
An Empirical Comparison of Combinatorial
Testing, Random Testing and Adaptive

Random Testing
Huayao Wu , Changhai Nie, Justyna Petke , Yue Jia, and Mark Harman

Abstract—We present an empirical comparison of three test generation techniques, namely, Combinatorial Testing (CT), Random

Testing (RT) and Adaptive Random Testing (ART), under different test scenarios. This is the first study in the literature to account for

the (more realistic) testing setting in which the tester may not have complete information about the parameters and constraints that

pertain to the system, and to account for the challenge posed by faults (in terms of failure rate). Our study was conducted on nine real-

world programs under a total of 1683 test scenarios (combinations of available parameter and constraint information and failure rate).

The results show significant differences in the techniques’ fault detection ability when faults are hard to detect (failure rates are

relatively low). CT performs best overall; no worse than any other in 98 percent of scenarios studied. ART enhances RT, and is

comparable to CT in 96 percent of scenarios, but its computational cost can be up to 3.5 times higher than CT when the program is

highly constrained. Additionally, when constraint information is unavailable for a highly-constrained program, a large random test suite

is as effective as CT or ART, yet its computational cost of test generation is significantly lower than that of other techniques.

Index Terms—Combinatorial testing, random testing, adaptive random testing

Ç

1 INTRODUCTION

COMBINATORIAL Testing (CT) is a potentially powerful
technique for revealing faults in software systems.

However, one of the key inputs to the approach is the model
of the parameters and constraints that pertain to the system.
Previous studies have assumed perfect knowledge of all
parameters and constraints. This may be sadly unrealistic in
many practical real-world scenarios, because modelling is
still a labour intensive and error-prone process with neither
automatic techniques nor general rules on which testers can
rely [1]. Thus a practising tester may not be able to deter-
mine all the parameters that may affect their system, nor all
the constraints that delimit valid potential parameter combi-
nations [2], [3].

In the absence of constraints, it is known that purely ran-
dom testing is surprisingly effective at achieving combina-
torial coverage [4], [5]. This raises the natural question as to
the relative performance of combinatorial testing techniques
against random (and improved adaptive versions of pure

random testing), when the tester has imperfect (partial)
knowledge of the constraints and parameters that apply.

Furthermore, a fault that is easy to detect (because many
test cases execute the fault and cause it to lead to failure)
may have different characteristics from those faults that are
harder to detect. Practising testers may be interested in dif-
ferent kinds of faults (as characterised by their likely failure
rate) for different systems. For example, a well-tested sys-
tem that has proved reliable may contain a high proportion
of hard-to-detect faults, characterised by lower failure rates,
while a new implementation of a poorly understood system
may have a higher proportion of easier-to-detect (higher
failure rate) faults. Therefore, it is important for practicing
testers to understand the differences in the behaviour of
testing techniques as the failure rate of the faults present in
the system varies.

We study three testing techniques in this work: combina-
torial testing (CT), also known as combinatorial interaction
testing (CIT), random testing (RT) and adaptive random
testing (ART) in the presence of partial information about
parameters and constraints and with respect to different
levels of fault ‘challenge’ (denoted by faults’ failure rates).
CT, RT and ART are all popular testing techniques in prac-
tice [1], [6]. They require no knowledge about the imple-
mentation of software and their test suite generations can
all be automated [7]. In order to choose between these three
techniques, one needs to understand their relative effective-
ness and efficiency. To this end, many previous compara-
tive studies have been reported.

Table 1 summarises previous studies of CT, RT and ART.
When comparing CT against RT, previous studies often lead
to controversial results: some suggested that CT is more

� H. Wu and C. Nie are with the Department of Computer Science and Tech-
nology, Nanjing University, Nanjing, Jiangsu 210023, China.
E-mail: hywu@smail.nju.edu.cn, changhainie@nju.edu.cn.

� J. Petke is with CREST, Computer Science, University College London,
London WC1E 6BT, United Kingdom. E-mail: j.petke@ucl.ac.uk.

� Y. Jia and M. Harman are with the Facebook Inc., London W1T 1FB,
United Kingdom, and with the CREST, Computer Science, University
College London, London WC1E 6BT, United Kingdom.
E-mail: {yue.jia, mark.harman}@ucl.ac.uk.

Manuscript received 3 Sept. 2017; revised 14 June 2018; accepted 18 June
2018. Date of publication 6 July 2018; date of current version 16 Mar. 2020.
(Corresponding author: Changhai Nie.)
Recommended for acceptance by A. Roychoudhury.
Digital Object Identifier no. 10.1109/TSE.2018.2852744

302 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

0098-5589 � 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
mailto:
mailto:
mailto:
mailto:

effective than random test suite of similar or larger size [8],
[9], [10], [11], [12], [17], [18], [21], while others found that the
difference between CT and RT is not as large as people
expect [13], [14], [15], [16], [19], [20]. Most of these previous
studies are derived from a few example cases; only two ([20]
and [21]) reported empirical results beyond case analysis.

Regarding comparisons between ART and RT, it is gener-
ally agreed that ART enhances RT, which was shown both
theoretically and empirically [22], [23], [24], [25], [26]. How-
ever, these studies assumed no constraints between parame-
ters, which may be problematic as real-world applications
often have constrained domains [29], [30]. There is only one
previous study [28] that compared all three (CT, RT and
ART), but only for synthetically-generated test models (all
models are unconstrained and every synthetic fault is
caused by an exact k-way combination), thereby reducing
the real-world relevance of its findings. Moreover, none of
the above studies has taken different test scenarios into
account, whereas the behaviour of CT, RT and ART might
change as the test scenario changes.

In order to better understand the benefits and limitations
of CT, RT and ART under different test scenarios, a further
empirical comparison is thus needed. The study of partial
parameters and constraints is important, because it increases
relevance to real-world test scenarios. It is clearly optimistic
to expect that, in all cases, a tester will be aware of all such
parameters and constraints, potentially artificially inflating
the perceived performance of different testing techniques
by imbuing them with unrealistic levels of information.
Therefore, we adopt a more nuanced approach in which we
evaluate testing techniques in the presence of imperfect
information, allowing us to report on the performance of the
testing techniques when the tester has incomplete informa-
tion about either parameters or constraints (or both).

Intuition might suggest that CT would be a good choice
when the fault is hard to detect in a complex software sys-
tem [31], but previous studies do not provide quantitive
results in terms of either fault proneness or search space
size. Additionally, ART might be suggested as an alterna-
tive technique to CT as a large proportion of combinations
among parameters is expected to be covered by a similarity-
based heuristic for test suite generation [27], but this finding
has not yet been empirically evaluated. Moreover, with the
many different test scenarios in real-world applications, it is
important to investigate how the performance of CT, RT
and ART changes as the test scenario changes.

The study we report here aims to investigate these ques-
tions more thoroughly. Specifically, this is the first to

account for different test scenarios on the relative perfor-
mance of CT, RT and ART. We conducted our experiment
on nine real-world programs: six of them are from the Soft-
ware-artifact Infrastructure Repository (SIR) [32]. The other
three are widely-used relatively larger highly-configurable
programs [21], [33]. By combining different choices of the
three features that form our test scenario (i.e., proportion of
parameters available, proportion of constraints available
and failure rate), a total of 1683 test scenarios was created.
For each test scenario, we applied CT, RT and ART to gener-
ate test suites of the same size, and evaluated their relative
performance in terms of fault detection ability and compu-
tational cost. This study seeks to provide not only quantita-
tive data to underpin our intuitions about CT, RT and ART,
but also a baseline against which others can extend and
explore these relationships in future work.

The findings of this study provide suggestions on the
choices of CT, RT and ART with respect to different test sce-
narios. Specifically, our primary findings are as follows:

1) Clearly any techniques will become indistinguish-
able below very low and also above very high failure
rates; low rates denote almost-impossible-to-find
faults, whereas faults with very high failure rates
would allow any non-trivial technique to expose
them. Our study gives quantitative bounds to these
intuitions, and does so for CT, RT and ART. Specifi-
cally, we found that the techniques become indistin-
guishable at failure rates below 0.0001 and above
0.71. We also observed that the approximate ‘sweet
spot of differentiation’ (at which techniques are max-
imally distinguishable) lies between failure rates of
roughly 0.001 and 0.2.

2) Overall, CT is recommended as the most favourable
technique; its fault detection ability is no worse than
RT and ART in 98 percent of test scenarios, especially
when the failure rate is lower than 0.005, and all con-
straints are present in the model. However, when no
constraints are available in the model, the three test-
ing techniques tend to perform equally well, which
makes RT more computational cost-effective.

3) As an improvement of RT, ART enhances RT in almost
all test scenarios. In 96 percent of scenarios ART is as
effective as CT, and sometimes even performs better.
However, ART might be significantly slower (up to
3.5 times in our study) than CT when there is a large
number of constraints present in the model and all
parameters are involved in constraints.

TABLE 1
Overview of Literature on the Comparisons of CT, RT and ART

Reference Type of Experiment Constraints Included? CT / RT ART / RT CT / ART

[8], [9], [10], [11], [12], [13], [14], [15], [16] Case Analysis No
p

[17], [18], [19] Simulation No
p

[20], [21] Empirical Study Yes
p

[5] Formal Analysis No
p

[22] Simulation No
p

[23], [24], [25], [26] Empirical Study No
p

[27] Simulation Yes
p

[28] Simulation No
p p p

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 303

4) A high strength (large test suite) is desirable when
only partial constraint information is available,
where the average difference in proportion of faults
detected between 4-way and 2-way testing is 0.25. A
high strength is also much more desirable when the
failure rate is between 0.001 and 0.05, where up to 89
percent of faults can be further detected by a suffi-
ciently large test suite.

5) When constraint information is unavailable for a
highly constrained program, a large random test
suite is preferable, because it performs as well as CT
and ART but has a very low computational cost. By
contrast, when all constraints are present in the
model, we recommend using a small but systemati-
cally-designed test suite, such as a 2-way CT, at first,
and then increase strength as needed.

The rest of this paper is organised as follows. Section 2
introduces basic concepts and the three test suite generation
techniques: CT, RT and ART. Section 3 describes our
research questions and experimental design. Section 4
reports the results. Section 5 discusses some implications of
our findings. Section 6 describes threats to validity. Section 7
presents related work, and Section 8 concludes this paper.

2 BACKGROUND

We first introduce the notation used throughout the paper
and describe the three test case generation techniques under
study: combinatorial testing (CT), random testing (RT) and
adaptive random testing (ART).

2.1 Test Model and Test Suite Generation

Software behaviour is often impacted by its parameters and
their interactions. Suppose the system under test (SUT) has
n parameters. These could represent configuration parame-
ters, internal or external events, user inputs etc. Let each
parameter have li discrete values from the finite set Vi. A
test case is a tuple t ¼ ðx1; x2; . . . ; xnÞ with xi 2 Vi for
1 � i � n, and Tall ¼ V1 � V2 � . . .� Vn denotes the search
space which consists of all possible test cases. In modern
software systems, the size of Tall is usually prohibitively
large [31], and so the tester needs to use some strategies to
automatically sample a subset of test cases for testing.

