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Abstract—Combinatorial testing (CT) seeks to detect potential faults caused by various interactions of factors that can influence the
software systems. When applying CT, it is a common practice to first generate a set of test cases to cover each possible interaction and
then to identify the failure-inducing interaction after a failure is detected. Although this conventional procedure is simple and forthright,
we conjecture that it is not the ideal choice in practice. This is because 1) testers desire to identify the root cause of failures before all
the needed test cases are generated and executed 2) the early identified failure-inducing interactions can guide the remaining test case
generation so that many unnecessary and invalid test cases can be avoided. For these reasons, we propose a novel CT framework that
allows both generation and identification process to interact with each other. As a result, both generation and identification stages will
be done more effectively and efficiently. We conducted a series of empirical studies on several open-source software, the results of
which show that our framework can identify the failure-inducing interactions more quickly than traditional approaches while requiring
fewer test cases.

Index Terms—Software testing, combinatorial testing, covering array, failure-inducing interactions

4

INTRODUCTION

ODERN software is becoming more and more complex.
To test such software is challenging, as the candidate
factors that can influence the system’s behaviour, e.g., con-
figuration options, system inputs, message events, are enor-
mous. Even worse, the interactions between these factors
can also crash the system, e.g., the incompatibility prob-
lems. In consideration of the scale of the industrial software,
to test all the possible interactions of all the factors (we call
them the interaction space) is not feasible, and even if it is
possible, it is resource-inefficient to test all the interactions.
Many empirical studies show that, in real software
systems, the effective interaction space, i.e., targeting fault
detection, makes up only a small proportion of the overall
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interaction space [1], [2]. Further, the number of factors
involved in these effective interactions is relatively small,
of which 4 to 6 is usually the upper bounds [1]. With this
observation, applying Combinatorial testing (CT) in practice
is appealing, as it is proven to be effective to detect the inter-
action faults in the system.

CT tests software with an elaborate test suite which
checks all the required parameter value combinations. A typ-
ical CT life-cycle is shown in Fig. 1, which contains four main
testing stages. At the very beginning of the testing, engineers
should extract the specific model of the software under test
(SUT). In detail, they should identify the factors, such as user
inputs, and configure options, which could affect the sys-
tem’s behavior. Further effort is required to figure out the
constraints and dependencies among each factor and corre-
sponding values for valid testing. After the modeling stage, a
set of test cases should be generated and executed to expose
the potential faults in the system. In CT, each test case is a set
of assignments of all the factors in the test model. Thus,
when such a test case is executed, all the interactions con-
tained in the test case are deemed to be checked. The main
target of this stage is to design a relatively small set of test
cases to achieve some specific coverage. The third testing
stage in this cycle is the fault localization, which is responsi-
ble for identifying the failure-inducing interactions. To char-
acterize the failure-inducing interactions of corresponding
factors and values is important for future bug fixing, as it
will reduce the scope of suspicious code to be inspected.
The last testing stage of CT is the evaluation. In this stage,
testers will assess the quality of the previously conducted
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Fig. 1. The life cycle of CT.

testing tasks. If the assessment result shows that the previous
testing process does not fulfill the testing requirement, some
testing stages should be improved, and sometimes, may
even need to be re-conducted.

Although this conventional CT framework is simple
and straightforward, in terms of the test case generation
and fault localization stages, we conjecture that first-genera-
tion-then-identification is not the proper choice in practice.
The reasons are twofold. First, it is not realistic for develop-
ers to wait for all the needed test cases are generated before
they can diagnose and fix the failures that have been
detected [3]; Second, and the most important, utilizing the
early determined failure-inducing interactions can guide
the following test case generations, such that many unneces-
sary and invalid test cases can be avoided. For this we get
the key idea of this paper: Generation and Fault Localization
process should be interleaving.

Based on the idea, we propose a new CT framework,
which integrates these two stages together instead of divid-
ing the generation and identification into two independent
stages. Specifically, we first execute one or more tests until a
failure is observed. Next, we immediately turn to the fault
localization stage, i.e., identify failure-inducing interactions
for that failure. These failure-inducing interactions are used
to update the current coverage. In particular, interactions
that are related to these failure-inducing interactions do not
need to be covered in future executions. Then, we continue
to perform regular combinatorial testing.

We remodel the test case generation and failure-inducing
interactions identification modules to make them better
adapt to this new framework. Specifically, for the genera-
tion part of our framework, we augment it by forbidding
the appearance of test cases which contain the identified
failure-inducing interactions. This is because those test
cases containing a failure-inducing interaction will fail as
expected so that it does not contribute for additional failure
detection. For the failure-inducing identification module,
we augment it to achieve higher coverage. More specifically,
we refine the additional test case generation in this module,
so that it can not only help to identify the failure-inducing
interactions but also cover as many uncovered interactions
as possible. As a result, our new CT framework is efficient
at test case generation and MFS identification.

Our new framework has strict requirements in the accu-
racy of the identified failure-inducing interactions. This is
mainly because it forbids the appearance of test cases which
contain the identified interactions. Hence, if these interac-
tions are not failure-inducing, they will never be covered
again, and adequate testing will not be reached. To improve
the accuracy of the failure-inducing interaction identification
results, we propose a novel feedback checking mechanism

which aims at checking whether the interactions identified
by our framework are accurate or not. Particularly, if these
interactions do not pass the checking process, we will restart
the failure-inducing identification module to re-identify
other interactions.

We conducted a series of empirical studies on 5 open-
source software and several synthetic software to evaluate
our new framework. These studies start with two compari-
sons. The first one is to compare our new interleaving
framework with the traditional sequential framework,
which first generates a complete set of test cases and then
performs the fault localization. The second one is to com-
pare our framework with the feedback-driven CT [4], [5],
which also adapts an iterative framework to generate test
cases and identifying failure-inducing interactions, but to
address the problem of inadequate testing. We also evalu-
ated the sensitivities of these approaches with respect to the
number of the options of the system under test and the
number of failure-inducing interactions contained in it.
Besides, we discussed the negative influences of non-deter-
ministic failures and the issue of a system with no option
value that is irrelevant to any failure-inducing interaction
(called the non-safe value issue). The main results of these
experiments are summarized as follows:

1) Compared to the other approaches, our new inter-
leaving framework obtained better failure-inducing
interaction identification results in most cases (both
empirical studies on real software and empirical
studies on synthetic software). The new interleaving
framework also decreased the number of generated
test cases when compared with the traditional
sequential framework in most cases, and it obtained
a good result at the reduction of masking effects
caused by different failure-inducing interactions
even when compared to the feedback-driven CT
which focuses on the reduction of masking effects.

2) Feedback-driven CT generated the smallest number
of test cases in most cases, especially when the num-
ber of options of the system under testing is large, it
also obtained a good result at the reduction of mask-
ing effects. As for traditional sequential framework,
its results of these experiments lay in between those
of the other two approaches in most cases.

3) The novel feedback checking mechanism benefits
our new interleaving framework a lot, especially on
the improvement of the accurateness of failure-
inducing interaction identification and the coverage
of interactions to be checked.

4) Increasing the number of failure-inducing interac-
tions has a negative effect on all these approaches
when considering the accurateness of failure-induc-
ing interaction identification.

5) The non-deterministic failures also have a negative
effect on these approaches, especially when the pos-
sibility of the appearance of failures ranges from 0.3
to 0.8. One potential solution is to increase the redun-
dancy of test case execution.

6) Similar to the issue caused by a large number of fail-
ure-inducing interactions, the non-safe value issue
also has a negative effect on all these three approaches,
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but the feedback mechanism can help our new inter-
leaving framework to alleviate this negative effect to
some extent.

The main contributions of this paper are as follows.

1)  We propose a new CT framework which combines the
test case generation and fault localization more closely.

2) We augment the traditional CT test case generation
and failure-inducing interactions identification pro-
cess to make them adapt to the new framework.

3) We give a novel feedback checking mechanism which
can check whether the interaction identified by our
approach is failure-inducing or not, and it significantly
improves the accuracy of the results of the failure-
inducing interaction identification approach.

4)  We perform a series of comparisons with traditional
CT and Feedback-driven CT. The results of the
empirical studies are discussed.

The rest of the paper is organised as follows: Section 2
presents the preliminary background of CT. Section 3
presents a motivating example. Section 4 describes our new
framework and a simple case study is also given. Section 5
presents the empirical studies and discusses the results.
Section 6 shows the related works. Section 7 concludes the
paper and proposes some further work.

2 BACKGROUND

This section presents some definitions and propositions to
give a formal model for CT.

Assume that the Software Under Test (SUT) is influenced
by n parameters, and each parameter p; can take the values
from the finite set V;, |Vi| = a; (i = 1,2,..n). The definitions
below are originally defined in [6].

Definition 1. A test case of the SUT is a tuple of n values, one
for each parameter of the SUT. It is denoted as (vy, vy,.. ., v,),
wherevy € Vi,v9 € Vo ... v, €V,,.

In practice, these parameters in the test case can repre-
sent many factors, such as input variables, run-time options,
building options or various combination of them. We need
to execute the SUT with these test cases to ensure the
correctness of the behaviour of the SUT.

We consider any abnormally executing test case as a fault.
It can be a thrown exception, a compilation error, an asser-
tion failure, a constraint violation, etc. When faults are
triggered by some test cases, it is desired to figure out the
cause of these faults.

Definition 2. For the SUT, the n-tuple (-, vy,,..., Uy, ,...) is
called a k-degree schema (0 < k < n) when some k parameters
have fixed values and other irrelevant parameters are repre-
sented as “-”.

In effect, a test case itself is a k-degree schema when k = n.
Furthermore, if a test case contains a schema, i.e., every fixed
value in the schema is in this test case, we say this test case
contains the schema.

Note that the schema is a formal description of the interac-
tion between parameter values we discussed before.

Definition 3. Let ¢; be an 1-degree schema, c,, be an m-degree
schema in SUT and | < m. If all the fixed parameter values in

TABLE 1

A Covering Array
ID Test case
t 0 0 0 0
to 0 1 1 1
t3 1 0 1 1
t4 1 1 0 1
ts 1 1 1 0

¢ are also in c,,, then ¢, subsumes ¢;. In this case, we can
also say that ¢; is a sub-schema of ¢, and c,, is a super-
schema of ¢;, which can be denoted as ¢; < c,.

