
PPChecker: Towards Accessing the
Trustworthiness of Android Apps’

Privacy Policies
Le Yu , Xiapu Luo , Jiachi Chen, Hao Zhou, Tao Zhang , Henry Chang , and Hareton K. N. Leung

Abstract—Recent years have witnessed a sharp increase of malicious apps that steal users’ personal information. To address users’

concerns about privacy risks and to comply with data protection laws, more and more apps are supplied with privacy policies written in

natural language to help users understand an app’s privacy practices. However, little is known whether these privacy policies are

trustworthy or not. Questionable privacy policies may be prepared by careless app developers or someone with malicious intention. In

this paper, we carry out a systematic study on privacy policy by proposing a novel approach to automatically identify five kinds of

problems in privacy policy. After tackling several challenging issues, we implement the approach in a system, named PPChecker, and

evaluate it with real apps and their privacy policies. The experimental results show that PPChecker can effectively identify questionable

privacy policies with high precision. Applying PPChecker to 2,500 popular apps, we find that 1,850 apps (i.e., 74.0 percent) have at

least one kind of problems. This study sheds light on the research of improving and regulating apps’ privacy policies.

Index Terms—Android apps, privacy policy

Ç

1 INTRODUCTION

SMARTPHONE has become an indispensable part of our
daily lives thanks to the great driving force from apps.

Actually, the global app economy reached $77 billion in
2017 [1] and expected to rise to $110 billion in 2018 [2]. Since
the number of various malicious apps (e.g., malware, ran-
somware, adware, etc.) is also rapidly increasing [3], users
are very concerned about the privacy risks when using apps
[4], [5]. Although Android lists the permissions required by
each app before installation, it is usually difficult for normal
users to understand the potential threats by just reading the
permissions [6].

App developers can upload a privacy policy to Google
Play for declaring what information from users will be col-
lected, used, retained, or disclosed [7]. A survey showed
that 76 percent free apps in Google Play have provided pri-
vacy policies in 2012 [8]. Many jurisdictions have enacted
the privacy laws to require developers to include privacy
policies with their apps, such as, California [9] and its Cali-
fornia Online Privacy Protection Act(CalOPPA) [10], the

Data Protection Directive(95/46/EC) [11] in European
Union, etc. Federal Trade Commission (FTC) suggests
mobile developers to prepare privacy policies for their
apps [12] and provides guidance [13]. Moreover, Google
Play recently required developers to provide a valid privacy
policy when the app requests or handles sensitive user or
device information. If developers do not meet these policy
requirements, Google can “limit the visibility of your app”
or even remove the app [14].

Unfortunately, it is not easy to prepare an accurate
privacy policy for an app due to many reasons [15], [16].
For instance, it is not uncommon that the author of a pri-
vacy policy is different from the app developer if the
app is outsourced. As another example, if an app uses
third-party libs, the app’s privacy policy should cover
these libs’ behaviors or at least mention using them.
However, Balebako et al. find that around half of devel-
opers do not know for sure what information will be col-
lected by third-party libs in their apps [17], because few
third-party libs provide source code and they are often
less transparent about their data collection practice. It is
worth noting that inaccurate privacy policies will lead to
fines. For example, FTC fined Path $800,000 because its
privacy policy failed to mention that it will retain users’
information [18].

Therefore, given an app and its privacy policy, user may
wonder whether they can trust the privacy policy or not.
Although manually dissecting apps and scrutinizing the
privacy policies could answer this question, it is time-con-
suming. In this paper, we propose a novel approach and
develop a system named PPChecker to automatically iden-
tify problems in privacy policy. The output of PPChecker can
facilitate app stakeholders to spot issues in their privacy

� L. Yu, X. Luo, J. Chen, H. Zhou, and H.K.N. Leung are with the Department
of Computing, Hong Kong Polytechnic University, Hong Kong.
E-mail: {yulele08, chenjiachi317, sunmoonsky0001}@gmail.com,
csxluo@comp.polyu.edu.hk, hareton.leung@polyu.edu.hk.

� T. Zhang is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong, and also with the College of Computer Science
and Technology, Harbin Engineering University, Harbin 150001, China.
E-mail: cstzhang@hrbeu.edu.cn.

� H. Chang is with the Department of Law, University of Hong Kong,
Hong Kong. E-mail: hcychang@hku.hk.

Manuscript received 14 Jan. 2018; revised 27 Aug. 2018; accepted 30 Nov.
2018. Date of publication 14 Dec. 2018; date of current version 11 Feb. 2021.
(Corresponding author: Xiapu Luo.)
Recommended for acceptance by S. Malek.
Digital Object Identifier no. 10.1109/TSE.2018.2886875

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021 221

0098-5589 � 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6004-9880
https://orcid.org/0000-0002-6004-9880
https://orcid.org/0000-0002-6004-9880
https://orcid.org/0000-0002-6004-9880
https://orcid.org/0000-0002-6004-9880
mailto:
mailto:
mailto:
mailto:
mailto:

policies, help normal users to determine the trustworthiness
of apps, and assist app owners and regulators like FTC to
identify questionable apps. The checking of inaccurate pri-
vacy policies can also be used to detect malicious apps. For
example, the hidden behaviors detected in an incomplete
privacy policy may come from a malicious component of
repackaged app [19]. Moreover, an adversary can create an
incorrect privacy policy to cheat users.

It is challenging to design and develop PPChecker
because of the following reasons. First, privacy policy is
written in natural language, and the diversity of natural lan-
guage makes it difficult to understand the meaning of a pri-
vacy policy or extract useful information from it [20], [21].
Moreover, both the app’s and the third-party libs’ privacy
policies should be analyzed in order to spot any inconsis-
tency. Second, without assuming the availability of an app’s
source code, PPChecker should be able to understand an
app’s behaviors from its bytecode, and then contrast the
behaviors with the information extracted from the privacy
policy. To tackle these challenging issues, PPChecker
employs natural-language processing (NLP) techniques [22]
to analyze privacy policies, and adopts program analysis
approaches [23] to inspect apps (Section 3). Moreover, we
define five kinds of common problems in privacy policies
(Section 2.2) and propose new algorithms to detect them
(Section 4).

In summary, our major contributions include:

� We define five kinds of common problems in privacy
policies and propose new algorithms to identify
them.

� We design and develop PPChecker, a novel system
that adopts NLP and program analysis techniques to
automatically identify the problems in privacy
policy.

� We conduct careful evaluation on PPChecker by
using real apps along with their privacy policies.
The experimental results show that PPChecker can
effectively detect those problems with high
precision.

The rest of this paper is organized as follows. Section 2
defines the problem addressed by this paper and introduces
the necessary background knowledge. Section 3 details the
design of PPChecker and Section 4 elaborates on the new
algorithms for detecting the problems in privacy policy,
respectively. The experimental results are presented in
Section 5. We describe the limitations of PPChecker and pos-
sible solutions in Section 6. After introducing the related
work in Section 7, we conclude the paper in Section 8.

2 BACKGROUND AND PROBLEM DEFINITION

2.1 Privacy Policy, Description, and What’s New

Privacy policy informs users what, when, why, and how
information will be collected. For example, Fig. 1 shows a
portion of an app’s (i.e., Golf Live Extra) privacy policy. It
first says “we may collect and process ...”, indicating what and
when information, including location, IP address, etc., will
be collected. Then, the sentence “we may share ... with ...”
informs readers which information will be shared with
third parties. After that, it declares that the embedded

third-party libs (e.g., Ad) will collect information. In this
paper, we use resource and information interchangeably to
denote the personal information to be collected, used,
retained or disclosed by an app as described in its privacy
policy.

The description of an app usually introduces the func-
tionalities, features and benefits of the app [24], and What’s
new (denoted as WsN) informs users about the changes
(e.g., new features, fixed bugs, etc.) [25].

2.2 Problem Definition

We aim at automatically identifying five kinds of issues in
an app’s privacy policy, including:

(1) Incomplete privacy policy. Such privacy policy does
not declare all privacy-related behaviors. For example, the
app’s (com.dooing.dooing) description has a sentence
“Location aware tasks will help you to utilize your field force in
optimum way.” indicating the use of location information. Its
class com.dooing.dooing.ee calls location-related APIs
including getLatitude() and getLongitude(). However, its pri-
vacy policy does not mention that it will collect location
information or personal information.

(2) Incorrect privacy policy. The privacy policy is incorrect
if it declares that the app does not collect, use, retain, or dis-
close personal information, but the app does. For instance,
the app’s (com.easyxapp.secret) privacy policy
declares “we will not store your real phone number , name and
contacts”. However, we find from its bytecode that it obtains
the contact information through the URI < android.provider.
ContactsContract$CommonDataKinds$Phone: android.net.Uri
CONTENT_URI> and writes it to log file.

(3) Imprecise privacy policy. The imprecise privacy policy
does not clearly describe the privacy related behaviors. In
particular, we focus on three kinds of imprecise privacy pol-
icy. The first kind of imprecise privacy policy does not
clearly specify the personal information accessed by the
app. Instead, they use general terms to represent such infor-
mation. For example, the app (com.ivc.starprint) col-
lects device ID in code. However, its privacy policy only
mentions that “we may also access other personal information
on your device, such as your phone book, calendar, in order to pro-
vide services to you”. In other words, it does not clearly point
out that the app will collect device ID.

Fig. 1. App Golf Live Extra’s privacy policy.

222 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

The second kind of imprecise privacy policy lists the per-
sonal information to be accessed, but the app only accesses
part of them. User may wonder why the app needs to collect
so much personal information when reading such privacy
policies. For instance, the privacy policy of the app (com.
liquifyble.main) says that device IDwill be collected (i.e.,
“’When you access the Service by or through a mobile device, we
may collect certain information automatically, including, but not
limited to, the type of mobile device you use, your mobile devices
unique device ID”). However, the app neither requests READ_
PHONE_STATEpermission nor gets device ID in its code.

The third kind of imprecise privacy policy uses adverb
clause of condition to describe the condition under which
the privacy-related behavior will be conducted, but the
app does not check whether the condition is satisfied. For
example, the privacy policy of the app (mobisocial.omlet)
declares that “If you click go, we will collect information
about your geographic location”. Note that “go” refers to a
button in this app. However, after checking the code,
we found that the location-related API (LocationManager.
getLastKnownLocation()) is called by the com.baidu.android.
pushservice.b.e.h() method, instead of the button’s callback
function(i.e., onClick()).

(4) Inconsistent privacy policy. The app’s privacy policy
should be consistent with the privacy policies from the
other two sources. First, if an app integrates third-party libs,
its privacy policy should cover the behaviors of third-party
libs as a whole or point to their privacy policies. If an app’s
privacy policy declares that it will not access personal infor-
mation but its third-party libs’ privacy policies mention that
they will do so, the app’s privacy policy is inconsistent. For
example, the privacy policy of the app (com.imangi.tem-
plerun2) claims that it does not use or collect location
information. However, one embedded third-party lib (Uni-
ty3d) says that it will receive location information, thus
causing the inconsistency. Second, the privacy policy (pro-
vided in Google Play) should be consistent with the in-app
privacy policy, which is shown when the app is being used.
If the information collected by these two privacy policies
are different, the app has inconsistent privacy policy. For
example, for the app (com.jimbl.suitcaseluggage-
listfrgoog), its privacy policy in the market (http://www.
jimbl.com/privacy1) and in-app privacy policy (http://www.
jimbl.com/privacy2) are different. The formal declares that

“The Application will collect the following information ... unique
device ID ...” whereas the latter does not mention such
behavior at all.

(5) User-unfriendly privacy policy.We focus on two issues in
such privacy policy. First, the language of privacy policy is
different from the language used for the description. We
assume that the user who installs an app understands the
app’s description and not all users understand two lan-
guages. A recent report from Hong Kong’s Office of the Pri-
vacy Commissioner for Personal Data pointed out such issue
after manual inspection [26]. For example, the description of
the app chat.ola.vn is in English whereas its privacy pol-
icy is stated in Vietnamese. Second, some privacy policies’
readability is low so that users cannot understand it.

3 PPCHECKER

We give an overview of PPChecker in Section 3.1 and detail
its major modules in Sections 3.2, 3.3, and 4.

3.1 System Overview

As shown in Fig. 2, PPChecker takes in an app’s description,
what’s new information (WsN), third-party libs’ privacy
policies, app’s privacy policy, and apk file. The output
includes: 1) whether the privacy policy is incomplete or not.
If so, it lists the missed information; 2) whether the privacy
policy is incorrect or not. If so, it enumerates the incorrect
sentences; 3) whether the privacy policy is imprecise or not.
If so, it lists the imprecise sentences; 4) whether the privacy
policy is inconsistent or not. If so, it lists the inconsistent
sentences and the relevant third-party lib’s privacy policy;
5) whether the privacy policy is user unfriendly or not. If so,
it lists the language of the privacy policy and the readability
rating of the privacy policy. PPChecker consists of four major
modules, including:

(1) Privacy policy analysis module (Section 3.2). It analyzes
a privacy policy to determine what information will
or will not to be collected, used, retained, or
disclosed.

(2) Static analysis module (Section 3.3). It inspects an
app’s bytecode to decide whether the app will col-
lect, retain, or disclose personal information. Note
that this module cannot differentiate the used

Fig. 2. System overview of PPChecker.

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 223

http://www.jimbl.com/privacy1
http://www.jimbl.com/privacy1
http://www.jimbl.com/privacy2
http://www.jimbl.com/privacy2

information from the collected/retained/disclosed
information because it is difficult to determine
whether the information is used or not after it has
been collected from the device.

(3) Description and what’s new analysis module (Section 3.4).
It analyzes the description and the WsN to identify
the permissions/personal information that the app
will use.

(4) Problem identification module (Section 4). Based on the
result of (1), (2), and (3), this module identifies incom-
plete privacy policy (Section 4.1), incorrect privacy
policy (Section 4.2), imprecise privacy policy (Section
4.3). By comparing the app’s privacy policywith its in-
app privacy policy and its third-party libs’ privacy
policies, it detects inconsistent privacy policy (Section
4.4). By analyzing the language and readability of app
privacy policy, it identifies user-unfriendly privacy
policy (Section 4.5).

3.2 Privacy Policy Analysis Module

3.2.1 Main Verbs, Sentences and Resources

Table 1 lists the symbols related to privacy policy.
We summarize four types of main verbs, which are com-
monly used in privacy policies, as suggested by [27], [28],
including:

� Collect verbs. They describe that one party accesses,
collects, obtains data from another party, such as
“collect”, “gather”, etc. We use VPcollect to indicate
such verbs.

� Use verbs. They depict that one party uses data from
another party for a specified purpose, such as “use”,
“process”, etc. We use VPuse to denote such verbs.

