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Abstract—Combinatorial testing (CT) seeks to detect potential faults caused by various interactions of factors that can influence the

software systems. When applying CT, it is a common practice to first generate a set of test cases to cover each possible interaction and

then to identify the failure-inducing interaction after a failure is detected. Although this conventional procedure is simple and forthright,

we conjecture that it is not the ideal choice in practice. This is because 1) testers desire to identify the root cause of failures before all

the needed test cases are generated and executed 2) the early identified failure-inducing interactions can guide the remaining test case

generation so that many unnecessary and invalid test cases can be avoided. For these reasons, we propose a novel CT framework that

allows both generation and identification process to interact with each other. As a result, both generation and identification stages will

be done more effectively and efficiently. We conducted a series of empirical studies on several open-source software, the results of

which show that our framework can identify the failure-inducing interactions more quickly than traditional approaches while requiring

fewer test cases.

Index Terms—Software testing, combinatorial testing, covering array, failure-inducing interactions

Ç

1 INTRODUCTION

MODERN software is becoming more and more complex.
To test such software is challenging, as the candidate

factors that can influence the system’s behaviour, e.g., con-
figuration options, system inputs, message events, are enor-
mous. Even worse, the interactions between these factors
can also crash the system, e.g., the incompatibility prob-
lems. In consideration of the scale of the industrial software,
to test all the possible interactions of all the factors (we call
them the interaction space) is not feasible, and even if it is
possible, it is resource-inefficient to test all the interactions.

Many empirical studies show that, in real software
systems, the effective interaction space, i.e., targeting fault
detection, makes up only a small proportion of the overall

interaction space [1], [2]. Further, the number of factors
involved in these effective interactions is relatively small,
of which 4 to 6 is usually the upper bounds [1]. With this
observation, applying Combinatorial testing (CT) in practice
is appealing, as it is proven to be effective to detect the inter-
action faults in the system.

CT tests software with an elaborate test suite which
checks all the required parameter value combinations. A typ-
ical CT life-cycle is shown in Fig. 1, which contains fourmain
testing stages. At the very beginning of the testing, engineers
should extract the specific model of the software under test
(SUT). In detail, they should identify the factors, such as user
inputs, and configure options, which could affect the sys-
tem’s behavior. Further effort is required to figure out the
constraints and dependencies among each factor and corre-
sponding values for valid testing. After themodeling stage, a
set of test cases should be generated and executed to expose
the potential faults in the system. In CT, each test case is a set
of assignments of all the factors in the test model. Thus,
when such a test case is executed, all the interactions con-
tained in the test case are deemed to be checked. The main
target of this stage is to design a relatively small set of test
cases to achieve some specific coverage. The third testing
stage in this cycle is the fault localization, which is responsi-
ble for identifying the failure-inducing interactions. To char-
acterize the failure-inducing interactions of corresponding
factors and values is important for future bug fixing, as it
will reduce the scope of suspicious code to be inspected.
The last testing stage of CT is the evaluation. In this stage,
testers will assess the quality of the previously conducted
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testing tasks. If the assessment result shows that the previous
testing process does not fulfill the testing requirement, some
testing stages should be improved, and sometimes, may
even need to be re-conducted.

Although this conventional CT framework is simple
and straightforward, in terms of the test case generation
and fault localization stages, we conjecture that first-genera-
tion-then-identification is not the proper choice in practice.
The reasons are twofold. First, it is not realistic for develop-
ers to wait for all the needed test cases are generated before
they can diagnose and fix the failures that have been
detected [3]; Second, and the most important, utilizing the
early determined failure-inducing interactions can guide
the following test case generations, such that many unneces-
sary and invalid test cases can be avoided. For this we get
the key idea of this paper: Generation and Fault Localization
process should be interleaving.

Based on the idea, we propose a new CT framework,
which integrates these two stages together instead of divid-
ing the generation and identification into two independent
stages. Specifically, we first execute one or more tests until a
failure is observed. Next, we immediately turn to the fault
localization stage, i.e., identify failure-inducing interactions
for that failure. These failure-inducing interactions are used
to update the current coverage. In particular, interactions
that are related to these failure-inducing interactions do not
need to be covered in future executions. Then, we continue
to perform regular combinatorial testing.

We remodel the test case generation and failure-inducing
interactions identification modules to make them better
adapt to this new framework. Specifically, for the genera-
tion part of our framework, we augment it by forbidding
the appearance of test cases which contain the identified
failure-inducing interactions. This is because those test
cases containing a failure-inducing interaction will fail as
expected so that it does not contribute for additional failure
detection. For the failure-inducing identification module,
we augment it to achieve higher coverage. More specifically,
we refine the additional test case generation in this module,
so that it can not only help to identify the failure-inducing
interactions but also cover as many uncovered interactions
as possible. As a result, our new CT framework is efficient
at test case generation and MFS identification.

Our new framework has strict requirements in the accu-
racy of the identified failure-inducing interactions. This is
mainly because it forbids the appearance of test cases which
contain the identified interactions. Hence, if these interac-
tions are not failure-inducing, they will never be covered
again, and adequate testing will not be reached. To improve
the accuracy of the failure-inducing interaction identification
results, we propose a novel feedback checking mechanism

which aims at checking whether the interactions identified
by our framework are accurate or not. Particularly, if these
interactions do not pass the checking process, we will restart
the failure-inducing identification module to re-identify
other interactions.

We conducted a series of empirical studies on 5 open-
source software and several synthetic software to evaluate
our new framework. These studies start with two compari-
sons. The first one is to compare our new interleaving
framework with the traditional sequential framework,
which first generates a complete set of test cases and then
performs the fault localization. The second one is to com-
pare our framework with the feedback-driven CT [4], [5],
which also adapts an iterative framework to generate test
cases and identifying failure-inducing interactions, but to
address the problem of inadequate testing. We also evalu-
ated the sensitivities of these approaches with respect to the
number of the options of the system under test and the
number of failure-inducing interactions contained in it.
Besides, we discussed the negative influences of non-deter-
ministic failures and the issue of a system with no option
value that is irrelevant to any failure-inducing interaction
(called the non-safe value issue). The main results of these
experiments are summarized as follows:

1) Compared to the other approaches, our new inter-
leaving framework obtained better failure-inducing
interaction identification results in most cases (both
empirical studies on real software and empirical
studies on synthetic software). The new interleaving
framework also decreased the number of generated
test cases when compared with the traditional
sequential framework in most cases, and it obtained
a good result at the reduction of masking effects
caused by different failure-inducing interactions
even when compared to the feedback-driven CT
which focuses on the reduction of masking effects.

2) Feedback-driven CT generated the smallest number
of test cases in most cases, especially when the num-
ber of options of the system under testing is large, it
also obtained a good result at the reduction of mask-
ing effects. As for traditional sequential framework,
its results of these experiments lay in between those
of the other two approaches in most cases.

3) The novel feedback checking mechanism benefits
our new interleaving framework a lot, especially on
the improvement of the accurateness of failure-
inducing interaction identification and the coverage
of interactions to be checked.

4) Increasing the number of failure-inducing interac-
tions has a negative effect on all these approaches
when considering the accurateness of failure-induc-
ing interaction identification.

5) The non-deterministic failures also have a negative
effect on these approaches, especially when the pos-
sibility of the appearance of failures ranges from 0.3
to 0.8. One potential solution is to increase the redun-
dancy of test case execution.

6) Similar to the issue caused by a large number of fail-
ure-inducing interactions, the non-safe value issue
also has a negative effect on all these three approaches,

Fig. 1. The life cycle of CT.
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but the feedback mechanism can help our new inter-
leaving framework to alleviate this negative effect to
some extent.

The main contributions of this paper are as follows.

1) We propose a new CT framework which combines the
test case generation and fault localizationmore closely.

2) We augment the traditional CT test case generation
and failure-inducing interactions identification pro-
cess to make them adapt to the new framework.

3) We give a novel feedback checking mechanism which
can check whether the interaction identified by our
approach is failure-inducing or not, and it significantly
improves the accuracy of the results of the failure-
inducing interaction identification approach.

4) We perform a series of comparisons with traditional
CT and Feedback-driven CT. The results of the
empirical studies are discussed.

The rest of the paper is organised as follows: Section 2
presents the preliminary background of CT. Section 3
presents a motivating example. Section 4 describes our new
framework and a simple case study is also given. Section 5
presents the empirical studies and discusses the results.
Section 6 shows the related works. Section 7 concludes the
paper and proposes some further work.

2 BACKGROUND

This section presents some definitions and propositions to
give a formal model for CT.

Assume that the Software Under Test (SUT) is influenced
by n parameters, and each parameter pi can take the values
from the finite set Vi, jVij ¼ ai (i ¼ 1; 2; ::n). The definitions
below are originally defined in [6].

Definition 1. A test case of the SUT is a tuple of n values, one
for each parameter of the SUT. It is denoted as (v1, v2,. . .,vn),
where v1 2 V1, v2 2 V2 . . . vn 2 Vn.

In practice, these parameters in the test case can repre-
sent many factors, such as input variables, run-time options,
building options or various combination of them. We need
to execute the SUT with these test cases to ensure the
correctness of the behaviour of the SUT.

We consider any abnormally executing test case as a fault.
It can be a thrown exception, a compilation error, an asser-
tion failure, a constraint violation, etc. When faults are
triggered by some test cases, it is desired to figure out the
cause of these faults.

Definition 2. For the SUT, the n-tuple (-, vn1 ,. . ., vnk ,. . .) is
called a k-degree schema (0 < k � n) when some k parameters
have fixed values and other irrelevant parameters are repre-
sented as “-”.

In effect, a test case itself is a k-degree schema when k = n.
Furthermore, if a test case contains a schema, i.e., every fixed
value in the schema is in this test case, we say this test case
contains the schema.

Note that the schema is a formal description of the interac-
tion between parameter values we discussed before.

Definition 3. Let cl be an l-degree schema, cm be an m-degree
schema in SUT and l < m. If all the fixed parameter values in

cl are also in cm, then cm subsumes cl. In this case, we can
also say that cl is a sub-schema of cm and cm is a super-
schema of cl, which can be denoted as cl � cm.

For example, the 2-degree schema (-, 4, 4, -) is a sub-
schema of the 3-degree schema (-, 4, 4, 5), that is, (-, 4, 4, -) �
(-, 4, 4, 5).

Definition 4. If all test cases that contain a schema, say c, trig-
ger a particular fault, say F , then we call this schema c the
faulty schema for F . Additionally, if none of sub-schema of c
is the faulty schema for F , we then call the schema c themini-
mal failure-causing schema (MFS) [6] for F .

Note that MFS is identical to the failure-inducing interac-
tion discussed previously. In this paper, the terms failure-
inducing interactions and MFS are used interchangeably.
Figuring the MFS out helps to identify the root cause of
a failure and thus facilitate the debugging process.

2.1 CT Test Case Generation

When applying CT, the most important work is to deter-
mine whether the SUT suffers from the interaction faults or
not, i.e., to detect the existence of the MFS. Rather than
impractically executing exhaustive test cases, CT commonly
designs a relatively small set of test cases to cover all the
schemas with the degree no more than a prior fixed number,
t. Such a set of test cases is called the covering array. If some
test cases in the covering array failed in execution, then
the interaction faults are considered to be detected. Let us
formally define the covering array.

Definition 5. MCAðN; t; n; ða1; a2; . . . ; anÞ) is a t-way cover-
ing array in the form ofN � n table, where each row represents a
test case and each column represents a parameter. For any t col-
umns, each possible t-degree interaction of the t parameters
(schema) must appear at least once. When a1 ¼ a2 ¼ � � � ¼ an ¼
v, a t-way covering array can be denoted asCAðN ; t; n; vÞ.

For example, Table 1 shows a 2-way covering array CA
(5; 2, 4, 2) for the SUTwith 4 boolean parameters. For any two
columns, any 2-degree schema is covered. Covering array has
proven to be effective in detecting the failures caused by inter-
actions of parameters of the SUT. Many existing algorithms
focus on constructing covering arrays such that the number of
test cases, i.e., N , can be as small as possible. In general, most
of these studies can be classified into three categories accord-
ing to the construction strategy of the covering array [7]:

1) One test case one time: This strategy repeats generat-
ing one test case as one row of the covering array
and counting the covered schemas achieved until all
schemas are covered [8], [9], [10].

TABLE 1
A Covering Array

ID Test case

t1 0 0 0 0
t2 0 1 1 1
t3 1 0 1 1
t4 1 1 0 1
t5 1 1 1 0
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2) A set of test cases one time: This strategy generates
a set of test cases at each iteration. By mutating the
values of some parameters of some test cases in this
test set, it focuses on optimizing the coverage. If the
coverage is finally satisfied, it will reduce the size
of the set to see if fewer test cases can still fulfill
the coverage. Otherwise, it will increase the size of
the test set to cover all the schemas[11], [12].

3) IPO-like style: This strategy differentiates from the
previous two strategies in that it does not first gener-
ate complete test cases [13]. Instead, it first focuses
on assigning values to some part of the factors or
parameters to cover the schemas that are related to
these factors and then fills up the remaining part
to form complete test cases.

In this paper, we focus on the first strategy: One test case
one time as it immediately gets a complete test case so that
the testers can execute and diagnose in the early stage.
As we will see later, with respect to the MFS identification,
this strategy is the most flexible and efficient one compared
with the other two strategies.

2.2 Identify the Failure-Inducing Interactions

To detect the existence of MFS in the SUT is still far from
figuring out the root cause of the failure [14], [15], [16], as
we do not know exactly which schemas in the failed test
cases should be responsible for the failure. For example, if t1
in Table 1 failed during testing, there are six 2-degree can-
didate failure-inducing schemas, which are (0, 0, -, -), (0, -,
0, -), (0, -, -, 0) , (-, 0, 0, -), (-, 0, -, 0), (-, -, 0, 0), respectively.
Without additional information, it is difficult to figure out
the specific schemas in this suspicious set that caused
the failure. Considering that the failure can be triggered by
schemas with other degrees, e.g., (0, -, -, -) or (0, 0, 0, -), the
problem of MFS identification becomes more complicated.

In fact, for a failing test case (v1; v2; . . . ; vn), there can be at
most 2n � 1 possible schemas for the MFS. Hence, more test
cases should be generated to identify the MFS. In CT, the
main work in fault localization is to identify the failure-
inducing interactions. Further works of fault localization
such as isolating the specific defective source code will not
be discussed.

A typical MFS identification process is shown in Table 2.
This example assumes the SUT has 3 parameters, each of
which can take on 2 values, and the test case (1, 1, 1) fails.
Then in Table 2, as test case t failed, we mutate one factor of
test case t at one time to generate new test cases: t1—t3. It turns
out that test case t1 passed, which indicates that this test case
breaks theMFS in the original test case t. So (1, -, -) should be a
failure-causing factor. Besides, since other mutating test cases

all failed, there is no any other failure-inducing factor that is
broken. Therefore, theMFS in t is (1, -, -).

This identification process mutates one factor of the origi-
nal test case at a time to generate extra test cases. Then
according to the outcome of the test cases execution result,
it will identify the MFS of the original failing test cases. It is
called the OFOT method [6], which is a well-known MFS
identification method in CT. In this paper, we will focus on
this identification method. It should be noted that the fol-
lowing proposed CT framework can be easily applied to
other MFS identification methods.

Note that all the existing MFS identification approaches
just give approximation solutions for MFS identification. In
fact, to exactly identify the MFS (without any assumptions),
it needs an exponential number of test cases [17], which is
impossible in practice. Hence, all the existing MFS identifi-
cation approaches, as well as the approach we will propose
in this paper, need additional assumptions or just identify
the likely failure-inducing interactions. For example, the
OFOT approach is based on the following two assumptions:

Assumption 1. The execution result of a test case is deterministic.

This assumption is a common assumption of CT [17],
[18], [19]. It indicates that the outcome of executing a test
case is reproducible and will not be affected by some ran-
dom events.

Assumption 2. Given a failing test case t, when we identify the
MFS in t, any newly generated test case will not introduce new
MFS that is not in t.

The second assumption is identical to the assumption
proposed in [15], [16], [18], which is called the safe value
assumption. Based on this assumption, when the additional
test case generated by OFOT fails, e.g., t2 in Table 2, we can
determine that the additional test case contains the same
MFS in the original failing test case, e.g., t in Table 2.

Note that in practice, these assumptions do not always
hold. Hence, the approaches proposed later in this paper
actually can only identify approximate MFS instead of the
real MFS. We will discuss the impacts of these assumptions
on the approaches proposed in this paper in the experi-
ments. Additionally, without special emphasis (for example, “the
real MFS”), all the sentences contained such as “the MFS identi-
fied by some approaches” actually mean that“ the approximate
MFS obtained by these approaches”.

3 MOTIVATING EXAMPLE

In this section, a motivating example is presented to show
how traditional CTworks aswell as its limitations. This exam-
ple is derived from our attempt to test a real-world software–
HSQLDB, which is a pure-java relational database engine
with large and complex configuration space. To extract and
manipulate valid configurations of this highly-configurable
system is important, as different configurations can result in
significantly different behaviours of the system [20], [21], [22]
(HSQLDB normally works under some proper configura-
tions, but crashes or throws exceptions under some other
configurations).

Considering the large configuration space of HSQLDB, we
first utilized CT to generate a relatively small set of test cases.