For example, the 2-degree schema (-, 4, 4, -) is a sub-
schema of the 3-degree schema (-, 4, 4, 5), that is, (-, 4, 4, -) <
('/ 4/ 4/ 5)

Definition 4. If all test cases that contain a schema, say c, trig-
ger a particular fault, say F, then we call this schema c the
faulty schema for F'. Additionally, if none of sub-schema of ¢
is the faulty schema for F', we then call the schema c the mini-
mal failure-causing schema (MFS) [6] for F.

Note that MFS is identical to the failure-inducing interac-
tion discussed previously. In this paper, the terms failure-
inducing interactions and MFS are used interchangeably.
Figuring the MFS out helps to identify the root cause of
a failure and thus facilitate the debugging process.

2.1 CT Test Case Generation

When applying CT, the most important work is to deter-
mine whether the SUT suffers from the interaction faults or
not, i.e., to detect the existence of the MFS. Rather than
impractically executing exhaustive test cases, CT commonly
designs a relatively small set of test cases to cover all the
schemas with the degree no more than a prior fixed number,
t. Such a set of test cases is called the covering array. If some
test cases in the covering array failed in execution, then
the interaction faults are considered to be detected. Let us
formally define the covering array.

Definition 5. MCA(N;t,n, (a1,as,...,a,)) is a t-way cover-
ing array in the form of N x n table, where each row represents a
test case and each column represents a parameter. For any t col-
umns, each possible t-degree interaction of the t parameters
(schema) must appear at least once. When ay = ag = -+ = a, =
v, a t-way covering array can be denoted as CA(N;t,n, v).

For example, Table 1 shows a 2-way covering array CA
(5;2, 4, 2) for the SUT with 4 boolean parameters. For any two
columns, any 2-degree schema is covered. Covering array has
proven to be effective in detecting the failures caused by inter-
actions of parameters of the SUT. Many existing algorithms
focus on constructing covering arrays such that the number of
test cases, i.e., N, can be as small as possible. In general, most
of these studies can be classified into three categories accord-
ing to the construction strategy of the covering array [7]:

1) One test case one time: This strategy repeats generat-
ing one test case as one row of the covering array
and counting the covered schemas achieved until all
schemas are covered [8], [9], [10].
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TABLE 2
OFOT Example

Original test case Outcome
t 1 1 1 Fail
Additional test cases

ty 0 1 1 Pass

to 1 0 1 Fail

ts 1 1 0 Fail

2) A set of test cases one time: This strategy generates
a set of test cases at each iteration. By mutating the
values of some parameters of some test cases in this
test set, it focuses on optimizing the coverage. If the
coverage is finally satisfied, it will reduce the size
of the set to see if fewer test cases can still fulfill
the coverage. Otherwise, it will increase the size of
the test set to cover all the schemas[11], [12].

3) IPO-like style: This strategy differentiates from the
previous two strategies in that it does not first gener-
ate complete test cases [13]. Instead, it first focuses
on assigning values to some part of the factors or
parameters to cover the schemas that are related to
these factors and then fills up the remaining part
to form complete test cases.

In this paper, we focus on the first strategy: One test case
one time as it immediately gets a complete test case so that
the testers can execute and diagnose in the early stage.
As we will see later, with respect to the MFS identification,
this strategy is the most flexible and efficient one compared
with the other two strategies.

2.2 Identify the Failure-Inducing Interactions

To detect the existence of MFS in the SUT is still far from
figuring out the root cause of the failure [14], [15], [16], as
we do not know exactly which schemas in the failed test
cases should be responsible for the failure. For example, if ¢;
in Table 1 failed during testing, there are six 2-degree can-
didate failure-inducing schemas, which are (0, 0, -, -), (0, -,
0,-),0,--0,(-00-,(0,-0),(--0,0), respectively.
Without additional information, it is difficult to figure out
the specific schemas in this suspicious set that caused
the failure. Considering that the failure can be triggered by
schemas with other degrees, e.g., (0, -, -, -) or (0, 0, 0, -), the
problem of MFS identification becomes more complicated.

In fact, for a failing test case (vy,vs, . .., v,), there can be at
most 2" — 1 possible schemas for the MFS. Hence, more test
cases should be generated to identify the MFS. In CT, the
main work in fault localization is to identify the failure-
inducing interactions. Further works of fault localization
such as isolating the specific defective source code will not
be discussed.

A typical MFS identification process is shown in Table 2.
This example assumes the SUT has 3 parameters, each of
which can take on 2 values, and the test case (1, 1, 1) fails.
Then in Table 2, as test case t failed, we mutate one factor of
test case t at one time to generate new test cases: t;—ts. It turns
out that test case t; passed, which indicates that this test case
breaks the MFS in the original test case t. So (1, -, -) should be a
failure-causing factor. Besides, since other mutating test cases
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all failed, there is no any other failure-inducing factor that is
broken. Therefore, the MFSin tis (1, -, -).

This identification process mutates one factor of the origi-
nal test case at a time to generate extra test cases. Then
according to the outcome of the test cases execution result,
it will identify the MFS of the original failing test cases. It is
called the OFOT method [6], which is a well-known MFS
identification method in CT. In this paper, we will focus on
this identification method. It should be noted that the fol-
lowing proposed CT framework can be easily applied to
other MFS identification methods.

Note that all the existing MFS identification approaches
just give approximation solutions for MFS identification. In
fact, to exactly identify the MFS (without any assumptions),
it needs an exponential number of test cases [17], which is
impossible in practice. Hence, all the existing MFS identifi-
cation approaches, as well as the approach we will propose
in this paper, need additional assumptions or just identify
the likely failure-inducing interactions. For example, the
OFOT approach is based on the following two assumptions:

Assumption 1. The execution result of a test case is deterministic.

This assumption is a common assumption of CT [17],
[18], [19]. It indicates that the outcome of executing a test
case is reproducible and will not be affected by some ran-
dom events.

Assumption 2. Given a failing test case t, when we identify the
MEFS in t, any newly generated test case will not introduce new
MEFS that is not in t.

The second assumption is identical to the assumption
proposed in [15], [16], [18], which is called the safe value
assumption. Based on this assumption, when the additional
test case generated by OFOT fails, e.g., t; in Table 2, we can
determine that the additional test case contains the same
MFS in the original failing test case, e.g., t in Table 2.

Note that in practice, these assumptions do not always
hold. Hence, the approaches proposed later in this paper
actually can only identify approximate MFS instead of the
real MFS. We will discuss the impacts of these assumptions
on the approaches proposed in this paper in the experi-
ments. Additionally, without special emphasis (for example, “the
real MFS”), all the sentences contained such as “the MFS identi-
fied by some approaches” actually mean that” the approximate
MEFS obtained by these approaches”.

3 MOTIVATING EXAMPLE

In this section, a motivating example is presented to show
how traditional CT works as well as its limitations. This exam-
ple is derived from our attempt to test a real-world software—
HSQLDB, which is a pure-java relational database engine
with large and complex configuration space. To extract and
manipulate valid configurations of this highly-configurable
system is important, as different configurations can result in
significantly different behaviours of the system [20], [21], [22]
(HSQLDB normally works under some proper configura-
tions, but crashes or throws exceptions under some other
configurations).

Considering the large configuration space of HSQLDB, we
first utilized CT to generate a relatively small set of test cases.
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TABLE 4
Sequential CT process

TABLE 3
Highly Simplified Configuration of HSQLDB
Option Values
01 Server type server, web-server, in-process
09 Scroll type sensitive, insensitive, forward-only
03  Parameterised SQL true, false
04 Statement Type statement, preparedStatement

Each of them is actually a set of specific assignments to those
options we cared." For each configuration, HSQLDB is tested
by sending prepared SQL commands. We recorded the
output of each run, but unfortunately, about half of them pro-
duced exceptions or warnings. Following the schedule of tra-
ditional CT, we started the identification process to isolate the
failure-inducing option interactions in those failing configura-
tions. Each failing configuration should be individually han-
dled, in principle, as there may exist distinct failure-inducing
option interactions among them. However, this successive
identification process, although appealing, was hardly ever
followed for this case study. This is because there are too
many failing configurations and most of them contain the
same failure-inducing option interactions, based on which
the MFS identification process is wasteful and inefficient.

For the sake of convenience, we provide a highly simpli-
fied scenario to illustrate the problems we encountered.
Consider four options in HSQLDB—Server type, Scroll Type,
Parameterised SQL and Statement Type. The possible values
each option can take on are shown in Table 3. Based on the
report in the bug tracker of HSQLDB,” an incompatible excep-
tion will be triggered if a parameterised SQL is executed as a
prepared statement by HSQLDB. Hence, when option Parame-
terised SQL is set to be true and Statement type to be prepared-
Statement, our testing will crash. Besides this failure, there
exists another option value which can also crash this data-
base engine. It is when Scroll Type is assigned to sensitive, as
this feature is not supported by this version of HSQLDB.?
Without this knowledge at prior, we need to detect and iso-
late these two failure-inducing option interactions by CT.

Table 4 illustrates the process of traditional CT on this
subject. For simplicity of notation, we use consecutive sym-
bols 0, 1, 2 to represent different values of each option (For
Parameterised SQL and Statement type, the symbol is up to 1).
According to Table 4, traditional CT first generated and exe-
cuted the 2-way covering array (t;—tg in the generation
part). Note that this covering array covered all the 2-degree
schemas for the SUT.

