
A Progression Model of Software Engineering
Goals, Challenges, and Practices in Start-Ups

Eriks Klotins , Michael Unterkalmsteiner , Panagiota Chatzipetrou , Tony Gorschek,Member, IEEE,

Rafael Prikladnicki, Nirnaya Tripathi , and Leandro Bento Pompermaier

Abstract—Context: Software start-ups are emerging as suppliers of innovation and software-intensive products. However, traditional

software engineering practices are not evaluated in the context, nor adopted to goals and challenges of start-ups. As a result, there is

insufficient support for software engineering in the start-up context.Objective:We aim to collect data related to engineering goals,

challenges, and practices in start-up companies to ascertain trends and patterns characterizing engineering work in start-ups. Such

data allows researchers to understand better how goals and challenges are related to practices. This understanding can then inform

future studies aimed at designing solutions addressing those goals and challenges. Besides, these trends and patterns can be useful

for practitioners to make more informed decisions in their engineering practice.Method:We use a case survey method to gather first-

hand, in-depth experiences from a large sample of software start-ups. We use open coding and cross-case analysis to describe and

identify patterns, and corroborate the findings with statistical analysis. Results: We analyze 84 start-up cases and identify 16 goals, 9

challenges, and 16 engineering practices that are common among start-ups. We have mapped these goals, challenges, and practices

to start-up life-cycle stages (inception, stabilization, growth, and maturity). Thus, creating the progression model guiding software

engineering efforts in start-ups. Conclusions:We conclude that start-ups to a large extent face the same challenges and use the same

practices as established companies. However, the primary software engineering challenge in start-ups is to evolve multiple process

areas at once, with a little margin for serious errors.

Index Terms—Software start-up, software engineering practices, progression model

Ç

1 INTRODUCTION

SOFTWARE start-ups are small companies created to build
and market a software-intensive product [1]. Start-ups

are characterized by rapid evolution, small teams, uncer-
tainty about customer needs and market conditions, and a
high failure rate [2], [3]. However, leveraging cutting-edge
technologies, risk, and speed, start-ups can launch software
products fast [4], [5].

Aims, objectives, and challenges of product engineering
change quickly as a start-up evolves [6]. State-of-the-art
engineering methods offer little support for understanding
the evolving context and selecting the right practices [2],
[7]. A miscalculation in choosing engineering practices

could lead to over or under-engineering of the product,
and contribute to wasted resources and missed market
opportunities [4].

According to industry reports, a record of 19.2 billion
EUR of venture capital was invested in European and 80 bil-
lion USD in US start-ups in 2017 alone [8]. Building the first
version of a product is a substantial engineering challenge
and precedes any market or business related difficulties [6],
[9]. Thus, shortcomings in applied engineering practices
could waste the investment, and hinder any subsequent
attempts to market the product and to build a sustainable
business around it. Even if a fraction of start-up failures
could be attributed to engineering failures, that would still
present an opportunity for better, start-up specific, engi-
neering practices, and a relevant area of research.

An increasing number of studies attempt to explore engi-
neering practices in a start-up context, for example, require-
ments engineering [10], [11], [12], technical debt [13], and
user experience [14]. Several studies, such as Giardino
et al. [15] and Crowne [6], attempt to explore and present
conceptual models of product engineering in start-ups.
However, none of these studies provide a full and detailed
answer to what engineering practices start-ups use concern-
ing different engineering process areas and start-up evolu-
tion stages. The need to better understand product
engineering in start-ups, and to provide relevant support
for practitioners, has been highlighted by Unterkalmsteiner
et al. [16] and Klotins et al. [17].

� E. Klotins, M. Unterkalmsteiner, and T. Gorschek are with the Software
Engineering Research Lab Sweden, Blekinge Institute of Technology,
Karlskrona 371 41, Sweden. E-mail: {eriks.klotins, mun, tgo}@bth.se.

� P. Chatzipetrou is with the Department of Informatics, CERIS, €Orebro
University School of Business, €Orebro SE-701 82, Sweden, and also with
Software Engineering Research Lab, Blekinge Institute of Technology,
Karlskrona 371 41, Sweden. E-mail: panagiota.chatzipetrou@bth.se.

� R. Prikladnicki and L.B. Pompermaier are with the School of Technol-
ogy, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre
90619-900, Brazil.
E-mail: {rafael.prikladnicki, leandro.pompermaier}@pucrs.br.

� N. Tripathi is with M3S Research Unit, University of Oulu, Oulu 90014,
Finland. E-mail: nirnaya.tripathi@oulu.fi.

Manuscript received 10 Sept. 2018; revised 8 Feb. 2019; accepted 12 Feb. 2019.
Date of publication 18 Feb. 2019; date of current version 15 Mar. 2021.
(Corresponding author: Eriks Klotins.)
Recommended for acceptance by A. J. Ko.
Digital Object Identifier no. 10.1109/TSE.2019.2900213

498 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1987-2234
https://orcid.org/0000-0002-1987-2234
https://orcid.org/0000-0002-1987-2234
https://orcid.org/0000-0002-1987-2234
https://orcid.org/0000-0002-1987-2234
https://orcid.org/0000-0003-4118-0952
https://orcid.org/0000-0003-4118-0952
https://orcid.org/0000-0003-4118-0952
https://orcid.org/0000-0003-4118-0952
https://orcid.org/0000-0003-4118-0952
https://orcid.org/0000-0002-0311-1502
https://orcid.org/0000-0002-0311-1502
https://orcid.org/0000-0002-0311-1502
https://orcid.org/0000-0002-0311-1502
https://orcid.org/0000-0002-0311-1502
https://orcid.org/0000-0001-8506-1176
https://orcid.org/0000-0001-8506-1176
https://orcid.org/0000-0001-8506-1176
https://orcid.org/0000-0001-8506-1176
https://orcid.org/0000-0001-8506-1176
https://orcid.org/0000-0002-4638-2089
https://orcid.org/0000-0002-4638-2089
https://orcid.org/0000-0002-4638-2089
https://orcid.org/0000-0002-4638-2089
https://orcid.org/0000-0002-4638-2089
mailto:
mailto:
mailto:
mailto:

With this study, we aim to understand how start-ups use
different engineering process areas, and how utilized practi-
ces evolve over start-up life-cycle. Through our analysis, we
present a progressionmodel of what engineering aspects, that
is, goals, practices, and challenges are relevant in start-ups in
their evolution stage. The model is aimed at supporting prac-
titioners in their decision making process and at pinpointing
specific engineering challenges for further investigation.

We use an adapted case survey method [18] to collect and
analyze primary data on engineering practices in 84 start-up
cases. The cases vary by geographical location, development
stage, outcome, and time of operation among other factors,
thus presenting a relatively large and diverse sample [3]. To
explore start-up goals, challenges, and used practices, we
propose the start-up life-cycle model and analyze cases
within the same development stage, and with the same out-
come. We apply qualitative methods to identify patterns in
the data and arrive at explanatory results. The explanatory
results are verified and complemented with statistical analy-
sis providing a firmbasis for our conclusions.

Our study provides several novel contributions. First, we
present a start-up life-cycle model, aimed at illustrating the
dynamically evolving nature of start-ups. Second, we use
the life-cycle model to describe what practices, goals, and
challenges are relevant to start-ups at different life-cycle
stages. Third, we present the start-up progression model
aimed at guiding practitioners and at illustrating relevant
areas for further exploration.

The remainder of the paper is structured as follows: in
Section 2 we define software start-ups and summarize exist-
ing work in the area, in Section 3 we describe our research
methodology, in Section 4 we report and analyze our
results, in Section 5 we interpret and discuss our findings,
Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 Software Start-Ups

As early as 1994 Carmel [20] reported on small companies
building and marketing innovative software products.
These small companies, or start-ups, prioritize time-to-mar-
ket over product quality, teams are small and self-moti-
vated, and engineering practices informal. Later studies, for
example, Giardino et al. [4], and Sutton et al. [1] report the
very similar characterization of start-ups.

Start-up companies are known for their high failure rate.
About 75 - 99 percent of start-up products fail to achieve
any meaningful results in market [21], [22]. The high failure
rate could be explained by market challenges, team issues,
difficulties in securing funding and so on. However, the
capability to build software efficiently with limited under-
standing about stakeholder needs and with limited resour-
ces is the foremost challenge in software start-ups and
precedes any market or business related challenges [23].

2.2 What Do We Know About Software Start-Ups?

A broader interest to study software start-ups from software
engineering perspective was launched by publication of a
systematic review on existing literature in the area [2].
Selected results from this review were also published in
IEEE Software [4]. In the review, authors point out the

potential of software start-ups as vehicles for innovation,
and lack of relevant research in the area. The review lists a
number of contextual challenges to software product engi-
neering in start-ups compared to established companies.

Two subsequent literature reviewswere published byKlo-
tins et al. [24] and Berg et al. [3] aiming tomap state-of-the-art
in start-ups with SWEBOK [25] knowledge areas. They con-
clude that there are many gaps and opportunities for devel-
oping start-up specific engineering practices. However, they
attempt to analyze state-of-the-art in start-ups with SWEBOK
that isn’t start-up specific and lacks several relevant knowl-
edge areas, for example, market-driven requirements engi-
neering and value driven software engineering.

Giardino et al. [7] proposes the Greenfield start-up model
identifying the main engineering categories and their rela-
tionships. The model identifies severe lack of resources,
teamwork, rapid development, little focus to quality, evolu-
tionary approach, and technical debt as the key categories.
The relationships reveal that development speed is achieved
by capable teams, little focus on quality assurance and inter-
nal product quality. However, such approach leads to accu-
mulation of technical debt and hindered performance in the
long term.

2.3 Software Engineering Practices in Start-Ups

Earlier studies point out that start-ups often do not follow
best engineering practices and opt for an ad-hoc approach to
engineering. Such an approach to engineering is partly due to
the immaturity of start-ups, rapidly changing environment,
and lack of engineering expertise. However, there is also lim-
ited support from academia pinpointing engineering practi-
ces that could be suited for such context [16], [17], [26].

Part of the difficulty to practice and study software engi-
neering in start-ups is the lack of knowledge transfer
between start-ups. All knowledge about a domain, ways-of-
working, and practices is carried by individuals, thus is lost
when a start-up closes down, and needs to be reinvented
with every new start-up. Thus, a large part of start-up
research is to establish a body of knowledge with the best
engineering practices for start-ups [17], [27].

Several studies attempt to explore product engineering
practices in start-ups. For example, Gralha et al. [11] and
Melegati et al. [10] explore requirements engineering practi-
ces in start-ups. These studies suggest that requirements
engineering is one of the key engineering process areas in
start-ups, and help to explore the market opportunity and
to devise a feasible solution.

Hokkanen et al. [28] present a framework guiding user
experience design work in a start-up context. They argue
that for a product to be successful in a market it has to fulfill
minimal functional and user experience requirements. The
framework identifies and prioritizes various user experi-
ence elements guiding user experience focus.

In our earlier work (Klotins et al. [13]) we explore techni-
cal debt in start-ups. We found that excessive technical debt
could be a cause for missed market opportunities and con-
tribute to start-up failures. Furthermore, they identify sev-
eral strategies that could help to expose unwanted technical
debt early.

The earlier work suggests that engineering practices are
rapidly evolving to accommodate the changing engineering

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 499

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

context [7], [11], [23], [28]. Even though, individual areas,
for example, requirements engineering and user experience
design, has been studied, there is a lack of a coherent view
of how different engineering areas fit and evolve together.
Such complete understanding is needed to analyze why
specific practices are applied, and to spot potential mis-
alignment between engineering process areas.

2.4 Start-Up Life-Cycle Models

To illustrate the changing objectives of a start-up, there have
been attempts to define start-up life-cycle models. Blank [29]
identifies two stages, search for a viable market opportu-
nity, and building a viable business around the opportunity.
Each stage consists of several objectives outlining the need
to explore and validate a potential customer need first, then
propose and validate a potential solution, and finally scale
up the operations. This model, however, is generic and
offers little guidance for software engineers.

Inspired by Churchill et al. [19] and Crowne [6] we com-
bine start-up product evolution stages with relevant organi-
zation states (Fig. 1). In this paper, we use the four stages of
a start-up as a basis for explaining start-up evolution and
define them as:

1) Inception—a stage between ideation of a product
until the start-up releases the first product release to
the first customer. The primary goal of this stage is
to scope and build the minimum viable product by
balancing needs of a customer, available resources,
and time [30].

2) Stabilization—a stage between first product release
until readiness for scaling. In this stage, a start-up
aims to ensure that the product can be decommis-
sionedwithout adding extra effort to the development

team. That is, the product should be easy to maintain,
scale, and surrounding infrastructure, for example,
operations and customer support, are in place.

3) Growth—at this stage the focus is set on attaining the
desired market share and growth rate. Although the
efforts shift towards marketing and sales, the engi-
neering team should cope with a flow of new cus-
tomer requirements, and product variations for
different markets.

4) Maturity—in this stage a start-up transitions into an
established organization aiming to preserve estab-
lished market share and to optimize its operations.
The engineering team should install routines for
operating and maintaining the product.

These four stages represent the shift in start-up objec-
tives. Early stages focus on finding a relevant problem,
devising a feasible solution. Later, the focus shifts to mar-
keting and improving the efficiency of start-up’s opera-
tions [6], [31].

In case a start-up decides to radically change some
fundamental aspect of its product, that is, to pivot [32],
the product likely moves to an earlier phase in the life-
cycle model. For example, discarding existing features
and developing new ones implies abandoning any mar-
keting or stabilization efforts related to the abandoned
features. Developing entirely new features throws the
start-up back to inception stage for scoping, validation
and piloting.

At any of the four product stages a start-up strives to: a)
remain active and continue operations (that is, not to fail),
b) advance to the next stage or c) be acquired by another
company for profit to shareholders. Alternatively, at any of
these stages, a start-up may be closed down or paused. We
define organization states as the following:

Fig. 1. The start-up life-cycle model based on Crowne [6] and Churchill et al. [19]. The white bubbles indicate “good” and desired states. The shaded
bubbles show the undesirable states. Arrows denote possible transitions between the states. States and transitions that are possible, were however
not observed in this study, are denoted by dashed lines. The numbers in brackets indicate how many cases representing each state were observed.

500 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

1) Active—the team actively works on the product.
2) Paused—the team has stopped working, however

there is an intention to resume at some point in
future. Reasons for pausing a start-up could be, for
example, a temporary shift in founders priorities,
temporary lack of funding for product development
or marketing among other scenarios.

3) Acquired—another company acquires the start-up
for a profit to shareholders. The team is disbanded
or merges with the other company.

4) Closed—the team is disbanded or works on some-
thing else.

The combined model of start-up and product life-cycle
states is shown in Fig. 1. We use this model as an input to
our study and to capture the state of each studied case.

3 RESEARCH METHODOLOGY

We use a case survey method to collect and analyze primary
data from start-up companies. The method is aimed to bal-
ance studying a few cases in depth with traditional (multi)
case studies and quantitatively studying many cases [35].
Case studies offer greater level of detail and internal valid-
ity by closely examining multiple data sources. Surveys
attempt to collect data from a large number of cases, thus
achieving a higher degree of generalizability [36].

