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A Semantics-Based Hybrid Approach on Binary
Code Similarity Comparison

Yikun Hu, Hui Wang, Yuanyuan Zhang, Bodong Li and Dawu Gu*

Abstract—Binary code similarity comparison is a methodology for identifying similar or identical code fragments in binary programs. It
is indispensable in fields of software engineering and security, which has many important applications (e.g., plagiarism detection, bug
detection). With the widespread of smart and IoT (Internet of Things) devices, an increasing number of programs are ported to multiple
architectures (e.g. ARM, MIPS). It becomes necessary to detect similar binary code across architectures as well. The main challenge
of this topic lies in the semantics-equivalent code transformation resulting from different compilation settings, code obfuscation, and
varied instruction set architectures. Another challenge is the trade-off between comparison accuracy and coverage. Unfortunately,
existing methods still heavily rely on semantics-less code features which are susceptible to the code transformation. Additionally, they
perform the comparison merely either in a static or in a dynamic manner, which cannot achieve high accuracy and coverage
simultaneously. In this paper, we propose a semantics-based hybrid method to compare binary function similarity. We execute the
reference function with test cases, then emulate the execution of every target function with the runtime information migrated from the
reference function. Semantic signatures are extracted during the execution as well as the emulation. Lastly, similarity scores are
calculated from the signatures to measure the likeness of functions. We have implemented the method in a prototype system
designated as BINMATCH which performs binary code similarity comparison across architectures of x86, ARM and MIPS on the Linux
platform. We evaluate BINMATCH with nine real-word projects compiled with different compilation settings, on variant architectures, and
with commonly-used obfuscation methods, totally performing over 100 million pairs of function comparison. The experimental results
show that BINMATCH is resilient to the semantics-equivalent code transformation. Besides, it not only covers all target functions for
similarity comparison, but also improves the accuracy comparing to the state-of-the-art solutions.

Index Terms—Binary code similarity comparison, reverse engineering, program analysis, code clone.
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1 INTRODUCTION

B Inary code similarity comparison is a fundamental
methodology which identifies similar or identical code

fragments in target binary programs with the reference
code. It has numerous important applications in software
engineering as well as security, for example, plagiarism
detection [2], [3], [4], code searching [5], [6], [7], program
comprehension [8], malware lineage inference [9], [10], [11],
patch code analysis [12], [13], known vulnerability detec-
tion [14], [15], [16], [17], etc. In addition, with the de-
velopment of smart and IoT (Internet of Things) devices,
binary code similarity comparison is also required to be
performed across multiple architectures considering above
applications. Therefore, to improve the productivity and en-
sure the security of the software, it is necessary to effectively
compare binary code similarity across architectures.

To fulfill the target, there exist two challenges. The first
one is the semantics-equivalent code transformation (C1). It
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results from different compilation settings [18] (i.e., different
compilers or optimization options), code obfuscation [19],
[11], and varied instruction set architectures (ISAs) [15]. Be-
cause of the code transformation, even though two pieces of
binary code are compiled from the same code base (i.e., se-
mantically equivalent), they would differ significantly on
the syntax and structure level, such as variant instruction
sequences and control flow graphs, etc. The other challenge
lies in the trade-off between comparison accuracy and cov-
erage (C2) [20]. Dynamic methods procure rich semantics
from code execution to guarantee the high accuracy of
comparison, yet they analyze merely the executed code,
leading to low code coverage. In contrast, static methods are
able to cover all program components, while they heavily
rely on syntax or structure-based code features which lacks
semantics and thus produce less accurate results.

In the literature, it has drawn much attention to compare
the similarity of binary code. However, existing solutions
adopt either static methods which depend on semantics-less
code features or dynamic methods which merely care about
executed code. They cannot reach the compromise between
comparison accuracy, which corresponds to C1, and cov-
erage. Typically, static methods discovRE [16], Genius [17],
and Kam1n0 [21] extract code features from control flow
graphs, and measure the binary function similarity basing
on graph isomorphism. Multi-MH [15], BinGo [7], and IMF-
sim [20] capture behaviors of a binary function by sampling
it with random values. Since the random input lacks se-
mantics and is commonly illegal for the function, it could
hardly trigger the core semantics of that function. Besides,
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Asm2Vec [22] leverages machine learning techniques to
extract code features from the lexical relationships of assem-
bly code tokens, while it is still syntax-based and suffers
from C1. For dynamic methods, although Ming et al. [11],
Jhi et al. [2], and Zhang et al. [3] adopt semantics-based
code features, i.e., system calls and invariant values dur-
ing execution, they perform detection merely on executed
code. BLEX [18] pursues high code coverage at the cost of
breaking normal execution of binary functions, distorting
the semantics inferred from the collected features. Thus, it
is necessary to propose a method which only depends on
semantics and takes advantages of both static and dynamic
techniques so as to achieve high accuracy and coverage for
binary code similarity comparison.

In this paper, we propose BINMATCH, a semantics-based
hybrid method, to fulfill the target. Given the reference
function, BINMATCH aims to identify its match of similar
semantics in the target binary program. BINMATCH firstly
instruments the reference function, and executes it with
available test cases to record its runtime information. It
then migrates the runtime information to each function
of the target program, and emulates the execution of that
function. During the execution of the reference function and
the emulation of the target functions, the semantic signa-
ture of each function is extracted simultaneously. Finally,
BINMATCH compares the signature of the reference function
with that of each target function in pairs to measure their
similarity. Semantics describes the processes a computer
follows when executing a program, which could be shown
by describing the relationship between the input and output
of a program [23]. To overcome C1 of semantics-equivalent
code transformation, BINMATCH only relies on signatures
generated from the input/output and intermediate pro-
cessing data collected during the (emulated) execution of
the whole reference or target function. To address C2 of
the trade-off between comparison accuracy and coverage,
BINMATCH adopts the hybrid method which captures sig-
natures either in a static or in a dynamic manner. By
executing the reference function and emulating the target
functions, BINMATCH is able to extract their semantics-
based signatures from the (emulated) executions. Because
of the emulation, it is not necessary to really run the target
program. BINMATCH emulates the target functions with the
runtime information migrated from the reference function.
Thus, it could cover all functions of the target program.

We have implemented a prototype of BINMATCH using
the above method. We evaluate it with nine real-world
projects compiled with various compilation settings, obfus-
cation configurations, and ISAs on the 32-bit Linux platform,
totally performing over 100 million pairs of function compar-
isons. The experimental results indicated that BINMATCH
not only is robust to semantics-equivalent code transforma-
tion, but also outperforms the state-of-the-art solutions of
binary code similarity comparison.

The paper makes the following contributions.

• We propose BINMATCH, a semantics-based hybrid
method, to compare binary code similarity. It captures
the semantic signature of a binary function either in a
dynamic (execution) or in a static (emulation) manner.
Thus, it could not only detect similar functions accu-

rately with signatures of rich semantics, but also cover
all target functions under analysis.

• BINMATCH emulates the execution of a function by
migrating existing runtime information. To smooth the
process of migration, we propose novel strategies to
handle global variable reading, indirect jumping/call-
ing, and library function invocation.

• We implement BINMATCH in a prototype system which
supports cross-architecture binary code similarity com-
parison on the 32-bit Linux platform. BINMATCH is
evaluated with nine real-world projects which are com-
piled with different compilation settings, obfuscation
configurations, and instruction set architectures. The
experimental results show that BINMATCH is robust to
the semantics-equivalent code transformation. Besides,
it covers all candidate target functions for similarity
comparison, and outperforms the state-of-the-art solu-
tions.

