“© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 1

Value-Flow-Based Demand-Driven Pointer
Analysis for C and C++

Yulei Sui and Jingling Xue

Abstract—We present SUPA, a value-flow-based demand-driven flow- and context-sensitive pointer analysis with strong updates for C and
C++ programs. SUPA enables computing points-to information via value-flow refinement, in environments with small time and memory budgets.
We formulate SUPA by solving a graph-reachability problem on an inter-procedural value-flow graph representing a program’s def-use chains,
which are pre-computed efficiently but over-approximately. To answer a client query (a request for a variable’s points-to set), SUPA reasons
about the flow of values along the pre-computed def-use chains sparsely (rather than across all program points), by performing only the work
necessary for the query (rather than analyzing the whole program). In particular, strong updates are performed to filter out spurious def-use
chains through value-flow refinement as long as the total budget is not exhausted.

We have implemented SuPA on top of LLVM (4.0.0) together with a comprehensive micro-benchmark suite after a years-long effort (consisting
of around 400 test cases, including hand-written ones and the ones extracted from real programs). We have evaluated SUPA by choosing
uninitialized pointer detection and C++ virtual table resolution as two major clients, using 24 real-world programs including 18 open-source C
programs and 6 large CPU2000/2006 C++ benchmarks. For uninitialized pointer client, SUPA achieves improved precision as the analysis
budget increases, with its flow-sensitive (context-insensitive) analysis reaching 97.4% of that achieved by whole-program Sparse
Flow-Sensitive analysis (SFS) by consuming about 0.18 seconds and 65KB of memory per query, on average (with a budget of at most 10000
value-flow edges per query). With context-sensitivity also considered, SUPA becomes more precise for some programs but also incurs more
analysis times. To further demonstrate the effectiveness of SUPA, we have also evaluated SUPA in resolving C++ virtual tables by querying the
function pointers at every virtual callsite. Compared to analysis without strong updates for heap objects, SUPA’s demand-driven
context-sensitive strong update analysis reduces 7.35% spurious virtual table targets with only 0.4 secs per query, on average.

Index Terms—strong updates, value flow, pointer analysis, flow sensitivity

+

1 INTRODUCTION method, flow-sensitive analysis can identify more singletons
to perform strong updates on field and heap objects to
further boots its precision.

This paper introduces SUPA, a query-based demand-
driven pointer analysis for C and C++ by investigating how
to perform strong updates effectively in a field-, flow- and
context-sensitive analysis framework. By applying strong
updates where needed based on clients’ needs, SUPA can
improve precision for pointer analysis without strong up-
dates in both C and C++ programs.

Background and Challenges. ldeally, strong updates at
stores should be performed to analyze all paths indepen-
dently by solving a meet-over-all-paths (MOP) problem. How-
ever, even with branch conditions being ignored, this prob-
lem is intractable due to potentially unbounded number of
paths that must be analyzed [26, 35].

Instead, traditional flow-sensitive pointer analysis (FS)
for C [22, 24] computes the maximal-fixed-point solution
(MFP) as an over-approximation of MOP by solving an
iterative data-flow problem. Thus, the data-flow facts that
reach a confluence point along different paths are merged.
Improving on this, sparse flow-sensitive pointer analysis
(SFS) [20, 30, 33, 61, 62] boosts the performance of FS in
analyzing large C programs while maintaining the same
strong updates done by FS. The basic idea is to first conduct
a pre-analysis on the program to over-approximate its def-
use chains and then perform FS by propagating the data-
flow facts, i.e., points-to information sparsely along only the

As one of the most fundamental static program analyses,
pointer analysis serves as an important enabling technology
for many clients, such as change impact analysis [1], bug de-
tection [51, 59, 60], security analysis [4, 5], enforcing control-
flow integrity [7, 15], compiler optimization [47, 50, 52],
symbolic execution [8, 54] and type state analysis [17, 58].

The goal of pointer analysis is to compute an approxima-
tion of the set of abstract objects that a pointer can refer to.
Flow-sensitivity is one of the key dimensions of precision
in pointer analysis, especially for analyzing C and C++
programs. A pointer analysis is flow-sensitive if it respects
control flow while a flow-insensitive one ignores the program
execution order.

An important factor in flow-sensitive pointer analysis is
strong updates, where stores overwrite, i.e., kill the previous
contents of their abstract destination objects with new val-
ues [19, 29]. In the case of weak updates, these objects are
assumed conservatively to also retain their old contents.
A flow-sensitive analysis can strongly update an abstract
object written at a store if and only if that object has exactly
one concrete memory address, known as a singleton.

When augmented with (1) field-sensitivity which dis-
tinguishes fields of an aggregate object and (2) context-
sensitivity which distinguishes different calling contexts of a

o Yulei Sui is with Centre for Artificial Intelligence (CAI) at University of
Technology Sydney (UTS) and Jingling Xue is with University of New

South Wales (UNSW). pre—computgd do.ef-use chains (aka value-flows) instead of all
E-mail: yulei.sui@uts.edu.au, jingling@cse.unsw.edu.au program points in the program’s control-flow graph (CFG).
o This work is supported by Australin Research Council grants, Recently, an approach [29] for performing strong updates

DE170101081, DP170103956 and DP180104063. in C programs is introduced. It sacrifices the precision of FS

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

Pre-analysis
C/C++ Sparse Value-
Program NELom Flow Graph
.
User Analysis
Dimensions
Query [On-demand) Field
Analysi Reachability How
nalysis Solver Context
Budget

Fig. 1: SurA

to gain efficiency by applying strong updates at stores where
flow-sensitive singleton points-to sets are available but falls
back to the flow-insensitive points-to information otherwise.

By nature, the challenge of pointer analysis is to make
judicious tradeoffs between efficiency and precision. Almost
all of the prior pointer analyses for C that consider some de-
gree of flow-sensitivity are whole-program analyses. Precise
ones are unscalable since they must typically consider both
flow- and context-sensitivity (FSCS) in order to maximize
the number of strong updates performed. In contrast, faster
ones like [29] are less precise, due to both missing strong
updates and propagating the points-to information flow-
insensitively across the weakly-updated locations.

Insights. In practice, a client application of a pointer
analysis may require only parts of the program to be ana-
lyzed, e.g., indirect call resolution for enforcing control-flow
integrity [15]. In addition, some points-to queries may de-
mand precise answers while others can be answered as pre-
cisely as possible with small time and memory budgets [18].
In all these cases, performing strong updates blindly across
the entire program is cost-ineffective in achieving precision.

How do we develop precise and efficient pointer analy-
ses that are focused and partial, paying closer attention to
the parts of the programs relevant to on-demand queries?
Most of the existing demand-driven analyses for C [21, 63,
66] and Java [31, 39, 41, 43, 57] are flow-insensitive and thus
cannot perform strong updates to produce the precision
needed by some clients. Elsewhere, advances in whole-
program flow-sensitive analysis for C have exploited some
form of sparsity to improve performance [20, 30, 33, 61, 62].
However, how to replicate this success for demand-driven
flow-sensitive analysis is unclear.

Moreover, flow-sensitive analysis for C++, the OO incar-
nation of C, is less studied due to its complicated language
features (i.e., imperative + low-level object-orientation).
Compared to C, heap allocations are more frequently used
in C++ with more indirect calls in the form of polymorphic
virtual invocations. The extensive usage of C++ templates
and STL containers cause compilers to generate a huge
amount of low-level code (e.g.,, LLVM IR), which signif-
icantly complicates whole-program analysis. This makes
demand-driven analysis more compelling if it can analyze
the necessary program parts driven by client queries under
tight analysis budgets.

Finally, it remains open as to whether sparse strong
update analysis can be performed both flow- and context-
sensitively on-demand for both C and C++ programs.

Our Solution. As illustrated in Figure 1, this paper intro-
duces SUPA, a new demand-driven pointer analysis with
strong updates for C/C++, designed to support flexible
yet effective tradeoffs between efficiency and precision in
answering client queries, in environments with user-defined
time and memory budgets. The novelty behind SUPA lies

2

in performing Strong UPdate Analysis precisely by re-
fining imprecisely pre-computed value-flows away under
user-defined budges (i.e., value-flows traversed). Given a
points-to query, strong updates are performed by solving
a graph-reachability problem on an inter-procedural value-
flow graph that captures the def-use chains of the pro-
gram obtained conservatively by a pre-analysis. Such over-
approximated value-flows can be obtained by applying An-
dersen’s analysis [3] (flow- and context-insensitively). SUPA
conducts its reachability analysis on-demand sparsely along
only the pre-computed value-flows rather than control-
flows. In addition, SUPA filters out imprecise value-flows
by performing strong updates field-, flow- and context-
sensitively where needed with no loss of precision as long
as the total analysis budget is sufficient. The precision
of SUPA depends on the degree of value-flow refinement
performed under a budget. The more spurious value-flows
SUPA removes, the more precise the points-to facts are. This
paper makes the following key contributions:

o We present SUPA, a demand-driven field-, flow- and
context-sensitive pointer analysis that enables com-
puting precise points-to information by refining away
imprecisely precomputed value-flows. SUPA supports
on-demand strong updates of field and heap objects
for analyzing both C and C++ programs by facilitat-
ing efficiency and precision tradeoffs with user-defined
analysis budgets.

We have also released a comprehensive micro bench-
mark suite PTABEN for pointer analysis for C/C++
after a years-long effort. It consists of around 400 well-
designed small tests, including hand-written ones and
the ones extracted from real programs to cover as many
analysis aspects as possible. PTABEN provides flexible
and extendable interfaces for users to add their own
tests for validating the correctness of different pointer
analysis implementations.

We evaluate SUPA with uninitialized pointer detection
as a practical client by using a total of 18 open-source
C programs. As the analysis budget increases, SUPA
achieves improved precision, with its single-stage flow-
sensitive analysis reaching 97.4% of that achieved by
whole-program flow-sensitive analysis, by consuming
about 0.18 seconds and 65KB of memory per query,
on average (with a per-query budget of at most 10000
value-flow edges traversed). With context-sensitivity
also being considered, more strong updates are ob-
served at the expense of more analysis times.

We also evaluate the effectiveness of SUPA in analyzing
C++ programs with virtual table resolution as another
major client by using 6 large SPEC2000/2006 C++ pro-
grams. Compared to pointer analysis without strong
updates, SUPA’s context-sensitive strong updates sig-
nificantly reduces 7.35% spurious virtual table targets
with only 0.4 secs per query, on average.

2 PROGRAM REPRESENTATION

We describe how to represent a C/C++ program by a sparse
value-flow graph to enable demand-driven pointer analysis
via value-flow refinement. Section 2.1 introduces the part of
LLVM-IR relevant to pointer analysis. Section 2.2 describes

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

TABLE 1: Domains and LLVM instructions used by our pointer analysis.

Analysis Domains LLVM-like Instruction Set
0 eL instruction labels ADDROF p =&o
ent, fld €C constants Cory p =q
s, idx €S stack virtual registers PHI p =o(gr)
g eg global variables FIELD p =&q—fld
f eFcg program functions LoaD P =*q
. STORE *p = q
p,q,m,x,y€ P =8 UG top-level variables CALL p =q(r, ...,)
0,a,b,c,d € O address-taken variables FUNENTRY f(r1,...,70)
v €V =P uO program variables FUNEXIT rety p
how to put top-level and address-taken variables in SSA p=&a; p=48a; Points-to relations for p and g
form to construct a sparse value-flow graph that represents q=4c 9 :_iz_ observed at runtime
the def-use chains of a program. a=&b; ;; &d- p pq
c=4&d; =X \i l l
21 LLVM-IR 9=y u Q =
We perform pointer analysis in the LLVM-IR of a program, . f;z g [gz Z X N
as in [6, 20, 29, 30, 46, 61]. The domains and the LLVM L gt SWap ., _ to: & &
instructions relevant to pointer analysis are given in Table 1. ‘q=11;
(a) C code (b) Partial SSA (c) Before swap (d) After swap

The set of all variables V are separated into two subsets,
O that contains all possible abstract objects, i.e., address-
taken variables of a pointer and P that contains all top-level
variables.

In LLVM-IR, top-level variables in P = S u G, includ-
ing stack virtual registers (symbols starting with "%”) and
global variables (symbols starting with "@”) are explicit, i.e.,
directly accessed. Address-taken variables in O are implicit,
i.e., accessed indirectly at LLVM'’s load or store instructions
via top-level variables.

Only a subset of the complete LLVM instruction set that
is relevant to pointer analysis are modeled. As in Table 1,
every function f of a program contains nine types of instruc-
tions (statements), including seven types of instructions
used in the function body of f, and one FUNENTRY instruc-
tion f(r1,...,r,) with the declarations of the parameters
of f, and one FUNEXIT instruction ret; p as the unique
return of f. Note that the LLVM pass UnifyFunctionExitNodes
is executed before pointer analysis in order to ensure that
every function has only one FUNEXIT instruction.

Let us go through the seven types of instructions used
inside a function. For an ADDROF instruction p=_&o0, known
as an allocation site, o is one of the following objects: (1) a
stack object, o¢, where ¢ is its allocation site (via an LLVM
alloca instruction), (2) a global object, i.e., a global object oy,
where £ is its allocation site or a program function oy, where
f is its name, and (3) a dynamically created heap object o,
where / is its heap allocation site (e.g., via a malloc() call). For
flow-sensitive pointer analysis, the initializations for global
objects take place at the entry of main().

Our handling of field-sensitivity is ANSI-compliant [23].
To model the field accesses of a struct object, FIELD repre-
sents a getelementptr instruction with its field offset fid as
a constant value. SUPA uses a field-index-based approach to
field-sensitivity similar to [6, 20, 34]. The fields of a struct
object are distinguished by their unique indices.

Unlike [34] which treats the first field as the whole
struct object. Our modeling brings additional precision by
distinguishing the first field (index 0) from the whole struct
object. For every struct allocation p = &o, we create a field-
insensitive object o to represent the entire struct object.

Fig. 2: A swap example and its partial SSA form.

A field object denoted by of;q is derived from o when
analyzing FIELD ¢=&p— fld, where fld can also be the first
field. Thus, different fields (including index 0) are modeled
using distinct (sub) objects. Two pointer dereferences are
aliased if one refers to o and another one refers to one of its
fields e.g., 04 since it is the sub component of 0. However,
dereferences refer to different fields (e.g., 01140 and o0y;41) of
o are distinguished and not aliased.

For a pointer arithmetic. e.g.,, ¢ = p + 4, if p points
to a struct object, we conservatively assume that g can
point any field of this struct object (i.e., the field-insensitive
object). This is based on the assumption that 7 is not across
the boundary of the object. A pointer arithmetic used for
accessing an aggregate object out of the boundary may
cause unsoundness in our analysis. Similar to previous
pointer analysis for C, our handling of pointer to integer
casting is also unsound. Arrays are treated monolithically,
i.e., accessing any element of an array is treated as accessing
the entire array object.

CoPY denotes either a casting instruction or a value as-
signment from a PHI instruction in LLVM. PHI is a standard
SSA instruction introduced at a confluence point in the CFG
to select the value of a variable from different control-flow
branches. An LLVM PHI, e.g., p = PHI(q,r) is translated
into two COPY instructions p=¢q and p=r.

LOAD (STORE) is a memory accessing instruction that
reads (write) a value from (into) an address-taken object.

CALL,p = ¢(r1,...,7,), denotes a call instruction, where
g can be either a global variable (for a direct call) or a stack
virtual register (for an indirect call).

LLVM-IR is known as a partial SSA form since only
top-level variables are explicit put in SSA form by using a
standard SSA construction algorithm [12] (with PHI instruc-
tions inserted at confluence points). However, address-taken
variables are accessed indirectly at loads and stores via top-
level variables and thus not in SSA form.

Figure 2 illustrates LLVM’s partial SSA form by using

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

a simple swap example. Figure 2(a) gives a swap program
in C and Figure 2(b) shows its corresponding partial SSA
form. Figures 2(c) and (d) depict some (runtime) points-
to relations before and after the swap operation. In this
example, we have p, ¢, z,y,t1,t2 € Pand a, b, c,d € O. Note
that x,y,t1 and ¢2 are new temporary registers introduced
in order to put the program given in Figure 2(a) into the
partial SSA form given in Figure 2(b). In particular, *p = ¢
is decomposed into t2 = xq and *p = {2, where {2 is a
top-level pointer.