Additionally, not all combinations of parameters can be
valid due to constraints between parameters in the SUT. An
example of a constraint is ða1 ^ b2Þ, stating that parameter
assignments a1 and b2 cannot be combined together. Con-
straints will prevent any test cases containing them from
execution, and so constraint handling strategies should be
applied during test suite generation. Constraints can be
classified as hard or soft constraints [34]. Hard constraints
state that certain parameter combinations cannot appear in

any test case. Soft constraints, on the other hand, only indi-
cate that these combinations need not be covered. These are
usually identified by software testers and cover interactions
that, for example, rarely occur in practice.

Parameters, their corresponding values and constraints
form a test model. Table 2, for example, shows a test model
for testing font effects in a word processor. This model has
n ¼ 5 parameters with jV1j ¼ jV2j ¼ 3 and jV3j ¼ jV4j ¼
jV5j ¼ 2. There exists one hard constraint: a piece of text can-
not be set as a superscript and a subscript at the same time.

Algorithm 1. One-Test-at-a-Time Framework

1: T ¼ ;
2: while stop condition is not met do
3: Generate a constraint satisfying test case t according to the

given criterion
4: T ¼ T [t
5: end while
6: return T

In order to generate a test suite for a given test model, a
common strategy is the one-test-at-a-time framework. Algo-
rithm 1 illustrates its top level process. This framework
starts with an empty test suite, and then test cases are gener-
ated iteratively until the given stopping condition is met.
We used this framework because it can be adapted to any of
the three test suite generation techniques considered (CT,
RT and ART), and the only difference between them lies in
the selection strategy of the next test case (Line 3). As there
are no available RT and ART tools that support constraint
handling, we implemented all generation algorithms to
avoid potential environmental bias.

2.2 Combinatorial Testing

The key insight of combinatorial testing (CT), or combinato-
rial interaction testing (CIT), is that not every parameter
assignment triggers a fault, but it is the interactions between
various parameters that lead to software failures [1]. A CT
test suite, i.e., t-way covering array, is designed to only
cover the combinations among a fixed number of t parame-
ters in order to test parameter interactions up to ‘strength’ t.
Empirical studies [31] have demonstrated that the number
of parameters that lead to a software failure is usually one
or two, and not likely to exceed six. Therefore, CT is able to
detect a large proportion of faults by applying a relatively
small value of t in practice.

In CT, the parameter interaction can be represented as a
t-way combination, i.e., a combination of t parameter val-
ues. The test generation strategy of CT is to construct a
t-way covering array that covers all t-way combinations,
where t is referred to as the covering strength. A covering
array is represented as CAðN; t; l1

g1 l2
g2 . . . lk

gkÞ, where N is
the size of the array, and li

gi represents gi parameters with
the same number of li values.

For example, a 2-way covering array for the test model in
Table 2 can be represented as CAð9; 2; 3223Þ, as shown in
Table 3. Instead of examining all possible 32 � 23 ¼ 72 test
cases, CT only needs 9 test cases to cover every valid 2-way
combination at least once. If interactions between no more
than two parameters trigger a fault, then the effectiveness of
a 2-way covering array is equivalent to exhaustive testing.

TABLE 2
A Test Model for ‘Font Effect’

Font style Font size Underline Superscript Subscript

Regular 5 On On On
Italic 12 Off Off Off
Bold 20

hard constraint: Superscript = On ^ Subscript = On.

304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

To generate a t-way covering array, the criterion used in
Algorithm 1 is to generate a test case that covers the largest
number of yet uncovered t-way combinations. We imple-
mented a variant of AETG [35] as it is an effective algorithm
for one-test-at-a-time constrained covering array generation.
At each iteration, the algorithm first reorders parameters
randomly and then assigns values to parameters one after
another. For each parameter, the number of uncovered
t-way combinations that can be covered by assigning each
value is calculated, and the value that leads to the maximum
coverage is assigned to this parameter. A Boolean satisfiabil-
ity (SAT) solver is applied to determine whether the value
assignment satisfies the constraints or not. If any invalid
combinations are introduced, the parameter will be reas-
signed to another value that does not violate constraints. The
above process is repeated until all valid t-way combinations
are covered, and finally a t-way covering array is returned.

Aside from AETG, researchers have also proposed many
other algorithms for covering array generation. These
include algebraic approaches [36], Constraint Satisfaction
Problem (CSP) solving [37], incremental Boolean satisfiabil-
ity (SAT) solving [38], hyper-heuristic search [39] and two-
mode search [40]. There are also tools, such as PICT [41],
ACTS [42] and CASA [43]. A comprehensive survey of all
the techniques can be found in [44].

2.3 Random Testing

Instead of intentionally sampling test cases to target particu-
lar kinds of faults, random testing (RT) generates test inputs
at random. This technique is conceptually simple and easy to
implement, yet it has shown to be useful [45], and is one of
the few testing techniques whose fault detection ability has
been theoretically analysed [4], [5]. In our studywe use RT to
generate test cases until a test suite of given size is generated.
The test suite size is determined according to the correspond-
ing CT test suite, i.e., the size of a t-way covering array.

In order to generate a RT test suite, the criterion used in
Algorithm 1 is to generate a random test case by assigning
random values to each parameter. Similarly, to handle con-
straints, a SAT solver is used to determine whether each
value assignment satisfies the constraints. If it introduces
any invalid combinations, the parameter will be reassigned
to another random value.

2.4 Adaptive Random Testing

Based on the observation that fault causing inputs are often
clustered into contiguous regions, adaptive random testing
(ART) was proposed to enhance RT by spreading randomly

sampled test cases over the whole search space as evenly as
possible [23]. The goal of ART is to promote diversity, or in
other words, dissimilarity of test cases: if a test case does
not trigger a fault, a better sampling strategy for the next
test case is to make it as ‘far away’ as possible from the pre-
viously executed test cases [6]. In our study we also use
ART to generate test suites of the same size as the size of
corresponding CT suites. ART can be thought of as a form
of Search Based Software Testing (SBST) [46], in which the
fitness function is diversity.

In order to generate anART test suite, the criterion used in
Algorithm 1 is to generate a test case that is as different as
possible from the previously generated ones. We imple-
mented the Fixed-Size-Candidate-Set ART algorithm (FSCS-
ART) [23] as it is one of the best ART algorithms [7]. At each
iteration, the algorithm first generatesM candidate test cases
by random testing (in this work we letM ¼ 30), where a SAT
solver is used to ensure that each of theseM candidates satis-
fies the constraints. Subsequently, a distance (or similarity)
based metric is used to evaluate these candidates. The best
test case is the one that has the largest distance from the pre-
viously generated test suite, where the distance between a
test case t and a test suite T is defined as the minimumHam-
ming distance between t and each test case in T .

3 EMPIRICAL STUDY DESIGN

We describe the experiments we conducted in order to
answer the research questions posed below.

3.1 Research Questions

Our goal is to compare three testing techniques for highly-
configurable systems: combinatorial testing (CT), random
testing (RT) and adaptive random testing (ART). We empir-
ically show their fault detection ability and computational
cost under different test scenarios in order to better under-
stand their benefits and limitations. We aim to answer the
following research questions:

RQ1 Under which test scenarios is there a significant
difference in performance between the three testing
techniques?

RQ2 How effective are the three testing techniques investi-
gated at detecting faults under different test scenarios?

RQ3 How does covering strength impact the effectiveness
of the three testing techniques under different test
scenarios?

RQ4 How efficient are the three testing techniques under
different test scenarios?

3.2 Subject Programs

In this study, we used nine subject programs: FLEX, GREP, GZIP,
SED, MAKE, NANOXML, DRUPAL, BUSYBOX and LINUX. Table 4 gives
details of these subject programs.1

The first six programs come from the Software-artifact
Infrastructure Repository (SIR) [32]. These programs are all
real-world, open source command line utilities. This is a
now standard set of benchmarks in combinatorial testing

TABLE 3
A 2-Way Covering Array CAð9; 2; 3223Þ

Font style Font size Underline Superscript Subscript

t1 Regular 5 On On Off
t2 Regular 12 Off Off Off
t3 Regular 20 Off Off On
t4 Italic 5 On Off On
t5 Italic 12 Off On Off
t6 Italic 20 Off On Off
t7 Bold 5 Off On Off
t8 Bold 12 On Off On
t9 Bold 20 On Off Off

1. All test models and corpus of faults are available in this paper’s
companion website: http://gist.nju.edu.cn/doc/ec18/.

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 305

http://gist.nju.edu.cn/doc/ec18/

literature [29], [47], [48], [49], [50]. The last three programs
are real-world, open source, highly-configurable systems,
which are much larger than SIR programs in both size and
number of parameters: DRUPAL is a modular framework for
web content management [33]; BUSYBOX is software that pro-
vides UNIX utilities in a single executable file [21]; and LINUX

is a well-known operation system [21].
The test models of the six SIR programs have been used

in previous work [29]. Each parameter of these models rep-
resents an input provided to the program, which can be a
flag option (such as ‘-c’), a digit, a path to a file, etc. The
parameters, values and constraints of each model were
manually extracted from the test plan, which is described in
the Test Specification Language (TSL), provided by SIR. SIR
also provides files and scripts to execute its test cases.

The test model of DRUPAL comes from its feature model,2

reported in previous work [33]. Each parameter represents
a module, which can be enabled or disabled to customise
the functionality of the system. The parameters and con-
straints of the feature model were manually extracted from
the software’s documentation.

The test models of BUSYBOX and LINUX are extracted from
their original models provided in previous work [21]. Each
parameter of these models represents a configuration option
implemented through conditional compilation in the C pre-
processor (i.e., using #ifdef directive). The parameters and
constraints are extracted from the KConfig file [21], [51].
The original models of BUSYBOX and LINUX are large, having
651 and 31,713 parameters, and 615 and 293,826 constraints,
respectively. We found that such models cannot be effi-
ciently handled by our greedy-based generation algorithm.3

We are also not aware of any CT tools that can generate
t-way test suites (t > 2) for these models.4 As our aim is to
compare t-way CT with RT and ART (t ¼ 2; 3; 4) in a con-
trolled experiment, we used only the files that the bug
reports mentioned in order to extract sub-models for these
two programs. Algorithm 2 gives the process of model

extraction: we first determined whether each fault can be
detected in the original model (a fault is undetectable if it is
triggered by parameters that are not in the original model);5

then for those source files containing detectable faults, we
extracted all relevant parameters and constraints from the
original model. The numbers of selected parameters for
BUSYBOX and LINUX are 68 and 104, respectively.