As this work is an extended version of our conference
paper [1], we list below, the contributions of this extension:
(1) Effectiveness: We adopt Intel C++ Compiler (ICC) to
compile the object projects, and leverage BINMATCH to
compare the similarity of the resulting binary functions to
those compiled by GCC and Clang as well as the obfus-
cated ones. Besides, we conduct experiments to evaluate
the capacity of BINMATCH in comparing similar binary
function across the mainstream architectures, i.e., x86, ARM
and MIPS. In addition to Kam1n0 [21] and BinDiff [24], we
compare the results of BINMATCH to those of Asm2Vec [22]
and CACompare [25] as well. The experimental results
further show the effectiveness of BINMATCH in handling
semantics-equivalent code transformation which exists in
the binary code.
(2) Practicability: Despite effective, BINMATCH is ineffi-
cient. To make the method more practical, we propose a
strategy to prune the process of signature comparison. Ad-
ditionally, we adopt a hash-based technology to efficiently
estimate the similarity of function signatures.
(3) Investigation into thresholds: To reach the compromise
between comparison accuracy and efficiency, we investi-
gate the thresholds for applying the pruning strategy and
the hash-based technology, and find suitable values for
BINMATCH. The results indicate that it thus fulfills the com-
parison efficiently. Besides, it also outperforms the existing
solutions from the perspective of accuracy.

The rest of this paper is organized as follows. Sec-
tion 2 introduces a motivating example and presents the
system overview of BINMATCH. Section 3 introduces how
BINMATCH extracts semantics signatures of binary func-
tions and compares their similarity. Section 4 presents sev-
eral aspects to implement BINMATCH. The experimental
results are shown and analyzed in Section 5. Some related
issues are discussed in Section 6. Section 7 discusses the
related work and the conclusion follows in Section 8.

2 MOTIVATION AND OVERVIEW

In this section, we firstly present a typical application of
binary code similarity comparison, and illustrate the chal-
lenges of the topic with an example. Then, we explain the
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push    ebp
mov     ebp, esp
push    ebx
sub     esp, 24h
call    __x86_get_pc_thunk_bx
add     ebx, 13817h
cmp     [ebp+arg_0], 0
jz      loc_209F6

cmp     [ebp+arg_4], 0
jz      loc_209F6

add     esp, 24h
pop     ebx
pop     ebp
retn

cmp     [ebp+arg_C], 0
jz      loc_209F6

mov     eax, [ebp+src]
mov     ecx, [eax+0Ch]
mov     eax, [ebp+src]
mov     edx, [eax+8]
mov     eax, [ebp+var_10]
mov     eax, [eax+8]
mov     [esp+8], ecx    ; n
mov     [esp+4], edx    ; src
mov     [esp], eax      ; dest
call    _memcpy

add     [ebp+var_18], 1

mov     eax, [ebp+var_18]
cmp     eax, [ebp+arg_C]
jl      loc_208B1

mov     eax, [ebp+arg_4]
mov     edx, [ebp+dest]
mov     [eax+0BCh], edx
mov     eax, [ebp+arg_4]
mov     edx, [eax+0C0h]
mov     eax, [ebp+arg_C]
add     edx, eax
mov     eax, [ebp+arg_4]
mov     [eax+0C0h], edx
mov     eax, [ebp+arg_4]
mov     eax, [eax+0B8h]
mov     edx, eax
or      dh, 2
mov     eax, [ebp+arg_4]
mov     [eax+0B8h], edx
jmp     short loc_209F7

mov     eax, [ebp+arg_4]
mov     eax, [eax+0C0h]
mov     edx, eax
mov     eax, [ebp+var_18]
add     edx, eax
mov     eax, edx
shl     eax, 2
add     eax, edx
shl     eax, 2
mov     edx, eax
mov     eax, [ebp+dest]
add     eax, edx
mov     [ebp+var_10], eax
mov     edx, [ebp+var_18]
mov     eax, edx
shl     eax, 2
add     eax, edx
shl     eax, 2
mov     edx, eax
mov     eax, [ebp+arg_8]
add     eax, edx
mov     [ebp+src], eax
mov     edx, [ebp+src]
mov     eax, [ebp+var_10]
mov     dword ptr [esp+8], 5; n
mov     [esp+4], edx    ; src
mov     [esp], eax      ; dest
call    _memcpy
mov     eax, [ebp+var_10]
mov     byte ptr [eax+4], 0
mov     eax, [ebp+src]
mov     edx, [eax+0Ch]
mov     eax, [ebp+var_10]
mov     [eax+0Ch], edx
mov     eax, [ebp+arg_0]
mov     eax, [eax+0C8h]
mov     edx, eax
mov     eax, [ebp+var_10]
mov     [eax+10h], dl
mov     eax, [ebp+src]
mov     eax, [eax+0Ch]
test    eax, eax
jnz     short loc_20940

mov     eax, [ebp+arg_4]
mov     edx, [eax+0C0h]
mov     eax, [ebp+arg_C]
add     eax, edx
mov     edx, eax
mov     eax, edx
shl     eax, 2
add     eax, edx
shl     eax, 2
mov     [esp+4], eax
mov     eax, [ebp+arg_0]
mov     [esp], eax
call    _png_malloc_warn
mov     [ebp+dest], eax
cmp     [ebp+dest], 0
jnz     short loc_2084D

lea     eax, (aOutOfMemoryW_1 - 33FF4h)[ebx];
mov     [esp+4], eax
mov     eax, [ebp+arg_0]
mov     [esp], eax
call    _png_warning
jmp     loc_209F7

mov     eax, [ebp+arg_4]
mov     eax, [eax+0C0h]
mov     edx, eax
mov     eax, edx
shl     eax, 2
add     eax, edx
shl     eax, 2
mov     edx, eax
mov     eax, [ebp+arg_4]
mov     eax, [eax+0BCh]
mov     [esp+8], edx    ; n
mov     [esp+4], eax    ; src
mov     eax, [ebp+dest]
mov     [esp], eax      ; dest
call    _memcpy
mov     eax, [ebp+arg_4]
mov     eax, [eax+0BCh]
mov     [esp+4], eax    ; ptr
mov     eax, [ebp+arg_0]
mov     [esp], eax      ; int
call    _png_free
mov     eax, [ebp+arg_4]
mov     dword ptr [eax+0BCh], 0
mov     [ebp+var_18], 0
jmp     loc_209AE

mov     eax, [ebp+var_10]
mov     dword ptr [eax+8], 0
jmp     short loc_209AA

mov     eax, [ebp+src]
mov     eax, [eax+0Ch]
mov     [esp+4], eax
mov     eax, [ebp+arg_0]
mov     [esp], eax
call    _png_malloc_warn
mov     edx, eax
mov     eax, [ebp+var_10]
mov     [eax+8], edx
mov     eax, [ebp+var_10]
mov     eax, [eax+8]
test    eax, eax
jnz     short loc_20988

lea     eax, (aOutOfMemoryW_1 - 33FF4h)[ebx];
mov     [esp+4], eax
mov     eax, [ebp+arg_0]
mov     [esp], eax
call    _png_warning
mov     eax, [ebp+var_10]
mov     dword ptr [eax+0Ch], 0
jmp     short loc_209AA