� Retain verbs. They mean that one party keeps the data
collected from another party for a particular period
of time or in a particular location, such as “retain”,
“store”, etc. We use VPretain to represent such verbs.

� Disclose verbs. They indicate that one party transfers,
moves, or sends data to another party, such as

“disclose”, “share”, etc. We use VPdisclose to stand for
such verbs.

These four kinds of verbs have different semantic mean-
ing and are essential to tracing the data flows described in
privacy policy [27]. To construct the verb set, we download
the keywords listed in [28] and put them in different verb
lists. We also use WordNet to find the synonyms of these
verbs and add them to the verb lists. We release the total list
of such verbs in [29] so that other researchers can use them.

Based on the four types of verbs, we define other sym-
bols. AppSent� and AppSents� denote a � type sentence and
the set of such sentences in an app’s privacy policy, respec-
tively. The mark � can be replaced by collect, use, retain,
and disclose. Similarly, we will use LibSent� and LibSents�
to represent those sentences in a third-party lib’s privacy
policy.

By analyzing the sentences, PPChecker identifies the per-
sonal information handled by main verbs. For positive sen-
tences, we use ResAppPP� to denote the set of personal
information that will be collected, used, retained, and dis-
closed by app according to app’s privacy policy. Similarly,
we use ResLibPP� to denote the set of personal information
that will be collected, used, retained, and disclosed by
third-party libs according to libs’ privacy policies.

A privacy policy may use negative sentences. For exam-
ple, “we will not collect” presents the opposite meaning of
“we will collect”. The former is negative sentence. We utilize

ResAppPP� to denote the set of personal information that will
not be collected, used, retained, or disclosed, according to
an app’s privacy policy. We do not consider the negative
sentences in third-party lib’s privacy policy, because if the
app’s privacy policy declares collecting personal informa-
tion, it will not be inconsistent no matter whether the lib
collects this information or not.

3.2.2 Steps in Privacy Policy Analysis

Fig. 3 shows the procedure of inspecting a privacy policy,
which involves seven steps detailed as follows.

Step 1: Sentence extraction. PPChecker extracts the content
from each privacy policy in HTML, and removes non-ASCII
symbols and some meaningless ASCII symbols using Beau-
tiful Soup [30]. We currently just examine privacy policies
in English. Then, we use the natural language toolkit
(NLTK) [31] to divide the text into sentences. Since NLTK
splits an enumeration list into individual sentences, it may
cause errors. For example, the sentence “... collect the follow-
ing information: your name; your IP address; your device ID.” is
divided into four parts, and the three resources after “:”
are regarded as three sentences. To address this issue,
PPChecker checks the sequence of sentences from NLTK one
by one. If the previous sentence ends with “:”or “;”, or the
current sentence starts with lowercase letters, PPChecker

TABLE 1
Major Symbols Related to Privacy Policy

Symbol Meaning

VPcollect the verbs describe that one party access, col-
lect, or acquires data from another party.

VPuse the verbs describe that one party uses data
from another party for some function.

VPretain the verbs describe that one party keeps the
data collected from another party.

VPdisclose the verbs describe that one party transfers the
collected data to another party.

AppSent� a sentence in app’s privacy policy whose main
verb 2 VP�

ResAppPP
� resources that the app will * according to an

app’s privacy policy
ResAppPP

� resources that app will not * according to an
app’s privacy policy

LibSent� a sentence in lib’s privacy policy whose main
verb 2 VP�

ResLibPP� resources to the lib will * according to the lib’s
privacy policy

Note: � 2 fcollect; use; retain; discloseg

Fig. 3. The procedure of analyzing a privacy policy.

224 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

appends the current sentence to the previous one. Finally,
PPChecker turns all letters into lower case.

Step 2: Syntactic analysis. It parses sentences and obtains
syntactic information. For each sentence, we use Stanford
Parser [32] to obtain its parse tree and dependency relations.
For example, Fig. 4 shows the syntactic information of the
sentence: “we will provide your information to third party com-
panies to improve service”. The left part is the parse tree struc-
ture and the right part is the typed dependency relation.

The parse tree breaks a sentence into phrases and shows
them in a hierarchy structure, where each phrase occupies
one line. The parse tree also contains the part-of-speech (POS)
tags of words and phrases. The typed dependency describes
the relation between words. Common relations include: sbj
that means the subject, dobj that represents direct object, root
that stands for the relation point to the root word of a sen-
tence, nsubjpass that refers to a noun phrase being the syn-
tactic subject of a passive verb, auxpass means passive
auxiliary [33]. For example, from the sentence “your informa-
tion will be collected.”, We can find nsubjpass dependency
relation between “information” and “collected” and discover
auxpass dependency relation between “be” and “collected”.

The syntactic information is used in the following classi-
fier training and the information elements extraction step.

Step 3: Classifier training. In the conference version [34],
we use a series of seed patterns to find the semantic patterns
from privacy policy corpus. These patterns are used to iden-
tify information collection, usage, retention and disclosure
related sentences. However, if the pre-defined seed patterns
are incomplete or incorrect, the discovered patterns cannot
identify the sentences related to information collection,
usage, retention, and disclosure with a high recall rate and
high precision. To overcome this limitation, in this paper,
we propose using machine learning classifier to identify
these sentences automatically.

More precisely, we let the feature set include unigrams,
bigrams, trigrams, and type dependency related between
words. The TF-IDF (term frequency-inverse document fre-
quency) [35] value is calculated to measure the weight of
each word. Such value is commonly used in information
retrieval to measure how important a word is. TF (i.e., term
frequency) refers to how frequently a term occurs in a docu-
ment. IDF (i.e., inverse document frequency) means the
terms that appear many times have little importance (e.g.,
“an”, “of”). We select four classifiers, including Max
Entropy [36], SVM [37], naive bayes [38], and Random For-
est [39], and select the best one according to the 10-fold cross
validation result on our data set. The result is described in
Section 5.2. For the sentences identified by the classifier, we
only keep those sentences that contain collect, use, retain,
and disclose verbs (Section 3.2.1).

Step 4: Sentence selection. PPChecker utilizes the trained
classifier to identify sentences from privacy policies. The
matched sentences are regarded as useful sentences, and
others will be discarded.

Step 5: Negation analysis. PPChecker determines whether a
sentence is negative by checking the existence of negation
words in two places [20]. One is the subject for identifying
sentences like “nothing will be collected”. The other refers to the
words used to modify the root word, such as “we will not col-
lect information”. We adopt the negation word list from [40],
because it includes the negative verbs (e.g., “prevent”),
negative adverbs (e.g., “hardly”), negative adjectives (e.g.,
“unable”), and negative determiners (e.g., “no”).

Step 6: Information elements extraction. From each useful
sentence, we look for four elements, including main verb,
action executor, resource, and constraint. For example, in
the sentence: “we will provide your information to third party
companies to improve service if you ...”, the main verb is
“provide”, the subject is “we”, its object is “your inform-
ation”, and its constraint is “if you ...”. The subject, main
verb, resource, and constraint are used in the problem iden-
tification module (Section 4.1).

The main verb is the key verb of a sentence. In the typed
dependency relation, the main verb is the word that has
root relation with a virtual “ROOT-0” word (e.g., “provide”
in Fig. 4). The action executor is the entity who conducts the
main verb. In the typed dependency relation, it is the word
that has sbj relation with the main verb (e.g., “we” in Fig. 4).
The resource is the data used by the action executor (e.g.,
“information” in Fig. 4). If the sentence is active voice, the
resource has dobj relation with the main verb. Otherwise,
the resource is the subject that has nsubjpass relation with
the main verb. For instance, in the sentence “your location
will be collected”, the resource “your location” is the subject.
For each extracted resource, we check the category of the
corresponding main verb (by using the pre-defined verb set
described in Section 3.2.1) to determine the resource belongs
to collected information (ResAppPPcollect), used information
(ResAppPPuse), retained information (ResAppPPretain), or disclosed
information (ResAppPPdisclose). Specially, if the negation analysis
result shows the sentence is a negative sentence, we put the
extracted resource to the information that privacy policy

declares not to collect (ResAppPPcollect), use (ResAppPPuse), retain

(ResAppPPretain), or disclose (ResAppPPdisclose).

The constraint refers to the condition under which the
privacy-related behavior will be conducted. In this paper,
we only consider the constraint described in the adverb
clause of condition (e.g., clauses starting with “if, unless, in
case, only if”) [41], and leave the investigation of other kinds
of adverb clauses in future work.

When identifying the personal information mentioned in
privacy policies, we find that some sentences contain refine-
ment phrases [42]. The refinement phrase refines one general
concept with more specific concepts [27], [42]. The specific
concept refers to a specific kind of information accessed by
the app (e.g., device ID) and the general concept is an
abstraction of the specific concept (e.g., device information).
For example, the sentence “Personal information may incl-
ude your name, user identification number, or email address.”
refines “personal information” with a few specific concepts:

Fig. 4. Syntactic information of sentence: “we would provide your infor-
mation to third party companies to improve service”.

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 225

“name”, “user identification number”, “email address”. We
propose the following method to process them.

" We employ the syntactic patterns proposed by Girju
et al. [43] (listed in Table 2) to identify the part-whole rela-
tions described by refinement phrases. For instance, the sen-
tence “Personal information may include your name, user
identification number, or email address” matches the first pat-
tern of Table 2. Then, we can find that there is a part-whole
relation between the subject and the objects of the verb
“include”. Therefore, the general concept is “personal
information”, and the specific concepts include “name”,
“user identification number, and “email address”.

" We extract all sentences from the privacy policy and
store them in a list and then all sentences that contain refine-
ment phrase. If the i sentence in the sentence list contains
refinement phrase, we extract the ði� 1Þ and ðiþ 1Þ senten-
ces from the sentence list of privacy policy. We use the
trained classifier (Section 3.2 Step 3) to determine if these
two sentences are related to information collection, usage,
retention, or disclosure or not. If the ði� 1Þ or ðiþ 1Þ sen-
tence is regarded as information collection, usage, retention,
or disclosure and the general concept of the refinement
phrase is also mentioned in it, we conclude that the corre-
sponding specific concepts will be collected, used, retained,
or disclosed.

We use the following two sentences as an example to
illustrate this procedure: “We collect your personal informa-
tion. The personal information includes your name, your address,
and device information”. After finding the second sentence
that contains refinement phrase, we apply the trained classi-
fier to the first sentence and find that it is related to informa-
tion disclosure. Since the first sentence declares that the
general concept (i.e., “personal information”) will be col-
lected, we infer that the specific concepts (i.e., “name”,
“address”, “device information”) will also be collected.

Step 7: Constraint analysis. After identifying the con-
straints by extracting the adverb clauses of condition in
useful sentences, we first filter out the constraints that are
not relevant to the app’s behaviors. More precisely, we
ignore the constraints that cannot be achieved by the app,
including contacting developer, asking developer question,
using/cancelling service, visiting website, legal

requirement, determining whether the user is a child. To fil-
ter out such constraints, we built up a blacklist that contains
a series of (verb, noun) pairs (e.g., (“contact”, “us”),
(“change”, “policy”)) after reading 300 randomly selected
adverb clauses of condition. Then, for each useful sentence
(identified in Step 4: Sentence selection), if it contains con-
straints, we extract all the (verb, noun) pairs based on the
typed dependency relations. For example, for the constraint
“if you enable location service”, two (verb, noun) pairs (i.e.,
(“enable”, “you”) and (“enable”, “location service”)) will be
extracted since there are nsbj and dobj dependency between
words. After that, we use ESA [44] to calculate the semantic
similarity between each (verb, noun) pair extracted from
the constraint and each (verb, noun) pair in the blacklist. If
the similarity is higher than a threshold (by default, 0.67 as
used in [45]), we ignore the constraint. Otherwise, we ana-
lyze its content. To get the semantic similarity of two texts,
ESA maps each of them to a vector representation using a
knowledge base, and then calculates the similarity of the
two vectors.

For the apps in the data set, we discovered 173 useful
sentences that contain constraints. We summarize the topics
of these constraints to find out the types of constraints that
can be checked in code. In detail, we extract the topic words
from these constraints by using Mallet [46] to identify 10
topic words from the document. Mallet is a topic modeling
program that can select words from baskets of words (each
basket related to a topic) [47]. By reading these topic words
and their related constraints, we determine two types of
constraints that can be checked in code (Table 3).

The first type of constraint is relevant to enabling service
and has the template like “If users enable feature/function/
service, the app will access the information”. In the app, the
developer will check whether the corresponding feature/
function/service has been enabled before accessing sensi-
tive information. These features/functions/services can be
divided into two categories. One category includes the serv-
ices provided by Android system (e.g., location, bluetooth).
Another category includes the feature/function imple-
mented by the developer. For example, the privacy policy
of the app (com.media1908.lightningbug) contains
the sentence “If you do enable the local weather feature, your

TABLE 2
Syntactic Patterns of Refinement Phrases

Pattern Example

1 obj containjinclude parts. “Personal information includes name and address”
2 obj consist ofjbe made of parts. “Personal information is made of name and address”
3obj......, including parts. “Personal information will be collected, including name and address”
4 obj such as parts “We will collect personal information such as name and address”

TABLE 3
Content Type of Constraint

Content Type Example

1 If users enable feature/function/service, the app will access the information. “If you choose to enable Allow Others to Add feature, your
telephone number is used”

2 If users click/press UI element, the app will access the information. “In some of our games you may find a camera button, once
pressed it will simply take a picture of what you are seeing.”

226 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

approximate location is collected on a periodic basis”. The “local
weather feature” is implemented by the developer.

The second type of constraint is relevant to UI callback
and has the template like “If users click/press UI element,
the app will access the information”. The UI element refers
to the View classes included in the layout (e.g., Button, Text-
View) [48]. After a user presses the UI element, such apps
may directly access sensitive information in the callback of
the UI element or launch other activities to access the sensi-
tive information.

3.3 Static Analysis Module

Table 4 includes five kinds of information extracted from
app code. Given an app, PPChecker conducts static code
analysis on its dex file to determine the following informa-
tion: (1) personal information collected by the app (i.e.,

ResAppCode
collect) and third-party lib (i.e., ResLibCodecollect); (2) personal

information retained by the app (i.e., ResAppCode
retain) and third-

party lib (ResLibCoderetain). (3) if the information is collected or

retained by third party lib, we regard it as disclosed infor-

mation (i.e., ResAppCode
disclose ¼ ResLibCodecollect [ResLibCoderetain). To check

the constraints of privacy related behavior, this module will
extract the statements that will affect the invocation of sensi-
tive APIs/URIs. To get the in-app privacy policy, this mod-
ule also extracts the URL of privacy policy from code.