2.2 Sparse Value-Flow Graph

Given a program in partial SSA form, a sparse value-flow
graph (SVFG) G = (N, E) is a multi-edged directed graph
that captures its def-use chains conservatively. N is the set of
nodes representing all statements and E is the set of edges
representing all potential def-use chains. In particular, an
edge ¢, 25 05, where v € V, from statement ¢; to statement
¢y signifies a potential def-use chain for v with its def at
¢, and use at ¢y. This representation is sparse since the
intermediate program points between ¢; and ¢, are omitted.

As top-level variables are in SSA form, their uses have
unique definitions (with ¢ functions inserted at confluence
points as is standard). A def-use chain ¢; LN {5, where t € P,
represents a direct value-flow of t. Such def-use chains can be
found easily without requiring pointer analysis.

As address-taken variables are not (yet) in SSA form,
their indirect uses at loads may be defined indirectly at mul-
tiple stores. We build their def-use chains in several steps
by following [20, 48], with an illustrating example given in
Section 3. First, the points-to information in the program
is computed by a pre-analysis. Second, a load p = *q is
annotated with a function p(a) for each variable a € O that
may be pointed to by g to represent a potential use of a at the
load. Similarly, a store *p = ¢ is annotated with a function
a = x(a) for each variable a € O that may be pointed to by
D to represent a potential def and use of a at the store. If a
can be strongly updated, then a receives whatever g points
to and the old contents in a are killed. Otherwise, ¢ must
also incorporate its old contents, resulting in a weak update
to a. Third, we convert all the address-taken variables into
SSA form, with each pu(a) treated as a use of a and each
a = x(a) as both a def and use of a. Finally, we obtain the
indirect def-use chains for an address-taken variable a € O
as follows. For a use of a identified as a,, (with its version
identified by n) at a load or store ¢, its unique definition in
SSA form is a,, at a store ¢'. Then, an indirect def-use chain
¢ % (is added to represent potentially the indirect value-
flow of a from ¢’ to £. Note that the ¢ functions introduced for
address-taken variables will now be ignored as the value a
that appears in # = / is not versioned. The interprocedural
value-flows across procedures are computed based the mod-
ref analysis on top of the memory SSA form, as described
in Section 4.1. The code for SVFG construction is publicly
available at https://github.com/SVF-tools/SVF.

Our demand-driven pointer analysis, SUPA, operates on
the SVFG of a program. It computes points-to queries on-
demand by performing strong updates, whenever possible,
to refine away imprecise value-flows in the SVFG.

3 A MOTIVATING EXAMPLE

Our example program, shown in Figure 3(a), is simple
(even with 16 lines). The program consists of a straight-
line sequence of code, with ¢; — /¢ taken directly from
Figure 2(b) and the six new statements ¢;; — {15 added in
order to highlight some key properties of SUPA. We assume
that v at /17 is uninitialized but 7 at £15 is initialized. The
SVEG embedded in Figure 3(a) will be referred to shortly
below. We describe how SUPA can be used to prove that z at
{16 points only to the initialized object i, by computing flow-
sensitively on-demand the points-to query pt({{1¢, 2)), i.e.,
the points-to set of z at the program point after £;5, which
is defined in (1) in Section 4.

Figure 3(b) depicts the points-to relations for the six
address-taken variables and some top-level ones found at
the end of the code sequence by a whole-program flow-
sensitive analysis (with strong updates) like SFS [20]. Due
to flow-sensitivity, multiple solutions for a pointer are main-
tained. In this example, these are the true relations observed
at the end of program execution. Note that SFS gives rise
to Figure 2(c) by analyzing ¢; — (g, Figure 2(d) by analyzing
also /7 — £10, and finally, Figure 3(b) by analyzing ¢1; — {6
further. As z points to ¢ but not v, no warning is issued for
z, implying that z is regarded as being properly initialized.

Figure 3(c) shows how the points-to relations in Fig-
ure 3(b) are over-approximated flow-insensitively by apply-
ing Andersen’s analysis [3]. In this case, a single solution
is computed conservatively for the entire program. Due
to the lack of strong updates in analyzing the two stores
performed by swap, the points-to relations in Figures 2(c)
and 2(d) are merged, causing *a and *c to become spurious
aliases. Thus, a points to b and ¢ points to d are spurious.
When /11 — {15 are analyzed, the remaining five out of seven
spurious points-to relations (shown in dashed arrows in
Figure 3(c)) are introduced. Since z points to 7 (correctly) and
u (spuriously), a false alarm for z will be issued. Failing to
consider flow-sensitivity, Andersen’s analysis is not precise
for this uninitialization pointer detection client.

Let us now explain how SUPA works to tackle the im-
precision. SUPA first performs a pre-analysis to the example
program to build the SVFG given in Figure 3(a), as discussed
in Section 2. For its top-level variables, their direct value-
flows, i.e., def-use chains are explicit and thus omitted to
avoid cluttering. For example, ¢ has three def-use chains
s L tg, 05 Lty and o L ¢4g. For its address-taken
variables, there are nine indirect value-flows, i.e., def-use
chains depicted in Figure 3(a). Let us see how the two def-
use chains for b are created. As t3 points to b, {14, {15 and
l16 will be annotated with b = x(b), b = x(b) and u(b),
respectively. By putting b in SSA form, these three functions
become b2 = x(bl), b3 = x(b2) and w(b3). Hence, we have

014 iélg, and /15 L&G, indicating b at £;¢ has two potential
definitions, with the one at /15 overwriting the one at /;4.
The def-use chains for d and a are built similarly.

Figure 3(d) shows how SUPA computes pt({{1¢, z)) on-
demand, starting from ¢;¢, by performing a backward reach-
ability analysis on the SVFG, with the visiting order of
def-use chains marked as @ — @. Formally, this is done
as illustrated in Figure 7. The def-use chains for only the
relevant top-level variables are shown, with strong updates

https://github.com/SVF-tools/SVF

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

= Points-to - - = & Spurious Points-to —— Direct Value-flow
p g Query
=?
b pie 2) =
2] | c]
>
(e y=sd:) <
o]
i z Su forc
o ey} .
[t1= p; [\c]\: I —
R GG iy 5
NI X
swap A . [cl (b) Flow-sensitive points-to relations found SU fora Co: *p = t2;
R bo: p=12; ; to hold at the end of the program i
e "q=t1; - (with some for top-level pointers omitted) '@[a] C12: v = &i-
B A [ompoti ®
| / . _
: i T S e
[a]
v 12 v=&i; S4
=l L] ORI
Y ¢13: 13 = *p; ’ <. ;ﬁ ;%t‘? / P x Vx
y . / ' -
P - s3 7 b [d]
- €143 = w; S | d | . -
[b]])" : . T [t3] -
. z . SuU ford - g > <
Nos=v; |& 7 [~ 52 o1~ (e (8) @
te z=13; |- [d] [I] Spurious Value-Flows 51 X*m«— 1t3]
(a) A program and its SVFG (with (c) Flow-insensitive points-to relations (d) The SUPA analysis for resolving pt((¢1s ,2)) = {i} by
only indirect value-flows shown) (with some for top-level pointers omitted) traversing from (€16 ,z) backwards against the value-flows
Kind of spurious value-flows Insight for refinement Example
(1) store - [o] -X» load Two dereferences are not flow-aliases with o S1 €16 - [b]-» {15

Strong updates for o

S2 15 —-[dl-»> 14 S4 €o [l > ¢s

(2) store - [0] - X » store

Two dereferences are not flow-aliases with o 53 f15 " [PI-> ¢14

(e) Three scenarios for refining two kinds of spurious value-flows and their corresponding examples in (d)

Fig. 3: A motivating example for illustrating SUPA (SU stands for “Strong Update”).

highlighted at line (g, {9 and ¢;5. By filtering out the four
spurious value-flows S1 to S4 (marked by x), SUPA finds
that only ¢ at /12 is backward reachable from z at ¢;5. Thus,
pt({l16, 2)) = {i}. So z is proved to be initialized.

Figure 3(e) summarizes the insights of two kinds of
spurious value-flows, the three scenarios under which the
spurious value-flows should be refined and their corre-
sponding examples in Figure 3(d). (1) Store-load case. A
value-flow of object o connecting from a store to a load is
spurious if the two dereferences at the load and the store
are not flow-sensitive aliases with o. (2) Store-store case.
It has two scenarios, one is similar to the store-load case
and another one is identified due to the strong updates at
the second store (destination node) that kills its old values
defined at the first store. Note that strong updates can also
help get more precise flow-sensitive aliasing results, e.g., the
strong updates for a at line /9 cause that ¢3 points to d only,
resulting in more precise aliases for {15 and /1.

SuraA differs from prior work in the following three
major aspects:

o On-Demand Strong Updates

A whole-program flow-sensitive analysis like SFS [20]
can answer pt({{1¢, z)) precisely but must accomplish
this task by analyzing all the 16 statements, resulting in
a total of six strong updates performed at the six stores,
with some strong updates performed unnecessarily
for this query. Unfortunately, existing whole-program
FSCS or even just FS algorithms do not scale well for
large C programs [1].

In contrast, SUPA computes pt({{16,2)) precisely by
performing only three strong updates at {s, {9 and
{15. The earlier a strong update is performed by SUPA
during its reachability analysis, the fewer the number
of statements traversed. After @ — ® have been per-
formed, SuPA finds that ¢3 points to d only. With a
strong update performed at {15 : *t3 = v (@), SUPA
concludes that pt({¢16, 2)) = {i}.

Value-Flow Refinement

Demand-driven pointer analyses [39, 41, 57, 63, 66]
are flow-insensitive and thus suffer from the same
imprecision as their flow-insensitive whole-program
counterparts. In the absence of strong updates, many
spurious aliases (such as #a and #c) result, causing z to
point to both ¢ and u. As a result, a false alarm for z is
issued, as discussed earlier.

However, SUPA performs strong updates flow-
sensitively by filtering out the four spurious pre-
computed value-flows marked by x. As t3 points to d

only, ¢15 2, {16 is spurious and not traversed. In addi-
tion, a strong update is enabled at 15 : *t3 = v, render-
ing {14 LA f15 and £14 4, {15 spurious. Finally, ¢5 L0 is
refined away due to another strong update performed
at {9. Thus, SUPA has avoided many spurious aliases
(e.g., *a and #*c) introduced flow-insensitively by pre-
analysis, resulting in pt({¢16, 2)) = {i} precisely. Thus,
no warning for z is issued.

Query-based Precision Control

To balance efficiency and precision, SUPA operates in

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

a hybrid multi-stage analysis strategy. When asked to
answer the query pt({{16,2)) under a budget, say, a
maximum sequence of three steps traversed, SUPA will
stop its traversal from ¢y to 5 (at @) in Figure 3(d)
and fall back to the pre-computed results by returning
pt({l1s, 2)) = {u,i}. In this case, a false positive for z
will end up being reported.

4 VALUE-FLOwW-BASED DEMAND-DRIVEN POINTER
ANALYSIS

We first detail the construction of an interprocedural Sparse
Value-Flow Graph (SVFG), the core data structure for our
demand-driven analysis. Next, we describe the inference
rules of SUPA in a field- and flow-sensitive setting (Sec-
tion 4.2). We then discuss our context-sensitive extension
(Section 4.3).

4.1 Interprocedural Sparse Value-Flow Graph

SVEG serves as a key program representation for our
demand-driven analysis. It is built upon the interprocedural
memory SSA form, which captures def-use information
of both top-level and address-taken variables. The def-use
chains (value-flows) of address-taken variables obtained on
memory SSA are over-approximated using fast but impre-
cise Andersen’s analysis. The imprecise points-to informa-
tion and value-flows computed this way will be refined by
our demand-driven pointer analysis.

4.1.1

Starting with LLVM’s partial SSA form, we first perform a
pre-analysis by using flow- and context-insensitive Ander-
sen’s algorithm [3], implemented in SVF [44]. We then put
address-taken variables in memory SSA form, by using the
SSA construction algorithm [12].

Given a variable v, AnderPits(v) represents its points-to
set computed by Andersen’s algorithm. The following are
two steps for building memory SSA [48] with illustrative
intraprocedural and interprocedural examples in Figures 4
and 5 respectively by revisiting the example in Figure 2.

Interprocedural Memory SSA

6

these callees in order to mimic passing parameters and
returning results for address-taken variables.

Figure 5(a) gives an example modified from Figure 4(a)
by moving the four swap instructions into a function,
swap. For read side-effects, p(a) and p(c) are added
before callsite /7 to represent the potential uses of a
and c in swap. Correspondingly, swap’s FUNENTRY
instruction £ is annotated with a =x/(a) and ¢=x/(c) to
receive the values of a and ¢ passed from ¢. For mod-
ification side-effects, a=x(a) and c¢=x(c) are added
after {7 to receive the potentially modified values of a
and c returned from swap’s FUNEXIT instruction /13,
which are annotated with p(a) and p(c).

Step 2: Memory SSA Renaming All the address-taken
variables are converted into SSA form as suggested
in [11]. Every p(a) is treated as a use of a. Every
a=x(a) is treated as both a def and use of a, as a
may admit only a weak update. Then the SSA form
for address-taken variables is obtained by applying
a standard SSA construction algorithm [12]. For the
program annotated with p’s and x’s in Figure 4(a),
Figure 4(b) gives its memory SSA form. Similarly,
Figure 5(b) gives the memory SSA form for Figure 5(a).

4.1.2 Sparse Value-Flow Graph

Once both top-level and address-taken variables are in SSA
form, their def-use chains are immediately available, as
shown in Table 2(a). We discussed top-level variables earlier.
For the two address-taken variables a and c in Figure 2,
Figure 4(c) depicts their def-use chains, i.e., sparse value-
flows for the memory SSA form in Figure 4(b). Similarly,
Figure 5(c) gives their sparse value-flows for the memory
SSA form in Figure 5(b).

Given a program, a sparse value-flow graph (SVFG),
Gyvig = (N, E), is a multi-edged directed graph that cap-
tures its def-use chains for both top-level and address-taken
variables. IV is the set of nodes representing all instructions
and FE is the set of edges representing all potential def-
use chains. In particular, an edge ¢; 25 ¢y, where v € V,
from statement ¢; to statement ¢/ signifies a potential def-
use chain for v with its def at ¢; and use at ¢5. We refer
to 01 5 0y a direct value-flow if v € P and an indirect

Step 1: Computing Modification and Reference Side-Effects value-flow if v € O. This representation is sparse since the

As shown in Figure 4(a), every load, e.g., t1 = *q is
annotated with a p(a) operator for each object a
pointed by ¢, ie, a € AnderPts(q) to represent a
potential use of a at the load. Similarly, every store,
e.g., *p = x is annotated with a a=x/(a) operator for
each object a € AnderPts(p) to represent a potential
def and use of a at the store. If a can be strongly
updated, then a receives whatever = points to and the
old contents in a are killed. Otherwise, a must also
incorporate its old contents, resulting in a weak update
to a.

We compute the side-effects of a function call by apply-
ing a lightweight interprocedural mod-ref analysis [48,
§4.2.1]. For a given callsite ¢, it is annotated with
p(a) (a=x(a)) if a may be read (modified) inside the
callees of ¢ (discovered by Andersen’s pointer analysis).
In addition, appropriate x and p operators are also
added for the FUNENTRY and FUNEXIT instructions of

intermediate program points between ¢; and {5 are omitted,
thereby enabling the underlying points-to information to
be gradually refined by applying a sparse demand-driven
pointer analysis.

Table 2(b) gives the rules for connecting value-flows
between two instructions based on the defs and uses
computed in Table 2(a). For intraprocedural value-flows,
[INTRA-TOP] and [INTRA-ADDR] handle top-level and
address-taken variables, respectively. In SSA form, every
use of a variable only has a unique definition. For a use
of a identified as a; (with its i-th version) at #' annotated
with p(a;), its unique definition in SSA form is a; at an ¢
annotated with a; =x(a; ;). Then, £ = (' is generated to
represent potentially the value-flow of a from ¢ to ¢'. Thus,
the PHI functions introduced for address-taken variables
will be ignored, as the value a in ¢ 5, ¢ is not versioned.

