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George Mathew, Amritanshu Agrawal and Tim Menzies, Senior Member IEEE

Abstract—This paper explores the structure of research papers in software engineering. Using text mining, we study 35,391 software engineering (SE)
papers from 34 leading SE venues over the last 25 years. These venues were divided, nearly evenly, between conferences and journals. An important
aspect of this analysis is that it is fully automated and repeatable. To achieve that automation, we used topic modeling (with LDA) to mine 10 topics that
represent much of the structure of contemporary SE. The 10 topics presented here should not be “set in stone” as the only topics worthy of study in SE.
Rather our goal is to report that (a) text mining methods can detect large scale trends within our community; (b) those topic change with time; so (c) it is
important to have automatic agents that can update our understanding of our community whenever new data arrives.

Index Terms—Software Engineering, Bibliometrics, Topic Modeling, Text Mining
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1 INTRODUCTION

Each year, SE researchers spend much effort writing and
presenting papers to conferences, and journals. What can we
learn about all those papers? What are the factors that prevent
effective dissemination of research results? If we study patterns
of acceptance in our SE papers, can we improve how we do, and
report, research in software engineering?

Such introspection lets us answer important questions like:
1) Hot topics: What is the hottest topic in SE research? How is

this list of “hot topics” changes over time?
2) Breadth vs depth?: Should a researcher focus on one partic-

ular research topic or venture across multiple topics?
3) Gender Bias: Is there a gender based bias in SE research?
4) Where to publish: journals or conference?: What would be

the ideal venue for your latest research?
To answer such questions as these, this paper applies text mining
and clustering using LDA (Latent Dirichlet Allocation) to 35,391
SE papers from the last 25 years published in 34 top-ranked
conferences and journals. These venues are then clustered by
what topics they share. Using these information, we have answers
to many questions, including those shown above. Using these
results, journal and conference organizers could find more relevant
reviewers for a particular paper much faster. Also, research pro-
gram managers could find more relevant reviewers much faster for
grant proposals. Lastly, the administrators of funding bodies could
determine which areas of research are over/under-represented and,
hence, those that are worthy of less/more funding (respectively).

In summary, this paper makes the following contributions:
• A fully automatic and repeatable process for discovering a

topology between tens of thousands of technical papers.
• An open-source toolkit that other researchers can apply to other

sets of documents: see goo.gl/Au1i53.
• A large database that integrates all our results into one, easy-

to-query SQL database: see goo.gl/zSgb4i.
• A lightweight approach to gathering information about the

entire SE community. Using that information, we can not only
answer the four questions above, but many more like it.
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Source Code = code, source, information, tool, program, developers, patterns
Software process = requirements, design, systems, architecture,

analysis, process, development
Modeling = model, language, specification, systems, techniques, object, uml

Program Analysis = program, analysis, dynamic, execution, code, java, static
Metrics = metrics, data, quality, effort, prediction, defect, analysis

Developer = developer, project, bug, work, open, team, tools
Applications = applications, web, systems, component,

services, distributed, user
Testing = test, testing, cases, fault, techniques, coverage, generation

Performance = performance, time, data, algorithm, systems,
problem, network, distributed

Architecture = architecture, component, systems, design, product,
reuse, evolution

TABLE 1: The top 7 terms in the 10 major SE topics as found
by this research. Topics are ordered top-to-bottom, most-to-least
frequent. Also, terms within topics are ordered left-to-right most-
to-least frequent. Topics are named using the most frequent terms.

Further to the last point, the answers to our four questions are:
1) Regarding hot topics: We identify 10 major topics currently

in software engineering; see Table 1. Also, we show how
those groupings have changed over recent years.

2) The creation of a “reader” of the top venues in SE (see
Table 2) that lists the most-cited papers in our topics (see
Table 3).

3) Regarding breadth vs depth: We find that mono-focusing on
a single topic can lead to fewer citations than otherwise.

4) Regarding gender bias: We have mixed news here. The
percentage of women researchers in SE (22%) is much larger
than other fields (i.e., 11% in mathematics and 13% in
economics). Also, of the top 1000 most cited SE authors
(out of 35,406), the percentage of published women is on par
with the overall percentage of women in this field. That said,
of the top 10 most cited authors, only one is female.

5) Regarding where to publish, we offer a previously unreported
dichotomy between software conferences and journals. As
shown in Section 5.4, SE conference publications tend to
publish on different topics to SE journals and those con-
ferences publications earn a significantly larger number of
citations than journal articles (particularly in the last four
years).

The rest of this paper is structured as follows. We start of with the
description of the data used in this study from various sources and
its consolidation in Section 2. This is followed by a description

ar
X

iv
:1

60
8.

08
10

0v
10

  [
cs

.S
E

] 
 3

 O
ct

 2
01

8

https://goo.gl/Au1i53
https://goo.gl/zSgb4i


IEEE TRANSACTIONS IN SOFTWARE ENGINEERING, VOL. XXX, NO. XX, AUGUST XXXX 2

Index Short Name Type Start h5 Group
1 MDLS International Conference On Model Driven Engineering Languages And Systems Conf 2005 25 A1

SOSYM Software and System Modeling Jour 2002 28 A2
2 S/W IEEE Software Jour 1991 34 B1
3 RE IEEE International Requirements Engineering Conference Conf 1993 20 C1

REJ Requirements Engineering Journal Jour 1996 22 C2
4 ESEM International Symposium on Empirical Software Engineering and Measurement Conf 2007 22 D1

ESE Empirical Software Engineering Jour 1996 32 D2
5 SMR Journal of Software: Evolution and Process Jour 1991 19 E1

SQJ Software Quality Journal Jour 1995 24 E2
IST Information and Software Technology Jour 1992 44 E3

6 ISSE Innovations in Systems and Software Engineering Jour 2005 12 F1
IJSEKE International Journal of Software Engineering and Knowledge Engineering Jour 1991 13 F2
NOTES ACM SIGSOFT Software Engineering Notes Jour 1999 21 F3