3.3.1 Conducting the Static Bytecode Analysis

We develop the static analysis module based on our static
analysis tool, VulHunter [49], and improve it from several
aspects. Given an app, PPChecker extracts the Android-

Manifest.xml and the dex file from the APK file. If the
app is packed, we employ our unpacking tool PackerGrind
[50], [51] to recover the dex file. If Java reflection is used to
invoke methods, we utilize DoridRA [52] to recognize the
invoked methods. By parsing the AndroidManifest.xml

file and the dex file, PPChecker constructs an Android prop-
erty graph (APG) [49] that integrates abstract syntax tree
(AST), interprocedure control-flow graph (ICFG), method
call graph (MCG), and data dependency graph (DDG) of
the app, and stores them into a graph database. Then,
PPChecker can determine the collected and retained infor-
mation by performing queries on APGs.

To enhance the accuracy of static analysis, we employ
IccTA [53] to identify the source and the target of an intent,
and utilize EdgeMiner [54] to determine the implicit callbacks
(e.g., from setOnClickListener() to onClick()). The data depen-
dency between statements s1 and s2 means that a variable v
is defined in s1 and used in s2. Moreover, for the source-sink

paths identified by FlowDroid [55], we also add data depen-
dency relation between the source statement and sink state-
ment. The sources refer to the sensitive APIs/URIs, which
will be described in the next sub-section. The sinks are APIs
that store information into a log (e.g., Log.d()) or a file (e.g.,
FileOutputStream.write()), or send it out through network
(e.g., AndroidHttpClient.execute()), SMS(e.g., sendTextMessage
()), or bluetooth (e.g., BluetoothOutputStream.write()).

3.3.2 Identifying the Collected Information

An app can collect personal information through two
approaches. One is to invoke sensitive APIs, such as calling
getDeviceId() to get device ID. The other one is through con-
tent providers [56], such as calling android.content.Conten-
tResolver.query() with content://com.android.calendar to access
calendar information. We will describe how PPChecker han-
dles them in the following paragraphs, respectively. By
referring PScout [56] and checking Android development
documents, we select 152 sensitive APIs covering the infor-
mation about device ID (9), IP address (5), cookie (10), loca-
tion (31), account (30), contact (35), calendar (6), telephone
number (2), IMEI (5), camera (4), audio (6), sim card number
(1), call log (1) and app list (7). Such information is com-
monly listed in the privacy policy. We select 12 URI strings
along with 615 URI fields from the data set in [56].

The sensitivity of content provider related operations is
determined by the parameters. For example, by querying the
content provider with URI content://call_log or content://com.
android.calendar, we can collect the call log or the calendar
from the device respectively. To find out the information
accessed by using URIs, after locating the statements calling
the query function, PPChecker determines the corresponding
URIs by applying the inter-procedure constant propagation
(i.e., constant folding) algorithm proposed by Lu et al. [57].
Constant propagation is a compiler technique that simplifies
the constant expressions [58]. Here, we apply this technique
to identify all possible constant values that can be used as
the parameters of content provider related operations. The
detailed analysis includes the following steps:

Step 1: Similar to the algorithm proposed by Lu et al. [57],
we leverage the data dependency graph to identify all the
statements used to construct the URI. Other statements will
not be analyzed. In detail, we traverse along the data depen-
dency graph from the statement querying the content pro-
vider. The traversal stops at the statement that only uses
constant values. All the statements appeared on the path
and the data dependency relations between them are
recorded. We stored them as a directed graph.

Step 2: To infer the possible values of URI, we perform
post-order DFS traversal on this directed graph. The traversal
starts from the statement that performs content provider
related operation. For a statement s, the post-order traversal
is to ensure that the possible values of the variable used in it
has been analyzed. For each statement, since we have got
possible values of the variables used in it, we can infer the
possible values of the variables defined in it.

Step 3: We collect a set of possible constants that can be
used to construct URI. We look for the sensitive URIs in
them and record the sensitive URIs used in code. An exam-
ple is the code snippet shown in Fig. 5: The URI parameter
used in line 9 is constructed by using line 2, 4, 7. The

TABLE 4
Major Symbols Related to Code

Symbol Meaning

ResAppCode
collect resources app will collect according to code

ResAppCode
retain resources app will retain according to code

ResLibCodecollect resources lib will collect according to code

ResLibCoderetain resources lib will retain according to code

ResAppCode
disclose resources app will disclose according to code

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 227

possible values for v5 include { “content://com.android.calen-
dar”, “content://call_log”}.

Since some sensitive APIs may not be called by the app
(e.g., infeasible code), we perform the reachability analy-
sis [59] by using inter-procedure control flow graph to filter
them out. In detail, we start traversal from apps’ entry
points, including life-cycle callbacks (e.g., Activity.onCreate
()) and UI related callbacks (e.g., onClick()). If we can find a
path from the entry points to the statements that invoke sen-
sitive APIs, we regard these statements as feasible.

To determine the type of personal information collected
by the app, we map the sensitive APIs and the URI strings
to personal information by analyzing their official docu-
ments. For example, the API getDeviceId() is mapped to
“device ID” and the URI string content://contacts is mapped
to “contact”. For the URI fields, since PScout provides the
mapping between URI fields and permissions [56], we map
these fields to the personal information according to the cor-
responding permissions. For instance, since PScout maps
“< android.provider.Telephony$Sms: android.net.Uri CON-
TENT_URI> ” to permission android.permission.

RECEIVE_SMS, we map this URI field to “SMS”.

3.3.3 Determining the Retained Information

By using the data dependency graph, we perform static taint
analysis on sensitive APIs/URIs to determine the retained
information. More precisely, after finding the statements that
use sensitive APIs/URIs, we traverse the data dependency
graph by using data dependency relation to find the path
from source (i.e., the statements that use sensitiveAPIs/URIs)
to sink (i.e., log, network, file, SMS, bluetooth related APIs). If
we can find the path from source to sink, we think the infor-
mation will be retained by the app. Since FlowDroid [55] is a
state-of-the-art static analysis tool for apps, we further inte-
grate the source-to-sink paths found by FlowDroidwhen creat-
ing the data dependency graph. Themajor difference between
our system and FlowDroid is that:

(1) FlowDroid does not consider the data flow caused by
the intent sent by components. The static taint analysis of
FlowDroid stops at the statement that sends out intent (e.g.,
startActivity()). To overcome this limitation, when it comes
to a statement that sends out intent, PPChecker leverages the
result of IccTA [53] to identify the target component of the
intent. After identifying the life-cycle method of the target
component (e.g., Activity.onCreate()), PPChecker searches the
statement that retrieves the intent (e.g., Activity.getIntent())
and continues the traversal from this statement.

(2) FlowDroid cannot perform constant propagation to
find out the URIs used in code. After finding the content
provider related operations (e.g., ContentResolver.query()),
PPChecker first conducts constant propagation to identify

the URIs used in code and then performs static taint analy-
sis to determine if the information is retained or not.

For instance, Fig. 6 shows a code snippet of com.qisie-
moji.inputmethod. PPChecker traverses from the sensi-
tive API getInstalledPackages() (Line 5), which retrieves the
list of installed packages device, and ends at a sink function
Log.e() (Line 9). This path indicates that the information of
installed apps will be retained in log.

3.3.4 Recognizing the User of the Information

After finding the sensitive API/URI used in code, we first
locate the corresponding method. Then, we conduct back-
ward traversal on the method call graph to find all other
methods that will call this method. The traversal starts from
this method and stops at the entry points of Android (i.e.,
life-cycle methods of Android components and callbacks of
UI widgets). We leverage the class names of these methods
to determine whether the API/URI is used by the app or
third-party libs. If the privacy related behavior is triggered
by callback of the UI widget (e.g., onClick()), the user of this
behavior is the Activity that contains thewidget. Since devel-
opers can register UI callbacks dynamically (i.e., in code) or
statically (i.e., in layout xml file), we cannot directly identify
the Activity associated with the callback. We process these
two cases separately to discover the corresponding Activity.

" If the developer dynamically registers the callback in
code, we first search the listener object (e.g.,View.OnClickLis-
tener) that implements this callback in code. Then, we lever-
age the DDG to find the widget object that uses the listener
(e.g., by calling setOnClickListener()). Finally, the method that
contains widget object and the corresponding activity are the
user of the corresponding information.

" If the developer statically registers the callback in the
layout xml file, we first obtain the resource ID of the layout.
Then, we search the AST to locate the Activity that uses the
layout resource ID to set the activity content view. We
regard this Activity as the user of the API/URI.

Li et al. [60] harvest commonly used libraries from 1.5
million apps and get a class name prefix list containing 240
class names. If the developer uses obfuscation techniques to
hide the class names of third-party libs, we employ LibSc-
out [61] to detect the integrated third-party libs. LibScout
extracts a variant of Merkle tree from known lib code to con-
struct the lib profiles. Then, it matches the lib profiles with
the app profile to find out the integrated third-party libs.
For each sensitive API/URI, if the class name prefix of the
corresponding class is included in the class name prefix list,

Fig. 5. Example of traditional constant folding.

Fig. 6. Code snippet of com.qisiemoji.inputmethod: obtains the
installed package list and writes it to log.

228 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

we regard that the information is collected or retained by a
third-party lib (ResLibCodecollect and ResLibCoderetain). Otherwise, the
information is collected/retained by the app (ResAppCode

collect

and ResAppCoderetain). We regard the information collected or
retained by third-party lib as the information disclosed to
third-party lib (i.e., ResAppCode

disclose ¼ ResLibCodecollect [ResLibCoderetain).

3.3.5 Extracting the Constraints

To check the constrains of privacy related behaviors, we use
the program slicing technique [62] to extract the statements
that will affect the invocation of sensitive APIs/URIs. In
detail, for each sensitive API/URI, we first obtain the con-
trol flow path from the entry point (e.g., Activity.onCreate(),
onClick()) to it. Then, we extract all the branch statements
(i.e., if_stmt, lookup_switch_stmt, and table_s-

witch_stmt) [63] in the control flow path (e.g., Fig. 7 Line
5). To determine the factors that will affect the execution of
privacy related behavior, for each branch statement, we tra-
verse the data dependency graph from it to get all the state-
ments related to the branch statement. In data flow
analysis [64], if a variable v is on the LHS (i.e., left-hand
side) of an assignment statement sðjÞ, the statement sðjÞ is a
definition of variable v. For example, in Fig. 7, variable v1 is
defined in Line 4 and this statement also use the return value
of the method getEnableWeather(). If the traversal reaches a
statement that does not use any pre-defined variables, the
traversal stops. In Fig. 7, Line 2 and Line 4 are extracted if
we start traversal from the branch statement (i.e., Line 5).

3.3.6 Locating the In-App Privacy Policy

The in-appprivacy policy is usually provided in twoways: (1)
showing the URL of privacy policy on the GUI (e.g., the left
GUI in Fig. 8); (2) displaying the privacy policy after pressing
a button (e.g., right GUI in Fig. 8). To collect such in-app pri-
vacy policy, we first parse the layout file of each activity to get
the GUI structure. Then, for the first scenario, we check
whether the text on the GUI contains “privacy policy”. If so,
we extract the URLs contained in the HTML attribute < a
href=“”> and download the content. For the second scenario,
if the widget (e.g., button) is associated with the text “privacy
policy”, we check the resource ID and use it to find the call-
backs registered in code. Then, we traverse the control flow
graph from the entry of the callback to find the statement that
loads HTML page (e.g.,WebView.loadUrl()). To get the URL of
privacy policy, for these statements, we leverage constant
propagation technique [57] to identify all string parameters
that start with “http”/“https”. After that, we download the
content through these URLs.

3.3.7 Correlating UI Elements and Texts

The developers usually provide UI (e.g., activity, dialog) to
let user enable feature/function/service. To identify which
feature/function/service is enabled by user, the static anal-
ysis module will create a mapping between the resource
IDs of UI elements and their texts describing the enabled
feature/function/service.

When designing the layout of an activity, the developer
may use various UI elements to support user selection (e.g.,
CompoundButton, CheckBox, RadioButton, Switch, ToggleBut-
ton). We parse the layout XML file to get the resource ids of
these UI elements. If the developer embeds descriptive text
as attributes (e.g., android:text) of the UI element, we
extract the value of these attributes to get the related string
(i.e., text). Otherwise, we follow the method in [65] to locate
nearby text widget in UI and extract its descriptive text. We
regard this text as the text related to the UI element. For pop-
up dialog [66], since developer can also set its layout via set-
ContentView() (similar toActivity class), we analyze its layout
and map the UI element to text label. Different from activity
and dialog, the layout of preference is defined in the res/

xml folder [67]. We parse the XML file to get the resource ids
of the UI elements. For each UI element, we map its resource
ID to the string defined in android:title attribute. For
example, the preference activity of app (com.media1908.
lightningbug) include a CheckBoxPreference widget. The
id of this widget is 0x7f06001b and the value of the string
android:title attribute is string “Local Weather”. Thus,
wemap the resource ID 0x7f06001b to this string.

3.4 Description and What’s New Analysis Module

Table 5 describes the symbols representing the information
extracted from app description and what’s new.

Fig. 7. Code snippet of com.media1908.lightningbug: Extracting
the constraints.

Fig. 8. GUI of In-App Privacy Policy.

TABLE 5
Major Symbols Related to Description and What’s New

Symbol Meaning

ResDesc the set of resources used by app according to
description

ResWhatsnew the set of resources used by app according to
what’s new

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 229

Description Analysis. We improve the state-of-art descrip-
tion analysis system, AutoCog, to map an app’s description to
permissions [45]. AutoCog conducts statistical analysis on a
large number of apps to build up the description to permis-
sion relatedness (DPR) model. More precisely, it extracts
(verb, noun) pairs (e.g., (“track”, “location”)) from descrip-
tion, and maps them to different permissions (e.g., ACCESS_
FINE_LOCATION). We map the permissions inferred from
description to personal information by analyzing the official
document. For example, permission ACCESS_FINE_LOCA-

TION is mapped to “location”, “latitude”, and “longitude”
since the APIs getLastKnownLocation(), getLatitude(), and get-
Longitude() require this permission. LetResDesc denote the col-
lected information that is inferred from the app’s descriptions.

We find that AutoCog may generate false negatives (i.e.,
miss the mapping between description and permission) due
to two reasons. First, some privacy related verb phrases are
not included in the DPR module of AutoCog. An example is
the sentence “You can use GPS on your mobile device ...”. Since
the verb phrase (“use”, “GPS”) is not included in the DPR
model of the permission ACCESS_FINE_LOCATION, Auto-
Cog cannot infer from this sentence that the app uses loca-
tion related permission. Second, the DPR model of AutoCog
focuses on verb phrases and it will not analyze the noun
phrases followed by the preposition “with/to/from”. For
instance, in the sentence “Connect LIVE with our totally
unique voice feature”, the noun phrase “voice feature” is
ignored by AutoCog and thus it will not be mapped to the
RECORD_AUDIO permission.