After testing the 9 test cases (¢; to t9), we found ¢, ¢4, and
t7 failed. It is then desired to respectively identify the MFS
of these failing test cases. For t;, the OFOT method is used
to generate four additional test cases (tjo—t13), and the MFS
(-, 0, -, -) of t; is identified (Scroll Type is assigned to sensitive,
respectively). This is because only when changing the sec-
ond factor of t;, the additionally generated test case will
pass. Then the same process is applied to ¢4 and ¢;. Finally,
we found that the MFS of ¢, is (-, -, -, -), indicating that
OFOT failed to determine the MFS (this will be discussed

1. More details in: http://gist.nju.edu.cn/doc/ict/
2. For details, see: http:/ /sourceforge.net/p/hsqldb/bugs/1173/
3. For details, see: http:/ /hsqldb.org/doc/guide/guide.html

Generation (Execution)

test case Outcome
01 09 03 04
ty 0 0 0 0 Fail
to 0 1 1 1 Pass
t3 0 2 1 0 Pass
ty 1 0 0 1 Fail
ts 1 1 0 0 Pass
tg 1 2 1 1 Pass
tr 2 0 1 1 Fail
ts 2 1 0 0 Pass
tg 2 2 0 0 Pass
Identification
t1 (0,0,0,0) t1o* 1 0 0 0 Fail
t1* 0 1 0 0 Pass
t19* 0 0 1 0 Fail
t13* 0 0 0 1 Fail
MFS -,0,-,-)
ty (1,0,0,1) t1s* 2 0 0 1 Fail
t15* 1 1 0 1 Fail
t6* 1 0 1 1 Fail
t7* 1 0 0 0 Fail
MFS (== -
t7(2,0,1,1) t18* 0 0 1 1 Fail
t1* 2 1 1 1 Pass
ta0* 2 0 0 1 Fail
tor* 2 0 1 0 Fail
MFS -0,--)

later), and the MFS of t; is the same as ¢;. Totally, for detect-
ing and identifying the MFS in this example, we generated
12 additional test cases (marked with stars).

We refer to such traditional life-cycle as Sequential CT
(SCT). However, we believe this may not be the best choice in
practice. The first reason is that the engineers normally do not
want to wait for fault localization after all the test cases are
executed. The early bug fixing is appealing and can give the
engineers confidence to keep on improving the quality of the
software. The second reason, which is also more important, is
such life-cycle can generate many redundant and unnecessary
test cases, which negatively impacted both test case genera-
tion and MFS identification. The most obvious negative effect
in this example is that we did not identify the expected fail-
ure-inducing interaction (-, -, 0, 1), which corresponds to
option Parameterised SQL being set to true and Statement Type
being set to preparedStatement. More shortcomings of the
sequential CT are discussed in the following subsections.

3.1 Redundant Test Cases

The first shortcoming of SCT is that it may generate redun-
dant test cases so that some of them do not cover as many
uncovered schemas as possible. As a consequence, SCT
may generate more test cases than actually needed. This can
be reflected in the following two aspects:

1)  The test cases generated in the identification stage
can also contribute some coveragg, i.e., the schemas
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appear in the passing test cases in the identification
stage may have already been covered in the test case
generation stage. For example, when we identify the
MEFS of t; in Table 4, the schema (0, 1, -, -) contained
in the extra passing test case t;;—(0, 1, 0, 0) has
already appeared in the passing test case t»—(0, 1, 1,
1). In other words, if we first identify the MFS of ¢,
then ¢, is not a good choice as it does not cover as
many 2-degree schemas as possible. For example, (1,
1, 1, 1) is better than this test case at contributing
more coverage.

2)  The identified MFS should not appear in the follow-
ing generated test cases. This is because according to
the definition of MFS, each test case containing this
schema will trigger a failure, i.e., to generate and exe-
cute more than one test case contained the MFS
makes no sense for the failure detection. Taking the
example in Table 4, after identifying the MFS—(-, 0,
-, -) of t;, we should not generate the test case ¢, and
t7. This is because they also contain the identified
MFS (-, 0, -, -), which will result in them failing
as expected. Since the expected failure caused by
MFS (-, 0, -, -) makes t; and ty superfluous for
error-detection, the additional test cases (t14 to t91)
generated for identifying the MFS in ¢4 and t; are
also not necessary.

3.2 Multiple MFS in the Same Test Case

When there are multiple MFS in the same test case, MFS
identification will be negatively affected. Particularly, some
MFS identification approaches cannot identify a valid
schema in this case. For example, there are two MFS in t,
in Table 4, ie., (-, 0, -, -) and (-, -, 0, 1) (shown in bold).
When we use OFOT method, we found all the additionally
generated test cases (¢4 to t17) failed. These outcomes give
OFOT a false indication that all the failure-inducing factors
are not broken by mutating those four parameter values. As
a result, OFOT cannot determine which schemas are MFS,
which is denoted as (-, -, -, -).

The reason why OFOT cannot properly work is that this
approach can only break one MFS at a time. If there are mul-
tiple MFS in the same test case, the additionally generated
test cases will always fail as they contain other non-broken
MEFS (see bold parts of ¢i4 to ti7). Some approaches have
been proposed to handle this problem, but they either can-
not handle multiple MFS that have overlapping parts [18],
or consume too many additionally generated test cases [17],
[23]. So in practice, to make MFS identification more effec-
tive and efficient, we need to avoid the appearance of multi-
ple MFS in the same test case.

SCT, however, does not offer much support for this con-
cern. This is mainly because it is essentially a post-analysis
framework, i.e., the analysis for MFS comes after the com-
pletion of test case generation and execution. As a result,
in the generation stage, testers have no knowledge of the
possible MFS, and surely it is possible that multiple MFS
appear in the same test case.

3.3 Masking Effects

When considering a single execution of the test set, tradi-
tional covering array usually offer inadequate testing due to

Masking effects [4], [5]. A masking effect[5] is an effect that
some failures or exceptions prevent a test case from testing
all valid schemas in that test case, which the test case is nor-
mally expected to test. For example in Table 4, ¢; is initially
expected to cover six 2-degree schemas, i.e., (0,0, -, -), (0, -,
0,-,--0),-00-),(-0,-0),and (-, -, 0, 0), respec-
tively. The failure of this test case, however, may prevent
the checking of these schemas. This is because, the failing
of t; (Scroll Type is set to be sensitive) crashed HSQLDB, and
as a result, it did not go on executing the remaining test
code, which may affect the examination of some interactions
of ¢;. Hence, we cannot ensure we have thoroughly exer-
cised all the interactions in this failing test case.

Since traditional covering array alone cannot reach
adequate testing, as an alternative, tested t-way interaction
criterion as a more rigorous coverage standard is proposed
[5]. According to this criterion, a t-degree schema is covered
iff (1) it appears in a passing test case, or (2) it is identified
as MFS or faulty schema. Apparently, this criterion can not
be satisfied with traditional covering array alone (in prac-
tice, it is often the case that the test set is rerun until all test
cases pass). Next let us examine whether this criterion can
be satisfied with SCT, i.e., the combination of traditional
covering array and MFS identification.

One obvious insight is that if there is only single MFS in
each failing test case, this criterion is satisfied. This conclu-
sion is based on the fact that the MFS identification is actu-
ally a process to isolate the failure-inducing interaction
among other interactions in the failing test case, and since
there is only a single MFS, then other schemas can be deter-
mined as non-MFS.

For example in Table 4, ¢; contained a single MFS (-, 0, -,
-), and we identified this MFS by generating four extra test
cases (t1g to t13). As for t1, the schema (-, 0, -, -) is determined
to be MFS, but since the target of that testing is 2-way cover-
age, i.e., to cover all the 2-degree schemas, this 1-degree
schema does not contribute any more coverage. Based on
the fact that (-, 0, -, -) is MFS, all the test cases containing
this schema will fail by definition, and surely the super-
schemas of (-, 0, -, -) in this test case—(0, 0, -, -), (-, 0, 0, -)
and (-, 0, -, 0) are also faulty schemas as all the test cases
containing these schemas must contain the MFS (-, 0, -, -),
which will fail after execution. The remaining 2-degree
schemas (0, -, 0, -), (0, -, -, 0), (-, -, 0, 0) are contained in the
additionally generated test case ¢;; (0, 1, 0, 0) (Note that for
single MFS, there will be at least one passing additionally
generated test case ), which are of course non-faulty sche-
mas. In the end, all the 2-degree schemas in the failing test
case t; satisfied the tested t-way interaction criterion.

When a failing test case has multiple MFS, however, SCT
fails to meet that criterion. As discussed previously, SCT
cannot properly work on test cases with multiple MFS-and
even cannot obtain a valid schema. With this in mind, we
cannot determine which schemas in this failing test case
are MFS or not. Consequently, we cannot ensure we have
examined all the t-degree schemas in this failing test case.
For example, ¢4 has two MFS—(-, 0, -, -), (-, -, 0, 1), which can
not be identified with the OFOT approach (In fact, there is
no passing additionally generated test case). As a result,
there are two 2-degree schemas (1, 0, -, -) (-, -, 0, 1) in this
test case that are neither contained in a passing test case nor
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TABLE 5
Augmented Sequential CT Process

Generation (Execution)

test case Outcome

01 09 03 04
ty 0 0 0 0 Fail
to 0 1 1 1 Pass
t3 0 2 1 0 Pass
ty 1 0 0 1 Fail
ts 1 1 0 0 Pass
tg 1 2 1 1 Pass
t7 2 0 1 1 Fail
ts 2 1 0 0 Pass
ty 2 2 0 0 Pass

Identification
t1 (0,0,0,0) t10* 1 0 0 0 Fail
tn* 0 1 0 0 Pass
t12* 0 0 1 0 Fail
t13* 0 0 0 1 Fa11

MFS -,0,--)
t4(1,0,0,1) t14* 1 1 0 1 Fail
t15* 2 1 0 1 Fail
t16* 1 2 0 1 Fail
t17* 1 1 1 1 Pass
t1g* 1 1 0 0 Pass

MFS (-,-0,1)
t; (2,0,1,1) t1g* 2 1 1 1 Pass

determined as MFS or faulty schemas. Hence, tested t-way
interaction criterion is not satisfied. Since multiple MFS in a
test case can introduce masking effects, SCT must be nega-
tively affected as it lacks mechanisms to avoid the appear-
ance of multiple MFS in failing test cases.

Note that in this running example of this paper, masking
effects are actually caused by the multiple MFS problem we
discussed previously. However, these two problems focus
on different aspects of combinatorial testing. The masking
effects mainly focus on the test sufficiency of CT, which can
be regarded as a metric to evaluate how many schemas
are actually tested [5]. While for multiple MFS problem, it
mainly focuses on the quality of MFS identification. To be
convenient, we separately discuss these two problems later
in this paper.