Algorithm 2. Process to Extract Sub-Model

1: S ¼ fg, P ¼ fg, C ¼ fg
2: for each fault f in the corpus of faults do
3: if f can be detected in the original model then
4: add all parameters in the file containing f into S
5: end if
6: end for
7: for each parameter p in the original model do
8: if p is a parameter in S then
9: add p into P
10: end if
11: end for
12: for each constraint c in the original model do
13: if all parameters involved in c are also in P then
14: add c into C
15: end if
16: end for
17: M ¼ create a test model based on P and C
18: returnM

In this study, all constraints are ‘hard’ constraints. Each
constraint in the test model is encoded by a Boolean for-
mula, representing a condition that must be satisfied by any
test case. The sixth column of Table 4 gives the number of
constraints (i.e., the number of Boolean formulae) in each
program. Different constraints may involve different num-
bers of parameters. As there is no evidence that a constraint
with more parameters is harder for the tester to model, all
constraints are treated equally.

Note that the identification of parameters, values and
constraints for a given program is still an open problem in
CT [1]. In this study, we used the same models (for the first
seven programs), or extracted subsets of models (for BUSYBOX

and LINUX), from previous works to avoid potential bias
from creating models for these programs.

TABLE 4
Details of the Subject Programs and the Number of Test Scenarios Generated

Name Description LOC [21], [32], [33] Model # Parameters (n) # Constraints # Faults # Scenarios

FLEX lexical analyser 15,297 22322451 9 12 50 270
GREP text-search utility 15,633 3241618141312151 9 83 12 125
GZIP compression utility 6,582 21331 14 61 5 70
SED stream text editor 11,148 246110121412231 11 50 22 250
MAKE build utility 27,879 210 10 1 2 14
NANOXML XML parser 7,646 254121 7 6 16 54
DRUPAL web framework 336,025 247 47 45 160 530
BUSYBOX UNIX utilities 189,722 268 68 16 9 120
LINUX operation system 12,594,584 2104 104 83 28 250

2. The parameters in our test model are independent, but the param-
eters in a feature model are tree-structured. Therefore, we added addi-
tional constraints to maintain the hierarchical dependency of the
feature model. The input space of our test model is the same as that of
the original feature model.

3. For CT, it was only possible to generate 2-way test suites for the
original model of BUSYBOX. We ran out of memory (on a machine with
16 GB RAM) for all other cases (t ¼ 3; 4 for the original model of BUSY-

BOX, and any value of t for the original model of LINUX).
4. A previous work [21] estimates that the generation of 3-way CT

test suite for LINUX could take months and require more than 1TB RAM
to track the combinations to be covered.

5. Note that the fault mining and the modelling of these programs
are two separate and independent processes, so some faults are not
detectable in their original models. As the result, the numbers of faults
used in this study (as shown in Table 4) are smaller than those reported
in the previous study [21].

306 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

In order to investigate fault detection ability for each of
the three testing techniques, for the six SIR programs, we
considered all available software versions in SIR [32]; the
test model is the same for different versions of the same pro-
gram. For each version, SIR provides a series of faults,
which are seeded by developers to represent bugs that they
have encountered. SIR also provides the corresponding
fault matrix indicating which test cases can trigger each
fault. As some of these faults are triggered by parameters
that are not in our test models (namely they cannot be
detected by any of CT, RT and ART test suites generated in
this study), for each SIR program, we exhaustively exam-
ined all possible test cases of our test models and selected
only the set of faults that can be detected by at least one test
case. We note that the different versions are used only to
collect the number of faults, thus the faults from different
versions are considered equally (we did not distinguish the
version to which a fault belongs in our test scenarios).

For DRUPAL, BUSYBOX and LINUX, we used an existing corpus
of real faults from previous work [21], [33], where the com-
binations of parameter values that can trigger each fault are
provided. According to previous work [21], [33], these faults
are mostly mined from bug tracking systems; they are all
reported to the original developers and either confirmed
and/or fixed by the developers. Thus they are all real-world
faults. The main intention of selecting these three programs
is to evaluate the three testing techniques on larger pro-
grams (test models) and real faults, which cannot be
achieved with SIR programs alone.

The seventh column of Table 4 gives the total number of
faults that are used in this study.

3.3 Test Scenarios

We consider three features of the system under test that
might impact the performance of the three testing techni-
ques considered (CT, RT and ART): proportion of parame-
ters available (para) and proportion of constraints available
(cons) in the model, and the failure rate (rate) of the faults
to be detected (based on existing failure data). Combina-
tions of choices of these three features < para; cons;
rate > form a test scenario.
The proportion of parameters available (para) defines the

size of the raw search space. Determining a proper set of
parameters and their values is a key task in modelling
software systems [1]. In practice, a tester might miss some
parameters during the modelling phase because of poor
understanding of software specification. As a result, the
parameters available to an automated testing techniquemight
be fewer than those that are truly relevant. To investigate the
impact of different sets of available parameters on the effec-
tiveness of different testing techniques, for each program’s
completemodel we created a series of test models with differ-
ent para by selecting its first para� nd e parameters, where n
is the total number of parameters in the complete model as
shown in Table 4. This way, for a given program, the larger
the value of para, themore parameters are included in the test
model, and thus the larger the raw search space to be
explored. We let para ¼ f0:4; 0:6; 0:8; 1:0g for all programs.
To determine whether a test case consisting of para < 1:0
parameters can detect a fault or not, we complemented this
test case by adding other parameters with default values, so

that the fault matrix and corpus of faults of the complete
model can still be used.

Furthermore, the tester might also be unaware of some of
the pertinent constraints that govern the space of valid
inputs. The proportion of constraints available (cons)
denotes the degree to which the constraints have been fully
identified by the tester. As test cases containing any invalid
combinations cannot be executed, the test suite generated
according to a model with low conswill lead to a large num-
ber of invalid test cases, and thus make it harder to detect
faults for a given test suite size. Finding all constraints is a
difficult task in practice. Considering different values of
cons is thus an important issue in assessing the real-world
effectiveness of testing techniques that might be affected by
partial constraint identification. Given a test model with
para parameters, we created models with different cons by
first finding all constraints that correspond to these para
parameters, and then selecting the first cons constraints to
create a new model. We let cons ¼ f0; 25%; 50%; 75%;
100%g for all programs except MAKE and NANOXML. For MAKE

and NANOXML, as there are only one and six constraints in
their complete models, we let their cons be f0; 100%g and
f0; 50%; 100%g, respectively.

The failure rate (rate) denotes the difficulty of detecting
faults. It is often used in the measurement of effectiveness
in random testing studies [23]. Given a particular test model
with some para and cons, we can determine all possible
inputs and the failure causing test cases that trigger each
fault. As a result, the failure rate of a fault f with respect to
a test modelM is defined as follows [52]:

rateMðfÞ ¼ number of inputs of M that can trigger f

number of all possible inputs of M
:

Note that the lower value of rate the fewer test cases can
detect it, thus it is likely harder to be found.

A test scenario < para; cons; rate > is the combination
of a test model (para and cons) and a set of faults with the
same degree of fault proneness (rate). Note that the failure
rate of a fault is dependent on the particular input space,
which is defined by the test model. For some subject pro-
grams, a fault may have a low rate according to a model
that contains a large number of parameters. But as some
default parameter values may be relevant to the failure
causing combinations, it is possible that the rate of the fault
becomes high when only a small number of parameters is
available in the model. Therefore, to correctly represent the
difficulty of detecting the fault f in a test scenario, f’s rate
should be calculated based on the particular model M of
this test scenario. As a result, for a subject program, the
same fault can have a different rate for each test model.

3.4 Process and Evaluation

In order to create test scenarios, we first created a series of
test models with different combinations of para and cons
for each subject program. Then for each test model, we
determined the set of faults that can be detected by its all
possible inputs, and computed the value of rate for each of
these faults. Note that a fault is undetectable by a model if
rate ¼ 0. We did not include these faults in our test scenar-
ios, as these aren’t in the search space of the model as

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 307

defined by para and cons. Finally, by combining all possible
choices of para, cons and rate, we got a set of test scenarios
for each program. The total number of test scenarios investi-
gated is 1683. The number of test scenarios for each subject
is shown in the last column of Table 4.

For example, for GREP, where n ¼ 9, we have para ¼ f0:4;
0:6; 0:8; 1:0g (which represents 4, 6, 8, 9 parameters) and
cons ¼ f0; 25%; 50%; 75%; 100%g. By combining all 4� 5
choices of para and cons, 20 test models were created. For
the model with para ¼ 0:4 and cons ¼ 0, there are 8 out of
12 faults that can be detected. Seven of these have failure
rate 0.02, while one has failure rate 0.01. Therefore, two test
scenarios < 0:4; 0; 0:01 > and < 0:4; 0; 0:02 > were cre-
ated. These are two of the many possible scenarios for GREP,
which contain seven and one faults to be detected, respec-
tively. By iterating all 20 test models and considering all fail-
ure rates for each model, we created a total of 125 test
scenarios for GREP.

Fig. 1 shows the distribution of all failure rates investi-
gated for each of subject programs. For example, the second
box contains all failure rates obtained from 125 scenarios of
GREP. We note that most faults have a relatively low failure
rate, frequently less than 0.2. Our study also includes some
faults that are easy to detect, with failure rates above 0.5.

In order to evaluate fault detection ability of combinato-
rial testing (CT), random testing (RT) and adaptive random
testing (ART), for each test scenario, we first apply CT to
generate a t-way covering array for t ¼ 2; 3; 4, and then RT
and ART to generate test suites of the same size. The faults
that can be detected by each test suite are collected, and the
computational cost of each testing technique is recorded.
Note that the number of faults contained in each scenario
can be different, so we consider the effectiveness of a testing
technique for a test scenario in terms of:

effectiveness ¼ number of faults detected

number of all faults in the scenario
:

The higher the value of this ratio the better a testing tech-
nique performs for that particular scenario. A ratio that is
close to 1.0 means that the technique has a high probability
to detect the fault of failure rate rate by the test suite gener-
ated according to the model with para and cons.

The three testing techniques all involve some level of ran-
domness. Therefore we need to use inferential statistical
analysis in order to cater for the inherent randomness in the
algorithms [53], [54]. To collect a sample of data point from

the population of all possible executions, the test suite gen-
eration and evaluation process is repeated 50 times. For
each test scenario, we applied Tukey’s HSD (Honest Signifi-
cant Difference) test (5 percent significance level) [55] to dis-
tinguish the techniques that are significantly different from
each other. Tukey’s HSD test is a multiple comparison test.
It reports a p-value for each pair of CT, RT and ART, indicat-
ing statistical significance of the difference in the proportion
of faults detected. It also assigns grouping letters to each of
these techniques, with “a” representing the group with the
best performance, and the techniques sharing a grouping
letter are not significantly different from each other. As a
result, the three testing techniques are ranked into catego-
ries based on their effectiveness.

In addition, as statistical significance does not imply
practical significance, we also applied Vargha and Delaneys
bA12 statistic [56] in order to investigate the magnitude of the
difference for each pair of the techniques. This measure
denotes the probability that one technique outperforms
another. bA12 ¼ 0:5 suggests that two techniques are equiva-
lent, and the greater the bA12 the higher probability that the
first technique yields higher values.

All experiments were carried out on a machine with Intel
Xeon E5-2640 2.0 GHz CPU, 16 GB memory and CentOS 6.5
operating system.

4 RESULTS

Next we present the results of our experiments and answer
the research questions posed in Section 3.1.