Let us consider interprocedural value-flows. The def-
use information in Table 2(a) is only intraprocedural. Ac-

JOURNAL OF IATgX CLASS FILES, VOL. 14, NO. 8, MARCH 2018
€1: p=4&a; p=&a; p=3&a;
€2: q=4&c; q=&c; q=24&c;
€3: x=8&b; x =&b; X =&b;
€a: y=4&d; y=8&d; y=4&d;
€5: p=x; =x; 0 =x;
a=yx(a) a1 = y(ao) /’Ia1 = y(ao)
le: "q=y; q=y; @ g=y
c=x(c) c1 = x(co) Ve =x (e,
\/ [
(@) ua) G
€7: t1 = *p;: . Apr o O
t1="p; t1="p; il p Qo
u(e) u(c1) | wet) yo[d
ts: 2="q; t2 ="*q; \ 2="q
swap swap swap I
€9: *p=1t2; 0 =t2; Up =t2; /
a=x(a) az = y(at1) az=y(a1) !
€10: *g = t1; q=t1; q=t1; ¥
c=x(c) c2=y(c1) cz2=x(c1)
(a) Step 1: adding us and xs (b) Step 2: renaming (c) Sparse value-flows of aand ¢

Fig. 4: Memory SSA form and intraprocedural sparse value-flows for Figure 2, obtained with Andersen’s analysis:

AnderPts(p) = {a} and AnderPts(q) = {c}.

foo(}{ ¢8: swap(p,q){ foo(}{ swap(p,q)}{ foo()}{ __swap(p.g){
€1: p=é&a; a=x(a) p =&a; ar = x(ao) p =&a; .7 _:,81 =x(ao) N
€2: g=4&c; c=x(c) g=4&c; c1=x(co) q=24&c ;o []' c1 = x(co) o
oy [al v [|
€3: x=&b; x =&b; X =&b; [(a1) '
’ e)) u(a) ' K@ \
ta: y=&d; o, t1=7p; y=4&d; t1="p; y=éd; 1| r=vp; 1)\’\I
/7 7
€5:p=x c, P=x u(e1) Jp=x | uler) S/
a=x(a) {1o: t2#=(*)q- a1 =x(ao) 2="q; @l <" ar=x(ao) ! ['C] 2="q; ’I/ [c]
* . - . P . f — $0- q=y; I w=to: W K
e:*q=y; £11: p=t2 q=y; p =12 WS Y ,
c=x(c) a=x(a) ¢1 = x(co) a2 = y(a1) 5, cr=x(e); ; o az =x(:‘;)//
h .~ al . .
u(a) €12: *q=1t1; u(a) q=1t1; lel _ ‘y(m} 4’// . q =t1; -
u(c) c=x(c) uler) c2=y(c1) A ufer) © ez=x(e) b
€7: swap(p,q); swap(p,q); swap(p,q); 1 »
a=yx(a) u(a) az = y(a1) u(az) az=y(ar) €- @ -—=pfa) -
c=x(c) €13 () c2=x(c1) u(c2) c2 = y(c1) - [c] . u(cz)
} }
(a) Step 1: adding us and xs (b) Step 2: renaming (c) Sparse value-flows of aand ¢

Fig. 5: Memory SSA form and interprocedural sparse value-flows for an example modified from Figure 2 with its four swap

instructions moved into a separate function, called swap. {g

and {13 correspond to the FUNENTRY and FUNEXIT of swap.

TABLE 2: Def-use information and the constructed intra- and inter-procedural value-flows of both top-level and address-
taken variables. Def, (Use,) denotes the set of definition (use) instructions for a variable v € V.

(a) Def-use information

(b) Value-flow information

[Instruction £ [[Def-Use Information of variables on memory SSA | [Value-Flow Type [Def-Use Info of a memory SSA variable [Value-flows
p=&o {(} = Def,, [INTRA-TOP] leDef, (' €Use, (5
p= q() }% =Def, (€Use, [INTRA-ADDR] (eDef, (' €Use, N
p=0(g,r (}=Def, (€eUse, (€Use, Cp=q(ri,...,mm) O J0h.1h) _ e
p=&q—fld {t} =Def, (e Use, (INTER-CRLLIOP] o5 € AnderPts(q) Viel,..,n:il=¢
p=+#q w(a;) {} =Def, (€Use, [€Use, Cp=q(..) Ciretrp .
®p = q air1=x(a;)| {€Use, (eUse, (eDefy, (€Use, [INTER-RET-TOP] ay € AnderPts(q) =1
p=q(ri,...,) {0} =Def, (eUse, Viel,...,n:{€Use,, Cp=q()pl@) 0) am=x@) | ,
wla;) aj1=x(a)) LeUse,, leDef,,, [€Use, [INTER-CALL-ADDR] ay € AnderPts(q) (=1
fri,...om) aipi=x(a;)|| Yiel,...,n:{eDef, (eDef,,, (¢cUse, O =q(aj=xla) rety _ pla) || , a
ret p wla;) (eUse, (€ Use, [INTER-RET-ADDR] as € AnderPts(q) =t

cording to Table 2(b), interprocedural value-flows are con-
structed to represent parameter passing for top-level vari-
ables ([INTER-CALL-TOP] and [INTER-RET-TOP]), and
the p/x operators annotated at FUNENTRY, FUNEXIT and
CALL for address-taken variables ([INTER-CALL-ADDR]
and [INTER-RET-ADDR]).

[INTER-CALL-TOP] connects the value-flow from an
actual argument 7; at a call instruction ¢ to its corresponding
formal parameter 7} at the FUNENTRY ¢’ of every callee f
invoked at the call. Conversely, [INTER-RET-TOP] models
the value-flow from the FUNEXIT instruction of f to every
callsite where f is invoked. Just like for top-level variables,
[INTER-CALL-ADDR] and [INTER-RET-ADDR] build the
value-flows of address-taken variables across the functions

according to the annotated wp’s and x’s. Note that the
versions ¢ and j of an SSA variable a in different func-
tions may be different. For example, Figure 5(c) illustrates
the four inter-procedural value-flows ¢ Lo lg, U Sty
(13 < 07 and {13 <> {7 obtained by applying the two rules
to Figure 5(b).

The SVFG obtained this way may contain spurious def-
use chains, such as 5 = {g in Figure 4, as Andersen’s
flow- and context-insensitive pointer analysis is fast but
imprecise. However, this representation allows imprecise
points-to information to be refined by performing sparse
whole-program flow-sensitive pointer analysis as in prior
work [20, 32, 49, 61]. In this paper, we introduce a demand-
driven flow- and context-sensitive pointer analysis with

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

strong updates that can answer points-to queries efficiently
and precisely on-demand, by removing spurious def-use
chains in the SVFG iteratively.

4.2 SUPA: Flow-Sensitivity

We present a formalization of a single-stage SUPA consist-
ing of only a flow-sensitive (FS) analysis. Given a pro-
gram, SUPA will operate on its SVFG representation G,
constructed by applying Andersen’s analysis [3] as a pre-
analysis, as discussed in Section 4.1.2 and illustrated in
Section 3.

Let V=L x V be the set of labeled variables [v, where £
is the set of statement labels and V = P u O as defined
in Table 1. SUPA conducts a backward reachability anal-
ysis flow-sensitively on Gtz by computing a reachability
relation, <= € V x V. In our formalism, {¢,v) « ' v")
signifies a value-flow from a def of v’ at ¢’ to a use of v at
¢ through one or multiple value-flow paths in Gy. For an
object o created at an ADDROF statement, i.e., an allocation
site at ¢/, identified as (¢, 0), we must distinguish it from
(¢, 0y accessed elsewhere at ¢ in our inference rules. Our
abbreviation for {¢', 0) is 0.

Given a points-to query (£, v), SUPA computes pt({{, v)),
i.e., the points-to set of (¢, v) by finding all reachable target
objects 0, defined as follows:

pt({l,v)) = {o | {L,v) < 0})

Despite flow-sensitivity, our formalization in Figure 6
makes no explicit references to program points. As SUPA
operates on the def-use chains in Gy, each variable (¢, v)
mentioned in a rule appears at the point just after ¢, where
v is defined.

Let us examine our rules in detail. By [ADDR], an object
0 created at an allocation site ¢ is backward reachable from
p at £ (or precisely at the point after £). The pre-computed
direct value-flows across the top-level variables in G, are
always precise ([cOPY] and [PHI]). In partial SSA form,
[PHI] exists only for top-level variables (Section 4.1.2).

However, the indirect value-flows across the address-
taken variables in G can be imprecise; they need to
be refined on the fly to remove the spurious aliases thus
introduced. When handling a load p = *g in [LOAD], we
can traverse backwards from p at ¢ to the def of o at ¢’ only
if #q is actually refers to object o at ¢, which requires the
reachability relation (¢”, ¢) <= 0 to be computed recursively.
A store #p = ¢ is handled similarly ([STORE]): ¢ defined at
¢’ can be reached backwards by o at ¢ only if o is aliased
with #p at £.

If xgin aload - - - = *q is aliased with #p in a store *p =

- executed earlier, then p and ¢ must be both backward
reachable from 0. Otherwise, any alias relation established
between #p and *q in G, by pre-analysis must be spurious
and will thus be filtered out by value-flow refinement.

[su/wu] models strong and weak updates at a store
¢ : #p = _. Defining its kill set kill({,p) involves three
cases. In Case (1), p points to one singleton object o' in
singletons, which contains all objects in O except the local
variables in recursion, arrays (treated monolithically) or
heap objects [29]. In Section 4.3, we discuss how to apply
strong updates to heap objects context-sensitively. A strong
update is then possible to o. By killing its old contents at

8

¢, no further backward traversal along the def-use chain
¢ 2 (is needed. Thus, (/,0) < (¢’ 0) is falsified. In Case
(2), the points-to set of p is empty. Again, further traversal
to (¢, 0) must be prevented to avoid dereferencing a null
pointer as is standard [19, 20, 29]. In Case (3), a weak update
is performed to o so that its old contents at ¢’ are preserved.
Thus, (¢, 0y < {{',0) is established, which implies that the
backward traversal along ¢’ %> ¢ must continue.

[FIELD] handles field-sensitivity. For a field access (e.g.,
p = &q — fld), pointer p points to the field object 0y;q of
object o pointed to by g.

[cALL] and [RET] handle the reachability traversal
interprocedurally by computing the call graph for the pro-
gram on the fly instead of relying on the imprecisely pre-
computed call graph built by the pre-analysis as in [20].
In the SVFG, the interprocedural value-flows sinking into
a callee function f may come from a spurious indirect
callsite ¢. To avoid this, both rules ensure that the function
pointer g at ¢ actually points to f ([CALL] and [RET]).
Essentially, given a points-to query z at an indirect callsite
¢ : z = (xfp)(), instead of analyzing all the callees found
by the pre-analysis, SUPA recursively computes the points-
to set of fp to discover new callees at the callsite and then
continues refining pt({¢, z)) using the new callees.

Finally, < is transitive, stated by [cOoMPO].

4.2.1

We discuss the monotonicity of our strong update analysis
since monotonicity guarantees the termination and correct-
ness of our static analysis. Particularly, we focus on the
store statement since all other kinds of statements do not
overwritten old values of objects. The kill(l,p) set here is to
implement the strong and weak updates while maintaining
monotonicity of the analysis. For a store *p = ¢, O\kill(l, p)
depends on the points-to set of the top-level pointer p.

Monotonicity

« (1) p points to an empty set. In this case, neither strong
nor weak updates are performed.

¢ (2) p points to only o which is a singleton object (i.e.,
a unique object at runtime). In this case, o’s value is
strongly updated to ¢ and its old information is killed.

« (3) p points to o which is not a singleton object and/or
p points to other objects. In this case, o should keep its
old points-to value.

The analysis can only transit from (1) —> (2), (1)—>(3),
(2)—>(3), but never from (3)—>(1) or (3)—>(2) or (2)—>(1).
Intuitively, a transition can always start from a strong up-
date of o to its weak update, but not the opposite way.

Handling null pointer is a special case to maintain
monotonicity as also mentioned in [29]. If the points-to set
of p is empty at a store, the O\kill(l,p) should always be
empty (i.e, kll(l,p) = O), which disallows the analysis
to perform strong or weak updates at this store. This is
because either we will revisit the store instruction after p
is updated or the program crashes when executing this
statement due to dereferencing a null pointer. This special
handling guarantees the monotonicity, i.e., preventing the
analysis from looping forever (e.g., (1)—>(2)—>(1)) without
converging to a fixed point.

For example, when p points to null, if we allows a weak
update for an object (e.g., a) in a non-empty set A\kill(l, p)

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 9

l:p=4&o (:p=q 'Ly Cip=o¢(qr) 50 "Dy
[ADDR] ~ co ;
{Lpy o ORI Ty =gy R Ty =y oy =y
Cip=&qofld S0 {l,q)—0 Cip=sxq 'S0 " q)—0 02
e @) = o o Tp) = T, 05
Cisp=q " 50 W p)y—0o 'S0 Cisp=_ 050 oe O\l p)
SoRE] o) = T.a) s .0y =0
C:_=q(...,r...) ploj) Of(or) oip1=x(0;)
CaLL Ll Wqy—op L0 LS
LeREL] @y =y T oy=To
C:ip=q(...) o0j+1=x(0)) U :retypp’ (o) ,) .
n 4, "N sy g P o, lv<—1lv W <l
(RET] 1 ¢ " q)—o5 ¢ e VU= [COMPO] [

Ep) = @) Loy —= 0

{o'} if pt({,p))={0'} A O € singletons
kill(4,p) =3 O elseif pt({f,p)) =9
%) otherwise

Fig. 6: Single-stage flow-sensitive SUPA analysis with demand-driven strong updates.

lia 13— p by Do by PO by ¢
‘13 ¢ = *p £1 — £13 —————[ADDR] L9 — {13
01,p)—a by xp =12 01 Bty |01, p) —a| s B> ¢,
Gop [LOAD] 0 ! o <P s o [STORE]
<£137 t3> <« <E97 a> <£9, a> <« <£37t2>
[CcOMPO]
(l13,13) < {ls,12)
(a) Deriving pt({¢13,t3)) (corresponding to @ — @ in Figure 3(d))
ly:q=&c
lg:t2=1xq 035 lg 2 (appr] L > lg
(1,43 Ls,12) o)t
135 ks, [LOAD]
05,12« lg, ¢ loinq=1y loDls | o, q)—C| Ly 0
(lg > (s, c) (conro) 6 ¥ =Y L2 6 |{l2, 0> 4 6[STORE]
<€13,t3><—><€6,c> <€6,C> <—’<€4,y> £4l/=&d
[COMPO] —————— [ADDR]
(l13,t3) <= {Layy) Layy) <—d
~ [COMPO]
<£13,t3> —d
(b) Deriving pt({13,13)) (corresponding to ® — @ in Figure 3(d))
lrg : 2= %13 L1525 0 <€13,t3><—’!§ b5 S 0y O #t3=v L1330 (13, t3)y<=d| 12>l
[LOAD] [STORE]
(g, 2y <— 15, d) (b5, dy — b2, v) lig rv=&i1
[COMPO] —— [ADDR]
(i, 2) <= {l12,v) (g, v) <=0
[coMPO]

<f16, Z> A ,Z\

(c) Deriving pt({{16, z)) (corresponding to ® — @ in Figure 3(d))
Fig. 7: Reachability derivations for pt({¢1¢, z)) shown in Figure 3(d) (with reuse of cached points-to results inside each box).

(WU /SU] in Figure 5), this weak update may cause p points
to a, then a strong update will be performed at this store
to overwrite the previous values of a, preventing p from
pointing to a in the first place. This transition from a weak
update to a strong one is invalid and may generate infinite
derivations without reaching a fixed point.

4.2.2 Revisiting our motivating example

Let us try all our rules, by first revisiting our motivating
example where strong updates are performed (Example 1)
and then examining weak updates (Example 2).

Example 1. Figure 7 shows how we apply the rules of
SUPA to answer pt({l1¢,2)) illustrated in Figure 3(d).
[su/wu] (implicit in these derivations) is applied to (¢,
ly9 and /5 to cause a strong update at each store. At
ls, pt({ls,q)) = {c}, the old contents in ¢ are killed. At
ly, U5 <> Ly becomes spurious since ({gy,a) < ({5, a) is
falsified. /14 LA {15 is spurious and filtered out since ¢3

only points to d, causing {5 LA {16 falsified in the first
place and there is no need for backward traversal against
value-flows of object b from ¢15 to ¢15. Therefore, any

incoming value-flow of b reaching /15 (e.g., {14 5, l15)
will never be traversed and become infeasible. Finally,

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

s > by is ignored since t3 points to d only ([LOAD]).
O

SUPA improves performance by caching points-to re-
sults to reduce redundant traversal, with reuse happening
in the marked boxes inAFigure 7. For example, in Fig-
ure 7(c), pt({l13,t3)) = {d} computed in [LOAD] is reused
in [STORE].