7 SSBSE International Symposium on Search Based Software Engineering Conf 2011 15 G1
JSS The Journal of Systems and Software Jour 1991 53 G2
SPE Software: Practice and Experience Jour 1991 28 G3

8 MSR Working Conference on Mining Software Repositories Conf 2004 34 H1
WCRE Working Conference on Reverse Engineering Conf 1995 22 H2

ICPC IEEE International Conference on Program Comprehension Conf 1997 23 H3
ICSM IEEE International Conference on Software Maintenance Conf 1994 27 H4

CSMR European Conference on Software Maintenance and Re-engineering Conf 1997 25 H5
9 ISSTA International Symposium on Software Testing and Analysis Conf 1989 31 I1

ICST IEEE International Conference on Software Testing, Verification and Validation Conf 2008 16 I2
STVR Software Testing, Verification and Reliability Jour 1992 19 I3

10 ICSE International Conference on Software Engineering Conf 1994 63 J1
SANER IEEE International Conference on Software Analysis, Evolution and Re-engineering Conf 2014 25 J2

11 FSE ACM SIGSOFT Symposium on the Foundations of Software Engineering Conf 1993 41 K1
ASE IEEE/ACM International Conference on Automated Software Engineering Conf 1994 31 K2

12 ASEJ Automated Software Engineering Journal Jour 1994 33 L1
TSE IEEE Transactions on Software Engineering Jour 1991 52 L2

TOSEM Transactions on Software Engineering and Methodology Jour 1992 28 L3
13 SCAM International Working Conference on Source Code Analysis & Manipulation Conf 2001 12 M1

GPCE Generative Programming and Component Engineering Conf 2000 24 M2
FASE International Conference on Fundamental Approaches to Software Engineering Conf 1998 23 M3

TABLE 2: Corpus of venues (conferences and journals) studied in this paper. For a rationale of why these venues were selected, see
Section 2. Note two recent changes to the above names: ICSM is now called ICMSE; and WCRE and CSMR recently fused into
SANER. In this figure, the “Group” column shows venues that publish “very similar” topics (where similarity is computed via a cluster
analysis shown later in this paper). The venues are selected in a diverse range of their h5 scores between 2010 and 2015. h5 is the
h-index for articles published in a period of 5 complete years obtained from Google Scholar. It is the largest number “h” such that “h”
articles published in a time period have at least “h” citations each.

Topic Top Papers
Program Analysis 1992: Using program slicing in software maintenance; KB Gallagher, JR Lyle

2012: Genprog: A generic method for automatic software repair; C Le Goues, TV Nguyen, S Forrest, W Weimer
Software process 1992: A Software Risk Management Principles and Practices; BW Boehm

2009: Seven Process Modeling Guidelines (7PMG); J Mendling, HA Reijers, WMP van der Aalst
Metrics 1996: A validation of object-oriented design metrics as quality indicators; VR Basili, LC Briand, WL Melo

2012: A systematic literature review on fault prediction performance in software engineering; T Hall, S Beecham, D Bowes, D Gray, S Counsell
Applications 2004: Qos-aware middleware for web services composition; L Zeng, B Benatallah, AHH Ngu, M Dumas, J Kalagnanam, H Chang

2011: CloudSim: a toolkit for modeling & simulation of cloud computing; R.Calheiros, R.Ranjan, A.Beloglazov, C.De Rose, R.Buyya
Performance 1992: Spawn: a distributed computational economy; CA Waldspurger, T Hogg, BA Huberman

2010: A theoretical and empirical study of search-based testing: Local, global, and hybrid search; M Harman, P McMinn
Testing 2004: Search-based software test data generation: A survey; P McMinn

2011: An analysis and survey of the development of mutation testing; Y Jia, M Harman
Source Code 2002: CCFinder: A Multilinguistic Token-Based Code Clone Detection System for Large Scale Source Code; T Kamiya, S Kusumoto, K Inoue

2010: DECOR: A method for the specification and detection of code and design smells; N Moha, YG Gueheneuc, L Duchien, AF Le Meur
Architecture 2000: A Classification and Comparison Framework for Software Architecture Description Languages; N Medvidovic, RN Taylor

2009: Software architecture many faces many places yet a central discipline; RN Taylor
Modelling 1997: The model checker SPIN; GJ Holzmann

2009: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering; D Moody
Developer 2002: Two case studies of open source software development Apache and Mozilla; A Mockus, RT Fielding, JD Herbsleb

2009: Guidelines for conducting and reporting case study research in software engineering; P Runeson, M Host

TABLE 3: Most cited papers within our 10 SE topics. The first paper in each row is the top paper since 1991 and the second paper is
the top paper for the topic since 2009. For a definition of these topics, see Table 1.
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of how we used topic modeling to find representative topics
in SE. Next, Section 4 finds that the topics generated by topic
modelling are reasonable. Hence, Section 5 goes on to highlight
important case studies which can be used using the proposed
method. The threats to the validity of this study is described in
Section 6. Section 7 gives an overview of prior and contemporary
studies based on bibliometrics and topic modeling in SE literature.
Section 8 concludes this study by presenting the inferences of this
study and how it can aid the different sections of SE research
community.

Note that some of the content of this paper was presented
as a short two-page paper previously published in the ICSE-17
companion [29]. Due to its small size, that document discussed
very little of the details discussed here.

2 DATA

For studying the trends of SE, we build a repository of 35,391
papers and 35,406 authors from 34 SE venues over a period of 25
years between 1992-2016. This time period (25 years) was chosen
since it encompasses recent trends in software engineering such
as the switch from waterfall to agile; platform migration from
desktops to mobile; and the rise of cloud computing. Another
reason to select this 25 year cut off was that we encountered
increasingly more difficulty in accessing data prior to 1992; i.e.,
before the widespread use of the world-wide-web.