3.4 Augmentation of the SCT
Considering the fact that we do not need to repeatedly iden-
tify the same MFS, we can reduce the number of test cases
by checking the already identified MFS and removing it
from the MFS identification process. For example in Table 4,
we do not need to generate 4 additional test cases (¢15 to t1)
to figure out the failure-cause of ¢; is indeed (-, 0, -, -), which
has already been identified in previous iteration (¢ to ¢;3).
Therefore, we only need to check whether there is any MFS
other than (-, 0, -, -) in ¢; or not. When applying this aug-
mentation, the overall SCT process of the example in Table 4
will evolve into the process shown in Table 5.

In Table 5, the only difference from Table 4 is that for test
case t4 and t7, we first checked whether there is any MFS
other than the already identified MFS (-, 0, -, -). Hence we

generated two additional test cases ¢14 and t;9 (highlighted),
which exclude the MFS (-, 0, -, -) from the original failing
test cases t, and t;. Note that ¢14 (1, 1, 0, 1) was generated
by mutating the value of the second parameter of test case
t, (1,0,0, 1) from O to 1(but it also can be any value different
from the original value 0 of the second parameter in the test
case t4), and as a result, it removed the previously identified
MES (-, 0, -, -). The same as ty4, ti9 (2,1, 1, 1) was also gener-
ated by mutating the value of the second parameter of test
case t7 (2,0, 1, 1) from 0 to 1. We then found that ¢4 still
failed after execution, which indicates that ¢;4, contains other
different MFS. So, we continued to use OFOT to identify
the MFS of t1, and obtained the second MFS (-, -, 0, 1). With
respect to t19, we found it passed after execution, and hence
there is no other MFS in this test case, and we do not need
to generate additional test cases. As a result, we have
reduced the number of test cases by 2 in total by using the
augmented SCT.

Although the augmented SCT can reduce the redundancy
of test cases to some extent, there still remain some issues,
e.g., multiple MFS, and masking effects, that it cannot deal
with.

4 INTERLEAVING APPROACH

Considering these deficiencies of SCT, we do not need to
cover all t-wise interactions before moving to the debugging
phase. As an alternative, it is better to make test case genera-
tion and MFS identification more closely cooperate with
each other. Hence, we propose a new CT generation-identi-
fication framework—Interleaving CT (ICT). Our new frame-
work aims at enhancing the interaction of generation and
identification to reduce the unnecessary and invalid test
cases discussed previously. In other words, the ultimate
goal of this framework is to better support MFS identifi-
cation and test case generation, so that both of them can
alleviate the three problems we discussed in Section 3.

4.1 Overall Framework
The basic outline of our framework is illustrated in Fig. 2.
Specifically, this new framework works as follows: First, it
checks whether all the needed schemas are covered or not.
Normally the target of CT is to cover all the ¢-degree schemas,
with ¢ assigned as 2 or 3. If the current coverage is not satis-
fied, it will generate a new test case to cover as many uncov-
ered schemas as possible. After that, it will execute this test
case with the outcome of a pass (executed normally, i.e., does
not trigger an exception, violate the expected Oracle or the
like) or a fail (on the contrary). When the test case passes, we
will update the coverage state, as all the schemas in the pass-
ing test case are regarded as error-irrelevant. As a result, the
schemas that were not covered before will be determined to
be covered if it is contained in this newly generated test case.
Otherwise, if the test case fails, then we will start the MFS
identification module to identify the MFS in this failing test
case. One point to note is that if the test case fails, we will not
directly change the coverage, as we can not figure out which
schemas are responsible for this failure among all the schemas
in this test case until we identify them.

The identification module works in a similar way as
traditional independent MFS identification process, i.e.,
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Fig. 2. The interleaving framework.

repeats generating and executing additional test cases until
it can get enough information to diagnose the MFS in the
original failing test case. The difference from traditional
MFS identifying process is that we record the coverage that
this module has contributed to the overall coverage. In
detail, when the additional test case passes, we will label
the schemas in these test cases as covered if it has not been
covered before. When the MFS is found at the end of this
module, we will first set them as forbidden schemas that
later generated test cases should not contain (Otherwise, the
test case must fail and it cannot contribute to more cover-
age), and second, all the ¢-degree schemas that are related to
these MFS as covered. Here the related schemas indicate the
following three types of t-degree schemas:

First, the MFS themselves. Note that we do not change the
coverage state after the generated test case fails (both for the
generation and identification module ), so these MFS will
never be covered as they always appear in these failing test
cases.

Second, the schemas that are the super-schemas of these
MFS. By definition of the super-schemas (Definition 3),
if the test case contains the super-schemas, it must also
contain all its sub-schemas. So every test case that contains
the super-schemas of the MFS must fail after execution.
As a result, they will never be covered as we do not change
the coverage state for failing test cases.

Third, those implicitly forbidden schemas, which was first
introduced in [24]. This type of schemas is caused by the
conjunction of multiple MFS. For example, for a SUT
with three parameters, and each parameter has two values,
ie., SUT(2, 2, 2). If there are two MFS for this SUT, which
are (1, -, 1) and (0, 1, -). Then the schema (-, 1, 1) is the
implicitly forbidden schema. This is because, for any test

case that contains this schema, it must contain either (1, -, 1)
or (0,1, -). As a result, (-, 1, 1) will never be covered as all
the test cases containing this schema will fail and so we will
not change the coverage state. In fact, by Definition 4, they
can be deemed as faulty schemas.

The terminating condition of most CT frameworks is to
cover all the ¢t-degree schemas. Then since the three types of
schemas will never be covered in our new CT framework,
we can set them as covered after the execution of the identi-
fication module so that the overall process can stop.

Note that in practice, it may be more effective and effi-
cient if we make more use of the debugging information
and bug fixing. That is before we go on generating test
cases, we should first analyse the MFS that we have already
identified and fixed them. After that, we need to re-test the
SUT by augmenting the test suites. By doing so, we can fur-
ther reduce test cases in real software testing scenario.

4.2 Modifications of CT Activities
More details of the modifications of CT activities are listed
as follows:

(1) Modified CT Generation. We adopt the one test case one
time method as the basic skeleton of the generation process.
Originally, the generation of one test case can be formu-
lated:

t — select(T a1, ), €). (1)

There are three factors that determine the selection of test
case t. T,y represents all the valid test cases that can be
selected to execute. Usually, the test cases that have been
tested will not be included as they have no more contribution
to the coverage. () indicates the set of schemas that have not
been covered yet. { is a random factor. Most CT generation
approaches prefer to select a test case that can cover as many
uncovered schemas as possible. This greedy selection pro-
cess does not guarantee an optimal solution, i.e., the final
size of the set of test cases is not guaranteed to be minimal.
The random factor ¢ is used to help to escape from the local
optimum (We will not discuss the specific usage of factor £ in
this paper, many papers that focus on generating covering
array have given the specific implements).

As discussed in Section 3, we should make the MFS not
appear in the test cases generated afterward, by treating
them as the forbidden schemas. In other words, the candi-
date test cases that can be selected are reduced, because
those test cases that contain the already identified MFS
should not appear next. Formally, let 7 j/rs indicates the set
of test cases that contain the already identified MFS, then
the test case selection is augmented as:

t « select(T a1 — T mirs, ), €). @

In this formula, the only difference from Eq. (1) is that the
candidate test cases that can be selected are changed to
T at — T nrs, which excludes 7z from candidate test cases.

(2) Modified Identification of MFS. Traditional MFS identifi-
cation aims at finding the MFS in a failing test case. As dis-
cussed before, test cases in the covering array are not
enough to identify the MFS. Hence, additional test cases
should be generated and executed. Generally, an additional
test case is generated based on the original failing test case,
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so that the failure-inducing parts can be determined by
comparing the differences between the additional test cases
and the original failing test case. Take the OFOT approach
as an example. In Table 4, the additional test case ¢;; is con-
structed by mutating the second parameter value of the
original failing test case ¢;. Then as ¢;; passed the testing,
we can determine that the second parameter value (-, 0, -, -)
must be a failure-inducing element. Formally, let ¢4,y be
the original failing test case, A be the mutation parts, P be
the parameters and their values, then the additional test
case generation can be formulated:

t — mutate(P, t fiting, A) 3)

Eq. (3) indicates that the test case ¢ is generated by mutat-
ing the part A of the original failing test case ¢iiny. Note
that the mutated values may have many choices, as long as
they are within the scope of P and different from those in
t faiting- For example, for the original failing test case ¢; (0, 0,
0, 0) in Table 4, let A be the second parameter value, then
test cases (0, 1,0, 0) and (0, 2, 0, 0) all satisfy Eq. (3). We refer
to all the test cases that satisfy Eq. (3) as 7 cundidate, Which can
be formulated as:

T(tandidute = { t | T mUtate(Pv tfailingv A) } (4)

Traditional MFS identification process just selects one test
case from 7 .upgidae Tandomly. However, to adapt the MFS
identification process to the new CT framework, this selec-
tion should be refined.

Specifically, there are two points to note. First, the addi-
tional test case should not contain the already identified
MEFS; second, the additional test case is expected to cover as
many uncovered schemas as possible. These two goals are
similar to CT generation. Hence, we can directly apply the
same selection method to additional test case generation,
which can be formulated as Eq. (5). The same as Eqs. (2) and
(5) excludes the test cases that contain the already identified
MFS from the candidate test cases (7 cundidate — 7 Mrs) and
selects the additional test case which covers the greatest
number of uncovered schemas (2).

t— SeleCt(T(:andidate - T]\[FS? 97 f) (5)

(3) Updating Uncovered Schemas. After the MFS are identi-
fied, some related t-degree schemas, i.e., MFS themselves,
super-schemas and implicitly forbidden schemas, should be set
as covered to enable the termination of the overall CT pro-
cess. The algorithm that seeks to handle these three types of
schemas is listed in Algorithm 1.

In this algorithm, we first check each MFS (line 1) to see if
it is a t-degree schema (line 2). We will set those ¢-degree
MFS as covered and remove them from the uncovered
schema set () (line 3). This is the first type of schemas —them-
selves. For each t-degree super-schema of these MFS, it will
also be removed from the uncovered schema set (line 5-9),
as they are the second type of schemas—super-schemas.
The last type, i.e., implicitly forbidden schemas, is the toughest
one. To remove them, we need to search through each
potential schema in the uncovered schema set (line 11) and
check if it is the implicitly forbidden schema (line 12). The
checking process involves solving a satisfiability problem.