(a) GCC -O0

push    ebp
mov     ebp, esp
push    ebx
push    edi
push    esi
sub     esp, 2Ch
call    $+5
pop     esi
add     esi, 0D246h
mov     ecx, [ebp+arg_0]
test    ecx, ecx
jz      loc_19F4A

mov     edi, [ebp+arg_4]
test    edi, edi
jz      loc_19F4A

add     esp, 2Ch
pop     esi
pop     edi
pop     ebx
pop     ebp
retn

mov     edx, [ebp+arg_C]
test    edx, edx
jz      loc_19F4A

lea     edi, (off_27000 - 26FF4h)[ecx+esi]
mov     [ebp+var_10], ecx
mov     ebx, [ebp+var_18]
lea     eax, [ebx-2129h]
mov     [esp+4], eax
mov     eax, [ebp+arg_0]
mov     [esp], eax
call    _png_warning
mov     dword ptr [edi], 0
jmp     short loc_19F1C

mov     ebx, [ebp+arg_C]

mov     [ebp+var_10], ecx
mov     edx, [ebp+ptr]
mov     ecx, [edx+8]
mov     edx, [edx+0Ch]
mov     [esp+8], edx    ; n
mov     [esp+4], ecx    ; src
mov     [esp], eax      ; dest
mov     ebx, [ebp+var_18]
call    _memcpy

mov     ecx, [ebp+ptr]
add     ecx, 14h
mov     edx, [ebp+var_1C]
inc     edx
cmp     ebx, edx
jnz     loc_19E70

mov     eax, [ebp+arg_4]
mov     ecx, [ebp+var_10]
mov     [eax+0BCh], ecx
add     [eax+0C0h], ebx
or      byte ptr [eax+0B9h], 2

mov     [ebp+var_1C], edx
mov     [ebp+ptr], ecx
mov     eax, [ebp+arg_4]
mov     eax, [eax+0C0h]
add     eax, edx
imul    esi, eax, 14h
mov     al, [ecx+4]
mov     edi, [ebp+var_10]
mov     byte ptr ds:(dword_26FF8 - 26FF4h)[edi+esi], al
mov     eax, [ecx]
mov     ds:(dword_26FF4 - 26FF4h)[edi+esi], eax
mov     byte ptr ds:(dword_26FF8 - 26FF4h)[edi+esi], 0
mov     eax, [ecx+0Ch]
mov     ds:(off_27000 - 26FF4h)[edi+esi], eax
mov     edx, [ebp+arg_0]
mov     cl, [edx+0C8h]
mov     byte ptr ds:(off_27004 - 26FF4h)[edi+esi], cl
test    eax, eax
jnz     short loc_19EBD

mov     eax, [edi+0C0h]
add     eax, edx
imul    eax, 14h
mov     [esp+4], eax    ; size
mov     [esp], ecx      ; int
mov     ebx, esi
call    _png_malloc_warn
test    eax, eax
jnz     short loc_19E0F

lea     eax, (aOutOfMemoryWhi - 26FF4h)[esi];
mov     [esp+4], eax
mov     eax, [ebp+arg_0]
mov     [esp], eax
mov     ebx, esi
call    _png_warning
jmp     loc_19F4A

mov     edx, [edi+0BCh]
mov     [ebp+ptr], edx
imul    ecx, [edi+0C0h], 14h
mov     [esp+8], ecx    ; n
mov     [esp+4], edx    ; src
mov     [esp], eax      ; dest
mov     [ebp+var_10], eax
mov     ebx, esi
call    _memcpy
mov     eax, [ebp+ptr]
mov     [esp+4], eax    ; ptr
mov     eax, [ebp+arg_0]
mov     [esp], eax      ; int
mov     ebx, esi
mov     [ebp+var_18], esi
call    _png_free
mov     dword ptr [edi+0BCh], 0
mov     eax, [ebp+arg_C]
test    eax, eax
mov     ebx, eax
jle     loc_19F31

mov     ecx, [ebp+arg_8]
xor     edx, edx
nop     word ptr [eax+eax+00000000h]

mov     ds:(dword_26FFC - 26FF4h)[edi+esi], 0
mov     [ebp+var_10], edi
jmp     short loc_19F1F

mov     [esp+4], eax    ; size
mov     [esp], edx      ; int
mov     ebx, [ebp+var_18]
call    _png_malloc_warn
mov     ds:(dword_26FFC - 26FF4h)[edi+esi], eax
test    eax, eax
mov     ecx, edi
jnz     short loc_19EFD

(b) Clang -O2

push    ebp
mov     ebp, esp
push    edi
push    esi
push    ebx
sub     esp, 3Ch
mov     edx, [ebp+arg_4]; info_ptr
call    sub_805CEA2
add     ebx, 0DC873h
mov     ecx, [ebp+arg_0]; png_ptr
test    edx, edx
jz      short loc_81AD799

test    ecx, ecx
jz      short loc_81AD799

add     esp, 3Ch
pop     ebx
pop     esi
pop     edi
pop     ebp
retn

mov     eax, [ebp+arg_C]
test    eax, eax
jnz     short loc_81AD7A8

mov     [esp], ecx
mov     [esp+4], eax
mov     [ebp+var_28], edx
mov     [ebp+var_24], ecx
call    sub_81B1B20
mov     edx, [ebp+var_28]
mov     ecx, [ebp+var_24]
test    eax, eax
mov     [esi+8], eax
jz      short loc_81AD908

mov     esi, [edi+8]
mov     [ebp+src], esi
mov     esi, [edi+0Ch]
add     edi, 14h
mov     [esp+8], esi    ; n
mov     esi, [ebp+src]
mov     [esp], eax      ; dest
mov     [esp+4], esi    ; src
mov     [ebp+var_28], edx
mov     [ebp+var_24], ecx
call    _memcpy
mov     edx, [ebp+var_28]
mov     ecx, [ebp+var_24]
add     edx, 1
cmp     [ebp+arg_C], edx
jg      loc_81AD856

mov     eax, [ebp+var_20]
mov     [esp], ecx
mov     [esp+4], eax
call    sub_81B13C0
mov     edx, [ebp+var_28]
mov     dword ptr [esi+0Ch], 0
mov     ecx, [ebp+var_24]
jmp     loc_81AD847

mov     eax, [ebp+arg_4]
mov     edx, [ebp+dest]
mov     esi, [ebp+arg_C]
add     [eax+0C0h], esi
or      dword ptr [eax+0B8h], 200h
mov     [eax+0BCh], edx
add     esp, 3Ch
pop     ebx
pop     esi
pop     edi
pop     ebp
retn

mov     esi, [ebp+arg_4]
mov     eax, edx
add     eax, [esi+0C0h]
lea     esi, [eax+eax*4]
mov     eax, [ebp+dest]
lea     esi, [eax+esi*4]
mov     eax, [edi]
mov     byte ptr [esi+4], 0
mov     [esi], eax
mov     eax, [edi+0Ch]
mov     [esi+0Ch], eax
mov     eax, [ecx+0C8h]
mov     [esi+10h], al
mov     eax, [edi+0Ch]
test    eax, eax
jz      short loc_81AD840

add     edx, 1
add     edi, 14h
cmp     [ebp+arg_C], edx
jle     loc_81AD8DE

lea     eax, (aOutOfMemoryWhi - 8289FF4h)[ebx];
mov     [esp+4], eax
mov     [esp], ecx
call    sub_81B13C0
jmp     loc_81AD799

mov     edx, [ebp+arg_4]
mov     eax, [ebp+arg_C]
add     eax, [edx+0C0h]
mov     [esp], ecx
lea     eax, [eax+eax*4]
shl     eax, 2
mov     [esp+4], eax
mov     [ebp+var_24], ecx
call    sub_81B1B20
mov     ecx, [ebp+var_24]
test    eax, eax
mov     [ebp+dest], eax
jz      loc_81AD930

mov     esi, [ebp+arg_4]
mov     eax, [esi+0C0h]
mov     edx, [esi+0BCh]
lea     eax, [eax+eax*4]
shl     eax, 2
mov     [esp+4], edx
mov     [esp+8], eax
mov     eax, [ebp+dest]
mov     [esp], eax
mov     [ebp+var_24], ecx
call    _memcpy
mov     eax, [esi+0BCh]
mov     [esp+4], eax
mov     ecx, [ebp+var_24]
mov     [esp], ecx
call    sub_81B1930
mov     edi, [ebp+arg_C]
mov     dword ptr [esi+0BCh], 0
mov     ecx, [ebp+var_24]
test    edi, edi
jle     loc_81AD8DE

lea     esi, (aOutOfMemoryWhi - 8289FF4h)[ebx];
mov     edi, [ebp+arg_8]
xor     edx, edx
mov     [ebp+var_20], esi
jmp     short loc_81AD856

mov     dword ptr [esi+8], 0

(c) NConvert v6.17

Fig. 1: Control Flow Graphs of png_set_unknown_chunks

basic idea of BINMATCH and show the overview of its
system.