As to the venues used in this study, these were selected
via a combination of on-line citation indexes (Google Scholar),
feedback from the international research community (see below)
and our own domain expertise:
• Initially, we selected all the non-programming language peer-

reviewed conferences from the “top publication venues” list of
Google Scholar Metrics (Engineering and Computer Science,
Software Systems). Note that Google Scholar generates this
list based on citation counts.

• Initial feedback from conference reviewers (on a rejected ear-
lier version of this paper) made us look also at SE journals.

• To that list, using our domain knowledge, we added venues that
we knew were associated with senior researchers in the field;
e.g., the ESEM and SSBSE conferences.

• Subsequent feedback from an ICSE’17 companion presen-
tation [29] about this work made us add in journals and
conferences related to modeling.

This resulted in the venue list of Table 2.
For studying and analyzing those venues we construct a

database of 18 conferences, 16 journals, the papers published with
the metadata, authors co-authoring the papers and the citation
counts from 1992-2016. Topics for SE are generated using the
titles and abstracts of the papers published in these venues rather
than the entire text of the paper. Titles and abstracts have been
widely used in text based bibliometric studies [7], [16], [39]
primarily due to three reasons: (a) Titles and abstracts are designed
to index and summarize papers; (b) Obtaining papers is a huge
challenge due to copyright violations and its limited open source
access; (c) Papers contain too much text which makes it harder
to summarize the content. Abstracts on the other hand are much
more succinct and generate better topics.

The data was collected in five stages:
1) Venues are first selected manually based on top h5-index

scores from Google Scholar. It should be noted that all the
data collection method is automated if the source of papers

from a desired venue is provided. Thus, this can be expanded
to additional venues in the future.

2) For each venue, DOI (Document Object Identifier), authors,
title, venue & year for every publication between 1992-2016
is obtained by scrapping the html page of DBLP1. DBLP
(DataBase systems & Logic Programming) computer science
bibliography is an on-line reference for bibliographic infor-
mation on major computer science publications. As of Jan
2017, dblp indexes over 3.4 million publications, published
by more than 1.8 million authors.

3) For each publication, the abstract is obtained from the ACM
portal via AMiner2 [44] periodically on their website. Ab-
stracts for 21,361 papers from DBLP can be obtained from
the ACM dump. For rest of the papers, we use only the tiles
for the subsequent study.

4) For each publication, we obtain the corresponding citation
counts using crossref’s3 REST API.

5) The final stage involves acquiring the gender of each author.
We used the opensource tool4 developed by Vasilescu et al.
in their quantitative study of gender representation and online
participation [50]. We used a secondary level of resolution
for names that the tool could not resolve by referring the
American census data5. Of the 35,406 authors in SE in our
corpus we were able to resolve the gender for 31,997 authors.

Since the data is acquired from different sources, a great challenge
lies in merging the documents. There are two major sets of merges
in this data:
• Abstracts to Papers: A merge between a record in the ACM

dump and a record in the DBLP dump is performed by
comparing the title, authors, venue and the published year. If
these four entries match, we update the abstract of the paper in
the DBLP dump from the ACM dump. To verify this merge,
we inspected 100 random records manually and found all these
merges were accurate.

• Citation Counts to Papers: DOIs for each article can be ob-
tained from the DBLP dump, then used to query crossref’s
rest API to obtain an approximate of the citation count. Of
the 35,391 articles, citation counts were retrieved for 34,015 of
them.

3 TOPIC MODELING

Fig. 1: LDA

As shown in Figure 1, the LDA topic mod-
elling algorithm [6], [32] assumes D doc-
uments contain T topics expressed with W
different words. Each document d ∈ D of
length Nd is modeled as a discrete distri-
bution θ(d) over the set of topics. Each
topic corresponds to a multinomial distri-
bution over the words. α is the discrete
prior assigned to the distribution of topics
vectors(θ); and β for the distributions of
words in topics(ψ).

As shown in Figure 1, the outer plate
spans documents and the inner plate spans
word instances in each document (so the w node denotes the

1. http://dblp.uni-trier.de/
2. https://aminer.org/citation
3. https://www.crossref.org/
4. https://git.io/vdtLp
5. https://www.census.gov/2010census/

http://dblp.uni-trier.de/
https://aminer.org/citation
https://www.crossref.org/
https://git.io/vdtLp
https://www.census.gov/2010census/
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observed word at the instance and the z node denotes its topic).
The inference problem in LDA is to find hidden topic variables z,
a vector spanning all instances of all words in the dataset. LDA
is a problem of Bayesian inference. The original method used is
a variational Bayes approximation of the posterior distribution [6]
and alternative inference techniques use Gibbs sampling [20] and
expectation propagation [30].

There are many examples of the use of LDA in SE. For
example, Rocco et al. [33] used text mining and Latent Dirichlet
Allocation (LDA) for traceability link recovery. Guzman and
Maleej perform sentiment analysis on App Store reviews to
identify fine-grained app features [21]. The features are identified
using LDA and augmented with sentiment analysis. Thomas et al.
use topic modeling in prioritizing static test cases [48].

Topic modeling is powered by three parameters; 1) k: Number
of topics 2) α : Dirichlet prior on the per-document topic distribu-
tions 3) η: Dirichlet prior on the per-topic word distribution.

To set these parameters, we used perplexity to find the best k
number of topics. Perplexity is the probability of all the words in
an untrained document given the topic model, so most perplexity
is best. To use perplexity, we varied topics from 2 to 50, then ran
a 20 fold cross-validation study (95%/5% splits of data, clusters
generated on train, perplexity assessed on test). Those runs found
no significant improvement in perplexity after k = 10.