Specifically, if we can not find a test case from the set
(T an — T mrs) (excluding those that contain MFS), such that
it contains the schema under checking, then we can deter-
mine the schema is the implicitly forbidden schema, and it
needs to be removed from the uncovered schema set (line
13). This is because in this case, the schema under checking
can appear only in 7 j/rg, which we will definitely not gen-
erate in later iterations. In this paper, an SAT solver will be
utilized to do this checking process.

Algorithm 1. Changing Coverage after Identification of

MFS

Input: Sy/rs o> already identified MFS
Q o> the schemas that are still uncovered

T > all the possible valid test cases
T urs > all the test cases that contain the MFS
Output: () > updated schemas that are still uncovered

1: for each s € Sk do

if s is t-degree schema then
Q— 0O\s

end if

for each s, is super-schema of s do
if s, is t-degree schema then

Q—0\s,
end if
9: end for

10: end for

11: foreach s € () do

12: if At € (Toy — T mrs), s-t., t.contain(s) then

13: Q—0O\s

14: end if

15: end for

4.2.1 MFS Identification Approach Mutated

To forbid identified MFS in the later generated test cases is
efficient for CT because it will reduce many unnecessary
test cases. On the other hand, our framework has strict
requirements in the accuracy of the identified MFS. This is
obvious, because if the schema identified is not an MFS,
later generated test cases will forbid a non-MFS schema,
which will have two impacts: (1) If this non-MFS schema is
the sub-schema of some actual MFS, then the corresponding
MFS will never appear, and surely we will not detect and
identify it. (2) If this non-MFS schema is a sub-schema of
some ¢-degree uncovered schemas, then these schemas will
never be covered, and adequate testing will not be reached.
To exactly identify the correct MFS in one failing test
case, if possible, however, is not practical due to the cost of
testing [6], [14]. This is because, for any test case with n
parameter values, there are 2" — 1 possible schemas which
are the candidate MFS. For example, the possible candidate
schemas of failing test case (1,1, 1) are (1, -, -), (-, 1,-), (-, -,
1,1,1,-),d-1,(1,1)and (1,1, 1). According to the def-
inition of MFS, we need to individually determine whether
these 2" — 1 are faulty schemas or not. In fact, even to deter-
mine whether a schema is a faulty schema or not is not easy,
as we must figure out whether all the test cases containing
this schema will fail or not. So the complexity to correctly
obtain a real MFS is surely exponential. As a result, existing
MEFS identification approaches actually obtain approximation
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solution through a relatively small size of additionally gen-
erated test cases [6], [14], [15], [17], [18], [19], [25].

Based on this insight, to improve the accuracy of the
identified MFS, we propose a novel MFS-checking mecha-
nism to assist with MFS identification. It is detailed in Algo-
rithm 2.

Algorithm 2. Checking the MFS

Input: candi > MFS that needs to be checked
Repeat > The number of repeating times
Q > the schemas that are still uncovered
T viks > all the valid test cases that contain MFS
T candi > all the valid test cases that contain candi
Output: candi is MFS or not
1: TExecuted —0
2: while Repeat > 0 do
Tpuss’/}ble — (T(:u'ml’/}\T;\IFS)\TE:I:fJ(:'ute{l
tnew < select_dissimilar(T possivie, T Ezecuted)
if execute(t,.,,) == PASS then
update(te,,, )
return False
end if
9: Repeat «— Repeat — 1
10: TExecuted . append(tnew)
11: end while
12: return True

In this algorithm, our target is to verify whether the can-
didate schema candi is MFS or not. The input variable
Repeat indicates the checking strength, that is, the number
of iterations that schema candi is checked. In each iteration,
we will generate a new test case t,., which contains this
schema candi (line 4) and execute it (line 5). If the newly
generated test case fails, which indicates that the probability
that the schema candi is MFS increases, we will continue the
checking process until the variable Repeat is equal to 0 (line
9, line 2). On the other hand, if the test case passes (line 5),
which indicates that the schema candi is not MFS, we will
update the uncovered schemas (because the new passing
test case will contribute to more coverage), and directly
return false (line 7). If we cannot find a test case that con-
tains this schema and passes during our checking process,
we will return true (line 12).

Note that the output true of our checking algorithm does
not guarantee this schema candi is 100 percent MFS (for
which we need to generate all the possible test cases con-
taining this schema), however, the probability that this
schema is MFS increases with the increasing of checking
strength, i.e., the value of Repeat variable. However, on the
other hand, increasing the value of Repeat also raises our
testing cost (we need to generate one more test case if
Repeat increases by 1).

With respect to the tradeoff between the quality of MFS
identification and testing cost, we need to design an elabo-
rate test set with a small number of test cases, while keeping
a high probability to check whether the candidate schema
under test is indeed MFS or not. Inspired by the idea of gen-
erating dissimilar test cases [26], [27], for each iteration, we
let the newly generated test case be as different from previ-
ously generated test cases as possible (line 3-4). This heuris-
tic idea is based on the fact that there is a small probability

that dissimilar tests contain the same fault [26]. As a result,
if the checking schema is not MFS, but the test case which
contains it fails because of other failure-inducing schemas,
we may easily verify that it is not the MFS by generating
another dissimilar test case (There is a high probability
that the newly generated test case does not contain the fail-
ure-inducing schema in previous test case, and passes after
execution).

It is worth noting that the feedback checking mechanism
can also be embedded into SCT. Specifically, we can check the
MFS obtained from each failing test case by generating addi-
tional test cases. Then, similar to ICT, we need to eliminate
those MFS that cannot pass the verification and re-locate the
MFS in the corresponding failing test case. However, for SCT,
there are two facts that can negatively influence the improve-
ment of the feedback checking mechanism. First, the effects of
correcting wrongly identified MFS cannot be further propa-
gated. That is, although we can fix the MFS identification
result, it cannot be used in the following cases because the test
case generation stage has already finished and some other
MFS may never be detected. Second, it costs SCT more for
embedding the feedback checking mechanism. This is
because SCT needs to identify MFS for more failing test cases
than ICT as we have discussed before, and for each failing test
case, the feedback checking process needs to run at least one
time. Our empirical study also exhibits this point. In fact, even
without feedback checking mechanism, SCT still needed
more test cases in the MFS identification stage than ICT with
feedback checking mechanism (see Table 10 in Section 5.2).

4.2.2 Constraints Handling

In many systems to be tested, constraints or dependencies
exist between parameters. These constraints will render cer-
tain test cases invalid [28]. To handle these constraints is
important, as we should examine the schemas only with valid
test cases [5]. There are two types of method for constraints
handling: 1) static method, that is, by knowing the constraints
in prior, approaches will forbid those invalid schemas to
appear in the generated test cases [20], [28], [29], [30], [31]. 2)
dynamic method, that is, it does not initially know which are
constraints, but identify them as MFS and forbid them in the
following iterations [5]. We adopt the second method for han-
dling constraints. There are two reasons for this choice. First,
there are not many constraints in our empirical study such
that the dynamic way of identifying them and forbidding
them will not affect the efficiency too much. Second, the
dynamic process of handling constraints is similar to the way
that we identify the MFS, so our framework does not need to
be modified a lot for handling constraints.

Specifically, when we execute invalid test cases which
cannot be executed or even compiled, we will identify these
invalid schemas which trigger this problem. In other words,
we will regard the incompatibility exception as one type of
failure, and identify the illegal schemas as MFS. After this,
we will forbid these illegal schemas and some possible
implicitly illegal schemas to appear in the test cases gener-
ated later (through the same way for those identified MFS).

In a more detailed view, those forbidden schemas are for-
mulated into clauses, as introduced in [28]. For example, con-
sider the SUT in Table 3. Assume that scroll type forward-only
is incompatible with in-process server type, that is, the
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forbidden schema is (in-process, forward-only, -, -). We can
formulate it as clause {lin-process, !forward-only}, which
means that /in-process & !forward-only = 1, where in-process
and forward-only can be 0 or 1 (0 means that this value is
not selected, while 1 means this value is selected). This
clause limited that only one of them can be set to be 1. By
doing so, we can use SAT solver [32] to obtain a solution
(that is, a test case that avoids these forbidden schemas).
It is noted that, besides these forbidden schemas, there are
other conditions a test case must satisfy. For example, in
Table 3, each option must be assigned with one, and only
one, value. More details of this formulated model can be
found in [28], [29].

There are two key parts in our constraints handling
techniques. The first part is updating uncovered schemas.
That is, after one constraint or one MFS is obtained, we will
update all the schemas that are still needed to be covered.
This part is done by computing the compatibility between
the uncovered schemas with those known and discovered
constraints [28]. After this, all the possible implicated con-
straints (Not known prior, nor explicitly discovered), and
hence, our algorithm will not be stuck in the unstoppable
condition that some schemas cannot be covered. The second
part is that, for one test case that is generated by our
approach, we will compute the satisfiability of the value
under selected for each parameter. Specifically, for one
pending value of one specific parameter, we will first use
SAT solver to find if there is a solution (one possible test
case) that contain this value and not violate any of these
constraints or MFS (including implicated ones). If the solver
returns true, which means we can find one satisfied test
case, then this value can be selected as one candidate value
for that parameter. Otherwise, this value will be discarded.

4.3 Advantages of Our Framework

In view of the problems listed in Section 3, our new frame-
work has the following advantages:

1) Redundant test cases are eliminated so that the overall cost
is reduced. Two facts of our framework support this
improvement: (1) The schemas appearing in the
passing test cases generated for MFS identification
are counted towards the overall coverage, so that the
test case generation process converges faster, which
results in generating a smaller number of test cases.
(2) The forbidden of identified MFS. As a result, test
cases which contain these MFS will not appear, as
well as those additionally generated test cases used
to re-identify these MFS.

2)  Theappearance of multiple MIFS in the same test case is lim-
ited, improving the effectiveness of MFS identification. This
is mainly because we forbid the appearance of MFS
that has been identified. Consequently, following our
approach, the number of remaining MFS decreases
one by one. Correspondingly, the probability that mul-
tiple MFS appear in the same test case will also
decrease. Since multiple MFS has a negative effect on
MFS identification as discussed in Section 3, the reduc-
tion of the appearance of multiple MFS in the same
test case obviously improves the effectiveness of MFS
identification.