TABLE 2
OFOT Example

Original test case Outcome

t 1 1 1 Fail

Additional test cases

t1 0 1 1 Pass
t2 1 0 1 Fail
t3 1 1 0 Fail
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Each of them is actually a set of specific assignments to those
options we cared.1 For each configuration, HSQLDB is tested
by sending prepared SQL commands. We recorded the
output of each run, but unfortunately, about half of them pro-
duced exceptions or warnings. Following the schedule of tra-
ditional CT, we started the identification process to isolate the
failure-inducing option interactions in those failing configura-
tions. Each failing configuration should be individually han-
dled, in principle, as there may exist distinct failure-inducing
option interactions among them. However, this successive
identification process, although appealing, was hardly ever
followed for this case study. This is because there are too
many failing configurations and most of them contain the
same failure-inducing option interactions, based on which
theMFS identification process iswasteful and inefficient.

For the sake of convenience, we provide a highly simpli-
fied scenario to illustrate the problems we encountered.
Consider four options in HSQLDB—Server type, Scroll Type,
Parameterised SQL and Statement Type. The possible values
each option can take on are shown in Table 3. Based on the
report in the bug tracker of HSQLDB,2 an incompatible excep-
tion will be triggered if a parameterised SQL is executed as a
prepared statement by HSQLDB. Hence, when option Parame-
terised SQL is set to be true and Statement type to be prepared-
Statement, our testing will crash. Besides this failure, there
exists another option value which can also crash this data-
base engine. It is when Scroll Type is assigned to sensitive, as
this feature is not supported by this version of HSQLDB.3

Without this knowledge at prior, we need to detect and iso-
late these two failure-inducing option interactions by CT.

Table 4 illustrates the process of traditional CT on this
subject. For simplicity of notation, we use consecutive sym-
bols 0, 1, 2 to represent different values of each option (For
Parameterised SQL and Statement type, the symbol is up to 1).
According to Table 4, traditional CT first generated and exe-
cuted the 2-way covering array (t1—t9 in the generation
part). Note that this covering array covered all the 2-degree
schemas for the SUT.

After testing the 9 test cases (t1 to t9), we found t1, t4, and
t7 failed. It is then desired to respectively identify the MFS
of these failing test cases. For t1, the OFOT method is used
to generate four additional test cases (t10—t13), and the MFS
(-, 0, -, -) of t1 is identified (Scroll Type is assigned to sensitive,
respectively). This is because only when changing the sec-
ond factor of t1, the additionally generated test case will
pass. Then the same process is applied to t4 and t7. Finally,
we found that the MFS of t4 is (-, -, -, -), indicating that
OFOT failed to determine the MFS (this will be discussed

later), and the MFS of t7 is the same as t1. Totally, for detect-
ing and identifying the MFS in this example, we generated
12 additional test cases (marked with stars).

We refer to such traditional life-cycle as Sequential CT
(SCT). However, we believe this may not be the best choice in
practice. The first reason is that the engineers normally do not
want to wait for fault localization after all the test cases are
executed. The early bug fixing is appealing and can give the
engineers confidence to keep on improving the quality of the
software. The second reason, which is also more important, is
such life-cycle can generatemany redundant and unnecessary
test cases, which negatively impacted both test case genera-
tion andMFS identification. The most obvious negative effect
in this example is that we did not identify the expected fail-
ure-inducing interaction (-, -, 0, 1), which corresponds to
option Parameterised SQL being set to true and Statement Type
being set to preparedStatement. More shortcomings of the
sequential CT are discussed in the following subsections.

3.1 Redundant Test Cases

The first shortcoming of SCT is that it may generate redun-
dant test cases so that some of them do not cover as many
uncovered schemas as possible. As a consequence, SCT
may generate more test cases than actually needed. This can
be reflected in the following two aspects:

1) The test cases generated in the identification stage
can also contribute some coverage, i.e., the schemas

TABLE 3
Highly Simplified Configuration of HSQLDB

Option Values

o1 Server type server, web-server, in-process
o2 Scroll type sensitive, insensitive, forward-only
o3 Parameterised SQL true, false
o4 Statement Type statement, preparedStatement

TABLE 4
Sequential CT process

Generation (Execution)

test case Outcome

o1 o2 o3 o4

t1 0 0 0 0 Fail
t2 0 1 1 1 Pass
t3 0 2 1 0 Pass
t4 1 0 0 1 Fail
t5 1 1 0 0 Pass
t6 1 2 1 1 Pass
t7 2 0 1 1 Fail
t8 2 1 0 0 Pass
t9 2 2 0 0 Pass

Identification

t1 (0, 0, 0, 0) t10* 1 0 0 0 Fail
t11* 0 1 0 0 Pass
t12* 0 0 1 0 Fail
t13* 0 0 0 1 Fail

MFS (-, 0, -, -)

t4 (1, 0, 0, 1) t14* 2 0 0 1 Fail
t15* 1 1 0 1 Fail
t16* 1 0 1 1 Fail
t17* 1 0 0 0 Fail

MFS (-, -, -, -)

t7 (2, 0, 1, 1) t18* 0 0 1 1 Fail
t19* 2 1 1 1 Pass
t20* 2 0 0 1 Fail
t21* 2 0 1 0 Fail

MFS (-, 0, -, -)

1. More details in: http://gist.nju.edu.cn/doc/ict/
2. For details, see: http://sourceforge.net/p/hsqldb/bugs/1173/
3. For details, see: http://hsqldb.org/doc/guide/guide.html
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appear in the passing test cases in the identification
stage may have already been covered in the test case
generation stage. For example, when we identify the
MFS of t1 in Table 4, the schema (0, 1, -, -) contained
in the extra passing test case t11—(0, 1, 0, 0) has
already appeared in the passing test case t2—(0, 1, 1,
1). In other words, if we first identify the MFS of t1,
then t2 is not a good choice as it does not cover as
many 2-degree schemas as possible. For example, (1,
1, 1, 1) is better than this test case at contributing
more coverage.

2) The identified MFS should not appear in the follow-
ing generated test cases. This is because according to
the definition of MFS, each test case containing this
schema will trigger a failure, i.e., to generate and exe-
cute more than one test case contained the MFS
makes no sense for the failure detection. Taking the
example in Table 4, after identifying the MFS—(-, 0,
-, -) of t1, we should not generate the test case t4 and
t7. This is because they also contain the identified
MFS (-, 0, -, -), which will result in them failing
as expected. Since the expected failure caused by
MFS (-, 0, -, -) makes t7 and t9 superfluous for
error-detection, the additional test cases (t14 to t21)
generated for identifying the MFS in t4 and t7 are
also not necessary.

3.2 Multiple MFS in the Same Test Case

When there are multiple MFS in the same test case, MFS
identification will be negatively affected. Particularly, some
MFS identification approaches cannot identify a valid
schema in this case. For example, there are two MFS in t4
in Table 4, i.e., (-, 0, -, -) and (-, -, 0, 1) (shown in bold).
When we use OFOT method, we found all the additionally
generated test cases (t14 to t17) failed. These outcomes give
OFOT a false indication that all the failure-inducing factors
are not broken by mutating those four parameter values. As
a result, OFOT cannot determine which schemas are MFS,
which is denoted as (-, -, -, -).

The reason why OFOT cannot properly work is that this
approach can only break one MFS at a time. If there are mul-
tiple MFS in the same test case, the additionally generated
test cases will always fail as they contain other non-broken
MFS (see bold parts of t14 to t17). Some approaches have
been proposed to handle this problem, but they either can-
not handle multiple MFS that have overlapping parts [18],
or consume too many additionally generated test cases [17],
[23]. So in practice, to make MFS identification more effec-
tive and efficient, we need to avoid the appearance of multi-
ple MFS in the same test case.

SCT, however, does not offer much support for this con-
cern. This is mainly because it is essentially a post-analysis
framework, i.e., the analysis for MFS comes after the com-
pletion of test case generation and execution. As a result,
in the generation stage, testers have no knowledge of the
possible MFS, and surely it is possible that multiple MFS
appear in the same test case.

3.3 Masking Effects

When considering a single execution of the test set, tradi-
tional covering array usually offer inadequate testing due to

Masking effects [4], [5]. A masking effect[5] is an effect that
some failures or exceptions prevent a test case from testing
all valid schemas in that test case, which the test case is nor-
mally expected to test. For example in Table 4, t1 is initially
expected to cover six 2-degree schemas, i.e., (0, 0, -, -), (0, -,
0, -), (0, -, -, 0), (-, 0, 0, -), (-, 0, -, 0), and (-, -, 0, 0), respec-
tively. The failure of this test case, however, may prevent
the checking of these schemas. This is because, the failing
of t1 (Scroll Type is set to be sensitive) crashed HSQLDB, and
as a result, it did not go on executing the remaining test
code, which may affect the examination of some interactions
of t1. Hence, we cannot ensure we have thoroughly exer-
cised all the interactions in this failing test case.

Since traditional covering array alone cannot reach
adequate testing, as an alternative, tested t-way interaction
criterion as a more rigorous coverage standard is proposed
[5]. According to this criterion, a t-degree schema is covered
iff (1) it appears in a passing test case, or (2) it is identified
as MFS or faulty schema. Apparently, this criterion can not
be satisfied with traditional covering array alone (in prac-
tice, it is often the case that the test set is rerun until all test
cases pass). Next let us examine whether this criterion can
be satisfied with SCT, i.e., the combination of traditional
covering array and MFS identification.

One obvious insight is that if there is only single MFS in
each failing test case, this criterion is satisfied. This conclu-
sion is based on the fact that the MFS identification is actu-
ally a process to isolate the failure-inducing interaction
among other interactions in the failing test case, and since
there is only a single MFS, then other schemas can be deter-
mined as non-MFS.

For example in Table 4, t1 contained a single MFS (-, 0, -,
-), and we identified this MFS by generating four extra test
cases (t10 to t13). As for t1, the schema (-, 0, -, -) is determined
to be MFS, but since the target of that testing is 2-way cover-
age, i.e., to cover all the 2-degree schemas, this 1-degree
schema does not contribute any more coverage. Based on
the fact that (-, 0, -, -) is MFS, all the test cases containing
this schema will fail by definition, and surely the super-
schemas of (-, 0, -, -) in this test case—(0, 0, -, -), (-, 0, 0, -)
and (-, 0, -, 0) are also faulty schemas as all the test cases
containing these schemas must contain the MFS (-, 0, -, -),
which will fail after execution. The remaining 2-degree
schemas (0, -, 0, -), (0, -, -, 0), (-, -, 0, 0) are contained in the
additionally generated test case t11 (0, 1, 0, 0) (Note that for
single MFS, there will be at least one passing additionally
generated test case ), which are of course non-faulty sche-
mas. In the end, all the 2-degree schemas in the failing test
case t1 satisfied the tested t-way interaction criterion.

When a failing test case has multiple MFS, however, SCT
fails to meet that criterion. As discussed previously, SCT
cannot properly work on test cases with multiple MFS–and
even cannot obtain a valid schema. With this in mind, we
cannot determine which schemas in this failing test case
are MFS or not. Consequently, we cannot ensure we have
examined all the t-degree schemas in this failing test case.
For example, t4 has two MFS–(-, 0, -, -), (-, -, 0, 1), which can
not be identified with the OFOT approach (In fact, there is
no passing additionally generated test case). As a result,
there are two 2-degree schemas (1, 0, -, -) (-, -, 0, 1) in this
test case that are neither contained in a passing test case nor
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determined as MFS or faulty schemas. Hence, tested t-way
interaction criterion is not satisfied. Since multiple MFS in a
test case can introduce masking effects, SCT must be nega-
tively affected as it lacks mechanisms to avoid the appear-
ance of multiple MFS in failing test cases.

Note that in this running example of this paper, masking
effects are actually caused by the multiple MFS problem we
discussed previously. However, these two problems focus
on different aspects of combinatorial testing. The masking
effects mainly focus on the test sufficiency of CT, which can
be regarded as a metric to evaluate how many schemas
are actually tested [5]. While for multiple MFS problem, it
mainly focuses on the quality of MFS identification. To be
convenient, we separately discuss these two problems later
in this paper.

3.4 Augmentation of the SCT

Considering the fact that we do not need to repeatedly iden-
tify the same MFS, we can reduce the number of test cases
by checking the already identified MFS and removing it
from the MFS identification process. For example in Table 4,
we do not need to generate 4 additional test cases (t18 to t21)
to figure out the failure-cause of t7 is indeed (-, 0, -, -), which
has already been identified in previous iteration (t10 to t13).
Therefore, we only need to check whether there is any MFS
other than (-, 0, -, -) in t7 or not. When applying this aug-
mentation, the overall SCT process of the example in Table 4
will evolve into the process shown in Table 5.

In Table 5, the only difference from Table 4 is that for test
case t4 and t7, we first checked whether there is any MFS
other than the already identified MFS (-, 0, -, -). Hence we

generated two additional test cases t14 and t19 (highlighted),
which exclude the MFS (-, 0, -, -) from the original failing
test cases t4 and t7. Note that t14 (1, 1, 0, 1) was generated
by mutating the value of the second parameter of test case
t4 (1, 0, 0, 1) from 0 to 1(but it also can be any value different
from the original value 0 of the second parameter in the test
case t4), and as a result, it removed the previously identified
MFS (-, 0, -, -). The same as t14, t19 (2, 1, 1, 1) was also gener-
ated by mutating the value of the second parameter of test
case t7 (2, 0, 1, 1) from 0 to 1. We then found that t14 still
failed after execution, which indicates that t14 contains other
different MFS. So, we continued to use OFOT to identify
the MFS of t14 and obtained the second MFS (-, -, 0, 1). With
respect to t19, we found it passed after execution, and hence
there is no other MFS in this test case, and we do not need
to generate additional test cases. As a result, we have
reduced the number of test cases by 2 in total by using the
augmented SCT.

Although the augmented SCT can reduce the redundancy
of test cases to some extent, there still remain some issues,
e.g., multiple MFS, and masking effects, that it cannot deal
with.

4 INTERLEAVING APPROACH

Considering these deficiencies of SCT, we do not need to
cover all t-wise interactions before moving to the debugging
phase. As an alternative, it is better to make test case genera-
tion and MFS identification more closely cooperate with
each other. Hence, we propose a new CT generation-identi-
fication framework—Interleaving CT (ICT). Our new frame-
work aims at enhancing the interaction of generation and
identification to reduce the unnecessary and invalid test
cases discussed previously. In other words, the ultimate
goal of this framework is to better support MFS identifi-
cation and test case generation, so that both of them can
alleviate the three problems we discussed in Section 3.

4.1 Overall Framework

The basic outline of our framework is illustrated in Fig. 2.
Specifically, this new framework works as follows: First, it
checks whether all the needed schemas are covered or not.
Normally the target of CT is to cover all the t-degree schemas,
with t assigned as 2 or 3. If the current coverage is not satis-
fied, it will generate a new test case to cover as many uncov-
ered schemas as possible. After that, it will execute this test
case with the outcome of a pass (executed normally, i.e., does
not trigger an exception, violate the expected Oracle or the
like) or a fail (on the contrary). When the test case passes, we
will update the coverage state, as all the schemas in the pass-
ing test case are regarded as error-irrelevant. As a result, the
schemas that were not covered before will be determined to
be covered if it is contained in this newly generated test case.
Otherwise, if the test case fails, then we will start the MFS
identification module to identify the MFS in this failing test
case. One point to note is that if the test case fails, we will not
directly change the coverage, as we can not figure out which
schemas are responsible for this failure among all the schemas
in this test case until we identify them.

The identification module works in a similar way as
traditional independent MFS identification process, i.e.,

TABLE 5
Augmented Sequential CT Process

Generation (Execution)

test case Outcome

o1 o2 o3 o4

t1 0 0 0 0 Fail
t2 0 1 1 1 Pass
t3 0 2 1 0 Pass
t4 1 0 0 1 Fail
t5 1 1 0 0 Pass
t6 1 2 1 1 Pass
t7 2 0 1 1 Fail
t8 2 1 0 0 Pass
t9 2 2 0 0 Pass

Identification

t1 (0, 0, 0, 0) t10* 1 0 0 0 Fail
t11* 0 1 0 0 Pass
t12* 0 0 1 0 Fail
t13* 0 0 0 1 Fail

MFS (-, 0, -, -)

t4 (1, 0, 0, 1) t14* 1 1 0 1 Fail
t15* 2 1 0 1 Fail
t16* 1 2 0 1 Fail
t17* 1 1 1 1 Pass
t18* 1 1 0 0 Pass

MFS (-, -, 0, 1)

t7 (2, 0, 1, 1) t19* 2 1 1 1 Pass
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repeats generating and executing additional test cases until
it can get enough information to diagnose the MFS in the
original failing test case. The difference from traditional
MFS identifying process is that we record the coverage that
this module has contributed to the overall coverage. In
detail, when the additional test case passes, we will label
the schemas in these test cases as covered if it has not been
covered before. When the MFS is found at the end of this
module, we will first set them as forbidden schemas that
later generated test cases should not contain (Otherwise, the
test case must fail and it cannot contribute to more cover-
age), and second, all the t-degree schemas that are related to
these MFS as covered. Here the related schemas indicate the
following three types of t-degree schemas:

First, the MFS themselves. Note that we do not change the
coverage state after the generated test case fails (both for the
generation and identification module ), so these MFS will
never be covered as they always appear in these failing test
cases.

Second, the schemas that are the super-schemas of these
MFS. By definition of the super-schemas (Definition 3),
if the test case contains the super-schemas, it must also
contain all its sub-schemas. So every test case that contains
the super-schemas of the MFS must fail after execution.
As a result, they will never be covered as we do not change
the coverage state for failing test cases.

