empir.

Softw. Eng., vol. 21, no. 3, pp. 1143–1191, jun 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10664-015-9378-4http://link.springer.com/10.1007/s10664-015-9378-4

[109] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble, “Qualitas corpus: A curated collection of java code for empirical studies,”
in 2010 Asia Pacific Software Engineering Conference (APSEC2010), Dec. 2010,
pp. 336–345.

[110] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proceedings of the Fourth

International Workshop on Mining Software Repositories, ser. MSR ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 29–. [Online].
Available: http://dx.doi.org/10.1109/MSR.2007.25

[111] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,” in
Proceedings of the 2Nd International Workshop on Recommendation Systems for

Software Engineering, ser. RSSE ’10. New York, NY, USA: ACM, 2010, pp.
52–56. [Online]. Available: http://doi.acm.org/10.1145/1808920.1808933

[112] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time: An
empirical study of commercial software projects,” in Proceedings of the

2013 International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 1042–1051. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486931

[113] M. Rees-jones, M. Martin, C. College, and T. Menzies, “Better Predictors for Issue
Lifetime,” , pp. 1–8, 2017.

[114] Y. Yang, L. Xie, Z. He, Q. Li, V. Nguyen, B. Boehm, and R. Valerdi, “Local
bias and its impacts on the performance of parametric estimation models,” in
Proceedings of the 7th International Conference on Predictive Models in Software

Engineering - Promise ’11. New York, New York, USA: ACM Press, 2011, pp.
1–10. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2020390.2020404

[115] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn, “Negative results
for software effort estimation,” Empirical Software Engineering, pp. 1–26, 2016.
[Online]. Available: http://dx.doi.org/10.1007/s10664-016-9472-2

[116] B. W. Boehm et al., Software engineering economics. Prentice-hall Englewood
Cliffs (NJ), 1981, vol. 197.

[117] M. Lowry, M. Boyd, and D. Kulkami, “Towards a theory for integration of math-
ematical verification and empirical testing,” in Automated Software Engineering,

1998. Proceedings. 13th IEEE International Conference on. IEEE, 1998, pp.
322–331.

[118] N. Nagappan and T. Ball, “Static analysis tools as early indicators of pre-release
defect density,” in ICSE 2005, St. Louis, 2005.

[119] T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoonian, “Model-
based tests of truisms,” in Proceedings of IEEE ASE 2002, 2002, available from
http://menzies.us/pdf/02truisms.pdf.

[120] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn
defect predictors,” IEEE Transactions on Software Engineering, January 2007,
available from http://menzies.us/pdf/06learnPredict.pdf.

[121] A. Tosun, A. Bener, and R. Kale, “AI-based software defect predictors: Applica-
tions and benefits in a case study,” in Twenty-Second IAAI Conference on Artificial

Intelligence, 2010.
[122] A. Tosun, A. Bener, and B. Turhan, “Practical considerations of deploying ai in

defect prediction: A case study within the Turkish telecommunication industry,” in
PROMISE’09, 2009.

[123] F. Shull, V. B. ad B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port, I. Rus,
R. Tesoriero, and M. Zelkowitz, “What we have learned about fighting defects,” in
Proceedings of 8th International Software Metrics Symposium, Ottawa, Canada,
2002, pp. 249–258.

[124] M. Fagan, “Design and code inspections to reduce errors in program development,”
IBM Systems Journal, vol. 15, no. 3, 1976.

[125] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu, “Comparing static bug finders
and statistical prediction,” in Proceedings of the 36th International Conference on

Software Engineering. ACM, 2014, pp. 424–434.
[126] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr., “Does

bug prediction support human developers? findings from a google case study,”
in Proceedings of the 2013 International Conference on Software Engineering,
ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 372–381. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486838

[127] S. Rakitin, Software Verification and Validation for Practitioners and Managers,

Second Edition. Artech House, 2001.
[128] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction

approaches: a benchmark and an extensive comparison,” Empir. Softw.

Eng., vol. 17, no. 4-5, pp. 531–577, aug 2012. [Online]. Available:
http://link.springer.com/10.1007/s10664-011-9173-9

[129] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink,” in Proc. 19th ACM

SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng. - SIGSOFT/FSE ’11. New
York, New York, USA: ACM Press, 2011, p. 15.

[130] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented
design metrics as quality indicators,” Software Engineering, IEEE Transactions

on, vol. 22, no. 10, pp. 751–761, 1996.
[131] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules in telephone

switches,” Software Engineering, IEEE Transactions on, vol. 22, no. 12, pp. 886–
894, 1996.

[132] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect prediction,”
in Software Engineering (ICSE), 2011 33rd International Conference on. IEEE,
2011, pp. 481–490.

[133] M. Jureczko and L. Madeyski, “Towards identifying software project clusters with
regard to defect prediction,” in Proc. 6th Int. Conf. Predict. Model. Softw. Eng. -

PROMISE ’10. New York, New York, USA: ACM Press, 2010, p. 1. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1868328.1868342

[134] L. Breiman, “Random forests,” Machine learning, pp. 5–32, 2001. [Online].
Available: http://link.springer.com/article/10.1023/A:1010933404324

[135] L. Pelayo and S. Dick, “Applying Novel Resampling Strategies To Software
Defect Prediction,” in NAFIPS 2007 - 2007 Annu. Meet. North Am.

Fuzzy Inf. Process. Soc. IEEE, jun 2007, pp. 69–72. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4271036

[136] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, 2002.

[137] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software project
estimation,” Information and Software Technology, vol. 54, no. 8, pp. 820–827,
2012.