3)  The Masking effect is reduced, and hence, adequate testing
is better satisfied. As discussed in Section 3, SCT suf-
fers from masking effects when there are multiple
MEFS in one failing test case. Since our approach theo-
retically reduces the probability that multiple MFS
appear in the same test case, we believe our frame-
work can alleviate the masking effects. In fact, our
framework conforms to tested t-way interaction crite-
rion because we only update t-way coverage for two
types of schemas: (1) t-degree schemas in those pass-
ing test cases and (2) t-degree schemas related to
MEFS. Hence, our Interleaving CT framework supports
better adequate testing than SCT.

4)  The quality of MFS identification is improved even if
Assumption 2 is not satisfied. As we have discussed
in Section 2.2, the MFS identification approach used
in our framework is based on the “Safe Value”
Assumption (Assumption 2). In practice, however,
this assumption is not always satisfied, which may
result in a bad quality of MFS identification result.
Under such condition, the feedback checking mecha-
nism process can alleviate this issue and improve
the quality of MFS identification. Specifically, with
additional test cases generated in the feedback
checking mechanism process, we obtain more chan-
ces to refine the MFS identification result, i.e., we can
re-identify the MFS in the failing test case if the
previous result cannot pass our validation. Note that
the high quality of the MFS identification result is
important to our framework because the test cases
generated later by our framework is heavily based
on the previously identified MFS.

4.4 Demonstration on an Example
Applying the new framework to the scenario of Section 3,
we can get the result listed in Table 6.

This table consists of two main columns, in which the left
column indicates the generation part while the right indi-
cates the identification process. We can find that, after iden-
tifying the candidate MFS (-, 0, -, -) for ¢;, we generated two
additional test cases (The checking strength, i.e., the Repeat
value, is 2 in this example) that contain this schema and
found both of them failed. It means that the schema (-, 0, -,
-) passed the verification, and would be regarded as MFS.
Note that if either one of these two additional test cases
passes, we will label (-, 0, -, -) as non-MFS, and re-identify
the MFS in ¢;. Another point that needs to be noted is that
these two additional test cases (ts, t7) are two dissimilar test
cases. In fact, all the 2-degree schemas that are covered by
these two test cases are different.

After we determine (-, 0, -, -) to be MFS, the following test
cases (tg to t19) will not contain this schema. Correspond-
ingly, all the 2-degree schemas that are related to this
schema, e.g., (0, 0, -, -), (-, 0, 1, -), will also not appear in the
following test cases. Additionally, the passing test case t3
generated in the identification process cover six 2-degree
schemas, i.e., (0, 1,-,-),0,-,0,-),©,--0),(-,1,0,-),(1,-,
0), and (-, -, 0, 0) respectively, so that it is not necessary to
generate more test cases to cover them. We later found that
ts failed, which only contained one MFS as expected, and
we easily identified it (-, -, 0, 1) with four extra-generated
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TABLE 6
Interleaving CT Case Study

Generation Identification

t 0 0 0 O Fai
to* 1 0 0 0 Fail
t3* 0 1 0 0 Pass
ty* 0 0 1 0 Fail
ts* 0 0 0 1 Fail
candidate MFS: (—,0, —, —)
Checking
te* 1 0 1 1 Fail
tr* 2 0 2 2 Fai

ts 1 1 1 1 Pass

tg 0 2 1 1 Pass

tl() 0 1 0 1 Fail
thy* 1 1 0 1 Fail
tp* 0 2 0 0 Fail
ti3* 0 1 1 0 Pass
ty* 0 1 0 0 Pass
candidate MFS: (—, —,0,1)
Checking
ti;* 2 1 0 1 Fail
tl(j* 1 2 0 1 Fail

tiy 1 2 0 0 Pass

tiw 2 1 0 0 Pass

ty 2 2 1 1 Pass

test cases (11 to t14) and two checking test cases (¢15 to ti).
This schema is 2-degree MFS, which will be forbidden in
the following test cases and set to be covered.

Above all, when using the interleaving CT approach,
the overall generated test cases are 2 less than that of the
traditional sequential CT approach in Table 4 and equal to
the augmented sequential CT approach in Table 5. In fact,
if we exclude the test cases from the checking process, the
interleaving CT approach can reduce even more test cases
(6 less than that of the traditional sequential CT approach,
and 4 less than the augmented sequential CT approach).
However, these additional test cases generated in the check-
ing process will ensure a high quality of MFS identification
for interleaving CT approach. In this simple example, both
interleaving CT and augmented sequential CT correctly
identified all the MFS (better than that of traditional sequen-
tial CT), but given more complex subjects with more MFS,
we believe interleaving CT can outperform the augmented
sequential CT at MFS identification.

Note that in this example, our approach did not wrongly
identify the MFS, and hence, this example did not show
how ict handles the circumstance if Algorithm 2 returns
false (i.e., if one passing test case is found containing the
previously identified MFS in the checking process). Next,
we use a simple example to show how ict works in such
condition. Let a SUT have four parameters, of which p;, ps,
p3, and p, are ternary options. There are two MFS in this
SUT, which are (0, 0, 0, -) and (1, 0, O, -), respectively. Now
we assume that ict start with a failing test case (0, 0, 0, 0).
Table 7 shows how ict works in this condition.

In Table 7, we can observe that at the first time, we
wrongly identified the MFS. Specifically, after four test cases
(t1, to, t3, and t4) generated by ict, we identified schema (-, 0,
0, -) as the MFS instead of the real MFS (0, 0, O, -). The reason
why it fails obtaining the real MFS is that ¢; introduced the

TABLE 7
Example of How Interleaving CT Handles
the Wrong Identification Case

Generation Identification

t; 0 0 0 0 Fail
to* 1 0 0 0 Fai
t3* 0 1 0 0 Pass
ty* 0 0 1 0 Pass
5% 0 0 O 1 Fail
candidate MFS: (—,0,0, —)
Checking
te* 2 0 0 1 Pass
Re-identify
t7* 2 0 0 0 Pass
tg* 0 2 0 0 Pass
to* 0 0 2 0 Pass
tp* 0 0 0 2 Fail
candidate MFS: (0,0,0,—)
Checking
t5* 0 0 0O 1 Fail
tlo* 0 0 0 2 Fail

new MFS (1, 0, 0, -). It violated the safe assumption as we
discussed in Section 2.2 (Assumption 2 in the last two para-
graphs), and hence, it cannot obtain the real MFS. After this,
ict needed to check this schema by generating additional
test case t5 (2, 0, 0, 1). It passed during testing, which indi-
cated that we wrongly identified the MFS, i.e, (-, 0, 0, -) is
not the real MFS. Then ict re-started the MFS identification
procedure and generated additional four test cases, i.e., t7,
ts, tg, and t19. Note that in the second MFS identification
procedure, ict needed to generate test cases as different as
what has been already generated as possible to cover more
un-covered test cases. In the second iteration of the MFS
identification, ict correctly identified the real MFS (0, 0, 0, -).
ict then checked this schema by two test cases ¢; and 0.
Since these two test cases both failed, (0, 0, 0, - ) was identi-
fied to be the MFS at last. Note that in the second checking
procedure, there did not exist other test cases contain the
schema (0, 0, 0, -), and hence, we could only use these two
already generated test cases to check this schema. In fact,
under this condition, all the possible test cases, i.e., t1, ts,
and ¢, that containing this schema (0, 0, 0, -) were failed.
As aresult, (0, 0, 0, -) is exactly the MFS according to what
MFS is declared (Definition 4).

5 EMPIRICAL STUDIES

To evaluate the effectiveness and efficiency of the interleav-
ing CT approach, we conducted a series of empirical studies
on several open-source software subjects. Each of these
studies aims at addressing one of the following research
questions:

Q1:  Does ICT perform better than augmented SCT at the
overall cost and the accuracy of MFS identification?

Q2:  Does ICT alleviate the three problems proposed in
Section 3. Specifically, (1) does ICT reduce generat-
ing redundant and useless test cases, (2) does ICT
reduce the appearance of test cases which contain
multiple MFS, and (3) does ICT reduce the impacts
of masking effects?
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TABLE 8 TABLE 9
Subject Programs Inputs Model

Subjects Version LOC Faults Lan Subjects Inputs MFS

Tomcat 7.0.40 296138 #55905 java  Tomcat 28 x 31 x 41 1(1) 2(2)

Hsqldb 2.0rc8 139425 #981 Java Hsqldb 29 x 3% x 4! 3(3)

Gcee 472 2231564 #55459 c Gcee 29 x 6! 3(4)

Jflex 1.4.2 10040 #87 Java Jflex 210 % 32 x 4! 2(1)

Tcas v 173 #Seed c Tcas 27 x 32 x 4! x 102 9(16) 10(8) 11(16) 12(8)

Q3:  How much does ICT gain from the feedback check-
ing mechanism.

Q4: Does ICT have any advantages over the existed
masking effects handling technique—FDA-CIT [5]?

Q5:  How well do these approaches perform on software
subjects with multiple defects?

Q6:  What is the sensibility of our approach to a different

number of MFS and a different number of options in

SUT?

How well does our approach perform when the two

assumptions listed in Section 2 do not hold?

Q8: How about the static way, i.e., the Error Locating
Arrays, of handling combinatorial test generation
and fault localization?

Note that we will refer to SCT as the augmented SCT
approach in the remaining part of this paper (Augmented SCT
performs more effective and efficient than traditional SCT).

Q7:

5.1 Subject Programs

The five subject programs used in our experiments are listed
in Table 8. Column “Subjects” indicates the specific soft-
ware. Column “Version” indicates the specific version that
is used in the following experiments. Column “LOC” shows
the number of source code lines for each software. Column
“Faults” presents the fault ID, which is used as the index to
fetch the original fault description from the bug tracker for
that software. Column “Lan” shows the programming lan-
guage for each software (For subjects written in more than
one programming language, only the main programming
language is shown).

Among these subjects, Tomcat is a web server for java
servlet; Hsqldb is a pure-java relational database engine;
Gcc is a programming language compiler; Jflex is a lexical
analyzer generator; Tcas is a module of an aircraft collision
avoidance system. We select these programs as subjects
because their behaviours are influenced by various combi-
nations of configuration options or inputs. For example,
the component connector of Tomcat is influenced by more
than 151 attributes [33]. For program Tcas, although with a
relatively small size (only 173 lines), it has 12 parameters
with their values ranging from 2 to 10. As a result, the over-
all input space for Tcas can reach 460800 [34], [35].