2.1 The Motivating Example

Known vulnerability detection is a typical application of
binary code similarity comparison [7], [14], [15], [16], [17].
Given a piece of code which contains a known vulnerability,
it is possible to locate its similar (or identical) match in other
programs so as to check whether they are vulnerable or not.

NConvert1 is a closed-source image processor which
supports multiple image formats. It handles files of
the PNG (Portable Network Graphics) format with the
statically-linked open-source library libpng2. Unfortu-
nately, libpng is found to suffer from an integer overflow
vulnerability in the function png_set_unknown_chunks before
the version of 1.5.14 (CVE-2013-73533). The vulnerability
allows attackers to cause a denial of service via a crafted
image. To ensure whether NConvert suffers from the vul-
nerability, analyzers firstly need to locate the potential vul-
nerable function in it.

Since the source code of libpng is available, it is
reasonable to locate the target function via code similar-
ity comparison. NConvert is closed-source that only its
executable is accessible, and the compilation setting of
the executable is unknown. Even though executables are
compiled from the same code base, different compilation
settings would lead to semantics-equivalent code transforma-
tion, generating syntax and structure-variant binary code of
equal semantics (C1). Figure 1 presents the CFGs (Control
Flow Graphs) of png_set_unknown_chunks. Functions in Fig-
ure 1a and Figure 1b are compiled from the source code of
libpng v1.5.12 with the setting of gcc -O0 and clang -O2
separately, while Figure 1c is extracted from the executable
of NConvert v6.17 via manual reverse engineering. Because

1. https://www.xnview.com/en/nconvert/
2. http://www.libpng.org/pub/png/libpng.html
3. https://www.cvedetails.com/cve/CVE-2013-7353/

of the code transformation, despite the same semantics, the
three functions differ in instruction sequences and CFGs.
Thus, methods relying on syntax or structure code fea-
tures (e.g., CFG isomorphism, binary code hashing) become
ineffective.

Another problem is the trade-off between comparison
accuracy and coverage (C2). Existing dynamic analysis-
based methods only handle the executed code. However,
png_set_unknown_chunks is statically-linked, mixing with the
user-defined functions in the executable of NConvert. It
requires huge extra work for dynamic methods to generate
test cases in order to cover the target function, which is still
an issue of binary code dynamic analysis [26]. In contrast,
static analysis-based methods could cover all functions of
NConvert. Nevertheless, they depend on semantics-less
code features because they perform without actually exe-
cuting the code. Therefore, the static methods cannot handle
the semantics-equivalent code transformation.

2.2 System Overview of BINMATCH

We propose BINMATCH to compare the similarity of binary
functions. Given a reference function, BINMATCH finds its
match of similar semantics in the target binary program,
returning a list of functions (the target functions) of the
target program, which is ranked basing on the similarity
of semantics.

Figure 2 presents the work flow of BINMATCH. Pro-
vided the reference function has been well analyzed or
understood (png_set_unknown_chunks), BINMATCH dynam-
ically instruments and executes it with available test cases,
capturing its semantic signature (§3.1). Meanwhile, run-
time information is recorded during the execution (§3.2).
Then, BINMATCH emulates every function of the target
program (NConvert) with the runtime information. During
the emulation, signature of each target function is extracted
as well. Afterward, BINMATCH compares the signature of
the reference function to that of each target function in
pairs, and computes their similarity score (§3.4). Finally,
BINMATCH generates a list of target functions ranked by
the similarity scores in descending order.

In Summary, to overcome C1, BINMATCH completely
depends on the semantics-based signature which is gener-
ated from the input/output and the intermediate processing
data during the (emulated) execution of a function. To
address C2, BINMATCH captures function signatures in a
hybrid manner. It extracts the signature of the reference
function via dynamically executing its test cases. We assume
that the reference function has been well studied and its test
cases are available. In above example, the integer overflow
of png_set_unknown_chunks has been known, and its test
case could be found in the libpng project or the vul-
nerability database. Then, with the runtime information of
the reference function, BINMATCH extracts the signature of
each function of the target program (NConvert) via static
emulation. Therefore, BINMATCH is able to cover all target
functions and detect similar function with signatures of rich
semantics.

3 METHODOLOGY

In this section, we firstly introduce the semantic signatures
adopted by BINMATCH. Then, we discuss how it captures
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the signatures of binary functions and measures their simi-
larity.

3.1 Semantic Signature
The semantics describes the processes a computer follows
when executing a program. It could be shown by describ-
ing the relationship between the input and output of the
program [23]. Thus, given a specific input, we focus on two
points to reveal the semantics of a binary function: i) what
is the corresponding output after the function processing
the input, and ii) how the function processes the input to
generate the output. The signature adopted by BINMATCH
consists of the following features:
• Output Values: For a binary function, the feature con-

sists of the return value and the global variable values
written to the memory. It covers the output of a func-
tion. When given the specific input, the feature directly
shows the semantics of a function.

• Comparison Operand Values: The feature is composed of
values for comparison operations whose results decide
the following control flow of an (emulated) execution.
A function might have numerous paths, while only one
is triggered by the input to generate the output. The
feature describes how an input chooses the path of a
function to produce the corresponding output, indi-
cating the relationship between the input and output.
Therefor, it reflects the semantics of a function.

• Invoked Standard Library functions: Standard library func-
tions provide fundamental operations for implement-
ing user-defined functions. They have complete func-
tionality, such as malloc meaning dynamic memory
allocation, fread representing file reading, etc. Then
the invocations of those library functions indicate the
semantics of the (emulated) execution. Besides, the
feature has been show to be effective for binary code
similarity comparison [27], [28]. Thus, it is adopted as
complement to the semantic signature of BINMATCH.

During the (emulated) execution of a binary function,
BINMATCH captures the sequence of above features, and
considers it as the signature of that function for latter
similarity comparison.

3.2 Instrumentation and Execution
In this step, BINMATCH dynamically instruments the ref-
erence function R to extract its signature by executing the
available test cases. Meanwhile, runtime information for
Emulation (§3.3) is recorded as well.

Algorithm 1 presents the pseudo-code of instrumenta-
tion. For the instruction I of R, if it outputs data, performs

Algorithm 1: Instrumentation
Input: Instruction under Analysis I
Output: Instruction after Instrumentation Ir

1 Algorithm Instrumentation (I)
2 Ir ← I
3 // capture features for the signature
4 if I outputs data then
5 Ir ← record_data_val (Ir)

6 if I performs comparison then
7 Ir ← record_oprd_val (Ir)

8 if I calls a standard library function then
9 Ir ← record_libc_name (Ir)

10 // record runtime information
11 if I reads an argument of the function then
12 Ir ← record_arg_val (Ir)

13 else if I uses global variable then
14 I ← record_var_val (Ir)

15 else if I calls a function indirectly then
16 Ir ← record_func_addr (Ir)

17 else if a subroutine returns then
18 Ir ← record_ret_val (Ir)

19 return Ir
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Return
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Saved

EBP

Local
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#1

Local

Variable

#2

High AddressStack Growth
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ESP

Before Calling

Fig. 3: Calling Stack of cdecl

comparison operations, or calls a standard library function,
BINMATCH injects code before it to capture corresponding
features, then generates the signature of R (Line 4-9).