The main advantages of the case survey method are its
ability to collect richer information than conventional

survey, and extendibility to study more cases. That said, the
data collected by a case survey are limited by the scope of
the questionnaire instrument [33], [35]. Validity threats of
our study are discussed in Section 3.3.

The original case survey method description suggests
using coding and statistical methods to analyze the
data [33]. However, we extend the method by adding more
steps from the theory building process proposed by Eisen-
hardt [34]. While both methods are compatible, Eisenhardt
provides more details on inducing a theory from data, that
is, in this study, the start-up progression model. We present
a mapping between the two methods and the combined
method in Table 1.

3.1 Research Questions

To guide our study, we define the following research ques-
tions (RQ):

RQ1. What patterns pertaining software engineering can
be ascertained in start-up companies?

Rationale:Very little is known ofwhat software engineering
practices start-ups use andwhat is themotivation for using or
avoiding specific practices. Earlier studies report the use of
light-weight, ad-hoc practiceswith emphasis on requirements
engineering [2], [10], [24]. However, most earlier reports use
secondary data, explore only a few cases, and are based on
limited understanding of engineering context in start-ups.

With this research question, we identify commonalities in
engineering goals, challenges, and used software engineering

TABLE 1
Steps of the Research Method

Step Case survey
method
(Larsson [33])

Theory building (Eisenhardt [34]) The applied method

1 - Define research questions and any a
priori constructs

We start the study with a broad aim to collect
primary data on how start-ups practice software
engineering. We define our research questions in
Section 3.1, and present the start-up life-cycle model
in Fig. 1.

2 Select cases of
interest

Specify a population We aim to study start-up companies building
software-intensive products and reach as diverse
sample of start-ups as possible.

3 Design the data
extraction form
for elicitation

Craft instruments and protocols for
data collection

We design a questionnaire for data collection. It is
aimed at start-up practitioners with practical
experience with software engineering in start-up
setting, see Section 3.2.1.

4 - Parallelize data collection and
analysis

We parallelize the final steps of questionnaire design
with the data collection to identify any issues with
the questionnaire before scaling up the data
collection.

5 Conduct the
coding

Conduct within case analysis,
search for cross-case patterns using
divergent techniques

First, we use open coding to extract relevant
information from textual data. Second, we use the
start-up life-cycle model, see Fig. 1, to categorize the
cases and conduct cross-case analysis, see Section
3.2.3.

6 Use statistical
approaches to
analyze the
coding

Iterative shaping of hypotheses,
search evidence for “why” behind
relationships.

We condense findings from the previous step into
more broader patterns, and perform a parallel
quantitative analysis complementing qualitative
results, see Section 3.2.4.

7 - Comparison with conflicting and
similar literature

We compare patterns from the previous step with
literature. We seek for additional support and
explanation for our findings, see Section 3.2.4.

8 - Aim for theoretical saturation when
possible

-

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 501

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

practices in start-ups with respect to their life-cycle stage, see
Fig. 1. An understanding of what goals and challenges shape
the use of engineering practices are essential to:

a) Judge suitability of commonly used practices.
b) Devise new engineering practices to navigate spe-

cific challenges and to achieve particular goals.
c) Provide a blueprint of software-intensive product

engineering in a start-up context [17].
We formulate three sub-questions to explore goals, chal-

lenges, and practices specifically.
RQ1.1. What goals, relevant to software engineering, can

be ascertained in start-up companies?
Rationale: We aim to explore what goals are driving soft-

ware engineering in start-ups concerning their life-cycle
stage, see Fig. 1. A fine-grained understanding of the goals,
i.e., drivers for engineering activities, helps to understand
the context of why certain engineering practices are used, or
avoided [17], [37].

RQ1.2. What challenges relevant to software engineering
can be ascertained in start-up companies?

Rationale. Engineering challenges is another context factor,
alongside goals, shaping engineering practices in start-ups.
We aim to explore what specific challenges, associated with
start-up life-cycle stages, can be ascertained in start-ups.

RQ1.3. What software engineering practices do start-ups
use?

Rationale. We aim to explore what engineering practices
start-ups apply as a response to life-cycle stage-specific
goals and challenges.

3.2 Data Collection and Analysis

3.2.1 Questionnaire Design

We base the data extraction on a questionnaire eliciting
practitioner experiences about their specific start-up case.
The scope of the survey is inspired by our earlier work the
Start-up Context Map [17] and covers team, requirements
engineering, value, quality assurance, architecture and
design, and project management aspects of start-ups.

During the questionnaire design, we conducted multiple
internal and external reviews to ensure that all questions
are relevant, easy to understand and that we receive mean-
ingful answers.

The internal reviews were conducted among the
authors to determine the scope and flow of questions. For

the external reviews we invited 10 members of Software
Start-up Research Network1 to provide their input. First,
we asked them to fill in the questionnaire and answer all
the questions as if they were engineers in a start-up.
Then, we organized a joint on-line workshop to discuss
participants reflections and potential improvements to the
questionnaire. Their responses were removed from the
final dataset.

Finally, we piloted the questionnaire with four practi-
tioners from different start-ups. During the pilots, respond-
ents filled in the questionnaire while discussing questions,
their answers and any potential issues with the first author
of this paper.

As a result of these reviews, we improved the question
formulations and removed some irrelevant questions. The
finalized questionnaire contains, 10 sections, 85 high level
questions and 285 sub-questions, 73 of the sub-questions
are free-text, others are on an ordinal or nominal scale. Note
that one question in the questionnaire may result in multi-
ple sub-questions, for example, a high level question may
result in two sub-questions one capturing a Likert-scale
answer, another free text motivation for the answer. The
sections cover many software engineering topics, see
Table 2. Note that through the analysis process some topics
were merged, and some lifted out. The last column of the
table, process area, shows a mapping between sections of
the questionnaire and the resulting process areas.

From all the questions, 54 sub-questions focus on captur-
ing respondents agreement with statements addressing
their engineering practices and engineering context. To cap-
ture respondents level of agreement with a statement we
use a Likert scale: not at all (1), a little (2), somewhat (3),
very much (4). The values indicate the degree of agreement
with a statement. Statements are formulated consistently in
a way that lower values indicate less agreement, however
higher values indicate more agreement. We specifically
avoid neutral (neither agree or disagree) answer option to
force respondents to state their opinion. However, we pro-
vide the “I do not know” option to allow respondents to
explicitly skip the question.

All the questions and answer options are available as sup-
plemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2019.2900213.2

3.2.2 Distribution of the Survey and Data Collection

To distribute the survey we reached out to The Software
Start-up Research Network.3 and asked other researchers to
use their networks and connections. All authors of this
paper actively promoted the survey through their on-line
accounts and personal contacts. The first author promoted
the study in several start-up themed events. The data collec-
tion took place between December 1, 2016 and May 15, 2017.

To support the data collection we created an on-line tool.
The landing page of the tool contained a short description
of the study aims, and a promotional video encouraging
start-ups to share their experiences. The questionnaire was

TABLE 2
Topics Covered by the Questionnaire

Topics Questions Number of
sub-questions

Process
area

1 Start-up demographics 1 - 8 12 -
2 Product demographics 9 - 17 18 -
3 Respondent demographics 18 - 23 10 I
4 Team demographics 24 - 30 12 I
5 Requirements engineering 31 - 47 57 II, III
6 Software architecture 48 - 55 19 V
7 User interface design 56 - 59 9 V
8 Development practices 60 - 69 80 I - VI
9 Quality assurance 70 - 77 48 IV
10 Project management 78 - 85 20 VI

Total 285

1. Software Start-up Research Network: http://softwarestartups.org
2. Full questionnaire: http://eriksklotins.lv/files/GCP_questionnaire.pdf
3. Software Start-up Research Network: http://softwarestartups.org

502 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSE.2019.2900213
http://doi.ieeecomputersociety.org/10.1109/TSE.2019.2900213
http://softwarestartups.org
http://eriksklotins.lv/files/GCP_questionnaire.pdf
http://softwarestartups.org

public and freely available to everyone. To screen the
responses and gauge their suitability for our study, the
questionnaire contains a multitude of demographical ques-
tions about the start-up and the respondent. For example,
what is respondents relationship with the start-up, their
role in the company, and how long time ago they were in
contact with the start-up?

A total of 369 practitioners started to answer the ques-
tionnaire. However, many of the responses were incom-
plete. We removed responses with less than 50 percent of
questions answered. We further removed several duplicates
and responses from non-software start-ups. The response
rate of the questionnaire was 23 percent, 84 out of 369.

3.2.3 Coding Scheme and Cross-Case Analysis

We perform the cross-case analysis using both qualitative
and quantitative methods.

The responses are already structured by questions, and for
multiple-choice questions, responses are already categorized.
Thus,we need to code only responses fromopen-ended ques-
tions. Such questions help us to gain a finer understanding on
how each topic is implemented in start-ups. Since there is no
established body of knowledge of software engineering in
start-ups, we use open, in-vivo, coding to gain insights how
respondents themselves perceive and use software engineer-
ing. Thus, we applied open coding to identify described
stakeholders, practices, artifacts used or produced, steps
taken, and motivations for certain decisions [38]. Each open-
ended question addresses a different topic, thus we devel-
oped an individual coding scheme for each question.

The questionnaire is formulated to capture both used
practices, and the practitioners’ experiences with using the
practices. Respondent reflections were captured in sepa-
rate questions formulated along the lines of: “In hindsight,
what would you have done differently?”. In our results,
we report and describe applied practices and respondents’
experiences with the practices separately. However, the
progression model in Fig. 4 contains only practices that
were reported as used.

We use the start-up life-cycle model, see Fig. 1, to group
cases by start-up life-cycle state. We analyze start-ups
within each group and look for recurring engineering prac-
tices, challenges, goals, and contextual factors in their
responses. We document these findings with memos. A
memo describes a finding, start-up cases that were basis for
the finding, category of the finding, that is, whether it per-
tains goals, practices, context factors or challenges, and to
what state of the start-up life-cycle model the finding per-
tains to. We developed a total of 1856 codes and 366 memos.
An example of open coding and memos is available as sup-
plemental material on-line, available online4.

The initial coding is performed by the first author. The
resulting memos are discussed and refined by the first and
the second author jointly. In this process, memos with lim-
ited support from the data are removed, or merged with
other similar memos. Interesting analysis points were
marked for additional analysis. This is an iterative process
leading to formulation of our findings.

As the final steps of our analysis, we use descriptive sta-
tistics and contingency tables to identify new and to confirm
already identified patterns [39]. We illustrate our results
with frequency analysis and histograms, and test statistical
significance of our findings.

Weuse the Chi-Square test of statistical association to test if
the associations between the examined variables are not due
to chance. To prevent Type I errors, we used exact tests, spe-
cifically, the Monte-Carlo test of statistical significance based
on 10 000 sampled tables and assuming ðp < 0:05Þ [40].

To examine the strength of associations we use
Cramer’s V test. We interpret the test results as suggested
by Cohen [41]. That is, we consider thresholds of 0:1; 0:3;
and 0.5 for weak, moderate and strong associations.

To explore the specifics of an association, such as which
cases are responsible for this association, we perform post-
hoc testing using adjusted residuals. We consider an
adjusted residual significant if the absolute value is above
1.96 ðAdj:residual > 1:96Þ, as suggested by Agresti [42].

The adjusted residuals drive our analysis on relation-
ships between start-up demographics and reported engi-
neering practices. However, due to the exploratory nature
of our study, we do not state any hypotheses upfront and
drive our analysis with the research questions. We docu-
ment statistically significant findings with field memos for
further analysis.

3.2.4 Development of Patterns

To develop our results further, we revise and group
together similar memos from the previous step to formulate
broader findings. This process is aimed at building up evi-
dence for supporting a particular finding. As suggested by
Eisenhardt [34], we apply the following practices:

� We analyze outlying, extreme, or otherwise surpris-
ing findings to shape our findings.

� We collect multiple variables on each topic and seek
to triangulate our findings with multiple variables,
and cases.

� We search for cases that present contradictory evi-
dence to our propositions and shape our proposi-
tions to cover the negative evidence.

� To decide if our findings constitute a salient pattern
we use a combination of criteria. First, we look if a
finding appears in more than one case. Second, we
look if multiple variables support the finding, in par-
ticular, whether respondents have pointed it out in
their reflections. Third, if the finding is supported by
statistical analysis.

As a result of this step, we identify 55 patterns pertaining
to software engineering in start-ups. Similar to the memos
before, a pattern describes a specific practice, challenge,
context factor, or goal, along with information what cases
were the basis for formulating this pattern, and information
in what context this pattern was observed. The patterns are
further grouped into 6 engineering areas and categorized
into 33 patterns illustrating goals, practices, and challenges.

Goals are patterns describing a desirable outcome
toward which an effort is directed. Such desirable results
are identified either explicitly by question formulation, e.g.,
“What is the primary quality goal?”, or by the practitioners’

4. Example of the open coding: http://eriksklotins.lv/files/
GCP_open_coding.pdf

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 503

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

http://eriksklotins.lv/files/GCP_open_coding.pdf
http://eriksklotins.lv/files/GCP_open_coding.pdf

own reflections on why a certain practice was used. In few
occasions, a goal overlaps with a practice, e.g., to use prod-
uct usage metrics to gauge start-up performance, see G16
and P14 in Fig. 4. Such overlap indicates an association
between use of the practice and attainment of the goal.

Practices are engineering activities helping start-ups to
advance through the life-cycle stages. A practice could be
means-end, such as establishing a team, could help to solve
a problem, e.g., by documenting feature ideas, or help to
gather knowledge on the current needs, e.g., by determining
“good-enough” level of quality [43].

Challenges are difficulties in practicing software engi-
neering and progressing through the life-cycle stages. We
identify challenges from respondents reflections on how
practices were applied and what they would do differently
the next time. Some challenges overlap with practices, e.g.,
to establish a feedback loop with customers, see for exam-
ple, C4 and P5 in Fig. 4. Such overlap indicates an associa-
tion between the practice and the challenge, i.e., that start-
ups attempt to use a specific practice, however find it
challenging.

As a result of this step, we identify patterns pertaining to
software engineering in start-ups. Similar to memos before,
a pattern describes a specific practice, challenge, context fac-
tor, or goal, along with information what cases were the
basis for formulating this pattern, and information in what
context this pattern was observed. The patterns are further
grouped into engineering process areas, resulting in the
start-up progression model.

3.3 Threats to Validity

Larsson [33] identifies a number of validity concerns for
case survey research.

Descriptive validity, factual accuracy could be compromised
if responses from start-ups lack important information lead-
ing to an incorrect interpretation of the cases. To address this
threat we iterated the questionnaire instrument with both
researchers and start-ups to assure that all important aspects
of software engineering in start-ups are covered and our
questions are understandable to practitioners. Furthermore,
we provided an explicit option to capture “I do not know”
answers and, at the end of each section, asked “What would
you do differently next time?” question to capture practi-
tioner reflections on themost important lessons learned.

Respondent bias stems from participants’ inability or
unwillingness to provide accurate responses.

We collect respondents experiences and estimates of
events that may have occurred in the past. Thus, the quality
of the responses depend greatly on respondents memory
and ability to reconstruct past events. Respondent responses
suggest that majority of them, 67 out of 84, 80 percent, are
currently involved with their start-ups or have been
involved in the last 12 months. Thus, the majority of
responses concern relatively fresh experiences.