We investigate the impact of different test scenarios from
two viewpoints: test model and failure rate. In the real
world, the tester determines the choices of para and cons to
create the test model, yet he or she cannot know the failure
rate before testing commences. Therefore, from the test
model’s viewpoint, we analyse the result with respect to
each combination of para and cons. In this case, the fault
detection ability is evaluated based on all scenarios that
have the same para and cons. On the other hand, the failure
rate alone determines the degree of the proneness of a fault.
A lower/higher failure rate always indicates that the fault is
harder/easier to detect, regardless of the choices of para
and cons. So from the failure rate’s viewpoint, we analyse
results with respect to each possible value of rate. We pro-
vide all experimental data for each test scenario and subject
program on this paper’s companion website: http://gist.
nju.edu.cn/doc/ec18/.

4.1 RQ1: Existence of Difference

The first research question asks when the three testing tech-
niques perform differently. To answer this question, we first
investigated the impact of different test scenarios on the
effectiveness of CT, RT and ART. Second, we identified test
scenarios that make the three testing techniques signifi-
cantly different according to the statistical test, and investi-
gated their distributions.

4.1.1 Fault Detection Ability

For each test scenario, we calculated the mean of propor-
tions of faults detected (i.e., mean effectiveness) among 50
runs for each of the three testing techniques. Fig. 2 shows

Fig. 1. The distribution of failure rates for each of the subject programs.

308 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

http://gist.nju.edu.cn/doc/ec18/
http://gist.nju.edu.cn/doc/ec18/

the distribution of these means with respect to each combi-
nation of para and cons for covering strength (t) 2, 3 and 4,
respectively (namely each boxplot contains the means
obtained from all scenarios that have a given combination
of para and cons for a particular covering strength).

From Fig. 2, we conclude that as the proportion of con-
straints available (cons) increases, the ability of detecting
faults tends to increase for all three testing techniques,
regardless of the choices of para. There is also less variance
in the fault detection ability, decreasing from 0.16 (for the
scenarios with no constraints available in the model) to 0.04
(for the scenarios with all constraints available) for t ¼ 2
and para ¼ 0:4. This finding indicates the importance of
identifying constraints for improving fault detection for all
three testing techniques.

In addition, when more parameters are available in the
model, the three testing techniques have a lower chance of
detecting faults available in the search space. Especially for
cons ¼ 0, the medians of proportion of faults detected are
all 0.0 for the scenarios with all parameters available
(para ¼ 1:0) under all covering strengths. However, when
cons ¼ 1:0, increasing the proportion of parameters avail-
able will not greatly reduce the chance of detecting faults.
For example, when cons ¼ 1:0, the faults can always be
detected by CT in 75 percent of scenarios (the first quartile)
for all choices of para under all covering strengths.

Furthermore, the proportion of faults detected increases
with increase in covering strength. For example, when
para ¼ 0:4 and cons ¼ 0, the median of proportion of faults
detected increase from 0.18 for covering strength 2 to 0.74
for covering strength 4. Note that higher covering strength

requires more test cases. Therefore, the chance of detecting
faults increases for all three testing techniques. This shows
the importance of higher-strength combinatorial testing.

Fig. 3 shows the average proportion of faults detected
with respect to different choices of rate as defined in our
test scenarios. From Fig. 3, we conclude that as faults with
high failure rate are easy to detect, a higher rate leads to bet-
ter fault detection. In particular, a fault can almost always
be detected, even for covering strength 2, when its failure
rate is higher than 0.4. For the hardest to detect faults (with
rate below 0.001), the three testing techniques are not likely
to detect it for covering strength 2, but their performance
increases with the covering strength. Again we attribute it
the fact that higher-strength test suites contain more test
cases and thus have a higher chance of detecting the fault.

4.1.2 Significant Scenarios

Figs. 2 and 3 illustrate the general trends concerning
the fault detection ability of CT, RT and ART. Due to
their randomness, we need to determine whether the differ-
ence among them is significant. A test scenario is deemed
‘significant’ if Tukey’s HSD test determines there exists sig-
nificant difference in terms of fault detection effectiveness
between at least one pair of these three testing techniques in
that scenario.

We used Tukey’s HSD test to investigate 1683 � 3 scenar-
ios (for t ¼ 2; 3; 4) and found that 984 (19 percent) of these
are significant. In particular, the total number of significant
scenarios for each covering strength 2, 3 and 4 is 452, 305,
and 227, respectively. This further confirms previous obser-
vations. As higher covering strength usually requires larger

Fig. 2. Proportion of faults detected by combinatorial (CT), random (RT) and adaptive random (ART) testing under different values of para and cons.

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 309

test suites, the performance differences tend to diminish
with increasing test suite size.

Figs. 4 shows the numbers of both significant and all sce-
narios under different values of para and cons, where the
results of different covering strengths are represented by
different bars. For example, in Fig. 4, there are 36 scenarios
with para ¼ 0:4 and cons ¼ 0, and among these scenarios 4,
3 and 2 of them are significant scenarios when t is 2, 3 and
4, respectively.

Fig. 4 shows that the number of all scenarios increases
with increase in para. This is because some faults can only be
detected when a large number of parameters are involved,
so more test scenarios were created when para takes larger
values. The smallest number of significant scenarios occurs
for cons ¼ 0, where only 4 percent (44/1044) of scenarios are
significant. This indicates that the three techniques tend to be
indistinguishable when constraints are unavailable in the

model for a highly-constrained input space. Compared with
it, more significant scenarios are observed for cons > 0. In
particular, when para ¼ 1:0 and cons ¼ 0:75, we can see the
highest proportion of significant scenarios (50 percent) for
covering strength 2. This indicates that differences between
the three techniques will have higher chances of occurring
for models with partial constraints. This scenario is likely to
occur in practice, since modelling configurable systems is a
non-trivial task, especially if there are many dependencies
between software configurations.

Fig. 5 shows the distribution of significant scenarios
under different intervals of rate. As rate can take a series of
continuous values and they are not uniformly distributed
(see Fig. 1), we divided the range ½0; 1� into uneven intervals
and calculated the number of both significant and all scenar-
ios that fall into each interval. For example, there are 160 sce-
narios whose rate is in ½0:001; 0:005�, and the number of

Fig. 3. Proportion of faults detected by combinatorial (CT), random (RT) and adaptive random (ART) testing under different values of rate.

Fig. 4. Distribution of significant scenarios under different values of para and cons.

310 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

significant scenarios is 13, 26 and 36 for each covering
strength.

Fig. 5 shows that with increase of rate from 0 to 1, the
number of significant scenarios increases first and then
decreases. This suggests that performance differences bet-
ween the three testing techniques are more likely to occur
when rate takes relatively low values. Specifically, on aver-
age 29 percent of scenarios are significant when rate lies in
½0:001; 0:2�. Whereas this proportion is only 4 percent for the
other intervals. Additionally, the performance differences
diminish to insignificant level when rate is either very low
or very high. Among all scenarios of the subject programs,
the lowest and highest rate investigated are as 7� 10�11

and 1.0. By contrast, the range of rate of all significant sce-
narios is ½0:0001; 0:71� for all covering strengths. Overall, the
average value of rate in all significant scenarios is 0.08. The
three testing techniques tend to perform differently when
the fault is relatively hard-to-detect.

Summing up, we answerRQ1 as follows: the effectiveness
of CT, RT and ART tends to be significantly different when
the failure rate is relatively low (between 0.001 and 0.2), and
we did not observe any difference when the failure rate is
lower than 0.0001 or higher than 0.71. The three testing tech-
niques also tend to perform differently when a small test
suite is generated, i.e., of the size of a pairwise test suite. But
if the test model of a highly-constrained program contains
no constraints (cons ¼ 0:0), the three techniques tend to
become indistinguishable in terms of fault detection.

4.2 RQ2: Favourable Techniques

The second research question asks which techniques per-
form best under different test scenarios. To answer this
question, we compared fault detection ability between each
pair of techniques, namely CT/RT, CT/ART and RT/ART.

For each scenario, Tukey’s HSD test was used to deter-
minewhether there is a significant difference in performance
for each pair of techniques. Table 5 shows the number of sce-
narios where testing technique A is significantly superior
(þ), indistinguishable (¼), or significantly inferior (�) to test-
ing techniqueB across all subject programs for each covering
strength. From Fig. 5, we can see that any pair of the techni-
ques investigated is indistinguishable in more than 1200 out
of 1683 scenarios for each covering strength. This is due to

the fact that the significant difference of CT, RT and ART is
only observed in 19 percent of scenarios (the characteristics
of those significant scenarios that make the three techniques
distinguishable are investigated in RQ1; specifically, the
three techniques tend to perform differently when the failure
rate is relatively low, or a proportion of constraints is present
in the test model). Regarding the relative performance
between each pair of techniques, overall CT significantly out-
performs RT in a total of 836 scenarios, but is worse in 44 sce-
narios. For ART, there are only 11 scenarios where RT
significantly outperforms ART among all covering strengths.
Otherwise ART is no worse than RT. Moreover, in 96 percent
of scenarios CT and ART are indistinguishable. Especially
for t ¼ 4, the difference is only observed in 34 scenarios. This
suggests that ART is usually as effective as CT.

Next, we determine which techniques are favourable for
each of the significant scenarios. For a test scenario, a tech-
nique is ‘favourable’ if this technique is not significantly
worse than the others, and so it can be recommended for
testing. According to Tukey’s HSD test, the techniques that
have grouping letter ‘a’ are exactly the favourable techni-
ques for each scenario, as they belong to the group of the
best performance and they are not significantly different
from each other. For example, assume a scenario where the
grouping letters assigned to CT, RT and ART are a, b and
ab, respectively. This means that CT is significantly better
than RT, and ART is not distinguishable from either CT or
RT. In this case, CT and ART are favourable techniques as
both of them are not worse than the other technique, i.e., RT.

Fig. 6 shows the proportion of significant scenarios in
which each testing technique is favourable, under different
values of para and cons for t ¼ 2; 3; 4. Each two dimensional

Fig. 5. Distribution of significant scenarios under different intervals of rate.

TABLE 5
The Number of Scenarios Where Technique A Is
Significantly Superior (þ), Indistinguishable (¼), or

Significantly Inferior (�) to Technique B

t
CT / RT

þ / ¼ / �
CT / ART
þ / ¼ / �

RT / ART
þ / ¼ / �

2 377 / 1280 / 26 93 / 1548 / 42 1 / 1417 / 265
3 264 / 1408 / 11 36 / 1633 / 14 5 / 1469 / 209
4 195 / 1481 / 7 24 / 1649 / 10 5 / 1511 / 167

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 311

coordinate in each figure denotes a particular combination
of para and cons; a darker colour indicates a higher propor-
tion. For example, in Fig. 6, for t ¼ 2 and para ¼ 1:0 and
cons ¼ 1:0, there are 56 significant scenarios, and CT, RT
and ART are favourable in 93, 8.9 and 80 percent of them,
respectively (in these scenarios, they are significantly better
than at least one of the other techniques).