Third, those implicitly forbidden schemas, which was first
introduced in [24]. This type of schemas is caused by the
conjunction of multiple MFS. For example, for a SUT
with three parameters, and each parameter has two values,
i.e., SUT(2, 2, 2). If there are two MFS for this SUT, which
are (1, -, 1) and (0, 1, -). Then the schema (-, 1, 1) is the
implicitly forbidden schema. This is because, for any test

case that contains this schema, it must contain either (1, -, 1)
or (0, 1, -). As a result, (-, 1, 1) will never be covered as all
the test cases containing this schema will fail and so we will
not change the coverage state. In fact, by Definition 4, they
can be deemed as faulty schemas.

The terminating condition of most CT frameworks is to
cover all the t-degree schemas. Then since the three types of
schemas will never be covered in our new CT framework,
we can set them as covered after the execution of the identi-
fication module so that the overall process can stop.

Note that in practice, it may be more effective and effi-
cient if we make more use of the debugging information
and bug fixing. That is before we go on generating test
cases, we should first analyse the MFS that we have already
identified and fixed them. After that, we need to re-test the
SUT by augmenting the test suites. By doing so, we can fur-
ther reduce test cases in real software testing scenario.

4.2 Modifications of CT Activities

More details of the modifications of CT activities are listed
as follows:

(1) Modified CT Generation. We adopt the one test case one
time method as the basic skeleton of the generation process.
Originally, the generation of one test case can be formu-
lated:

t selectðT all;V; �Þ: (1)

There are three factors that determine the selection of test
case t. T all represents all the valid test cases that can be
selected to execute. Usually, the test cases that have been
testedwill not be included as they have nomore contribution
to the coverage. V indicates the set of schemas that have not
been covered yet. � is a random factor. Most CT generation
approaches prefer to select a test case that can cover as many
uncovered schemas as possible. This greedy selection pro-
cess does not guarantee an optimal solution, i.e., the final
size of the set of test cases is not guaranteed to be minimal.
The random factor � is used to help to escape from the local
optimum (Wewill not discuss the specific usage of factor � in
this paper, many papers that focus on generating covering
array have given the specific implements).

As discussed in Section 3, we should make the MFS not
appear in the test cases generated afterward, by treating
them as the forbidden schemas. In other words, the candi-
date test cases that can be selected are reduced, because
those test cases that contain the already identified MFS
should not appear next. Formally, let T MFS indicates the set
of test cases that contain the already identified MFS, then
the test case selection is augmented as:

t selectðT all � T MFS;V; �Þ: (2)

In this formula, the only difference from Eq. (1) is that the
candidate test cases that can be selected are changed to
T all � T MFS , which excludes T MFS from candidate test cases.

(2)Modified Identification of MFS. Traditional MFS identifi-
cation aims at finding the MFS in a failing test case. As dis-
cussed before, test cases in the covering array are not
enough to identify the MFS. Hence, additional test cases
should be generated and executed. Generally, an additional
test case is generated based on the original failing test case,

Fig. 2. The interleaving framework.
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so that the failure-inducing parts can be determined by
comparing the differences between the additional test cases
and the original failing test case. Take the OFOT approach
as an example. In Table 4, the additional test case t11 is con-
structed by mutating the second parameter value of the
original failing test case t1. Then as t11 passed the testing,
we can determine that the second parameter value (-, 0, -, -)
must be a failure-inducing element. Formally, let tfailing be
the original failing test case, D be the mutation parts, P be
the parameters and their values, then the additional test
case generation can be formulated:

t mutateðP; tfailing;DÞ (3)

Eq. (3) indicates that the test case t is generated by mutat-
ing the part D of the original failing test case tfailing. Note
that the mutated values may have many choices, as long as
they are within the scope of P and different from those in
tfailing. For example, for the original failing test case t1 (0, 0,
0, 0) in Table 4, let D be the second parameter value, then
test cases (0, 1, 0, 0) and (0, 2, 0, 0) all satisfy Eq. (3). We refer
to all the test cases that satisfy Eq. (3) as T candidate, which can
be formulated as:

T candidate ¼ f t j t mutateðP; tfailing;DÞ g: (4)

Traditional MFS identification process just selects one test
case from T candidate randomly. However, to adapt the MFS
identification process to the new CT framework, this selec-
tion should be refined.

Specifically, there are two points to note. First, the addi-
tional test case should not contain the already identified
MFS; second, the additional test case is expected to cover as
many uncovered schemas as possible. These two goals are
similar to CT generation. Hence, we can directly apply the
same selection method to additional test case generation,
which can be formulated as Eq. (5). The same as Eqs. (2) and
(5) excludes the test cases that contain the already identified
MFS from the candidate test cases (T candidate � T MFS) and
selects the additional test case which covers the greatest
number of uncovered schemas (V).

t selectðT candidate � T MFS;V; �Þ (5)

(3) Updating Uncovered Schemas. After the MFS are identi-
fied, some related t-degree schemas, i.e., MFS themselves,
super-schemas and implicitly forbidden schemas, should be set
as covered to enable the termination of the overall CT pro-
cess. The algorithm that seeks to handle these three types of
schemas is listed in Algorithm 1.

In this algorithm, we first check each MFS (line 1) to see if
it is a t-degree schema (line 2). We will set those t-degree
MFS as covered and remove them from the uncovered
schema set V (line 3). This is the first type of schemas –them-
selves. For each t-degree super-schema of these MFS, it will
also be removed from the uncovered schema set (line 5-9),
as they are the second type of schemas—super-schemas.
The last type, i.e., implicitly forbidden schemas, is the toughest
one. To remove them, we need to search through each
potential schema in the uncovered schema set (line 11) and
check if it is the implicitly forbidden schema (line 12). The
checking process involves solving a satisfiability problem.

Specifically, if we can not find a test case from the set
(T all � T MFS) (excluding those that contain MFS), such that
it contains the schema under checking, then we can deter-
mine the schema is the implicitly forbidden schema, and it
needs to be removed from the uncovered schema set (line
13). This is because in this case, the schema under checking
can appear only in T MFS , which we will definitely not gen-
erate in later iterations. In this paper, an SAT solver will be
utilized to do this checking process.

Algorithm 1. Changing Coverage after Identification of
MFS

Input: SMFS " already identified MFS
V " the schemas that are still uncovered
T all " all the possible valid test cases
T MFS " all the test cases that contain the MFS

Output: V " updated schemas that are still uncovered
1: for each s 2 SMFS do
2: if s is t-degree schema then
3: V Vns
4: end if
5: for each sp is super-schema of s do
6: if sp is t-degree schema then
7: V Vnsp
8: end if
9: end for
10: end for
11: for each s 2 V do
12: if 6 9t 2 ðT all � T MFSÞ; s:t:; t:containðsÞ then
13: V Vns
14: end if
15: end for

4.2.1 MFS Identification Approach Mutated

To forbid identified MFS in the later generated test cases is
efficient for CT because it will reduce many unnecessary
test cases. On the other hand, our framework has strict
requirements in the accuracy of the identified MFS. This is
obvious, because if the schema identified is not an MFS,
later generated test cases will forbid a non-MFS schema,
which will have two impacts: (1) If this non-MFS schema is
the sub-schema of some actual MFS, then the corresponding
MFS will never appear, and surely we will not detect and
identify it. (2) If this non-MFS schema is a sub-schema of
some t-degree uncovered schemas, then these schemas will
never be covered, and adequate testing will not be reached.

To exactly identify the correct MFS in one failing test
case, if possible, however, is not practical due to the cost of
testing [6], [14]. This is because, for any test case with n
parameter values, there are 2n � 1 possible schemas which
are the candidate MFS. For example, the possible candidate
schemas of failing test case (1, 1, 1) are (1, -, -), (-, 1, -), (-, -,
1), (1, 1, -), (1, -, 1), (-, 1, 1) and (1, 1, 1). According to the def-
inition of MFS, we need to individually determine whether
these 2n � 1 are faulty schemas or not. In fact, even to deter-
mine whether a schema is a faulty schema or not is not easy,
as we must figure out whether all the test cases containing
this schema will fail or not. So the complexity to correctly
obtain a real MFS is surely exponential. As a result, existing
MFS identification approaches actually obtain approximation
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solution through a relatively small size of additionally gen-
erated test cases [6], [14], [15], [17], [18], [19], [25].

Based on this insight, to improve the accuracy of the
identified MFS, we propose a novel MFS-checking mecha-
nism to assist with MFS identification. It is detailed in Algo-
rithm 2.

Algorithm 2. Checking the MFS

Input: candi "MFS that needs to be checked
Repeat " The number of repeating times
V " the schemas that are still uncovered
T MFS " all the valid test cases that contain MFS
T candi " all the valid test cases that contain candi

Output: candi is MFS or not
1: T Executed  ;
2: while Repeat > 0 do
3: T possible  ðT candinT MFSÞnT Executed

4: tnew  select dissimilarðT possible; T ExecutedÞ
5: if executeðtnew) == PASS then
6: update(tnew;V)
7: return False
8: end if
9: Repeat Repeat� 1
10: T Executed:appendðtnewÞ
11: end while
12: return True

In this algorithm, our target is to verify whether the can-
didate schema candi is MFS or not. The input variable
Repeat indicates the checking strength, that is, the number
of iterations that schema candi is checked. In each iteration,
we will generate a new test case tnew which contains this
schema candi (line 4) and execute it (line 5). If the newly
generated test case fails, which indicates that the probability
that the schema candi is MFS increases, we will continue the
checking process until the variable Repeat is equal to 0 (line
9, line 2). On the other hand, if the test case passes (line 5),
which indicates that the schema candi is not MFS, we will
update the uncovered schemas (because the new passing
test case will contribute to more coverage), and directly
return false (line 7). If we cannot find a test case that con-
tains this schema and passes during our checking process,
we will return true (line 12).

Note that the output true of our checking algorithm does
not guarantee this schema candi is 100 percent MFS (for
which we need to generate all the possible test cases con-
taining this schema), however, the probability that this
schema is MFS increases with the increasing of checking
strength, i.e., the value of Repeat variable. However, on the
other hand, increasing the value of Repeat also raises our
testing cost (we need to generate one more test case if
Repeat increases by 1).

With respect to the tradeoff between the quality of MFS
identification and testing cost, we need to design an elabo-
rate test set with a small number of test cases, while keeping
a high probability to check whether the candidate schema
under test is indeed MFS or not. Inspired by the idea of gen-
erating dissimilar test cases [26], [27], for each iteration, we
let the newly generated test case be as different from previ-
ously generated test cases as possible (line 3-4). This heuris-
tic idea is based on the fact that there is a small probability

that dissimilar tests contain the same fault [26]. As a result,
if the checking schema is not MFS, but the test case which
contains it fails because of other failure-inducing schemas,
we may easily verify that it is not the MFS by generating
another dissimilar test case (There is a high probability
that the newly generated test case does not contain the fail-
ure-inducing schema in previous test case, and passes after
execution).

It is worth noting that the feedback checking mechanism
can also be embedded into SCT. Specifically, we can check the
MFS obtained from each failing test case by generating addi-
tional test cases. Then, similar to ICT, we need to eliminate
those MFS that cannot pass the verification and re-locate the
MFS in the corresponding failing test case. However, for SCT,
there are two facts that can negatively influence the improve-
ment of the feedback checkingmechanism. First, the effects of
correcting wrongly identified MFS cannot be further propa-
gated. That is, although we can fix the MFS identification
result, it cannot be used in the following cases because the test
case generation stage has already finished and some other
MFS may never be detected. Second, it costs SCT more for
embedding the feedback checking mechanism. This is
because SCT needs to identify MFS for more failing test cases
than ICT aswe have discussed before, and for each failing test
case, the feedback checking process needs to run at least one
time. Our empirical study also exhibits this point. In fact, even
without feedback checking mechanism, SCT still needed
more test cases in the MFS identification stage than ICT with
feedback checkingmechanism (see Table 10 in Section 5.2).

4.2.2 Constraints Handling

In many systems to be tested, constraints or dependencies
exist between parameters. These constraints will render cer-
tain test cases invalid [28]. To handle these constraints is
important, aswe should examine the schemas onlywith valid
test cases [5]. There are two types of method for constraints
handling: 1) static method, that is, by knowing the constraints
in prior, approaches will forbid those invalid schemas to
appear in the generated test cases [20], [28], [29], [30], [31]. 2)
dynamic method, that is, it does not initially know which are
constraints, but identify them as MFS and forbid them in the
following iterations [5].We adopt the secondmethod for han-
dling constraints. There are two reasons for this choice. First,
there are not many constraints in our empirical study such
that the dynamic way of identifying them and forbidding
them will not affect the efficiency too much. Second, the
dynamic process of handling constraints is similar to the way
that we identify the MFS, so our framework does not need to
bemodified a lot for handling constraints.

Specifically, when we execute invalid test cases which
cannot be executed or even compiled, we will identify these
invalid schemas which trigger this problem. In other words,
we will regard the incompatibility exception as one type of
failure, and identify the illegal schemas as MFS. After this,
we will forbid these illegal schemas and some possible
implicitly illegal schemas to appear in the test cases gener-
ated later (through the same way for those identified MFS).

In a more detailed view, those forbidden schemas are for-
mulated into clauses, as introduced in [28]. For example, con-
sider the SUT in Table 3. Assume that scroll type forward-only
is incompatible with in-process server type, that is, the
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forbidden schema is (in-process, forward-only, -, -). We can
formulate it as clause {!in-process, !forward-only}, which
means that !in-process & !forward-only = 1, where in-process
and forward-only can be 0 or 1 (0 means that this value is
not selected, while 1 means this value is selected). This
clause limited that only one of them can be set to be 1. By
doing so, we can use SAT solver [32] to obtain a solution
(that is, a test case that avoids these forbidden schemas).
It is noted that, besides these forbidden schemas, there are
other conditions a test case must satisfy. For example, in
Table 3, each option must be assigned with one, and only
one, value. More details of this formulated model can be
found in [28], [29].

There are two key parts in our constraints handling
techniques. The first part is updating uncovered schemas.
That is, after one constraint or one MFS is obtained, we will
update all the schemas that are still needed to be covered.
This part is done by computing the compatibility between
the uncovered schemas with those known and discovered
constraints [28]. After this, all the possible implicated con-
straints (Not known prior, nor explicitly discovered), and
hence, our algorithm will not be stuck in the unstoppable
condition that some schemas cannot be covered. The second
part is that, for one test case that is generated by our
approach, we will compute the satisfiability of the value
under selected for each parameter. Specifically, for one
pending value of one specific parameter, we will first use
SAT solver to find if there is a solution (one possible test
case) that contain this value and not violate any of these
constraints or MFS (including implicated ones). If the solver
returns true, which means we can find one satisfied test
case, then this value can be selected as one candidate value
for that parameter. Otherwise, this value will be discarded.

4.3 Advantages of Our Framework

In view of the problems listed in Section 3, our new frame-
work has the following advantages:

1) Redundant test cases are eliminated so that the overall cost
is reduced. Two facts of our framework support this
improvement: (1) The schemas appearing in the
passing test cases generated for MFS identification
are counted towards the overall coverage, so that the
test case generation process converges faster, which
results in generating a smaller number of test cases.
(2) The forbidden of identified MFS. As a result, test
cases which contain these MFS will not appear, as
well as those additionally generated test cases used
to re-identify these MFS.

2) The appearance of multipleMFS in the same test case is lim-
ited, improving the effectiveness ofMFS identification. This
is mainly because we forbid the appearance of MFS
that has been identified. Consequently, following our
approach, the number of remaining MFS decreases
one by one. Correspondingly, the probability thatmul-
tiple MFS appear in the same test case will also
decrease. Since multiple MFS has a negative effect on
MFS identification as discussed in Section 3, the reduc-
tion of the appearance of multiple MFS in the same
test case obviously improves the effectiveness of MFS
identification.

3) The Masking effect is reduced, and hence, adequate testing
is better satisfied. As discussed in Section 3, SCT suf-
fers from masking effects when there are multiple
MFS in one failing test case. Since our approach theo-
retically reduces the probability that multiple MFS
appear in the same test case, we believe our frame-
work can alleviate the masking effects. In fact, our
framework conforms to tested t-way interaction crite-
rion because we only update t-way coverage for two
types of schemas: (1) t-degree schemas in those pass-
ing test cases and (2) t-degree schemas related to
MFS. Hence, our Interleaving CT framework supports
better adequate testing than SCT.

4) The quality of MFS identification is improved even if
Assumption 2 is not satisfied. As we have discussed
in Section 2.2, the MFS identification approach used
in our framework is based on the “Safe Value”
Assumption (Assumption 2). In practice, however,
this assumption is not always satisfied, which may
result in a bad quality of MFS identification result.
Under such condition, the feedback checking mecha-
nism process can alleviate this issue and improve
the quality of MFS identification. Specifically, with
additional test cases generated in the feedback
checking mechanism process, we obtain more chan-
ces to refine the MFS identification result, i.e., we can
re-identify the MFS in the failing test case if the
previous result cannot pass our validation. Note that
the high quality of the MFS identification result is
important to our framework because the test cases
generated later by our framework is heavily based
on the previously identified MFS.

4.4 Demonstration on an Example

Applying the new framework to the scenario of Section 3,
we can get the result listed in Table 6.