Line 11-18 present the code for recording runtime infor-
mation of R’s execution. Similar functions should behave
similarly if they are executed with the same input [7],
[15], [18], [25]. Therefore, BINMATCH records the input
of R’s execution, which is provided for the Emulation in
the next step. For a binary function, the input consists of
the argument values, global values, and return values of
its subroutines [13]. According to cdecl, the default calling
convention of x86, function arguments are prepared by
callers and passed through the stack, as shown in Figure 3.
In contrast, 32-bit ARM and MIPS have specific argument
registers (i.e., R0-R3 for ARM, $a0-$a3 for MIPS). When



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2: Emulation
Input: Emulated Memory Space of the Target Function

M
Input: Runtime Value Set of the Reference Function S

1 Algorithm Emulation (M, S)
2 init_func_stack (M)
3 assign_func_arg (M, S)
4 foreach instruction I to be emulated do
5 if I uses a global variable then
6 if the variable is accessed for the first time then
7 migrate_var_val (M, S)

8 if I calls a function indirectly then
9 addr ← get_tar_addr (I)

10 if addr ∈ S then
11 migrate_ret_val (M, addr, S)

12 else if addr is an illegal function address then
13 exit_emulation()

14 if I invokes a standard library function then
15 libf ← get_func_name (I)
16 if libf needs system supports then
17 migrate_ret_val (M, libf , S)
18 record_feat_val (M, I)
19 continue

20 // capture features for the signature
21 if I contains features then
22 record_feat_val (M, I)

23 emulate_inst (M, I , S)

the function has arguments more than the registers, the
surplus ones are passed by the stack, which is similar to
cdecl. Thus, if I reads a variable from argument registers or
stack with the address higher than the stack pointer (ESP in
Figure 3) before calling, BINMATCH considers the variable
as a function argument and records its value (Line 11-12).

For ELF (Executable and Linkable Format) files, global
data is placed in specific data sections, e.g., .bss for
uninitialized global data. Therefore, if I uses data within
those sections, BINMATCH considers the values as global
data and records them along with the accessing ad-
dresses (Line 13-14). After this step, a record sequence of
accessed global variables is generated. If a variable is ac-
cessed for multiple times, there would be the same number
of records in the sequence as well. Besides, BINMATCH
records the target addresses of subroutines indirectly in-
voked by R (Line 15-16). The return values of all subroutines
are recorded as well, including user-defined functions and
library functions (Line 17-18).

3.3 Emulation
For every target function T to be compared with the ref-
erence function R, BINMATCH emulates its execution with
runtime information recorded in the last step. The semantic
signature of T is captured simultaneously. The basic idea of
the process is to emulate T with the same input (i.e., runtime
information) of R as if it was executed in the memory space
of R. If T is the match of R, then their generated signatures
should be similar.

To fulfill the emulation, BINMATCH firstly needs to
prepare the stack frame for T which is similar to dynamic

execution (§3.3.1). Then, it provides T with the input of R to
perform the emulation. From a function’s perspective, the
input consists of arguments, global variables, and return
values of subroutines [13]. Therefore, we need to handle
function argument assignment (§3.3.2) and global variable
reading (§3.3.3). Since the targets of direct user-defined
function calls are explicit, we then just focus on indirect
calls (§3.3.5) and standard library function calls which might
require the system support (§3.3.6). It is also necessary to
consider indirect jumps whose target addresses are implicit
for emulation (§3.3.4).

Algorithm 2 presents the pseudo-code of the process.
BINMATCH firstly prepares the stack frame for the func-
tion emulation, including initializing the stack pointer
values (Line 2) and providing T with the arguments of
R (Line 3). Before emulating the instructions of T with
the runtime intermediate data of R (Line 23), BINMATCH
needs to handle global variable reading (Line 5-7), indirect
function calling (Line 8-13), and standard library function
invocation (Line 14-19) if necessary. If T is not the match
of R, the emulation might access illegal memory addresses
which have never been recorded in the last step. BINMATCH
then stops the emulation. Additionally, BINMATCH records
the features of T to generate its signature (Line 21-22). Next,
we discuss the algorithm of emulation in more details.

3.3.1 Stack Frame Pointer Initialization
Similar to execution, every T for emulation has its own
stack frame which is accessed by the stack pointer or the
base pointer (e.g., ESP or EBP) with relative offsets. Before
emulating, BINMATCH assigns the stack and base pointers
with those initial values of the reference function. After
assigning the argument values (§3.3.2), the arrangement
of the stack frame is decided by the code of T, such as
pushing or popping values, allocating memory for local
variables, etc.

3.3.2 Function Argument Assignment
In our scenario, functions for similarity comparison are
compiled from the same code base, i.e., they have identical
interface with the same number and order of arguments.
According the calling convention, BINMATCH recognizes
the argument list of T. If the argument number of T equals
to that of R, BINMATCH assigns the argument values of R to
those of T in order. Otherwise, T cannot be the match of R,
then BINMATCH skips the emulation. For example, R and T
have the following argument lists:

R(rarg_0, rarg_1, rarg_2)
T(targ_0, targ_1, targ_2)

Provided BINMATCH has the values of rarg_0 and
rarg_2 (R only accesses the two arguments in the ex-
ecution), it assigns their values to targ_0 and targ_2
separately. To make the emulation smooth, arguments with-
out corresponding values (targ_1) are assigned with a
predefined value (e.g., 0xDEADBEEF).

3.3.3 Global Variable Reading
In the execution of the reference function R, it might read
global (or static) variables whose values have been modified
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1 mov ecx, gvar1
2 test ecx, ecx
3 mov eax, gvar2
4 add ecx, eax

(a) Reference Function

1 mov ecx, gvar1’
2 mov ebp, gvar2’
3 test ebp, ebp
4 add ebp, ecx

(b) Target Function

Fig. 4: Global Variable Value Migration

1 mov edx, [ebp-0E4h] ; load a local variable
2 lea eax, [edx-0Ah] ; get the index
3 cmp eax, 2Ah
4 ja loc_8052880 ; the default case
5 jmp dword ptr [eax*4+808F630h]; indirect jump

Fig. 5: Indirect Jump of a Switch on x86

by former executed code. For example, R accesses a global
variable gvar whose initial value is 0. During the execu-
tion, before R is invoked, its caller modifies gvar with the
value 1. Then R processes with gvar of value 1. To ensure
the target function T is emulated with the same input as
R, the modified global values should be assigned to the
corresponding addresses which T reads from.

Global variables are stored in specific data sections of
an executable file (e.g., .data section). The size of each
variable is decided by the source code. The location of the
variable is determined during the process of compilation
and not changed afterward. Therefore, if the addresses of T’s
global variable accessing are input-unrelated, their explicit
values could inferred during the emulation. Recall that
BINMATCH has generated a record sequence of accessed
global variables during the execution of R (§3.2). Then, it
migrates the unassigned values in the record sequence to
the inferred addresses according to the usage order. If the
address originates from the input, which is actually the one
processed by R (e.g., pointer assigned as an argument of T),
BINMATCH then directly reuses the first unassigned value
of that address in the record sequence for the emulation.
In addition, if the address is illegal for both R and T,
BINMATCH stops and exits the emulation.

Figure 4 shows an example of two functions for global
variable value migration which bases on the usage order.
During the execution of R, two global variables gvar1
and gvar2 are read at Line 1 and Line 3 separately in
Figure 4a. gvar1 is used to test its value at Line 2, and
gvar2 is used for the addition operation at Line 4. So
the usage order of the two variable is [gvar1, gvar2].
When emulating T in Figure 4b, BINMATCH identifies ecx
and ebp are loaded with global variables gvar1’ and
gvar2’ at Line 1 and Line 2. Then, it finds ebp is used
for testing at Line 3, and ecx is used for the addition at
Line 4 afterward. The usage order of the global variables
in Figure 4b is [gvar2’, gvar1’]. Therefore, BINMATCH
assigns the value of gvar1 to gvar2’, and gvar2 to
gvar1’ accordingly. If there are no enough global values
to assign (e.g., T reads two global variables but R reads only
one), BINMATCH stops and exits the emulation.

3.3.4 Indirect Jumping
An indirect jump (or branch) is implemented with a jump
table which contains an ordered list of target addresses.

1 LDR R1, [SP, #0x88+arg_0] ; load the index
2 CMP R1, #8
3 LDRLS PC, [PC, R1, LSL#2] ; indirect jump
4 B loc_410F4 ; the default case
5 -------------------------------------------------
6 DCD loc_410F8
7 DCD loc_40FCC
8 ...