To mitigate the first kind of false negatives caused by the
incompleteness of DPRmodel, for each permission,we gener-
ate a series of new verb phrases and add them to the DPR
model. The verbs of these new verb phrases are the verbs
listed in Table 1. The nouns of these new verb phrases are the
personal information protected by each permission. To avoid
the second kind of false negatives caused by the noun phrases
ignored by AutoCog, we first extract the noun phrases fol-
lowed by the preposition “with/to/from” from the parse tree of
the description sentence. Then, we use ESA [44] to calculate
the semantic similarity between these noun phrases and the
personal information protected by each permission. If the
similarity exceeds a threshold, we map the description sen-
tence to the corresponding permission.

What’s New Analysis. Since the sentences in WsN are simi-
lar to that in the description, we employ the samemethod for
description analysis to map WsN to different kinds of per-
missions/personal information. However, WsN contains
many short sentences that only have noun phrase. For exam-
ple, “New effects”. When identifying the permissions men-
tioned in WsN, the description analysis module will not
analyze them since they do not contain any verb phrases.

To avoid such false negatives, we enhance WsN analysis
by extracting all the noun phrases from the parse tree. Then,
we use ESA [44] to calculate the semantic similarity between
these noun phrases and the personal information protected
by permission. If the similarity reaches a pre-defined thresh-
old, we think the corresponding permission is mentioned in
the WsN. For example, we map the noun phrase “SD Card
Backup” to permission WRITE_EXTERNAL_STORAGE since
it is similar to “SD Card”. Let ResWhatsnew denote the col-
lected information inferred from the app’s WsN.

4 PROBLEM IDENTIFICATION MODULE

This section describes how to detect the issues in privacy
policy, namely, incomplete privacy policy (Section 4.1),
incorrect privacy policy (Section 4.2), imprecise privacy pol-
icy (Section 4.3), inconsistent privacy policy (Section 4.4),
and user-unfriendly privacy policy (Section 4.5). Section 4.6
describes the steps for examining the third-party libs’ pri-
vacy policies.

4.1 Detecting Incomplete Privacy Policy

Fig. 9 shows how to identify an incomplete privacy policy
through two general approaches. First, if the information
listed in a privacy policy cannot cover that inferred from the
description or WsN, the privacy policy is incomplete. Sec-
ond, if the information declared in a privacy policy cannot
cover the collected or retained information which is deter-
mined from the corresponding app’s bytecode, the privacy
policy is incomplete.

Algorithm 1. Detect Incomplete Privacy Policy through
Description

Input: ResAppPP
collect ; ResAppPP

use ; ResAppPP
retain ; ResAppPP

disclose: information
collected, used, retained or disclosed by app pri-
vacy policy; ResDesc: information that app’s descrip-
tion says it will use.

Output: ProblemInfos: Return the missed information if
the privacy policy is incomplete; Null: Return
null if the privacy policy is not incomplete.

1 PPInfos = ResAppPP
collect [ResAppPP

use [ResAppPP
retain [ResAppPP

disclose;
2 CodeInfos = ResDesc;
3 ProblemInfos = [];
4 for Info in CodeInfos do
5 FindSimilarInfo = 0;
6 for PPInfo in PPInfos do
7 if Similarity(Info, PPInfo) > threshold then
8 FindSimilarInfo = 1;
9 end
10 end
11 if FindSimilarInfo == 0 then
12 ProblemInfos.append(Info); //Save the missed Info
13 end
14 end
15 if ProblemInfos.length() > 0 then
16 return ProblemInfos; //Privacy policy is incomplete
17 end
18 return Null; //Privacy policy is not incomplete

Detecting Incomplete Privacy Policy through Description.
Algorithm 1 shows the process of detecting incomplete pri-
vacy policy through description. The description analysis

Fig. 9. Model of incomplete privacy policy.

230 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

module provides the information used by an app (i.e.,
ResDesc) while the privacy policy analysis module lists the
information to be collected/used/retained/disclosed by the
app (i.e., PPInfos, line 1). We compare each information in
ResDesc with all the information identified from the privacy
policy (line 6-10). If no private information pairs can be
matched, the Info is missed by the privacy policy and hence
the privacy policy is incomplete. Here, “match” means that
two kinds of information refer to the same thing.

We use ESA [44] to measure the semantic similarity
between two information. If the similarity is larger than a
threshold, we regard them as the same thing (line 7 in Algo-
rithm 1). By default, the threshold is 0.67 following [45].

Detecting Incomplete Privacy Policy through What’s New.
The incomplete privacy policy appears if the information
described in WsN (i.e., ResWhatsnew) is not mentioned in the
privacy policy. To detect such privacy policy, we reuse
Algorithm 1 but replace CodeInfoswith ResWhatsnew.

Detecting Incomplete Privacy Policy through Code. The static
analysis module outputs the information collected or
retained. We compare each information with all the infor-
mation identified from the privacy policy. If the privacy pol-
icy misses any such information, it is incomplete. The
algorithm is similar to Algorithm 1. The only difference is
that we replace CodeInfos with ResAppCode

collect [ResAppCode
retain .

Since some information requires certain permission (e.g.,
account requires GET_ACCOUNTS), in this case, we only con-
sider the app that requires the corresponding permissions.

For the incomplete privacy policy detected through
description, WsN, and code, we will further check the infor-
mation that the app’s privacy policy declares to collect, use,
retain, disclose (i.e., ResAppPP

collect , ResAppPP
use , ResAppPP

retain ,
ResAppPP

disclose). If the incomplete privacy policy does not men-
tion that the general information (i.e., “personal information”,
“personal data”, “personally identifiable information”) will be
collected, used, retained, or disclosed by the app, we will
report it as an incomplete privacy policy. Otherwise, we
regard it as an imprecise privacy policy and the correspond-
ing detection is described in Section 4.3).

4.2 Discovering Incorrect Privacy Policy

Incorrect privacy policy declares not to access certain personal
information but the corresponding apps do it. As shown in
Fig. 10, we detect the incorrect privacy through two
approaches. First, if the privacy policy declares not to collect
personal information whereas the permissions inferred from
the description or WsN cover such information, the privacy
policy is incorrect. Second, if the privacy policy declares not
to collect or retain certain personal information whereas such

behavior is realized in code, the privacy policy is incorrect.
Since it is difficult to differentiate between the collected resour-
ces and the used resources according to the code, we contrast

bothResAppPPcollect andResAppPPuse withResAppCodecollect .

Discovering Incorrect Privacy Policy through App’s Descrip-
tion. Using an app’s description can discover two kinds of
incorrect privacy policy. First, the privacy policy declares
not to collect or use certain personal information, but the
description indicates that the corresponding permissions
are required by the app. For each information to be col-
lected, used, retained, or disclosed in ResDesc, we compare
it with the personal information that the app’s privacy pol-
icy declares not to collect or use. If a pair of such information
is found, the privacy policy is incorrect. The algorithm of
detecting incorrect privacy policy through description is

similar to Algorithm 1. The only difference is that we use

ResAppPPcollect [ResAppPPuse to replace PPInfos and we append the
Info to ProblemInfos if the FindSimilarInfo is 1. Second, the pri-
vacy policy declares not to access any personal information,
but the description indicates that the app needs some per-
missions required for accessing certain personal informa-
tion. To detect such privacy policy, we first identify all
privacy policies that declare not to collect or use “any per-
sonal information” or “any personal data”, and then check
the corresponding permissions inferred from the descrip-
tions. If an app requests any sensitive permission, the pri-
vacy policy is incorrect.

Discovering Incorrect Privacy Policy throughWhat’s New. The
procedure of discovering incorrect privacy policy throughWsN
is similar toAlgorithm1. Specially,weuseResWhatsnew to replace

CodeInfos and use ResAppPPcollect [ResAppPPuse to replace PPInfos If
FindSimilarInfo is 1,we append the Info toProblemInfos.

Discovering Incorrect Privacy Policy through Code. PPChecker
can detect incorrect privacy policy that declares not to
collect/use certain information but the app code does.
The corresponding algorithm is similar to Algorithm 1. The

only difference is that we use ResAppPPcollect [ResAppPPuse to replace

PPInfos. We also utilize ResAppCodecollect to replace CodeInfos.
Similarly, PPChecker can detect incorrect privacy policy that
declares not to retain certain information but the app code
does. The corresponding algorithm is similar to Algorithm 1.

The only difference is that we use ResAppPPretain and ResAppCoderetain to
replace PPInfos and CodeInfos, respectively. If FindSimilar-
Info is 1, we append the Info toProblemInfos.

4.3 Identifying Imprecise Privacy Policy

Discovering the First Kind of Imprecise Privacy Policy. The first
kind of imprecise privacy policy does not clearly specify the
personal information accessed by the app. To detect such
imprecise privacy policy, we first identify the privacy policy
that does not specify the personal information used in
description/WsN/code. Then, we check whether or not
the privacy policy mentions some abstraction of the per-
sonal information. If yes, the privacy policy is imprecise.
Otherwise, it is an incomplete privacy policy (examined in
Section 4.1). The detection procedure includes two steps:

Step 1: To identify the privacy policy that cannot cover the
personal information used in description, WsN, and code,

Fig. 10. Model of incorrect and inconsistent privacy policy.

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 231

we reuse the incomplete privacy policy detection algorithm
(Algorithm 1) by replacing CodeInfos with ResDesc,
ResWhatsnew, andResAppCode

collect [ResAppCode
retain , respectively.

Step 2: If the privacy policy cannot cover the information
identified from the description or the code, we check whether
the privacy policy mentions the abstraction of the personal
information. If so, this privacy policy is imprecise because it
does not list the specific personal information to be accessed.
For example, if the app’s code collects “phone number” but
its privacy policy only declares that it will access “personal
information”, the privacy policy is imprecise.

Breaux et al. created the abstraction of personal informa-
tion by manually reading three privacy policies and identi-
fying the statement that contains a definition or elaboration
of a phrase-level concept [42]. Then, they transform such
statement into Eddy syntax. Three kinds of statements are
analyzed: (1) refinement, which means that one concept is
refined by a more specific concept; (2) abstraction, which
means that a list of concept is described by a more general
concept; (3) exclusion, which means that a concept is
excluded from another concept.

We follow this procedure to collect the abstraction of per-
sonal information. Unfortunately, we find that the abstrac-
tion contained in different apps’ privacy policies may not be
consistent. For example, the privacy policy of com.absi.
tfctv declares that “non-personal information that may
include your IP address” while the privacy policy of com.fin-
con.globalHH describes that “collect your personal informa-
tion, such as your IP address”. Hence, we cannot use a few
privacy policies to create the abstraction for PPChecker.
Instead, to avoid such inconsistency, we select the data defi-
nition in GDPR [68] and the privacy policy of Google
Play [69] to create the abstraction. For example, the sentence
“a unique identifier such as the Advertising ID is used to ...”
refines the concept “unique identifier” with the specific con-
cept “Advertising ID”. We infer that “unique identifier” is
an abstraction of “Advertising ID”.

Discovering the Second Kind of Imprecise Privacy Policy. The
second kind of imprecise privacy policy declares some pri-
vacy related behaviors that do not exist in code. We identify
them by comparing the personal information declared in
privacy policy with the personal information accessed in
code. In detail, for each information that the app privacy
policy declares to collect/use/retain the resource (i.e.,
ResAppPP

collect , Res
AppPP
use , ResAppPP

retain), we use ESA [44] to check if it
is similar to one of the 14 kinds of personal information that
can be checked by the static analysis module (Section 3.3 2.
Identifying the Collected Information). If true, we check
whether the corresponding APIs/URIs are used in code or
not. If we cannot find any related APIs/URIs in code, the
privacy policy is imprecise.

Discovering the Third Kind of Imprecise Privacy Policy. The
third kind of imprecise privacy policy uses the adverb
clause of condition to describe the condition of privacy
related behavior, but the code does not check whether the
condition is satisfied or not. We consider two types of
adverb clause of conditions (Table 3). Type 1: Adverb clause
of conditions related to enabling service. If the privacy pol-
icy describes that personal information is accessed when a
certain service is enabled, the code must check if the corre-
sponding service is enabled or not before accessing the

personal information. Otherwise, the privacy policy is
imprecise. Here we consider both the system services and
the function/feature implemented by the developers. Type
2: Adverb clause of conditions related to UI callback. If the
privacy policy declares that personal information will be
accessed after pressing UI widget, we check if the code
access the corresponding personal information in the UI
callback or not. If the personal information is not accessed
in UI callback, the privacy policy is imprecise.

To detect this kind of imprecise privacy policy, after
extracting (verb, noun) pairs from the typed dependency
relations of the adverb clause of condition, we use these
(verb, noun) pairs to determine the type of constraints and
then conduct the checking. The procedures are detailed as
follows.

� Type 1: Adverb clause of conditions related to enabling ser-
vice. If the (verb, noun) pair is similar to (“enable”,
“service/function/feature”), we regard this constraint as
the first type of constraint, and extract the noun of the (verb,
noun) pair. We first check whether the feature/function/
service is a system service or not by comparing the noun of
the (verb, noun) pair with the 46 kinds of system service
(e.g., “location”, “bluetooth”) listed in [70]. If we cannot
find similar system service, the adverb clause of condition
may be related to a function/feature implemented by the
developer, and therefore we compare the service/function/
feature mentioned in adverb clause of conditions with the
constraints extracted from code.

If the adverb clause of condition is related to system
service, we check whether the app code has called the corre-
sponding APIs or not before accessing sensitive informa-
tion. For example, in the constraint “if you enable location
service”, since “location service” is a system service, the API
LocationManager.isProviderEnabled() should be called before
accessing the information. If the app does not call this API,
the adverb clause of condition is imprecise.

If the adverb clause of condition is related to the func-
tion/feature implemented by developer, we first get the
resource ID of the UI element that allows user to enable it,
and then we check whether the resource ID is used in the
constraint of privacy-related behavior or not. In detail, the
app usually provides a configuration activity or pop-up dia-
log to allow user to enable function/feature, and the app
can learn the user’s selection through the status of UI ele-
ments (e.g., CompoundButton.isChecked()). To obtain the cor-
responding resource ID, we first search the mentioned
feature/function in the mapping between the resource ID
and the text (Section 3.3 7), and then check if the constraint
of sensitive API/URI (identified in Section 3.3 5) contains
the resource ID. If yes, the app has checked the status of fea-
ture/function in code before accessing personal informa-
tion. Otherwise, the adverb clause of condition is imprecise.