This table consists of two main columns, in which the left
column indicates the generation part while the right indi-
cates the identification process. We can find that, after iden-
tifying the candidate MFS (-, 0, -, -) for t1, we generated two
additional test cases (The checking strength, i.e., the Repeat
value, is 2 in this example) that contain this schema and
found both of them failed. It means that the schema (-, 0, -,
-) passed the verification, and would be regarded as MFS.
Note that if either one of these two additional test cases
passes, we will label (-, 0, -, -) as non-MFS, and re-identify
the MFS in t1. Another point that needs to be noted is that
these two additional test cases (t6, t7) are two dissimilar test
cases. In fact, all the 2-degree schemas that are covered by
these two test cases are different.

After we determine (-, 0, -, -) to be MFS, the following test
cases (t8 to t19) will not contain this schema. Correspond-
ingly, all the 2-degree schemas that are related to this
schema, e.g., (0, 0, -, -), (-, 0, 1, -), will also not appear in the
following test cases. Additionally, the passing test case t3
generated in the identification process cover six 2-degree
schemas, i.e., (0, 1, -, -), (0, -, 0, -), (0, -, -, 0), (-, 1, 0, -), (-, 1, -,
0), and (-, -, 0, 0) respectively, so that it is not necessary to
generate more test cases to cover them. We later found that
t8 failed, which only contained one MFS as expected, and
we easily identified it (-, -, 0, 1) with four extra-generated
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test cases (t11 to t14) and two checking test cases (t15 to t16).
This schema is 2-degree MFS, which will be forbidden in
the following test cases and set to be covered.

Above all, when using the interleaving CT approach,
the overall generated test cases are 2 less than that of the
traditional sequential CT approach in Table 4 and equal to
the augmented sequential CT approach in Table 5. In fact,
if we exclude the test cases from the checking process, the
interleaving CT approach can reduce even more test cases
(6 less than that of the traditional sequential CT approach,
and 4 less than the augmented sequential CT approach).
However, these additional test cases generated in the check-
ing process will ensure a high quality of MFS identification
for interleaving CT approach. In this simple example, both
interleaving CT and augmented sequential CT correctly
identified all the MFS (better than that of traditional sequen-
tial CT), but given more complex subjects with more MFS,
we believe interleaving CT can outperform the augmented
sequential CT at MFS identification.

Note that in this example, our approach did not wrongly
identify the MFS, and hence, this example did not show
how ict handles the circumstance if Algorithm 2 returns
false (i.e., if one passing test case is found containing the
previously identified MFS in the checking process). Next,
we use a simple example to show how ict works in such
condition. Let a SUT have four parameters, of which p1, p2,
p3, and p4 are ternary options. There are two MFS in this
SUT, which are (0, 0, 0, -) and (1, 0, 0, -), respectively. Now
we assume that ict start with a failing test case (0, 0, 0, 0).
Table 7 shows how ictworks in this condition.

In Table 7, we can observe that at the first time, we
wrongly identified the MFS. Specifically, after four test cases
(t1, t2, t3, and t4) generated by ict, we identified schema (-, 0,
0, -) as the MFS instead of the real MFS (0, 0, 0, -). The reason
why it fails obtaining the real MFS is that t1 introduced the

new MFS (1, 0, 0, -). It violated the safe assumption as we
discussed in Section 2.2 (Assumption 2 in the last two para-
graphs), and hence, it cannot obtain the real MFS. After this,
ict needed to check this schema by generating additional
test case t6 (2, 0, 0, 1). It passed during testing, which indi-
cated that we wrongly identified the MFS, i.e., (-, 0, 0, -) is
not the real MFS. Then ict re-started the MFS identification
procedure and generated additional four test cases, i.e., t7,
t8, t9, and t10. Note that in the second MFS identification
procedure, ict needed to generate test cases as different as
what has been already generated as possible to cover more
un-covered test cases. In the second iteration of the MFS
identification, ict correctly identified the real MFS (0, 0, 0, -).
ict then checked this schema by two test cases t5 and t10.
Since these two test cases both failed, (0, 0, 0, - ) was identi-
fied to be the MFS at last. Note that in the second checking
procedure, there did not exist other test cases contain the
schema (0, 0, 0, -), and hence, we could only use these two
already generated test cases to check this schema. In fact,
under this condition, all the possible test cases, i.e., t1, t5,
and t10, that containing this schema (0, 0, 0, -) were failed.
As a result, (0, 0, 0, -) is exactly the MFS according to what
MFS is declared (Definition 4).

5 EMPIRICAL STUDIES

To evaluate the effectiveness and efficiency of the interleav-
ing CT approach, we conducted a series of empirical studies
on several open-source software subjects. Each of these
studies aims at addressing one of the following research
questions:

Q1: Does ICT perform better than augmented SCT at the
overall cost and the accuracy of MFS identification?

Q2: Does ICT alleviate the three problems proposed in
Section 3. Specifically, ð1Þ does ICT reduce generat-
ing redundant and useless test cases, ð2Þ does ICT
reduce the appearance of test cases which contain
multiple MFS, and ð3Þ does ICT reduce the impacts
of masking effects?

TABLE 6
Interleaving CT Case Study

Generation Identification

t1 0 0 0 0 Fail
t2* 1 0 0 0 Fail
t3* 0 1 0 0 Pass
t4* 0 0 1 0 Fail
t5* 0 0 0 1 Fail
candidate MFS: ð�; 0;�;�Þ
Checking
t6* 1 0 1 1 Fail
t7* 2 0 2 2 Fail

t8 1 1 1 1 Pass
t9 0 2 1 1 Pass
t10 0 1 0 1 Fail

t11* 1 1 0 1 Fail
t12* 0 2 0 0 Fail
t13* 0 1 1 0 Pass
t14* 0 1 0 0 Pass
candidate MFS: ð�;�; 0; 1Þ
Checking
t15* 2 1 0 1 Fail
t16* 1 2 0 1 Fail

t17 1 2 0 0 Pass
t18 2 1 0 0 Pass
t19 2 2 1 1 Pass

TABLE 7
Example of How Interleaving CT Handles

the Wrong Identification Case

Generation Identification

t1 0 0 0 0 Fail
t2* 1 0 0 0 Fail
t3* 0 1 0 0 Pass
t4* 0 0 1 0 Pass
t5* 0 0 0 1 Fail
candidate MFS: ð�; 0; 0;�Þ
Checking
t6* 2 0 0 1 Pass
Re-identify
t7* 2 0 0 0 Pass
t8* 0 2 0 0 Pass
t9* 0 0 2 0 Pass
t10* 0 0 0 2 Fail
candidate MFS: ð0; 0; 0;�Þ
Checking
t5* 0 0 0 1 Fail
t10* 0 0 0 2 Fail
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Q3: How much does ICT gain from the feedback check-
ing mechanism.

Q4: Does ICT have any advantages over the existed
masking effects handling technique—FDA-CIT [5]?

Q5: How well do these approaches perform on software
subjects with multiple defects?

Q6: What is the sensibility of our approach to a different
number of MFS and a different number of options in
SUT?

Q7: How well does our approach perform when the two
assumptions listed in Section 2 do not hold?

Q8: How about the static way, i.e., the Error Locating
Arrays, of handling combinatorial test generation
and fault localization?

Note that we will refer to SCT as the augmented SCT
approach in the remaining part of this paper (Augmented SCT
performs more effective and efficient than traditional SCT).

5.1 Subject Programs

The five subject programs used in our experiments are listed
in Table 8. Column “Subjects” indicates the specific soft-
ware. Column “Version” indicates the specific version that
is used in the following experiments. Column “LOC” shows
the number of source code lines for each software. Column
“Faults” presents the fault ID, which is used as the index to
fetch the original fault description from the bug tracker for
that software. Column “Lan” shows the programming lan-
guage for each software (For subjects written in more than
one programming language, only the main programming
language is shown).

Among these subjects, Tomcat is a web server for java
servlet; Hsqldb is a pure-java relational database engine;
Gcc is a programming language compiler; Jflex is a lexical
analyzer generator; Tcas is a module of an aircraft collision
avoidance system. We select these programs as subjects
because their behaviours are influenced by various combi-
nations of configuration options or inputs. For example,
the component connector of Tomcat is influenced by more
than 151 attributes [33]. For program Tcas, although with a
relatively small size (only 173 lines), it has 12 parameters
with their values ranging from 2 to 10. As a result, the over-
all input space for Tcas can reach 460800 [34], [35].

As the main target of our empirical studies is to compare
the ability to handle the proposed three issues between our
approach with traditional ones, we first must know these
faults and their corresponding MFS in prior, so that we can
determine whether the schemas identified by those
approaches are accurate or not. For this, we looked through
the bug tracker of each software and focused on the bugs
which were caused by the interaction of configuration
options. Then for each such bug, we derived its MFS by

analysing the bug description report and the associated test
file which can reproduce the bug. For Tcas, as it does not
contain any fault for the original source file, we took a muta-
tion version for that file with injected fault. The mutation
was the same as that in [35], which is used as an experimen-
tal object for the fault detection studies.

5.1.1 Specific Inputs Models

To apply CT on the selected software, we need to first model
their input parameters. As discussed before, the whole con-
figuration options are extremely large so that we cannot
include all of them in our model in consideration of the
experimental time and computing resource. Instead, a mod-
erate small set of these configuration options is selected.
It includes the options that cause the specific faults in Table 8
so that the test cases generated by CT can detect these faults.
Additional options are also included to create some noise
for the MFS identification approach. These options are
selected randomly. Details of the specific options and their
corresponding values of each software are posted at
http://gist.nju.edu.cn/doc/ict/. A brief over-
view of the inputs models, as well as the corresponding
MFS (degree), is shown in Table 9.

In this table, Column “inputs” depicts the input model
for each version of the software, presented in the abbrevi-
ated form #values#number of parameters � :::, e.g., 29 � 32 � 41

indicates the software has 9 parameters that can take on 2
values, 2 parameters taking on 3 values and only one
parameter taking on 4 values. Column “MFS” shows the
degrees of each MFS and the number of MFS (in the paren-
theses) with that corresponding degree.

Note that these inputs just indicate the combinations of
configuration options. To conduct the experiments, some
other files are also needed. For example, besides the XML
configuration file, we need a prepared HTML web page and
a java program to control the startup of the tomcat to see
whether exceptions will be triggered. Other subjects also
need some corresponding auxiliary files (e.g., c source files
for GCC, SQL commands for Hsqldb, and some text for
Jflex). Additionally, there are two constraints among the
subjects. The first constraint is from Tomcat, of which the
error page location must not be empty. The second one is
from Hsqldb, of which someone can only process with the
“next()” method in a non-scrollable result set.

5.2 Comparing ICT with SCT

The covering array generating algorithm used by ICT is
AETG [8], as it is the most common one-test-case-one-time
generation algorithm. Another reason for choosing AETG,
which is also the most important, is that the mutation of this

TABLE 8
Subject Programs

Subjects Version LOC Faults Lan

Tomcat 7.0.40 296138 #55905 java
Hsqldb 2.0rc8 139425 #981 Java
Gcc 4.7.2 2231564 #55459 c
Jflex 1.4.2 10040 #87 Java
Tcas v1 173 #Seed c

TABLE 9
Inputs Model

Subjects Inputs MFS

Tomcat 28 � 31 � 41 1(1) 2(2)
Hsqldb 29 � 32 � 41 3(3)
Gcc 29 � 61 3(4)
Jflex 210 � 32 � 41 2(1)
Tcas 27 � 32 � 41 � 102 9(16) 10(8) 11(16) 12(8)
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algorithm, i.e., AETG_SAT [28], [29] is a rather popular
approach to handle constraints in covering array genera-
tion, which is the key to our framework. The MFS identify-
ing algorithm is OFOT [6] as discussed before. The
constraints handling solver (integrated into AETG_SAT) is
a java SAT solver—SAT4j [36]. Note that all the three algo-
rithms or techniques can be easily replaced with other simi-
lar approaches. For example, we can use other one-test-one-
time covering array generation algorithms, like DDA [9], or
other MFS identification techniques [17], [18], or other pop-
ular SAT solvers [37]. However, to select specific algorithms
for the three components of combinatorial testing is not the
key concern of this paper; instead, our work focuses on the
overall CT process.

With respect to SCT, we used the augmented simulated
annealing approach [11], [38] to build covering array.
The heuristic search-based algorithm is known to produce
smaller covering arrays than the one test case at one time
approach. Hence, using this approach is fairer for the
approach SCT than using greedy approach (which may
result in a larger size of covering array) because it needs to
first generate a complete covering array.

5.2.1 Study Setup

For each software except Tcas, a test case was determined to
be passing if it ran without any exception; otherwise, it was
regarded as failing. For Tcas, as the fault is injected, we
determined the result of a test case by separately running
and comparing the original correct version and the mutated
version.

In this experiment, we focused on three coverage criteria,
i.e., 2-way, 3-way, and 4-way, respectively. It is known that
the generated test cases vary for different runs of AETG
algorithm and simulated annealing algorithm. So to avoid
the biases of randomness, we conducted each experiment
30 times and then evaluated the results. (Note that the
remaining case studies were also based on 30 repeated
experiments.) For each run of the experiment, we separately
applied SCT approach and our approach to the prepared
subject to detect and identify the MFS.

To evaluate the results of the two approaches, one metric
is the cost, i.e., the number of test cases that each approach
needs. Specifically, the test cases that were generated in the
CT generation and MFS identification, respectively, were

recorded and compared for these two approaches. Apart
from this, another important metric is the quality of their
identified MFS. For this, we used standard metrics: precision
and recall, which are defined as follows:

precision ¼ #the num of correctly identified MFS

#the num of all the identified schemas
;

and

recall ¼ #the num of correctly identified MFS

#the num of all the real MFS
:

Precision shows the degree of accuracy of the identified
schemas when compared to the real MFS. Recall measures
how well the real MFS are detected and identified. Their
combination is F-measure, defined as

F -measure ¼ 2� precision� recall

precisionþ recall
:

5.2.2 Result and Discussion

Table 10 presents the results for the number of test cases. In
Column ‘Method’, ict indicates the interleaving CT
approach and sct indicates the sequential CT approach.
The results of three covering criteria, i.e., 2-way, 3-way, and
4-way are shown in three main columns. In each of them,
the number of test cases that are generated in CT generation
activity (Column ‘Gen’), in MFS identification activity
(Column ‘Iden’), and the total number of test cases (Column
‘Total’) are listed.

One observation from this table is that, in most cases, the
number of test cases generated by our approach was smaller
than that of the sct approach. In fact, except for subject Gcc,
our approach reduced about dozens of test cases on average
when compared to approach sct (The improvement for sub-
ject Tcas was smaller, because most of the MFS of Tcas are of
high degree (t > 6), and the covering arrays (t = 2, 3, 4)
rarely detected any of them.). This result indicates that ict
was more efficient at both CT generation activity and MFS
identification activity.

For Gcc, however, we found that ict generated a bit more
test cases at MFS identification activity (Note that even for
this subject, ict still generated fewer test cases at CT genera-
tion activity). However, when considering the fact that ict

TABLE 10
Comparison of the Number of Test Cases

Subjects Method 2-way 3-way 4-way

Gen Iden Total Gen Iden Total Gen Iden Total

Tomcat ict 8.3 54.2 60.7 31.1 50.3 79.9 78.9 53.0 130.2
sct 13.8 55.0 68.3 38.9 61.0 99.7 92.8 95.5 187.3

Hsqldb ict 11.7 37.8 49.4 40.7 47.7 88.3 113.0 53.5 166.3
sct 15.6 32.3 47.9 48.4 65.1 113.3 123.0 114.0 236.5

Gcc ict 14.0 28.0 41.4 41.6 47.5 89.0 94.3 50.4 144.7
sct 14.6 20.1 34.4 52.9 27.8 80.2 101.9 38.8 140.1

Jflex ict 14.6 17.0 31.6 48.6 17.0 65.6 133.7 17.0 150.7
sct 15.9 16.6 32.5 49.9 24.1 74.0 133.2 44.5 177.7

Tcas ict 109.1 0.0 109.1 414.7 3.0 417.7 1545.4 7.4 1552.8
sct 107.5 0.0 107.5 418.3 0.0 418.3 1556.1 2.6 1558.7
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obtained a higher quality of the identified MFS, we believe
this cost was worth it for Gcc. In fact, the f-measures of ict
were 0.34, 0.7, and 0.78, respectively, for subject Gcc, while
sct only scored 0.1, 0.08, and 0.11, respectively. This gap
between ict and sct for subject Gccwas far larger than that of
other subjects.

The quality of the identified MFS for other subjects is also
listed in Table 11. Based on this table, we found that ict per-
formed better than sct. In fact, except for subject Jflex, of
which both ict and sct perfectly identified the MFS (the MFS
of Jflex is a single 2-degree schema and easy to identify), ict
obtained a higher score at f-measure than sct for all the sub-
jects. For example, the f-measures of ict were 0.83, 1.0, and
0.99, respectively for subject Hsqldb, while sct only scored
0.5, 0.49, and 0.43, respectively. Even for subject Tcas, at
which failures are hard to detect, the f-measure of ict was
0.01 for 4-way coverage, while sct scored 0. This result indi-
cates that ict was far more effective at MFS identification
than sct.