Next, we had to find values for {α, η}. By default, LDA sets
these to α = 1

#topics = 0.05 and η = 0.01. The simplest way
of tuning them would be to explore the search space of these
parameters exhaustively. This approach is called grid-search and
was used in tuning topic modeling [4]. The prime drawback of this
approach is the time complexity and can be very slow for tuning
real numbers. Alternatively, numerous researchers recommend

tuning these parameters using Genetic Algorithms(GA) [26],
[34], [41]. In a GA, a population of candidate solutions are
mutated and recombined towards better solutions. GA is also slow
when the candidate space is very large and this is true for LDA
since the candidates (α and β) are real valued. Hence, inspired
from the work by Fu et al. on tuning learners in SE [12], we
use Differential Evolution (DE) for parameter tuning. Differential
evolution randomly picks three different vectors B,C,D from a
list called F (the frontier) for each parent vector A in F [40].
Each pick generates a new vector E (which replaces A if it scores
better). E is generated as follows:

∀i ∈ A,Ei =

{
Bi + f ∗ (Ci −Di) if R < cr

Ai otherwise
(1)

where 0 ≤ R ≤ 1 is a random number, and f, cr are constants
that represent mutation factor and crossover factor respectively
(following Storn et al. [40], we use cr = 0.3 and f = 0.7). Also,
one value from Ai (picked at random) is moved to Ei to ensure
that E has at least one unchanged part of an existing vector. The
objective of DE is to maximize the Raw Score (<n) which is
similar to the Jaccard Similarity [13]. Agrawal et al. [1] have
explained the <n in much more detail. After tuning on the data,
we found that optimal values in this domain are k, α & β are 11,
0.847 & 0.764 respectively.

4 SANITY CHECKS

Before delving into the results of the research it is necessary to
critically evaluate the topics generated by LDA and the clustering
of venues.

Fig. 2: Hierarchical clustering heatmap of Topics and Venues between the years 2009-2016. Along the top, green denotes journals and
red denotes a conference. Along the left side, the black words are the topics of Table 1. Topics are sorted top-to-bottom, most-to-least
frequent. Each cell in the heatmap depicts the frequency of a topic in a particular venue. The tree diagrams above the venues show the
results of a bottom up clustering of the venues with respect to the topics. In those clusters, venues are in similar sub-trees if they have
similar pattern of topic frequencies.
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4.1 Are our Topics Correct?

We turn to Figure 2 to check the sanity of the topics. Figure 2
shows the results of this hierarchical clustering technique on
papers published between 2009 and 2016. Topics are represented
on the vertical axis and venues are represented on the horizontal
axis. The green venues represents journals and the red represents
conferences. Each cell in the heatmap indicates the contribution
of a topic in a venue. Darker colored cells indicate strong con-
tribution of the topic towards the venue while a lighter color
signifies a weaker contribution. Venues are clustered with respect
to the distribution of topics using the linkage based hierarchical
clustering algorithm on the complete scheme [31]. The linkage
scheme determines the distance between sets of observations as
a function of the pairwise distances between observations. In this
case we used the euclidean distance to compare the clusters with
respect to the distributions of topics in each venue in a cluster. In
a complete linkage scheme the maximum distance between two
venues between clusters is used to group the clusters under one
parent cluster.

max{euclid(a, b) : a ∈ clusterA, b ∈ clusterB}

The clusters can be seen along the vertical axis of Figure 2. Lower
the height of the dendogram, stronger the cohesion of the clusters.
Several aspects of Figure 2 suggest that our topics are “sane”.
Firstly, in that figure, we can see several examples of specialist
conferences paired with the appropriate journal:
• The main modeling conference and journal (MDLS and

SOSYM) are grouped together;
• The requirements engineering conference and journal are

grouped together: see RE+REJ;
• The empirical software engineering conference and journals are

also grouped: see ESEM+ESE;
• Testing and verification venues are paired; see ICST+STVR.

Secondly, the topics learned by LDA occur at the right frequencies
in the right venues:
• The modeling topics appears most frequently in the modeling

conference and journal (MDLAS and SOSYM);
• The software process topic appears most frequently in RE and

REJ; i.e., the requirements engineering conference and journal.
• The testing topic appears most frequently in the venues devoted

to testing: ISSTA, ICST, STVR;
• The metrics topic occurs most often at venues empirically

assess software engineering methods: ESEM and ESE.
• The source code topic occurs most often at venues that fo-

cus most on automatic code analysis: ICSM, CSMER, MSR,
WCRE, ICPC.

• Generalist top venues like ICSE, FSE, TSE and TOSEM have
no outstanding bias towards any particular topic. This is a
useful result since, otherwise, that would mean that supposedly
“generalist venues” are actually blocking the publication of
certain kinds of papers.

Thirdly, when we examine the most-cited papers that fall into
our topics, it can be seen that these papers nearly always clearly
correspond to our topics names (exception: the “software process”
topic, discussed below).

4.2 Are 10 Topics Enough?

After instrumenting the internals of LDA, we can report that
the 10 topics in Table 1 covers over 95% of the papers. While

Fig. 3: Log Score of terms in each topic.

increasing the number of topics post 10 reported no large change
in perplexity, those occur at diminishingly low frequencies. As
evidence of this, recall that the rows of Figure 2 are sorted top-to-
bottom most-to-least frequent. Note that the bottom few rows are
mostly white (i.e., occur at very low frequency) while the upper
rows are much darker (i.e., occur at much higher frequency). That
is, if we reported more than 10 topics then the 11th, 12th etc would
occur at very low frequencies. Thus all the less frequent topics are
grouped into a single topic called Miscellaneous.

We note that this study is not the only one to conclude that
SE can be reduced to 10 topics Other researchers [7], [8], [17]
also report that 90% of the topics can be approximated by about a
dozen topics.

4.3 Are Our Topics Correctly Labelled?

Another question to ask is whether or not the topics of Table 1
have the correct labels. For example, we have assigned the
label “Program analyis” to the list of terms “program, analysis,
dynamic, execution, code, java, static”. More generally, we have
labelled all our topics using first one or two words (exception:
“software process”, which is discussed below). Is that valid?