Some of the respondents, 36 of 84, 43 percent, have speci-
fied that their main area of expertise in their start-up is other
than software engineering, see Fig. 2. There could be a con-
cern whether they can provide reliable answers to questions
about software engineering. Earlier work suggests that
start-up teams are closely-knit, team members perform mul-
tiple roles, and the effort is focused on launching one prod-
uct [2], [7]. Thus, even if a respondents primary area of
expertise is not software engineering, they are closely
involved in product work.

We further explore potential differences in answers due
to time since the last contact with the start-up and respond-
ents area of expertise with statistical tests. As part of the
last step of cross-case analysis, see Section 3.2.3, we test if
respondents association with the start-up, age, time since
the last contact, area of expertise, amount of experience in
the area of expertise, and amount of experience working
with start-ups, has any effect on their responses. Significant
results from this analysis are presented in respective pro-
cess areas.

There is a possibility that respondents are unwilling to
provide honest responses, or twist the responses to what
they believe researchers hope to hear. In the particular case
of startups, and especially when respondents are answering
about a failed case, it may be hard for them to admit were
they failed and if they were not following what is perceived
as the best practices in software development.

Participation in the study was voluntary, and we adver-
tised the questionnaire as means to help other start-ups by
sharing what worked and what did not in their start-ups.
Thus, we minimize biases stemming from participants
being forced to participate and to provide dishonest
answers. The questionnaire contains a mix of multiple-
choice, Likert scale, and free text providing multiple means
of capturing the experiences, and mitigating the chance of
extreme responses. We offer “What would you do differ-
ently next time?” questions to capture respondents own
lessons learned.

Interpretive validity, objectivity of the researcher is concerned
with potential bias stemming from researchers misinterpret-
ing the data. To address this threat, the first three authors of
this paper frequently met and discussed any intermediate
findings as part of the analysis process. As a result, findings
with weak support from the data were identified and
removed, see Steps 4-6 in Table 1.

Generalizability of our results is determined by the num-
ber and diversity of the studied cases. We explore a diverse
set of 84 start-up cases varying by geographical location,
domain, product life-cycle stage, the extent of team exper-
tise, and start-up outcome. That said, operational compa-
nies are overrepresented in our sample, see Fig. 3, and

Fig. 2. Distribution of respondent background and prior experience.

504 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

could bias our conclusions towards active, that is, to some
extent successful start-ups. To compensate for this potential
bias, we analyze operational and closed companies sepa-
rately, compare the results, and apply statistical methods to
determine significance of any conclusions.

Our sample mostly contains start-ups from Europe and
South America, and start-ups from North America and Asia
are underrepresented. For example, start-ups in the U.S.
may have access to a broader and more homogeneous mar-
ket than their European counterparts who need to adapt
their products to the diversity of Europe’s markets. Such
differences could have an effect on software engineering
goals, challenges, and practices.

Repeatability of case surveys increases the objectivity of
the findings. To strengthen repeatability of this study, we
provide the data extraction form, full demographical infor-
mation of the studied cases, and raw data5 as supplemental
material, available online.

4 RESULTS AND ANALYSIS

After removing incomplete and irrelevant responses, we
analyze 84 responses from start-ups building software-
intensive products.

Some of the first questions in the questionnaire collects
demographical information about the start-up, such as
current state, state of the product, when the team started
working on the product. The responses show that our
sample consists of start-ups established between 2004 and
2017, with the majority (60 of 84, 71 percent) of start-ups
actively working on their products at the time of the sur-
vey; 24 are closed, paused or acquired by other compa-
nies, see Fig. 3.

Responses on the product state show that our sample con-
tains start-ups in all life-cycle stages, inception - 15 (18 percent),
stabilization - 24 (29 percent), growth - 26 (30 percent), and
maturity - 15 (18 percent), however 4 companies have not spec-
ified their product state. Most start-ups have their main office
in South America (39 of 84, 46 percent) and Europe (33 of 84,
39 percent), the rest are located in Asia and North America.
Such underrepresentation of NorthAmerica andAsia could be

explained by origin of the authors. The authors represent
Europe and South America and were actively promoting the
study in their networks.

With the questionnaire we collect respondents demo-
graphical information, such as age, experience, area of exper-
tise, relationship with the start-up, and how recent they have
been involved in the start-up. Responses show that most of
the respondents (62 of 84, 74 percent) are founders, others
are employed by start-ups (16 of 84, 19 percent), or are other-
wise associated. The respondents are about evenly distrib-
uted regarding whether their area of expertise is software
engineering or not, an howmuch prior experience they have
in their area of expertise (left side of Fig. 2). However, most
have little experience with start-ups before the current case
(right side of Fig. 2).

Other details characterizing our sample and engineering
context in start-ups are presented along with their respective
process areas, discussed in the remainder of this section. A
list of studied cases, respondents, and their demographical
information is available as supplemental material, available
online.6

We structure our results into 6 process areas: team,
requirements engineering, value, quality assurance, archi-
tecture and design, and project management, see Table 2.
Within each process area we consider goals, challenges,
and practices, i.e., engineering aspects, see the legend in
Fig. 4.

We analyze the process areas in relation to the four start-
up evolution stages, inception, stabilization, growth, and
maturity. In Fig. 4 we provide an overview of the results
and present the start-up progression model. To maintain
traceability between our description and the figure we enu-
merate our findings in the following way: goals (Gx), chal-
lenges (Cx) and practices (Px). On the top-right corner of
each bar we denote how many cases were basis for formu-
lating the finding.

The purpose of the progression model is to provide an
overview of the critical stages of product development,
main concerns, and relevant practices. For researchers, the
model summarizes the key engineering concerns for further
investigation and provides a structure for adding new
results. For practitioners, the model helps to identify the
current product stage, the key objectives to be attained and
lists the key engineering practices for attaining said objec-
tives. We discuss each process area, goal, challenge and
practice in the following sections.

To present respondent estimates on Likert scale ques-
tions, we illustrate the distribution of answers with in-line
histograms, for example, (, “To what extent it is
true that most product/service features are invented rather than
discovered?”).

The four bars denote the distribution of respondent
agreement with a statement on a Likert scale (“not at all”,
“a little”, “somewhat”, and “very much’). The above
example shows that most respondents “somewhat” agree
with a statement (shown after the histogram), and the dis-
tribution of responses is skewed towards agreeing with
the statement.

Fig. 3. Gantt chart illustrating operation time and outcome for studied
companies. 9 respondents had not answered when they started working
on the product, thus these cases are not shown in the figure.

5. Upon request to the first author, Eriks Klotins, eriks.klotins@bth.se
6. All cases and their demographical information: http://

eriksklotins.lv/files/GCP_demographics.pdf

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 505

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

eriks.klotins@bth.se
http://eriksklotins.lv/files/GCP_demographics.pdf
http://eriksklotins.lv/files/GCP_demographics.pdf

4.1 Team Process Area

The team process area concerns start-up teams with respect
to formation of a team, individual skills, attitudes, capabili-
ties, and coordination between individuals.

4.1.1 Goals

Establishing a team posing sufficient skills and expertise is
one of the first goals of a start-up (G1). Earlier studies

suggest that the team is the catalyst for product develop-
ment in start-ups [7]. Team characteristics such as cohesion,
coordination, leadership, and learning are recognized as
essential for software project success [44].

Across our sample, the median team size is 4 - 8 peo-
ple and 1 - 3 of them primarily work on software engi-
neering. We observe a tendency of growing median team
size over the start-up life-cycle, from 1 - 3 in the inception

Fig. 4. The start-up progression model outlining software engineering goals, challenges, and practices in start-ups.

506 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

stage, to 4 - 8 in the stabilization and growth stages, and
to more than 20 in the maturity stage.

The responses suggest that to build a team, start-ups need
to address communication issues, shortages of the domain
and engineering expertise, commitment issues, and to create
accountability. Statistical analysis on accountability in the
teams shows an association (Cramer0sV ¼ 0:334; p < 0:05)
between closed companies and a lack of accountability. Thus,
forming a unit that poses relevant and complementary exper-
tise, and that can work together efficiently with little over-
head is an essential early goal in start-ups, see G1 in Fig. 4.

By comparing responses from start-ups at different life-
cycle stages, we found that establishing a team is a concern
in the early stages of a start-up. We observe that start-ups at
the inception and stabilization stages reflect on issues asso-
ciated with creating a team, see G1 and C2 in Fig. 4. How-
ever, start-ups in the maturity stage reflect on challenges
related to managing a large team (C1).

4.1.2 Challenges

Looking into respondent reflections on their team forma-
tion, we found that the majority, 61 out of 84, 72 percent,
reports some team-related challenges. The challenges con-
cern team formation, management, expertise, leadership,
and coordination, see C1 - C3.

Start-ups at all life-cycle stages report shortages in engi-
neering skills and domain expertise. The most severe short-
ages are reported by start-ups at the inception stage where
only 3 out of 15, 20 percent, respondents, estimate their
engineering, and 1 out of 15, 6 percent, rate their domain
knowledge as sufficient. However, we observe a tendency
of estimates improving over life-cycle stages. A potential
explanation could be survivor bias and start-ups who man-
aged to acquire the necessary competencies were able to
advance [45]. We also observe a tendency that less skilled
teams spend more time in the inception stage and often fail
to release the product altogether. As one start-up reflected
on their lessons learned from their team formation:

“We should have looked for more developers with
experience in delivering products fast, and do not
rely on corporate “experts” that deliver anything
but completed software.”

Statistical analysis shows a strong association between
domain knowledge and engineering skills in the team
(Cramer0s V ¼ 0:513; p < 0:05). Teams with less domain
knowledge also lack engineering knowledge, and teams with
adequate domain knowledge are likely to have sufficient
engineering skills. The level of expertise is also associated
with the state of the start-up (Cramer0sV ¼ 0:316; p < 0:05).
Operational start-ups estimate their skills and knowledge sig-
nificantly higher than paused or closed companies. The level
of team skills and experience is reported as one of the key suc-
cess factors in software projects [46], and new business crea-
tion [47]. Thus, there could be a causal relationship between
the level of team skills and start-up outcomes.

From the 41 start-ups in growth or maturity stages,
80 percent, or 33 companies, reflect on the need for specialist
skills and the challenge to acquire them (C3). For example,
finding employees with domain-specific experience, or
engineers with specific technical skills. Often start-ups

reflect, that it would have been beneficial to acquire such
expert skills earlier. However, the responses do not reveal
the cause for the difficulty.

The shortage of experts with domain-specific experience
could be explained by short supply of experts in a narrow
and potentially new area. Such explanation highlights the
importance of education and training in start-ups. How-
ever, an alternative explanation could be that experts choose
not to work with start-ups due to, for example, an uncertain
future of the company.

By analyzing the responses on the team’s attitude towards
good engineering practices and their engineering skills we
found that less skilled teams are less predisposed towards fol-
lowing good engineering practices such as avoiding code
smells (Cramer0s V ¼ 0:342; p < 0:05) or thorough testing of
their product (Cramer0sV ¼ 0:366; p < 0:05). Further analy-
sis reveals that the attitude towards following good engin-
eering practices is associated with start-up outcomes.
Operational start-ups recognize benefits from following good
engineering practices, such as maintaining good software
architecture (Cramer0s V ¼ 0:400; p < 0:05) and avoiding
code smells (Cramer0s V ¼ 0:320; p < 0:05). Paused start-
ups report seeing fewer benefits from good engineering prac-
tices. This finding suggests an association between start-up
outcomes and attitudes towards utilizing good engineering
practices.

Interestingly, respondents with more individual experi-
ence estimate their team attitudes towards good engineer-
ing practices and quality of engineering work significantly
worse than less experienced respondents (Cramer0s V ¼
0:384; p < 0:05). This finding could be interpreted as fol-
lows: a) inexperienced engineers overestimate the quality of
their and their teams’ work, or b) experienced engineers
underestimate their work. Kruger and Dunning [48] have
studied cognitive biases in estimating own abilities. Their
findings suggest that low-ability engineers cannot objec-
tively evaluate their actual competence or incompetence,
and are likely to overestimate their abilities.

We have also found that early start-ups do not implement
any objective metrics to assess their team performance, see
Section 4.6. Therefore, implementation, evaluation, and
improvement of engineering practices depend on compe-
tence and gut-feeling of early start-up engineers.

Individual skills, competencies and teamwork capabili-
ties have been recognized as essential success factors in soft-
ware engineering projects [25], [46], [49]. Earlier studies
suggest that start-ups rely on implicit knowledge, and have
very little, if any, organizational capital [7], [50]. Thus,
establishing a small and efficient team is essential to com-
pensate for the lack of organization. Our results show that
early team issues could be a reason for stalling product
engineering and collapse of a company even before the
product is launched to market.

Another challenge reported by 67 percent, 56 of 84 com-
panies, is to engage the team and coordinate the product
work. The difficulty stems from teammembers having other
priorities outside the start-up in combination with a bloated,
poorly organized, and distributed team. The reported issues
in such teams are poor communication, lack of clear respon-
sibilities and unbalanced skill set with further effects on
productivity, degrading motivation, and poor execution of

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 507

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

multiple parallel activities, e.g., product engineering work
and marketing, among other challenges.

From all team related concerns we distill 2 main chal-
lenges. The first challenge pertains team building and com-
prises of a lack of team expertise, engagement, and
coordination at the inception and stabilization stages, see
C2. The second challenge, see C1, is to manage a large and
potentially distributed team at the maturity phase.
Respondents mention difficulties to coordinate and main-
tain efficient teamwork across multiple teams and time-
zone. Such findings suggests that start-up principals need
to recognize and adapt for different teamwork challenges as
the company moves forward.

Part of the challenge to initiate teamwork is the absence
of leadership to establish an engineering team and to drive
the product engineering work. As stated by one start-up:

“All of the founders had other occupations. 3 profes-
sors (2 of them located in the USA), and one busi-
ness owner located in Turkey. There was a lack of
communication. The developers were hired part-
time. There was no-one for whom this start-up was
their primary occupation. Maybe hiring a manager
would have helped.”

Looking more into leadership we found 4 cases explicitly
pointing out the need for technical leadership. A technical
leader, or CTO, is needed to set up an engineering team and
to lead product engineering work. As one respondent,
employed by a start-up, stated:

“I would fire the current CTO and hire a new CTO,
who is more technically sound. In the startup, the
most prominent thing is that the CTO should be tech-
nically sound. Otherwise, it is hard to drive the prod-
uct forward and tomotivate the development team.”

A potential pitfall is to select the technical product lead-
ers based their executive powers and not professional com-
petences. This could be the case when, for example, a less
competent founder refuses to give away the CTO role to a
more suited employee [6].

An association between good teamwork practices and
software project cost and quality is studied in the context of
established companies [51]. Higher team capabilities
regarding technical skills and domain knowledge, are
strongly associated with a lower number of discovered
defects and lower software maintenance costs. Moreover,
commitment to a shared goal and internal team communi-
cation mechanisms are essential for project success. Our
results indicate that such findings are relevant in the start-
up context as well.