Another interesting observation with regard to the MFS
identification is that higher t-wise strengths were not always
resulting in an improved precision (Take subject Hsqldb for
example, the f-measure of ict and sct for 3-way coverage
were 1.0 and 0.49, respectively; while 0.99 and 0.43 for 4-
way coverage). This is because the effectiveness of MFS
identification is related to the degree of MFS (i.e., the num-
ber of parameter values in the MFS) contained in the SUT.
That is, if all the MFS in the SUT is of low degree, a lower
strength covering array is enough to detect the MFS. Specifi-
cally, a t-wise covering array can detect all the failures
caused by the MFS of t-degree, or less than t-degree. Then,
if an MFS is detected, ict and sct can identify them as
expected. A higher-wise covering array can certainly detect
those low degree MFS too, but compared to the lower
strength covering array, it generates much more test cases.
As a result, many failing test cases may contain the same
MFS, and worse, it increases the chance that a failing test
case contains multiple MFS. This surely decreases the accu-
racy of MFS identification (See Section 3.2).

Additionally, Table 12 shows the milliseconds consumed
by the two approaches on average. The experiment was con-
ducted on Machine HP ProDesk 600 G1 TWR (Intel Core i5,
3.3 Hz, 16 GB memory). Based on this table, it is obvious
that ict cost more time than sct. This is because ict needed to

handle the SAT problem (for forbidding the appearance of
MFS and constraints), which consumed additional comput-
ing resources than sct. Considering the long test case execu-
tion time of large software projects, however, this extra test
case generation time of ict is trivial in most cases.

In summary, the answer to Q1 is: Our approach ict needs
fewer test cases than the augmented sequential CT approach, and
the quality of MFS identification of ict is higher than sct.

5.3 Alleviation of the Three Problems

Section 3 shows three problems that impact the perfor-
mance of CT process, which are redundant test case genera-
tion, multiple MFS in the same test case and masking effects,
respectively. To learn if ict can alleviate these problems, we
re-use the experiment in the first study, i.e., let sct and ict
generate test cases to identify the MFS in the five program
subjects. Then, we respectively investigate the extent to
which ICT and SCT are affected by those issues. It is noted
that the original definition [5] of tested-t-way coverage
including the t-degree tuples that may appear in the non-
option-related failed test case. In our experiments (includ-
ing the following sections), all these failures are option-
related. Hence, the computation of the tested-t-way cover-
age in our experiments satisfied the original definition.

5.3.1 Study Setup

We designed three metrics for each of the three problems.
First, tomeasure the redundant test case generation, we gathered

TABLE 11
Comparison of the Quality of the Identified MFS

Subjects Method 2-way 3-way 4-way

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Tomcat ict 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
sct 0.75 1.0 0.86 0.88 1.0 0.93 0.88 1.0 0.93

Hsqldb ict 1.0 0.77 0.83 1.0 1.0 1.0 0.97 1.0 0.99
sct 0.7 0.4 0.5 0.53 0.47 0.49 0.45 0.43 0.43

Gcc ict 0.45 0.28 0.34 0.77 0.65 0.7 0.83 0.75 0.79
sct 0.13 0.07 0.1 0.09 0.07 0.08 0.12 0.1 0.11

Jflex ict 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
sct 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Tcas ict 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.0 0.01
sct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE 12
Time Consumes (Millisecond)

Subject Method 2-way 3-way 4-way

Tomcat ict 556.4 2703.7 12367.7
sct 10.0 56.7 305.6

Hsqldb ict 345.5 2093.6 21918.4
sct 16.7 151.3 1055.1

Gcc ict 180.1 1117.5 5408.5
sct 8.0 68.0 309.3

Jflex ict 187.1 1747.1 11412.4
sct 75.5 288.8 2491.4

Tcas ict 178.0 2914.9 60725.5
sct 135.6 1750.0 25380.7
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the number of times that each schema was covered. This met-
ric directly indicates the redundancy of generated test cases,
because it is obvious that if there are too many schemas that
are repeatedly being covered by different test cases, then the
CT process is inefficient (if one schema is covered and tested,
it is unnecessary to check them again with other test cases).
Note that this metric is closely related to the number of test
cases discussed in the previous study, more test cases surely
make schemas being covered more times. However, there
exists one difference, i.e., test cases can evenly cover many
schemas for a relatively few times, or alternatively, some sche-
mas are coveredmany times, but others not.

Second, to measure multiple MFS in the same test case, we
directly searched for each generated test case and checked
whether it contained more than one MFS or not.

Third, we used the tested-t-way coverage criterion [5] to
measure themasking effects. Specifically, we re-computed the
coverage of the test cases generated by ICT and SCT by count-
ing all the t-degree schemas thatwere either covered in a pass-
ing test case or identified as MFS or faulty schema. For ICT
and SCT, the higher is the tested-t-way coverage, the more
adequate is the testing and hence the lessmasking effects.

5.3.2 Result and Discussion

1) Redundant Test Cases. Our result is shown in Fig. 3. This
figure consists of 15 sub-figures, one for each subject with
specific testing coverage (ranged from 2-4 way). For each
sub-figure, the x-axis represents the number of times a
schema is covered in total, and the y-axis represents the num-
ber of schemas. For example in the first sub-figure (2-way
for Tomcat), two bars with x-coordinate equal to 1 indicates
that ict approach had 61.5 schemas on average which were
covered once and SCT had 1.3 schemas.

As discussed previously, the more schemas are covered
with a low-frequency, the less redundant the generated test
cases are. Hence it implies effective testing if the number of
schemas (y-axis) decreases with the increase of the covered
times (x-axis). With respect to Fig. 3, it is easy to find that for
most of the 15 sub-figures, ict performed better than sct. In
fact, for ict, the bars decreased rapidly with the increase of

the‘ x-axis, while for sct, the trendwasmore smooth. See sub-
ject tomcat with 2-way coverage, for example, ict had about
61.5 schemaswhichwere only covered once, about 38.9 sche-
mas covered twice, less than 12 schemas covered more than
6 times. For sct, however, for most covered times, it had
about 10 schemas, which indicates a very low performance.

The interesting exception is subject Tcas, on which ict
and sct showed a similar trend. This is because all the MFS
of Tcas are of high degree (t > 6), and the covering arrays
(t = 2, 3, 4) rarely detected any of them. Under this condi-
tion, since both approaches rarely detected the MFS, the
overall process was transferred to be traditional covering
array generation (the MFS identification process is omitted).

This result shows that our two modifications of the tradi-
tional approach, i.e., taking account of the covered schemas
by test cases generated in MFS identification and forbidding
the appearance of existing MFS to reduce the test cases that
are used to identify the same MFS, are useful, especially
when the MFS are detected and identified.

2) Multiple MFS. The result is shown in Table 13, which
lists the number of test cases (on average for the repeated
30 experiments) that contain more than one MFS.

From this table, one observation is that ict obtained a bet-
ter result than sct at limiting the test cases which contain

Fig. 3. The redundancy of test cases.

TABLE 13
Number of Test Cases that Contain Multiple MFS

Subject Method 2-way 3-way 4-way

Tomcat ict 0.0 0.0 0.0
sct 1.2 4.6 10.8

Hsqldb ict 0.0 0.0 0.0
sct 0.2 1.6 4.1

Gcc ict 0.5 0.8 0.6
sct 0.2 1.8 3.4

Jflex ict 0.0 0.0 0.0
sct 0.0 0.0 0.0

Tcas ict 0.0 0.0 0.0
sct 0.0 0.0 0.0
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multiple MFS. For all the subjects except Gcc, ict nearly
eliminated all the test cases which contain multiple MFS.
Even for Gcc, the size of test cases which contain multiple
MFS was limited in a very small number (smaller than 1).
For sct, however, the result was not as good as ict. In fact,
except for subjects Jflex and Tcas, sct suffered from generat-
ing test cases which contain multiple MFS. This is one
reason why even though sct generated many more test cases
than ict, it did not obtain a better MFS identification result
than ict. Two exceptions are subjects Jflex and Tcas, on which
both ict and sct did not generate test cases containing multi-
ple MFS. The reason is that Jflex has only one MFS (see
Table 9) and the MFS of Tcas are all high degrees which are
hardly detected.

3) Masking Effects. The results of masking effect for each
approach is shown in Table 14. Specifically, the number of
t-degree (t = 2, 3, 4) schemas which are tested (in the passing
test cases or identified as faulty schemas) are gathered, as
well as the percentage of the total t-degree schemas (in the
parentheses followed). Several observations can be obtained
from this result:

First, the extent to which sct and ict suffered from
masking effects is not severe. Actually, the lowest tested-
t-way coverage of ict is 99.17 percent (4-way for Gcc),
and sct is 97.69 percent (4-way for Gcc). This result
shows that combining MFS identification with covering
array (either in a sequential way or interleaving way)
can make testing more adequate than using covering array
alone.

Second, ict was more effective than sct at handling the
masking effects. With respect to tested-t-way coverage, ict
covered almost all the tested-t-way schemas for all the sub-
jects (except for Gcc, but for which ict still covered more
tested-t-way schemas than sct). On the other hand, sct was
not as good as ict. In fact, sct fell behind ict for almost all the
subjects except Tcas. For subject Tcas, both ict and sct cov-
ered all the tested-t-way schemas (failures of Tcas were
rarely detected, and all the t-degree schemas appeared in
the passing test cases).

In summary, the answer to Q2 is that our approach ict can
alleviate the three problems discussed in Section 3, and when
compared to sct , ict is a better approach to resolve these issues.
Additionally, both ict and sct have a good performance in reducing
the masking effects.

5.4 The Benefits of Feedback Checking Mechanism

One important part of the ict approach is the feedback
checking mechanism, which aims at judging whether the
schemas identified by ict is real MFS or not by additionally
generating test cases containing the schemas under check.
It is interesting to evaluate how valuable is this feedback
checking mechanism, i.e., how much improvement ict
gained from this mechanism.

5.4.1 Study Setup

For this, we created a mutation version of ict by removing
the feedback checking mechanism from the original ict
approach. We later call this mutation approach the ict-nonfb.
Then, we applied this approach to test the five subjects
listed in Table 8 and identified the MFS contained in them.
At last, we evaluated the benefits of the feedback checking
mechanism by comparing the results obtained by ict-nonfb
and ict.

5.4.2 Result and Discussion

We list the results of the number of test cases generated
by ict-nonfb in Table 15, the f-measure of MFS identification
in Table 16, the average number of test cases containing
multiple MFS in Table 17, and the tested-t-way coverage in
Table 18. Additionally, we attached the gaps between ict-
nonfb with ict in the parentheses. The value with a negative
sign indicates the reduction in the corresponding metric
(e.g., number of test cases, the f-measure, the number of test
cases containing multiple MFS, the tested-t-way cover-
age) made by ict-nonfb when compared with ict, while
non-negative sign indicates the increase in that corre-
sponding metric.

TABLE 14
Masking Effects Results

Subjects Method Tested-t-way coverage

2-way 3-way 4-way

Tomcat ict 236.0(100.00%) 1424.0(100.00%) 5600.0(100.00%)
sct 233.8(99.07%) 1397.2(98.12%) 5501.7(98.24%)

Hsqldb ict 357.0(100.00%) 2742.0(100.00%) 14135.5(100.00%)
sct 352.1(98.63%) 2713.7(98.97%) 13984.5(98.93%)

Gcc ict 251.4(99.76%) 1526.4(99.38%) 5997.6(99.17%)
sct 250.0(99.21%) 1519.4(98.92%) 5908.2(97.69%)

Jflex ict 473.0(100.00%) 4282.0(100.00%) 26532.0(100.00%)
sct 468.8(99.11%) 4216.6(98.47%) 26177.5(98.66%)

Tcas ict 837.0(100.00%) 9158.0(100.00%) 64696.0(100.00%)
sct 837.0(100.00%) 9158.0(100.00%) 64696.0(100.00%)

TABLE 15
Number of Test Cases Generated by

ict without Feedback Checking

Subject 2-way 3-way 4-way

Tomcat 42.8(-17.9) 65.0(-14.9) 115.2(-15.0)
Hsqldb 41.0(-8.4) 74.2(-14.1) 147.4(-18.9)
Gcc 37.0(-4.4) 75.0(-14.0) 121.4(-23.3)
Jflex 29.2(-2.4) 63.2(-2.4) 148.8(-1.9)
Tcas 111.0(1.9) 414.6(-3.1) 1548.0(-4.8)
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The following could be observed:

1) ict-nonfb generated a smaller amount of test cases
than ict. Specifically, except for the tcas program sub-
ject, ict-nonfb reduced the number of test cases by
about 1.9 to 23.3. This is as expected because the
feedback checking mechanism needs to generate
additional test cases to check whether the schemas
identified by ict is real MFS or not.

2) The quality of the MFS identification of ict-nonfb
decreased a lot. In fact, except for the 2-way coverage
of Gcc, ict either obtained higher f-measures or per-
formed equally well on all the remaining subjects
of all the t-ways (2, 3, and 4-way coverage). Addition-
ally, the gaps between them ranged from 9 to 55.7 per-
cent, which is not trivial.

3) There were no distinct gaps between ict-nonfb and ict
at the number of test cases that containing multiple
MFS. In fact, for all the subjects except forGcc, ict-nonfb
and ict both generated 0 test case that containing
multiple MFS. For Gcc, ict-nonfb performed better at
2-way (but the gap is only 0.1) and 3-way coverage,
while ict performed better at 4-way coverage.

4) The tested-t-way coverage of ict-nonfb also decreased.
In fact, besides those subjects that ict-nonfb and ict
performed equally well, ict-nonfb reduced the tested-
t-way coverage by about 0.02 percent (0.2 tested-2-
way schemas) to 4.94 percent (296.4 tested-4-way
schemas).

To summarize, the answer to Q3 is that: Without feedback
checking mechanism, the number of test cases generated by ict
reduced, but the quality of MFS identification and tested-t-way
coverage decreased significantly. It indicates that the additional
test cases generated in feedback checking mechanism is worth-
while, and it is beneficial to adopt feedback checking mechanism in
the CT process (in order to obtain a better MFS identification
result and a higher tested-t-way coverage).

5.5 Comparison with FDA-CIT

fda-cit [5] is a feedback framework that can augment the tradi-
tional covering array to iteratively identify the MFS and can

handle the masking effects. The overall process can be
illustrated in Fig. 4. Specifically, it will first generate a t-way
covering array and execute all the test cases in it. After that, it
will utilize the classification tree method to identify the MFS.
Then it will forbid the identified MFS to appear and compute
the tested-t-way coverage. If the tested-t-way coverage is not
satisfied, it will repeat the previous process, i.e., generating
additional test cases and identifying MFS. Like our ict app-
roach, FDA-CIT is also an adaptive approach which itera-
tively generates test cases and identifies the MFS. Besides
these commonalities, there are several important differences
between our approach and fda-cit (shaded in Fig. 4):

First, the granularity of adaptation. Instead of handling
one test case one time as ict, fda-cit tries to generate a batch
of test cases at each iteration (A complete covering array
will be generated at the first iteration, and more test cases
will be supplemented to cover those t-degree schemas
which are masked at the following iterations). To generate
a batch of test cases may improve the degree of parallelism
of testing, but this coarser granularity may also introduce

TABLE 16
The F-Measure Obtained by ict without Feedback Checking

Subject 2-way 3-way 4-way

Tomcat 1.0(0.00%) 1.0(0.00%) 1.0(0.00%)
Hsqldb 0.74(-9.00%) 0.64(-36.00%) 0.64(-34.57%)
Gcc 0.45(10.95%) 0.46(-24.29%) 0.23(-55.71%)
Jflex 1.0(0.00%) 1.0(0.00%) 1.0(0.00%)
Tcas 0.0(0.00%) 0.0(0.00%) 0.01(0.00%)

TABLE 17
Number of Test Cases Contain Multiple MFS

for ict without Feedback Checking

Subject 2-way 3-way 4-way

Tomcat 0.0(0.0) 0.0(0.0) 0.0(0.0)
Hsqldb 0.0(0.0) 0.0(0.0) 0.0(0.0)
Gcc 0.4(-0.1) 0.2(-0.6) 1.2(0.6)
Jflex 0.0(0.0) 0.0(0.0) 0.0(0.0)
Tcas 0.0(0.0) 0.0(0.0) 0.0(0.0)

TABLE 18
The Tested-t-Way Coverage Obtained by

ict without Feedback Checking

Subject 2-way 3-way 4-way

Tomcat 236.0(0.00%) 1424.0(0.00%) 5600.0(0.00%)
Hsqldb 356.8(-0.06%) 2729.4(-0.46%) 14026.8(-0.77%)
Gcc 251.2(-0.08%) 1485.6(-2.67%) 5701.2(-4.94%)
Jflex 473.0(0.00%) 4282.0(0.00%) 26532.0(0.00%)
Tcas 837.0(0.00%) 9158.0(0.00%) 64696.0(0.00%)

Fig. 4. The framework of fda-cit.
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some problems, e.g., some test cases generated at one itera-
tion may fail with the same MFS, which is a potential waste
because it is better to use one failing test case to reveal one
particular MFS.

Second, the MFS identification approach is different. fda-
cit uses the classification tree on existing executed test cases
to characterize the MFS. Different from our OFOT approach,
this post-analysis technique does not need additional test
cases, but as a side effect, it cannot precisely find the MFS.
Worse, the effectiveness of this post-analysis approach
depends greatly on the covering array, e.g., if there are a
large number of failing tests, and a small size test suite,
there is little information to exclude the particular MFS [18].

Third, the coverage criterion is not the same. fda-cit directly
uses the tested-t-way coverage to guide their process. This
supports better adequate testing and reduces the impacts
of masking effects. As we will see later in our experiments,
however, the incorrect MFS identification may prevent
fda-cit from reaching this type of coverage.