Fig. 6 shows that the proportion of significant scenarios
favoured by CT is not lower than those of RT and ART in 48
out of 60 combinations of para and cons (for all covering
strengths). Specifically, among 984 significant scenarios, CT
is identified as favourable in 903 (92 percent) cases, where
CT is at least statistically significantly better than one of the
other two techniques. If we further consider the scenarios
where the three techniques perform equally well, overall
CT is no worse than the others in 98 percent of cases. This
finding demonstrates that CT is the most favourable among
the three techniques. In addition, when cons � 0:5, CT is
favourable in at least 83 percent of significant scenarios. CT

is unlikely to perform worse when a relatively high propor-
tion of constraints are present in the model.

However, there are 81 scenarios where CT is significantly
worse than RT or ART in terms of fault detection across all
programs; 43 percent of these scenarios appear in the case
of FLEX. For these 81 scenarios, we observe that only 13 (16
percent) of them have presented all constraints in the model
(cons ¼ 1:0). Note that invalid combinations will prevent
the test cases containing them from execution. If a test case
covers both a failure causing combination and an invalid
combination, the fault cannot be detected as the failure
causing combination is masked by constraint violation (a
result of masking effect [57]). Consequently, except covering
failure causing combinations, in some cases some other
parameters also need to take fixed values to make the test
case valid for triggering the fault. When the total number of
parameters that need to be fixed exceeds the covering
strength t, CT might not generate a test case that would trig-
ger such a fault, especially when t ¼ 2 is applied.

Fig. 6. Proportion of significant scenarios in which each testing technique is favourable under different values of para and cons.

312 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

As far as ART is concerned, ART is favourable not only in
58 out of 82 significant scenarios where RT is favourable, but
also in much more scenarios where RT is not favourable.
This demonstrates the superiority of ART to RT, regardless
of the test scenarios. Moreover, among all significant scenar-
ios where CT is determined as the favourable technique,
ART is also recommended in 83 percent of them. This further
suggests the effectiveness of ART: it can perform as well as
CT to some extent. Furthermore, there are also 77 scenarios
(8 percent of significant scenarios) where ART is favourable
but CT is not. In these cases ART performs better than CT.

Table 6 shows the proportion of significant scenarios in
which each testing technique is favourable, under different
intervals of rate for t ¼ 2; 3; 4. The first two lines indicate
the interval (left-open, right-closed), and ‘�’ indicates that
there are no significant scenarios. For example, for t ¼ 2
and rate 2 ð0:001; 0:005�, CT, RT and ART are favourable in
85, 23 and 62 percent of significant scenarios, respectively.

From Table 6, we have similar conclusions to Fig. 6: CT is
generally the most favourable technique, and ART demon-
strates relatively similar behaviour to CT. Moreover, for
rate � 0:005, on average, CT is favourable in 88 percent of
significant scenarios, which is noticeably higher than those
of RT (19 percent) and ART (62 percent). This suggests that
CT is more desirable when the fault is very hard to detect.

Additionally, to quantify the size of the differences for
each pair of the three testing techniques, we applied Vargha
and Delaneys bA12 statistic [56] on CT/RT, CT/ART and
RT/ART for each significant scenario. Fig. 7 shows the

distribution of bA12 obtained for each covering strength. A
higher bA12 indicates that the first technique has a higher
probability of outperforming the other.

From Fig. 7, when comparing CT and RT for t ¼ 2, we
observe that the effect size is greater than 0.5 (CT is better
than RT) for more than 75 percent of significant scenarios. But
there are also 4 percent of significant scenarios where CT has
at most 40 percent chance of outperforming RT. Regarding
CT and ART, the median of effect sizes is very close to 0.5 for
all programs. Especially for t ¼ 4, the median is equal to 0.5,
which confirms the indistinguishable performance between
CT and ART. In addition, when comparing RT and ART, for
more than 75 percent of significant scenarios the effect size is
less than 0.5. This confirms the superiority of ART to RT.

Summing up, we answer RQ2 as follows: CT is no worse
than RT and ART in 98 percent of test scenarios, especially
when the failure rate is low (rate � 0:005), making it the
most favourable out of the three techniques investigated.
CT is also desirable when all constraints are present in the
model (cons ¼ 1:0), as 84 percent of scenarios where CT is
worse than the others have cons < 1:0. As an improvement
of RT, ART enhances RT in almost all scenarios. Moreover,
ART is indistinguishable from CT in 96 percent of test sce-
narios, especially when a large test suite (t ¼ 4) is used.

4.3 RQ3: Covering Strength

The third research question asks how the three testing tech-
niques perform depending on the covering strength of the
test suite used. In Sections 4.1 and 4.2, we showed that the
three techniques tend to be indistinguishable when a high
covering strength (large test suite) is applied, and CT is gen-
erally the best for all covering strengths. The remaining
question is how much difference exists between lower and
higher covering strengths for different scenarios. For exam-
ple, if 2-way and 4-way testing detect similar number of
faults for a scenario, then applying 2-way CT first might be
recommended in practice.

To investigate the impact of covering strength on the
effectiveness of the three techniques, for each scenario we
evaluated the difference between 4-way and 2-way testing
for each of CT, RT and ART in terms of:

difference ¼ proportion of faults detected by 4� CT=RT=ART

� proportion of faults detected by 2� CT=RT=ART;

TABLE 6
Proportion of Significant Scenarios in Which Each Testing Technique Is Favourable Under Different Intervals of rate

interval
ða; b�

a
b

0
10�6

10�6

10�5
10�5

0.0001
0.0001
0.0005

0.0005
0.001

0.001
0.005

0.005
0.01

0.01
0.05

0.05
0.1

0.1
0.2

0.2
0.3

0.3
0.5

0.5
0.7

0.7
1.0

t ¼ 2
CT � � � � 1.00 0.85 0.80 0.92 0.90 0.78 1.00 1.00 1.00 1.00
RT � � � � 0.00 0.23 0.20 0.10 0.10 0.14 0.03 0.00 0.00 0.00
ART � � � � 1.00 0.62 0.60 0.69 0.80 0.86 0.95 1.00 1.00 1.00

t ¼ 3
CT � � � 1.00 0.60 0.88 0.89 0.93 0.97 0.95 1.00 1.00 � �
RT � � � 0.50 0.20 0.12 0.15 0.07 0.03 0.05 0.00 0.00 � �
ART � � � 0.00 0.80 0.85 0.74 0.82 0.94 1.00 1.00 1.00 � �

t ¼ 4
CT � � � 0.78 1.00 0.92 1.00 0.93 1.00 1.00 1.00 1.00 1.00 �
RT � � � 0.33 0.00 0.11 0.03 0.06 0.00 0.00 0.00 0.00 0.00 �
ART � � � 0.44 0.50 0.75 0.77 0.95 1.00 1.00 1.00 1.00 1.00 �

Fig. 7. The distribution of bA12 statistics obtained from significant scenar-
ios for t ¼ 2; 3; 4.

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 313

where t-RT and t-ART are used to represent that RT and
ART are applied to generate test suites with the same size
as t-CT. We only considered t ¼ 4 and 2 as they represent
the potential best and worst performance for the considered
techniques.

Table 7 shows the average difference obtained for differ-
ent values of para and cons. We observe that the differences
are all greater than 0, indicating that 4-way testing improves
the fault detection ability in almost all cases.

For different choices of para and cons, from Table 7 we
observe that, as cons increases, the improvement of 4-way
testing tends to first slightly increase, before subsequently
decrease, for all choices of para and all testing techniques.
Specifically, the smallest improvement of 4-way testing
occurs when all constraints are present in the model
(cons ¼ 1:0), where on average the differences are only 0.06,
0.13 and 0.08 for CT, RT and ART, respectively. By contrast,
the improvement of 4-way testing is at least 0.15 with 0.25
average for cons < 1:0. This finding indicates that a large
test suite is more beneficial for detecting faults when only
partial constraints are available in the model. When all con-
straints are identified, we can apply t ¼ 2 at first and
increase covering strength in an incremental manner.

Fig. 8 shows the average difference in proportion of faults
detected for different values of rate. Note that the x-axis is
adjusted due to the uneven distribution of failure rates. From
Fig. 8, we can see that the difference in performance between
4-way and 2-way testing always increases first and then
decreases with increase in rate (we attribute the slight multi-
modal distribution to different subject programs6). The larg-
est improvement occurs when the failure rate is relatively
low (between 0.001 and 0.05), where 4-way testing can detect
up to 89 percent more faults than 2-way testing. When the
failure rate exceeds 0.3, the difference tends to diminish,
and so applying t ¼ 2 is good enough to trigger these
easy-to-detect faults. The difference also tends to diminish at

failure rates below 1� 10�5, where even 4-way testing is not
likely to trigger these almost-impossible-to-find faults.

Summing up, we answer RQ3 as follows: in all scenarios
a larger test suite generally leads to a better performance.
When only partial constraints are available in the model
(cons < 1:0), the average difference in proportion of faults
detected between 4-way and 2-way testing is 0.25, which
makes higher covering strength desirable for these scenar-
ios. Higher covering strength is much more desirable when
the failure rate is relatively low (between 0.001 and 0.05),
where up to 89 percent of faults can be further detected. But
when failure rate exceeds 0.3, higher covering strength pro-
vides few benefits.

4.4 RQ4: Efficiency

The last research question asks about the computational cost
of CT, RT and ART under different test scenarios. Given a
scenario, the time duration of test suite generation is only
related to parameters and constraints. So we only consider
the impact of para and cons on the computational cost of
the three techniques. Additionally, due to the greedy nature
of the one-test-at-a-time framework that is applied to gener-
ate test suites, in most scenarios all three techniques can fin-
ish test suite generation very quickly (within 6 seconds for
each scenario in our case). Therefore, we only consider the
case with the highest computational cost, i.e., t ¼ 4.

The total time costs of CT, RT and ART across all test sce-
narios from all programs for covering strength 4 are 4910,
24 and 742 seconds, respectively. Generally CT is the most
expensive with ART being more expensive than RT in terms
of computational cost. This conforms with conventional
wisdom that ART requires more time than RT in order to
calculate the distance between new and previous test cases
at each iteration, while CT requires even more time to calcu-
late the number of covered combinations.

Fig. 9 shows the computational cost of each technique for
GREP, SED, DRUPAL, BUSYBOX and LINUX for different values of
para and cons. We only considered these five programs as
they have the largest search spaces among our subjects as
shown in Table 4. For other programs, the observed time
costs are all less than 6 seconds.

From Fig. 9, we conclude that the computational cost of
RT is negligible in almost all cases. The computational cost
of ART and CT increases with increase in para, as the
more parameters are present in the model, the larger is the
search space. When no constraints are available (cons ¼ 0),
CT requires much more time than ART, where the time
cost of ART is no more than one second, but the time cost
of CT can be up to 390 seconds for the model with 104
parameters (i.e., LINUX). However, when constraints are
known to the tester (cons � 0:25), the time cost of ART
might increase significantly. In particular, for GREP and SED,
ART tends to spend more time than CT; especially when
cons � 0:75, the time cost of ART might be up to 3.5 times
higher than that of CT.