<—— Direct value-flow <«---- Indirect value-flow
{1 p1= &a{ Andersen's
Ca: X = &b; Points-to:
{3: y = &c; (1) = 2}
Oa: r=&d,' pt(p1) ={a
) e pt(p2) = {e}
{s: . p1 =X, pt(p3) ={a,e}
e “ . ‘oi=y; | SUfora PUY={&
: ek ’ pt(x) = {b}
2 q=p1 pt(y) = {c}
te: it p2=&e; pifr) = {c)

pt(a) ={b,c,d}

t: N pa=a(pip); pi(z) = {b,c,d}
~a

tio: . -=p3=r; WUfora

€11 hl_, z="q;

Query
pt(en ,2) =?

Fig. 8: Resolving pt({¢11, z)) = {c, d} with a weak update.

Example 2. Let us consider a weak update example in
Figure 8 by computing pt({{11, z)) on-demand. At the
confluence point /g, p3 receives the points-to information
from both pl and p2 in its two branches: ({9, p3) < a
and {fy,p3) < €. Thus, a weak update is performed
to the two locations a and e at /19. Let us focus on @
only. By applying [STORE], (¢10,ay < ({4,7) < d. By
applying [su/wul, (f19,ay < {ls,ay < {l3,y) < C.
Thus, pt({¢109,a)) = {c,d}, which excludes b due to a
strong update performed at {g. As pt({l7,q)) = {a}, we
obtain pt({11, z)) = {c, d}. O

Unlike [29], which falls back to the flow-insensitive
points-to information for all weakly updated objects,
SUPA handles them as precisely as (whole-program)
flow-sensitive analysis subject to a sufficient budget. In
Figure 8, due to a weak update performed to a at
lo, pt({lro,ay) = {c,d} is obtained, forcing their ap-
proach to adopt pt({f19,a)) = {b,c,d} thereafter, caus-
ing pt({f11, 2)) = {b,c,d}. By maintaining flow-sensitivity
with a strong update applied to ¢s to kill b, SUPA obtains
pt({l11, 2)) = {c, d} precisely.

4.2.3 Handling Value-Flow Cycles

To compute soundly and precisely the points-to information
in a value-flow cycle in the SVFG, SUPA retraverses it
whenever new points-to information is found until a fix
point is reached.

Example 3. Figure 9 shows a value-flow cycle formed by
U5 5> lg and g = £5. To compute pt({ls, z)), we must
compute pt({{5,x)), which requires the aliases of #z at
the load /5 : * = =z to be found by using pt({s, 2)).
SuPA computes pt({ls, 2z)) by analyzing this value-flow
cycle in two iterations. In the first iteration, a pointed-

to target b is found since {(5,2) < (l4,y) < b. Due
to ({3,q) < b, *z and =q are found to be aliases. In

10
<—— Direct Value-flow <«---- Indirect Value-flow
{1 p = é&a;
{2 q = &b;
€31 ‘_,*q = p" Query
’ pt(€s ,2)) =?

€4Z [l?] =&b:

{s: A X =%z ~
-~ '
[2] ‘[/X]
{e: S~ Z=®(x,y);

Fig. 9: Resolving pt({{s, z)) = {a, b} in a value-flow cycle.

the second iteration, another target a is found since
g, zy «— Us,xy < {{3,b) <« {ly,py < a. Thus,
pt({lg, z)) = {a, b} is obtained. O

4.2.4 Field-Sensitivity

Field-insensitive pointer analysis does not distinguish dif-
ferent fields of a struct object, and consequently, gives up
opportunities for performing strong updates to a struct
object, as a struct object may actually represent its distinct
fields. In contrast, SUPA is truly field-sensitive, by avoiding
the two limitations altogether.

Example 4. Figure 10 illustrates the effects of field-sensitivity
on computing the points-to information for r at /q;.
Without field-sensitivity, as illustrated in Figure 10(a),
the two statements at ¢4 and {5 are analyzed as if they
were {4 : p = &x and 45 : ¢ = &x. As a result, no
strong update is possible at ¢ and {7, since x, which
represents possibly multiple fields, is not a singleton.
Thus, pt({f11,r)) = {b, c}.

SUPA is field-sensitive. Assuming that f and g are the
first and second field of the struct object a, our field-
index-based modeling (Section 2) creates a as a field-
insensitive object pointed by . Two sub objects a.f and
a.g are created for fields f and g when deriving p =
&(x—> f)and p = &(x—> g). Therefore, pointers p and
g point to two distinct objects a.f and a.g respectively.
Note that if replacing *w with v in foo, then a and its
two fields a.f and a.g are all aliased with =v.

To answer the points-to query for r at {1 : v = *w, we
first compute the points-to of w, which is defined at ¢;,
where ({19,v) <« {lg,v) «— {lg,x) <« {{1,2) < a.
By applying [FIELD] for {19 : w = &(v— > g), we
obtain ({19, w) < a.g. Thus, we get ({11,7) < {ly,a.g)
after applying [LOAD] at ¢1;. By traversing the three
indirect def-use chains for a.g, {7 b, ls, ls =% (g and
ly 2% ¢1,, backwards from ¢1;, we obtain {1,y <
{ly,a.gy — {ls,a.gy < {lz,a.9) — {l3,2) < C. O

4.2.5 Properties

Theorem 1 (Soundness). SUPA is sound in analyzing a pro-
gram as long as its pre-analysis (for computing the SVFG
of the program) is sound.

Proof Sketch: When building the SVFG for a program, the
def-use chains for its top-level variables are identified
explicitly in its partial SSA form. If the pre-analysis (for
computing the sparse value-flow graph of the program)

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

<~ - - - Indirect Value-flow
bar() { €9: foo(v) {
€1: x = &a; _-—-W ai=y(ao) < _
02: y = &b; ’/ \
€3: Z=&C; a _.... . (al
€a: p = &(x->f); : €10: W = &(v->q); :
!
¢s: q = &(x->g); I'. u(ar) -’
e: *p=y; v 11 r=*w;
.-a1 = y(a0) i }
(@] !
7 Q"q=1z !
=@ Query
: u@) -7 H e)
s foo(x); pt(e11,n)
}

(a) Field-insensitive value-flows (pt(<€11,r>) = {b,c})

- - - - Indirect Value-flow
bar() { €9: foo(v) {
€1: x = &a; L-=-w agi=x(ago)
€2: y =8b; // la.g]
£3: z = &c; ’ .
! [a.g] . w=&(v->qg); !
ta b= &(x>D; | €10: (v->g) ,.
!
{s: q = &(x->g); || u(a.g1) &~
Ce: *p=y; Lo r=rwg
afi=y@af) | }
1
€7 *q =1z h
fag &9 x(a.go) /,’ Query

- uagy) -7~
{8: foo(x);

}

(b) Field-sensitive value-flows (pt(<€11,r>) = {c})

pte11,n) =?

Fig. 10: Resolving pt({f11, 7)) = {c} with field-sensitivity.

is sound, then the def-use chains built for all the address-
taken variables are over-approximate. According to its
inference rules in Figure 4, SUPA performs essentially
a flow-sensitive analysis on-demand, by restricting the
propagation of points-to information along the precom-
puted def-use chains, and falls back to the sound points-
to information computed by the pre-analysis when run-
ning out of its given budgets. Thus, SUPA is sound if the
pre-analysis is sound. O

Theorem 2 (Precision). Given a points-to query {{,v),
pt({¢,v)) computed by SUPA is the same as that com-
puted by (whole-program) FS if SUPA can successfully
resolve the points-to query within a given budget.

Proof Sketch: Let ptg,, ({¢,v)) and pt.o({¢,v)) be the
points-to sets computed by SUPA and FS, respectively.
By Theorem 1, ptg .. ({{,v)) 2 ptpg({,v)), since SUPA
is a demand-driven version of FS and thus cannot be
more precise. To show that ptg ., (4, v)) S pteg (4, v)),
we note that SUPA operates on the SVFG of the program
to improve its efficiency, by also filtering out value-
flows imprecisely pre-computed by the pre-analysis.
For the top-level variables, their direct value-flows are
precise. So SUPA proceeds exactly the same as FS
([ADDR], [COPY], [PHI], [FIELD], [CALL], [RET] and
[coMpO]). For the address-taken variables, SUPA estab-
lishes the same indirect value-flows flow-sensitively as
FS does but in a demand-driven manner, by refining
away imprecisely pre-computed value-flows ([LOAD],
[STORE], [SU/WU], [CALL], [RET] and [COMPO]). If
SUPA can complete its query within the given budget,
then ptg ., (0, v)) S ptpg({l,v)). Thus, ptg ., (4, v)) =
ptps ({6, 0)). U

4.3 SUPA: Flow- and Context-Sensitivity

We extend our flow-sensitive formalization by considering
also context-sensitivity to enable more strong updates (espe-
cially now for heap objects). We solve a balanced-parentheses
problem by matching calls and returns to filter out unrealiz-
able inter-procedural paths [31, 38, 39, 41, 57]. A context
stack ¢ is encoded as a sequence of callsites, [k1...Kn],
where £; is a call instruction ¢. c®« denotes an operation for
pushing a callsite « into c. cOk pops « from c if ¢ contains &

as its top value or is empty since a realizable path may start
and end in different functions.

With context-sensitivity, a statement is parameterized
additionally by a context ¢, e.g., ¢, £ : p = &o, to represent
its instance when its containing function is analyzed under
c. A labeled variable v has the form {c, ¢, v), representing
variable v accessed at statement £ under context c. An object
0 that is created at an ADDROF statement under context c is
also context-sensitive, identified as (¢, 0).

Given a points-to query {c,{,v), SUPA computes its
points-to set both flow- and context-sensitively by applying
the rules given in Figure 11:

ptle.t,v)) = {(c, 0) | (e, t,v) < (c,0)})

where the reachability relation <= is now also context-
sensitive.

Passing parameters to and returning results from a callee
invoked at a callsite are handled by [c-CALL] and [C-RET].
[c-cALL] deals with the direct and indirect value-flows
backwards from the entry instruction of a callee function to
each of its callsites based on the call graph computed on the
fly similarly as in [CALL] in Figure 6, except that [C-CALL]
is context-sensitive. Likewise, [C-RET] deals with the direct
and indirect value-flows backwards from a callsite to the
return instruction of every callee function.

With context-sensitivity, SUPA will filter out more spuri-
ous value-flows generated by Andersen’s analysis, thereby
producing more precise points-to information to enable
more strong updates ([C-SU/WU]). At a store ¢, { : #p = _,
its kill set is context-sensitive. A strong update is applied if p
points to a context-sensitive singleton (¢, 0') € cxtSingletons,
where ¢’ is a (non-heap) singleton defined in Section 4.2 or
a heap object with ¢’ being a concrete context, i.e., one not
involved in recursion or loops.

Example 5. Let us use an example given in Figure 12 to
illustrate the effects of context-sensitive strong updates
on computing the points-to information for z at ¢5. This
example is adapted from a real application, milc-v6,
given in Figure 18(c). Without context-sensitivity, SUPA
will only perform a weak update at {g : =z = y, since
z points to both a and b passed into foo () from the
two callsites at /3 and /4. As a result, z at /5 is found to
point to not only what y points to, i.e., ¢ but also what

JOURNAL OF IATgX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 12
c,l:p=&o cl:p=q 057 c,l:p=o¢(qgr) €50 "5y
C— —~ _) _))
A LA R 1 R Y A =L Y A7) R Y A7) R N S YR R A LD
oty elip=&g o fld 0L (e lg) (D) ronyy LD A Ol (e gy (15) £
{ey b, py < (0. fld) {c,l,py — {0 0)
B e, l:xp=q 0" 50 (e 0" p)— (d,6) 050 B c,lisp=_ 0>/ (d,0) € O\kill(c, £, p)
[C-STORE] <C’,£, O> — <C, €/7q> [C-SU/WU] <CI,£, O> P <CI,€,,O>
e, l:_=q(...,r,...) p(oj) 050 (e 0 gy = (Log) 50 050
[C-CALL] O f(r) 001 =x(0; c=c o/
{00y — e, byry (0, 0) — {c,l o)
(lp=g(.)oj=x(0) € 5e (el gy— (LTF) Ol 2
C_RET ety p (o) d=ch/t
[: lelipy <\ p') e, b0) (U, 0)
lo o 1 Dol o 1 {(d,0")} ifpt(le, b, py)={(c,0")} A (¢, 0") € extSingletons
[C—COMPO] kill(c,£,p) = { O else if pt({c, ¢, p)) =@

v — "
%}

otherwise

Fig. 11: Flow- and context-sensitive SUPA analysis with demand-driven strong updates.

bar() { . - i -
o1: b = malloc(_..); // a —‘ef;' af:):(){x()aj) . Indirect Value-flow
€2: q=malloc(..); /b_—ter="""" O b _bo) ~_~dal
u(@o) ~~~ 7 \ﬂ;]\\\\
£3: foo(p) /,EbT’ €7: y =malloc(..); //c) SU for heap
a1 = y(a0) o~ s) =y .-~ . | object b under
-~ T ’ el context [€4]
0a: u(b1) \\\\\ bz = y(bi)\ -
foo(q); <------- - T TN e
/ bz = x(b1) P
o) £9: S~ (@) & - Query
) Y > u(bz)
{s: u(b2) pt(e5 ,2)) =?
z="q;

Fig. 12: Resolving pt([], 45, z) = {[¢4], c}) with context-sensitive strong updates.

b points to previously (not shown to avoid cluttering).
With context-sensitivity, SUPA finds that ([|,¢5,2) <
<[]7 ls, b> - <[]a Ly, b> A <[€4]’ Ly, b> - <[£4]7 ls, b> e
{[la), b7, yy < ([la],€). Since {[4],¥s,) points to a
context-sensitive singleton (¢4,b) at ¢, a strong update
is performed to b at {g, causing the old contents in b to
be killed. O

4.3.1

Context-sensitivity with recursions is undecidable [37],
which must approximate to guarantee termination. One
approach is to use k-limiting (i.e., the k-most-recent calling
context leading to a callsite), which usually approximates
more than unnecessary to achieve decidability for analyzing
recursions [41].

Our handling of recursions uses SCC-based approach
following the previous demand-driven pointer analysis
(§Section 4.3, [41]). The SCC-based approach [28, 41, 55]
applies k-limiting solution for call edges between SCCs, but
conservatively treats the calls and returns inside an SCC
context-insensitively by merging the context information
inside an SCC (parameter passings and returns are treated
as COPY instructions). This handling is only for SUPA’s
context-sensitive analysis and does not affect the precision
of SUPA’s flow-sensitive and context-insensitive analysis.

The SCC-based approach guarantees monotonicity dur-
ing context-sensitive on-the-fly call graph construction, be-
cause (1) once a call graph edge is discovered during our

Handling Recursion

graph traversal for answering a points-to query, the edge is
added to the call graph but never removed when answering
any subsequent query, (2) once an SCC is found during
call graph construction, the functions inside the same SCC
are collapsed into one, downgrading a previous context-
sensitive call path inside an SCC (e.g., cs1,csa,...,cs,) to
context-insensitive one with every callsite cs; being replaced
with an special empty value ¢ which supports conserva-
tive unbalanced parentheses matching (¢ matches any call-
sites at calls/returns) [41], thus merging multiple context-
sensitive call paths into a context-insensitive one for over-
approximations. The resulting points-to relations can only
become less precise but never more precise if multiple func-
tions are merged into an SCC during call graph construction.

Compared to the complete k-limiting approach (i.e.,
k-context-sensitivity for both recursive and non-recursive
functions), our SCC-based approach is a less precise so-
lution. However, as also mentioned in [41], the complete
k-limiting approach is not favourable for demand-driven
analysis since it requires tight analysis budgets for an-
swering client queries. Repeatedly analyzing a recursion
with a large k£ not only affects the analysis performance
but may also cause an early termination inside the re-
cursion after exhausting the analysis budget, resulting in
context-insensitive analysis results across SCCs. Adjusting
the analysis to a smaller k£ may accelerate the analysis for
analyzing recursive functions, but unfortunately introduces
imprecision for analyzing non-recursive functions.