We can verify this question two different ways:
• Mathematically: Figure 3 shows the LDA score for each term

in our topics. The x-axis orders the terms in same order as
the right-hand-column of Table 1. The y-axis of that plot
logarithmic; i.e., there is very little information associated
with the latter words. It can be seen that terms from one
topic(Miscellaneous) has relatively lower scores compared to
other topics. This further justifies the grouping of all the lesser
topics into a single topic.

• Empirically: Table 3 enlists the top papers associated with
each topics. The abstracts of these papers contain the terms
constituting the topics.

Overall, the evidence to hand suggests that generated labels from
the first few terms is valid. That said, one topic was particularly
challenging to label. For papers in the “software process” topic,
we found a wide variety of research directions. For example, the
title of two papers listed in this topic in Table 3 includes “software
risk management” and “process modeling guidelines”. Other top-
cited papers in this group discussed methods for configuration and
dynamic analysis of software tools. As we read more papers from
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Fig. 4: Are our topics stable? Here, we show a heat
map of topics in venues (2009-2016) after removing four
MDLS, SOSYM,SCAM, ICPC . Note that even with those
removals, we find nearly the same patterns as Figure 2.

this topic, a common theme emerged; i.e. how to decide between
possible parts from a set of risk, process, or product options.

4.4 Do topics adapt to change in venues?
Finally we check how the topics vary when venues are added. It
should be noted that no study can cover all papers from all venues.
Hence, it is important to understand how the addition of more
venues might change the observed structures. For our work, we
kept adding new venues until our topics stabilizes. To demonstrate
that stability, we show here the structures seen before and after
removing the last venues added to this study:
• MDLS and SOSYM : These two venues focused extensively

on modeling. It should be noted that modeling was the third
most frequent topic in the literature during 2009-2016 and was
primarily due to these two venues.

• SCAM : A venue which heavily focuses on Source Code and
Program Analysis.

• ICPC: Another venue that focuses heavily on Source Code.
Once these venues were removed, we performed LDA using the
same hyper-parameters. The resultant clustered heatmap is shown
in Figure 4. We can observe that

1) The topic “Modeling” is now not present in the set of topics
anymore. Rather a weak cluster called “Database” is formed
with the remnants.

2) “Software process” is now the most popular topic since none
of the venues removed were contributing much towards this
topic.

3) “Source Code” has gone down the popularity since two
venues contributing towards it were removed.

4) “Program Analysis” stays put in the rankings but “Developer”
goes above it since one venue contributing towards “Program
Analysis” was removed.

5) The sanity clusters we identified in Section 4.2 stays intact
implying that the clustering technique is still stable.

Based on these results, we can see that a) on large changes to
venues contributing towards topics, the new topics are formed and
the existing topics almost stays intact; b) on small changes to
venues contributing towards topics, the topics either become more
or less prominent but new topics are not created. Thus, we can see
that the topics produced by this approach is relatively adaptable.

5 DISCUSSION

5.1 What are the Hottest topic in SE Research?

Fig. 5: Changes in conference topics, 1992-2016. Arrows are used
to highlight the major trends. This is a stacked diagram where, for
each year, the most popular topic appears at the bottom of each
stack. That is, as topics become more frequent, they fall towards
the bottom of the plot. Conversely, as topics become less frequent,
then rise towards the top.

Fig. 6: Changes in journal topics, 1992-2016. Same format as
Figure 5. Note that some popular conference topics (e.g. source
code, program analysis, testing) are currently not popular journal
topics.

Figure 5 and Figure 6 show how the topics change in confer-
ences and journals over the last 25 years of software engineering.
These are stacked diagrams where, for each year, the more popular
topic appears nearer the bottom of each stack. Arrows are added
to highlight major trends in our corpus:

• Downward arrows denote topics of increasing popularity.;
• Upward arrows show topics of decreasing popularity.

One clear trend in both figures is that some topics are far more
popular than others. For example, at the conferences (Figure 5):

• Source code, program analysis, and testing have become very
popular topics in the last decade.
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• Performance and security concerns have all disappeared in our
sampled venues. Performance appears, a little, in journals but
is far less popular that many other topics.

• Modeling is a topic occurring with decreasing frequency in our
sample.

This is not to say that performance, modeling and security research
has “failed” or that no one works on this topics anymore. Rather,
it means that those communities have moved out of mainstream
SE to establish their own niche communities.

As to the low occurrence of performance and the absence of
any security terms in Table 1, this is one aspect of these results
that concerns us. While we hear much talk about security at the
venues listed in Table 2, Figure 5 and Figure 6, security research is
not a popular topic in mainstream software engineering. Given the
current international dependence on software, and all the security
violations reported due to software errors6, it is surprising and
somewhat alarming that security is not more prominent in our
community. This is a clear area where we would recommend rapid
action; e.g.,
• Editors of software journals might consider: increasing the

number of special issues devoted to software security;
• Organizers of SE conferences might consider changing the

focus of their upcoming events.

5.2 Breadth vs Depth?
What patterns of research are most rewarded in our field? For
greater recognition, should a researcher focus on multiple topics
or stay dedicated to just a few? We use Figure 7 to answer this
question. This figure compares all authors to those with 1%, 10,%,
and 20% of the top ranked authors based on their total number of
citations. The x-axis represents the cumulative number of topics
covered (ranging from 1-10). The y-axis shows the number of
authors working on xi topics where xi is a value on the x-axis.
The patterns in the figure are quite clear
• More authors from the corpus focus on fewer number of topics.
• This trend reverses when it comes to the top authors. We can

see that in the top 1% and 10% of authors (and to a lesser
degree in the top 20%), more authors focus on fewer number
of topics.

• If an author focuses on all the topics, almost always the author
would be in the top 20% of the SE research community.

• Very few authors (3 to be precise) in the top 1% authors focus
specifically on a single topic.
From this, we offer the following advice. The field of SE is

very broad and constantly changing. Some flexibility in research
goals tend to be most rewarding for researchers who explore
multiple research directions.