Note that for GREP and SED, every parameter is involved in
at least one constraint, which makes them the most highly-
constrained programs. While for DRUPAL, BUSYBOX and LINUX,
the proportion of parameters involved in constraints are 79,
38 and 66 percent, respectively. To generate the next test
case, the ART algorithm used in this work needs to

TABLE 7
The Average Difference in Fault Detection Ability
Between 4-Way and 2-Way CT, RT and ART for

Different Values of para and cons

proportion of constraints (cons)

0.0 0.25 0.5 0.75 1.0

CT proportion of 0.4 0.22 0.31 0.18 0.16 0.07
parameters 0.6 0.29 0.22 0.28 0.20 0.06
(para) 0.8 0.19 0.23 0.30 0.25 0.05

1.0 0.16 0.21 0.36 0.28 0.06

RT proportion of 0.4 0.22 0.26 0.21 0.19 0.12
parameters 0.6 0.26 0.26 0.29 0.22 0.09
(para) 0.8 0.21 0.26 0.33 0.35 0.14

1.0 0.16 0.20 0.34 0.40 0.16

ART proportion of 0.4 0.21 0.26 0.20 0.17 0.08
parameters 0.6 0.27 0.24 0.30 0.21 0.06
(para) 0.8 0.21 0.27 0.31 0.29 0.07

1.0 0.15 0.20 0.37 0.32 0.09

6. For GREP and SED, the largest improvement occurs when rate is in
ð0:001; 0:01Þ; for the others, it occurs when rate is in ð0:01; 0:05Þ. The
more details can be found on this paper’s companion website: http://
gist.nju.edu.cn/doc/ec18/.

314 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

http://gist.nju.edu.cn/doc/ec18/
http://gist.nju.edu.cn/doc/ec18/

randomly sample 30 valid test cases at first and then select
the best one from them. If a program is highly constrained,
a large number of constraints will be present in the model.
As a result, a randomly sampled test case is less likely to be

valid, and so a higher computational cost of ART is
observed for GREP and SED in Fig. 9. Whereas, when there is a
large number of parameters, such as in BUSYBOX and LINUX,
CT still tends to spend more time than ART.

Fig. 8. The average difference in fault detection ability between 4-way and 2-way CT, RT and ART for different values of rate.

Fig. 9. Computational cost of CT, RT and ART for GREP, SED, DRUPAL, BUSYBOX and LINUX for t ¼ 4.

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 315

Summing up, we answerRQ4 as follows: RT is always the
fastest technique in all scenarios. When no constraints are
present in the model (cons ¼ 0), ART is much faster than CT
as it spends nomore than one second. ART is also faster than
CT when there is a large number of parameters. However,
when there is a large number of constraints present in the
model and all parameters are involved in constraints, ART
tends to spend more time than CT. In particular, ART is up
to 3.5 times slower than CT on our test subjects.

5 DISCUSSION

We found that in 98 percent of test scenarios combinatorial
testing (CT) is no worse in terms of fault detection ability
than random testing (RT) and adaptive random testing
(ART). Therefore, when effectiveness is the key priority, we
recommend using CT.Moreover, the three testing techniques
tend to be significantly distinguishable when the failure rate
is relatively low. In this case, higher-strength CT is helpful
for detecting those hard-to-detect faults. CT is also likely to
perform better when all constraints are correctly identified,
as 84 percent of scenarios where CT is significantly worse
than RT or ART arewith partial constraints in test models.

However, deriving CT test suites will spend a lot of time.
Our results on scalability of CT re-confirm earlier findings [21]
that also found that CT does not scale to the size of the original
model of LINUX (with more than 30,000 parameters) for
strengths above 2. Hence further research is needed to
improve the scalability of CT for real-world large programs.

In addition, the time cost of CT comes from not only run-
ning the CT generation algorithm, but also from deriving a
complete CT model. Given a highly-constrained program,
the three testing techniques tend to exhibit similar behav-
iour in more than 90 percent of scenarios with no constraints
available in the test model. In this case, RT is more prefera-
ble due to its low computational cost. Furthermore, as RT
can be as effective as CT in test scenarios where the failure
rate is high, it could be used to efficiently discover the easy-
to-detect faults, such as those likely to be present in a poorly
implemented software.

ART is a similarity based test suite generation technique.
The effectiveness of similarity heuristic in terms of combina-
tion coverage has been demonstrated in [27]. We found that
in 96 percent of test scenarios ART performs as well as CT
in terms of fault detection ability, suggesting that ART can
be indeed used as an alternative to CT to some extent. More-
over, for large test models such as BUSYBOX and LINUX, ART is
more computational cost-effective, because it is usually
faster than CT. However, when the model is highly con-
strained and a high proportion of constraints are present in
the model, we found that the computational cost of ART
can be as much as 3.5 times than that of CT, which makes
ART less desirable. As in this work we only applied a sim-
ple constraint handling strategy for FSCS-ART algorithm,
further improvements are needed on the constrained ART
test suite generation.

As far as the covering strength of the test suite is con-
cerned, the difference between the three testing techniques
tends to diminish when a higher t (larger test suite) is used.
This suggests that RT and ART could also perform well if
there is less limitation on the testing resources. Addition-
ally, performance differences between t-CT, t-RT and

t-ART are usually indistinguishable when constraint infor-
mation is unavailable in the model (cons ¼ 0). At the same
time, a higher t is desirable as the average difference in pro-
portion of faults detected between 4-way and 2-way testing
can be 0.21 for cons ¼ 0. Therefore, if the tester cannot iden-
tify any constraints for a highly-constrained program, a
large RT test suite could be as good as the more sophisti-
cated techniques such as CT and ART. By contrast, if the tes-
ter has confidence that all constraints are present in the
model (cons ¼ 1:0), that average difference between 4-way
and 2-way testing is only 0.09. In this case, it might suggest
to apply 2-CT or 2-ART at first, and then increase covering
strength with an incremental manner.

Additionally, although RT and ART can be more favour-
able than CT in many test scenarios, one unparalleled
advantage of t-way CT is that it provides 100 percent t-way
combination coverage. If such a guarantee is desired, CT
should be applied.

Overall, when the faults tend to be easy to detect (for
example, in a poorly implemented software) or only a few
constraints tend to be identified (for example, the tester has
insufficient knowledge of the software), RT is preferable as
it is usually more efficient and no less effective than CT and
ART. By contrast, if the faults tend to be harder to detect
and test model tends to be more complete, CT and ART will
likely perform better. However, if the test model is highly
constrained (all parameters are involved in the constraints),
CT is preferable as current ART’s constraint-handling
becomes less effective.

6 THREATS TO VALIDITY

As far as internal threats to validity are concerned, the per-
formance of CT, RT and ART depends on their particular
implementations. It is possible that slightly different results
will be observed by applying different generation algo-
rithms. Although there are some widely used tools for cov-
ering array generation, there are no available tools to
generate RT and ART test suites in the presence of con-
straints. To avoid potential bias, we applied the same one-
test-at-a-time framework for all three testing techniques,
and implemented all generation algorithms ourselves. All
three techniques use the same framework with the only dif-
ference being the selection strategy for the next test case.

We acknowledge that there are state-of-the-art tools
available for combinatorial testing. There has been a lot of
work available comparing random and combinatorial test-
ing. In order to avoid environmental bias and focus on the
key subject that differentiates the different strategies, that is
the test case selection criterion, we decided to focus on the
one-test-at-a-time framework. Furthermore, this allows for
all test suites to be generated in a reasonable time, especially
for the three larger test models. Since CT turned out to be
the superior out of the three in most test scenarios, we pre-
dict that the results would be even stronger for CT test
suites generated using state-of-the-art CT algorithms. These
would produce smaller test suites, thus RT and ART test
suites of the same size would have even less chance of
detecting faults. One of the state-of-the-art one-test-at-a-
time CT algorithms is the AETG algorithm [35]. We imple-
mented the most well-known version of it. We used the
most popular version of ART as argued in the survey [7].

316 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

We acknowledge that more sophisticated CT and ART var-
iants have been developed [22], [41], which may produce
smaller test suites of CT, or more diverse test suites of ART.

Another internal threat to validity is the modelling of
subject programs. The creation of the ‘perfect’ test model
(including the identification of parameters, values and con-
straints) is a challenging task. Indeed, it is an open problem
in CT [1]. In this study, we used the same test models, or
extracted subsets of the test models, from previous
work [21], [33], to avoid potential bias for choosing models
for these programs. We acknowledge that different testers
might create different test models, such as identifying dif-
ferent parameters and constraints, encoding constraints into
different formats, and assigning priorities to different con-
straints. In addition, we used an existing corpus of faults
(manually seeded or mined from the repository) in this
study. This ensures to include some real faults (reported
and confirmed by the original developers), and avoids bias-
ing the fault detection to any particular testing technique.
We acknowledge that CT, RT and ART might discover other
faults in those subject programs.

As far as external threats to validity are concerned, the
main threat to this work is that we conducted experiments
on only nine subject programs. As a result, different test sce-
narios, such as different bounds of failure rates, may be
determined and recommended for the three testing techni-
ques. The six SIR programs are relatively small (with respect
to the number of parameters), but they are from a well-
studied software repository and have been widely used in
the CT literature [29], [47], [48], [49], [50]. We also used three
larger highly-configurable programs (larger test models)
with real faults [21], [33]. These nine programs vary in both
types and sizes. We believe that they represent realistic sce-
narios for comparing the three testing techniques.

7 RELATED WORK

In order to evaluate the effectiveness of CT, comparisons
between CT and RT have been made. CT has also been com-
pared with manually generated test cases and other test
techniques. However, conflicting results are reported in the
literature.

In general, CT is expected to detectmore faults than RT, or
require less test cases to achieve the same combination cover-
age. Dunietz et al. [8] evaluated t-way and random testing in
terms of code coverage on an operations support system.
They found that CT with low covering strength could be
effective for block coverage. Bell and Vouk [10] compared 2-
way and random testing for detecting security faults on two
network related products, and Pretschner et al. [11] com-
pared them for testing access control policies on four cases.
Both studies showed the superiority of 2-way CT. Addition-
ally, Kobayashi et al. [9] applied t-way and random testing
to examine logical expressions from the specification of
TCAS II. Their work was further expanded by Ballance
et al. [17] and Vilkomir et al. [18], where automatically gener-
ated expressions were used for simulation. These three
investigations all found that CT has an advantage over RT.
Moreover, Calvagna et al. [12] compared CT and RT for con-
formance testing on the byte code verifier component of the
Java virtual machine. Their results not only demonstrated
the superiority of CT, but also showed that CT is able to

detect a wider set of faults that cannot be detected by random
test suites of comparable or even larger size. Recently,
Medeiros et al. [21] conducted a large empirical study to
compare 10 sampling algorithms on 24 open-sources config-
urable software systems. They found that CT with higher
covering strength can detect more faults, but regarding the
tradeoffs between test suite size and fault detection ability,
the simple most-enabled-disabled algorithm, i.e., 1-way CT,
is themost efficient one.