Finding a good balance between efficiency and precision

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

for handling recursions is an interesting future topic for
demand-driven pointer analysis.

class A{ 1 VTabA = {&aa:1}
2: VTabB = {&bs:f}
3: void A:f(A *this){ }
virtual void f() { 4: void B::f(B *thisX }
} 5: void A=A (A~This) {
5 6: viptrA = &VTabA;
7: *this = viptrA;
class B : public A{ 8: 3
9: Vol - this
B(){} 10: A::A(this);
virtual void f() { 11: viptrB = &VTabB;
12: *this = vtptrB;
} 13: }
%
void main() { 14: void main() {
15: p = &b;
A* p =new B; 16: B::B(p);
7[R
18: vin = &(vtptr->idx)
19: fp = *vfn;
} 20: ; fp(p);
(a) C++ code (b) LLVM IR

Fig. 13: C++ code and its corresponding LLVM IR.

<¢--- Indirect Value-flow
€1: VTabA ={&aa:f} €12: void A::A (A *this) {
€2: VTabB = {&aB:f} . b1 = y(b
€3: void A:f(A *this){ } L AN
€4: void A::f(B *this){ } €13} ViptrA = &VTabA,;]

¢ €1a: ! “this = viptrA; .7
5: i i _b2=
i o e
u(bo) - _ _ (s 1y MO T
g B::B(p); T~ ¢16: ' void B:B (A’this){ |
o~ b7 = x(bo) foF~ -~ —- - - b= ybo) gy
A (b1) \ S————yub1) &7
€s: viptr="p; €17: ArA(this); !
\ ’
N bz = y(b1) 4---
€o: vin = &(vtptr->idx);\\ 2= 2(b1) N
210; fp = *vin; [bl £18: viptrB = &VTabB; Ib]\X
1 fp(p); S~ e this)= viptrB; .
} SUforobjectb "~~-__ bs=y(b2) &
under context [¢7] 20 }“ ~ u(b3) P

Fig. 14: SUPA precisely resolves that the virtual table pointer
vtptr at fg points to only B’s vtable VI'abB in Figure 13.

4.4 SUPA: Analyzing C++ Programs

Compared to C programs, the complicated features (e.g.,
inheritance, class object creations and virtual calls) in low-
level object-oriented C++ programs pose big challenges to
precise pointer analysis. Figure 13(a) gives a commonly
used code fragment, including the constructors of two
classes A and B (highlighted in the blue boxes), an object
creation statement (black box) and a virtual call (red box).
Figure 13(b) shows the corresponding LLVM IR.

In C++, base classes (e.g., A) and derived classes (e.g., B)
can have virtual functions with the same function signature
(i.e., name, argument types and qualifiers) for polymor-
phism (e.g., f()). For virtual functions A :: f and B :: f
of class A and B, LLVM generates two virtual tables, i.e.,
(global constant arrays) V1T'abA and VT'abB to store the
function object a..r (lines 1-2). The virtual table pointer

13

(vtptr) which points to the vtable is stored into an object
of class A when the object is created and initialized via
a constructor of A (line 6 and 11). SUPA treats the global
constant array V7T'abA as a struct object with each element
being a field of the struct for our field-sensitive analysis.

The object creation statement A #p = newB is translated
into two instructions, an ADDRESSOF that allocates object b
(line 15), and a function call CALL that passes the pointer
p into B’s constructor (line 16), in which A’s constructor
is first called (line 10) to initialize b by storing the vtable
pointer vptrA into it (lines 6-7), then B’s constructor up-
dates b by storing vptrB into it (lines 11-12).

The virtual call p — f() invokes the actual runtime
function through dynamic dispatch, which is translated into
the four LLVM instructions as also in Figure 13(b): (1) a
LOAD at line 30 (obtain vtptr by dereferencing the pointer
to the object, (2) an FIELD at line 31 (access the right function
pointer in the vtable), (3) a LOAD at line 32 (read the virtual
function pointer), and (4) an indirect function call CALL at
line 33.

Figure 14 demonstrates our strong updates for resolving
C++ virtual calls by using the same example from Figure 13
(b). To focus on the key idea of SUPA in analyzing C++, we
simplify the example by issuing the query of vtable pointer
vtptr at fg instead of pointer fp at line /1 to show that SUPA
can precisely resolves vtptr pointing to only vtable V1T'abB
but not VTabA, so that the virtual call p — f() invokes
B :: f() only.

The pre-computed value-flows of object b are high-
lighted in dotted arrows based on the memory SSA
form in Figure 14. Given query viptr, we start our
demand-driven analysis from /g with its backtraces
<[]7687’Utptr> e <[]7677b> A <[€7]7€207i>\<_)
(7], €19,y < {[lr], 1o, vtptrBy « {[l7], {15, VTabB).
We obtain that vtptr points to VT'abB only. The strong
update occurs at {19 since *this refers to a single memory
location according to {[¢7], l19, this) < {[{7], {16, this) <
{ 1sbz,p) < (]],€6,8>. Therefore, value-flow £17 2 (19 is
spurious, so that SUPA stops backtracking for object b from
£19 to 17 due to strong updates.

5 IMPLEMENTATION

We have implemented SUPA in LLVM (4.0.0) and it is avail-
able at https://github.com/SVF-tools/SUPA. The source
files of a program are compiled under “-O0” (to facilitate
detection of undefined values [65]) into bit-code by clang
and then merged using the LLVM Gold Plugin at link
time to produce a whole program bc file. The compiler
option mem2reg is applied to promote memory into reg-
isters. Otherwise, SUPA will perform more strong updates
on memory locations that would otherwise be promoted to
registers, favoring SUPA undesirably.

All the analyses evaluated are field-sensitive. Positive
weight cycles that arise from processing fields of struct ob-
jects are collapsed [34]. Arrays are considered monolithic so
that the elements in an array are not distinguished. Distinct
allocation sites (i.e., ADDROF statements) are modeled by
distinct abstract objects.

We build the SVFG for a program based on our
open-source software, SVF [44]. The def-use chains are

https://github.com/SVF-tools/SUPA

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

pre-computed by Andersen’s algorithm flow and context-
insensitively. In order to compute soundly and precisely
the points-to information in a value-flow cycle, SUPA re-
traverses the cycle whenever new points-to information is
discovered until a fix point is reached.

To compare SUPA with whole-program analysis, we
have implemented a sparse flow-sensitive (SFS) analysis
described in [20] also in LLVM, as SFS is a recent solu-
tion yielding exactly the flow-sensitive precision with good
scalability. However, there are some differences. In [20], SFS
was implemented in LLVM (2.5.0), by using imprecisely pre-
computed call graphs and representing points-to sets with
binary decision diagrams (BDDs). In this paper, just like
SuPA, SES is implemented in LLVM (4.0.0), by building a
program’s call graph on the fly (Section 4.2) and represent-
ing points-to sets with sparse bit vectors.

We have not implemented a whole-program FSCS
pointer analysis in LLVM. There is no open-source im-
plementation either in LLVM. According to [1], existing
FSCS algorithms for C “do not scale even for an order
of magnitude smaller size programs than those analyzed”
by Andersen’s algorithm. As shown here, SFS can already
spend hours on analyzing some programs under 500 KLOC.

6 EVALUATION

Our evaluation addresses the following research questions:

RQ1 How to help analysis developers to effectively validate
the correctness of various implementations (e.g., flow-
insensitive, flow-sensitive and context-sensitive imple-
mentations of SUPA) for C and C++ programs?

RQ2 How does SUPA compare to the existing whole-
program analysis SFS for analyzing large-scale pro-
grams in terms of precision and scalability when using
a practical client?

RQ3 What is the precision improvement of a flow- and
context-sensitive version SUPA-FSCS of SUPA over its
flow-sensitive and context-insensitive one SUPA-FS?

RQ4 How effective is SUPA in analyzing large C++ pro-
grams, especially for resolving low-level virtual tables?

RQ5 What are the real code scenarios (snippets) that
demonstrate the strong updates found by SUPA?

6.1 RQ1: C/C++ Micro-Benchmarks for Pointer Analysis

We have designed PTABEN, an open and comprehensive
micro-benchmark suite with around 400 test cases (includ-
ing hand-written ones and the ones extracted from real pro-
grams) to evaluate the precision and correctness of pointer
analysis (e.g., SUPA) for both C and C++ programs. PTABEN
is available at https://github.com/SVF-tools/PTABen.

6.1.1 Design of PTABen

Our benchmarks are designed to separate analysis vali-
dation as an independent concern from pointer analysis
implementations based on any compiler platforms (e.g.,
LLVM/GCC). Each test case is developed to cover a pro-
gram feature to validate the soundness and precision of
a pointer analysis implementation. The cases are designed
to test both basic analysis (e.g., Andersen’s flow-insensitive
and field-sensitive analysis) and sophisticated analysis (e.g.,
flow-sensitive and/or context-sensitive analyses).

14

For each micro-benchmark, we manually insert one or
more stub functions (MAYALIAS or NOALIAS with each
having two pointers as its parameters). These sub func-
tions are treated as correct alias results (test oracle) to
match against the results from a pointer analysis imple-
mentation. For example, MAYALIAS(p,&a) inserted at a
particular program point in a micro-benchmark represents
that p may point to object a at that program point, while
NOALIAS(p,&a) means p does not point to a.

The following code snippet shows a simple case
struct-simple.c in PTABEN to validate field-sensitivity.
It directly enforces the correct pointer/alias result, i.e., the
pointer s2.a points to only x but not y using the two stub
functions MAYALIAS or NOALIAS.

struct s{
int =*a;
int b;
bi
int main () {
struct s sl, s2; int x, vy;

sl.a = &x;

s2.a = sl.a;
MAYALIAS (s2.a, &x);
NOALIAS (s2.a, &Yy);

}

PTABEN is simple to use. Given a test case annotated with
the correct alias results, a pointer analysis implementation
(e.g., SUPA) can query the points-to results of the two
parameters at the callsite of a stub function by comparing
against the correct alias result to validate the precision and
soundness of a pointer analysis implementation.

The stub functions can also be used to test func-
tion pointers. For example, the following code from
funptr-simple.c validates whether a function pointer
fptr points to function £ (i.e., the indirect call transfer
from the callsite fptr (p) to f) by using the stub function
MAYALIAS to test the alias relation between the parameter
p and the global object &g.
int g;
void (xfptr) (int«*p);
void f(intx p) { MAYALIAS (&9, P); }

int main() {
fptr=£f;

int *p = &g;
fptr(p);

6.1.2 Testing C and C++ program features

Table 3 lists the basic test cases that cover important anal-
ysis aspects to validate pointer analysis (Andersen’s field-
sensitive implementation) for both C and C++ programs.
There are four categories of the basic C test cases de-
signed to validate both intra- and inter-procedure analyses.

e Stack & Heap is to validate the analysis results of
pointers point to local and heap objects, including
variables defined and used in control-flow branches,
pointer arithmetics for arrays and structs, test cases that
form constraint cycles, dynamically allocated linked
lists and integer to pointer castings.

e Global is to validate the analysis results of global
variables, including global initializations, global arrays
and structures, global variables modified and/or used

https://github.com/SVF-tools/PTABen

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

TABLE 3: Basic test cases in PTABEN to validate pointer analysis for C and C++.

Category Test Case Name

Description

Basic Test Cases to Validate Pointer Analysis for C

branch-intra.c
branch-call.c
constraint-cycle—-copy.c

Testing aliases at a joint point from two branches on CFG
Testing aliases in a callee function which called from two callsites
Testing aliases in the presence of copy constraint cycles

struct—-nested-2-layers.c
struct—-nested-array.c
struct-simple.c
struct-onefld.c
struct-twoflds.c

% |constraint-cycle-field.c Testing aliases in the presence of positive weight cycles

R array-constIdx.c Testing aliases between two array elements with constant indexes

s |array-varIdx.c Testing aliases between two array elements with variable indexes

» |field-ptr-arith-constIdx.c Testing aliases between fields of a struct using pointer arithmetics with constants

3 |field-ptr-arith-varIdx.c Testing aliases between fields of a struct using pointer arithmetics with variables

{3 |heap-indirect.c Testing aliases between two dereferences referring to heap objects
heap-linkedlist.c Testing aliases of two elements in the dynamically allocated linked list
heap-wrapper.c Testing aliases of objects returned from wrapper functions of a heap allocation site
int2pointer.c Testing aliases of two pointers with one casted from an integer
global-initializer.c Testing global variables with their initializers
global-array.c Testing global array objects
global-call-struct.c Testing global struct objects

S |global-call-noparam.c Testing aliases of two global variables through calls which have no parameters

‘8 |global-call-twoparms.c Testing fields of a global struct object through calls which have two parameters

© |global-const-struct.c Testing global constant struct objects
global-funptr.c Testing function pointers residing in a global struct object
global-nested-calls.c Testing aliases of two global variables through nested calls

G funptr-simple.c Testing function pointers on one branch of the CFG

Y funptr—-global.c Testing function pointers which are global variables

5 | funptr-nested-call.c Testing function pointers which are passed through nested calls

¥ | funptr-struct.c Testing function pointers stored in local struct objects
struct-array.c Testing aliases of elements in an array field of a struct
struct-assignment-direct.c Testing aliases between two field access (st.fld) given a struct assignment
struct-assignment-indirect.c | Testing aliases between two dereferences (st—fld) given a struct assignment
struct-assignment-nested.c Testing struct assignments in the presence of nested structs
struct-field-multi-deref.c Testing a pointer point to the inner field of a struct via multiple field dereferences
struct—-incompab-typecast.c Testing type casting between pointers of incompatible struct types

p |struct-incompab-typecast-n.c | Testing type casting between pointers of incompatible (nested) struct types

5 |struct-instance-return.c Testing aliases when returning a struct instance from a callee function

g struct-nested-l-layer.c Testing fields of a struct object nested in another struct

Testing fields of a struct object nested via two nested struct
Testing array fields of a nested struct object

Testing field aliases of a simple struct object

Testing a struct object with only one field

Testing a struct object with only two fields

Basic Test Cases to Validate Pointer Analysis for C++

constructor.cpp
destructor.cpp
dynamic_cast.cpp
global-obj-in-array.cpp
member-variable.cpp
func-ptr—-in-class.cpp
single—inheritance.cpp
multi-inheritance.cpp
diamond-inheritance.cpp
vdiamond-multi-inher.cpp
vector-field-sensitivity
forward_list.cpp
list.cpp

map.cpp

queue.cpp

set.cpp

deque . cpp

vector.cpp

array.cpp
unordered_map.cpp
unordered_set.cpp
stack.cpp

Testing a virtual call residing in a constructor of a child class

Testing a virtual call residing in a destructor of a parent class

Testing aliases of “dynamic_cast” (down casting) in C++

Testing aliases inside a virtual function in the presence of a global array of structs
Testing aliases between a global object and a member variable of a class object
Testing virtual calls in the presence of global pointers

Testing virtual calls in the presence of the single-inheritance pattern

Testing virtual calls in the presence of the multi-inheritance pattern

Testing virtual calls in the presence of the diamond inheritance pattern
Testing virtual calls in the presence of virtual diamond inheritance pattern
Testing the points-to result of a field of an element stored in a vector
Testing the virtual call of a object stored in a C++ forward_list

Testing the virtual call of a object stored in a C++ list

Testing the virtual call of a object stored in a C++ map

Testing the virtual call of a object stored in a C++ queue

Testing the virtual call of a object stored in a C++ set

Testing the virtual call of a object stored in a C++ deque

Testing the virtual call of a object stored in a C++ vector

Testing aliases between two objects in a C++ array (e.g., array(const A *, 2))
Testing the virtual call of a object stored in a C++ unordered_map

Testing the virtual call of a object stored in a C++ unordered_set

Testing the virtual call of a object stored in a C++ stack

inside a function or passed as parameters through
nested calls.

FunPtr is to test function pointers, including function
pointers which are global variables or fields of a struct,
and an indirect call whose function pointer is passed
via nested calls before reaching the indirect callsite.
Struct gives the test cases for analyzing struct ob-
jects, which are particularly useful for validating field-
sensitive analysis implementations. For example, test-
ing aliases between elements in an array field of a
struct, testing aliases between two struct fields after a

struct assignment or receiving a struct instance from
a function return, and testing aliases in the presence
of incompatible (struct) type castings, nested structs,
structs of arrays and arrays of structs.

We have also provided C++ test cases to validate pointer
analysis for various C++ language features, including con-
structors, destructors, virtual calls, single and multiple in-
heritances, virtual diamond inheritances and C++ STL li-
brary functions. Due to space limitation, only representative
C++ cases are listed in Table 3. All C++ tests are available in
the basic_cpp_tests folder in PTABEN’s Github project.