5.3 Gender Bias?
Recent research has raised the spectre of gender bias in research
publications [37], [46], [52]. In our field, this is a major concern.
For example, a recent study by Roberts et al. show that conference
reviewing methods have marked an impact on the percentage of
women with accepted SE papers [37]. Specifically, they showed
that the acceptance of papers coauthored by women increased after
the adoption of the double blind technique.

Accordingly, this section checks if our data can comment on
gender bias in SE research. The conjecture of this section is that if

6. See https://catless.ncl.ac.uk/Risks/search?query=software+security.

Fig. 7: Represents number of authors (on log scale) exploring
different number of topics for the top 20%, 10%, and 1% authors
based on citation counts.

the percentage of women authors is W0%, then the percentage
of women in top publications should also be W1 ≈ W0%.
Otherwise, that would be evidence that while this field is accepting
to women authors, our field is also denying those women senior
status in our community.

Based on our survey of 35,406 authors in our corpus, the ratio
of women in SE was increasing till 2004 and since then it has
stayed around 22%. This can be inferred from Figure 8 which is
a bar chart representing percentage of women in SE each year.
Thus, for this study we can say that W0 = 22%

Figure 9 shows a line chart with the percentage of women W1

in the top 10 to 1000 most-cited papers in SE (red solid line). The
chart also shows the expected value of the percentage of women
W0 (blue dashed line). These figures gives us mixed results
• On the upside 23% of the authors in the top 100+ authors are

women.
• But on the downside only 15% authors in the top 20 are women

and it drops down to 10% in the top 10.
Although there is an evident bias towards the male community

when it comes to the upper echelon of SE, on a larger scale there
is evidence of increasing participation in SE research. This is
observed in the rise of female authors in SE from less than 8%
in 1991 to close to 22% in 2015 and over 23% of the top 100+
authors in SE being female. When compared to other traditional
areas of research, the SE field is much ahead (mathematics -
11.2% and economics - 13.1%). But there is no denying that
the SE community is well behind other scientific fields like
veterinary medicine(35.1%) and cognitive science (38.3%) where
more women are collaborating in research [52].

This section has explored one specific bias within the SE
community. Apart from the above, there may well be other kinds
of biases that systematically and inappropriately disadvantage
stratifications within our community. One role for the tools dis-
cussed in this paper allows us to introspect and detect those other
kinds of biases.

5.4 Where to publish: journals or conference?

Figure 5 and Figure 6 report sharp differences between the kinds
of topics published at SE journals and conferences. For example:

https://catless.ncl.ac.uk/Risks/search?query=software+security
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Fig. 8: % of female authors from 1991-2015. From the figure, we
can see that the SE community saw a great rise in female authors
until the late 90s. Since then, the percentage of women in SE has
remained around 20-23%

Fig. 9: % of women in top 10 to 1000 authors in SE using the total
number of citations. Red solid line represents the actual value
(W1). While the blue dotted line represents the expected value
(W0) which is the percentage of women in SE.

• In journals, metrics, modeling and software process appear
quite often. But in conferences they appear either rarely or (in
the case of modeling) remarkably decreasing frequency in the
last decade.

• In conferences, source code, program analysis, and testing
appear to have become very prominent in the last decade but
these topics barely appear in journals.

Hence, we say that SE journals and SE conferences clearly accept
different kinds of papers. Is this a problem? Perhaps so. Using
our data, we can compute the number of citations per year for
papers published at different venues. Consider Table 4 which
shows the median (Med) and inter-quartile range (IQR) for the
average number of citations per year for conferences and journals.
Table 4 shows that the median of average cites per year (in the
future for the papers published in a given year) has been steadily
increasing since 2000. When same data from Table 4 is looked at
but this time broken down into conferences and journals:

• A red background indicates when conferences are receiving
more citations per year;

• A green background indicates when journals papers are re-
ceiving more citations per year;

• Otherwise, there is no statistically difference between the two
distributions.

For this analysis, “more citations” means that the distributions are
statistically significantly different (as judged via the 95% confident
bootstrap procedure recommended by Efron & Tibshirani [10,
p220-223]) and that difference is not trivially small (as judged
by the A12 test endorsed by Arcuri et al. at ICSE ’11 [3]).

Note that until very recently (2009), journal papers always
achieved statistically more cites per year than conference papers.
However, since 2012, conference papers now receive more cites
per year. These statistics justify Fernandes’ 2014 study [11] where
he states that since 2008, there has been a significant increase

Year Conference Journal
Med IQR Median IQR

1992 0.08 0.20 0.12 0.60
1993 0.08 0.33 0.13 0.46
1994 0.09 0.35 0.13 0.43
1995 0.27 0.64 0.14 0.45
1996 0.10 0.33 0.05 0.48
1997 0.10 0.30 0.10 0.50
1998 0.26 0.63 0.11 0.63
1999 0.06 0.28 0.06 0.50
2000 0.12 0.59 0.06 0.47
2001 0.13 0.50 0.25 1.00
2002 0.20 0.60 0.27 1.13
2003 0.29 0.71 0.36 1.14
2004 0.23 0.69 0.38 1.23
2005 0.33 0.75 0.25 0.92
2006 0.18 0.82 0.45 1.36
2007 0.40 1.00 0.50 1.50
2008 0.44 1.11 0.78 1.78
2009 0.38 1.00 0.63 1.75
2010 0.57 1.43 0.71 1.71
2011 0.67 1.50 0.67 1.83
2012 0.80 2.00 0.80 1.60
2013 0.75 2.50 0.75 1.75
2014 1.00 2.00 0.67 2.00
2015 1.00 2.00 0.50 2.00

Conference Journal

TABLE 4: Median (Med) and Inter Quartile Range (IQR=inter-
quartile range= (75-25)th range) of average cites per year for
articles published in conferences and journals between 1992-2015.
Column one colors denote the years when either Conferences or
Journals received a statistically significantly larger number of

citations per year.

(almost double) in the number of conference publications over
journal articles.