We looked into how the respondents’ relationship with
the start-up affects their responses. We found that founders
of start-ups are significantly more optimistic about the qual-
ity of planning (Cramer0s V ¼ 0:381; p < 0:05), and quality
of product engineering (Cramer0s V ¼ 0:385; p < 0:05),
compared to hired engineers and external contractors. Such
results suggests a potential fault-line in the teams between
founders and employees in terms of how they perceive the
engineering context.

As shown by Chow [46], joint decision making and
knowledge sharing, critical to project success, depend on

efficient communication. However, fault-lines splitting a
team into two or more sub-groups, result in impaired com-
munication and further adverse effects from stemming
from communication issues. Causes and effects of team
fault-lines are observed and studied in the context of glob-
ally distributed teams, for example Gopal, et al. [52] and
Staats et al. [53].

Earlier studies suggest that start-ups have small, flat and
empowered teams. Empowerment of individuals is sup-
posed to reduce the need for bureaucracy and improve flex-
ibility [2]. However, our results suggest that even though
teams are small, there still exists a communication gap
between founders and employees. An explanation could be
that principal decisions from founders could be ill-commu-
nicated, thus perceived by employees as unjustified, and
degrading motivation and trust in a team [54].

4.1.3 Practices

We looked at practitioner responses to identify how team
formation challenges are addressed in their start-ups. We
recognize two general scenarios how start-up teams are
formed (P1). One scenario is creating a new team from peo-
ple without previous joint experience. The second scenario
is that a team originates from a former organization and
already has some teamwork experience. Not every start-up
could have the opportunity to reuse an existing team, thus
we consider these both strategies as variations of the same
practice to establish a team.

The responses suggest that newly created teams start
with a few founders and new people are added when there
is a need for additional skills or human resources. Such
organizations have yet to establish teamwork practices,
acquire domain knowledge, and vet their engineering capa-
bilities. Thus, new teams are prone to teamwork issues,
shortages of skills and expertise.

Teams originating from earlier projects are slightly larger
and have more diverse competencies (compared to new
teams), shared history concerning established ways of
working, roles, responsibilities, and had already ironed out
initial team formation issues. While we do not know the
exact relationships between team members in all cases, 9
respondents mentioned that their teams have been working
on earlier projects suggesting that they have shared experi-
ence before the current project. An example of this scenario
would be a small consultancy company, i.e., offering cus-
tomized services, that identifies an opportunity to develop a
product for mass-market. They keep the consultancy busi-
ness going to support the start-up endeavor, eventually
aiming to become a product organization.

Making use of an existing team helps to alleviate initial
team formation challenges, see C2 in Fig. 4, and minimize
the risk of the team breaking apart. Moreover, an existing
team likely has experience in relevant product engineering
technologies, markets, and the product domain. Therefore,
such teams have an advantage over recently formed teams
with no shared background and experience. Similar results,
pointing out that start-up founders’ earlier experience
shapes their skills and attitudes helping to cope with uncer-
tainty are reported by Politis [47]. However our results
show that skills and expertise of the team as a whole plays
an important role.

508 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

Start-ups report different tactics to address the lack of
engineering competences. As an alternative to establishing
an own engineering team, 3 start-ups mention outsourcing
product development work to another company (P3). The
motivation for outsourcing is to quickly build the first ver-
sion of the product without the effort of creating an own
team. However, outsourcing the engineering work comes
with challenges to negotiate requirements and communi-
cate efficiently. As one respondent stated:

“We started the development offshore with an exter-
nal company, now development is in-house. With
fewer people, we have the same cost, but we at least
tripled the productivity.”

Start-ups at all life-cycle stages mention the use of exter-
nal consultants to help with specialist tasks (P2) in addition
to their engineering team. For example, 6 start-ups mention
that they have used external user interface specialists to
help with product design. Some mention using external
developers for mobile application development, security,
and optimization related tasks.

4.1.4 Lessons Learned

Our results support earlier findings that team is the catalyst
for product engineering [7]. Team issues could hinder start-
up potential to advance through the life-cycle stages.

For start-ups, our findings present several implications:

1) Team formation is an essential early activity. To
attain a highly performing team, a team building
program must be implemented, focusing on estab-
lishing respect for everyone in the organization,
identify and communicate individual performance
standards, develop ways of efficient communication,
identify clear individual and group goals, reward
teamwork, and team-building efforts, and encourage
loyalty to the team [55].

Suggested reading: Bubshait et al. [56] presents
critical concepts influencing team performance and
lists building blocks for establishing highly perform-
ing teams.

2) Engineering and domain expertise are important for
efficient teamwork. Engineering expertise is essential
to build the product fast. However, domain under-
standing helps to identify and interpret software
requirements [57]. Start-up teams are often formed by
inexperienced people or work in new domains, thus
knowledge sharing andmutual learning is essential.

Suggested reading: Eppler et al. [58] presents pro-
cesses, tools, and factors for enabling team knowledge
management. Cockburn and Highsmith [59] explore
the role of individual competences in agile team
performance.

4.2 Requirements Engineering Process Area

The requirements engineering process area concerns the
elicitation, analysis, validation, documentation and scoping
of software requirements. The identification and validation
of a relevant product idea, that is requirements identifica-
tion, validation, and scoping, are some of the most impor-
tant activities in start-ups [29].

4.2.1 Goals

One of the first steps in any software project is to identify
needs and constraints placed on a software product [25].
Respondents from start-ups at the inception stage agree that
product features are to a large extent invented, and are
based on founders experience, and understanding about the
domain (, “To what extent it is true that most prod-
uct/service features are invented rather than discovered?”).

As a consequence of invented requirements, one of the
first objectives in a start-up is to break down invented ideas
into software requirements and to validate these require-
ments, optimally with inputs from target customers (G2).
As one practitioner stated:

“The real purpose of requirements elicitation is to
invalidate requirement ideas as quickly as possible
without unnecessary effort on meta documentation
or implementation.”

Responses show that as soon as the product is launched
to market, start-ups put more emphasis on using their cus-
tomers as requirement sources. Requirements invention
becomes less common. Responses, to what extent product
requirements are invented, shifts towards disagreement
when start-ups mature. (, “To what extent it is
true that most product/service features are invented rather than
discovered?”). Thus, the goal to quickly invalidate own
ideas is most relevant at the inception stage and before
start-ups have established a feedback loop and could use
customer input for feature ideas, see C4 and P5 in Fig. 4.

Requirements validation is mainly about what function-
ality and quality to offer. However, it is essential to differen-
tiate between the validation of the idea itself (requirements)
and how it is provided (design) [60]. The differentiation is
significant. A great idea can be received poorly if the design
of it, regarding how the solution is offered, is bad.

Results from established companies working on market-
driven products are similar. Mature companies, alike start-
ups invent or discover requirements indirectly through
analysis and observations. Established companies face simi-
lar challenges to validate requirements before a product is
launched. This is compensated by internal requirements
analysis and frequent releases [61], [62].

To achieve the goal of the inception stage and to release
the first version of the product, see Fig. 1, start-ups must
determine the scope of the minimum viable product (MVP).
The MVP is a trade-off between features, quality, time, and
cost [30] used to gauge market interest in the product and to
establish an early customer base justifying further invest-
ments in the product.

When asked how the MVP was scoped and what quality
attributeswere considered necessary, themajority of respond-
ents, 56 out of 84, 67 percent, pointed out that the priority is to
maximize customer value through functionality, usability,
and user experience, while keeping engineering effort mini-
mal, see P6. Practice of scoping the MVP is related to the goal
of balancing customer valuewithminimal development effort
(G3). As one respondent reflects theMVP should be scoped by
the current needs, and not bywishful thinking:

“Any requirement that is essential for validating the
growth or value hypotheses is priority. Anything
that is to support the business when the user base is

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 509

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

larger than 100 users is not a priority. Scoping is an
exercise of un-prioritizing features from being
added to the MVP.”

Responses on release scoping goals from start-ups in stabi-
lization, growth and maturity stages suggest a shift in scop-
ing goals compared to the inception stage. The release
scoping goals of inception and stabilization stages are tomax-
imize customer value and to validate the product idea, how-
ever later goals shift to supporting business goals, such as
monetization and growth (G4). We present related results on
value focus and product quality goals in Sections 4.3 and 4.4.

4.2.2 Challenges

Comparing responses from active and closed start-ups at
stabilization and growth stages we observe that internal
sources, such as brainstorming and invention of require-
ments, are the most popular requirement sources and used
by 94 percent of active, and 71 percent of closed start-ups.

Other requirement sources are similar products, used by
83 percent active and by 43 percent closed start-ups, and
market trends, used by 57 percent active and by 29 percent
closed start-ups. However, only 43 percent of closed start-
ups have used input from potential and existing customers
compared to 91 percent of active start-ups. This difference
is statistically significant (Cramer0s V ¼ 0:463; p < 0:05).

Looking at the free text responses for an explanation, we
found that all closed start-ups, and 10 out of 35, 29 percent
of the active start-ups had difficulties establishing contact
with their potential customers and involving them in the
product work (C4, P5). The common shortcomings are
involving customers too late in product work, for example,
only after release to market, and sampling of potential cus-
tomers for requirements elicitation and validation. As one
respondent reflected:

“We informally asked our friends and family about
existing solutions, then we brainstormed with the
information collected about how to design the prod-
uct and what features it should have. We never used
a formal method to elicit requirements, we just infor-
mally decided the features our product should have.”

The importance of stakeholder involvement in new prod-
uct development as a success factor has been pointed out by
nearly every study on requirements engineering, for exam-
ple, Chow [63], Karlsson [64], Hoyer [65], and Blank [31].
However, as our results show, finding the right sample of
customers and convincing them to invest time in collabora-
tion is challenging.

Establishing relationships with potential customers is a
goal of sales activities as well. A recent study on new product
development from the sales perspective highlights the over-
lap between requirements engineering and sales processes,
pointing out that getting to know customers is essential for
both technical and commercial outcomes of the project.
Involving both engineering and sales roles in establishing
customer contacts helps to ensure continuity between
requirements engineering and commercial relationships [66].

Some, 7 of 24, 30 percent, start-ups at the stabilization
stage reflect that they had believed that adding more fea-
tures to the product would improve their chances of

success. That constitutes feature creep, see C5, and stems
from difficulties to elicit useful feedback from customers,
and generalizing customer specific requirements. Start-ups
report that feature creep drained financial resources and
added extra complexity to the product. As one company
reflected on their lessons learned:

“We should have done usability tests with real cus-
tomers with a prototype of the product and iterate
faster based on user feedback and actual usage, not
just guessed what customers might want.”

Feature creep is reported as a general challenge in devel-
oping new software products. It is caused by adding new
requirements late in the product development without
appropriate analysis. The new requirements could stem
from external stakeholders, thus appear very appealing to
include in a release, or could be discovered and self-
approved by the team during the development process.
Either way, a company should analyze the impact and
assure that higher business goals are not compromised [67].

4.2.3 Practices

Responses suggest that start-ups use a mix of requirements
sources. Across all cases, internal sources such as require-
ments invention and brainstorming are the most reported
by 76 out of 84, 90 percent, start-ups, followed by potential
and existing customers (66 cases, 79 percent), and analysis
of similar products (59 cases, 70 percent). Market trends
and business goals are less utilized, standards, laws, and
regulations are used by start-ups in regulated domains,
such as medicine.

Respondents suggest that they have used their previous
experience in the domain, both professional and from
using similar products, to identify “obvious” requirements
and requirements sources. However, customers are the
most valuable source of requirements, as stated by one
respondent:

“The most important source is existing and potential
customers where we have continuous dialog in
place. This is somewhat self evident. Understanding
of competition, business models and regulations is
secondary to that. ”

Elicitation, validation: Start-ups report using observation
(64 percent) and interviews (61 percent) to elicit require-
ments from customers. On-site customer and surveys are
less used, 32 and 46 percent respectively. Prototypes and
mock-ups are used by 61 percent of respondents to support
brainstorming and to elicit feedback in customer interviews.

Responses suggest that elicitation is triggered by internal
ideas that are further elaborated and iterated with input
from customers. As one company reflected:

“Elicitation is a cyclical process of getting info from
customers/products, analyzing and then brainstorm-
ing to feed into prototypes andmock-ups. Early in the
project, this was at a very high level. Later when we
concentrated development on specific features, the
stepswere repeated in amore detailedmanner.”

Requirements elicitation overlaps with requirements val-
idation (P4). Or, as one respondent put it: “the elicitation

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

techniques are used to IN-validate requirements/ideas/
features”. The most frequently reported validation tech-
nique is internal reviews used by 55 percent, 46 start-ups,
followed by prototype demonstrations to customers
reported by 49 percent, 41 start-ups. A/B tests to measure
customer reaction on new features are used by 25 percent,
21 start-ups. Use of A/B testing increases over the start-up
life-cycle from 6 percent at inception stage to 34 percent at
the maturity stage, potentially because A/B tests and other
data-driven methods require a significant number of cus-
tomers interacting with the product and such numbers may
not be available at early stages [68].

By looking into associations between difficulties in
requirements elicitation and demographical information we
found that younger respondents, 25 - 34 years old, report
more difficulties in collecting and prioritizing requirements
than older, 35 - 44 years old, respondents (Cramer0s V ¼
0:599; p < 0:05). An explanation for this finding could be
that older age is associated with a broader network of per-
sonal contacts and more extensive domain experience sup-
porting identification of relevant ideas for product features.

Similar results are reported by Azoulay et al. [69] sug-
gesting that with older age comes more experience, business
acumen, broader social network, and greater access to finan-
cial resources, thus older founders are more likely to suc-
ceed commercially.

Start-ups in all life-cycle stages report that requirements
are changing and they have an informal process to manage
changes (P7). The most common source of changes is input
from customers. Responses suggest that start-ups aim to
work in short iterations and frequently re-prioritize their
backlogs. Thus, requirements changes do not have any sig-
nificant adverse effects. As one respondent described their
change management process:

“Yes, requirements change! We happily abandon
the obsolete requirements and remove any code
from the product if there is any. New requirements
are re-prioritized with a goal to validate our growth
and value hypotheses.”

From our sample, only 7 percent, 6 start-ups, have explic-
itly stated that they do not document their requirements in
any way. The most used specification format is informal
notes and drawings, reported by 56 percent, 47 respondents,
others report more formal techniques, such as the use of
templates and formal specifications, for documenting
requirements. Most commonly, start-ups document require-
ments on a feature level (43 percent, 35 cases), and a func-
tion/action level (21 percent, 18 cases). Requirements are
written down as ideas which are later elaborated (P7). As
one respondent reflected on their practice:

“We used an on-line tool (Trello) to write all the fea-
tures we wanted to implement and, at the same time,
to organize their development. Trello cards served as
the requirements to be implemented. There were no
steps in documenting requirements per-see, we just
talked informally about what to implement and then
wrote it down in order to not forget it.”

With further statistical analysis, we found that the under-
standability of requirements is associated with the state of a

company (Cramer0s V ¼ 0:319; p < 0:05). Significantly
more closed companies, compared to active ones, report
that even though requirements were written down, they
were difficult to understand and use in practice. Teams
with insufficient domain knowledge are also more likely
not to document their requirements. However, teams with
adequate domain knowledge are more likely to use tem-
plates for documenting their requirements (Cramer0s V ¼
0:345; p < 0:05). These findings suggest that more rigorous
requirements documentation could be a way to acquire,
document and distribute critical domain knowledge in the
team. Alternatively, teams with better skills and domain
knowledge see the upside of documenting requirements.
Either way, we observe an association between understand-
ability of requirements, improved domain knowledge, and
progression of a start-up.