For example, the privacy policy of the app com.

media1908.lightningbug contains the sentence “If you
do enable the local weather feature, your approximate location is
collected on a periodic basis”. We extract the (“enable”, “local
weather feature”) from its typed dependency relations.
“local weather” is a function implemented by developer
instead of a system service. We search it in the mapping
between resource ID and text. As there is a mapping
between 0x7f06001b and “Local Weather”, the status of the

232 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

UI element with resource ID 0x7f06001b should be
checked before the app accesses the location information.
As shown in Fig. 7, in the constraint of location related API
requestLocationUpdate(), we can find that the resource ID
0x7f06001b (i.e., 2131099675) is used in the constraint. In
other words, the app has checked whether users have
enabled the feature/function before accessing information.

� Type 2: Adverb clause of conditions related to UI callback. If
the (verb, noun) pair extracted from the adverb clause of
condition has similar meaning as (“press/click”, object), it is
regarded as the second type of constraint. We extract the
pressed/clicked object based on the typed dependency rela-
tions, and then locate the UI element related to the object.
Finally, we check whether the sensitive information is
accessed after pressing the corresponding UI element.

In detail, to get the resource id of the pressed/clicked UI
element, we search the extracted object in the mapping
between resource ID and text (Section 3.3 7). After finding
the resource ID of the UI element, we check if the sensitive
information is accessed in the callback of the UI element or
other activities launched by the UI element. For the former
case, we look for the control flow path that starts from the
entry of the callback and ends at the invocation of sensitive
API/URI. If such path is found, the sensitive information is
accessed in the callback. For the latter case, we generate the
windows transaction graph (WTG) using Gator [71], and
collect the activities that will be launched after pressing the
UI element. We scan the code of these activities to deter-
mine whether they access the corresponding sensitive infor-
mation or not. If the information is not accessed in the
callback of UI element or the activities launched by the UI
element, the adverb clause of condition is imprecise.

4.4 Revealing Inconsistent Privacy Policy

Inconsistency between App’s Privacy Policy and Third-Party
Lib’s Privacy Policy. Fig. 10 also depicts how to determine
the inconsistency between an app’s privacy policy and its
third-party libs’ privacy policies. To identify the third-party
libs used in app, we maintain a list of class name prefixes of
third-party libs. Then, the static analysis module goes
through all class names to find the third-party libs inte-
grated in the app. Given an app with m useful sentences in
its privacy policy and n useful sentences in its third-party
libs’ privacy policies, we compare AppSenti (1 � i � m)
with LibSentj (1 � j � n). More precisely, given AppSenti
and LibSentj, if the following three conditions are satisfied,
then there exists an inconsistency.

(1) AppSenti’s and LibSentj’s main verbs belong to the
same category (i.e., VPcollect; VPuse, VPretain, or
VPdisclose);

(2) AppSenti is a negative sentence and LibSentj is a
positive sentence; and

(3) AppSenti and LibSentj refer to the same resource.
Algorithm 2 lists the detailed steps. Line 4-5 are related to

conditions (1) and (2), where the function getVerbCategoryðÞ
returns the category of a sentence’s main verb and the func-
tion IsPositiveðÞ returns true if a sentence is positive. Line
6-14 are related to condition (3), where the function getResðÞ
returns the resources extracted from a sentence and the
function SimilarityðÞ computes the similarity between two

resources by using ESA [44]. Some apps’ privacy policies
declare that they are not responsible for the behaviors of
third-party libs. In this case, if the app’s privacy policy is
inconsistent with third-party libs’ privacy policies, we
ignore such inconsistency.

Algorithm 2. Reveal Inconsistency between an App’s
Privacy Policy and its Third-Party Libs’ Privacy Policies

Input: AppSenti (1 � i � m): Sentences of app privacy pol-
icy, LibSentj (1 � j � n): Sentences of lib privacy
policy.

Output: ProblemSents: Return the inconsistent sentences if
the privacy policy is inconsistent; Null: Return
null if the privacy policy is not inconsistent.

1 ProblemSents = [];
2 for i in range (1, m) do
3 for j in range (1, n) do
4 VPCateapp ¼ getVerbCategoryðAppSentiÞ;

VPCatelib ¼ getVerbCategoryðLibSentjÞ;
5 if ðVPCateapp ¼¼ VPCateappÞ^ ð!IsPositiveðAppSentiÞÞ ^

ðIsPositiveðLibSentjÞÞ then
6 AppResSet ¼ getResðAppSentiÞ;
7 LibResSet ¼ getResðLibSentjÞ;
8 for AppRes in AppResSet do
9 for LibRes in LibResSet do
10 if Similarity(AppRes,LibRes) > threshold then
11 ProblemSents.add([AppSenti; LibSentj]);

//Save the inconsistent sentences
12 end
13 end
14 end
15 end
16 end
17 end
18 if ProblemSents.length()> 0 then
19 return ProblemSents; //Privacy policy is inconsistent
20 end
21 return Null; //Privacy policy is not inconsistent

Inconsistency between App’s Privacy Policy and In-App Pri-
vacy Policy. After extracting the in-app privacy policy
(Section 3.3), we use the privacy policy analysis module
(Section 3.2) to process it and get the information collected/
used/retained/disclosed by the app. We compare them
with the information obtained from the app’s privacy policy
(i.e., privacy policy link on Google Play). If one information
is collected/used/retained/disclosed in one privacy policy,
but it is not mentioned in the other privacy policy, we
regard that the app’s privacy policy (i.e., online privacy
policy) is inconsistent with the in-app privacy policy.

4.5 Identifying User Unfriendly Privacy Policy

Discovering the Language Inconsistency between the Description
and Privacy Policy. Since we currently just examine the
descriptions in English, if the privacy policy is in other lan-
guage, we report that the privacy policy is not user friendly.
To detect whether the privacy policy is written in other lan-
guage, PPChecker utilizes Compact Language Detector [72] to
get the top three languages found and their approximate per-
centages. Compact Language Detector uses Naive Bayesian
classifier to detect more than 83 languages (including those

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 233

languages that contain many ASCII characters, such as
French, German, and Italian). If more than 70 percent of the
content is not in English, we regard that the privacy policy is
not in English.

Evaluating the Readability of a Privacy Policy. Flesch Read-
ing Ease score [73] uses the average sentence length and
word length to measure the readability of the text. Text with
a low score is difficult to read. Therefore, we calculate the
Flesch Reading Ease score of each privacy policy. Table 6
shows the meaning of different scores [74]. If the score is
lower than 30.0, the text is very difficult to read.

4.6 Disclosing Problems in Third-Party Libs’
Privacy Policies

As a third-party lib may also have privacy policy, PPChecker
also checks whether it is incomplete and/or incorrect. To
detect the incomplete privacy policy of third-party lib, we
adopt the algorithm of detecting incomplete privacy policy
through code (Algorithm 1). In detail, we replace PPInfos
with the behaviors declared in a lib’s privacy policy
(ResLibPPcollect , ResLibPPuse , ResLibPPretain , and ResLibPPdisclose), and replace
the CodeInfos with the behaviors in an lib’s code
(ResLibCodecollect , ResLibCoderetain).

Similarly, to detect the incorrect lib privacy policy, we
customize Algorithm 1 by replacing CodeInfos with the
information retained by a lib’s code (ResLibCoderetain). We also
replace the PPInfoswith the information that a lib’s privacy
policy declare not to retain (ResLibPPretain). If FindSimilarInfo is 1,
we append the Info to ProblemInfos.

5 EXPERIMENTAL RESULT

5.1 Data Set

We download 2,500 apps from Google Play, each of which
has a description in English and provides a privacy policy
link. We also examine the privacy policies of three kinds of
third-party libs, including:

(1) Ad libs. 52 out of top 90 popular Ad libs in [75] are
selected because they have privacy policies in English.

(2) Social libs. 9 out of 18 most popular social network
libs in [76] are chosen because they offer privacy pol-
icies in English.

(3) Development tools. We pick 20 most commonly used
development tools with privacy policies in English
from [77] because the majority of other tools do not
have websites showing their privacy policies.

In this section, we use experiments to answer the follow-
ing questions:

Q1: How is the precision and recall rate of privacy policy
analysis module ? (Section 5.2)

Q2: How many incomplete privacy policies can be
detected by PPChecker ? (Section 5.3)

Q3: Howmany incorrect privacy policies can be found by
PPChecker ? (Section 5.4)

Q4: How many imprecise privacy policies can be identi-
fied by PPChecker ? (Section 5.5)

Q5: How many inconsistent privacy policies can be
revealed by PPChecker ? (Section 5.6)

Q6: How many user-unfriendly privacy policies can be
reported by PPChecker ? (Section 5.7)

Q7: How many problematic lib privacy policies can be
discovered by PPChecker ? (Section 5.8)

5.2 Correctness of Sentence Identification in
Privacy Policies

To measure the precision and recall rate of the privacy pol-
icy analysis module. We manually read 100 privacy policies
of mobile apps and create a data set that contains 1000 col-
lection, 1000 usage, 400 retention, and 600 disclosure related
sentences. If the sentence is related to the information col-
lected, used, retained, or disclosed by the app, we add
“#COLLECT”, “#USE”, “#RETAIN”, or “#DISCLOSE” label
to it, respectively.

We compare the new classifier-based sentence identifica-
tion approach and the previous one in the conference ver-
sion [34], which uses the patterns learned from privacy
policy corpus to identify information collection, usage,
retention, and disclosure related sentences. For this evalua-
tion, we randomly select 800 sentences from our privacy
policy data set. Half of the sentences are about information
collection, usage, retention, and disclosure. The perfor-
mance of the patterns learned from privacy corpus [34] is
shown in Table 7.

From the result shown in Table 7, we can find that due to
the limited number of patterns learned from privacy policy
corpus, [34] can only achieve the 78.7 percent precision and
81.6 percent recall rate.

We select four kinds of commonly used classifiers to test
the performance of PPChecker when detecting different
kinds of sentences, including: Max Entropy [36], SVM [37],
naive bayes [38], and Random Forest [39]. We perform 10-
fold cross validation on the data set. The result is shown in
Table 8. We select Max Entropy classifier to extract informa-
tion collection, usage, retention, and disclosure related sen-
tences since its F-1 scores are higher than other three
classifiers. The performance is also higher than the patterns
learned from privacy corpus [34] (i.e., Table 7).

False Positives. The false positive is generated because
some sentences contain information collection, usage, reten-
tion, or disclosure related verbs, but the object is not

TABLE 6
The Flesch Reading Ease Score of the Apps’ Privacy Policies

Score School Level Meaning # Apps

100.0 - 90.0 5th grade Very easy to read. 7
90.0 - 80.0 6th grade Easy to read. 3
80.0 - 70.0 7th grade Fairly easy to read. 27
70.0 - 60.0 8th and 9th grade Plain English. 106
60.0 - 50.0 10th to 12th grade Fairly difficult to read. 187
50.0 - 30.0 College Difficult to read. 1174
30.0 - 0.0 College graduate Very Difficult to read. 443

TABLE 7
Patterns Learned from Privacy Corpus [34]: Identifying

Information Collection, Usage, Retention, and
Disclosure Related Sentences

Sentence Type Precision Recall F-1

Collection, Usage,
Retention, Disclosure

78.7% 81.6% 80.1%

234 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

personal information. For example, “please ask your legal
guardians permission to use or access the apps”. Although the
sentence contains verb “access”, its object is “apps”. To
remove such false positives, we can build up a object black-
list to filter out useless ones.

False Negatives. The false negative is caused because some
sentences’ structures are not included in the training set. For
example, the sentence “We also need a unique ID of your
device” is missed when detecting information collection
related sentences since the training set does not contain sen-
tences with similar structures. To remove such false nega-
tives, we can expand the size of training set to achieve
higher coverage.

Answer to Q1: The experimental result shows that:
PPChecker can achieve at least 89.4 percent precision
and 85.1 percent recall rate when identifying informa-
tion collection, usage, retention, and disclosure related
sentences.

5.3 Detecting Incomplete Privacy Policy

Detecting Incomplete Privacy Policy through Description. Con-
trasting an app’s description and its privacy policy,
PPChecker finds 352 questionable apps. Table 9 lists the per-
missions that lead to the incompleteness and the correspond-
ing number of suspicious apps. In other words, these
permissions can be inferred from those apps’ descriptions
whereas their privacy policies do not cover them. Note that
we only consider the permissions requested in the manifest
file. The results show that many apps need to read and
store information in external storage (WRITE_EXTERNAL_
STORAGE), but not all of them explain this behavior in
their privacy policy. These apps may use external storage
as cache or store cookie. The location related permissions
(i.e., ACCESS_COARSE_LOCATION and ACCESS_FINE_

LOCATION) also affect many apps. Many of these apps
belong to the category of weather and the category of map,
and they need the location information to provide services.

Moreover, the permissions READ_CONTACTS and GET_

ACCOUNTS also affect many apps.
False Positives. We randomly select and manually check

20 incomplete privacy policies detected by PPChecker. The
result shows that all 35 missed permissions are not
described in these privacy policies. In other words, no false
positives are reported.

False Negatives. To measure the false negatives of
PPChecker, we randomly select 20 privacy policies that are
not reported to be incomplete. We manually read the corre-
sponding descriptions and do not find any missed alerts
(i.e., the description describes one permission but privacy
policy does not mention it).

Detecting Incomplete Privacy Policy through What’s New.
PPChecker finds 14 incomplete privacy policies through
WsN, as shown in Table 10, which have also been manually
verified.

Detecting Incomplete Privacy Policy through Code. By ana-
lyzing apps’ code, PPChecker finds 486 pieces of missed per-
sonal information. Manually checking confirms that 435
pieces of missed personal information distributed in 295
privacy policies do have the problem whereas 51 missed
personal information are false positives. Among these 295
incomplete privacy policies, we find that 93 pieces of missed
personal information are retained.