There any many actions journal editors could undertake to
mitigate this trend. For example, a recent trend in SE conferences
are the presentation of “Journal-First” papers that have already
appeared in journals. Since they are being seen by a larger
audience, such journal-first papers might receive more citations
per year. Also, once a journal becomes known for a Journal-first
program, then that could increase the number of submissions to
that journal.

6 THREATS TO VALIDITY

This paper is less prone to tuning bias and order bias that other
software analytics papers. As discussed earlier in section 3, we
use differential evolution o find our tunings.

The main threat to validity of our results is sampling bias. The
study can have two kinds of sampling bias

• This study only accessed the accepted papers but not the
rejected ones. Perhaps if both accepted and rejected papers are
studied, then some patterns other that the ones reported here
might be discovered. That said, sampling those rejected papers
is problematic. We can access 100% of accepted papers via on-
line means. Sampling rejected papers imply asking researchers
to supply their rejected papers. The experience in the research
community with such surveys is that only a small percent of
respondents reply [38] in which case we would have another
sampling bias amongst the population of rejected papers. Addi-
tionally, most researchers alter their rejected papers in-line with
an alternate conference/journal and make a new submission to
the venue. At the time of this writing, we do not know how to
resolve this issue.
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• The paper uses 34 top venues considering their online citation
indices and feedback from the software engineering community
(see Section 2). Thus, there will always be a venue missing
from such a study and can be considered. This can raise
questions on the sanity of the 10 topics which model SE.
But, the scale of a study to consider all the publications even
remotely related to SE is extremely large. Hence in section 4.2
we show that the topics remain similar when a reduced set of
venues are used. Thus, this bias can be overcome to a great
extent if a diverse set of venues are considered.

Section 5.3 discussed if there exists a gender bias in SE research.
There, we commented that, measured in terms of women partic-
ipation, the SE community seems to be falling behind fields like
veterinary medicine and cognitive science. This might be due to
the fact there could be a lower influx of women into graduate
studies, thereby producing a lower pool of potential researchers.
An alternative explanation might be due to students stopping their
studies before graduation due to the highly rewarding industrial
career in Computer Science for undergraduates (compared to other
fields). More research is needed on this point.

7 RELATED WORK

To the best of our knowledge, this paper is the largest study of
the SE literature yet accomplished (where “large” is measured in
terms of number of papers and number of years).

Unlike prior work [17], [19], [35], [53] our analysis is fully au-
tomatic and repeatable. The same is not true for other studies. For
example, the Ren and Taylor [35] method of ranking scholars and
institutions incorporate manual weights assigned by the authors.
Those weights were dependent on expert knowledge and has to
be updated every year. Our automation means that this analysis is
quickly repeatable whenever new papers are published.

7.1 Bibliometrics Based Studies
Multiple bibliometric based studies have explored patterns in SE
venues over the last decades. Some authors have explored only
conferences [43], [51] or journals [22] independently while some
authors have explored a mixture of both [7], [11], [35].

Early bibliometric studies were performed by Ren & Taylor
in 2007 where they assess both academic and industrial research
institutions, along with their scholars to identify the top ranking
organizations and individuals [35]. They provide an automatic and
versatile framework using electronic bibliographic data to support
such rankings which produces comparable results as those from
manual processes. This method although saves labor for evaluators
and allow for more flexible policy choices, the method does not
provide a spectrum of the topics and the publication trends in SE.

Later in 2008, Cai & Card [7] analyze 691 papers from 14
leading journals and conferences in SE. They observe that 89%
of papers in SE focus on 20% of the subjects in SE, including
software/program verification, testing and debugging, and design
tools and techniques. We repeat this study over a wider spread of
publications, venues and authors (see Section 2) and the results
conform with their observations.

In 2012, Hamadicharef performed a scientometrics study
on IEEE Transactions of Software Engineering (TSE) for three
decades between 1980-2010 [22]. He analyzes five different ques-
tions
• Number of publications: A quasi-linear growth in number of

publications each year.

• Authorship Trends: It is observed that, a large number of
articles in the 80s had only one or two co-authors but since the
turn of the century it seemed to increase more papers having 5,
6 or 7 co-authors.

• Citations: The most cited TSE paper in this period had 811
cites and on an average a paper was cited 22.22 times with a
median of 9 cites. On the other hand 13.38% papers were never
cited. A larger study over 34 venues was repeated in this paper
comparing the citation trends between conferences and journals
(See Section 5.4).

• Geographic Trends: 46 different countries contribute to TSE
between this period. 57% of the contributions to TSE come
from USA, close to 21% come from Europe and less than 1%
publications come from China.

• # of References: The average number of references per article
increases 12.9 to 42.9 between 1980 to 2010.

A much larger study using 70,000 articles in SE was conducted
in 2014 by Fernandes [11]. He observes that the number of new
articles in SE doubles on an average every decade and since 2008
conferences publish almost twice as many papers as journals every
year. Though the paper fails to address how the citation trends have
been varying between conferences and journals and if it attributes
towards the increased number of publications in conferences over
journals.

More recently, Garousi and Fernandes [15] et al. performed
a study based on citations to identify the top cited paper in SE.
This study was based on two metrics: a) total number of citations
and b) average annual number of citations to identify the top
papers. The authors also go to the extent of characterizing the
overall citation landscape in Software Engineering hoping that this
method will encourage further discussions in the SE community
towards further analysis and formal characterization of the highly-
cited SE papers.

Geographical based bibiliometric studies on Turkish [14] and
Canadian [18] SE communities were performed by Garousi et
al. to study the citation landscape in the respective countries.
They identify a lack of diversity in the general SE spectrum,
for example, limited focus on requirements engineering, software
maintenance and evolution, and architecture. They also identify a
low involvement from the industry in SE. Since these studies were
localized to a certain country, it explored lesser number of papers

Citation based studies have also evolved into adoption of
measures such as h-index and g-index to study the success of an
SE researcher. Hummel et al. in 2013 analyzed the expressiveness
of modern citation analysis approaches like h-index and g-index
by analyzing the work of almost 700 researchers in SE [25]. They
concluded that on an average h-index for a top author is around
60 and g-index is about 130. The authors used citations to rank
authors and some researchers are apprehensive to this definition
of success [9], [11].