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

For example, the following code snippet is from test case
single—-inheritance.cpp, which validates the virtual
call pb—>f (ptr) whose callee function is B: : £ (int i),
where B is a subclass of class A.
int global_obj;

class A {
virtual void f(int =1i) {}

int* global_ptr=&global_obj;

bi
class B: public A {
virtual void f(int 1) {
MAYALIAS (global_ptr, 1i);
}
bi

int main(int argc, char *xargv) {

int xptr = &global_obj;
A xpb = new Bj;
pb—>f (ptr);

}

Our tests are also able to validate the field-sensitivity in
the presence of C++ containers. The following code snippet
is from vector-field-sensititivity.cpp, which first
pushes an object c_ of class C into a vector g, and then
retrieves the object from the vector (via C++ reference) to
validate the aliases between the two fields of this object.
class C {

int f1;
int £2;

bi
vector<C> g;

int main(int argc, char xargv([]) {
C c_;
g.push_back (c_);
C sc = g[0];

NOALIAS (sc.fl, &c.f2);

6.1.3 \Validating flow-sensitive and context-sensitive analyses

PTABEN provides micro-benchmarks to support validat-
ing flow-sensitive analysis (e.g., SUPA-FS) and flow- and
context-sensitive analysis (e.g., SUPA-FSCS). These two sets
of test cases are placed in the folders fs_tests and
cs_tests respectively in the PTABEN project.

In addition to the basic test cases in Table 3, fs_tests
aims to validate flow-sensitive analysis with strong and
weak updates for stack and global variables, including
strong updates for global objects across multiple functions,
strong updates in the presence of control-flow branches and
function pointers. Strong and weak updates for struct and
array objects. The following code snippet shows a global
variable g which first points y, and then it is strongly
updated to point to x in bar.
int x, y; int xp = &x; int xqg = &y;
int *xpp = &p; intxxqq = &qg;
void foo () {

NOALIAS (xpp, =*99);
}
void bar() {
q = &x;
}
int main() {
foo();
bar () ;
MUSTALIAS (*pp, *dq);

cs_tests aims to validate flow- and context-sensitive
analysis including one callee function is called via multiple

16

callsites inside the same or different caller functions, strong
updates for heap variables (Figure 12), and strong updates
in the presence of function recursions. The full test suite for
context-sensitive analysis is available in folder cs_tests
in PTABEN. The following code snippet gives the correct
points-to relations at different program points when pro-
gram statements are involved in function recursions.

void £() |
if (cond) {
X = &y;
MUSTALIAS (%, &Y) ;
£0);
X = &2z;

MUSTALIAS (%, &2z) ;
NOALIAS (%, &Y) ;
£0);

6.2 RQ2: Effectiveness and Precision of Our Demand-
Driven Analysis

The objective is to show that SUPA is effective in answering
client queries for real-world large-scale programs, in envi-
ronments with small time and memory budgets.

We choose uninitialized pointer detection as a major
client, named Uninit, which requires strong update analysis
to be effective. We will show that SUPA can answer Uninit’s
on-demand queries efficiently while achieving nearly the
same precision as SFS. We provide evidence to demonstrate
a good correlation between the number of strong updates
performed on-demand and the degree of precision achieved
during the analysis.

6.2.1 Methodology

As a common type of bugs in C programs, uninitialized
pointers are dangerous, as dereferencing them can cause
system crashes and security vulnerabilities. For Uninit, flow-
sensitivity is crucial. Otherwise, strong updates are impos-
sible, making Uninit checks futile.

For C, global and static variables are default initialized,
but local variables are not. In order to mimic the default
uninitialization at a stack or heap allocation site £: p = &a
for an uninitialized pointer a, we add a special store #p=u
immediately after ¢, where v points to an unknown abstract
object (UAO), u,. Given a load x = *y, we can issue a points-
to query for x to detect its potential uninitialization. If x
points to a u, (for some a), then x may be uninitialized.
By performing strong updates more often, a flow-sensitive
analysis can find more UAO’s that do not reach any pointer
and thus prove more pointers to be initialized. Note that SFS
can yield false positives since, for example, path correlations
are not modeled.

We do not introduce UAQO’s for the local variables in-
volved in recursion and array objects since they cannot be
strongly updated. We also ignore all the default-initialized
stack or heap objects (e.g., those created by calloc ()).

We generate meaningful points-to queries, one query for
the top-level variable x at each load = = *y. However, we
ignore this query if x is found not to point to any UAO
by pre-analysis. This happens only when z points to either
default-initialized objects or unmodeled local variables in
recursion cycles or arrays. The number of queries issued in
each program is listed in the last column in Table 4.

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

TABLE 4: Program characteristics.

17

TABLE 5: Pre-processing times taken by pre-analysis shared

[Program [KLOC [Stmts [Pointers | Allocation Sites | Queries | by SUPA and SFS and analysis times of SFS (in seconds).
spell-1.1 0.8 1011 1274 42 17 Pre-Analysis Times
be-1.06 144 17018 15212 654 689 Program Shared by SUPA and SFS Analysis Time of SFS
milc-v6 15 11713 | 29584 | 865 3 Andersen [SVFG [Total
less-451 271 | 6766 22835 | 1135 100 spell 0.01 0.01 0.01 0.01
sed-4.2 386 | 25835 | 34226 |39 1191 bc 0.35 0.21 0.56 0.98
hmmer-2.3 36 27924 | 74689 | 1472 2043 milc 0.42 0.1 0.52 0.16
make-4.1 404 | 14926 | 36707 | 1563 1133 less 0.42 0.37 0.79 1.94
g2ip-1.6 644 | 22028 | 25646 | 1180 551 sed 1.38 0.34 173 5.46
a2ps-4.14 646 | 49172 | 116129 | 3625 5065 hmmer 1.57 0.46 2.03 1.07
bison-3.0.4 1133 | 36815 | 90049 | 1976 4408 make 1.74 1.17 291 13.94
grep-2.21 1184 [10199 33931 | 1108 562 8zip 0.27 0.10 0.37 0.20
tar-1.28 132 30504 | 85727 | 3350 909 aZps 7.34 1.31 8.65 60.61
wget-1.16 140.0 | 51556 | 63199 | 726 1142 bison 8.18 3.66 | 11.84 44.16
bash-4.3 155.9 | 59442 | 191413 | 6359 5103 grep 1.44 0.17 1.61 2.39
gnugo-3.4 1972 | 369741 | 286986 | 27511 1970 tar 2.73 1.71 4.44 12.27
sendmail-8.15 || 259.9 | 86653 | 256074 | 7549 2715 wget 1.86 0.90 2.76 3.47
vim-7 4 4131 | 147550 | 466493 | 8960 6753 bash 5348 | 44.07 | 97.55 2590.69
emacs-244 || 431.9 | 189097 | 754746 | 12037 4438 gnugo. 568 | 275 | 844 9.86
Total 2263.0 | 1157950 | 2584920 | 80507 38792 sendmail 2405 | 2343 | 4748 348.63
vim 44588 | 85.69 | 531.57 13823
emacs 135.93 | 146.94 | 282.87 8047.55

6.2.2 Experimental Setup

We use a machine with a 3.7GHz Intel Xeon 8-core CPU
and 64 GB memory. As shown in Table 4, we have se-
lected a total of 18 open-source programs from a variety
of domains: spell-1.1 (a spelling checker), bc-1.06 (a
numeric processing language), milc-v6 (quantum chro-
modynamics), less-451 (a terminal pager), sed-4.2
(a stream editor), milc-v6 (quantum chromodynamics),
hmmer-2. 3 (sequence similarity searching), make-4.1 (a
build automation tool), a2ps-4.14 (a postScript filter),
bison-3.04 (a parser), grep-2.2.1 (string searching),
tar-1.28 (tar archiving), wget-1.16 (a file downloading
tool), bash-4.3 (a unix shell and command language),
gnugo-3.4 (a Go game), sendmail-8.15.1 (an email
server and client), vim74 (a text editor), and emacs-24.4
(a text editor).

For each program, Table 4 lists its number of lines
of code, statements which are LLVM instructions rele-
vant to our pointer analysis, pointers, allocation sites (or
AddrOf statements), and queries issued (as discussed in
Section 6.2.1).

We evaluate SUPA with two configurations, SUPA-FS
and SUPA-FSCS. SUPA-ES is a one-stage FS analysis by
considering flow-sensitivity only. SUPA-FSCS is a two-stage
analysis consisting of FSCS and FS. The FSCS is first applied
for answering the query. It will downgrade to a less precise
FS one if the FSCS stage is out of analysis budget.

6.2.3 Evaluating SUPA-FS

When assessing SUPA-FS, we consider two different cri-
teria: efficiency (its analysis time and memory usage per
query) and precision (its competitiveness against SFS). For
each query, its analysis budget, denoted B, represents the
maximum number of def-use chains that can be traversed.
We consider a wide range of budgets with B falling into
[10, 200000].

SUPA-FS is highly effectively. With B = 10000, SUPA-FS
is nearly as precise as SFS, by consuming about 0.18 seconds
and 65KB of memory per query, on average.

Efficiency: Figure 15(a) shows the average analysis
time per query for all the programs under a given budget,

with about 0.18 seconds when B = 10000 and about 2.76
seconds when B = 200000. Both axes are logarithmic. The
longest-running queries can take an order of magnitude as
long as the average cases. However, most queries (around
80% across the programs) take much less than the average
cases. Take emacs for example. SES takes over two hours
(8047.55 seconds) to finish. In contrast, SUPA-FS spends less
than ten minutes (502.10 seconds) when B = 2000, with
an average per-query time (memory usage) of 0.18 seconds
(0.12KB), and produces the same answers for all the queries
as SFS (shown in Figure 16 and explained below).

For SUPA, its pre-analysis is lightweight, as shown in
Table 5, with vim taking the longest at 531.57 seconds. The
same pre-analysis is also shared by SFS in order to enable
its own sparse whole-program analysis. The additional time
taken by SFS for analyzing each program entirely is given
in the last column.

Figure 15(b) shows the average memory usage per query
under different budgets. Following the common practice,
we measure the real-time memory usage by reading the
virtual memory information (Vmsize) from the linux kernel
file (/proc/self/status). The memory monitor starts
after the pre-analysis to measure the memory usage for
answering queries only. The average amount of memory
consumed per query is small, with about 65KB when
B = 10000 and about 436KB when B = 200000. Even under
the largest budget B = 200000 evaluated, SUPA-FS never
uses more than 3MB for any single query processed.

Precision: Given a query pt({{,p)), p is initialized
if no UAO is pointed by p and potentially uninitialized
otherwise. We measure the precision of SUPA-FS in terms of
the percentage of queried variables proved to be initialized
by comparing with SFS, which yields the best precision
achievable as a whole-program flow-sensitive analysis.

Figure 16 reports our results. As B increases, the preci-
sion of SUPA-FS generally improves. With B = 10000, SUPA-
FS can answer correctly 97.4% of all the queries from the 18
programs. These results indicate that our analysis is highly
accurate, even under tight budgets. For the 18 programs
except a2ps, bison and bash, SUPA-FS produces the same

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

- 10 2.7592
§ 1 ;}L ~"T:nf)
— 0.4138
- -
§ 0.1 0 1"";'1’ P :1836
2 B3
g 001 o189
E 0.001pg i ¥idoor
= .0002

0.0001 - y

10! 10% 10° 10* 10° Budget

(a) Analysis Time

18
s 1,000 e TG
ZET B T
: 16.28 4.80
$ 10
- 1 pp o 202
S 042 0.64
01
“ oo
: 100 10° 10° 10' 10° Budges

(b) Memory Usage

Fig. 15: Average analysis time and memory usage per query consumed by SUPA-FS under different analysis budgets (with

both axes being logarithmic).

100 % W B=200k

OB=100k
| BEB=40k
OB=20k
B B=10k
4 OB=4k
B B=2k
EB=1k
4 OB=400
B B=200
EB=100
1 MEB=40
EB=20
EB=10

80 %
60 %
40 %

20 %t

Fig. 16: Percentage of queried variables proved to be initial-
ized by SUPA-FS over SFS under different budgets.

answers for all the queries when B = 100000 as SFS.
When B = 200000 for these three programs, SUPA becomes
as precise as SFS, by taking an average of 0.02 seconds
(88.5KB) for a2ps, 0.25 seconds (194.7KB) for bison, and
3.18 seconds (1139.3KB) for bash, per query.

The results between whole-program flow-sensitive anal-
ysis SFS and SUPA always return identical results as long as
the budget is large enough. This because both SFS and SurA
are implemented based on top of the same SVFG (sparse
value-flow graph) and the call graphs are constructed the
on-the-fly when discovering new callees. If there is an out
of budget query, the results are correct since SUPA fails back
to a less precise but conservative analysis (e.g., Andersen’s
analysis).

Understanding On-Demand Strong Updates: Let us
examine the benefits achieved by SUPA-FS in answering
client queries by applying on-demand strong updates. For
each program, Figure 17 shows a good correlation between
the number of strong updates performed (#SU on the left
y-axis) in a blue curve and the number of UAO’s reaching
some uninitialized pointers (#UAO on the right y-axis) in a
red curve under varying budgets (on the logarithmic x-axis).
The number of such UAQ’s reported by SFES is shown as the
lower bound for SUPA-FS in a dashed line.

In most programs, SUPA-FS performs increasingly more
strong updates to block increasingly more UAO’s to reach
the queried variables as the analysis budget B increases,
because SUPA-FS falls back increasingly less frequently from
FS to the pre-computed points-to information. When B
increases, SUPA-FS can filter out more spurious value-flows
in the SVFG to obtain more precise points-to information,
thereby enabling more strong updates to kill the UAO’s.

When B = 200000, SUPA-FS gives the same answers
as SFS in all the 18 programs except bison and vim,
which causes SUPA-FS to report 16 and 35 more UAOs,

respectively.

For some programs such as spell, bc, milc, hmmer
and grep, most of their strong updates happen under small
budgets (e.g., B = 1000). In hmmer, for example, 192 strong
updates are performed when B = 10000. Of the 5126
queries issued, SUPA-FS runs out-of-budget for only three
queries, which are all fully resolved when B = 200000, but
with no further strong updates being observed.

For programs like bison, bash, gnugo and emacs,
quite a few strong updates take place when B > 1000.
There are two main reasons. First, these programs have
many indirect call edges (with 8709 in bison, 1286 in bash,
23150 in gnugo and 4708 in emacs), making their on-the-fly
call graph construction costly (Section 4.1.2). Second, there
are many value-flow cycles (with over 50% def-use chains
occurring in cycles in bison), making their constraint reso-
lution costly (to reach a fixed point). Therefore, relatively
large budgets are needed to enable more strong updates to
be performed.

Interestingly, in programs such as a2ps, gnugo and vim,
fewer strong updates are observed when larger budgets are
used. In vim, the number of strong updates performed is
1492 when B = 2000 but drops to 1204 when B = 4000.
This is due to the forward reuse described in Section 4.2
and [45, §4.3]. When answering a query pt({/,v)) under
two budgets B; and B,, where By < By, SUPA-FS has
reached (¢',v") and needs to compute pt({¢',v')) in each
case. SUPA-FS may fall back to the flow-insensitive points-
to set of v’ under By but not By, resulting in more strong
updates performed under B; in the part of the program that
is not explored under Bs.

6.3 RQ3: Evaluating Flow- and Context-Sensitive SurA
For C programs, flow-sensitivity is regarded as being impor-
tant for achieving useful high precision. However, context-
sensitivity can be important for some C programs, in terms
of both obtaining more precise points-to information and en-
abling more strong updates. Unfortunately, whole-program
analysis does not scale well to large programs when both
are considered (Section 5).

In this section, we demonstrate that SUPA can exploit
both flow- and context-sensitivity effectively on-demand in a
hybrid three-stage analysis framework, providing improved
precision needed by some programs.