As the main target of our empirical studies is to compare
the ability to handle the proposed three issues between our
approach with traditional ones, we first must know these
faults and their corresponding MFS in prior, so that we can
determine whether the schemas identified by those
approaches are accurate or not. For this, we looked through
the bug tracker of each software and focused on the bugs
which were caused by the interaction of configuration
options. Then for each such bug, we derived its MFS by

analysing the bug description report and the associated test
file which can reproduce the bug. For Tcas, as it does not
contain any fault for the original source file, we took a muta-
tion version for that file with injected fault. The mutation
was the same as that in [35], which is used as an experimen-
tal object for the fault detection studies.

5.1.1  Specific Inputs Models

To apply CT on the selected software, we need to first model
their input parameters. As discussed before, the whole con-
figuration options are extremely large so that we cannot
include all of them in our model in consideration of the
experimental time and computing resource. Instead, a mod-
erate small set of these configuration options is selected.
It includes the options that cause the specific faults in Table 8
so that the test cases generated by CT can detect these faults.
Additional options are also included to create some noise
for the MFS identification approach. These options are
selected randomly. Details of the specific options and their
corresponding values of each software are posted at
http://gist.nju.edu.cn/doc/ict/. A brief over-
view of the inputs models, as well as the corresponding
MEFS (degree), is shown in Table 9.

In this table, Column “inputs” depicts the input model
for each version of the software, presented in the abbrevi-
ated form #values#mumber of parameters o g 29 x 32 x 41
indicates the software has 9 parameters that can take on 2
values, 2 parameters taking on 3 values and only one
parameter taking on 4 values. Column “MFS” shows the
degrees of each MFS and the number of MFS (in the paren-
theses) with that corresponding degree.

Note that these inputs just indicate the combinations of
configuration options. To conduct the experiments, some
other files are also needed. For example, besides the XML
configuration file, we need a prepared HTML web page and
a java program to control the startup of the tomcat to see
whether exceptions will be triggered. Other subjects also
need some corresponding auxiliary files (e.g., c source files
for GCC, SQL commands for Hsqldb, and some text for
Jflex). Additionally, there are two constraints among the
subjects. The first constraint is from Tomcat, of which the
error page location must not be empty. The second one is
from Hsqldb, of which someone can only process with the
“next()” method in a non-scrollable result set.

5.2 Comparing ICT with SCT

The covering array generating algorithm used by ICT is
AETG [8], as it is the most common one-test-case-one-time
generation algorithm. Another reason for choosing AETG,
which is also the most important, is that the mutation of this
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TABLE 10
Comparison of the Number of Test Cases
Subjects Method 2-way 3-way 4-way
Gen Iden Total Gen Iden Total Gen Iden Total
Tomcat ict 8.3 54.2 60.7 311 50.3 79.9 789 53.0 130.2
sct 13.8 55.0 68.3 38.9 61.0 99.7 92.8 95.5 187.3
Hsqldb ict 11.7 37.8 494 40.7 47.7 88.3 113.0 53.5 166.3
sct 15.6 32.3 479 484 65.1 113.3 123.0 114.0 236.5
Gcee ict 14.0 28.0 414 41.6 475 89.0 94.3 50.4 144.7
sct 14.6 20.1 34.4 52.9 27.8 80.2 101.9 38.8 140.1
Jflex ict 14.6 17.0 31.6 48.6 17.0 65.6 133.7 17.0 150.7
sct 15.9 16.6 32.5 49.9 24.1 74.0 133.2 445 177.7
Tcas ict 109.1 0.0 109.1 414.7 3.0 417.7 1545.4 74 1552.8
sct 107.5 0.0 107.5 418.3 0.0 418.3 1556.1 2.6 1558.7

algorithm, i.e,, AETG_SAT [28], [29] is a rather popular
approach to handle constraints in covering array genera-
tion, which is the key to our framework. The MFS identify-
ing algorithm is OFOT [6] as discussed before. The
constraints handling solver (integrated into AETG_SAT) is
a java SAT solver—SAT4j [36]. Note that all the three algo-
rithms or techniques can be easily replaced with other simi-
lar approaches. For example, we can use other one-test-one-
time covering array generation algorithms, like DDA [9], or
other MFS identification techniques [17], [18], or other pop-
ular SAT solvers [37]. However, to select specific algorithms
for the three components of combinatorial testing is not the
key concern of this paper; instead, our work focuses on the
overall CT process.

With respect to SCT, we used the augmented simulated
annealing approach [11], [38] to build covering array.
The heuristic search-based algorithm is known to produce
smaller covering arrays than the one test case at one time
approach. Hence, using this approach is fairer for the
approach SCT than using greedy approach (which may
result in a larger size of covering array) because it needs to
first generate a complete covering array.

5.2.1 Study Setup

For each software except Tcas, a test case was determined to
be passing if it ran without any exception; otherwise, it was
regarded as failing. For Tcas, as the fault is injected, we
determined the result of a test case by separately running
and comparing the original correct version and the mutated
version.

In this experiment, we focused on three coverage criteria,
i.e., 2-way, 3-way, and 4-way, respectively. It is known that
the generated test cases vary for different runs of AETG
algorithm and simulated annealing algorithm. So to avoid
the biases of randomness, we conducted each experiment
30 times and then evaluated the results. (Note that the
remaining case studies were also based on 30 repeated
experiments.) For each run of the experiment, we separately
applied SCT approach and our approach to the prepared
subject to detect and identify the MFS.

To evaluate the results of the two approaches, one metric
is the cost, i.e., the number of test cases that each approach
needs. Specifically, the test cases that were generated in the
CT generation and MFS identification, respectively, were

recorded and compared for these two approaches. Apart
from this, another important metric is the quality of their
identified MFS. For this, we used standard metrics: precision
and recall, which are defined as follows:

#the num of correctly identified MFS
#the num of all the identified schemas’

precision =

and

#the num of correctly identified MFS
#the num of all the real MFS

recall =

Precision shows the degree of accuracy of the identified
schemas when compared to the real MFS. Recall measures
how well the real MFS are detected and identified. Their
combination is F-measure, defined as

2 X precision X recall

F-measure = —
precision + recall

5.2.2 Result and Discussion

Table 10 presents the results for the number of test cases. In
Column ‘Method’, ict indicates the interleaving CT
approach and sct indicates the sequential CT approach.
The results of three covering criteria, i.e., 2-way, 3-way, and
4-way are shown in three main columns. In each of them,
the number of test cases that are generated in CT generation
activity (Column ‘Gen’), in MFS identification activity
(Column ‘Iden’), and the total number of test cases (Column
‘Total’) are listed.

One observation from this table is that, in most cases, the
number of test cases generated by our approach was smaller
than that of the sct approach. In fact, except for subject Gee,
our approach reduced about dozens of test cases on average
when compared to approach sct (The improvement for sub-
ject Tcas was smaller, because most of the MFS of Tcas are of
high degree (t > 6), and the covering arrays (t = 2, 3, 4)
rarely detected any of them.). This result indicates that ict
was more efficient at both CT generation activity and MFS
identification activity.

For Gce, however, we found that ict generated a bit more
test cases at MFS identification activity (Note that even for
this subject, ict still generated fewer test cases at CT genera-
tion activity). However, when considering the fact that ict
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TABLE 11
Comparison of the Quality of the Identified MFS
Subjects ~ Method 2-way 3-way 4-way
Precision  Recall F-measure Precision Recall F-measure Precision Recall F-measure

Tomcat ict 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

sct 0.75 1.0 0.86 0.88 1.0 0.93 0.88 1.0 0.93
Hsqldb ict 1.0 0.77 0.83 1.0 1.0 1.0 0.97 1.0 0.99

sct 0.7 0.4 0.5 0.53 0.47 0.49 0.45 0.43 0.43
Gcee ict 0.45 0.28 0.34 0.77 0.65 0.7 0.83 0.75 0.79

sct 0.13 0.07 0.1 0.09 0.07 0.08 0.12 0.1 0.11
Jflex ict 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

sct 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Tcas ict 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.0 0.01

sct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

obtained a higher quality of the identified MFS, we believe
this cost was worth it for Gee. In fact, the f-measures of ict
were 0.34, 0.7, and 0.78, respectively, for subject Gcc, while
sct only scored 0.1, 0.08, and 0.11, respectively. This gap
between ict and sct for subject Gece was far larger than that of
other subjects.

The quality of the identified MFS for other subjects is also
listed in Table 11. Based on this table, we found that ict per-
formed better than sct. In fact, except for subject [flex, of
which both ict and sct perfectly identified the MFS (the MFS
of Jflex is a single 2-degree schema and easy to identify), ict
obtained a higher score at f-measure than sct for all the sub-
jects. For example, the f-measures of ict were 0.83, 1.0, and
0.99, respectively for subject Hsqldb, while sct only scored
0.5, 0.49, and 0.43, respectively. Even for subject Tcas, at
which failures are hard to detect, the f-measure of ict was
0.01 for 4-way coverage, while sct scored 0. This result indi-
cates that ict was far more effective at MFS identification
than sct.

Another interesting observation with regard to the MFS
identification is that higher t-wise strengths were not always
resulting in an improved precision (Take subject Hsqldb for
example, the f-measure of ict and sct for 3-way coverage
were 1.0 and 0.49, respectively; while 0.99 and 0.43 for 4-
way coverage). This is because the effectiveness of MFS
identification is related to the degree of MFS (i.e., the num-
ber of parameter values in the MFS) contained in the SUT.
That is, if all the MFS in the SUT is of low degree, a lower
strength covering array is enough to detect the MFS. Specifi-
cally, a t-wise covering array can detect all the failures
caused by the MFS of t-degree, or less than t-degree. Then,
if an MFS is detected, ict and sct can identify them as
expected. A higher-wise covering array can certainly detect
those low degree MFS too, but compared to the lower
strength covering array, it generates much more test cases.
As a result, many failing test cases may contain the same
MEFS, and worse, it increases the chance that a failing test
case contains multiple MFS. This surely decreases the accu-
racy of MFS identification (See Section 3.2).