Requirements documentation enables to create a plan,
outlining what features to implement when, i.e., develop
a product road-map. The responses suggest that 46 start-
ups, 55 percent, have such a road-map. From start-ups
at inception, stabilization and growth stages, about half,
40 - 50 percent of the star-ups, report having a road-map.
However, product road-maps are used by nearly all,
87 percent, of mature start-ups. Between closed and active
start-ups, 67 percent of operational, 40 cases, have road-
maps. However, only 2 or 18 percent of closed start-ups had
road-maps. Respondents reflections suggest that road-maps
are used as planning documents internally and often synced
with primary stakeholders. Parts of a road-map that con-
cerns near future are more detailed, however long-term
plans are described at a higher, milestone level.

As suggested by the start-up life-cycle model, the first
significant milestone for start-ups is to release the mini-
mum viable product, see Fig. 1. Responses suggest many
strategies for scoping the MVP (P6), such as using their
domain knowledge, input from potential customers and
partners, soft launch by releasing the product to one cus-
tomer at the time, time-boxing, and “gut-feeling”. With the
MVP, start-ups aim to deliver the essential features in a
shortest time possible. As one practitioner described the
MVP scoping process:

“We carefully removed any feature or function not
essential to testing growth and value hypotheses. Of
which two, the value hypotheses is prioritized.”

Value is specified as the primary prioritization goal by
85 percent, 71 of 84, of respondents. Implementation time
is the secondary goal reported by 38 percent, 32 cases.
Requirements prioritization is done by consulting custom-
ers and other stakeholders. We observe that at the incep-
tion and stabilization stages, start-ups consider customer
needs, while at the growth and maturity stages, business
requirements, such as a need for revenue and growth, are
discussed as well. As one practitioner described their pri-
oritization process:

“To prioritize we use this question: how much
money or new customers we will have if we imple-
ment the new feature?”

In their reflections, nearly all respondents from both
active and closed start-ups, suggest that they should have

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 511

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

spent more time with customers to understand and analyze
their needs better. As one respondent describes their lessons
learned:

“In the start we let innovations lead our goals too
much. Then we got our first customers and did not
listen to them much. We did not track in a enough
detailed way what the customer is exactly doing
with our product. We let just one dedicated person
to be in contact with certain customers and did not
share details in the team. Even a small company
needs to setup a program to make interaction with
customers transparent and actionable.”

Comparing our results on requirements engineering in
start-ups with results from established market-driven com-
panies we observe many similarities. For example, in both
contexts requirements are primarily invented, used practi-
ces are light-weight and informal, and focused around
quick releases to elicit customer feedback [61], [62]. How-
ever, we observe a difference in prioritization practices.
Established companies rely more on effort estimates in pri-
oritizing requirements, while start-ups use value as the pri-
mary prioritization target [70].

The discrepancy in prioritization goals could be
explained by a lack of unified and quantifiable view on
value. Thus, established companies opt for scalable and
straightforward prioritization criteria [71]. Moreover, estab-
lished companies are likely to operate within a set budget
and schedule constraints further motivating the need to
adhere to effort estimates. However, start-ups are more cus-
tomer-centric, flexible, and work on a smaller number of
features, thus can use value as prioritization target [4].

4.2.4 Lessons Learned

Our results support earlier findings that requirements engi-
neering is one of the key engineering activities in start-
ups [10]. Moreover, our results show an association between
requirements engineering practices and state of a start-up.
We present the following implications for practitioners:

1) Starting to collect input from potential customers as
early as possible is the key to identifying the most
relevant requirements. By involving customers in
new product engineering, companies can achieve a
higher degree of efficiency, ensure product fit with
customer needs, and achieve higher customer
engagement and satisfaction [65]. Moreover, early
customer relationships are a basis for sales activities
when the product is launched.

Suggested reading: Cui et al. [72] compiles earlier
work from marketing and innovation literature and
presents practical guidelines on how to involve cus-
tomers and use their knowledge in developing inno-
vative products.

Hoyer et al. [65] present a framework for value co-
creation in product development comprising of
motivators, outcomes, and potential impediments.

2) Feature creep can bemanaged by requirements analy-
sis focusing on how many customers will find a fea-
ture useful. Only features that concern the majority of
the customers should be included in the roadmap.

Suggested reading: Elliot [67] proposes to use the
Pareto principle in deciding whether a feature is part
of the core product or is customer specific. He argues
that about 20 percent of features are used by 80 percent
of customers, and the key to avoiding scope creep is to
pinpoint the 20 percent. Also, the paper lists several
strategies for handling feature creep.

3) Writing down requirement ideas, their source and
rationale can help to acquire, maintain and distribute
domain knowledge in the team. For example, even a
basic requirements specification helps to establish a
common vocabulary and avoid delays and time-con-
suming interactions caused by confusion and misun-
derstandings between stakeholders [73].

Suggested reading: Hadar et al. [57] explore the
role of domain knowledge in requirements elicita-
tion. They analyze both positive and negative effects
of prior domain knowledge in elicitation interviews.
Domain knowledge helps to ask more focused ques-
tions, provides a common language, and saves time
in learning the basics.

4) Release scoping, especially scoping of the minimum
viable product, should be done carefully and opti-
mally with clear goals and input from all stakehold-
ers. Our results from start-ups are similar to results
from established companies suggesting that facing
uncertainty companies are likely to overscope their
product releases [74]. Suggested reading:

Suggested reading: Bjarnason et al. [74] presents a
root-cause analysis and effects of release overscoping
in software projects.

4.3 Value Focus

The software value concept characterizes the broader aims of
a company and aligns all activities in an organization towards
defined value goals [75]. Respondent responses often men-
tion value as a criterion for prioritizing requirements and
scoping product releases. However, a value is a vague term
and could mean different things to different stakeholders. To
explore how start-ups interpret the phrase wemap their defi-
nitions of value to software value aspect taxonomy [71]. We
summarize these different views as engineering goals.

4.3.1 Goals

Across the sample, the dominant view on value is the cus-
tomer perspective, reported by 48 percent or 40 start-ups.
Respondents define customer value as perceived benefits,
regarding functionality, user experience, and hedonistic
value, derived from the product, and potential for the com-
pany to capitalize this value, see G5-G8. As one respondent
phrased it:

“With value we understand the benefit for a cus-
tomer to use our product. Higher value strengthens
our position in the market compared to competitors
and helps to increase the price of the product.”

The second most reported interpretation of value stems
from the internal business perspective, i.e., how the com-
pany estimates product value from their own, internal per-
spective (23 percent or 20 start-ups). Respondents define

512 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

this perspective as both market potential, e.g., how many
customers could benefit from a particular feature (G6), and
differentiation value, e.g., how a feature will help to stand
out in the market (G8). As one respondent put it:

“Value is something that can be used to market/dis-
tinguish the product from competition.”

Financial value concerning revenue is the third most
reported interpretation of value, by 11 percent or 9 respond-
ents (G7). However financial value is often defined in com-
bination with other value perspectives, such as customer or
internal value. As one respondent described their multi-
faceted view on value:

“Value is what could give more revenue to the com-
pany and make the product easier to use for users
and motivate them to purchase, so that we could
have more transactions each day.”

We compare value definitions between start-ups at differ-
ent life-cycle stages and observe several tendencies. Cus-
tomer value pertaining perceived benefits of the product of is
the dominant value perspective in all life-cycle stages,
reported by 23 - 46 percent of respondents. Internal value cap-
turing product’s market potential value, for example, ability
to serve more customers efficiently and to access broader
markets, is reported by 20 percent of respondents at inception
and growth stages, 12 percent at the growth stage, and not
reported at all by start-ups at the maturity stage. Financial
value of the product is not reported at all by companies at
inception stage, however it grows over start-up life-cycle and
peaks at the maturity stage where 20 percent of start-ups
have reported it. Internal, differentiation value are more
reported by start-ups at inception and maturity stages, and
appear less relevant at stabilization and growth stages.

A similar analysis conducted in established product com-
panies shows somewhat different results [76]. While the
ranking of value is similar, customer value being the most
important, followed by internal value and financial aspects,
we observe differences in the definition of these values. For
example, established companies interpret customer value as
delivery time and perceived quality. However, none of the
start-ups in our sample have mentioned time-to-market or
product quality in their value definitions. The internal value
in established companies is understood as internal product
quality, technical debt, supporting tools and processes.
Start-ups, in turn, focus on market potential and differentia-
tion value.

Differences in the studied samples can explain these dis-
crepancies in value focus. Established companies could see
more value in consistently delivering quality features to
existing customers and keeping technical debt low. How-
ever, start-ups aim to identify an unmet customer need in a
high-potential market [1], [22].

4.3.2 Lessons Learned

Our results show shifting views on value definition among
start-ups in different life-cycle stages. However, there is a
shortage of similar results (except for Alahyari et al. [76])
for comparison and deeper analysis. Nevertheless, we pres-
ent the following implications for practitioners and gaps for
further investigation:

� Understanding of value focus can help practitioners
to the scope and align their engineering and business
activities to maximize specific types of value. Align-
ment of activities helps to ensure that technology
actually supports specific business goals and deliver
the intended value to stakeholders [77].

� Our results show that at least two value perspectives
are relevant at any life-cycle stage. The value focus
shifts from customer value and internal market value
at inception stage to financial and differentiation
value at the maturity stage, see Fig. 4. Understanding
of the multi-faceted nature of value can help to facili-
tate communication between stakeholders [71].

Suggested reading: Khurum et al. [71] present a
taxonomy of software value aspects establishing a
common vocabulary and understanding on different
value aspects.

Carlson and Wilmot [77] present a practical guide
on how to identify, use and develop an understand-
ing of the value and use value to align organizational
efforts in building innovative products.

4.4 Quality Goals and Testing Process Area

This process area concerns product quality goals and practi-
ces to attain these goals. Product quality is a mix of function-
alities, non-functional attributes, and broader constraints
determining commercial success of a product (e.g., cost of
product development versus returns from marketing the
product). We aim to explore what aspects of software quality
are considered significant by practitioners and what practi-
ces are used to attain such aims.

4.4.1 Goals

Respondent answers suggest that product functionality is the
most common quality goal (G9) across all life-cycle stages,
reported by 32 percent, 27 respondents. Time-to-market is the
secondmost common objective (G11), indicated by 15 percent,
13 start-ups. Even though time-to-market is not a product
quality goal intrinsically, it has a profound influence on the
product decisions [7], [20]. The frequency of other quality
goals varies across life-cycle stages.

Maintainability is frequently reported quality goal in sta-
bilization, growth and maturity stages (G10). Portability is
reported only by start-ups at the maturity stage (G12). Reli-
ability is mentioned by few cases in stabilization and matu-
rity stages. Shifting quality goals indicate suggest changing
priorities and adds support for start-up life-cycle model,
see Section 2.4.

Looking further into how the required level of product
quality was determined we found that start-ups reflect on a
“good-enough” level of their quality goals (G13). This goal
is related to scoping of the MVP (P6) and focus on non-func-
tional features of the product. Wrongly estimating the
required quality level (G13, P8) could lead to poor market
reception due to less than acceptable quality, or waste by
providing excessive quality [78].

4.4.2 Practices

Start-ups report using different strategies, based on in-
house expertise, user feedback, and iterative development
(P8) to set their quality targets.

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 513

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

One strategy is not to set any specific quality targets and
iteratively identify, and improve relevant quality aspects.
As stated by one company:

“We take a continuous iterative refinement
approach rather than setting a fixed goal, so we peri-
odically assess which areas are in need of improve-
ment, evaluate and prioritize the options”

As an alternative, one start-up at the inception stage
reported aiming for the simplest solution that can be
improved, if needed:

“We look for what is the simplest, regarding size
and complexity, solution to this problem. Will that
solution be able to support a couple of hundred
users? How many different ways can the solution be
improved to support more users?”

Regnell et al. [78] describe a quality requirements road-
mapping model for determining the required quality level.
Themethod proposes to identify relevant quality metrics and
defines useless, useful, competitive, and excessive quality
ranges for each. Then, it uses these ranges to compare the
own product with competition and to spot opportunities for
improvement. Using such a model in a start-up could help in
determining essential qualities, a minimumquality level for a
product to be useful, and opportunities to differentiate
among similar products. This is aligned with the focus of
internal value start-ups typically have (see Section 4.3.2).

Respondent answers suggest that informal manual test-
ing is the most common practice for making sure that the
product has an acceptable level of quality at all life-cycle
stages, reported by 33 percent, 28 start-ups (P9). However,
the responses suggest that informal testing is gradually
replaced with an organized QA process (P10) at the matu-
rity stage. Alternative methods, often used in parallel, are
exploratory testing, or scenario-based testing, reported by
21 and 19 percent start-ups respectively.

Respondents estimates suggest that test case documenta-
tion varies from informal to systematic without any clear
tendency (, “To what extent it is true that test cases
are not systematically documented?”). Estimates on the test
case coverage are biased towards agreeing with less than
complete coverage (, “To what extent it is true that
test cases do not fully cover the product functionality?”)

We observe little differences in testing practices between
start-ups in different life-cycle stages. However, start-ups at
growth and maturity stages reflect that more test automa-
tion, more skills regarding software testing, and more sys-
tematic testing would have been helpful. An explanation
for such results could be that consequences of the informal
testing surface only when a product gains a user base. Two
start-ups at the maturity stage reflect that a dedicated tester
role, responsible for performing testing tasks, is needed
(P10). As stated by one of the respondents:

“I think we need more structured testing, a manager
of testing that coordinates the efforts, all being
responsible [for testing the product] is NONE being
responsible.”

Answers to questions on the use of automated testing
show that a third, 26 out of 84, 31 percent, of start-ups are
attempting to implement automated testing, and only 17

start-ups, 20 percent, have explicitly stated that no test auto-
mation is used.

Responses suggest that regression testing is an increasing
concern over start-up life-cycle (C6). Start-ups at inception
and maturity stages report that they spend substantial effort
on manually testing the entire product (, “To
what extent it is true that manual testing of the entire product/ser-
vice is required to make sure that a release is defect free?”). At the
same time, respondents report that few defects slip through
testing and are reported by customers (, “To what
extent it is true that customers often report defects that could have
been captured earlier?”). Two respondents from start-ups at
the maturity stage have stated explicitly that they are work-
ing to improve and automate their product testing.

Start-ups could benefit from more rigorous testing practi-
ces. Efficient software testing enables faster product
releases, thus allowing the teams to reduce time-to-market
and to iterate new features faster. More rapid release cycles
contribute to faster requirements validation (G2, P5) and
are known to improve customer satisfaction [79].

Good testing practices and use of automated tests can
support the on-boarding of new developers. Automated
tests provide a safety net for inexperienced developers to
discover any problems with their code quickly on their
own. Automated test definitions serve as means of docu-
mentation to learn how different components of a product
work [80]. Therefore, having good testing practice and test
automation have benefits beyond a defect-free software.