5.5.1 Study Setup

The design of this case study is similar to the previous two.
For each subject in Table 8, we applied fda-cit to generate
test cases and identify the MFS. After that, we gathered the
overall test cases generated (fda-cit does not need additional
test cases to identify the MFS), MFS identification results
(including recall, precision, and f-measure), and the other
three metrics, i.e., covered times of schemas, the number
test cases which contain multiple MFS, and the tested-t-
coverage. The same as previous experiments, we repeated
each experiment 30 times for different coverage (2, 3, and 4
way), and then gathered and analysed the average data. Note
that theMFS identification approach in the fda-cithas two ver-
sions, i.e., ternary-class and multiple-class. In this paper, we
use the multiple-class version for comparison, as it performs
better than the former [5]. Another point needs to be noted is
that we also used the augmented simulated annealing
approach [11], [38] to build covering array for the FDA-CIT.

5.5.2 Result and Discussion

1) Total Number of Test Cases. The total number of test cases
generated by fda-cit for each subject is shown in Table 19.
To better evaluate the performance of fda-cit, we list the
gaps between FDA-CIT with ict and sct respectively in the
parentheses (the first number is for ict, the second one is
sct). The value with a negative sign indicates the reduction
in the test cases between fda-cit and other two approaches,
while the value without negative sign indicates the number
of test cases which fda-cit generated more than the other two
approaches.

From this table, one observation is that fda-cit was better
than sct in almost all cases. Combining the results of previ-
ous studies for sct and ict, we can conclude that sct was the
most inefficient approach at test case generation. Second,
for ict and fda-cit, there were ups and downs on both sides.
In detail, fda-cit needed fewer test cases at lower coverage
(2-way and 3-way coverage), while ict performed better at
higher coverage (4-way).

This result is reasonable. First, fda-cit did not need addi-
tional test cases to identify the MFS, which would reduce
some cost when compared with ict, especially when the
coverage is low (For low coverage, the test cases generated
by ict in the MFS identification stage account for a consider-
able proportion of the overall test cases). On the other hand,
as noted earlier, the coarse-grained generation would make
fda-cit generate some unnecessary test cases.

2) F-Measure of MFS Identification. The results of the qual-
ity of MFS identification by fda-cit is listed in Table 20. Same
as the previous metric, the comparison between fda-cit with
ict and sct is also attached (the first number is for ict, the sec-
ond one is sct).

This table shows a discernible disparity between fda-cit
with the other two approaches. In fact, besides subject Jflex
of which all three approaches accurately identified the sin-
gle low-degree MFS (with F-measure equal to 1), and subject
Tcas of which all three approaches could hardly detect fail-
ures (with F-measure equal to 0), ict led over fda-cit by about
26 to 77 percent, which is not trivial. The result is similar
when comparing sctwith fda-cit.

This result suggests that the classification tree approach
used by fda-cit, although very resource-saving (does not
need additional test cases), is ineffective to accurately iden-
tify MFS, especially when there are multiple MFS with high
degrees.

Note that fda-cit’s primary concern is to avoid masking
effects and to give every t-degree schema a fair chance to
be tested, not to perform fault characterization. On the
other hand for the classification tree method, when only
a very small set of test cases fail, it will result in the input
data for classification tree to be highly unbalanced [39].
Another point is that all the MFS identified by the classi-
fication tree method should contain the same parameter
value on the root, which will result in the schemas
identified by fda-cit tending to be super-schema of the
real MFS.

3) Redundant Test Cases. The result is listed in Fig. 5. The
same as Fig. 3, for each sub-figure, the x-axis represents the
number of times a schema is covered in total, and the y-axis
represents the number of schemas. To enable an intuitive
comparison with ict and sct, we attach the data for ict and
ict, with the solid line and dotted line, respectively.

TABLE 19
Number of Test Cases Generated by fda-cit

2-way 3-way 4-way

Tomcat 28.4(-32.3,-39.9) 65.5(-14.4,-34.2) 147.4(17.2,-39.9)
Hsqldb 29.9(-19.5,-18.0) 83.5(-4.8,-29.8) 201.2(34.9,-35.3)
Gcc 21.7(-19.7,-12.7) 63.4(-25.6,-16.8) 120.7(-24.0,-19.4)
Jflex 19.8(-11.8,-12.7) 64.5(-1.1,-9.5) 179.5(28.8,1.8)
Tcas 109.9(0.8,2.4) 416.6(-1.1,-1.7) 1544.7(-8.1,-14.0)

TABLE 20
The F-Measure of MFS Identification for fda-cit

2-way 3-way 4-way

Tomcat 0.22(-77.57%,-63.28%) 0.31(-69.09%,-61.94%) 0.33(-66.67%,-59.52%)

Hsqldb 0.32(-51.26%,-18.26%) 0.29(-71.12%,-20.45%) 0.32(-66.19%,-10.76%)

Gcc 0.07(-26.48%,-2.19%) 0.4(-30.28%,31.50%) 0.49(-29.57%,38.29%)

Jflex 1.0(0.00%,0.00%) 1.0(0.00%,0.00%) 1.0(0.00%,0.00%)

Tcas 0.0(0.00%,0.00%) 0.0(0.00%,0.00%) 0.0(-0.81%,0.00%)
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From this figure, we can see the trend of the bars of
fda-cit matches pretty well with the curve representing ict,
which has a significant advantage over the curve of sct.
This result implies that the test case redundancy of ict is
similar to that of fda-cit, which is not severe when com-
pared with sct.

4) Test Cases Containing Multiple MFS. Table 21 shows
the number of test cases that contain multiple MFS on
average for fda-cit. The same as before, we also list the
gaps between fda-cit with ict and sct respectively in the
parentheses (the first number is for ict, the second one is
for sct). From this table, we can easily find that fda-cit did
almost the same as sct at restricting the appearance of test
cases that contain multiple MFS. However, both of them
did not as well as ict. In fact, except for subject Jflex (which
contains single MFS) and Tcas (which contains high-degree
MFS that are rarely detected), fda-cit generated more
test cases that contain multiple MFS than ict, and the gap
between them increased with the increase of test coverage
(fda-cit generated about 1 more test cases for 2-way

coverage, 2 more test cases for 3-way coverage, and 5 more
test cases for 4-way coverage). This result shows that ict
was the best approach among them to reduce the appear-
ance of test cases that contain multiple MFS, and we also
believe this is one reason why ict obtained a higher-quality
of MFS identification.

5) Masking Effects. The result is listed in Table 22, which
shows the results of tested-t-way coverage. The gaps between
fda-cit with ict and sct are listed in the parentheses, respec-
tively (the first one is ict, the second one is sct).

With regard to tested-t-way coverage, we can find that
our approach ict was still the best approach at reducing
the masking effects, even though when compared with
approach fda-cit. In fact, among the 15 cases listed in Table 22,
there are 13 cases on which ict performed equal to or better
than fda-cit (The only two exceptions areGcc for 3-way and 4-
way coverage). Note that in some particular cases, the gaps
between ict and fda-cit are not trivial, e.g., ict obtained 10
more percent of tested-t-way coverage than fda-cit at 2-way
coverage for subject Tomcat).

TABLE 21
Number of Test Cases Contain Multiple MFS for fda-cit

2-way 3-way 4-way

Tomcat 0.9(0.9,-0.3) 4.5(4.5,-0.1) 9.8(9.8,-1.0)
Hsqldb 0.4(0.4,0.2) 1.5(1.5,-0.1) 4.9(4.9,0.8)
Gcc 2.4(1.9,2.2) 2.5(1.7,0.7) 4.1(3.5,0.7)
Jflex 0.0(0.0,0.0) 0.0(0.0,0.0) 0.0(0.0,0.0)
Tcas 0.0(0.0,0.0) 0.0(0.0,0.0) 0.0(0.0,0.0)

TABLE 22
The Tested-T-Way Coverage for fda-cit

2-way 3-way 4-way

Tomcat 212.1(-10.13%,-9.28%) 1390.2(-2.37%,-0.50%) 5378.0(-3.96%,-2.25%)

Hsqldb 345.1(-3.33%,-1.99%) 2725.1(-0.62%,0.42%) 14096.7(-0.27%,0.80%)

Gcc 250.2(-0.48%, 0.08%) 1530.8(0.29%,0.74%) 6017.5(0.33%,1.82%)

Jflex 473.0(0.00%,0.89%) 4282.0(0.00%,1.53%) 26532.0(0.00%,1.34%)

Tcas 837.0(0.00%,0.00%) 9158.0(0.00%,0.00%) 64695.9(-0.00%,-0.00%)

Fig. 5. The redundancy of test cases generated by fda-cit.
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Above all, this result suggests that our approach ict does
reach the same or better level when compared with fda-cit at
reducing the masking effects. The conclusion also implies
that to limit the masking effects, only using an adaptive
framework to separately identify the MFS is not enough;
making MFS identification accurate is more important.

To summarize, the answer to Q4 is that when compared to
the adaptive CT approach fda-cit , ict did better at MFS identifi-
cation, reduction of masking effects, and reduction of test cases
containing multiple MFS in most cases, while fda-cit generated a
smaller number of test cases.

Note that one reason that ict did not generate more test
cases than fda-cit is that all the subjects we used in the experi-
ments have just one test file for each test configuration. Here
test configuration equals to the test case we discussed
throughout the paper. fda-cit is designed to work better for
subjects of which one configuration has multiple test files.
Under the scenario of multiple test files, ict should separately
handle each of them, because each test file may contain dis-
tinctMFS.As a result, the number of additional configurations
neededwill grow linearly with the number of failing test files.
In this case, fda-cit needs a smaller amount of test cases [5].

5.6 Multiple Defects

Since there is only one defect in each software subject used in
the previous experiments, it is interesting to observe howwell
these approaches work on programs with multiple defects.
To identify the MFS in the programs with multiple defects is
more complex than in the software with a single defect. One
problem is that one defect may crash the system under test so
that other defects will not have the chance to be triggered.
Even worse, some defects may have interference with each
other [40], e.g., constructive and destructive interference [41],
making fault localization more difficult. For all these reasons,
it is important to conduct experiments onmultiple defects.

5.6.1 Study Setup

The software subjects with multiple bugs used in this exper-
iment are listed in Table 23. In this table, we listed corre-
sponding versions of each software, lines of code, number
of classes, the bug IDs, their corresponding input model,
and MFS information.

Note that in this study we only selected 2 out of 5 subject
applications to experiment with multiple defects. The reason
for this is that it is very hard and time-consuming to obtain
reproducible testing scenarios that contain multiple option-
related defects. In order to simplify the process, we adopted
the strategy to select a small number of subject applications,
but for each subject application, we obtained more different
versions of that application. By doing so, we can also reuse
the test scripts we have built for a subject application.

As a result, for the experiments of multiple defects, we have
built five different versions of subject applications, of which
the number is equal to the number of the subject applications
used in the experiment for a single defect. This is also why
we only use a limited number of bugs for these applica-
tions. Also, we believe it is common that the test cases
under execution have limited number of multiple bugs.
This is because in practice if there are too many distinct
defects is the SUT, it needs human re-examination rather
than just doing an automatic diagnosis [18].

For each version of the subjects, we applied the previous
three approaches, i.e., ict, sct, and fda-cit, on generating test
cases and fault diagnosis. It is noted that, for sct and ict, we
need to distinguish different faults for them. In our experi-
ments, we simply took the one-bug-at-a-time strategy [40].
More specifically, when identifying the MFS for one particu-
lar defect, we only labeled the test cases failed with this spe-
cific defect as fail, and labeled other test cases (either passed
after execution or failed with other defects) as pass.

5.6.2 Result and Discussion

We list the results of the number of test cases generated
in this experiment in Table 24, the f-measure of MFS identi-
fication in Table 25, the average number of test cases
containing multiple MFS in Table 26, and the tested-t-way
coverage in Table 27.

There are several observations in the experiments with
multiple defects:

1) The results of the number of test cases satisfied the
following relationship: fda-cit generated the smallest
number of test cases in most cases, and the second-
best was ict, while the last one was sct. Specifically,
fda-cit reduced the number of test cases by 20.36 on
average at 2-way coverage when compared with the
approach sct, and 19.2 at 3-way coverage, and 65.7
at 4-way coverage. fda-cit also reduced the number
of test cases by about 20.6 when compared with ict
at 2-way coverage, but generated slightly more test
cases than ict at 3-way coverage and 4-way coverage
(increased of 2.7 and 0.6, respectively). With respect

TABLE 23
The Software Subjects with Multiple Defects

Software Version Loc Classes Bug # Input Model MFS

Hsqldb 2.0rc8 139425 495 #981 & #1005 29 � 32 � 41 3(5)

2.2.5 156066 508 #1173 & #1179 28 � 33 2(1) 1(1)

2.2.9 162784 525 #1286 & #1280 28 � 33 3(2) 2(1) 1(1)

Jflex 1.4.1 10040 58 #87 & #80 210 � 32 � 41 1(2)

1.4.2 10745 61 #98 & #93 211 � 32 � 41 2(1) 1(1)

TABLE 24
Number of Generated Test Cases (Multiple Defects)

Software Approach 2-way 3-way 4-way

hsqldb 2.0rc ict 37.2 129.8 216.2
sct 41.2 111.6 212.2
fda-cit 21.0 196.2 170.2

hsqldb 2.25 ict 40.4 56.0 101.2
sct 42.0 87.8 171.2
fda-cit 22.8 50.6 115.2

hsqldb 2.29 ict 48.2 77.6 122.6
sct 40.0 88.4 186.2
fda-cit 39.4 51.2 115.4

Jflex 1.4.1 ict 45.4 71.4 131.8
sct 61.2 120.8 247.6
fda-cit 22.8 61.2 163.4

Jflex 1.4.2 ict 68.0 72.4 145.6
sct 53.6 108.4 232.0
fda-cit 30.2 61.8 156.4
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to ict, it reduced the number of test cases by about 21.9
and 66.4 at 3-way and 4-way coverage, respectively,
when compared with sct. These two approaches gen-
erated almost the same number of test cases at 2-way
coverage.

2) With respect to the quality of MFS identification,
these three approaches satisfied the following rela-
tionship: ict obtained the highest score at MFS iden-
tification, followed by sct and fda-cit. In fact, except
for the 2-way coverage at which ict and sct obtained
almost the same f-measure on average, ict increased
the f-measure at least by 30 and 32 percent on aver-
age, respectively, at 3-way and 4-way coverage
when compared with other two approaches.

3) The results that related to the number of test cases
containing multiple MFS satisfied the following rela-
tionship: ict generated the smallest number of test
cases that containing multiple MFS in most cases,
and the second-best approach was fda-cit, while the
last one was sct. Specifically, ict reduced the number
of test cases containing multiple MFS by about 1.0
at the 2-way coverage when compared with fda-cit,
3.84 at the 3-way coverage, and 10.04 at the 4-way
coverage. For fda-cit, it reduced the number of test
cases by about 0.2 at the 3-way coverage when com-
pared with sct, and 2.52 at the 4-way coverage
(These two approaches generated a similar number
of test cases that containing multiple schemas at 2-
way coverage).

4) Concerning the tested-t-way coverage, these three
approaches satisfied the following relationship: sct
covered the most number of tested-t-way schemas,
followed by approaches fda-cit and ict, respectively.
In fact, except for the 2-way coverage at which sct and
ict covered almost the same number of tested-t-way
schemas, sct outperformed the other two approaches
at 3-way and 4-way coverage. Specifically, sct
increased the tested-3-way coverage by 20 and 16 per-
cent, when compared with approaches ict and fda-cit,
respectively, and increased the tested-4-way cover-
age by 38 and 16 percent, respectively.

The reason why ict was clearly outperformed by sct at
reducing masking effects under multiple defects (this is the
only different conclusion when compared with the results of
Section 5.5) is that the decreasing of the tested-t-way coverage
of ictwas caused by the reduction of passing test cases. This is
because due to the one-bug-at-one-time strategy for handling
multiple defects, ict labeled the test cases which failed with
the defects other than the defect under analysis as passing test
cases. As a consequence, it can normally identify the MFS for
the defect, but these test cases which failed with other defects
cannot contribute to any tested-t-way coverage. Therefore,
the tested-t-way coverage obtained by ict decreased.

Above all, the answer to Q5 is:
Except for the masking effects, other results matched well

with the results obtained from the experiments of a single defect.
Specifically, ict obtained the best MFS identification results and
generated the least number of test cases containing multiple MFS,
sct obtained the most tested-t-way coverage, and fda-cit generated
the smallest number of test cases.