Additionally, Table 12 shows the milliseconds consumed
by the two approaches on average. The experiment was con-
ducted on Machine HP ProDesk 600 G1 TWR (Intel Core i5,
3.3 Hz, 16 GB memory). Based on this table, it is obvious
that ict cost more time than sct. This is because ict needed to

handle the SAT problem (for forbidding the appearance of
MEFS and constraints), which consumed additional comput-
ing resources than sct. Considering the long test case execu-
tion time of large software projects, however, this extra test
case generation time of ict is trivial in most cases.

In summary, the answer to Q1 is: Our approach ict needs
fewer test cases than the augmented sequential CT approach, and
the quality of MFS identification of ict is higher than sct.

5.3 Alleviation of the Three Problems

Section 3 shows three problems that impact the perfor-
mance of CT process, which are redundant test case genera-
tion, multiple MFFS in the same test case and masking effects,
respectively. To learn if ict can alleviate these problems, we
re-use the experiment in the first study, i.e., let sct and ict
generate test cases to identify the MFS in the five program
subjects. Then, we respectively investigate the extent to
which ICT and SCT are affected by those issues. It is noted
that the original definition [5] of tested-t-way coverage
including the t-degree tuples that may appear in the non-
option-related failed test case. In our experiments (includ-
ing the following sections), all these failures are option-
related. Hence, the computation of the tested-t-way cover-
age in our experiments satisfied the original definition.

5.3.1 Study Setup

We designed three metrics for each of the three problems.
First, to measure the redundant test case generation, we gathered

TABLE 12
Time Consumes (Millisecond)

Subject Method 2-way 3-way 4-way
Tomcat ict 556.4 2703.7 12367.7

sct 10.0 56.7 305.6
Hsqldb ict 345.5 2093.6 219184

sct 16.7 151.3 1055.1
Gec ict 180.1 1117.5 5408.5

sct 8.0 68.0 309.3
Jflex ict 187.1 1747.1 114124

sct 75.5 288.8 2491.4
Tcas ict 178.0 2914.9 60725.5

sct 135.6 1750.0 25380.7
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Fig. 3. The redundancy of test cases.

the number of times that each schema was covered. This met-
ric directly indicates the redundancy of generated test cases,
because it is obvious that if there are too many schemas that
are repeatedly being covered by different test cases, then the
CT process is inefficient (if one schema is covered and tested,
it is unnecessary to check them again with other test cases).
Note that this metric is closely related to the number of test
cases discussed in the previous study, more test cases surely
make schemas being covered more times. However, there
exists one difference, i.e., test cases can evenly cover many
schemas for a relatively few times, or alternatively, some sche-
mas are covered many times, but others not.

Second, to measure multiple MFS in the same test case, we
directly searched for each generated test case and checked
whether it contained more than one MFS or not.

Third, we used the tested-t-way coverage criterion [5] to
measure the masking effects. Specifically, we re-computed the
coverage of the test cases generated by ICT and SCT by count-
ing all the t-degree schemas that were either covered in a pass-
ing test case or identified as MFS or faulty schema. For ICT
and SCT, the higher is the tested-t-way coverage, the more
adequate is the testing and hence the less masking effects.

5.3.2 Result and Discussion

1) Redundant Test Cases. Our result is shown in Fig. 3. This
figure consists of 15 sub-figures, one for each subject with
specific testing coverage (ranged from 2-4 way). For each
sub-figure, the xz-axis represents the number of times a
schema is covered in total, and the y-axis represents the num-
ber of schemas. For example in the first sub-figure (2-way
for Tomcat), two bars with x-coordinate equal to 1 indicates
that ict approach had 61.5 schemas on average which were
covered once and SCT had 1.3 schemas.

As discussed previously, the more schemas are covered
with a low-frequency, the less redundant the generated test
cases are. Hence it implies effective testing if the number of
schemas (y-axis) decreases with the increase of the covered
times (z-axis). With respect to Fig. 3, it is easy to find that for
most of the 15 sub-figures, ict performed better than sct. In
fact, for ict, the bars decreased rapidly with the increase of

the’ z-axis, while for sct, the trend was more smooth. See sub-
ject tomcat with 2-way coverage, for example, ict had about
61.5 schemas which were only covered once, about 38.9 sche-
mas covered twice, less than 12 schemas covered more than
6 times. For sct, however, for most covered times, it had
about 10 schemas, which indicates a very low performance.

The interesting exception is subject Tcas, on which ict
and sct showed a similar trend. This is because all the MFS
of Tcas are of high degree (t > 6), and the covering arrays
(t = 2, 3, 4) rarely detected any of them. Under this condi-
tion, since both approaches rarely detected the MFS, the
overall process was transferred to be traditional covering
array generation (the MFS identification process is omitted).

This result shows that our two modifications of the tradi-
tional approach, i.e., taking account of the covered schemas
by test cases generated in MFS identification and forbidding
the appearance of existing MFS to reduce the test cases that
are used to identify the same MFS, are useful, especially
when the MFS are detected and identified.

2) Multiple MFS. The result is shown in Table 13, which
lists the number of test cases (on average for the repeated
30 experiments) that contain more than one MFS.

From this table, one observation is that ict obtained a bet-
ter result than sct at limiting the test cases which contain

TABLE 13
Number of Test Cases that Contain Multiple MFS

Subject Method 2-way 3-way 4-way
Tomcat ict 0.0 0.0 0.0

sct 1.2 4.6 10.8
Hsqldb ict 0.0 0.0 0.0

sct 0.2 1.6 41
Gcee ict 0.5 0.8 0.6

sct 0.2 1.8 34
Jflex ict 0.0 0.0 0.0

sct 0.0 0.0 0.0
Tcas ict 0.0 0.0 0.0

sct 0.0 0.0 0.0
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TABLE 14

Masking Effects Results

Subjects Method Tested-t-way coverage
2-way 3-way 4-way
Tomcat ict 236.0(100.00%) 1424.0(100.00%) 5600.0(100.00%)
sct 233.8(99.07%) 1397.2(98.12%) 5501.7(98.24%)
Hsqldb ict 357.0(100.00%) 2742.0(100.00%) 14135.5(100.00%)
sct 352.1(98.63%) 2713.7(98.97%) 13984.5(98.93%)
Gce ict 251.4(99.76%) 1526.4(99.38%) 5997.6(99.17%)
sct 250.0(99.21%) 1519.4(98.92%) 5908.2(97.69%)
Jflex ict 473.0(100.00%) 4282.0(100.00%) 26532.0(100.00%)
sct 468.8(99.11%) 4216.6(98.47 %) 26177.5(98.66%)
Tcas ict 837.0(100.00%) 9158.0(100.00%) 64696.0(100.00%)
sct 837.0(100.00%) 9158.0(100.00%) 64696.0(100.00%)

multiple MFS. For all the subjects except Gcc, ict nearly
eliminated all the test cases which contain multiple MFS.
Even for Gce, the size of test cases which contain multiple
MFS was limited in a very small number (smaller than 1).
For sct, however, the result was not as good as ict. In fact,
except for subjects Jflex and Tcas, sct suffered from generat-
ing test cases which contain multiple MFS. This is one
reason why even though sct generated many more test cases
than ict, it did not obtain a better MFS identification result
than ict. Two exceptions are subjects [flex and Tcas, on which
both ict and sct did not generate test cases containing multi-
ple MFS. The reason is that [flex has only one MFS (see
Table 9) and the MFS of Tcas are all high degrees which are
hardly detected.

3) Masking Effects. The results of masking effect for each
approach is shown in Table 14. Specifically, the number of
t-degree (t = 2, 3, 4) schemas which are tested (in the passing
test cases or identified as faulty schemas) are gathered, as
well as the percentage of the total t-degree schemas (in the
parentheses followed). Several observations can be obtained
from this result:

First, the extent to which sct and ict suffered from
masking effects is not severe. Actually, the lowest tested-
t-way coverage of ict is 99.17 percent (4-way for Gcc),
and sct is 97.69 percent (4-way for Gcec). This result
shows that combining MFS identification with covering
array (either in a sequential way or interleaving way)
can make testing more adequate than using covering array
alone.

Second, ict was more effective than sct at handling the
masking effects. With respect to tested-t-way coverage, ict
covered almost all the tested-t-way schemas for all the sub-
jects (except for Gce, but for which ict still covered more
tested-t-way schemas than sct). On the other hand, sct was
not as good as ict. In fact, sct fell behind ict for almost all the
subjects except Tcas. For subject Tcas, both ict and sct cov-
ered all the tested-t-way schemas (failures of Tcas were
rarely detected, and all the t-degree schemas appeared in
the passing test cases).

In summary, the answer to Q2 is that our approach ict can
alleviate the three problems discussed in Section 3, and when
compared to sct , ict is a better approach to resolve these issues.
Additionally, both ict and sct have a good performance in reducing
the masking effects.

5.4 The Benefits of Feedback Checking Mechanism
One important part of the ict approach is the feedback
checking mechanism, which aims at judging whether the
schemas identified by ict is real MFS or not by additionally
generating test cases containing the schemas under check.
It is interesting to evaluate how valuable is this feedback
checking mechanism, ie., how much improvement ict
gained from this mechanism.

5.4.1 Study Setup

For this, we created a mutation version of ict by removing
the feedback checking mechanism from the original ict
approach. We later call this mutation approach the ict-nonfb.
Then, we applied this approach to test the five subjects
listed in Table 8 and identified the MFS contained in them.
At last, we evaluated the benefits of the feedback checking
mechanism by comparing the results obtained by ict-nonfb
and ict.

5.4.2 Result and Discussion

We list the results of the number of test cases generated
by ict-nonfb in Table 15, the f-measure of MFS identification
in Table 16, the average number of test cases containing
multiple MFS in Table 17, and the tested-t-way coverage in
Table 18. Additionally, we attached the gaps between ict-
nonfb with ict in the parentheses. The value with a negative
sign indicates the reduction in the corresponding metric
(e.g., number of test cases, the f-measure, the number of test
cases containing multiple MFS, the tested-t-way cover-
age) made by ict-nonfb when compared with ict, while
non-negative sign indicates the increase in that corre-
sponding metric.

TABLE 15
Number of Test Cases Generated by
ict without Feedback Checking

Subject 2-way 3-way 4-way
Tomcat 42.8(-17.9) 65.0(-14.9) 115.2(-15.0)
Hsqldb 41.0(-8.4) 74.2(-14.1) 147.4(-