Fig. 6: Indirect Jump of a Switch on ARM

1 mov eax, [ebp+arg_0] ; load the first argument
2 mov eax, [eax]
3 ...
4 call eax ; indirect call

Fig. 7: Indirect Call Decided by the Input on x86

For x86 and MIPS, jump tables are stored in .rodata, the
read-only data section of an executable. Therefore, similar
to reading a global data structure, a jump table entry is
accessed by adding the offset to the base address of the jump
table. The base address is a constant value, and the offset is
computed from the input. Figure 5 shows an indirect jump
of a switch structure on x86. At Line 2, the index value
is computed with edx, a value of an input-related local
variable, and stored in eax. If the index value is not above
0x2A, which represents the default case, an indirect jump is
performed according to the jump table whose base address
is 0x808F630 (Line 5).

On ARM, jump tables are inlined into the code. They
directly follow the code which accesses the tables. Figure 6
presents the indirect jump and jump table of a switch
structure on ARM. It loads the index from the first function
argument (arg_0), storing it in R1 (Line 1). The index
is compared with 0x8 (Line 2). If it is larger than 0x8,
the program directly jumps to the default case (Line 4).
Otherwise, the program refers to the jump table and gets the
corresponding target address (Line 3). Since the jump table
is attached to the jumping code, PC (or R15, the Program
Counter) is used as the base address. Note that the code in
Figure 6 is compiled with the A32 instruction set of ARM,
which has the fixed instruction length of 32 bits (4 bytes).
Because of the processor’s pipeline, the PC value is always
8-byte ahead the current executed instruction. When exe-
cuting the loading instruction at Line 3, the PC in the right
operand is pointing to the first entry of the jump table at
Line 6. Therefore, on ARM, indirect jumps also access jump
tables with the decided value as the base address.

During the compilation, entries of jump tables are sorted
and placed in the resulting binary code. With the same
input, code of identical semantics would jump to the same
path to process the input. Thus, BINMATCH just follows the
emulated control flow and has no need to do extra work for
indirect jumps.

3.3.5 Indirect Calling

Similar to indirect jumping, targets of indirect calls are
decided by the input at runtime as well. In some cases, target
addresses directly come from the input, as shown in Fig-
ure 7. At Line 1, the first function argument (arg_0), which
is the pointer of a data structure, is loaded to eax. After
the first member is fetched, which is a function address, the
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1 test eax, eax ; input realted
2 jnz short loc_806E0D4
3 mov ds:dword_808C810, 808157Bh ; the false branch
4 jmp loc_806E0E9
5 loc_806E0D4:
6 mov ds:dword_808C810, 80815FCh ; the true branch
7 loc_806E0E9:
8 mov eax, ds:dword_808C810
9 ...

10 call eax ; indirect call

Fig. 8: Indirect Call Affected by the Control Flow on x86

code calls the function indirectly. Since the target function T
is emulated with the memory space of the reference function
R, if T is the match of R, targets of the indirect calls in above
cases should be those invoked during the execution of R.
BINMATCH then migrates the return values of those calls to
the corresponding ones of T (Line 10-11 in Algorithm 2).

In some cases, varied execution paths would generate
different target addresses for a function call. That is de-
cided by the input. Figure 8 presents an example of the
case. At Line 1, the input-related value stored in eax is
tested. If it is not zero, the branch is taken at Line 2 (jnz:
jump if not zero), jumping to 0x806E0D4. Then a func-
tion address 0x80815FC is stored into data section at
0x808C810 (Line 6). Otherwise, another function address
0x808157B is stored (Line 3). Afterward, the program
jumps to the stored address indirectly (Line 10). Thus,
the whole process merely depends on the input. It is not
necessary to do other work for indirect calls in such case. In
other cases, indirect calls are implemented with jump tables
as well, such as virtual function tables. BINMATCH handles
such indirect calls the same way as that for indirect jumps.

When the address is not a legal function address of either
R or T, T cannot be the match of R. BINMATCH just stops
the process and exits (Line 12-13 in Algorithm 2).

3.3.6 Standard Library Function Invocation
If the target function T calls a standard library func-
tion which requests the system support (e.g., malloc),
BINMATCH skips its emulation and assigns it with the result
of the corresponding one invoked by the reference function
R (Line 16-19 in Algorithm 2). For example, R and T calls
following library functions in order:

R: malloc_0, memcpy, malloc_1
T: malloc_0’, memset, malloc_1’

BINMATCH assigns return values of malloc_0, malloc_1
to malloc_0’, malloc_1’ separately, and skips the em-
ulation. In contrast, memset is emulated normally, because
it has no need for the system support. Afterward, when T
accesses the memory values on the heap, i.e., via the return
values of malloc_0’ or malloc_1’, it would be assigned
with those of R for the emulation.

3.4 Similarity Comparison

BINMATCH has captured the semantic signature (the feature
sequence) of the reference function via execution, and those
of target functions via emulation. In this step, it compares
the signature of the reference function to that of each target
function in pairs, and calculates their similarity score, as

Algorithm 3: Function Similarity Comparison
Input: Signature of the Reference Function Sr
Input: Signature of the Target Functions St
Input: Length Threshold L
Output: Similarity Score S

1 Algorithm Comparison (Sr , St, L)
2 Lr ← length(Sr)
3 if Lr < L then F ← jaccard_with_lcs
4 else F ← hd_with_simhash
5 S ← F (Sr,St)
6 return S

shown in Algorithm 3. BINMATCH adopts two solutions
to measure the signature similarity. One is the Jaccard In-
dex [29] with Longest Common Subsequence (LCS) [30], the
other is Hamming Distance (HD) [31] with SimHash [32].
The former solution is relatively more accurate but slow,
while the latter one is fast but less accurate. Thus, a length
threshold (L) is specified to select the suitable method.
When the lengths of the reference signatures are short,
i.e., less than L, BINMATCH performs the comparison with
the accurate matching (Line 3). Otherwise, it leverages the
fuzzy matching to fulfill the target (Line 4). In such way, we
aim to reach a compromise between comparison accuracy
and efficiency. We will discuss the value of L in Section 5.2.1.

After the comparison, BINMATCH generates a list of tar-
get functions along with similarity scores, which is ranked
by the scores in descending order. Next, we discuss the
details of the solutions adopted by BINMATCH for similarity
comparison.

3.4.1 Jaccard Index with Longest Common Subsequence

Jaccard Index is a statistic used for measuring the similarity
of sets. Given two sets Sr and St, the Jaccard Index is
calculated as followed:

J(Sr, St) =
|Sr ∩ St|
|Sr ∪ St|

=
|Sr ∩ St|

|Sr|+ |St| − |Sr ∩ St|
(1)

J(Sr, St) ranges from 0 to 1, which is closer to 1 when Sr

and St are considered to be more similar.
To better adapt to the scenario of BINMATCH, we utilize

the Longest Common Subsequence (LCS) algorithm to the
Jaccard Index. On one hand, a signature is captured from
the (emulated) execution of a function. The appearance
order of each entry in the signature is a latent feature as well.
The order reflects how the input is processed to generate
the output, thus it is semantics-related. On the other hand,
the signature might be captured from an optimized or
obfuscated binary function that it would contain diverse or
noisy entries in the sequence. LCS not only considers the
element order of two sequences for comparison, but also
allows skipping non-matching elements, which tolerates
semantics-equivalent code transformation. Hence, the LCS
algorithm is suitable for signature similarity comparison of
BINMATCH. With LCS, in Equation 1, Sr and St represent
the signatures of the reference and target functions. |Sr| and
|St| are their lengths, and |Sr ∩ St| is the LCS length of the
two signatures.
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3.4.2 Hamming Distance with SimHash
SimHash is a solution which quickly estimates the similarity
of two sets. The basic idea of SimHash is similar items
are hashed to similar hash values, i.e., with small bitwise
hamming distances. Assuming that the hash values have the
size of F, the similarity of two sets Sr and St is computed as
followed:

Sim(Sr, St) = 1− HD[SHF (Sr), SHF (St)]

F
(2)

Here, SHF (S) means the SimHash value of set S, ranging
from 0 to 2F . Then, the hamming distance (HD) of the two
SimHash values ranges from 0 to F . As a result, Sim(Sr, St)
ranges from 0 to 1 as well. The larger the value is, the more
similar the two sets are considered to be.