SUPA-FSCS answers a query on-demand by applying its
three analyses successively, starting from flow- and context-
sensitive analysis (FSCS). If the query is not answered after
budget has been exhausted at the FSCS stage, SUPA-FS re-
issues the query for flow-sensitive but context-insensitive

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

—— Number of strong updates -~ Number of UAO by Sura Number of UAO by SFS
#SU spell #UAO #SU be H#UAO #SU mile #UAO
T T — 6 200 — 80 20 - — 6
10 | ‘60 15
14 150 |- g 2 4 a
= wol TR T i 40 10
N 12 i 42
50 |- S 20 5|
0 - = = ~ 46— 0 0 - - 0 0 - - - - o
o 10" 102 10% 104 10° 0 10! 102 10% 104 107 o 10! 102 10% 10 107
Budget Budget Budget
#SU less #UAO #SU sed #UAO #SU hmmer #UAO
300 - - - - — 60 15 10 200 150
200 |- : : g i a0 10 b : - ot 190 - 100
: : : : 7 : 420 wof T T ?
100 i 20 5| i i 50
410 50 |- :
0 0 0 0 0 0
0 10! 10? 10° 10 10° 0 10! 102 10° 101 10° 0 10! 102 10° 10 10°
Budget Budget Budget
#SU make #UAO #SU 271p #UAO #SU a2ps #UAO
200 T — 40 60 T T — 15 1,500 — 60
150 B B B B . B
i s 410 1000} : H . : <] 10
100 H H H B H
20 |- 5 500 - : : : : X 20
sof 00 o o T 4 s e T iiiliilli)
N i i i i i 0 i i i i N 0 i i i i il
o 10! 102 10% 104 10° o 10! 102 10% 104 107 o 10 102 10% 104 107
Budget Budget Budget
#SU bison #UAO #SU grep #UAO #SU tar #UAO
1.500 — 150 200 — 30 600 — 100
: : : * : 4 80
: : — : : 150 :
1.000 ¢ - : . o 100 i 2 400F . R 2 S S SR o
: H H H : 100 H H H H H
500 fre oo S AR AU AR) [Tt o 200 |- 1
S “r S 12
0 0 0 0 0 0
0 10! 102 10% 10° 10° 0 10! 10% 10% 10* 10° 0 10! 102 10? 101 107
Budget, Budget Budget
#SU wget #UAO #SU bash #UAO #SU gnugo #UAO
- 400 - 30 -
300 |- H
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o9 100 300 H
2 S 20
200 200 7T e H
4 50
4 10
100 | 100 | H
0 0 0 0
0 10! 102 10% 10° 10° 0 10! 102 10% 10* 10° 0 10! 102 10% 10" 10°
Budget Budget Budget
#SU sendmail #UAO #SU vim #UAO #SU emacs #UAO
800 T T — 150 3,000 - ™ 300 1,500 T T 7 80
600 i e S 1100 2000 200 1,000 o
400 - 2 N I A Qi N I R 40
i 50 1,000 100 500
200 |- : 20
0 0 0

0 10! 10? 10* 10" 10° 0 10! 102
Budget

Budget

10* 10" 10° o 10! 10? 10% 10* 107
Budget

Fig. 17: Correlating the number of strong updates with the number of UAO’s under SUPA-FS with different analysis budgets.

analysis (FSCI), and eventually falls back to the results pre-
computed by Andersen’s analysis (FICI) if the budget is
exhausted at FSCI stage.

Table 6 compares SUPA-FSCS (with a budget of 20000 di-
vided evenly in its FSCS and FS stages) with SUPA-FS (with
a budget of 10000 in its single FS stage). The maximal depth
of a context stack allowed is 3. By allocating the budgets this
way, we can investigate some additional precision benefits
achieved by considering both flow- and context-sensitivity.

In general, SUPA-FSCS has longer query response times
than SUPA-FS due to the larger budgets used in our set-
ting and the times taken in handling context-sensitivity. In
milc, hmmer, a2ps, bison, tar , gnugo and sendmail,
SUPA-FSCS reports fewer UAO’s than SUPA-FS, for two rea-
sons. First, SUPA-FSCS can perform strong updates context-
sensitively for stack and global objects, resulting in 0 UAO’s
reported by SUPA-FSCS for milc. Second, SUPA-FSCS can
perform strong updates to context-sensitive singleton heap
objects defined in Section 4.3, by eliminating 8 UAQO’s in
bison, 1 in tar and 1 in sendmail, which have been
reported by SUPA-FS.

6.4 RQ4: Evaluating SuPA in Resolving C++ Virtual Calls

Precisely resolving virtual calls is a key challenge in an-
alyzing low-level object-oriented language, such as C++.

Precise virtual call resolution benefits for a wide range
of other program analyses where a call graph is needed.
Section 4.4 describes how SUPA analyzes virtual tables at
callsites in the form of low-level LLVM IR. We compare
SUPA-FS and SUPA-FSCS to demonstrate that our context-
sensitive demand-driven analysis can precisely remove spu-
rious virtual table targets which are produced by pointer
analysis without strong updates for heap objects.

We evaluate SUPA using all SPEC2000/2006 C++
programs except 444.namd and 473.astar. Because
444 .namd has no virtual calls and 473.astar has one
virtual call with one target resolved by Andersen’s analysis.
As shown in Table 7, all the six CPU2000/2006 benchmarks
evaluated are eon, dealll, omentpp, povray, soplex,
and xalan. It also gives the analysis time per query by
SUPA, and the total number of virtual callsite (#virtual
callsite). We ignore some trivial callsites that SUPA-FS
has the same results as Andersen’s analysis to fairly com-
pare with SUPA-FSCS. #More precise callsite de-
notes the number of callsites where SUPA-FSCS get fewer
virtual table targets than SUPA-FS. On average, SUPA-FSCS
reduces 7.35% spurious targets with only 0.4 secs per query.

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

20

(e) Code snippet from dealll

// mark.c
114 géai}iﬂgtab.c 68 static struct mark* getmark(int c){
115 void symbols_sort(symbol **first, symbol **second) { 72 register struct mark *m; static struct mark sm;
- ’ 75 switch (c) {
o s
119 symbol* tmp = *first; ;z Ca:f; &Sl;l‘
120 *first = *second; ’
121 *second. = tmp; SU for nd 64 Lon ifiles= curr_ifile; SU fOrSm.m_if“e
85 break;
108 case ’\’’:
123 } 112 m = &marks[LASTMARK] ;
623 static void i;? ¥ et
624 user_token_number_redeclaration(...) { a 108 return m: Query
s uery 129 3} ’
627 symbols_sort (&st, &nd); pt(€628 ,nd->location)) 179 public void gomark(int ¢) { PI(€208 ,m->m_ifile))
.] 186 m = getmark(c);
Zgg N complain_indent D 208 if 1
218 }
(a) Code snippet from bison-3.0.4 (b) Code snippet from less-4.5.1
//io_latd.c //argp-help.c
93 int gcdhdr_get_str(char *s, QCDheader *hdr, char *xq) { 434 static struct hol * make_hol (...) {
98 *q = (*hdr).valuel[il; 442 struct hol *hol = malloc (sizeof (struct hol)); // Obj
104 %} SuU forq 501 return hol; . .
113 int qcdhdr_get_int(char *s,QCDheader *hdr,int *q) { 502 } su for obj.ShOrt_OpthnS
114 char *p; 849 static void hol_append (struct hol *hol, ...) {
115 qcdhdr_get_str(s,hdr,&p) ; Query 934 nol->short_options = short_options;
117 sscan%d" bl 939 }
119 } pt(<€117) 1386 static struct hol * argp_hol (...) {
120 int qcdhdr_get_int32x(char *s,QCDheader *hdr,...) { 1390 struct hol *hol = make_hol (argp, cluster);
121 char *p; 1401 hol_append(hol, ...);
123 qcdhdr_get_str(s,hdr,&p); 1405 }
125 sscanf (p,"%x",...); 1688 static void _help (...)
128 } 1617 hol = argp_hol (argp, 0); Query
129 int qcdhdr_get_double(char *s, QCDheader *hdr, ...) { 1664 hol_usage (hol, fs);)
130 char *p; 1727} pt(<€1353 ,hol->short_options))
131 qcdhdr_get_str(s,hdr,&p) ; 1346 static void hol usage (struct hol *hol, ...) {
133 sscanf (p,"%1f",...); 1353 strlen
135} 1382 }
(c¢) Code snippet from mile-v6 (d) Code snippet from tar-1.28
//solver_cg.h //ppm.h
70 class SolverCG : public Solver<VECTOR>{ 47 class PPM_Image : public Image_File_Class {
112 solve (const MATRIX &A, VECTOR &x, 51 “PPM_Image();
113 const VECTOR &b, const PRECONDITIONER &precondition); | 66 }
170 } //targa.h
//solver.h 48 class Targa_Image : public Image_File_Class {
143 template <class VECTOR = Vector<double> > 52 “Targa_Image();
144 class Solver : public Subscriptor{ 69 }
. //renderio.cpp
194 template<class VECTOR> inline 503 Image_File_Class *Open_Image(int file_type, ..) {
196 Solver<VECTOR>::Solver(SolverControl &cn, 505 Image_File_Class *i = NULL; Query
197 VectorMemory<VECTOR> &mem) : cntrl(cn), memory (mem) 507 if ((file_type & PPM_FILE) == PPM_FILE) { t
. - pt(ces14 i)
199 i8] . . 509 i = new PPM_Image(filename, w, h, m, 1)}
200 } Only call the virtual function at €112
//grid_generator.h 514 Only Ca” the deStrUCtOl’ at €51
1359 void GridGenerator::laplace_solve (517 }
1360 const SparseMatrix<double> &S, ...){ 519 else if ((file_type & TGA_FILE) == TGA_FILE) {Query
1367 SolverCG<Vector<double> > solver (control, meg;er 521 i = new Targa_Image(filename, w, h, m, Bf((fSZB ,l>)
sa74 folver]soive(sF, u, £, prec); pt(ctrars solvery 525 [ae1ete 1] Only call the destructor at €52

(f) Code snippet from povray

Fig. 18: Selected code snippets.

6.5 RQ5: Case Studies

We examine some real code to see how client queries are
answered precisely for the two major clients, i.e., Unint and
C++ virtual table resolution. Figure 18 (a) - (d) show four
different scenarios under Unint client, while Figure 18 (e)
and (f) give two code snippets to demonstrate the benefit of
SUPA in precise virtual call resolution.

Figure 18(a) There is a swap from bison. In line 121,
second points to a singleton stack object nd passed
from line 627. Therefore, a strong update is applied.
When querying nd->location in line 628, SUPA
knows that nd points to what st pointed to before.

Figure 18(b) In the code fragment from less, m—>m_ifile
is initialized in two different branches, one recognized
due to a strong update performed at the store in line
84 and one due to the default initialization in line
112. According to SUPA, m->m_ifile in line 208 is
initialized.

Figure 18(c) In the code fragment from milc, g in line 98

can point to several stack variables that are all named p
in lines 115, 123 and 131. With context-sensitivity, SUPA
finds that g points to one singleton under each context.
Thus, a strong update is performed so that each stack
variable becomes properly initialized when queried at
each call to sscanf ().

Figure 18(d) In the code fragment from tar, hol in line

1390 points to a heap object o allocated in line 442. With
o treated as a context-sensitive singleton (requiring a
context stack of at least depth 1), a strong update
can be performed in line 934 to initialize its field
short_options properly.

Figure 18(e) This code fragment from dealIII isvery sim-

ilar to the example in Figure 13. solver created at line
1367 is an object of template class SolverCG (line 70),
which is a subclass of Solver (line 196). SUPA’s strong
update analysis precisely identifies that the virtual call
at line 1374 only calls the virtual function solve in
SolverCG instead of the one in superclass Solver.

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

TABLE 6: Average analysis times consumed and UAO’s
reported by SUPA-FSCS (with a budget of 10000 in each

stage) and SUPA-FS (with a budget of 10000 in total).
Program SurA-FS SUPA-FSCS
Time (ms) [#UAO | Time (ms) [#UAO
spell 0.01 0 0.01 0
bc 18.35 69 287.23 69
milc 0.02 3 14.52 0
less 15.15 37 92.41 37
sed 355.60 32 472542 32
hmmer 11.41 86 135.05 71
make 124.40 26 229.44 26
gzip 0.64 5 4.28 5
a2ps 126.01 34 448.26 32
bison 465.54 94 529.20 86
grep 124.46 14 197.66 14
tar 26.31 70 83.10 68
wget 24.51 104 84.90 104
bash 188.69 17 327.16 17
gnugo 72.73 28 80.08 27
sendmail 200.32 94 250.19 85
vim 168.67 218 473.25 218
emacs 159.22 45 222.65 45

TABLE 7: Virtual table resolution at virtual callsites. SUPA-
FS v.s. SUPA-FSCS (with a budget of 10000 in its FSCS stage
and 10000 in its FSCI stage).

Program Time per | #Virtual| #More precise| Improved

query (ms)| callsite callsite | callsite (%)
eon 272 68 2 2.94%
deallll 199 404 34 8.41%
omnetpp 831 514 33 6.42%
povray 410 120 29 24.16%
soplex 318 421 2 0.48%
xalan 427 7388 128 1.73%
average 409 - - 7.35%

Figure 18(f) This code from povray demonstrates SUPA’s
analysis in precisely analyzing C++ destructors. SUPA
successfully identifies that the virtual call at 514
only calls the destructor ~PPM_Image () (line 51)
due to strong updates in C++ object initialization
(as explained in Section 4.4), ie., i points to an
object of class PPM_Image which is a subclass of
Image_File_Class (line 509). Likewise, SUPA iden-
tifies precisely the virtual call at line 526.

7 RELATED WORK

Demand-driven and whole-program approaches represent
two important solutions to long-standing pointer analysis
problems. While a whole-program pointer analysis aims to
resolve all the pointers in the program, a demand-driven
pointer analysis is designed to resolve only a (typically
small) subset of the set of these pointers in a client-specific
manner. This work is not concerned with developing an
ultra-fast whole-program pointer analysis. Rather, our ob-
jective is to design a staged demand-driven strong update
analysis framework that facilitates efficiency and precision
tradeoffs flow- and context-sensitively according to the
needs of a client (e.g., user-specified budgets). We limit our
discussion to the work that is most relevant to SUPA.

7.1 Flow-Sensitive Pointer Analysis
Strong updates require pointers to be analyzed flow-
sensitively with respect to program execution order. Whole-

21

program flow-sensitive pointer analysis has been studied
extensively in the literature. [10] and [14] gave some for-
mulations in an iterative data-flow framework [24]. [56]
considered both flow- and context-sensitivity by represent-
ing procedure summaries with partial transfer functions,
but restricted strong updates to top-level variables only. To
eliminate unnecessary propagation of points-to information
during the iterative data-flow analysis [19, 20, 33, 62], some
form of sparsity has been exploited. The sparse value-flows,
i.e., def-use chains in a program are captured by sparse
evaluation graphs (SEG) [9, 36] as in [22] and various SSA
representations such as HSSA [11], partial SSA [27] and
SSI [2, 53]. The def-use chains for top-level pointers, once
put in SSA, can be explicitly and precisely identified, giving
rise to a so-called semi-sparse flow-sensitive analysis [19].
Later, the idea of staged analysis [17] has been leveraged
to make pointer analysis full-sparse for both top-level and
address-taken variables by using fast Andersen’s analysis as
precise analysis [20, 49, 61]. This paper is the first to exploit
sparsity to improve the performance of a flow- and context-
sensitive demand-driven analysis with strong updates being
performed for C programs.

Recently, Balatsouras and Smaragdakis [6] propose a
fine-grained field-sensitive modeling technique for perform-
ing Andersen’s analysis by inferring lazily the types of heap
objects in order to filter out redundant field derivations.
This technique can be exploited to obtain a more precise
pre-analysis to improve the precision and/or efficiency of
sparse flow-sensitive analysis.

7.2 Demand-Driven Pointer Analysis

Demand-driven pointer analyses for C [21, 63, 66] and
Java [31, 39, 41, 43, 57] are flow-insensitive, formulated
in terms of CFL (Context-Free-Language) reachability [38].
[21] introduced the first on-demand Andersen-style pointer
analysis for C. Later, [66] performed alias analysis for C
in terms of CFL-reachability flow- and context-insensitively
with indirect function calls handled conservatively. Sridha-
ran et al. gave two CFL-reachability-based formulations for
Java, initially without considering context-sensitivity [42]
and later with context-sensitivity [41]. [39] and [57] in-
vestigated how to summarize points-to information dis-
covered during the CFL-reachability analysis to improve
performance for Java programs. [16] focused on answer-
ing demand queries for Java programs in a context-
sensitive analysis framework (without performing strong
updates). BOOMERANG [40] represents a very recent flow-
and context-sensitive demand-driven pointer analysis for
Java. However, its access-path-based analysis performs only
strong updates partially at a store a.f = ..., by updating
a.f strongly but the aliases of a.f.* weakly. This paper
presents SUPA, which focuses on performing strong updates
on-demand flow and context-sensitively for analyzing C
and C++ programs with two practical clients.