TABLE 25
The F-Measure of the MFS Identification (Multiple Defects)

Software Approach 2-way 3-way 4-way

hsqldb 2.0rc ict 0.11 0.96 0.78
sct 0.33 0.34 0.25
fda-cit 0.04 0.25 0.15

hsqldb 2.25 ict 0.93 1.0 1.0
sct 0.86 0.72 0.56
fda-cit 0.23 0.04 0.0

hsqldb 2.29 ict 0.52 0.81 0.84
sct 0.4 0.57 0.53
fda-cit 0.17 0.17 0.19

Jflex 1.4.1 ict 1.0 1.0 1.0
sct 0.88 0.92 0.96
fda-cit 0.1 0.0 0.0

Jflex 1.4.2 ict 0.76 1.0 1.0
sct 0.96 0.72 0.72
fda-cit 0.16 0.0 0.0

TABLE 26
The Number of Test Cases Containing

Multiple MFS (Multiple Defects)

Software Approach 2-way 3-way 4-way

hsqldb 2.0rc ict 0.0 0.6 0.4
sct 0.6 1.4 6.4
fda-cit 0.4 2.6 4.0

hsqldb 2.25 ict 0.8 0.8 0.4
sct 0.6 2.2 7.0
fda-cit 0.6 3.2 7.6

hsqldb 2.29 ict 1.4 1.8 2.2
sct 1.4 5.8 17.6
fda-cit 5.0 9.0 16.4

Jflex 1.4.1 ict 1.0 1.0 1.0
sct 4.6 12.4 26.2
fda-cit 2.2 6.6 17.4

Jflex 1.4.2 ict 1.0 1.0 0.2
sct 0.6 3.6 9.8
fda-cit 1.0 3.0 9.0

TABLE 27
The Tested-T-Way Coverage (Multiple Defects)

Software Approach 2-way 3-way 4-way

hsqldb 2.0rc ict 92.8(25.99%) 956.0(34.87%) 3211.8(22.72%)

sct 142.2(39.83%) 1214.2(44.28%) 5732.6(40.55%)

fda-cit 122.8(34.40%) 1123.4(40.97%) 4845.8(34.28%)

hsqldb 2.25 ict 194.8(68.83%) 862.4(45.03%) 3004.0(34.90%)

sct 190.8(67.42%) 1299.6(67.86%) 5383.4(62.54%)

fda-cit 181.0(63.96%) 1031.6(53.87%) 4115.2(47.81%)

hsqldb 2.29 ict 177.2(62.61%) 815.6(42.59%) 2716.0(31.55%)

sct 207.4(73.29%) 1301.6(67.97%) 5624.4(65.34%)

fda-cit 162.4(57.39%) 1129.4(58.98%) 5141.8(59.73%)

Jflex 1.4.1 ict 273.0(66.10%) 1644.0(47.57%) 7680.0(39.14%)

sct 328.6(79.56%) 2588.0(74.88%) 14154.0(72.14%)

fda-cit 281.4(68.14%) 2232.8(64.61%) 12652.0(64.49%)

Jflex 1.4.2 ict 336.6(71.16%) 1896.0(44.28%) 8438.0(31.80%)

sct 319.8(67.61%) 2955.6(69.02%) 17741.4(66.87%)

fda-cit 269.2(56.91%) 2241.8(52.35%) 14309.2(53.93%)
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5.7 Sensitivity of the Approaches

In order to reduce the bias of the choice of subjects, and to
obtain a more general conclusion, we conducted several
experiments on the subjects with various characteristics in
this section. More specifically, we considered the impacts of
different numbers of MFS in the SUT and different numbers
of options in the SUT on three approaches, i.e., ict, sct, and
fda-cit.

5.7.1 Study Setup

To vary parameters of interest in a controlled setting in this
study, we used synthetic subjects instead of real programs
(the real program typically represents only one particular
parameter setting, and hence it is hard to get software with
the expected number of options or MFS).

Specifically, for the first study, that is, evaluating the
performance of approaches under different numbers of
MFS, we used the subject with 11 parameters, and each
parameter had 5 values, i.e., the inputs model is ( 511 ). Then
we considered the following possible numbers of 2-degree
MFS: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80 and 90.
The detailed information of each synthetic subject applica-
tion is shown in Table 31 in Appendix B, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2018.2865772.
Then for each run of the experiment, we first injected the
corresponding number of MFS into the synthetic subject
and then ran all the three approaches on the subject. At last,
the results of each approach were collected and analysed.

The second study is to evaluate the performance of
approaches under various numbers of options. Hence we
used synthetic subjects with the following numbers of options
(8, 9, 10, 12, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100). The detailed
information of each synthetic subject application is shown in
Table 32 in Appendix B, available in the online supplemental
material. Each option had two values, and each subject had
three 2-degree MFS. Then for each subject, we applied the
three approaches and compared their performance.

5.7.2 Number of MFS

The results for the sensitivity of the number of MFS are
shown in Figs. 6, 7, and 8, of which the first figure focuses on
the quality of MFS identification, the second figure shows
the cost, and the last one shows the results of the masking
effects.

One observation from Fig. 6 is that, with the increasing of
the number of MFS, the f-measures of all three approaches

decreased rapidly. In fact, when the number of MFS was
greater than 60, the f-measures of all three approaches were
near 0. This is mainly because if there were too many MFS,
it was hard to get a passing test case, and hence, it was chal-
lenging to distinguish MFS from those schemas which were
not related to the failures.

Another observation is that for most cases, ict performed
the best, then followed by sct, and the last was fda-cit. It is
clear that ict can work well under the condition of multiple
MFS when compared with the other two approaches.

With regard to the cost, one observation is that with the
increasing of the number ofMFS, all three approaches needed
more test cases to identify the MFS. The reason is also obvi-
ous—a high number of MFS can trigger more failing test
cases, and in this situation, approaches needed more addi-
tional test cases forMFS identification. For fda-cit, even though
it did not need additional test cases for MFS identification, a
high number of MFS would lead to slower convergence. This
is because it is harder to fulfill the tested-t-way coverage if there
are too many failing test cases, and the slower convergence
will surely result in generatingmore test cases.

Another observation about the cost is that ict generated the
smallest size of test cases when compared to the other two
approaches. In fact, when the number of MFS was greater
than 20, the cost of sct and fda-cit increased rapidly (reached to
about 500 test cases), which far exceeded that of ict.

Regarding the masking effects, one observation is that,
with the increase in the number of MFS, the tested-t-way
coverage of all these three approaches decreased. This is
because, with the increase in the number ofMFS, the number
of passing test cases decreased, i.e., test cases are more likely
to fail with these MFS. Worse, since the MFS quality also
decreased with the increase in the number of MFS, these
approaches can hardly find any schema that satisfies the

Fig. 6. F-measure for various numbers of MFS. Fig. 7. Test cases for various numbers of MFS.

Fig. 8. The tested-t-way coverage for various numbers of MFS.
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tested-t-way coverage criteria. Another observation is that
when the number of MFS is relatively high, fda-cit obtained a
slightly higher score at the value of tested-t-way coverage
when compared to the other two approaches. We believe it is
because that the test cases generated by fda-cit contain more
passing test cases. Approaches sct and ict, on the contrary,
generated more failing test cases (in the MFS identification
stage, sct and ict generate test cases that are similar to the orig-
inal failing test case with only one valuemutation. As a conse-
quence, these test cases aremore likely to fail, especially at the
condition of there aremanyMFS in the SUT).

Considering that approaches ict and sct need to identify
the MFS in each of the failing test cases which may contain
single MFS or multiple MFS, it is very interesting to observe
the performance for these two approaches on the test cases
that containing multiple MFS only. Hence, we filtered the
results obtained from those failing test cases that only con-
tain single MFS, and focused on those test cases that contain
multiple MFS. The MFS identification results (multiple
MFS) are listed in Fig. 9. Additionally, we attached the
decrease of f-measure of these two approaches when com-
pared with the results on the test cases that are not distin-
guished by containing single MFS and multiple MFS in
Fig. 10. Note that there is no data at 1 on the x-axis because
there is no test case containing multiple MFS in this condi-
tion (the SUT only contains one MFS).

We can first observe that approach ict outperformed sct on
MFS identification on test cases that containingmultipleMFS.
In fact, for all the cases listed in Fig. 9, ict obtained higher
scores of f-measure than sct (note that for all the cases, the
f-measure of sct is under 0.1). The gaps between them ranged
from 0.05 to 0.69, which was not trivial. Second, the condition
that multiple MFS appear in one test case has significant

negative effects on sct, while only has a relatively slight influ-
ence on ict. Specifically, the decrease of f-measure of sct
(when compared with the f-measure obtained by sct on test
cases that are not distinguished by single MFS and multiple
MFS) ranged from 0.01 to 0.73, while the decrease of f-mea-
sure of ictwas nomore than 0.32. In fact, there are three cases
(x-axis of 6, 80, and 90) on which ict even performed better
than before.

Above all, with the increasing of the number of MFS in
the SUT, the performance of all three approaches decreased,
but ict still performed better than the other two approaches.

5.7.3 Number of Options

The results for the sensitivity of the number of options are
shown in Figs. 11, 12, and 13, which depicts the quality of
MFS identification, the number of generated test cases, and
the results of masking effects, respectively.

With regard to the quality of MFS identification, it is clear
that ict performed the best, then followed by sct, and the last
was fda-cit. In fact, for all the subjects, ict scored 1.0 of f-mea-
sure, which indicates that ict accurately identified all theMFS.
On the other hand, sct scored around 0.5 to 0.9, and fda-cit
only scored around 0.1. This result is consistent with the
previous study, indicating that ict can accurately identify
the MFS, even though when the number of options is large.
One reason for this result is that the number of test cases gen-
erated by sct and fda-cit that initially hadmultipleMFS ranged
from 2.5 to 6.9 on average, while the number of test cases
generated by ictwhich containedmultipleMFSwas nearly 0.

Another observation about the MFS identification is that
there was no clear correlation between the MFS quality and
the number of options. In fact, there were no clear regulari-
ties for the curves representing the f-measures of sct and

Fig. 9. F-measure (multiple MFS in one test case) for various numbers
of MFS.

Fig. 10. The decrease of F-measure (multiple MFS in one test case) for
various numbers of MFS.

Fig. 11. F-measure for various numbers of options.

Fig. 12. Test cases for various numbers of options.
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fda-citwith the increasing of the number of options. It shows
that the number of options in the SUT did not have much
influence on the quality of MFS identification.

With regard to the number of test cases, there was a clear
trend that fda-cit performed the best, of which the number of
needed test cases grew slowly. This is mainly because it did
not generate additional test cases for MFS identification.
The second best was ict, as the number of test cases increased
linearly with the number of options in the SUT. This is due to
the mechanism of the MFS identification approach applied in
the ict framework, i.e., we must always generate the same
number of test cases as the number of options in the SUT to
identify the MFS. Note that if we use the MFS identification
algorithms proposed in [17], [18], [25], the number of test cases
generatedwill be reduced. The number of test cases generated
by the MFS identification algorithm (OFOT) used in our
approach isN, whereN is the number of parameter options of
the SUT.Hence, the complexity of theMFS identification algo-
rithm (OFOT) used in our approach is (O(N)), while the com-
plexities of others are (O(logN)). In our paper, we did not use
other algorithms proposed in [17], [18], [25]. Hence, it is possi-
ble that the number of test cases generated in this paperwould
be further reduced. The last one was sct, of which the number
of test caseswas always larger than that of ict.

In regard to the masking effects, we can observe that the
number of options had no influence on the results of ict.
Specifically, ict always covered all the tested-t-way schemas
no matter what was the number of the options. For the other
two approaches, i.e., sct and fda-cit, their tested-t-way cover-
age increased with the increase in the number of options.
This is because with the increase in the number of options,
the number of all the schemas that need to be covered
increased, but the number of MFS did not change. As a
result, although these two approaches cannot identify the
MFS as accurately as ict, the proportion of the number of
MFS deceased. Hence, the tested-t-way coverage of these
two approaches increased.

Therefore, the number of options in the SUT did not have
much influence on the quality of MFS identification; and
although generating more test cases than fda-cit, ict was still
a better choice when considering the quality of MFS identifi-
cation and the reduction of masking effects.

In summary, the answer to Q6 is: Large number of MFS has a
negative impact on the quality of the MFS identification of all the
three approaches, while the number of options does not. Addition-
ally, concerning various numbers of MFS, ict obtained the best
MFS identification results and generated the smallest number of test
cases in most cases, fda-cit obtained the highest covered-t-coverage.

As for various numbers of options, ict still did the best at MFS iden-
tification, and it also obtained the highest covered-t-coverage, while
fda-cit generated the smallest number of test cases. Besides, in these
two conditions, the results obtained by sct lay in between those of
the other two approaches inmost cases.

5.8 The Ability of Handling Assumptions

The last study is designed to evaluate the performances of
the three approaches when the two assumptions proposed
in Section 2.2, i.e., deterministic failures and the existence of
safe values, do not hold.

5.8.1 Study Setup

The same as the previous study, in order to make the
characteristics of the SUT under control, we decided to use
synthetic subjects instead of real programs in this case
study. Particularly, synthetic subjects can be injected with
various types of faults, e.g., the non-deterministic failures
with various probabilities that can be triggered during test-
ing, such that it helps us to evaluate the performance of
these approaches for various extents to which these two
assumptions do not hold. As a result, we can obtain a more
general conclusion instead of those results based on some
specific programs.

Specifically, for the first assumption, we decided to inject
the MFS that is non-deterministic (the test case which con-
tains it may fail or may not after execution). Then we con-
sidered the following possible probabilities that the non-
deterministic MFS may be triggered (The probability that
the test case which contains it fails after execution): 0.01,
0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.80, 0.9, and 0.98,
respectively. The detailed information of each synthetic sub-
ject application is shown in Table 33 in Appendix B, avail-
able in the online supplemental material. We repeated the
experiment 30 times for each probability to avoid the ran-
dom effects. For each run of the experiment, we applied all
the three approaches on the subject and recorded their
results (MFS identification quality and cost).

The second study is to evaluate the performance of
approaches when the safe value assumption does not hold.
In fact, in our previous studies, the safe value assumption
was also not always hold. For example, in the first study,
we did not give any safe value to our approach ict. Instead,
we just generated additional test cases containing the sche-
mas under test. As a result, we did not always reach the
100 percent f-measure of MFS identification. For this study,
we decided to evaluate these approaches on the condition
that there is no safe value, i.e., every parameter value is
contained in at least one MFS. We used synthetic subjects
with the input model, and the information of MFS are listed
in Table 28. The same as Table 9, input model is presented
in the abbreviated form #values#number of parameters � :::,
and Column “MFS” shows the degrees of each MFS and the
number of MFS (in the parentheses) with that corresponding
degree. The detailed information of each synthetic subject
application is shown in Table 34 in Appendix B, available
in the online supplemental material. Then we applied the
three approaches on each subject and compared their per-
formance under the condition that there is non-safe value
in each subject.

Fig. 13. The tested-t-way coverage for various numbers of options.
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5.8.2 Non-Deterministic Failures

The results of evaluating how well these approaches handle
non-deterministic failures are shown in Figs. 14, 15, and 16, of
which the first figure depicts the quality of MFS identification
with various probabilities that the non-deterministic failures
are triggered, the second figure shows the number of test
cases, and the last one shows the results of themasking effects.

With regard to MFS identification, there are two observa-
tions. First, if the probability was below 0.5, all the three
approaches did not identify any MFS at all (with f-measure
of 0). We believe there are two possible reasons for the low
f-measure of all the three approaches. The first one is that if
the probability of triggering MFS was too small (below 0.2),
approaches could hardly detect the failure, and hence could
not identify the MFS. Another one is that if the probability
of triggering MFS is around 0.5, then the failure may appear
at one testing, but disappear at the next time. These two
statues exchanged frequently and resulted in a negative
influence on the MFS identification.

The second observation is that when the probability of
triggering MFS was larger than 0.5, the f-measure of all the
three approaches increased. In fact, when the probability of
triggering MFS was larger than 0.9, the f-measure of all the
three approaches was more than 0.4. We believe if the prob-
ability was relatively high, then all the three approaches
could easily detect it. Under this condition, the failure was
similar to a deterministic failure, which also had little influ-
ence on the MFS identification.

With regard to the test cases, our conclusion is similar to
the previous study, that is, fda-cit needed the smallest
amount of test cases, then followed by ict and sct.

With respect to the masking effects, we can make the
following observation. If the probability was too small (below
0.15) or too high (above 0.9), all the three approaches
performed relatively well. This is reasonable because if the

probability of triggeringMFSwas too small, approaches could
hardly detect the failure. As a result, there are more passing
test cases generated by these three approaches, and more
tested-t-way schemas can be checked. On the other hand, if
the probability was too high, all these three approaches
could easily identify theMFS accurately. Under this condition,
the results of the tested-t-way coverage obtained by these
three approaches were similar to the condition for handling
deterministic failure. The worst condition was in between
(the probability was around 0.3 to 0.8). Under such condition,
all these three approaches can neither identify the MFS accu-
rately nor generate a large number of passing test cases.

Since the non-deterministic failures have negative effects
on MFS identification, it is desirable to alleviate the effects.
In this paper, we consider the redundancy of test case exe-
cution, i.e., we repeatedly run one test case to check whether
it fails or not instead of just one time. We conducted an
additional experiment to evaluate the performance of this
strategy. Specifically, all the experimental set-ups are as the
same as the previous experiment on non-deterministic fail-
ures, except that we set the redundancy of test execution to
be 5 (run 5 times for each test case).

Fig. 17 shows the results. From this figure, we can easily
learn that for all these three approaches, therewas a significant
improvement in the quality of MFS identification. In fact, all
these three approaches start to identify at least one MFS
among 30 times even the probability of triggeringMFS was as
low as 0.2. Additionally, when the probability was larger than
0.4, the f-measure of all the three approaches was larger than
0.4. What’s more, the f-measure of all the three approaches
was close to 1 when the probability was larger than 0.5. These
results indicated that the redundancy of test case execution
is one potential approach to handle the non-deterministic
failures problem.

5.8.3 Non-Safe Values

The results of evaluating how well these approaches handle
non-safe values are shown in Figs. 18, 19, and 20.

There are several observations about these figures.
First, the non-safe values did affect the MFS identification
quality of all the approaches. In fact, the f-measures of all
the three approaches listed in Fig. 19 were lower than
those 0.7. Specifically, ict’s f-measure ranged from 0.52 to
0.67, sct’s ranged from 0.42 to 0.64, and fda-cit’s ranged
from 0.01 to about 0.08. Based on these data, we can con-
clude our second observation, that is, ict also performed
best under the condition that there are no safe values.