Fig. 11 lists the distribution of missed information. We
can see that the location is the most common information
accessed but not mentioned in the incomplete privacy poli-
cies. This result is consistent with the result in Table 9. We

TABLE 8
ReviewSolver: Identifying Information Collection, Usage,

Retention, and Disclosure Related Sentences

Sentence Type Classifier Precision Recall F-1

Collection Max Entropy 93.5% 90.0% 91.7%
SVM 92.2% 84.9% 88.3%

Naive Bayes 88.7% 91.4% 90.0%
Random Forest 94.3% 83.6% 88.6%

Usage Max Entropy 89.4% 85.1% 87.2%
SVM 87.8% 77.3% 82.2%

Naive Bayes 83.2% 85.9% 84.3%
Random Forest 86.0% 81.9% 83.7%

Retention Max Entropy 95.6% 90.1% 92.8%
SVM 95.2% 83.5% 88.7%

Naive Bayes 94.9% 87.9% 91.2%
Random Forest 97.1% 79.9% 87.5%

Disclosure Max Entropy 92.7% 85.9% 89.2%
SVM 94.8% 81.1% 87.2%

Naive Bayes 87.8% 84.3% 85.8%
Random Forest 96.0% 77.5% 85.6%

TABLE 9
Permissions Leading to Incomplete Privacy Policy and the

Number of Corresponding Apps (Found through Description)

Permission Num. of Questionable apps

ACCESS_COARSE_LOCATION 76
ACCESS_FINE_LOCATION 149
CAMERA 30
GET_ACCOUNTS 25
READ_CALENDAR 64
READ_CONTACTS 51
WRITE_CONTACTS 8
RECORD_AUDIO 19
WRITE_SETTINGS 12
WRITE_EXTERNAL_STORAGE 133

TABLE 10
Permissions Leading to Incomplete Privacy Policy and the

Number of Corresponding Apps (Found through What’s New)

Permission Num. of Questionable apps

ACCESS_COARSE_LOCATION 1
ACCESS_FINE_LOCATION 4
CAMERA 4
GET_ACCOUNTS 1
READ_CALENDAR 1
READ_CONTACTS 1
WRITE_CONTACTS 1
RECORD_AUDIO 1
WRITE_SETTINGS 1
WRITE_EXTERNAL_STORAGE 3

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 235

also check the corresponding APIs used by those apps with
incomplete privacy policy and find that for the location, get-
Longitude(), getLatitude(), and getLastKnownLocation(java.
lang.String) are the three most commonly invoked APIs.

False Positives. After inspecting the result, we find that the
false positives are caused by errors in extracting personal
information from some sentences. For example, for the sen-
tence “in addition to your device identifiers, we may also collect:
the name you have associated with your device”, we only extract
“name” since it is the object of the action “collect”, but fail
to extract “device identifier”.

False Negatives. Since checking false negatives requires a lot
of manual effort, we randomly select 20 apps to determine
whether PPChecker results in false negatives. The result shows
that PPChecker identifies all incomplete privacy policies.

Answer to Q2: The experimental result shows that:
PPChecker detects 492 apps that have incomplete privacy
policies: 352 are detected through descriptions, 14 are
detected throughWsN, and 295 are detected through code.

5.4 Discovering Incorrect Privacy Policy

Discovering Incorrect Privacy Policy through Description.
PPChecker finds 2 apps having the first kind of incorrect pri-
vacy policy, namely, com.humetrix.icebb and com.

herman.ringtone. The former’s privacy policy says “The
App does not collect information about the location of a users
mobile device.”. But its description describes the use of loca-
tion, “ICEBlueButton automatically generates ... a map with the
location of the emergency” and the app requests the permis-
sion ACCESS_COARSE_LOCATION and ACCESS_FINE_

LOCATION. The latter’s privacy policy declares “Ringtone
Maker will not collect your contact information”. But its descrip-
tion describes the use of contact information, “After you create
the ringtone, there is a choice to assign it to your contact”, and the
app requests the permission WRITE_CONTACTS. Manual
checking shows that this app provides an activity for assign-
ing ringtone to contact: (1) After pressing the “Contact” but-
ton, it reads the whole contact list stored in your device and
displays it on the GUI. (2) If the user clicks one contact item,
it pop-ups a window for ringtone selection. PPChecker also
detects 6 apps having the second kind of incorrect privacy
policies. For example, the app’s (eu.asteryx.transpor-
tlocator) privacy policy declares “TMUApps does not col-
lect or store any personal information through any of its apps.”
But it requests the permission ACCESS_FINE_LOCATION to
providemap service.

Discovering Incorrect Privacy Policy through What’s New.
Since apps only have a few sentences in WsN, PPChecker
does not find any incorrect privacy policy through WsN.

Discovering Incorrect Privacy Policy through Code.
PPChecker finds one app with incorrect privacy policy by

comparing ResAppPPcollect [ResAppPPuse and ResAppCodecollect . Although

com.humetrix.icebb declares not to collect location
information in their privacy policies, it calls the API Loca-
tion.getLatitude() and Location.getLongitude() in code.

By comparing ResAppPPrestain and ResAppCoderetain , PPChecker finds
another two apps with incorrect privacy policies. One is
com.easyxapp.secret. Its privacy policy contains a sen-
tence “we will not store your real phone number , name and con-
tacts”, but PPChecker identified a path between < android.
provider.ContactsContract$Contacts: android.net.Uri CON-
TENT_URI> and Log.i(), indicating that the contact infor-
mation will be stored in the log file. Another app is hko.

MyObservatory_v1_0. Its privacy policy declares “Users
locations would not be transmitted out from the app”. However,
PPChecker finds a path from getLatitude() to Log.i() (i.e., the
location information will be stored in log).

False Positives. We observe two false positives due to the
lack of consideration of the context. For example, PPChecker
finds from the code of com.zoho.mail that it will access
the account information. However, it correlates this behavior
with the sentence “We also do not process the contents of your
user account for serving targeted advertisements” mistakenly,
and thus raises an alert of incorrect privacy policy. Actually,
there is another sentence in this app’s privacy policy saying
“We may need to provide access to your Personal Information and
the contents of your user account to our employees”. In other
words, this app does access the account information and its
privacy policy has correctly declared such behavior.

False Negatives. We randomly select 20 apps to check
whether PPChecker causes any false negatives. The negative
sentences in privacy policies, the permissions inferred from
descriptions, and the information collected/retained in code
are all inspected, andwe do not find any false negatives.

Answer to Q3: The experimental result shows that:
PPChecker discovers 10 apps that have incorrect privacy
policies. 8 of them contain conflicts between descriptions
and privacy policies. 3 of them contain conflicts between
code and privacy policies.

5.5 Identifying Imprecise Privacy Policy

Discovering the First Kind of Imprecise Privacy Policy.
PPChecker discovers 451 apps that do not clearly describe
privacy-related behaviors. In detail, by using the permis-
sions inferred from description, PPChecker discovers 238
such imprecise privacy policies. We count the number of
questionable apps for each permission. The result is shown
in Table 11. We can find that ACCESS_FINE_LOCATION is
the most commonly missed permissions for these apps. By
using the permissions inferred from WsN, PPChecker dis-
covers 23 imprecise privacy policies. By using the informa-
tion accessed in code, PPChecker discovers 288 apps that
access sensitive information in code, but they do not clearly
describe these behaviors in privacy policies.

False Positives. We randomly select 20 questionable apps
and check the corresponding description/WsN/code. All

Fig. 11. Distribution of personal information collected or retained by apps
with incomplete privacy policies.

236 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

these apps’ description/WsN/code contain privacy-related
behaviors but the corresponding privacy policies do not
clearly describe them. In other words, we do not find any
false positives.

False Negatives. We randomly select 20 privacy policies
that are not reported to be the first kind of imprecise privacy
policies. We check if the corresponding description/WsN/
code contain privacy-related behavior and the privacy pol-
icy does not clearly describe it. Finally, we do not find any
false negatives.

Discovering the Second Kind of Imprecise Privacy Policy.
PPChecker discovers 967 imprecise privacy policies that
describe privacy-related behaviors, but we cannot locate
these behaviors in code. For example, the privacy policy of
the app air.com.disney.hiddendisney.goo describes
that “when you visit our sites or use our applications, including
location information either provided by a mobile device”.
However, as the app does not request location related per-
missions, it cannot call location related APIs in code.

False Positives. We randomly select and manually check
20 questionable apps found by PPChecker. We discover 2
false positives. These two privacy policies contain sentences
related to information query but PPChecker regards them as
information collection related sentences. For example, the
privacy policy of the app air.com.kitchenscramble.

goo contains the sentence: “please send a request by email
with your current contact information to ...”. The privacy policy
analysis module of PPChecker extracts the “contact
information” from the sentence and sends out an alert.

False Negatives. We randomly select 20 privacy policies
that are not reported as the second kind of imprecise pri-
vacy policies. We check whether these privacy policies con-
tain privacy related behaviors that cannot be located in
code. We cannot find any false negatives.

Discovering the Third Kind of Imprecise Privacy Policy. After
checking the adverb clause of condition of privacy policies,
PPChecker identifies 2 imprecise privacy policies that the
adverb clause of condition cannot be found in code. One is
related to the first type of constraint shown in Table 3. The
privacy policy of the app me.fahlo describes that “If you
choose to enable push notifications, we may use your Personal
Information, or nonpersonal information such as a device ID”.
The static analysis module found that the app will collect
and transmit the device ID when logging in. However, the
app will not check whether push notification is enabled in

this procedure. In other words, the device ID will be col-
lected automatically. As the adverb clause of condition con-
tained in privacy policy is not implemented in code, the
privacy policy is imprecise. The other is related to the sec-
ond type of constraint shown in Table 3. The privacy policy
of the app mobisocial.omlet declares that “If you click go, we
will collect information about your geographic location”. How-
ever, in app code, the location-related API (LocationManager.
getLastKnownLocation()) is called by the com.baidu.android.
pushservice.b.e.h() method, instead of the button’s callback
function(i.e., onClick()). Since the privacy policy describes
that location information will be collected in the UI callback
but this condition cannot be found in code, this privacy pol-
icy is imprecise.

False Positive. We manually check the code of these two
apps and verify these two alerts.

False Negatives. For the other privacy policies that contain
useful sentences with constraints shown in Table 3, we man-
ually check the code and do not find any missed alerts.

Answer to Q4: The experimental result shows that:
PPChecker identifies 1259 apps with imprecise privacy
policies.

5.6 Revealing Inconsistent Privacy Policy

Discovering Inconsistency between App Privacy Policy and Lib
Privacy Policy. By comparing the app privacy policies with
their related lib privacy policies, the result shows that 153
apps’ privacy policies contain inconsistent sentences.

To evaluate the recall rate, we randomly select 200 app
from the data set. We first extract all negative sentences
related to information collection/usage/retention/disclo-
sure from these apps’ privacy policies. Then, we extract all
positive sentences related to information collection/usage/
retention/disclosure from the corresponding libs’ privacy
policies. We manually compare these two kinds of sentences
and discover 13 inconsistent privacy policies. PPChecker
detects 11 apps. Hence, the recall rate is 84.6 percent.

False Positives.We find that the false positive is due to the
fact that ESA may incorrectly regard two different texts as
the same thing. For example, the privacy policy of app
com.StaffMark has the sentence “do not transmit that infor-
mation over the internet”, and the privacy policy of lib
Admob(google) contains the sentence “We will share personal
information with companies”. ESA matches the “information”
in the former to the “personal information” in the latter,
and regards them as the same thing by mistake.

False Negatives. The false negative is due to the incom-
pleteness of our verb set. For instance, the app com.star-

litt.disableddating declares the sentence “we will not
display any of your personal information”. The privacy policy
analysis module of PPChecker fails to identify the sensitive
verb “display”, and thus it cannot extract “personal infor-
mation” from this sentence.

Discovering Inconsistency between App Privacy Policy and
In-App Privacy Policy. As described in Section 3.3, the in-app
privacy policy links can be extracted from the text of GUI or
callback functions of buttons. PPChecker extracts 39 privacy
policy links from GUI texts and 11 privacy policy links from
the callback functions of buttons.

TABLE 11
Permissions Leading to Imprecise Privacy Policy and the

Number of Corresponding Apps (Found through Description)

Permission Num. of Questionable apps

ACCESS_COARSE_LOCATION 55
ACCESS_FINE_LOCATION 77
CAMERA 23
GET_ACCOUNTS 16
READ_CALENDAR 14
READ_CONTACTS 62
WRITE_CONTACTS 11
RECORD_AUDIO 30
WRITE_SETTINGS 14
WRITE_EXTERNAL_STORAGE 56

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 237

After comparing these in-app privacy policies with their
corresponding on-line privacy policies, PPChecker discovers
5 problematic apps. For example, the online privacy policy
of the app com.wendy (stored in “http://www.thirdageapps.
com/Privacy/”) says “We may use technologies like unique device
identifiers to anonymously identify your computer or device so we
can deliver a better experience”, which implies that device ID
will be collected. Another sentence “we and our partners may
collect, use, and share precise location data” describes that loca-
tion will be collected. However, its in-app privacy policy
(store in “http://thirdageapps.com/wendy/site/privacy”) does
not mention these two behaviors at all.

False Positives. We manually check these 5 problematic
apps and do not find any false alerts.

False Negatives. We manually check other apps that con-
tain in-app privacy policy links. The content is the same as
the content of on-line privacy policies. We do not find false
negatives in them.

Answer to Q5: The experimental result shows that:
PPChecker reveals 158 apps that have inconsistent pri-
vacy policies where 153/5 are detected through compar-
ing app privacy policy with lib/in-app privacy policy,
respectively.

5.7 Recognizing User Unfriendly Privacy Policy

PPChecker finds 501 user unfriendly privacy policies. 58
apps’ descriptions are in English but their privacy policies
are not in English. These results have been manually
validated.

We compute the Flesch reading scores of the all privacy
policies and find 443 apps’ privacy policies are very difficult
to read. The score distribution is shown in the last column of
Table 6. For example, the score of the app’s (com.Mobile-
TreeApp) privacy policy is 28.47, meaning that it is very
difficult to read its privacy policy. After checking this pri-
vacy policy, we find that it has many long sentences with
more than 40 words.

Answer to Q6: The experimental result shows that:
PPChecker recognizes 501 apps have user-unfriendly pri-
vacy policies: 58 apps’ descriptions are in English but
their privacy policies are not in English and 443 apps’
privacy policies are very difficult to read.

5.8 Disclosing Problems in Third-Party Libs’
Privacy Policies

After checking the privacy policies of 52 ad libs, 9 social libs,
and 20 development tools described in Section 5.1, we find 5
incomplete lib privacy policies. 3 of them miss declaring the
use of device ID. 2 of them do not mention the use of IP
address. One lib’s privacy policy misses mentioning the use
of location and sim serial number. For example, the lib Pon-

tiflex calls getLatitide() and getLongitude() to get latitude
and longitude, but its privacy policy does not mention such
behavior. Moreover, we do not find any third-party lib that
declares not to retain some personal information in privacy
policy but conducts such behavior in code.

Answer to Q7: The experimental result shows that:
PPChecker detects 5 libs with incomplete privacy policies.

5.9 Summary of the Experimental Result

For 2,500 apps, PPChecker finds 1,850 (74.0 percent) apps’
privacy policies having at least one problem. We compared
the experimental result of current version PPChecker with
that of conference version. The result is shown in Table 12.
For the incomplete and incorrect privacy policies, the per-
centage of problematic privacy policies detected by current
version of PPChecker is slightly higher than the conference
version. For the inconsistent privacy policies, the percentage
of problematic privacy policies detected by current version
of PPChecker is equal to the result of the conference version.
For the other two kinds of problematic privacy policies (i.e.,
imprecise and user unfriendly privacy policies), only the
current version can detect it.

For the 81 libs, PPChecker detects 5 problematic privacy
policies.