In such way, comparing to the high time complexity
O(n2) of the LCS algorithm, SimHash only has the time
complexity ofO(n). However, SimHash treats the feature se-
quences (signatures) as sets. It ignores the order of sequence
elements, which is considered to be semantics-related. Thus,
it is less accurate in handling signatures extracted from
optimized or obfuscated functions. Consequently, hamming
distance with SimHash computes the similarity of signa-
tures more efficiently, while Jaccard Index with LCS has
higher accuracy.

4 IMPLEMENTATION

Currently, BINMATCH supports binary function similarity
comparison of ELF (Executable and Linkable Format) files.
It performs analysis on 32-bit Linux platform of three main-
stream ISAs, i.e., x86, ARM, and MIPS. Next, we discuss the
key aspects of the implementation.

4.1 Binary Function Boundary Identification

BINMATCH performs comparison on the function level. It
requires the address and length information of each binary
function under analysis. Given an ELF file, IDA Pro v6.64

is adopted to disassemble it and identify the boundaries of
its binary functions. The plugin of IDA Pro, IDAPython,
provides interfaces to obtain addresses of functions. For
example, Functions(start, end) returns a list of func-
tion start addresses between address start and end. As a
result, we develop a script with IDAPython to acquire func-
tion addresses of binary programs automatically. Besides,
function arguments and switch structures are identified as
well to assist in assigning argument values (§3.3.2) and
emulating indirect jumps (§3.3.4). Although the resulting
disassembly of IDA Pro is not perfect [33], [34], it is suf-
ficient for the scenarios of BINMATCH.

4.2 Instrumentation and Emulation

We implement the instrumentation module of BINMATCH
with Valgrind [35], a dynamic instrumentation frame-
work. Valgrind unifies binary code under analysis into
VEX-IR, a RISC-like intermediate representation (IR), and
injects instrumentation code into the IR code. Then, it trans-
lates the instrumented IR code into binaries for execution.

4. https://www.hex-rays.com/products/ida/

Algorithm 4: Pruning Similarity Comparison
Input: Signature of the Reference Function Sr
Input: Signature of the Target Functions St
Input: Length Threshold L
Input: Pruning Threshold P
Output: Similarity Score S

1 Algorithm pruningComparison (Sr , St, L, P)
2 Lr ← length(Sr)
3 Lt ← length(St)
4 // pruning strategy
5 if max(Lr , Lt) / min(Lr , Lt) > P then S ← −1
6 // Algorithm 3
7 else S ← comparison(Sr , St, L)
8 return S

IR translation unifies the operations of binary code and
facilitates the process of signature extraction. For example,
memory reading and writing instructions are all unified
with Load and Store, the opcodes defined by VEX-IR.
Hence, we just concentrate on the specific operations of
IR and ignore the complex instruction sets of different
architectures.

The step of emulation is implemented basing on
angr [36], a static binary analysis framework. angr borrows
VEX-IR from Valgrind, and translates binary code to be
analyzed into IR statically. Given a user-defined initial state,
it provides a module named SimProcedure to emulate
the execution of IR code. SimProcedure allows injecting
extra code to monitor the emulation of the IR code. It
actually emulates the process of instrumentation. Besides,
angr maintains a database of standard library functions
to ease the emulation of those functions (§3.3.6). Thus, we
develop a script of monitoring code, which is similar to the
instrumentation code developed with Valgrind, to capture
semantic signatures during the emulation with angr.

4.3 Function Inlining and Signature Inlining

Function inlining is an operation which expands a callee
to its caller. It eliminates the calling and returning of the
callee, improving the efficiency of code execution. Then, it
is adopted as a strategy for code optimization [37]. Function
inlining also might be used as an obfuscation technique that
modifies boundaries of functions [38], posing difficulties to
reverse engineering.

Since BINMATCH works on the function level, function
inlining would affect its accuracy of comparison. For ex-
ample, the reference function Mr invokes the subroutine
Nr during the execution. The corresponding function Nt

is inlined into Mt in the target binary program, becoming
MtNt. Because the signature of MtNt is actually extracted
from two functions, while that of Mr only contains one,
BINMATCH might miss the match of [Mr,MtNt] finally. To
alleviate the side effects of function inlining, BINMATCH
inlines the signature of a callee to its caller, which is similar
to the process of function inlining. In above example, the
signature of Nr is then expanded in that of Mr , becoming
the signature of MrNr for the similarity comparison. Note
that BINMATCH only inlines the signatures of user-defined
functions, not counting those of standard library functions.
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4.4 Pruning Strategy of Similarity Comparison
The code features adopted by BINMATCH are semantics-
related. Intuitively, because of signature inline, signature
lengths of similar functions should be close. Thus, we
propose a signature length-based pruning strategy to im-
prove the efficiency of similarity comparison. As presented
at Line 5 in Algorithm 4, given a pre-defined pruning
threshold P (>1), BINMATCH skips the comparison when
the difference between two signature lengths is sufficiently
large, i.e., the division of their lengths is lager than P or less
than 1

P . The two functions are considered to be dissimilar
under that condition. We will discuss the value of P in
Section 5.2.2.

5 EVALUATION

We conduct empirical experiments to evaluate the effective-
ness and capacity of BINMATCH. We firstly discuss thresh-
olds (L in §3.4 and P in §4.4) adopted by BINMATCH, which
balance the accuracy and efficiency of comparison (§5.2).
Then, BINMATCH is evaluated with binaries compiled with
different compilation settings, including variant optimiza-
tion options and compilers (§5.3). We also evaluate the effec-
tiveness of BINMATCH in handling obfuscation by compar-
ing binary functions with their obfuscated versions (§5.4).
Lastly, we leverage BINMATCH to compare the similarity of
binary code compiled with different ISAs, across x86, ARM
and MIPS (§5.5). The results of above experiments are all
compared to those of existing solutions.

5.1 Experiment Setup
The evaluation is performed in the system of Ubuntu 16.04
which is running on an Intel Core i7 @ 2.8GHz CPU with
16G DDR3-RAM.

5.1.1 Dataset
We adopt programs of nine real-world projects as objects
of the evaluation, as listed in Table 1. The object programs
have various functionalities, including data transforma-
tion (convert, ffmpeg), data compression (gzip), code
parsing (lua), email posting (mutt), etc. With those objects,
the effectiveness of BINMATCH is shown to be not limited
by the types of programs and functions under analysis.

For cross-compilation-setting comparison (§5.3), the ob-
jects are compiled with different compilers (i.e., GCC v4.9.3,
Clang v4.0.0, and ICC v16.0.4) and variant optimiza-
tions (i.e., -O3 and -O0). For comparison with obfuscated
code (§5.4), we adopt Obfuscator-LLVM (OLLVM) [39] to ob-
fuscate the object programs. OLLVM provides three widely
used techniques for obfuscation, including Instruction Sub-
stitution, Bogus Control Flow, and Control Flow Flattening.
We use the three techniques to handle the object programs
optimized with -O3 and -O0 respectively. Then, for cross-
architecture comparison (§5.5), the object programs are com-
piled for three architectures, i.e., x86, ARM, and MIPS,
separately, with the compiler GCC and optimization option
-O3. As a result, we totally compile 142 unique executables
for the evaluation.

For each experiment, we select two executables of an ob-
ject program, i.e., Er (the reference executable) and Et (the

target executable). BINMATCH executes Er with the test
command presented in Table 1, and considers each executed
function as a reference function. Then, it compares every
reference function to all target functions of Et in pairs to
compute similarity scores. Consequently, BINMATCH per-
forms over 100 million pairs of function comparisons in all
the experiments.