4.4.3 Lessons Learned

Our results show that start-ups primarily focus on deliver-
ing relevant functionality. Other quality aspects change as a
start-up advances through the life-cycle. Software defects
aren’t a concern. However, the internal quality and testing
practices are important to support the sustainable evolution
of the product. We identify the following implications for
practitioners:

� Our results suggest that external quality isn’t a con-
cern in start-ups, potentially due to relatively small
products and early adopters being more tolerant
towards defects. That said, quality becomes a con-
cern in growth and maturity stages when commer-
cial success of a product depends on quality service.

� We observe that maintainability is an increasing con-
cern over a start-up’s life-cycle. Maintainability helps
a start-up to remain fast in launching new features and
sets a foundation to enable portability of a product.

Suggested reading: Regnell et al. [78] propose a
lightweight method for quality requirements road-
mapping. Themethod helps to establish a frame of ref-
erence for assessing current product quality and
spotting opportunities for improvement.

� Respondent answers suggest a lack of test automation
and superficial testing practices. However, our earlier
study on technical debt in start-ups could not find
any significant association between testing debt and
product quality or team performance issues [13].
Nevertheless, good testing practices help to have
faster product releases and speed up the on-boarding
of new developers.

514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

Suggested reading: Collins et al. [81] present an
experience report on test automation practices in an
agile development context. They present several
lessons learned from implementing test automation
and what types of test automation bring the most
benefit.

4.5 Architecture and Design Process Area

The architecture and design process area concerns the inter-
nal product structure, selection and use of components,
construction technologies, interfaces and other aspects sup-
porting the construction of the product.

Earlier studies suggest that start-ups leverage on open-
source components, third-party services and cutting-edge
technologies to construct their products [7]. We aim to
explore how start-ups choose the components and how
they design their product architectures.

The visual appearance of graphical user interfaces influ-
ences the usability of a product and affects stakeholder per-
ception about the product. Look and feel of product user
interfaces is known to have an impact on project suc-
cess [82]. We explore how start-ups design user interfaces
for their products.

4.5.1 Goals

We inquired respondents on the use of cutting-edge tech-
nologies and found that start-ups aim to minimize risks
from using immature technologies by using well-known,
stable technologies in the product development (G14).
However, 39 percent, 33 of 84, of the respondents report
using or experimenting with some cutting-edge compo-
nents on the side. As one start-up reflected:

“We don’t use unstable components or new 3rd
party services without evaluating them thoroughly
and running a small pilot project.”

For at least one start-up in our sample, poor choice of a
technology platform hindered quality, delayed product
releases, and was the leading cause for discontinuing the
product. Therefore, selecting a technology stack is an impor-
tant goal early in the start-up life-cycle.

Earlier studies have pointed out that start-ups leverage
on cutting-edge technologies to develop innovative prod-
ucts and gain competitive advantages [1], [15]. However,
we could not find support for such results in our dataset.

Looking into how organizations make technology deci-
sions in other contexts, we found that performance regard-
ing total time and resources efficiency, maintainability and
reliability are the top criteria for software component selec-
tion in established companies. Similar results are reported
by Petersen et al. [35], and Badampudi et al. [83]. Start-up
companies could be considering similar criteria and opting
for more stable components to save development time and
resources. Furthermore, start-ups could be leveraging on
established, well-known technologies to create new and
innovative products [84].

4.5.2 Challenges

Respondent estimates suggest that technical debt is preva-
lent in start-ups, especially late in the life-cycle, see C7.

Nearly all start-ups report some signs of technical debt,
such as shortcomings in knowledge distribution, code
smells, suboptimal architecture decisions, and lack of auto-
mated testing. Testing debt, associated with lack of auto-
mated regression testing and a need to manually re-test the
entire product before releases, is the most common type of
technical debt. Documentation, architecture debt, and code
smells are also a concern, albeit to a lesser extent.

In our earlier study with the same dataset, we found doc-
umentation, architecture debt, and code smells to be associ-
ated with impaired team productivity and product quality.
However, we could not find any significant association
between testing debt, productivity or quality [13].

Statistical results showed a significant association
between start-up team size, team skill level and level of
technical debt. Larger, less skilled teams are more likely to
suffer from consequences of technical debt (Cramer0s V ¼
0:386; p < 0:05).

Comparing reports on the technical debt between start-
ups at different life-cycle stages we found a pattern of archi-
tecture debt growing over time and peaking at the growth
stage (C7). By looking into respondent reflections, we found
that start-ups at growth and maturity stages face challenges
stemming from earlier architecture decisions. As stated by
one respondent:

“Initially, the product was started by an inexperi-
enced developer and many design decisions were
incorrect. Fixing them early would have been easy,
however with the product and user base growing,
changing core things became increasingly difficult.
Correcting simple architecture mistakes that could
have been trivial to fix early, can take weeks now.”

Our results match earlier findings suggesting that techni-
cal debt in start-ups is caused by a need to develop a prod-
uct fast and an inadequate team skill level [7]. However,
our respondent answers indicate that external pressures,
such as competition do not cause the need for speed.
Instead, the need for fast product development is primarily
caused by internal considerations to validate the product
idea as quickly as possible with minimal waste.

4.5.3 Practices

Start-ups report leveraging on best practices and established
frameworks in creating software architectures (P11), thus
avoiding the effort of inventing complex solutions them-
selves. Nearly all start-ups report using open source or free
to use tools and components. Only few report use of com-
mercial off-the-shelf components. Such a strategy reduces
the effort of software engineering, potential lock-in effects
with specific vendors, and need to reinvent already existing
functionality. As stated by one respondent:

“We used a standard MVC architecture for the back-
end and the web front-end, and the standard archi-
tecture for iOs/Android. The back-end and web
front-end was implemented with Ruby on Rails and
we followed its architecture conventions to guide
the design.”

Few start-ups in thematurity stage, 4 out of 15, 27 percent,
report using in-house developed, innovative technologies.

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 515

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

For example, highly customized deployment configurations,
audio and video processing tools, and a custom graph data-
base, to support their product development. Note that such
innovations in technologies are done late in the start-up life-
cycle to support further evolution of an already established
product.

Graphical user interface design is interrelated with user
experience design. User interfaces could be the primary
touch point between users and the product, thus largely
contributing to users perception of the product. In our
study, we explore on how are the product user interface
designs created without inferring a connection to a broader
practice of user experience design.

Respondent responses on user interface (UI) design prac-
tices suggest that start-ups use mock-ups, utilize design
frameworks and borrow ideas from other products to
develop their product UI (P12). Three start-ups report out-
sourcing the UI design work. Companies reflect that user
interface design is an ongoing process of continuous
improvement. Thus, user interface design is not a significant
concern at any particular stage. At the inception and stabili-
zation stages, UI is tested by internal reviews and by
observing users interacting with the UI. At later stages of
the start-up life-cycle when a large number of customers are
interacting with the product, start-ups use analytical tools
and A/B tests to monitor how customers interact with the
UI and to identify opportunities for improvement.

The main reported goals of the UI are usability, 75 percent,
63 cases, and usefulness, 35 percent, 29 cases. When reflecting
on their user interface development practices, respondents
suggest that investing more time in customer tests instead of
inventing the UI internally, and having clear user interface
guidelines, would have been helpful.

Our results on user interface design are aligned with
studies investigating user experience practices in a start-up
context. Start-ups use a set of practices to iterate prototypes,
collect feedback and continuously improve their user inter-
faces. [85]. Quality criteria for good user interfaces and user
experience are a clear message, visual attractiveness, intui-
tiveness, and credibility [28].

4.5.4 Lessons Learned

Our analysis contradicts earlier results that start-ups exten-
sively use cutting-edge technologies [4]. Rather, start-ups
opt for a stable technology platform with standard architec-
ture to alleviate technology risks. We formulate the follow-
ing implications for practitioners:

� Start-ups mitigate technology risks by selecting sta-
ble technologies and following best practices associ-
ated with the technologies. Stable technologies and
best practices improve team performance and pro-
vide a rigid platform for innovative features.

Further reading: Petersen et al. [35] explore how
companies make decisions to select between open-
source, in-house, or COTS components. Although the
study is performed among established companies, it
presents different strategies and factors influencing the
decisions, thus providing an overview of the process.

Baskerville et al. [5] present a study exploring reac-
tive engineering practices in start-up companies and

argue that software engineering in start-ups mainly
focuses on integration and interoperability of compo-
nents developed elsewhere.

� Our findings suggest that user interface design is a
significant activity. However, it must be done by
continuously monitoring and tweaking the product.

Suggested reading: Hokkanen [28] presents a
framework for minimum viable user experience pin-
pointing essential qualities and practices of develop-
ing good user interfaces.

4.6 Project Management

The project management process area concerns planning
and control of engineering activities in a start-up. Planning
and control are known as important to optimize resource
usage and attainment of specific goals [86]. We aim to
explore how start-ups plan and control their activities.

4.6.1 Goals

The start-up life-cycle model, see Fig. 1, outlines the main
milestones, releasing a minimum viable product, stabilizing
the product for growth, attaining market share, and transi-
tioning into an established organization. We inquired start-
ups on how they control and measure their progress
towards success.

The responses show that start-ups primarily use external
metrics, such as revenue, number of customers, and cus-
tomer satisfaction, to measure their success (G15, P13).
However, start-ups at growth and maturity stages also con-
sider using internal metrics, such as team performance,
adherence to deadlines, and budget plans as performance
measures (G16, P14).

We observe differences between start-ups in different
life-cycle stages. Start-ups at the inception stage, before they
have launched their product, do not report the use of any
metrics to measure their progress. However, they aim to
use external metrics, e.g., number product users, as soon as
the product is launched. At the stabilization stage, just after
the product is launched, the primary success metrics are
external and aimed to monitor general product adoption
rates. As start-ups progress through the life-cycle, metrics
become more specific, attached to high-level business mile-
stones, and consider both internal and external aspects
jointly. Internal team performance metrics are monitored
and used to gauge start-up performance, in addition to
external, market adoption metrics.

4.6.2 Challenges

Our results show that start-ups aim to use internal and
external metrics to gauge their progression, see G15-16 in
Fig. 4. However, external metrics are not available in the
inception stage, before the product is launched.

Start-ups at the inception stage do not report using any
specific metrics to control their progress. Potentially, due to
unclear, changing plans, and immature project management
practices. Thus, start-ups at the inception stage lack a bench-
mark to gauge their progression (C8). As stated by one
practitioner:

“We work towards the goal to improve our plat-
form, priorities changed, and but there was no

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

control over schedule. Sometimes tasks took a lot
longer than planned.”

In their reflections, practitionersmention a need for tighter
control over product engineering work, deadlines and bud-
get. As one practitioner reflected on lessons learned:

“First and foremost, I would have defined short
term and long term goals of the start-up. That would
have helped us to align all resources and activities.”

Results from the statistical analysis show that with the
advantage of hindsight, practitioners estimate the perfor-
mance of their teams more critically by a significant margin.
Such findings suggest that it is challenging to assess perfor-
mance from within a company objectively, and objective
early performance indicators could be useful (C8). Objective
performance indicators could be helpful to establish a per-
forming team (C2).

Setting goals and metrics to measure the progress towards
goals is a common practice in project management [86], [87].
However, as shown by practitioner responses, start-ups at
the inception stage do not measure their progression. Lack of
measurement could lead to pitfalls such as the late realization
of resource overruns, and scope creep.

Looking at the literature, we found several models aimed
to guide early start-ups [31], [88], [89]. These models pro-
pose first to define and validate the customer need, then val-
idate a solution to this need, followed by validating product
feasibility through small and large-scale prototypes. A
somewhat similar approach focused on continuous experi-
mentation is proposed by Fagerholm [90]. However, to
what extent such practices are used to guide work in early
start-ups remains to be explored.

Respondents estimate that their goals are rather clear and
change rarely (, “To what extent it is true that goals
in the start-up are rather unclear and change often?”). As the
source for uncertainty respondents report specific require-
ments from customers, demands from partners, and com-
mercial results (C9). Such factors are out of control for start-
ups. Thus, any plans should have a room for uncertainty
and adjustments.

When inquired to what extent respondents experience
time and financial resources shortages, most responses fall
between “A little” and “Somewhat”, indicating that avail-
ability financial resources and time is a concern, however
not to an extreme extent, (, “To what extent it is
true that there is a constant time pressure?”) and (,
“To what extent it is true that there is a constant resources
pressure?”)

Statistical analysis shows a linear correlation between time
and resources shortages indicating that companies struggling
with finances also struggle with time. However, the free-text
answers does not contain any mention of specific difficulties
stemming from time or financial resources shortages. The
responses are consistent across the sample, and we could not
identify any particular cohort where time and resource short-
ageswould bemore (or less, thereof) of a challenge.

Such results contradict earlier studies stating that
extreme lack of resources is one of the key characteristics of
start-ups [1], [4]. The trade-off between project scope and
budget, and project management are reported as a concern
in nearly every study exploring software project success

factors, for example, Chow et al. [46], Junk [30], Reel [91],
and Nasir [92]. Thus, time and budget constraints, and asso-
ciated trade-offs are not specific to start-ups exclusively.
Moreover, a majority of software projects require more
resources to complete than initially estimated [93]. There-
fore, resource shortages alone are not a differentiating factor
between start-ups and established companies. That said,
start-ups could differ from established organizations with
thinner margins for resource overruns, less rigorous control
over resource utilization, and could have more difficulty to
access additional resources [94].

A study of 1000 Finnish start-ups between 2010 – 2013
reveals that external funding has no association with start-
up outcome. That is, start-ups with more resources at hand
do not have more chances of survival and success than
start-ups with more limited resources. Moreover, start-ups
without external funding are likely to generate more reve-
nue in the long term [95]. Such findings highlight the impor-
tance of scoping, planning and control to optimize
utilization of any amount of resources. lack of clear goals

4.6.3 Practices

The responses suggest that start-ups at the inception stage
use elementary, if any, practices to schedule their work and
keep control over time and budget, see C8. Some start-ups
are constrained with a fixed budget or a hard deadline,
however control over utilization of time and budget is based
on “gut-feeling”. As one respondent from a start-up at the
inception stage reflects on their planning practices:

“We have something on the budget but it’s very
informal and it’s solely based on projected product
revenue, and user retention and acquisition. In hind-
sight, we should have done better in terms of sched-
uling and scoping the work.”

Following from our earlier discussion on control over
resource utilization, lack of control over time and financial
resources is a potential pitfall for early start-ups.

Start-ups at the stabilization stage report improving proj-
ect management practices, such as setting boundaries for
certain expense positions, assigning a budget to meet spe-
cific goals, and attempting to estimate their cash-flow (P15).
Start-ups at maturity stage report using processes, sup-
ported by tools, for resource planning and control over
resource utilization (P16). As one respondent reflects on
their planning practices in a mature start-up:

“We initially created a budget plan to understand if
our business is viable at all and to apply for a loan.
Nowadays we use budget estimates as a tool for
planning.”

4.6.4 Lessons Learned

Our analysis shows that clear goals, control over resources
and schedule are essential to track progress over start-up
life-cycle. However, there is a challenge to objectively assess
own performance before a product is launched to market.
Lack of planning and control could contribute to budget
and schedule overruns leading to wasted opportunities.

Lack of resources does not have a substantial effect on
engineering practices and start-ups’ prospects of advancing

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 517

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

through the life-cycle. However, lack of planning and con-
trol over resource utilization, especially on early stages of a
start-up is a pitfall. Start-ups need to set clear goals and met-
rics to assess their performance from the very beginning
objectively.