6 THREAT TO VALIDITY

Being a first step towards assessing the trustworthiness of
apps’ privacy policies, PPChecker has successfully revealed
many questionable privacy policies by using the state-of-
the-art NLP and static code analysis techniques. Some threat
will affect the performance of PPChecker.

Internal threats. Some factors in system design will affect
the number of questionable privacy policies detected by
PPChecker. First, when checking the adverb of condition, we
only check the condition related to enabled feature/func-
tion/service and UI element clicking. In future work, we
will create models for recognizing more conditions. Second,
due to the limitation of static code analysis, some source-to-
sink paths found by PPChecker may not be executed. One
potential solution is to conduct dynamic analysis for verify-
ing the result of static analysis. Third, developer may use
obfuscation techniques to remove the information in class
names and method names. We plan to employ the method
in [61] to address this issue in future work.

External threat. Some threats in experiment will affect
the correctness of the result. First, when checking the per-
formance of privacy policy analysis module, we used a
data set that contain 100 privacy policies. We will add more
privacy policies to the data set in future. We will also try
different kinds of classification algorithms. Second, when
checking the incomplete privacy policies detected by

TABLE 12
Experimental Result Comparison: Current Version

and the Conference Version [34]

Problem Category Conference
Version [34]

Current Version

Incomplete privacy
policy

18.5% (222/1197) 19.7%(492/2,500)

Incorrect privacy
policy

0.3% (4/1197) 0.4%(10/2,500)

Imprecise privacy
policy

- 50.4%(1,259/2,500)

Inconsistent privacy
policy

6.3%(75/1197) 6.3%(158/2,500)

User unfriendly pri-
vacy policy

- 20.0%(501/2,500)

238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

http://www.thirdageapps.com/Privacy/
http://www.thirdageapps.com/Privacy/

PPChecker, we only manually check 20 privacy policies to
get the recall rate. More privacy policies will be checked in
the future.

7 RELATED WORK

7.1 Privacy Policy Analysis

Existing studies usually use a small number of pre-
defined patterns to analyze privacy policy. Brodie et al.
create a set of grammars and use NLP to identify the rule
elements in privacy policy [78]. Costante et al. define five
patterns and employ the information extraction techni-
ques to discover the information to be collected by web-
sites [21]. Text2Policy uses pre-defined patterns to extract
access control policies from natural-language project
documents and resource-access information from func-
tional requirements [20].

Breaux et al. define a formal language to find conflicts
between privacy policies manually [27], [28]. Moreover,
Yamada et al. manually look for conflicts among the privacy
policies of a few online social networks [79]. The major dif-
ference between this paper and theirs is that PPChecker auto-
matically discovers the inconsistencies to avoid time-
consuming manual inspection. Privee combines crowd-
sourcing and binary classification techniques to examine
web privacy policies [80]. Note that although Privee can
determine whether a privacy policy contains statements
related to information collection, it cannot find out which
information will be collected. Recently, Schaub et al. explore
the design space of privacy notice to help developers select
the best notice design [81].

7.2 Android App Analysis

CHEX [59] employs static analysis to detect component
hijacking vulnerabilities in Android apps. A number of
static analysis research has been done on Android apps.
FlowDroid [55] is a precise context, flow, field, object-sensi-
tive and lifecycle-aware static taint analysis system for
Android apps. Lu et al. [57] analyse both used APIs and
content providers, and apply the joint flow analysis tech-
nique to find more privacy disclosures. EdgeMiner [54] con-
ducts static analysis on Android framework to determine
implicit control flow transition. AsDroid matches the static
analysis result with text extracted from UI components to
detect stealthy behaviors in Android apps [82]. Whyper
adopts NLP techniques to process an app’s description to
find out suspicious permissions [83]. AutoCog creates a
semantic model for Android permissions and uses this
model to locate permissions that can not be matched by
descriptions [45]. CHABADA [84] utilizes topic model to
process descriptions and group apps, and then identifies
apps that use abnormal APIs in the same group. In order to
uncover the server URLs of mobile apps, Lin et al. [85] use
symbolic execution to solve the constraints on the path to
get the proper input. Then they utilize dynamic analysis to
generate server request message. To identify the vulnerabil-
ity of brute-force password, given a few legal inputs, Zuo
et al. [86] first hook cryptographic APIs to know how the
user input is processed. Then they intercept the outgoing
messages and infer the semantic of message fields by diffing
the messages. In order to understand why some apps are

disappeared from the market, Wang et al. [87] compared
two snapshots of Google Play apps and they summarized
six kinds of apps that are removed.

7.3 Analysis of Android Apps’ Privacy Policies

To analyze the quality of the privacy policies of mobile
money apps, Bowers et al. [88] search keywords in these pri-
vacy policies and then they manually determine whether
the privacy policy comply the guidance provided by US
Federal Deposit Insurance Corporation (FDIC) and mobile
money industry (GSMA) or not. They also calculated the
readability and the language of these privacy policies. The
major difference between [88] and PPChecker is that [88]
manually analyze privacy policies while PPChecker com-
bines machine learning and information retrieval technique
to analyze them automatically.

Slavin et al. propose a semi-automatic method to find
incomplete privacy policy [89]. When detecting incomplete
privacy policies, the major technical differences between
theirs and PPChecker include: 1) they manually select infor-
mation collection related sentences from privacy policy [89]
whereas PPChecker accomplishes this task automatically. 2)
In terms of code analysis, they only considers APIs [89]
whereas PPChecker takes into account both APIs and URIs.
Moreover, PPChecker uses the reachability analysis to avoid
infeasible code whereas they do not do it.

Zimmeck et al. propose to combine machine learning and
static analysis technique to detect incomplete privacy policy
and incorrect privacy policy [90]. Other three kinds of issues
detected by PPChecker are not considered by their system
(i.e., imprecise privacy policy, inconsistent privacy policy,
and unfriendly privacy policy). For detecting incomplete
and incorrect privacy policy, the techniques used by
PPChecker are also different from theirs: 1) For privacy pol-
icy analysis, before training machine learning classifiers,
they use a set of keywords to extract features from privacy
corpus whereas PPChecker directly trains classifier based on
annotated privacy policies. 2) Their static analysis module
only examines the APIs of 3 kinds of personal information
(i.e., location, device ID, contact) whereas PPChecker investi-
gates the APIs and URIs of 14 different kinds of personal
information (Section 3.3).

Wang et al. [91] also propose to combine privacy policy
analysis and static analysis to detect incomplete privacy
policy. In detail, their system reports an alert if the sensitive
user input is leaked in code but this behavior is not men-
tioned in privacy policy. However, PPChecker regards the
privacy policy as incomplete one if the app code accesses/
retains personal information by using API/URI and such
behavior is not mentioned in privacy policy. Other technical
difference in detecting incomplete privacy policy include: 1)
Their static analysis module performs static taint analysis
on user input while PPChecker is from APIs/URIs. 2) Their
privacy policy analysis is based on crowd sourcing while
PPChecker employs machine learning classifier.

In order to determine if the integrated ad lib violate the
behavior policy or not, Dong et al. [92] conduct GUI testing
to identify the type/location feature of ad views and com-
pare it with the rules summarized from lib behavior policy.
The major difference between PPChecker and Dong
et al. [92] is that: PPChecker utilizes static analysis to extract

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 239

behaviors from app code while they use dynamic analysis.
Moreover, PPChecker automatically analyzes privacy poli-
cies of apps while they manually identify rules from the
behavior policy of libs.

Compared with our earlier version [34], this manuscript
includes a significant amount of new materials. First, we
enhance the capability of PPChecker. For the privacy policy
analysis, we propose to replace pattern generation algo-
rithm with machine learning algorithm so that seed patt-
erns are not needed (Section 3.2). For the static analysis
(Section 3.3), we enable PPChecker to extract the constraint
of privacy related behaviors. It will also recover the links of
in-app privacy policies. For the description analysis, we
involve what’s new to infer the permissions used by apps
(Section 3.4) and detect incomplete/incorrect privacy policy
(Sections 4.1 and 4.2). We propose to discover three types of
imprecise privacy policies (Section 4.3): 1) the privacy policy
does not clearly describes the personal information accessed
by the corresponding app; 2) the privacy policy lists the per-
sonal information to be accessed, but the app only accesses
part of them; 3) the privacy policy mentions that the pri-
vacy-related behavior will be conducted under specific con-
dition, but the app does not check whether the condition is
satisfied. For detecting the inconsistent privacy polices, we
propose to detect the inconsistency between app privacy
policy with in-app privacy policy (Section 4.4). We also
equip PPChecker with the capability of identifying user
unfriendly privacy policy (Section 4.5). Second, we perform
much more evaluations on PPChecker with a larger data set
having 2,500 apps. Besides re-conducting the experiments
in [34], we add the following new evaluations, including
1) the performance of using machine learning algorithm to
analyze privacy policies (Section 5.2); 2) the usage of
WsN for discovering incomplete/incorrect privacy polices
(Sections 5.3 and 5.4); 3) the number of imprecise privacy
policies (Section 5.5); 4) the number of inconsistent privacy
policies detected by comparing app privacy policy with in-
app privacy policy (Section 5.6); 5) user unfriendly privacy
policies (Section 5.7); and 6) problems in third-party libs’
privacy policies (Section 5.8).

8 CONCLUSION

To determine whether apps’ privacy policies are trustwor-
thy or not, we propose and develop PPChecker for automati-
cally identifying five kinds of problems in privacy policy
after tackling several challenging issues in understanding
privacy policy and contrasting the meaning of an app’s pri-
vacy policy and its behaviors. We have evaluated PPChecker
with real apps and their privacy policies, and found that
PPChecker can effectively detect questionable privacy poli-
cies with high precision. Moreover, the experimental results
show that nearly three-quarters of apps have problems (i.e.,
74.0 percent) contain at least one kind of problem. More
attention should be paid to the trustworthiness of app pri-
vacy policies.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their qual-
ity reviews and suggestions This work was supported in
part by the Hong Kong RGC Projects (No. PolyU 152223/

17E, PolyU 152279/16E, CityU C1008-16G), the HKPolyU
Research Grant (G-YBJX), the National Natural Science
Foundation of China under Grant 61602258, and the China
Postdoctoral Science Foundation under Grant 2017M621247.

REFERENCES

[1] A. Varshney, “App stores of future will be based on blockchain,
promote transparency,” 2017. [Online]. Available: https://goo.
gl/fpyC7a

[2] TechNode, “China’s going to take a bigger chunk of world’s $110b
app economy in 2018,” 2017. [Online]. Available: https://goo.gl/
gr4ya6

[3] FireEye Inc., “Out of pocket: A comprehensive mobile threat
assessment of 7 million ios and android apps,” 2015. [Online].
Available: http://goo.gl/p6uzdD

[4] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
Automatically detecting potential privacy leaks in android appli-
cations on a large scale,” in Proc. Int. Conf. Trust Trustworthy Com-
put., 2012, pp. 291–307.

[5] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting pri-
vacy leaks in ios applications,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2011, pp. 177–183.

[6] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and
behavior,” in Proc. 8th Symp. Usable Privacy Secur., 2012,
Art. no. 3.

[7] Google, “Developer privacy policy.” [Online]. Available: https://
goo.gl/IiuWEH, 2018.

[8] “The need for privacy policies in mobile apps c an overview,”
2013. [Online]. Available: http://goo.gl/DtAQts

[9] M. Brennan, “California ag sends enforcement letter to developers
of popular mobile apps,” 2012. [Online]. Available: http://goo.
gl/2VQeB5

[10] “The California online privacy protection act (CalOPPA),” 2004.
[Online]. Available: http://goo.gl/6HtB4N

[11] “Directive 95/46/ec of the european parliament and of the council
of 24 october 1995 on the protection of individuals with regard to
the processing of personal data and on the free movement of such
data.” [Online]. Available: http://goo.gl/Qgwtle, 2016.

[12] FTC, “Mobile privacy disclosures: Building trust through trans-
parency,” 2013. [Online]. Available: https://goo.gl/h1gVXQ

[13] C. Meyer, E. Broeker, A. Pierce, and J. Gatto, “Ftc issues new guid-
ance for mobile app developers that collect location data,” 2015.
[Online]. Available: http://goo.gl/FxHuj1

[14] A. D. Rayome, “Google will soon delete apps with no privacy pol-
icies from play store,” 2017. [Online]. Available: https://goo.gl/
peZ3bn

[15] R. Balebako and L. Cranor, “Improving app privacy: Nudging
app developers to protect user privacy,” IEEE Secur. Privacy,
vol. 12, no. 4, pp. 55–58, Jul./Aug. 2014.

[16] F. Schaub, R. Balebako, A. Durity, and L. Cranor, “A design space
for effective privacy notices,” in Proc. 11th USENIX Conf. Usable
Privacy Secur., 2015, pp. 1–17.

[17] R. Balebako, A. Marsh, J. Lin, J. Hong, and L. Cranor, “The privacy
and security behaviors of smartphone app developers,” in Proc.
Usable Secur., 2014.

[18] “Ftc path case helps app developers stay on the right, er, path,”
2013. [Online]. Available: https://goo.gl/JKgJT4

[19] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
Proc. Proc. 2nd ACM Conf. Data Appl. Secur. Privacy, 2012,
pp. 317–326.

[20] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated
extraction of security policies from natural language software doc-
uments,” in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw.
Eng., 2012, Art. no. 12.

[21] E. Costante, J. Hartog, and M. Petkovic, “What websites know
about you,” in Proc. DPM, 2012, pp. 146–159.

[22] C. Manning and H. Schutze, Foundations of Statistical Natural Lan-
guage Processing. Cambridge, MA, USA: The MIT Press, 1999.

[23] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analy-
sis. New York, NY, USA: Springer, 2010.

[24] C. Chidgey, “Google play description v how to write for rank-
ing and conversion,” 2015. [Online]. Available: https://goo.gl/
fwtYUC

240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

https://goo.gl/fpyC7a
https://goo.gl/fpyC7a
https://goo.gl/gr4ya6
https://goo.gl/gr4ya6
http://goo.gl/p6uzdD
https://goo.gl/IiuWEH
https://goo.gl/IiuWEH
http://goo.gl/DtAQts
http://goo.gl/2VQeB5
http://goo.gl/2VQeB5
http://goo.gl/6HtB4N
http://goo.gl/Qgwtle
https://goo.gl/h1gVXQ
http://goo.gl/FxHuj1
https://goo.gl/peZ3bn
https://goo.gl/peZ3bn
https://goo.gl/JKgJT4
https://goo.gl/fwtYUC
https://goo.gl/fwtYUC

[25] A. Store, “Engaging users with app updates,” 2017. [Online].
Available: https://goo.gl/H4uQrX

[26] “Study report on the privacy policy transparency (internet privacy
sweep) of smartphone applications,” 2013. [Online]. Available:
https://goo.gl/3h0CvU

[27] T. Breaux, H. Hibshi, and A. Rao, “Eddy, a formal language
for specifying and analyzing data flow specifications for conflict-
ing privacy requirements,” Requirements Eng., vol. 19, no. 3,
pp. 281–307, 2014.