[138] W. B. Langdon, J. Dolado, F. Sarro, and M. Harman, “Exact
mean absolute error of baseline predictor, marp0,” Information and

Software Technology, vol. 73, pp. 16 – 18, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584916000057

[139] W. Fu, T. Menzies, and X. Shen, “Tuning for software
analytics: Is it really necessary?” Information and Software

Technology, vol. 76, pp. 135 – 146, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584916300738

[140] S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying software changes: Clean or
buggy?” IEEE Transactions on Software Engineering, vol. 34, no. 2, pp. 181–196,
2008.

[141] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect
prediction,” in Proceedings of the 38th International Conference on Software

Engineering. ACM, 2016, pp. 297–308.
[142] N. V. Chawla, “C4. 5 and imbalanced data sets: investigating the effect of sampling

method, probabilistic estimate, and decision tree structure,” in Proceedings of the

ICML, vol. 3, 2003.
[143] M. Kubat, S. Matwin et al., “Addressing the curse of imbalanced training sets:

one-sided selection,” in ICML, vol. 97. Nashville, USA, 1997, pp. 179–186.
[144] R. Shatnawi, “A quantitative investigation of the acceptable risk levels of object-

oriented metrics in open-source systems,” IEEE Transactions on software engi-

neering, vol. 36, no. 2, pp. 216–225, 2010.
[145] Y. Ma and B. Cukic, “Adequate and precise evaluation of quality models in

software engineering studies,” in Predictor Models in Software Engineering, 2007.

PROMISE’07: ICSE Workshops 2007. International Workshop on, May 2007, pp.
1–1.

[146] D.-F. Xia, S.-L. Xu, and F. Qi, “A proof of the arithmetic mean-geometric mean-
harmonic mean inequalities,” RGMIA research report collection, vol. 2, no. 1,
1999.

[147] D. L. Vaux, F. Fidler, and G. Cumming, “Replicates and repeatswhat is the
difference and is it significant?” EMBO reports, vol. 13, no. 4, pp. 291–296, 2012.

[148] B. Efron and R. J. Tibshirani, An introduction to the bootstrap, ser. Mono. Stat.
Appl. Probab. London: Chapman and Hall, 1993.

http://dx.doi.org/10.1007/s10664-015-9396-2
http://arxiv.org/abs/1609.03614
//www.sciencedirect.com/science/article/pii/S1571066105051844
//www.sciencedirect.com/science/article/pii/S0164121210003225
http://dx.doi.org/10.1007/s10664-015-9378-4 http://link.springer.com/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1109/MSR.2007.25
http://doi.acm.org/10.1145/1808920.1808933
http://dl.acm.org/citation.cfm?id=2486788.2486931
http://dl.acm.org/citation.cfm?doid=2020390.2020404
http://dx.doi.org/10.1007/s10664-016-9472-2
http://menzies.us/pdf/02truisms.pdf
http://menzies.us/pdf/06learnPredict.pdf
http://dl.acm.org/citation.cfm?id=2486788.2486838
http://link.springer.com/10.1007/s10664-011-9173-9
http://portal.acm.org/citation.cfm?doid=1868328.1868342
http://link.springer.com/article/10.1023/A:1010933404324
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4271036
http://www.sciencedirect.com/science/article/pii/S0950584916000057
http://www.sciencedirect.com/science/article/pii/S0950584916300738

23

[149] N. L. Leech and A. J. Onwuegbuzie, “A call for greater use of nonparametric
statistics.” in Annual Meeting of the Mid-South Educational Research Association.
ERIC, 2002.

[150] S. Poulding and J. A. Clark, “Efficient software verification: Statistical testing
using automated search,” IEEE Transactions on Software Engineering, vol. 36,
no. 6, pp. 763–777, 2010.

[151] A. Arcuri and L. Briand, “A practical guide for using statistical tests to assess
randomized algorithms in software engineering,” in ICSE’11, 2011, pp. 1–10.

[152] M. J. Shepperd and S. G. MacDonell, “Evaluating prediction systems in software
project estimation,” Information & Software Technology, vol. 54, no. 8, pp. 820–
827, 2012.

[153] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg, “A systematic

review of effect size in software engineering experiments,” Information & Software

Technology, vol. 49, no. 11-12, pp. 1073–1086, 2007.
[154] E. Kocaguneli, T. Zimmermann, C. Bird, N. Nagappan, and T. Menzies, “Dis-

tributed development considered harmful?” in Proceedings - International Confer-

ence on Software Engineering, 2013, pp. 882–890.
[155] A. Vargha and H. D. Delaney, “A critique and improvement of the cl common

language effect size statistics of mcgraw and wong,” Journal of Educational and

Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.
[156] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source projects:

An empirical study on defect prediction,” in Empirical Software Engineering and

Measurement, 2013 ACM/IEEE International Symposium on. IEEE, 2013, pp.
45–54.

	1 Introduction
	2 Baselining with Bellwethers
	3 Research Questions
	4 Conclusion Instability in SE
	4.1 What is conclusion instability?
	4.2 Code Smells
	4.3 Defect Prediction
	4.4 Effort Estimation

	5 Bellwethers in Software Engineering
	5.1 Transfer Learning
	5.2 Bellwether Method

	6 Target Domains
	6.1 Code Smells
	6.2 Issue Lifetime Estimation
	6.3 Effort Estimation
	6.4 Defect Prediction

	7 Methodology
	7.1 Learning Methods
	7.2 Evaluation Strategy
	7.2.1 Evaluation for Continuous Classes
	7.2.2 Evaluation for Discrete Classes

	7.3 Statistics
	7.4 Experimental Setup
	7.5 Understanding These Results

	8 Results
	9 Discussion
	10 Threats to Validity
	10.1 Sampling Bias
	10.2 Learner Bias
	10.3 Evaluation Bias
	10.4 Random Bias
	10.5 Parameter Bias

	11 Conclusion
	References