7.3 Hybrid Pointer Analysis

The basic idea is to find a right balance between efficiency
and precision. For C programs, the one-level approach [13]
achieves a precision between Steensgaard’s and Andersen’s
analyses by applying a unification process to address-
taken variables only. In the case of Java programs, context-
sensitivity can be made more effective by considering both

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

call-site-sensitivity and object-sensitivity together than ei-
ther alone [25]. In [18], how to adjust the analysis precision
according to a client’s needs is discussed. [64] focus on
finding effective abstractions for whole-program analyses
written in Datalog via abstraction refinement. Lhotdk and
Chung [29] trades precision for efficiency by performing
strong updates only on flow-sensitive singleton objects but
falls back to the flow-insensitive points-to information oth-
erwise. In this paper, we propose to carry out our on-
demand strong update analysis. Unlike [29], SUPA can
achieve the same precision as whole-program flow-sensitive
analysis, subject to a given budget.

8 CONCLUSION

We have introduced, SUPA, a demand-driven pointer anal-
ysis that enables computing precise points-to information
for C and C++ programs flow- and context-sensitively with
strong updates by refining away imprecisely pre-computed
value-flows, subject to some analysis budgets. SUPA is
suitable for environments with small time and memory
budgets such as IDEs. We have evaluated SUPA by choosing
uninitialized pointer detection and virtual call resolution as
major clients on 18 C and 6 C++ programs. SUPA can achieve
nearly the same precision as whole-program flow-sensitive
analysis under small budgets and can outperform the pre-
cision of traditional flow-sensitive analysis by performing
strong updates for field and heap objects.

REFERENCES

[1] M. Acharya and B. Robinson. Practical change impact analysis
based on static program slicing for industrial software systems. In
ICSE 11, pages 746-755, 2011. URL http://doi.acm.org/10.1145/
1985793.1985898.

[2] C. S. Ananian. The static single information form. PhD thesis,
Master’s Thesis, MIT, 1999.

[3] L. Andersen. Program analysis and specialization for the C program-
ming language. PhD thesis, DIKU, University of Copenhagen, 1994.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Pre-
cise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In PLDI '14, pages 259-269, 2014.
doi: 10.1145/2666356.2594299. URL http://doi.acm.org/10.1145/
2666356.2594299.

[5] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving soft-
ware security with a C pointer analysis. In International Conference
on Software Engineering (ICSE '05), pages 332-341. ACM, 2005.

[6] G. Balatsouras and Y. Smaragdakis. Structure-sensitive points-to
analysis for ¢ and c++. In SAS '16, 2016.

[7]1 M. Barbar, Y. Sui, H. Zhang, S. Chen, and J. Xue. Live path control
flow integrity. In ICSE 18, pages 195-196. ACM, 2018.

[8] S. Blackshear, B.-Y. E. Chang, and M. Sridharan. Thresher: Precise
refutations for heap reachability. In PLDI 13, pages 275-286, 2013.

[9] J.-D. Choi, R. Cytron, and]. Ferrante. Automatic construction of
sparse data flow evaluation graphs. In POPL 91, pages 55-66,
1991.

[10] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive in-
terprocedural computation of pointer-induced aliases and side
effects. In POPL '93, pages 232-245, 1993.

[11] E Chow, S. Chan, S. Liu, R. Lo, and M. Streich. Effective represen-
tation of aliases and indirect memory operations in SSA form. In
CC "96, pages 253-267, 1996.

[12] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. TOPLAS91, 13(4):490, 1991.

[13] M. Das. Unification-based pointer analysis with directional assign-
ments. In PLDI "00, pages 35-46, 2000. ISBN 1-58113-199-2. doi:
10.1145/349299.349309. URL http://doi.acm.org/10.1145/349299.
349309.

[14] R. Emami, M. Ghiya and J. Hendren. Context-sensitive interproce-
dural points-to analysis in presence of function pointers. In PLDI
'94, pages 242-256, 1994.

22

[15] X. Fan, Y. Sui, X. Liao, and J. Xue. Boosting the precision of virtual
call integrity protection with partial pointer analysis for C++. In
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14,
2017, pages 329-340, 2017. doi: 10.1145/3092703.3092729. URL
http://doi.acm.org/10.1145/3092703.3092729.

[16] Y. Feng, X. Wang, 1. Dillig, and C. Lin. EXPLORER: query- and
demand-driven exploration of interprocedural control flow prop-
erties. In OOPSLA 15, pages 520-534, 2015. doi: 10.1145/2814270.
2814284. URL http:/ /doi.acm.org/10.1145/2814270.2814284.

[17] S.]. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. ACM TOSEM, 17
(2):9, 2008.

[18] S.Z. Guyer and C. Lin. Client-driven pointer analysis. In SAS "03,
pages 1073-1073, 2003.

[19] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer
analysis. In POPL ‘09, pages 226238, 2009.

[20] B. Hardekopf and C. Lin. Flow-Sensitive Pointer Analysis for
Millions of Lines of Code. In CGO 11, pages 289298, 2011.

[21] N. Heintze and O. Tardieu. Demand-driven pointer analysis. In
PLDI '01, pages 24-34, 2001. doi: 10.1145/381694.378802. URL
http://doi.acm.org/10.1145/381694.378802.

[22] M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on
pointer alias analyses. In SAS "98, pages 57-81. 1998.

[23] ISO90. ISO/IEC. international standard ISO/IEC 9899, program-
ming languages - C. 1990.

[24] J. B. Kam and J. D. Ullman. Monotone data flow analysis frame-
works. Acta Informatica, 7(3):305-317, 1977.

[25] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for
points-to analysis. In PLDI "13, pages 423-434, 2013.

[26] W. Landi. Undecidability of static analysis. ACM Letters on
Programming Languages and Systems (LOPLAS), 1(4):323-337, 1992.

[27] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO ‘04, pages
75-86, 2004.

[28] C. Lattner, A. Lenharth, and V. Adve. Making Context-Sensitive
Points-to Analysis with Heap Cloning Practical For The Real
World. In PLDI'07, pages 278-289, 2007.

[29] O. Lhotdk and K.-C. A. Chung. Points-to analysis with efficient
strong updates. In POPL "11, pages 3-16, 2011.

[30] L. Li, C. Cifuentes, and N. Keynes. Boosting the performance
of flow-sensitive points-to analysis using value flow. In FSE ‘11,
pages 343-353, 2011.

[31] Y. Lu, L. Shang, X. Xie, and J. Xue. An incremental points-to
analysis with CFL-reachability. In CC’13, 2013.

[32] V. Nagaraj and R. Govindarajan. Parallel flow-sensitive pointer
analysis by graph-rewriting. In PACT '13, pages 19-28, 2013.
ISBN 978-1-4799-1021-2. URL http://dl.acm.org/citation.cfm?id=
2523721.2523728.

[33] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implemen-
tation of sparse global analyses for C-like languages. In PLDI "12,
pages 229-238, 2012.

[34] D. Pearce, P. Kelly, and C. Hankin. Efficient field-sensitive pointer
analysis of C. ACM TOPLAS, 30(1):4—es, 2007.

[35] G. Ramalingam. The undecidability of aliasing. ACM TOPLAS, 16
(5):1467-1471, 1994.

[36] G. Ramalingam. On sparse evaluation representations. Theoretical
Computer Science, 277(1):119-147, 2002.

[37] T. Reps. Undecidability of context-sensitive data-dependence
analysis. ACM Trans. Program. Lang. Syst., 22(1):162-186, 2000.

[38] T.Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL ‘95, pages 49-61, 1995.
ISBN 0-89791-692-1. doi: 10.1145/199448.199462. URL http://doi.
acm.org/10.1145/199448.199462.

[39] L.Shang, X. Xie, and J. Xue. On-demand dynamic summary-based
points-to analysis. In CGO 12, pages 264-274, 2012.

[40]]J. Spdth, L. N. Q. Do, K. Ali, and E. Bodden. Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for
java. ECOOP, 2016.

[41] M. Sridharan and R. Bodik. Refinement-based context-sensitive
points-to analysis for Java. PLDI '06, pages 387-400, 2006.

[42] M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-driven
points-to analysis for Java. In OOPSLA ‘05, pages 59-76, 2005.
ISBN 1-59593-031-0. doi: 10.1145/1094811.1094817. URL http://
doi.acm.org/10.1145/1094811.1094817.

[43] Y.Su, D. Ye,]J. Xue, and X. Liao. An efficient GPU implementation
of inclusion-based pointer analysis. IEEE Trans. Parallel Distrib.

http://doi.acm.org/10.1145/1985793.1985898
http://doi.acm.org/10.1145/1985793.1985898
http://doi.acm.org/10.1145/2666356.2594299
http://doi.acm.org/10.1145/2666356.2594299
http://doi.acm.org/10.1145/349299.349309
http://doi.acm.org/10.1145/349299.349309
http://doi.acm.org/10.1145/3092703.3092729
http://doi.acm.org/10.1145/2814270.2814284
http://doi.acm.org/10.1145/381694.378802
http://dl.acm.org/citation.cfm?id=2523721.2523728
http://dl.acm.org/citation.cfm?id=2523721.2523728
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/1094811.1094817
http://doi.acm.org/10.1145/1094811.1094817

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018

(44]
[45]
[46]
(47]
(48]
[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]
[57]

(58]

[59]

[60]

[61]

[62]

[63]

Syst., 27(2):353-366, 2016. doi: 10.1109/TPDS.2015.2397933. URL
http://dx.doi.org/10.1109/TPDS.2015.2397933.

Y. Sui and J. Xue. SVF: Interprocedural static value-flow analysis
in LLVM. In CC 16, pages 265-266, 2016.

Y. Sui and J. Xue. On-demand strong update analysis via value-
flow refinement. In FSE '16, 2016.

Y. Sui, D. Ye, and J. Xue. Static memory leak detection using full-
sparse value-flow analysis. In ISSTA "12, pages 254264, 2012.

Y. Sui, Y. Li, and J. Xue. Query-directed adaptive heap cloning for
optimizing compilers. In CGO 13, pages 1-11, 2013.

Y. Sui, D. Ye, and J. Xue. Detecting memory leaks statically with
full-sparse value-flow analysis. TSE '14, 40(2):107-122, 2014.

Y. Sui, P. Di, and J. Xue. Sparse flow-sensitive pointer analysis for
multithreaded programs. In CGO ’16, pages 160-170. ACM, 2016.
Y. Sui, X. Fan, H. Zhou, and J. Xue. Loop-oriented array-and field-
sensitive pointer analysis for automatic SIMD vectorization. In
LCTES 16, pages 41-51. ACM, 2016.

Y. Sui, D. Ye, Y. Su, and J. Xue. Eliminating redundant bounds
checks in dynamic buffer overflow detection using weakest pre-
conditions. IEEE Transactions on Reliability, 65(4):1682-1699, 2016.
Y. Sui, X. Fan, H. Zhou, and J. Xue. Loop-oriented pointer analysis
for automatic SIMD vectorization. In TECS 18, 2018.

A. Tavares, B. Boissinot, F. Pereira, and F. Rastello. Parameterized
construction of program representations for sparse dataflow anal-
yses. In CC "14, pages 18-39. Springer, 2014.

D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar. Chopped
symbolic execution. In Proceedings of the 40th International Confer-
ence on Software Engineering, pages 350-360. ACM, 2018.

J. Whaley and M. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In PLDI '04, pages
131-144, 2004.

R. Wilson and M. Lam. Efficient context-sensitive pointer analysis
for C programs. PLDI ‘95, pages 1-12, 1995.

D. Yan, G. Xu, and A. Rountev. Demand-driven context-sensitive
alias analysis for Java. In ISSTA "11, pages 155-165, 2011.

H. Yan, Y. Sui, S. Chen, and J. Xue. Machine-learning-guided
typestate analysis for static use-after-free detection. In ACSAC "17,
pages 42-54. ACM, 2017.

H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context
reduction: A pointer-analysis-based static approach for detecting
use-after-free vulnerabilities. In ICSE 18, 2018.

D. Ye, Y. Sui, and J. Xue. Accelerating dynamic detection of uses
of undefined variables with static value-flow analysis. In CGO '14,
2014.

S. Ye, Y. Sui, and]J. Xue. Region-based selective flow-sensitive
pointer analysis. In SAS "14, pages 319-336. 2014.

H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by level:
making flow-and context-sensitive pointer analysis scalable for
millions of lines of code. In CGO 10, pages 218-229, 2010.

Q. Zhang, X. Xiao, C. Zhang, H. Yuan, and Z. Su. Efficient subcubic
alias analysis for C. In OOPSLA 14, pages 829-845, 2014. ISBN
978-1-4503-2585-1. doi: 10.1145/2660193.2660213. URL http://doi.

23

acm.org/10.1145/2660193.2660213.

X. Zhang, R. Mangal, R. Grigore, M. Naik, and H. Yang. On
abstraction refinement for program analyses in Datalog. In PLDI
"14, pages 239-248, 2014.

[65] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formal-
izing the LLVM intermediate representation for verified program
transformations. In POPL 12, pages 427-440, 2012.

X. Zheng and R. Rugina. Demand-driven alias analysis for C. In
POPL '08, pages 197-208, 2008.

[64]

[66]

Yulei Sui is a Lecturer (Assistant Professor) and
an ARC DECRA at Faculty of Engineering and
Information Technology, University of Technology
Sydney (UTS). He obtained his Ph.D from Univer-
sity of New South Wales (UNSW), where he also
holds an Adjunct Lecturer position. He is broadly
interested in the research field of software engi-
neering and programming languages, particularly
interested in static and dynamic program analysis
for software bug detection and compiler optimiza-
tions. He worked as a software engineer in Program
Analysis Group for Memory Safe C project in Oracle Lab Australia. He was
an Australian IPRS scholarship holder, a keynote speaker at EuroLLVM and
a Best Paper Award winner at CGO, and has been awarded an Australian
Discovery Early Career Researcher Award (DECRA) 2017-2019.

Jingling Xue received his BSc and MSc degrees in
Computer Science and Engineering from Tsinghua
University in 1984 and 1987, respectively, and his
PhD degree in Computer Science and Engineering
from Edinburgh University in 1992. He is a Scien-
tia Professor in the School of Computer Science
and Engineering, University of New South Wales,
Australia, where he heads the Programming Lan-
guages and Compilers Group.

His main research interest has been program-
ming languages and compilers for about 20 years.
He is currently supervising a group of postdocs and PhD students on a
number of topics including programming and compiler techniques for multi-
core processors and embedded systems, concurrent programming models,
and program analysis for detecting bugs and security vulnerabilities.

He is presently an Associate Editor of IEEE Transactions on Computers,
Software: Practice and Engineering, International Journal of Parallel, Emer-
gent and Distributed Systems, and Journal of Computer Science and Tech-
nology. He has served in various capacities on the Program Committees of
many conferences in his field.

http://dx.doi.org/10.1109/TPDS.2015.2397933
http://doi.acm.org/10.1145/2660193.2660213
http://doi.acm.org/10.1145/2660193.2660213

	INTRODUCTION
	Program Representation
	LLVM-IR
	Sparse Value-Flow Graph

	A MOTIVATING EXAMPLE
	Value-Flow-Based Demand-Driven Pointer Analysis
	Interprocedural Sparse Value-Flow Graph
	Interprocedural Memory SSA
	Sparse Value-Flow Graph

	SUPA: Flow-Sensitivity
	Monotonicity
	Revisiting our motivating example
	Handling Value-Flow Cycles
	Field-Sensitivity
	Properties

	SUPA: Flow- and Context-Sensitivity
	Handling Recursion

	SUPA: Analyzing C++ Programs

	IMPLEMENTATION
	EVALUATION
	RQ1: C/C++ Micro-Benchmarks for Pointer Analysis
	Design of PTABen
	Testing C and C++ program features
	Validating flow-sensitive and context-sensitive analyses

	RQ2: Effectiveness and Precision of Our Demand-Driven Analysis
	Methodology
	Experimental Setup
	Evaluating Supa-FS

	RQ3: Evaluating Flow- and Context-Sensitive Supa
	RQ4: Evaluating Supa in Resolving C++ Virtual Calls
	RQ5: Case Studies

	RELATED WORK
	Flow-Sensitive Pointer Analysis
	Demand-Driven Pointer Analysis
	Hybrid Pointer Analysis

	Conclusion
	Biographies
	Yulei Sui
	Jingling Xue