Fig. 14. F-measure for various probabilities of un-determining failure.

Fig. 15. Test cases for various probabilities of un-determining failure.

Fig. 16. The tested-t-way coverage for various probabilities of un-
determining failure.
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We believe this is due to our feedback checking process,
which significantly improves the quality of MFS identifi-
cation, and reduces the negative effects caused by non-
safe values. At last, with regard to the number of test
cases, fda-cit still generated the fewest, but this also led to
the low f-measure of MFS identification.

Concerning the masking effects, these three approaches
satisfied the following relationship: fda-cit obtained the
highest score at the tested-t-way coverage, followed by ict,
and sct was the last one. In fact, this condition is similar
to the condition of there is a large number of MFS in the
SUT (there are many MFS so that there are no safe values in
our experiments). As discussed in Section 5.7.2, when the
number of MFS is relatively high, fda-cit generated more
passing test cases than approaches sct and ict. Hence, fda-cit
performed the best among the three approaches. The reason
that ict performed better than sct is that ict identified more
MFS than sct. As a result, ict obtained more schemas that
satisfied the tested-t-way coverage.

Besides these observations, it is also important to figure out
how many times that the effects of non-safe values were trig-
gered. More specifically, for the approaches ict and sctwhich

need to identify the MFS for each of the failing test cases, we
need to figure out how many times when these MFS actually
caused failures during the MFS identification for one specific
failing test case. We listed the results in Figs. 21 and Fig 22,
in which Fig. 21 recorded the number of total times that the
non-safe MFS are triggered for each software subject, while
Fig. 22 recorded average number of times that the non-safe
MFS are triggered for each time ofMFS identification.

Based on these two figures (Figs. 21 and 22), we can learn
that for both of two approaches, the number of times that
non-safe MFS was triggered was not trivial. In fact, except
for the first subject, the number that non-safe MFS was trig-
gered by these two approaches was both beyond 73.6 times
for all the remaining subjects (the maximal non-safe MFS’s
triggered times of sct was up to 572.8, and for ict, this num-
ber was up to 385.8). Additionally, the number that non-
safe MFS was triggered for each time that MFS identification
proceeded was still not small. Specifically, for each time of
MFS identification, these non-safe MFS were triggered by
about 22 times at average for ict, and 7.3 times for sct.

Fig. 17. F-measure for various probabilities of un-determining failure
(test execution redundancy of 5).

Fig. 18. F-measure for various SUTs of un-safe values.

Fig. 19. Test cases for various SUTs of un-safe values.

Fig. 20. The tested-t-way coverage for various SUTs of un-safe values.

Fig. 21. The times of non-safe MFS are triggered in total for each
subject.

Fig. 22. The times of non-safe MFS are triggered for each time of MFS
identification.
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Above all, the answer to the Q7 is:
The non-deterministic failures and non-safe values do negatively

affect the results of all the three approaches. Besides, concerning the
condition of non-safe values, ict obtained the bestMFS identification
results and performed better than sct at the reduction of test cases
and masking effects, while fda-cit generated the smallest number of
test cases and obtained the highest covered-t-coverage. As for non-
deterministic failures, ict still obtained the best MFS identification
results and the second highest covered-t-coverage in most cases,
fda-cit did the best at the reduction of test cases, while sct obtained
the highest covered-t-coverage in most cases. Moreover, one poten-
tial solution for handling non-deterministic failures is the redun-
dancy of test case execution.

5.9 Comparison with Static Error Locating Arrays

Considering that all these approaches evaluated in our
previous experiments are all dynamic approaches (generat-
ing test cases), it is interesting to observe how well does the
alternative way, i.e., static error locating arrays, perform on
the CT problems.

Error locating array [14], [16] is a well-designed set of
test cases that can support not only failure detection but
also the identification of the MFS of the failure. It is known
that only with a covering array sometimes is not sufficient
to identify the MFS; thus additional test cases are needed.
Mart�ınez et al. [15] have proved that a ðtþ dÞ-way covering
array can identify all the MFS with the number of them no
more than d, and degree no more than t. After executing all
the test cases in the ðtþ dÞ-way covering array, the MFS can
be obtained by keeping those t-degree or less than t-degree
schemas that only appear in the failing test cases. So with
the number d and degree t known in prior, a ðtþ dÞ-way
covering array is an Error Locating Array (ELA).

To compare our approach with this Error Locating Array
is meaningful, as both approaches have the same target.
The relationship between our approach with the Error
Locating Array can be deemed as the dynamic versus static.
In detail, our approach dynamically detects and identifies
the MFS in the SUT, i.e., the test cases generated by our
approach are changed according to the specific MFS. On the
contrary, ELA just generates a static covering array, and it
can support MFS identification if the number and degree of
these schemas are known in prior.

5.9.1 Study Setup

In this section, we will apply ELA to identify the MFS of
the 5 subjects in Table 8. It is noted that the conclusion that

a (t + d)-way covering array is an ELA is based on that there
must exist safe values for each parameter of the SUT. A safe
value is the parameter value that is not in any part of these
MFS. In our experiment, all the five subject programs satisfy
this condition. Based on this, we then applied ELA to gener-
ate appropriate covering arrays for each subject program
and recorded the MFS identified as well as the overall test
cases generated. The covering array generation algorithm
we adopted in this experiment is also augmented simulated
annealing approach [11], [38], and similar to previous
experiments, this experiment is repeated 30 times.

5.9.2 Result and Discussion

First, we list the subject information (the number of MFS d
and maximal MFS degree t), together with the covering
arrays that ELA needs to build, in Table 29.

From this table, we can learn that for most subjects, ELA
needs to build high-way covering arrays. In fact, for tcas,
the CA that is needed to be built is 60-way, which is far
beyond the number of parameters of TCAS (12) and hence,
the corresponding covering array cannot be generated. One
exception is Jflex, for which ela needs to build a 3-way
covering array. It indicates that the 4-way covering arrays
generated for Jflex in the previous experiments are unneces-
sary. From this point of view, ELA can provide an upper-
bound on the strength of the covering arrays that need to be
generated for one software subject.

The number of overall test cases, the quality of the identi-
fied MFS, and the results of masking effects are listed in
Table 30. We can first observe that this approach needs
more test cases than the approaches discussed before. This
is as expected because this approach needs to generate a
higher-way covering array than previous approaches. Apart
from the high cost, this approach correctly identified all the
real MFS. The accuracy has been proved in [15], [16]. Note
that this perfect MFS identification result is based on the
fact that it knows the number and degree of the MFS at first,
which is usually not available in practice. With respect to
the masking effects, ELA nearly obtained the 100 percent
tested-t-way (2, 3, and 4) coverage of most subjects. They do
so at the cost of using significantly more tests. Additionally,
in the case when the MFS is of low degrees, ELA obtained a
low percentage of the tested-t-way coverage when t is rela-
tively high (See Tested-3-way and Tested-4-way of Jflex in
Table 30).

In summary, the answer to the Q8 is:
ELA gets the best quality of the MFS identification and

reduction of masking effects, but it needs much more cases than
all the other dynamic approaches. It also needs to know the num-
ber and degree of the MFS in prior, which limits its application
in practice.

TABLE 28
Inputs Model for Experiments of Non-Safe Value

Subjects Inputs MFS

Syn1 48 2(6) 6(4)
Syn2 410 2(10) 6(4)
Syn3 412 2(6) 3(4) 7(4)
Syn4 416 2(2) 3(4) 5(4) 8(4)
Syn5 420 2(10) 7(4) 9(4)
Syn6 425 2(10) 9(4) 12(4)
Syn7 430 2(6) 3(4) 10(4) 15(4)
Syn8 435 2(6) 6(4) 10(4) 17(4)
Syn9 440 2(6) 8(4) 13(4) 17(4)
Syn10 450 2(6) 13(4) 15(4) 20(4)

TABLE 29
The Covering Arrays that ELA Needs to Build for Each Subject

Subject t d t+d ELA

Tomcat 2 3 5 CA(N;5,10,(28 � 31 � 41))
Hsqldb 3 3 6 CA(N;6,12,(29 � 32 � 41))
Gcc 3 4 7 CA(N;7,10,(29 � 61))
Jflex 2 1 3 CA(N;3,13,(210 � 32 � 41))
Tcas 12 48 60 -
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5.10 Threats to Validity

There are two threats to validity in our empirical studies.
First, our experiments are based on 5 open-source software.
However, these software programs only represented some
specific inputs space and specific degree or location of the
MFS. To make the conclusion more general, we need to
observe how these approaches performed on other inputs
models with different characteristics. For this, we created
a batch of synthetic input models. More specifically, for
the synthetic models used in Section 5.7, we consider how
approaches performed under different numbers of parame-
ters (8 to 100) instead of some specific number of parameters
obtained from previous experiments. Additionally, we also
consider the different numbers ofMFS (1 to 90) that contained
in these synthetic models instead of only 1 or 2. In Section 5.8,
thesemodels are created by considering the various probabil-
ities of triggering MFS (1 to 98 percent) instead of 100 percent
or only some specific probabilities. We also considered the
number of times (1 to 47) that unsafe values are introduced
each time the MFS identification proceeded in the experi-
ments. Another point that is related to the subject application
is that the number of test cases needed by the proposed
approach would grow linearly with the number of configura-
tion options of the subject application under testing.

Second, there are many generation algorithms and MFS
identification algorithms. In our empirical studies, we just
used AETG [8] as the test case generation strategy and
OFOT [6] as the MFS identification strategy. As different
generation and identification algorithms may affect the per-
formance of our proposed CT framework, especially on the
number of test cases, some studies using different test case
generation and MFS identification approaches are desired.

6 RELATED WORKS

Combinatorial testing has been widely applied in practice
[42], especially on domains like configuration testing [43],
[44], [45] and software inputs testing [8], [46], [47]. A recent
survey [7] comprehensively studied existing works in CT
and classified them into eight categories according to the
testing procedure. Based on this study, we learn that test
case generation and MFS identification are two most impor-
tant parts in CT studies.

Many works have been proposed for covering array gen-
eration, which can be mainly classified into the following
four categories [7]: 1) greedy methods [8], [9], [13], [48],
which are very fast and effective, but may consume too
many test cases. 2) mathematical methods[49], [50], [51],
[52], which can also be extremely fast and can produce opti-
mal test sets in some special cases, but they impose many
restrictions. 3) Heuristic search techniques [11], [53], [54],

[55], [56], [57], which can generate very small size of test
cases, but may cost much computation time and 4) random
methods [58], [59], which are extremely fast but generate
more test cases than greedy approaches.

The MFS identification problem also attracts many inter-
ests in CT. These approaches for identifying MFS can be
partitioned into two categories [14] according to how the
additional test cases are generated: adaptive–additional test
cases are chosen based on the outcomes of the executed tests
[6], [17], [18], [19], [23], [25], [34], [60] or nonadaptive–addi-
tional test cases are chosen independently and can be exe-
cuted in parallel [14], [15], [16], [39], [43].

Although CT has been proven to be effective at detecting
and identifying the interaction failures in SUT, however, to
directly apply them in practice can be inefficient and some-
times even does not work at all. Some problems, e.g., con-
straints of parameters values in SUT [28], [29], masking
effects of multiple failures[4], [5], dynamic requirements for
the strength of covering array [45], will cause difficulty to
the CT process. To overcome these problems, some works
try to make CT more adaptive and flexible.

JieLi [25] augmented the MFS identifying algorithm by
selecting one previous passing test case for comparison,
such that it can reduce some extra test cases when com-
pared to another efficient MFS identifying algorithm [18].

Fouch�e et al. [45] introduced the notion of incremental
covering array. Different from traditional covering array, it
does not need a fixed strength to guide the generation;
instead, it can dynamically generate high-way covering
array based on existing low-way covering array, which can
support a flexible tradeoff between the covering array
strength and testing resources. Cohen [28], [29] studied the
impacts of constraints on CT and proposed an SAT-based
approach that can handle those constraints. Bryce and
Colbourn [61] proposed a one-test-case-one-time greedy
technique to not only generate test cases to cover all the
t-degree interactions, but also prioritize them according
to their importance. Dumlu et al., [4] developed a feedback-
driven combinatorial testing approach that can assist tradi-
tional approaches in avoiding the masking effects between
multiple failures. Yilmaz [5] extended that work by refining
the MFS diagnosing method. Specifically, this feedback-
driven approach first generates a t-way covering array, and
after executing them, the MFS will be identified by utilizing
a classification tree method. It then forbids these MFS and
generates additional test cases to cover the interactions that
are masked by the MFS. This process continues until all the
interactions are covered. Additionally, Nie [62] constructed
an adaptive combinatorial testing framework, which can
dynamically adjust the inputs model, strength t of the cov-
ering array, and the generation strategy during CT process.

TABLE 30
Results from Error Locating Array

Subject Size Precision Recall F-measure Tested-2-way Tested-3-way Tested-4-way

Tomcat 210.8 1 1 1 236.0 (1.0) 1424.0 (1.0) 5450.75 (0.97)
Hsqldb 588.8 1 1 1 357.0 (1.0) 2742.0 (1.0) 14136.0 (1.0)
Gcc 783.4 1 1 1 252.0 (1.0) 1536.0 (1.0) 6048.0 (1.0)
Jflex 41.8 1 1 1 473 (1.0) 4096.75 (0.95) 19224.5 (0.72)
Tcas - - - - - - -
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Our work differs from the above studies mainly in that
we proposed a highly interactive framework for test case
generation and MFS identification. Specifically, we do not
generate a complete t-way covering array at first; instead,
when a failure is triggered by a test case, we immediately
terminate test case generation and turn to MFS identifica-
tion. After the MFS is identified, the coverage will be
updated, and the test case generation process continues.

Besides the works on fault localization in combinatorial
testing, some code-based fault localization studies also show
some similarities with our work. Existing code-based fault
localization can be mainly classified into two categories [63]:
First, statistical approaches [64], [65], [66]. These approaches
utilize the coverage of statements or other program entities in
the execution traces of failed and passed tests to compute sus-
piciousness of each statement or other program entities. Then
they will rank these program entities according to their likeli-
hood of containing the defect, i.e., the computed suspicious-
ness scores. These approaches are effective but may need
sufficient test cases execution results. Second, experimental
approaches [67], [68], [69]. By altering some inputs, code, or
some other entities, these approaches can generate additional
test cases. By comparing these test cases, as well as the testing
outcomes, the failure-inducing parts of the test cases will be
isolated. In fact, two MFS identification approaches are
directly inspired by the delta debugging ideas [18], [25]. Addi-
tionally, a study [70] initially combines the MFS identification
approach with code-based localization techniques to obtain a
better fault isolation result.

From these works, the idea in BugEx [63] is quite similar
to our approach, although they are applied to different con-
texts. Specifically, the main task of BugEx is to automatically
run tests and experiments to systematically narrow down
the failure causes. Unlike traditional fault localization
approaches, this work also generates additional test cases.
BugEx uses feedback from test outcomes to guide test gener-
ation and also leverages test case generation for debugging
purposes. We believe that this work can guide our work to
further understand theMFS and failure-causing code.

Another work which shares similar ideas comes from the
Software Product Lines (SPL) testing filed [26], [71], [72],
[73]. Many techniques in CT have been applied on SPL test-
ing [73], among which Henard et al. [26] considered both
test case generation and prioritizing (by selecting dissimilar
tests). Also, our framework can be deemed as a solution to
the test case generation and prioritization problem, which
aims at fault localization as well as fault detection. As a
result, it is appealing to apply our framework to the SPL
testing problem. On the other hand, the idea of selecting dis-
similar tests may be one potential solution to avoid multiple
MFS appearing in one test case, which may improve the
effectiveness of our framework.

7 CONCLUSION AND FUTURE WORKS

Combinatorial testing is an effective testing technique for
detecting and diagnosis of the failure-inducing interactions
in the SUT. Traditional CT separately studies test case gen-
eration and MFS identification. In this paper, we proposed a
new CT framework, i.e., interleaving CT, which integrates
these two important stages, which allows for both genera-
tion and identification better share each other’s information.

As a result, the interleaving CT approach can provide more
efficient testing than augmented sequential CT.

Empirical studies were conducted on five open-source
software subjects and several other synthetic software. The
results showed that when compared to the other approaches,
ict obtained better MFS identification results in most cases
(both empirical studies on real software and empirical studies
on synthetic software). ict also decreased the number of gener-
ated test cases when compared with sct, and it obtained a
good result at the reduction ofmasking effects between differ-
entMFS evenwhen compared to fda-cit. As for fda-cit, it gener-
ated the smallest number of test cases inmost cases, especially
when the number of options is large. It also obtained a good
result when handling masking effects. The results obtained
by sct of these experiments lay in between those of the other
two approaches in most cases. Additionally, we learned that
there are several factors that may have negative effects on
these approaches, which are the large number of MFS, the
non-deterministic failures (especially when the possibility of
the appearance of failures ranged from 0.3 to 0.8), and the
non-safe values, respectively. The feedback checking mecha-
nism and redundancy of test case execution may help to alle-
viate these negative effects to some extent.

As a future work, we plan to extend our interleaving CT
approach with more test case generation and MFS identifi-
cation algorithms, to see the extent on which our new CT
framework can enhance those different CT-based algo-
rithms. Another interesting work is to combine the inter-
leaving CT approach with the masking effects technique
fda-cit [5]. By this, we believe the impacts of masking effects
can be further reduced, and it can support a better quality
of MFS identification.
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