Although it has been shown that CT outperforms RT,
some opposite findings were also reported. Dalal and Mal-
lows [19] compared the combination coverage of several
optimal covering arrays with same sized random test suites.
They observed that RT can cover as high as 90 percent
t-way combinations. Schroeder et al. [13] evaluated t-way
and random testing on two industrial programs with manu-
ally seeded faults. They found that there is no significant
difference between these two techniques. Bryce et al. [14]
compared the structural and combination coverage of
t-way and random test suites on a component of the Flight
Guidance System. They found that CT provides little benefit
over RT and does not improve requirement-based testing.
Additionally, Ghandehari et al. [20] compared code cover-
age and fault detection ability of CT and RT on the Siemens
Suite. They concluded that the differences between these
two techniques are not as significant as people would have
probably expected.

Moreover, some comparisons of CT and RT revealed that
their relative effectiveness may be dependent on the cover-
ing strength. Ellims et al. [15] compared t-way, random and
manuallly generated test suites on a system that controls a
large industrial engine. They found that 2-way CT is not
adequate, but CT with higher covering strength could per-
form at least as well as a manually generated test suite.
Kuhn et al. [16] compared t-way and random testing for
detecting deadlocks on a network simulator. They found
that 2-way CT detects slightly fewer deadlocks than a ran-
dom test suite of the same size, but 4-way CT performs bet-
ter than RT.

Additionally to empirical studies, Arcuri and Briand [5]
have made a formal analysis on the probability of detecting
interaction triggered faults of CT and RT. Their results
showed that a random test suite of the same size as a t-way
covering array could trigger at least one t-way fault with a
probability of more than 63 percent. Furthermore, they con-
clude that with increased number of parameters, RT could
be more effective and will converge towards equal effective-
ness as CT. However, their analysis assumes there are no
constraints in the system under test.

On the other hand, as ART is originally designed to
enhance the fault detection ability of RT, there are lots of
studies to compare these two techniques and almost all of
them have consistently demonstrated that ART outperforms
RT. For example, simulated result was reported in [22],
while empirical studies were conducted under various
open source programs with both seeded faults [23], [25],
[26] and real-life faults [24]. However, these studies did not
consider the impact of constraints.

The goal of ART is to achieve a diverse test suite. Such
process will make test cases as different as possible, which
also implies that these test cases could cover different t-way

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 317

combinations and thus a relatively high combination cover-
age can be achieved. With this idea in mind, Henard
et al. [27] have proposed a search based technique that
employs similarity-based heuristic to generate and prioritise
configurations for software product line (SPL). Their experi-
ment showed that although this technique does not guaran-
tee to achieve full combination coverage, it can scale to large
SPLs in a reasonable time and still cover a large portion of
t-way combinations. This finding suggests that similarity-
based test generation, or ART, may be used as a viable alter-
native to t-way testing. However, only combination cover-
age was evaluated in this study.

Although many comparisons of CT and RT, and of ART
and RT, have been made, the only study that compares CT,
RT and ART at the same time is from Nie et al. [28]. In that
work, the three techniques were compared in terms of the
ability of detecting interaction triggered faults. The results
showed that in detecting k-way faults with k � t, t-way CT
is better than RT and ART when using the same-sized test
suites. However, when detecting k-way faults with k > t,
t-way CT has no advantages. These findings explain in part
why some studies observe no significant difference between
RT and CT.

Note that although the previous study [28] and this one
both compare CT, RT and ART, they are different in many
aspects, as summarised in Table 8. The previous study [28]
focuses on the impact of the number of parameters that are
involved in the fault, but in this study, our focus is the com-
pleteness of test models (including parameters and con-
straints) and the difficulty of fault detection. Moreover, the
previous study [28] is based on some ideal assumptions: the
SUT is unconstrained and every fault is caused by an exact
k-way combination, thus only simulated experiment was
conducted (in a rather idealised scenario). Instead, as most
programs have constrained domains and software faults
may be caused by multiple combinations [21], [29], [30], this
study can provide more practical suggestions based on
more realistic test scenarios.

Summing up, Table 1 in Section 1 has given an overview
of literature on comparisons among CT, RT and ART.
Although many studies have been made, there still exist
some shortcomings: most comparisons of CT and RT are
based on case analysis, where only two studies reported
empirical findings [20], [21]; an empirical comparison of CT
and ART is not available; many previous studies only con-
sidered unconstrained test models, especially when com-
paring ART with RT [22], [23], [24], [25], [26].

Moreover, previous studies all assumed the usage of a
complete test model, in which all relevant parameters and
constraints are known to the tester. However, as modelling
remains a difficult task with no automated tools that can be
used [1], the tester may not be able to be aware of all param-
eters and constraints and, therefore, be unable to avoid
omitting them. Researchers also proposed adaptive strate-
gies to relieve testers of the need to make a perfect test
model before testing [2], [3]. In addition, different kinds of
faults, as characterised by their failure rate, may pose differ-
ent challenges for different testing techniques. Hence, there
is a need to empirically compare CT, RT and ART and
report observations with respect to different test scenarios
(parameters, constraints and failure rates) in order to
achieve a better understanding of their relationships.

8 CONCLUSIONS

We empirically compared three popular testing techniques,
namely, CT, RT and ART, under different test scenarios.
Their fault detection ability and computational cost were
evaluated under different choices of the proportion of
parameters available (para) and the proportion of con-
straints available (cons) in the model, and the fault failure
rates (rate). Our experiment was conducted on nine real-
world programs with real faults, and a total of 1683 differ-
ent test scenarios were used for evaluation.

Our results show that there tends to be a significant dif-
ference in the fault detection ability of the three testing tech-
niques when the failure rate is relatively low. However,
when a large test suite is used, or no constraints are present
in the model for a highly-constrained program, the differ-
ence in performance tends to diminish to an indistinguish-
able level. In general, CT is recommended to be applied as it
performs no worse than the other two techniques in 98 per-
cent of test scenarios studied, and it becomes more favour-
able when the fault is hard to detect and all constraints are
correctly identified in the model. As an improvement of RT,
ART does enhance RT, and is indistinguishable from CT in
96 percent of test scenarios. However, when there is a large
number of constraints present in the model and all parame-
ters are involved in constraints, ART might be significantly
less efficient than RT and CT.

Overall, the relative performance of the three testing
techniques is dependent on the interplay between fault
revealability and the testers’ knowledge of the parameters
and constraints. RT is preferable when the faults tend to be
easy to detect and fewer constraints tend to be available in
the test model. However, when the faults become harder to
detect and test models become more complete, we recom-
mend using CT or ART, with CT being preferable for
highly-constrained programs.

TABLE 8
A Detailed Comparison Between Our Previous

Study and This One

The previous study [28] This study

SUT Unconstrained. Constrained.

Test Model The tester can determine

all relevant parameters

and constraints.

The tester may be unaware

of all relevant parameters

and constraints.

Fault Synthetic. Each fault is

caused by one (and only one)

k-way combination.

Real/Seeded. A fault may

be caused by multiple

combinations.

Experiment Simulation (synthetic models). Empirical study (real-world

programs).

Focus Ability of t-way CT, RT and

ART of hitting k-way faults,

when k > t, k ¼ t and k < t.

Performance of CT, RT and

ART under realistic testing

scenarios, with incomplete

models and varying failure

rates? .

Summary Idealised. More practical.

? Failure rates are related to how many test cases can trigger a fault (and thus
how easily detectable the faults are) and not how many parameter settings can
trigger a fault as in [28].

318 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

The test models and corpus of faults used in this study,
together with our codes, experimental results and all
plots with respect to each subject program are available on
this paper’s companion website: http://gist.nju.edu.cn/
doc/ec18/.

ACKNOWLEDGMENTS

This work was partially supported by the National Key
Research and Development Plan (No. 2018YFB1003800) and
the Program B for Outstanding PhD Candidate of Nanjing
University (No. 201701B028). This work was also partially
supported by the DAASE EPSRC Grant (No. EP/J017515/1)
and EPSRC Fellowship (No. EP/P023991/1).

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surveys, vol. 43, no. 2, pp. 11:1–11:29, 2011.

[2] C. Nie, H. Leung, and K.-Y. Cai, “Adaptive combinatorial
testing,” in Proc. Int. Conf. Quality Softw., 2013, pp. 284–287.

[3] C. Yilmaz, S. Fouche, M. B. Cohen, A. Porter, G. Demiroz, and
U. Koc, “Moving forward with combinatorial interaction testing,”
IEEE Comput., vol. 47, no. 2, pp. 37–45, 2014.

[4] A. Arcuri, M. Z. Iqbal, and L. Briand, “Formal analysis of the
effectiveness and predictability of random testing,” in Proc. 19th
Int. Symp. Softw. Testing Anal., 2010, pp. 219–230.

[5] A. Arcuri and L. Briand, “Formal analysis of the probability of
interaction fault detection using random testing,” IEEE Trans.
Softw. Eng., vol. 38, no. 5, pp. 1088–1099, Sep./Oct. 2012.

[6] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive random
testing: The art of test case diversity,” J. Syst. Softw., vol. 83, no. 1,
pp. 60–66, 2010.

[7] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, P. Mcminn, et al., “An
orchestrated survey of methodologies for automated software test
case generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001, 2013.

[8] I. S. Dunietz, W. K. Ehrlich, B. Szablak, C. L. Mallows, and
A. Iannino, “Applying design of experiments to software testing:
experience report,” in Proc. 19th Int. Conf. Softw. Eng., 1997,
pp. 205–215.

[9] N. Kobayashi, T. Tsuchiya, and T. Kikuno, “Applicability of non-
specification-based approaches to logic testing for software,” in
Proc. Int. Conf. Dependable Syst. Netw., 2001, pp. 337–346.

[10] K. Z. Bell and M. A. Vouk, “On effectiveness of pairwise method-
ology for testing network-centric software,” in Proc. Int. Conf. Inf.
Commun. Technol., 2005, pp. 221–235.

[11] A. Pretschner, T. Mouelhi, and Y. Le Traon, “Model-based tests
for access control policies,” in Proc. Int. Conf. Softw. Testing Verifi-
cation Validation, 2008, pp. 338–347.

[12] A. Calvagna, A. Fornaia, and E. Tramontana, “Random versus
combinatorial effectiveness in software conformance testing: A
case study,” in Proc. Annu. ACM Symp. Appl. Comput., 2015,
pp. 1797–1802.

[13] P. J. Schroeder, P. Bolaki, and V. Gopu, “Comparing the fault
detection effectiveness of n-way and random test suites,” in Proc.
IEEE Int. Symp. Empirical Softw. Eng., 2004, pp. 49–59.

[14] R. C. Bryce, A. Rajan, and M. P. Heimdahl, “Interaction testing in
model-based development: Effect on model-coverage,” in Proc.
IEEE Asia Pacific Softw. Eng. Conf., 2006, pp. 259–268.

[15] M. Ellims, D. Ince, and M. Petre, “The effectiveness of t-way test
data generation,” in Proc. Int. Conf. Comput. Safety Rel. Security,
2008, pp. 16–29.