Suggested reading: Dyba
�
et al. [96] present an overview

of agile project management practices and provide practical
tips on how to organize project management in uncertain
and changing environments.

5 DISCUSSION

5.1 Reflections on the Research Questions

Our primary research question explores what engineering
patterns, that is, common goals, practices, challenges, con-
textual factors, can be ascertained in start-up companies.

To identify the patterns, we use the start-up life-cycle
model. The model supported clustering of cases by product
life-cycle stage and outcome. Thus, observing how engineer-
ing focus changes over start-up life-cycle and enabling a dis-
cussion of what practices contribute to desirable state
transitions. Furthermore, with the model and our results, we
aim to provide a blueprint for studying start-ups as dynamic
and multi-faceted entities. Such blueprint could enable com-
patibility of results from different studies, and contribute
towards a coherent view of software engineering in start-ups.

In most process areas we observe evolving practices,
from rudimentary at the early stages, to more mature in the
latter stages. Such evolution regarding practice maturity is
also noted by earlier studies, e.g., Giardino et al. [7]. How-
ever, we present empirical results of specific practices,
goals, challenges at each life-cycle stage, and discuss the
results in the context of related work from similar contexts.
This way we provide actionable support for practicing soft-
ware engineering in start-ups.

Our results show that domain knowledge, technical
expertise, and teamwork are the key components in the
early stages of a start-up. Shortages of any of these compo-
nents can be compensated with specific practices. For exam-
ple, scarcity of domain knowledge in the team can be
compensated with more rigorous requirements engineering
practices helping to identify, acquire, and distribute infor-
mation in the organization. Similarly, lack of technical
expertise in the core team can be compensated by outsourc-
ing engineering work to another team.

In the later stages, technical debt, growing team and lack
of processes (e.g., quality assurance, project management,
managing a large, distributed team) hinder engineering
work. However, these challenges can be anticipated and
addressed with appropriate practices.

5.2 Evolution of Software Engineering
Practices in Start-Ups

By looking at the patterns, we can identify the key concerns
at each life-cycle stage.

At the inception stage, the most important concern is to
assemble a small team of few individuals with sufficient
domain knowledge, technical expertise and adequate finan-
cial resources to build the first release of a product. As our
results show, different practices can compensate for short-
comings in domain knowledge (e.g., by more actively

involving stakeholders and more rigorously documenting
requirements), lack of technical expertise (e.g., by using
external engineering team), and limited budget (e.g., by
adjusting the scope of the release). Releasing the first ver-
sion of a product depends on how efficiently a team can use
their understanding of the domain and engineering exper-
tise to produce software. Excessively large teams and diffi-
cult communication drains resources, time and motivation,
and could lead to the closure of the company even before
the launch of a product.

At the stabilization stage, we observe two main concerns.
The first is related to team building and establishing an effi-
cient team with defined areas of responsibility, trust, and
coordination. After a start-up releases the first product ver-
sion to customers, the company need to balance between
developing new features and providing quality service for
the existing customers. Aforementioned requires the team
to be more diverse, handle a broader range of responsibili-
ties and more stringent internal structure. The second con-
cern is related to establishing a feedback loop with
customers. Our results show an association between using
customer feedback and technical and commercial success.
Identifying early customers and involving them in the engi-
neering work is one of the essential tasks in a start-up.

At the growth stage, we observe that concerns related to
business, monetization, and marketing become relevant and
have an influence on product engineering. For example,
companies’ own goals such as the need for monetization
and expansion, must be taken into account in addition to
customer needs. Serving a growing number of potentially
diverse customers require the product to be flexible, scal-
able, and reliable. Providing such qualities require expert
engineers. Growing complexity of the product creates a
need for more robust testing and deployment practices, alle-
viating a need for manual work to prepare every release.
Furthermore, increasing complexity of the organization and
the product expose technical debt which must be addressed
to support further growth.

At the maturity, stage start-ups are concerned with man-
aging a growing, and potentially, distributed team. At this
point, more rigorous project management practices are
needed to organize and control engineering work, and
more thorough engineering processes could be introduced
marking a transition into an established organization.

6 CONCLUSION

In this paper, we investigated how 84 software start-ups uti-
lize software engineering to build innovative software-
intensive products. To frame the results we proposed start-
up life-cycle model and looked into team, requirements
engineering, value focus, quality and testing, architecture
and design, and software project management process
areas. This framing highlights stage and process area spe-
cific goals, challenges, and practices. We have discussed our
findings in the context of related work and formulated prac-
tical lessons learned aimed at practitioners.

We conclude that all explored process areas are relevant
for start-ups and, in essence, not different from established
companies. That said, potentially the key difference and dif-
ficulty to practice software engineering in start-ups is to

518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

manage the evolution of practices in all the process areas at
once with only a little room for error. Even though start-ups
are experimental by nature and making errors in the process
is inevitable, there is a distinction between taking calculated
risks, and neglecting the best engineering practices.

To further understand and support software engineering
in start-ups we aim to conduct a series of structured work-
shops to conduct an assessment of software engineering
practices in start-ups using results obtained in this study.
With the results of the workshops, we aim to refine further
the patterns and a methodology for using the patterns in
improving engineering practices in start-ups.

ACKNOWLEDGMENTS

The authors of this paper would like to thank all practi-
tioners who found time and motivation to share their expe-
riences. Reaching this diverse population of start-ups
would not be possible without help and support from Soft-
ware Start-up Research Network7 community, and specifi-
cally Nana Assyne, Anh Nguyen Duc, Ronald Jabangwe,
Jorge Melegati, Bajwa Sohaib Shahid, Xiaofeng Wang,
Rafael Matone Chanin, and Pekka Abrahamsson. Work of
Rafael Prikladnicki is partially funded by CNpq and
FAPERGS (process 17/2551-0001205-4).

REFERENCES

[1] S. M. Sutton, E. C. Cubed, andM. Andretti, “The role of process in a
software start-up,” IEEE Softw., vol. 17, no. 4, pp. 33–39, Jul. 2000.

[2] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek,
and P. Abrahamsson, “Software development in startup compa-
nies: A systematic mapping study,” Inf. Softw. Technol., vol. 56,
no. 10, pp. 1200–1218, Oct. 2014.

[3] V. Berg, J. Birkeland, A. Nguyen-Duc, I. O. Pappas, and L. Jac-
cheri, “Software startup engineering: A systematic mapping
study,” J. Syst. Softw., vol. 144, pp. 255–274, 2018.

[4] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, and
P. Abrahamsson, “What do we know about software development
in startups?” IEEE Softw., vol. 31, no. 5, pp. 28–32, Sep. 2014.

[5] R. Baskerville, B. Ramesh, L. Levine, J. Pries-Heje, and S. Slaughter,
“Is internet-speed software development different?” IEEE Softw.,
vol. 20, no. 6, pp. 70–77, Nov./Dec. 2003.

[6] M. Crowne, “Why software product startups fail and what to do
about it,” in Proc. Eng. Manage. Conf., 2002, pp. 338–343.

[7] G. Carmine, N. Paternoster, M. Unterkalmsteiner, T. Gorschek,
and P. Abrahamsson, “Software development in startup compa-
nies: The greenfield startup model,” IEEE Trans. Softw. Eng.,
vol. 42, no. 6, pp. 585–604, Jun. 2016.

[8] Y.Wijngaarde, D. Paliksha, J. Puls,M. Squarci, and I. Anihimovskaya,
“Annual European Venture Capital Report, 2017, ” Dealroom.co,
Tech. Rep., Feb. 2018, https://blog.dealroom.co/wp-content/
uploads/2018/02/Dealroom-2017-vFINAL.pdf, accessed:Mar. 2019.

[9] C. Giardino, S. S. Bajwa, and X. Wang, “Key Challenges in Early-
Stage Software Startups,” in Agile Processes, in Software Engineer-
ing, and Extreme Programming, vol. 212, 2015, pp. 52–63.

[10] J. Melegati, A. Goldman, and S. Paulo, “Requirements engineering
in software startups : A grounded theory approach,” presented at
the 2nd Int. Workshop Softw. Startups, Trondheim, Norway, 2016.

[11] C. Gralha, D. Damian, A. I. T.Wasserman,M.Goul~ao, and J. Ara�ujo,
“The evolution of requirements practices in software startups,” in
Proc. IEEE/ACM40th Int. Conf. Softw. Eng., 2018, pp. 823–833.

[12] N. Tripathi, E. Klotins, R. Prikladnicki, M. Oivo, L. B. Pompermaier,
A. S. Kudakacheril, M. Unterkalmsteiner, K. Liukkunen, and
T. Gorschek, “An anatomy of requirements engineering in software
startups usingmulti-vocal literature and case survey,” J. Syst. Softw.,
vol. 146, pp. 130–151, 2018.

[13] E. Klotins, M. Unterkalmsteiner, P. Chatzipetrou, T. Gorschek,
R. Prikladinicki, N. Tripathi, and L. Pompermaier, “Exploration of
technical debt in start-ups,” in Proc. IEEE/ACM 40th Int. Conf. Soft.
Eng.: Soft. Eng. Practice Track (ICSE-SEIP), 2018, pp. 75–84.

[14] L. Hokkanen and K. V€a€an€anen-Vainio-Mattila, “Ux work in start-
ups: Current practices and future needs,” in Agile Processes in Soft-
ware Engineering and Extreme Programming, C. Lassenius,
T. Dingsøyr, and M. Paasivaara, Eds. Cham, Switzerland:
Springer International Publishing, 2015, pp. 81–92.

[15] M. Unterkalmsteiner, R. Feldt, and T. Gorschek, “A taxonomy for
requirements engineering and software test alignment,” ACM
Trans. Softw. Eng. Methodology, vol. 23, no. 2, 2014, Art. no. 16.

[16] M. Unterkalmsteiner, P. Abrahamsson, X. Wang, A. Nguyen-Duc,
S. Shah, S. S. Bajwa, G. H. Baltes, K. Conboy, E. Cullina,
D. Dennehy, et al., “Software startups–a research agenda,” e-Infor-
matica Softw. Eng. J., vol. 10, no. 1, pp. 68–102, 2016.

[17] E. Klotins, M. Unterkalmsteiner, and T. Gorschek, “Software-
intensive product engineering in start-ups: A taxonomy,” IEEE
Softw., vol. 35, no. 4, pp. 44–52, Jul./Aug. 2018.

[18] K. Petersen, D. Badampudi, S. Shah, K. Wnuk, T. Gorschek,
E. Papatheocharous, J. Axelsson, S. Sentilles, I. Crnkovic, and
A. Cicchetti, “Choosing component origins for software intensive
systems: In-house, COTS, OSS or outsourcing? – A case survey,”
IEEE Trans. Softw. Eng., vol. 44, no. 2, pp. 237–261, Mar. 2018.
[Online]. Available: http://ieeexplore.ieee.org/document/7870688/

[19] N. Churchill and V. Lewis, “Five stages of small business
growth,” Harvard Bus. Rev., vol. 61, no. 3, pp. 30–40, 1983.

[20] E. Carmel, “Rapid development in software package startups,” in
Proc. 27th Hawaii Int. Conf. Syst. Sci., 1994, pp. 498–507.

[21] Atomico/SLUSH, “The state of european tech 2017,” Atomico, Tech.
Rep., 2017. [Online]. Available: https://2017.stateofeuropeantech.
com/

[22] S. Blank, “Embrace failure to start up success,” Nature, vol. 477,
no. 7363, Sep. 2011, Art. no. 133.

[23] E. Klotins, M. Unterkalmsteiner, and T. Gorschek, “Software Engi-
neering Anti-patterns in start-ups,” IEEE Softw., vol. 36, no. 2, 2019.

[24] E. Klotins, M. Unterkalmsteiner, and T. Gorschek, “Software Engi-
neering Knowledge Areas in Startup Companies : a mapping
study,” in Proc. Int. Conf. Softw. Bus., 2015, pp. 245–257.

[25] IEEE,Guide to the Software Engineering Body of Knowledge Version 3.0
(SWEBOK Guide V3.0). Los Alamitos, CA, USA: IEEE Computer
Society Press, 2014.

[26] A. Yau and C. Murphy, “Is a rigorous agile methodology the
best development strategy for small scale tech startups?” Dept.
Comput. Inf. Sci., Univ. Pennsylvania, Tech. Rep. MSCIS-13–01,
2013.

[27] D. Leonard-Barton, Wellsprings of Knowledge: Building and Sustain-
ing the Sources of Innovation. Boston, MA, USA: Harvard Business
School Press, 1995.

[28] L. Hokkanen, K. Kuusinen, and K. V€a€an€anen, “Minimum viable
user experience: A framework for supporting product design in
startups,” in Proc. Int. Conf. Agile Softw. Develop., 2016, pp. 66–78.

[29] S. Blank, “Why the lean start up changes everything,” Harvard
Bus. Rev., vol. 91, no. 5, 2013, Art. no. 64.

[30] W. S. Junk, “The dynamic balance between cost, schedule, fea-
tures, and quality in software development projects,” Computer
Science Dept., University of Idaho, SEPM-001, 2000.

[31] S. Blank, The Four Steps to the Epiphany, 2nd ed. K&S Ranch, Jul.
2013.

[32] S. S. Bajwa, X. Wang, A. N. Duc, and P. Abrahamsson, “How do
software startups pivot? empirical results from a multiple case
study,” in Proc. Int. Conf. Softw. Bus., 2016, pp. 169–176.

[33] R. Larsson, “Case survey methodology: Quantitative analysis of
patterns across case studies,” Academy Manage. J., vol. 36, no. 6,
pp. 1515–1546, 1993.

[34] K. M. Eisenhardt, “Building theories from case study research,”
Academy Manage. Rev., vol. 14, no. 4, pp. 532–550, 1989.

[35] K. Petersen, D. Badampudi, S. Shah, K. Wnuk, T. Gorschek,
E. Papatheocharous, J. Axelsson, S. Sentilles, I. Crnkovic, and
A. Cicchetti, “Choosing component origins for software intensive
systems: In-house, cots, oss or outsourcing?–A case survey,” IEEE
Trans. Softw. Eng., vol. 4, no. 3, pp. 237–261, Mar. 2017.

[36] P. Runeson, M. H€ost, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering. Hoboken, NJ, USA: Wiley,
Mar. 2012.

[37] D. Kirk and S. G. MacDonell, “Categorising software contexts,” in
Proc. 20th Americas Conf. Inf. Syst., 2014, Art. no. 27.

7. The Software Start-up Research Network, https://softwarestart-
ups.org/

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 519

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

http://ieeexplore.ieee.org/document/7870688/
https://2017.stateofeuropeantech.com/
https://2017.stateofeuropeantech.com/

[38] J. M. Corbin and A. Strauss, “Grounded theory research: Proce-
dures, canons, and evaluative criteria,” Qualitative Sociology,
vol. 13, no. 1, pp. 3–21, 1990.

[39] S. J. Haberman, “The analysis of residuals in cross-classified
tables,” Biometrics, vol. 29, pp. 205–220, 1973.

[40] A. C. Hope, “A simplifiedmonte carlo significance test procedure,”
J. Roy. Statistical Soc. Series B (Methodological), vol. 30, pp. 582–598,
1968.