[28] T. Breaux and A. Rao, “Formal analysis of privacy requirements
specifications for multi-tier applications,” in Proc. 21st IEEE Int.
Requirements Eng. Conf., 2013, pp. 14–23.

[29] “Four kinds of verbs used by ppchecker,” 2013. [Online].
Available: https://drive.google.com/open?id=1kC5Hwgpl8ZZtBg
dm9zSEWrZkT75cAgqw

[30] “Beautiful soup.” [Online]. Available: http://goo.gl/0Lh7Dk, 2018.
[31] “Natural language toolkit.” [Online]. Available: http://www.

nltk.org/, 2018.
[32] D. Cer, M. Marneffe, D. Jurafsky, and C. Manning, “Parsing to

stanford dependencies: Trade-offs between speed and accuracy,”
in Proc. Int. Conf. Lang. Resources Eval., 2010, pp. 1628–1632.

[33] Stanford Parser, “Stanford typed dependencies manual,”
2016. [Online]. Available: http://nlp.stanford.edu/software/
dependencies_manual.pdf

[34] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy pol-
icies of android apps,” in Proc. DSN, 2016, pp. 538–549.

[35] TF-IDF, “Tf-idf: A single page tutorial,” 2017. [Online]. Available:
http://www.tfidf.com/

[36] A. McCallum, D. Freitag, and F. C. Pereira, “Maximum entropy
markov models for information extraction and segmentation,” in
Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 591–598.

[37] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to platt’s smo algorithm for svm classifier design,”
Neural Comput., vol. 13, no. 3, pp. 637–649,Mar. 2001.

[38] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the
poor assumptions of naive bayes text classifiers,” in Proc. 20th Int.
Conf. Int. Conf. Mach. Learn., 2003, pp. 616–623.

[39] M. Pal, “Random forest classifier for remote sensing classi-
fication,” Int. J. Remote Sens., Taylor & Francis, vol. 26, no. 1,
pp. 217–222, 2005.

[40] “Negative vocabulary word list.” [Online]. Available: http://goo.
gl/qX7UtK, 2018.

[41] E. Grammar, “Adverb clause of condition,” 2015. [Online]. Avail-
able: https://goo.gl/NWkTkS

[42] T. D. Breaux, D. Smullen, and H. Hibshi, “Detecting repurposing
and over-collection in multi-party privacy requirements specifica-
tions,” in Proc. IEEE 23rd Int. Requirements Eng. Conf., 2015,
pp. 166–175.

[43] R. Girju, A. Badulescu, and D. Moldovan, “Learning semantic
constraints for the automatic discovery of part-whole relations,”
in Proc. Conf. North Am. Chapter Assoc. Comput. Linguistics Human
Lang. Technol. - Vol. 1, 2003, pp. 1–8.

[44] E. Gabrilovich and S. Markovitch, “Computing semantic related-
ness using wikipedia-based explicit semantic analysis,” in Proc.
20th Int. Joint Conf. Artif. Intell., 2007, pp. 1606–1611.

[45] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen,
“Autocog: Measuring the description to permission fidelity in
android applications,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2014, pp. 1354–1365.

[46] A. Kachites, “Machine learning for language toolkit,” 2017.
[Online]. Available: http://mallet.cs.umass.edu/

[47] S. Graham, “Getting started with topic modeling and mallet,”
2017. [Online]. Available: https://goo.gl/qdVYwD

[48] Android, “User interface: Layout,” 2017. [Online]. Available:
https://goo.gl/xgMySY

[49] C. Qian, X. Luo, Y. Le, and G. Gu, “Vulhunter: Toward discover-
ing vulnerabilities in android applications,” IEEE Micro, vol. 35,
no. 1, pp. 44–53, Jan./Feb. 2015.

[50] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking
of android apps,” in Proc. 39th Int. Conf. Softw. Eng., 2017,
pp. 358–369.

[51] Y. Zhang, X. Luo, and H. Yin, “Dexhunter: Toward extracting hid-
den code from packed android applications,” in Proc. Eur. Symp.
Res. Comput. Secur., 2015, pp. 293–311.

[52] L. Li, T. F. Bissyand�e, D. Octeau, and J. Klein, “Droidra: Taming
reflection to support whole-program analysis of android apps,” in
Proc. 25th Int. Symp. Softw. Testing Anal., 2016, pp. 318–329.

[53] L. Li, A. Bartel, T. Bissyande, J. Klein, Y. Traon, S. Arzt,
R. Siegfried, E. Bodden, D. Octeau, and P. Mcdaniel, “Iccta:
Detecting inter-component privacy leaks in android apps,” in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., 2015, pp. 280–291.

[54] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “EdgeMiner: Automatically Detecting Implicit Con-
trol Flow Transitions through the Android Framework,” in Proc.
NDSS, 2015.

[55] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” in Proc. 35th ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 2014, pp. 259–269.

[56] K. Au, Y. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the
android permission specification,” in Proc. ACM Conf. Comput.
Commun. Secur., 2012, pp. 217–228.

[57] K. Lu, Z. Li, V. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee,
and G. Jiang, “Checking more and alerting less: Detecting privacy
leakages via enhanced data-flow analysis and peer voting,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2015.

[58] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon,
“Interprocedural constant propagation,” ACM SIGPLAN Notices,
vol. 21, pp. 152–161, 1986.

[59] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proc.
ACM Conf. Comput. Commun. Secur., 2012, pp. 229–240.

[60] L. Li, J. Klein, Y. Le Traon, et al., “An investigation into the use of
common libraries in android apps,” in Proc. IEEE 23rd Int. Conf.
Softw. Anal. Evol. Reengineering, 2016, pp. 403–414.

[61] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 356–367.

[62] A. De Lucia, “Program slicing: Methods and applications,” in
Proc. 1st IEEE Int. Workshop Source Code Anal. Manipulation, 2001,
pp. 142–149.

[63] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot: A Java bytecode optimization framework,” CAS-
CON First Decade High Impact Papers, pp. 214–224, 2010.

[64] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form and
the control dependence graph,” ACM Trans. Programm. Languages
Syst., vol. 13, no. 4, pp. 451–490, 1991.

[65] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie,
“Uiref: Analysis of sensitive user inputs in android applications,”
in Proc. 10th ACM Conf. Secur. Privacy Wireless Mobile Netw., 2017,
pp. 23–24.

[66] Android, “public class dialog,” 2017. [Online]. Available: https://
goo.gl/2nhvQk

[67] Android, “User interfact: Settings,” 2017. [Online]. Available
https://goo.gl/E3Y2rp

[68] Regulation (EU) 2016/679, “Art.4 gdpr definitions.” [Online].
Available: https://gdpr-info.eu/art-4-gdpr/, 2016.

[69] “Google privacy policy.” [Online]. Available: https://goo.gl/
z3C8Xv, 2018.

[70] CommonsWare, “System services,” 2017. [Online]. Available:
https://goo.gl/5VCvRK

[71] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev,
“Static window transition graphs for android,” in Proc. Proc. 30th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2015, pp. 658–668.

[72] Dick Sites, “Compact language detector 2.” [Online]. Available:
https://github.com/CLD2Owners/cld2

[73] R. Flesch, “A new readability yardstick,” J. Appl. Psychology,
vol. 32, no. 3, pp. 221–233, 1948.

[74] “How to write plain English,” 2016. [Online]. Available: https://
goo.gl/STOcgi

[75] “Top 90 popular ad libraries,” 2015. [Online]. Available: http://
goo.gl/GBhXOi

[76] “Top 18 popular social libraries,” 2015. [Online]. Available:
https://goo.gl/9w01mE

[77] “The most popular develop tools,” 2015. [Online]. Available:
https://goo.gl/f2iuGL

[78] C. Brodie, C.-M. Karat, and J. Karat, “An empirical study of
natural language parsing of privacy policy rules using the sparcle
policy workbench,” in Proc. 2nd Symp. Usable Privacy Secur., 2006,
pp. 8–19.

[79] A. Yamada, T. H.-J. Kim, and A. Perrig, “Exploiting privacy policy
conflicts in online social networks,” Tech. Rep., Carnegie Mellon
University, pp. 1–9, 2012.

YU ET AL.: PPCHECKER: TOWARDS ACCESSING THE TRUSTWORTHINESS OF ANDROID APPS’ PRIVACY POLICIES 241

https://goo.gl/H4uQrX
https://goo.gl/3h0CvU
https://drive.google.com/open?id=1kC5Hwgpl8ZZtBgdm9zSEWrZkT75cAgqw
https://drive.google.com/open?id=1kC5Hwgpl8ZZtBgdm9zSEWrZkT75cAgqw
http://goo.gl/0Lh7Dk
http://www.nltk.org/
http://www.nltk.org/
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://www.tfidf.com/
http://goo.gl/qX7UtK
http://goo.gl/qX7UtK
https://goo.gl/NWkTkS
http://mallet.cs.umass.edu/
https://goo.gl/qdVYwD
https://goo.gl/xgMySY
https://goo.gl/2nhvQk
https://goo.gl/2nhvQk
https://goo.gl/E3Y2rp
https://gdpr-info.eu/art-4-gdpr/
https://goo.gl/z3C8Xv
https://goo.gl/z3C8Xv
https://goo.gl/5VCvRK
https://github.com/CLD2Owners/cld2
https://goo.gl/STOcgi
https://goo.gl/STOcgi
http://goo.gl/GBhXOi
http://goo.gl/GBhXOi
https://goo.gl/9w01mE
https://goo.gl/f2iuGL

[80] S. Zimmeck and S.M. Bellovin, “Privee: An architecture for automat-
ically analyzingweb privacy policies,” in Proc. USENIX Secur., 2014.

[81] F. Schaub, R. Balebako, A. L. Durity, and L. F. Cranor, “A design
space for effective privacy notices,” in Proc. 11th USENIX Conf.
Usable Privacy Secur., 2015, pp. 1–17.

[82] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid:
Detecting stealthy behaviors in android applications by user inter-
face and program behavior contradiction,” in Proc. 36th Int. Conf.
Softw. Eng., 2014, pp. 1036–1046.

[83] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper:
Towards automating risk assessment of mobile applications,” in
Proc. 22nd USENIX Conf. Secur., 2013, pp. 527–542.

[84] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proc. 36th Int. Conf. Softw.
Eng., 2014, pp. 1025–1035.

[85] C. Zuo and Z. Lin, “Smartgen: Exposing server urls of mobile
apps with selective symbolic execution,” in Proc.s 26th Int. Conf.
World Wide Web, 2017, pp. 867–876.

[86] C. Zuo, W. Wang, Z. Lin, and R. Wang, “Automatic forgery of
cryptographically consistent messages to identify security vulner-
abilities in mobile services,” in Proc. NDSS, 2016.

[87] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android apps
removed from google play? a large-scale empirical study,” in
Proc. 15th Int. Conf. Mining Softw. Repositories, 2018, pp. 231–242.

[88] J. Bowers, B. Reaves, I. N. Sherman, P. Traynor, and K. Butler,
“Regulators, mount up! analysis of privacy policies for mobile
money services,” in Proc. USENIX SOUPS, 2017, pp. 97–114.

[89] R. Slavin, X. Wang, M. B. Hosseini, W. Hester, R. Krishnan,
J. Bhatia, T. D. Breaux, and J. Niu, “Toward a framework for
detecting privacy policy violation in android application code,”
presented at the 38th Int. Conf. Softw. Eng., Austin, TX, USA, 2016.

[90] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub,
S. Wilson, N. Sadeh, S. M. Bellovin, and J. Reidenberg,
“Automated analysis of privacy requirements for mobile apps,”
in Proc. NDSS, 2017.

[91] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. Breaux, and J. Niu,
“Guileak: Tracing privacy policy claims on user input data for
android applications,” in Proc. IEEE/ACM 40th Int. Conf. Softw.
Eng., 2018, pp. 37–47.

[92] F. Dong, H. Wang, L. Li, Y. Guo, G. Xu, and S. Zhang, “How do
mobile apps violate the behavioral policy of advertisement
libraries?” in Proc. HotMobile, 2018, pp. 75–80.

Le Yu received the bachelor’s and master’s
degrees in information security from the Nanjing
University of Posts and Telecommunications. He
is currently working toward the PhD degree in the
Department of Computing, The Hong Kong Poly-
technic University. His current research interest
includes mobile security.

Xiapu Luo received the PhD degree in computer
science from The Hong Kong Polytechnic Univer-
sity. He was a post-doctoral research fellow with
the Georgia Institute of Technology. He is cur-
rently an assistant professor with the Department
of Computing and an associate researcher with
the Shenzhen Research Institute, The Hong
Kong Polytechnic University. His current
research interests include smartphone security
and privacy, network security and privacy, and
Internet measurement.

Jiachi Chen received the MSc degree from the
Department of Computing, Hong Kong Polytech-
nic University, in 2017. Currently, he is a research
assistant with the Department of Computing,
Zhejiang University. His research interest
includes mining software repositories and pro-
gram analysis.

Hao Zhou received the BS and MS degrees from
the Nanjing University of Posts and Communica-
tions. He is currently working toward the PhD
degree with the Department of Computing, The
Hong Kong Polytechnic University. He was with
PolyU as a research assistant from 2016 to 2018.
His current research interests include system
security, mobile security, IoT security, and soft-
ware testing.

Tao Zhang received the BS and ME degrees
in automation and software engineering from
Northeastern University, China, in 2005 and
2008, respectively, and the PhD degree in com-
puter science from the University of Seoul, South
Korea in February, 2013. He was a postdoctoral
fellow with the Department of Computing,
Hong Kong Polytechnic University from Novem-
ber 2014 to November 2015. Currently, he is an
associate professor with the College of Computer
Science and Technology, Harbin Engineering
University. His research interest includes mining
software repositories and software security.

Henry Chang is an adjunct associate professor
with Law Department, Hong Kong University. He
was previously the IT advisor to the Hong Kong Pri-
vacy Commissioner and the founding chair of the
Technology Working Group of the Asia Pacific Pri-
vacy Authorities. He is currently a Hong Kong
appointed technical expert to the ISO Identity man-
agement and privacy technologies working group.

Hareton K. N. Leung received the PhD degree in
computer science from the University of Alberta.
Currently he is an associate professor and the
director of the Laboratory for Software Develop-
ment and Management, Department of Comput-
ing, Hong Kong Polytechnic University. His
research interests include software testing, proj-
ect management, risk management, quality and
process improvement, software metrics, and e-
health.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

242 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