Vasilescu et al. studied the health of SE conferences with re-
spect to community stability, openness to new authors, inbreeding,
representatives of the PC with respect to the authors community,
availability of PC candidates and scientific prestige [51]. They
analyzed conference health using the R project for statistical
computing to visualize and statistically analyze the data to detect
patterns and trends [45]. They make numerous observations in this
study
• Wide-scoped conferences receive more submissions, smaller

PCs and higher review load compared to narrow scoped con-
ferences.
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• Conferences considered in the study are dynamic and have
greater author turnover compared to its previous edition.

• Conferences like ASE, FASE and GPCE are very open to new
authors while conferences like ICSE are becoming increasingly
less open.

• Lesser the PC turnover, greater the proportion of papers ac-
cepted among PC papers.

• Narrow-scoped conferences have more representative PCs than
wide-scoped ones.

• Not surprisingly, the higher the scientific impact of a confer-
ence, the more submissions it attracts and tend to have lower
acceptance rates. The authors work is very detailed and gives a
detailed summary of SE conferences.

Although this paper is very extensive, the authors do not explain
the topics associated with venues (Section 4.3 and Section 5.1)
or how conferences and journals are similar/different from each
other(Section 5.4).

7.2 Topic Modeling

Another class of related work are Topic Modeling based studies
which has been used in various spheres of Software Engineering.
According to a survey reported by Sun et al. [42], topic modeling
is applied in various SE tasks, including source code compre-
hension, feature location, software defects prediction, developer
recommendation, traceability link recovery, re-factoring, software
history comprehension, software testing and social software en-
gineering. There are works in requirements engineering where it
was necessary to analyze the text and come up with the important
topics [5], [28], [47]. People have used topic modeling in priori-
tizing test cases, and identifying the importance of test cases [23],
[54], [55]. Increasingly, it has also become very important to have
automated tools to do SLR [49]. We found these papers [2], [27],
[36] who have used clustering algorithms (topic modeling) to do
SLR.

Outside of SE, in the general computer science (CS) litera-
ture, a 2013 paper by Hoonlor et al. highlighted the prominent
trends in CS [24]. This paper identified trends, bursty topics,
and interesting inter-relationships between the American National
Science Foundation (NSF) awards and CS publications, finding,
for example, that if an uncommonly high frequency of a specific
topic is observed in publications, the funding for this topic is
usually increased. The authors adopted a Term Frequency Inverse
Document Frequency (TFIDF) based approach to identify trends
and topics. A similar approach can be performed in SE considering
how closely CS is related to SE.

Garousi and Mantyla recently have adopted a Topic Modeling
and Word Clustering based approach to identify topics and trends
in SE [16] similar to the research by Hoonloor et al. [24]. Although
their method is very novel and in line with the current state of the
art, but they used only the titles of the papers for modeling topics.
This might lead to inaccurate topics as titles are generally not very
descriptive of the field the paper is trying to explore. This issue is
addressed in the current work where we use the abstracts of the
paper which gives more context while building models.

In 2016, Datta et al. [8] used Latent Dirichlet Allocation to
model 19000 papers from 15 SE publication venues over 35 years
into 80 topics and study the half life of these topics. They coin the
term “Relative Half Life” which is defined as the period between
which the “importance” of the topic reduces to half. They further
define two measures of importance based on the citation half life

and publication half life. The choice of 80 topics is based on lowest
log likelihood and although very novel but the authors do not shed
light on the individual topic and the terms associated with it. Note
that we do not recommend applying their kind of analysis since it
lacks automatic methods for selecting the control parameters for
LDA whereas our method is automatic.

8 CONCLUSIONS

Here, text mining methods were applied to 35,391 documents
written in the last 25 years from 34 top-ranked SE venues. These
venues were divided, nearly evenly, between conferences and
journals. An important aspect of this analysis is that it is fully
automated. Such automation allows for the rapid confirmation
and updates of these results, whenever new data comes to hand.
To achieve that automation, we used a topic modeling technique
called LDA (augmented with an automatic assistant for tuning the
control parameters called differential evolution).

Sometimes we are asked what is the point of work like this?
“Researchers,” say some, “should be free to explore whatever
issues they like, without interference from some burdensome
supervision body telling them what they should, or should not
conduct particular kinds of research”. While this is a valid point,
we would say that this actually endorses the need for the research
in this paper. We fully accept and strongly endorse the principle
that researchers should be able to explore software engineering,
however their whims guide them. But if the structure of SE
venues is inhibiting, then that structure should change. This is an
important point since, as discussed above, there are some troubling
patterns within the SE literature:
• There exists different sets of topics that tend to be accepted to

SE conferences or journals; researchers exploring some topics
contribute more towards certain venues.

• We show in Section 5.4 that a recent trend where SE con-
ference papers are receiving significantly larger citations per
year than journal papers. For academics whose career progress
gets reviewed (e.g., during the tenure process; or if ever those
academics are applying for new jobs), it is important to know
what kinds of venues adversely affect citation counts.

• We also highlighted gender bias issues that need to be explored
more in future work.

We further suggest that, this method can also be used for strategic
and tactical purposes. Organizers of SE venues could use them
as a long-term planning aid for improving and rationalizing how
they service our research community. Also, individual researchers
could also use these results to make short-term publication plans.
Note that our analysis is 100% automatic, thus making it readily
repeatable and easily be updated.

It must further be stressed that, the topics reported here should
not be “set in stone” as the only topics worthy of study in SE.
Rather our goal is to report that (a) text mining methods can detect
large scale trends within our community; (b) those topics change
with time; so (c) it is important to have automatic agents that can
update our understanding of our community whenever new data
arrives.
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