[16] D. R. Kuhn, R. Kacker, and Y. Lei, “Random versus combinatorial
methods for discrete event simulation of a grid computer
network,” in Proc. ModSim World, 2009, pp. 83–88.

[17] W. A. Ballance, S. Vilkomir, and W. Jenkins, “Effectiveness
of pair-wise testing for software with boolean inputs,” in Proc.
IEEE Int. Conf. Softw. Testing Verification Validation, 2012,
pp. 580–586.

[18] S. Vilkomir, O. Starov, and R. Bhambroo, “Evaluation of t-wise
approach for testing logical expressions in software,” in Proc.
IEEE Int. Conf. Softw. Testing Verification Validation Workshops,
2013, pp. 249–256.

[19] S. R. Dalal and C. L. Mallows, “Factor-covering designs for testing
software,” Technometrics, vol. 40, no. 3, pp. 234–243, 1998.

[20] L. S. Ghandehari, J. Czerwonka, Y. Lei, S. Shafiee, R. Kacker, and
R. Kuhn, “An empirical comparison of combinatorial and random
testing,” in Proc. IEEE Int. Conf. Softw. Testing Verification Valida-
tion Workshops, 2014, pp. 68–77.

[21] F. Medeiros, C. K€astner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,”
in Proc. Int. Conf. Softw. Eng., 2016, pp. 643–654.

[22] A. F. Tappenden and J. Miller, “A novel evolutionary approach
for adaptive random testing,” IEEE Trans. Rel., vol. 58, no. 4,
pp. 619–633, Dec. 2009.

[23] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in
Proc. Asian Comput. Sci. Conf., 2004, pp. 320–329.

[24] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Artoo: Adaptive ran-
dom testing for object-oriented software,” in Proc. Int. Conf. Softw.
Eng., 2008, pp. 71–80.

[25] Y. Lin, X. Tang, Y. Chen, and J. Zhao, “A divergence-oriented
approach to adaptive random testing of java programs,” in Proc.
IEEE Int. Conf. Automated Softw. Eng., 2009, pp. 221–232.

[26] B. Zhou, H. Okamura, and T. Dohi, “Enhancing performance of
random testing through Markov chain Monte Carlo methods,”
IEEE Trans. Comput., vol. 62, no. 1, pp. 186–192, Jan. 2013.

[27] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon, “Bypassing the combinatorial explosion: Using simi-
larity to generate and prioritize t-wise test configurations for soft-
ware product lines,” IEEE Trans. Softw. Eng., vol. 40, no. 7,
pp. 650–670, Jul. 2014.

[28] C. Nie, H. Wu, X. Niu, F.-C. Kuo, H. Leung, and C. J. Colbourn,
“Combinatorial testing, random testing, and adaptive random
testing for detecting interaction triggered failures,” Inf. Softw.
Technol., vol. 62, pp. 198–213, 2015.

[29] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combina-
torial interaction testing: Empirical findings on efficiency and
early fault detection,” IEEE Trans. Softw. Eng., vol. 41, no. 9,
pp. 901–924, Sep. 2015.

[30] J. Petke, “Constraints: The future of combinatorial interaction
testing,” in Proc. IEEE Int. Workshop Search-Based Softw. Testing,
2015, pp. 17–18.

[31] D. R. Kuhn and D. R. Wallace, “Software fault interactions and
implications for software testing,” IEEE Trans. Softw. Eng., vol. 30,
no. 6, pp. 418–421, Jun. 2004.

[32] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentationwith testing techniques: An infrastructure and its poten-
tial impact,” Empirical Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[33] A. B. S�anchez, S. Segura, J. A. Parejo, and A. Ruiz-Cort�es,
“Variability testing in the wild: The drupal case study,” Softw.
Syst. Model., vol. 16, no. 1, pp. 173–194, 2017.

[34] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for
pair-wise coverage with seeding and constraints,” Inform. Softw.
Technol., vol. 48, no. 10, pp. 960–970, 2006.

[35] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction
test suites for highly-configurable systems in the presence of con-
straints: A greedy approach,” IEEE Trans. Softw. Eng., vol. 34,
no. 5, pp. 633–650, Sep./Oct. 2008.

[36] C. J. Colbourn, “Covering arrays, augmentation, and quilting
arrays,” Discrete Math. Algorithms Appl., vol. 6, no. 03, 2014,
Art. no. 1450034.

[37] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith,
“Constraint models for the covering test problem,” Constraints,
vol. 11, no. 2, pp. 199–219, 2006.

[38] A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and
A. Biere, “Optimization of combinatorial testing by incremental
sat solving,” in Proc. IEEE 8th Int. Conf. Softw. Testing Verification
Validation, 2015, pp. 1–10.

[39] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combina-
torial interaction test generation strategies using hyperheuristic
search,” in Proc. Int. Conf. Softw. Eng., 2015, pp. 540–550.

[40] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, “TCA: An effi-
cient two-mode meta-heuristic algorithm for combinatorial test
generation (t),” in Proc. IEEE Int. Conf. Automated Softw. Eng., 2015,
pp. 494–505.

[41] J. Czerwonka, “Pairwise testing in the real world: Practical exten-
sions to test-case scenarios,” in Proc. Pacific Northwest Softw. Qual-
ity Conf., 2006, pp. 419–430.

[42] D. R. Kuhn, R. Kacker, and Y. Lei, “Automated combinatorial test
methods: Beyond pairwise testing,” Crosstalk, J. Defense Softw.
Eng., vol. 21, no. 6, pp. 22–26, 2008.

WU ET AL.: AN EMPIRICAL COMPARISON OF COMBINATORIAL TESTING, RANDOM TESTING AND ADAPTIVE RANDOM TESTING 319

http://gist.nju.edu.cn/doc/ec18/
http://gist.nju.edu.cn/doc/ec18/

[43] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improve-
ments to a meta-heuristic search for constrained interaction
testing,” Empirical Softw. Eng., vol. 16, no. 1, pp. 61–102, 2011.

[44] S. K. Khalsa and Y. Labiche, “An orchestrated survey of available
algorithms and tools for combinatorial testing,” in Proc. IEEE Int.
Symp. Softw. Rel. Eng., 2014, pp. 323–334.

[45] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,”
IEEE Trans. Softw. Eng., vol. 10, no. 4, pp. 438–444, Jul. 1984.

[46] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems
and challenges for search based software testing (keynote paper),”
in Proc. IEEE Int. Conf. Softw. Testing Verification Validation, 2015,
pp. 1–12.

[47] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction
regression testing: A study of test case generation and prior-
itization,” in Proc. IEEE Int. Conf. Softw. Maintenance, 2007,
pp. 255–264.

[48] X. Qu and M. B. Cohen, “A study in prioritization for higher
strength combinatorial testing,” in Proc. IEEE 6th Int. Conf. Softw.
Testing Verification Validation Workshops, 2013, pp. 285–294.

[49] M. Papadakis, C. Henard, and Y. Le Traon, “Sampling program
inputs with mutation analysis: Going beyond combinatorial inter-
action testing,” in Proc. IEEE 7th Int. Conf. Softw. Testing Verifica-
tion Validation, 2014, pp. 1–10.

[50] E.-H. Choi, S. Kawabata, O. Mizuno, C. Artho, and T. Kitamura,
“Test effectiveness evaluation of prioritized combinatorial testing:
A case study,” in Proc. IEEE Int. Conf. Softw. Quality Rel. Security,
2016, pp. 61–68.

[51] R. Tartler, D. Lohmann, J. Sincero, and W. Schr�oder-Preikschat,
“Feature consistency in compile-time-configurable system soft-
ware: facing the linux 10,000 feature problem,” in Proc. 6th Conf.
Comput. Syst., 2011, pp. 47–60.

[52] T. Y. Chen and Y.-T. Yu, “On the relationship between partition
and random testing,” IEEE Trans. Softw. Eng., vol. 20, no. 12,
pp. 977–980, Dec. 1994.

[53] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proc. Int. Conf. Softw. Eng., 2011, pp. 1–10.

[54] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search based
software engineering: Techniques, taxonomy, tutorial,” in Empiri-
cal Software Engineering and Verification. Berlin, Germany: Springer,
2012, pp. 1–59.

[55] Wikipedia, “Tukey’s range test,” (2017, Mar.). [Online]. Available:
https://en.wikipedia.org/wiki/Tukey’s_range_test

[56] A. Vargha and H. D. Delaney, “A critique and improvement of the
cl common language effect size statistics of mcgraw and wong,” J.
Educational Behavioral Statist., vol. 25, no. 2, pp. 101–132, 2000.

[57] C. Yilmaz, E. Dumlu, M. B. Cohen, and A. Porter, “Reducing
masking effects in combinatorialinteraction testing: A feedback
drivenadaptive approach,” IEEE Trans. Softw. Eng., vol. 40, no. 1,
pp. 43–66, Jan. 2014.

HuayaoWu received the PhD degree in computer
science and technology from Nanjing University,
in 2018. He is currently an assistant researcher
with the Department of Computer Science and
Technology, Nanjing University. His research
interests cover combinatorial testing, software
testing, and search based software engineering.

Changhai Nie is a professor of software engi-
neering with State Key Laboratory for Novel Soft-
ware Technology and Department of Computer
Science and Technology, Nanjing University. His
research interests include software analysis, test-
ing and debugging, especially in combinatorial
testing, and search based software testing.

Justyna Petke is a principal research fellow and
a proleptic lecturer with University College Lon-
don. She is supported by an Early Career EPSRC
Fellowship (No. EP/P023991/1)). Her expertise
lies in the areas of combinatorial interaction test-
ing, genetic improvement and constraint solving.
She also holds a doctorate in Computer Science
from the University of Oxford in the area of con-
straint solving.

Yue Jia is a software engineer at Facebook United
Kingdom and a part-time lecturer of software engi-
neering in the Department of Computer Science,
University College London. His research interests
cover software testing, app store analysis and
search-based software engineering. He was the
co-founder and the director of MaJiCKe Ltd., an
automated test data generation start-up and the
co-founder of Appredict Ltd., an app store analytics
company, spun out fromUCL’s UCLappA group.

Mark Harman is an engineering manager at
Facebook London, where he manages a team,
working on Search Based Software Engineering
(SBSE) at Facebook Scale. He is also a part time
professor of Software Engineering in the Depart-
ment of Computer Science at University College
London, where he directed the CREST centre for
ten years (2006-2017) and was Head of Software
Systems Engineering (2012-2017). He is known
for work on source code analysis, software test-
ing, app store analysis and empirical software

engineering. He was the co-founder of the field SBSE, which has grown
rapidly with over 1,700 scientific publications from authors spread over
more than 40 countries. SBSE research and practice is now the primary
focus of his current work in both the industrial and scientific communi-
ties. In addition to Facebook itself, Mark’s SBSE scientific work is also
supported by the ERC and EPSRC funding councils.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

320 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 3, MARCH 2020

https://en.wikipedia.org/wiki/Tukey's_range_test

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