[41] J. Cohan, Statistical Power Analysis for the Behaviour Sciences. New
York, NY, USA: Academic, 1988.

[42] A. Agresti, An Introduction to Categorical Data Analysis, vol. 135.
New York, NY, USA: Wiley, 1996.

[43] S. Sheppard, A. Colby, K. Macatangay, and W. Sullivan, “What is
engineering practice?” Int. J. Eng. Educ., vol. 22, no. 3, 2007,
Art. no. 429.

[44] T. Dingsøyr, T. E. Fægri, T. Dyba
�
, B. Haugset, and Y. Lindsjørn,

“Team performance in software development: research results
versus agile principles,” IEEE Softw., vol. 33, no. 4, pp. 106–110,
Jul./Aug. 2016.

[45] M. Shermer, “How the survivor bias distorts reality,” Sci. Amer.,
vol. 1, p. 94, 2014.

[46] T. Chow and D.-B. Cao, “A survey study of critical success factors
in agile software projects,” J. Syst. Softw., vol. 81, no. 6, pp. 961–971,
2008.

[47] D. Politis, “Does prior start-up experience matter for entrepreneurs’
learning? a comparison between novice and habitual entrepreneurs,”
J. Small Bus. Enterprise Develop., vol. 15, no. 3, pp. 472–489, 2008.

[48] J. Kruger and D. Dunning, “Unskilled and unaware of it: How diffi-
culties in recognizing one’s own incompetence lead to inflated self-
assessments,” J. Personality Social Psychol., vol. 77, pp. 1121–1134, 1999.

[49] C. Wohlin, D. �Smite, and N. B. Moe, “A general theory of software
engineering: Balancing human, social and organizational capi-
tals,” J. Syst. Softw., vol. 109, pp. 229–242, 2015.

[50] P. Sepp€anen, K. Liukkunen, and M. Oivo, “Little big team:
Acquiring human capital in software startups,” in Proc. Int. Conf.
Product-Focused Softw. Process Improvement, 2017, pp. 280–296.

[51] M. S. Krishnan, “The role of team factors in software cost and
quality: An empirical analysis,” Inf. Technol. People, vol. 11, no. 1,
pp. 20–35, 1998.

[52] A. Gopal, J. A. Espinosa, S. Gosain, and D. P. Darcy, “Coordination
and performance in global software service delivery: The vendor’s
perspective,” IEEE Trans. Eng. Manage., vol. 58, no. 4, pp. 772–785,
Nov. 2011.

[53] B. R. Staats, K. L. Milkman, and C. R. Fox, “The team scaling fal-
lacy: Underestimating the declining efficiency of larger teams,”
Organizational Behavior Human Decision Processes, vol. 118, no. 2,
pp. 132–142, 2012.

[54] K. Boies, J. Fiset, and H. Gill, “Communication and trust are
key: Unlocking the relationship between leadership and team
performance and creativity,” Leadership Quart., vol. 26, no. 6,
pp. 1080–1094, 2015.

[55] D. D. Tippett and J. F. Peters, “Team building and project
management: How are we doing?” Project Management Jour-
nal, vol. 26, no. 4, pp. 29–37, 1995.

[56] A. A. Bubshait and G. Farooq, “Team building and project
success,” Cost Eng., vol. 41, no. 7, pp. 34–38, 1999.

[57] I. Hadar, P. Soffer, and K. Kenzi, “The role of domain knowledge
in requirements elicitation via interviews: An exploratory study,”
Requirements Eng., vol. 19, no. 2, pp. 143–159, 2014.

[58] M. J. Eppler and O. Sukowski, “Managing team knowledge: Core
processes, tools and enabling factors,” Eur. Manage. J., vol. 18,
no. 3, pp. 334–341, 2000.

[59] A. Cockburn and J. Highsmith, “Agile software development, the
people factor,” Comput., vol. 34, no. 11, pp. 131–133, 2001.

[60] A. van Lamsweerde, From System Goals to Software Architecture.
Berlin, Germany: Springer, 2003, pp. 25–43. [Online]. Available:
https://doi.org/10.1007/978–3-540-39800-4_2

[61] A
�
. G. Dahlstedt, L. Karlsson, A. Persson, J. Natt ochDag, and

B. Regnell, “Market-driven requirements engineering processes
for software products - a report on current practices,” in Proc. Int.
Workshop COTS Product Softw., 2003.

[62] C. Alves, S. Pereira, and J. Castro, “A study in market-driven
requirements engineering,” in Proc. Workshop em Engenharia de
Requisitos, 2006, pp. 2–3.

[63] T. Chow andD.-B. Cao, “A survey study of critical success factors in
agile software projects,” J. Syst. Softw., vol. 81, no. 6, pp. 961–971,
Jun. 2008.

[64] L. Karlsson, A
�
. G. Dahlstedt, B. Regnell, J. N. och Dag, and

A. Persson, “Requirements engineering challenges in market-
driven software development–an interview study with
practitioners,” Inf. Softw. Technol., vol. 49, no. 6, pp. 588–604, 2007.

[65] W. D. Hoyer, R. Chandy, M. Dorotic, M. Krafft, and S. S. Singh,
“Consumer cocreation in new product development,” J. Serv. Res.,
vol. 13, no. 3, pp. 283–296, 2010.

[66] A. La Rocca, P. Moscatelli, A. Perna, and I. Snehota, “Customer
involvement in new product development in b2b: The role of
sales,” Ind. Marketing Manage., vol. 58, pp. 45–57, 2016.

[67] B. Elliott, “Anything is possible: Managing feature creep in an
innovation rich environment,” in Proc. IEEE Int. Eng. Manage.
Conf., 2007, pp. 304–307.

[68] H. H. Olsson and J. Bosch, “From opinions to data-driven soft-
ware r&d: A multi-case study on how to close the’open loop-
’problem,” in Proc. 40th EUROMICRO Conf. Softw. Eng. Adv. Appl.,
2014, pp. 9–16.

[69] J. D. K. J. M. P. Azoulay, B. Jones, “Research: The average age of a
successful startup founder is 45,” Harvard Bus. Rev., Jul. 2018.

[70] J. R. F. Dos Santos, A. B. Albuquerque, and P. R. Pinheiro,
“Requirements prioritization in market-driven software: A survey
based on large numbers of stakeholders and requirements,” in
Proc. 10th Int. Conf. Quality Inf. Commun. Technol., 2016, pp. 67–72.

[71] M. Khurum, T. Gorschek, and M. Wilson, “The software value
map—an exhaustive collection of value aspects for the develop-
ment of software intensive products,” J. Softw.-Evol. Process,
vol. 25, no. 7, pp. 711–741, 2013.

[72] A. S. Cui and F. Wu, “Utilizing customer knowledge in innova-
tion: antecedents and impact of customer involvement on new
product performance,” J. Academy Marketing Sci., vol. 44, no. 4,
pp. 516–538, 2016.

[73] J. Buchman and C. H. Ekadharmawan, “Barriers to sharing
domain knowledge in software development practice in smes,” in
Proc. 3rd Int. Workshop Knowl. Collaboration Softw. Develop., 2009,
pp. 2–16.

[74] E. Bjarnason, K. Wnuk, and B. Regnell, “Overscoping: Reasons
and consequences—A case study on decision making in software
product management,” in Proc. 4th Int. Workshop Softw. Product
Manage., 2010, pp. 30–39.

[75] B. Boehm, “Value-based software engineering: Reinventing,” SIG-
SOFT Softw. Eng. Notes, vol. 28, no. 2, 2003, Art. no. 3.

[76] H. Alahyari, R. B. Svensson, and T. Gorschek, “A study of value in
agile software development organizations,” J. Syst. Softw.,
vol. 125, pp. 271–288, 2017.

[77] C. R. Carlson andW.W. Wilmot, Innovation: The Five Disciplines for
Creating What Customers Want. New York, NY, USA: Crown Busi-
ness, 2006.

[78] B. Regnell, R. B. Svensson, and T. Olsson, “Supporting roadmap-
ping of quality requirements,” IEEE Softw., vol. 25, pp. 42–47,
Mar./Apr. 2008.

[79] L. Chen, “Continuous delivery: Huge benefits, but challenges
too,” IEEE Softw., vol. 32, no. 2, pp. 50–54, Mar./Apr. 2015.

[80] R. Pham, S. Kiesling, L. Singer, and K. Schneider, “Onboarding
inexperienced developers: struggles and perceptions regarding
automated testing,” Softw. Quality J., vol. 25, no. 4, pp. 1239–1268,
2017.

[81] E. F. Collins, et al., “Software test automation practices in agile
development environment: An industry experience report,” in
Proc. 7th Int. Workshop Autom. Softw. Test, 2012, pp. 57–63.

[82] P. Ralph and P. Kelly, “The dimensions of software engineering
success,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 24–35.

[83] D. Badampudi, C. Wohlin, and K. Petersen, “Software compo-
nent decision-making: In-house, oss, cots or outsourcing-a sys-
tematic literature review,” J. Syst. Softw., vol. 121, pp. 105–124,
2016.

[84] S. Maranville, “Entrepreneurship in the business curriculum,” J.
Educ. Bus., vol. 68, no. 1, pp. 27–31, 1992.

[85] L. Hokkanen and K. V€a€an€anen-Vainio-Mattila, “Ux work in start-
ups: current practices and future needs,” in Proc. Int. Conf. Agile
Softw. Develop., 2015, pp. 81–92.

[86] C. S. Snyder, A Guide to the Project Management Body of Knowledge:
Pmbok (�) Guide. Newtown Square, PA, USA: Project Management
Institute, 2014.

[87] A. Shahin and M. A. Mahbod, “Prioritization of key performance
indicators,” Int. J. Productivity Perform. Manage., vol. 56, no. 3,
pp. 226–240, 2007.

520 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 3, MARCH 2021

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/978--3-540-39800-4_2

[88] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses, Danvers, MA,
USA: Currency, 2011.

[89] J. Bosch, H. Olsson, J. Bj€ork, and J. Ljungblad, “The early stage
software startup development model: A framework for operation-
alizing lean principles in software startups,” in Proc. Int. Conf.
Lean Enterprise Softw. Syst., 2013, pp. 1–15.

[90] F. Fagerholm, A. S. Guinea, H. M€aenp€a€a, and J. M€unch, “The right
model for continuous experimentation,” J. Syst. Softw., vol. 123,
pp. 292–305, 2017.

[91] J. S. Reel, “Critical success factors in software projects,” IEEE
Softw., vol. 16, no. 3, pp. 18–23, May/Jun. 1999.

[92] M. H. N. Nasir and S. Sahibuddin, “Critical success factors for
software projects: A comparative study,” Sci. Res. Essays, vol. 6,
no. 10, pp. 2174–2186, 2011.

[93] K. Molokken and M. Jorgensen, “A review of software surveys on
software effort estimation,” in Proc. Int. Symp. Empirical Softw.
Eng., 2003, pp. 223–230.

[94] N. Bocken, “Sustainable venture capital–catalyst for sustainable
start-up success?” J. Cleaner Prod., vol. 108, pp. 647–658, 2015.

[95] A. Suominen, S. Hyrynsalmi, K. Still, and L. Aarikka-stenroos,
“Software Start-up failure An exploratory study on the impact of
investment,” in Proc. 9th Int. Workshop Softw. Ecosystems, 2017,
pp. 55–64.

[96] T. Dyba
�
, T. Dingsøyr, and N. B. Moe, “Agile project man-

agement,” in Software Project Management in a Changing World.
New York, NY, USA: Springer, 2014, pp. 277–300.

Eriks Klotins received the master’s degree from
the University of Latvia, in 2011. He is working
toward the PhD degree in software engineering at
Blekinge Institute of Technology (BTH). He has
more than nine years of experience in software
engineering in both large companies and start-ups.
His research is focused on innovative software-
intensive product engineering in start-ups. Specifi-
cally, what engineering practices and methodolo-
gies are best suited for start-ups to support their
evolution, and commercial and technical success.

Michael Unterkalmsteiner received the PhD
degree in software engineering from the Blekinge
Institute of Technology. He is a senior lecturer
with the Blekinge Institute of Technology’s Soft-
ware Engineering Research Laboratory. His
research interests include data-driven software
engineering, software measurement and testing,
process improvement, and requirements engi-
neering. He primarily conducts empirical research
in close collaboration with industry partners.

Panagiota Chatzipetrou received the BSc degree
in informatics, the MSc degree in informatics and
business administration, and the PhD degree in
informatics from the Department of Informatics,
Aristotle University of Thessaloniki (AUTh), Greece.
She is an assistant professor with the department of
Informatics, €Orebro University School of Business
in €Orebro, Sweden, where she belongs to the Cen-
tre for empirical research on information systems
(CERIS). She is also part of the Software Research
Engineering Lab (SERL), Blekinge Institute of Tech-

nology in Karlskrona, Sweden. Her doctoral dissertation has the title:
“Statistical methods in information systems project planning”. She holds a
master in pedagogy and didactics and in parallel she has been educated in
special education, learning difficulties and dyslexia. As a researcher, she
mainly focuses on empirical studies under the different perspectives of soft-
ware development. Her research interests include - but are not limited to-
applications of statistical methods to quality problems in software engineer-
ing and especially to requirements engineering and the exploitation of
human factor and the different views that ultimately determine the quality of
a software product and the product development. Also, she has been work-
ing with decision support systems for the development of software-intensive
systems, large-scale agile (and global) software development, and behav-
ioral software engineering.

Tony Gorschek is a professor of software engi-
neering with Blekinge Institute of Technology
(BTH) and part time with Chalmers. He has more
than ten years industrial experience as a CTO,
senior executive consultant and engineer, but
also as chief architect and product manager. In
addition he has built up five startups in fields
ranging from logistics to Internet based services.
He is a member of the IEEE.

Rafael Prikladnicki is an associate professor
with the School of Technology and the director of
the Science and Technology Park (Tecnopuc),
Pontifical Catholic University of Rio Grande do
Sul, Brazil, where he also leads the MuNDDoS
research group. He is the chair of IEEE
Software’s advisory board.

Nirnaya Tripathi received the bachelor’s degree
in information technology from Manipal Institute
of Technology, in 2009 and the master’s degree
in information processing science from the Uni-
versity of Oulu, in 2012. He is a doctoral resea-
rcher with M3S Research Unit, University of
Oulu. His research interest includes entre-
preneurship, startup ecosystem, software engi-
neering in startup, large-scale lean and agile
software development and global software devel-
opment. He is currently doing research on startup

ecosystem, minimum viable product, and requirements engineering in
software startups.

Leandro Bento Pompermaier received the mas-
ter’s degree in computer science from the Federal
University of Rio Grande do Sul. He is currently
working toward the PhD degree at Pontifical
Catholic University of Rio Grande do Sul. He is an
assistant professor with the School of Technol-
ogy, Pontifical Catholic University of Rio Grande
do Sul - Brazil. In addition, he is the leader of the
startup area of the PUCRS Science and Technol-
ogy Park (TECNOPUC). He is also an entrepre-
neur and angel-investor in some IT companies
and software startups.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

KLOTINS ET AL.: A PROGRESSION MODEL OF SOFTWARE ENGINEERING GOALS, CHALLENGES, AND PRACTICES IN START-UPS 521

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:28:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