5.1.2 Ground Truth
All the executables for the evaluation are stripped that their
debug and symbol information is discarded. To verify the
correctness of the experimental results, we compile their
extra unstripped copies, and establish the ground truth with
the symbol information.

For each reference function, BINMATCH generates a
list of target functions ranked by the similarity scores in
descending order (§3.4). According to the ground truth, if
the reference function name exists in the Top K entries of
the resulting target function list, we consider the match of
the reference function could be found by BINMATCH in Et.
Given the reference function, BINMATCH is designed for
assisting analyzers in looking for similar matches in target
binaries. Thus, it is reasonable to assume the analyzers could
further identify the correct match with acceptable amount of
effort when provided with K candidates. In this paper, we
assign K with values of 1, 5, and 10 respectively.

5.1.3 Evaluation Metrics
Similar to previous research [8], [18], we measure the perfor-
mance of BINMATCH with Accuracy, the ratio of executed
reference functions which could be found in the Top K
entries of the resulting target function lists. The formula is
as followed:

Accuracy =
|Found Matches|
|Reference Functions|

(3)

5.2 Parameter Settings
We leverage either Jaccard Index with LCS (accurate but
less efficient) or Hamming Distance with SimHash (efficient
but less accurate) to measure the similarity of function
signatures. We propose the signature length threshold L to
select suitable method for the measurement (§3.4). Besides,
we introduce the ratio threshold P to prune unnecessary
comparison to improve the efficiency of similarity measure-
ment (§4.4). In this section, we attempt to find the best
values of L and P for the following experiments, which
balance the accuracy and efficiency of BINMATCH.

5.2.1 Length Threshold for Similarity Comparison
We execute the reference executables, totally obtaining
14,207 reference functions. We randomly select 4,000 of
them, and investigate the performance of BINMATCH with
variant values of the length threshold L. The pruning strat-
egy is disabled in this part of the experiments, i.e., P = +∞.

The results are shown in Figure 9. The black line repre-
sents the Top 1 accuracy, and the gray line is the average
time for processing each reference function. As L increases
exponentially, the corresponding time rises in a similar man-
ner, while the accuracy grows much slower in a linear-like
form. When BINMATCH performs the similarity comparison
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TABLE 1: Object Projects of Evaluation

Program Version Description Test Command

convert 6.9.2 Command-line interface to the ImageMagick
image editor/converter

convert sample.png -background black -alpha remove sample.jpg

curl 7.39 Command-line tool for transferring data using
various protocols

curl -O http://ftp.gnu.org/gnu/wget/wget-1.13.tar.xz

ffmpeg 2.7.2 Program for transcoding multimedia files ffmpeg -f image2 -i sample.png sample.gif

gzip 1.6 Program for file compression and decompres-
sion with the DEFLATE algorithm

gzip --best --recursive --force sample_directory

lua 5.2.3 Scripting parser for Lua, a lightweight, multi-
paradigm programming language

lua sample.lua

mutt 1.5.24 Text-based email client for Unix-like systems mutt -s "hello" user@domain.com < sample.txt

openssl 1.0.1p Toolkit implementing the TLS/SSL protocols
and a cryptography library

openssl s_server -key key.pem -cert cert.pem -accept 44330 -www

puttygen 0.70 Part of PUTTYGEN suit, a tool to generate and
manipulate SSH public and private key pairs

puttygen -P sample.pem -o key.pem

wget 1.15 Program retrieving content from web servers
via multiple protocols

wget http://ftp.gnu.org/gnu/wget/wget-1.13.tar.xz --no-cookies
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only with the Jaccard Index, i.e., L = +∞, it achieves
the Top 1 accuracy of 85.4%. That could be considered as
the upper bound capacity of BINMATCH. Nevertheless, the
time consumption of each function reaches 262.637 seconds.
Considering the average time, note that (512, 14.031) is the
turning point of the line. When L = 512, although the Top 1
accuracy is only 68.3%, the Top 5 accuracy rises to 86.4%
which is comparable to the Top 1 accuracy when L = +∞.
Therefore, in the following experiments, BINMATCH adopts:

L = 512. (4)

5.2.2 Ratio Threshold for Pruning
Considering the reference and target signatures Sr and St

with the lengths of Lr and Lt, where Lr 6= Lt, we define

D = ln
max(Lr, Lt)

min(Lr, Lt)
= | lnLr − lnLt| (5)

According to Equation 1, the possible maximum similarity
score of (Sr, St) computed by Jaccard Index is

JM (Sr, St) =
min(Lr, Lt)

max(Lr, Lt)
, if Sr ⊂ St or Sr ⊃ St (6)
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As presented at Line 5 in Algorithm 4, when

min(Lr, Lt)

max(Lr, Lt)
<

1

P
, (7)

the pair of comparison (Sr, St) is pruned. Combining Equa-
tion 7 with Equation 5 and 6, we have

J(Sr, St) ≤
min(Lr, Lt)

max(Lr, Lt)
=

1

eD
<

1

P
(8)

Therefore, in this section, we aim to find the acceptable
maximum Jaccard Index of similarity comparison, i.e, the
minimum value of D, to fulfill the pruning.

We randomly select 1,000 reference functions, and lever-
age BINMATCH to perform similarity comparison with the
Jaccard Index, i.e, L = +∞. Since we merely consider at
most Top 10 candidates of the results, we investigate the
10th similarity scores for all the target functions in the
resulting lists. Then, we find the average value of all the 10th
similarity scores is 0.450, and the minimum value is 0.094.
As a result, we obtain the candidate values of D denoted as
Davg = ln 1

0.450 = 0.798 and Dmin = ln 1
0.094 = 2.364.

We further select another 3,000 reference functions ran-
domly to test Davg and Dmin. According to the ground
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truth, we find the corresponding matches of the reference
functions in target executables. Then, we compare the sig-
nature length of each reference function to that of its cor-
responding target function. We set D ∈ (0, 2.5] with the
step of 0.1, obtaining the accumulative ratio of function
pairs versus D as presented in Figure 10. When D = 0.8,
93.6% of function pairs are correctly covered, and there exist
193 samples which are incorrectly pruned. We observe the
following reasons leading to the incorrectness:

• Duplicated Functions. Compilers might create several
copies of a function for the resulting executable. They
ensure the jumping distance from a caller to its callee is
less than the memory page size (e.g., 0x1000 bytes for
x86), avoiding page faults when calling functions and
improving execution efficiency.
BINMATCH collects function signatures from (emu-
lated) executions. The signature of the original function
would be divided into parts for its copies. Then the
signature length of a duplicated function might be
much less than that of the original one.

• Compiler-created Functions. A Compiler would re-
place standard library functions with its own efficient
ones during compilation. Typically, we find ICC gener-
ates binaries inlined with __intel_fast_* functions,
e.g, __intel_fast_memcmp. After stripping symbol
names, it is difficult to distinguish those functions from
user-defined ones. BINMATCH then records their code
features as well which enlarge the signature lengths of
their callers.

• Transformation between switch and if structures.
In some cases, the switch and if structures could
be transformed between each other equivalently. It is
also an optimization strategy of compilers. Comparing
to a switch, an if structure contains more condition
comparisons for branches, which corresponds to the
code feature of Comparison Operand Values (§3.1), and
generates longer signatures.

When D = 2.4, 98.8% of samples are correctly handled. We
then use BINMATCH to perform similarity comparison for
the left 37 samples (L = 512), and find that the differences
between the reference and target signatures are so large that
none of their scores could be ranked within Top 10 in the
resulting lists.

Among the above reasons, duplicated functions could
be handled by combining their signatures. Since they are
exactly identical, it is possible to find all the duplicated
functions with static analysis, such as binary function hash-
ing. Then, BINMATCH records code features of duplicated
functions as one function signature which could be consid-
ered as that of the original one. However, it is difficult to
decide whether a function is the compiler-created one in a
stripped executable. It is also challenging to unify the repre-
sentations of switch and if structures of binary programs.
Although we cannot perform pruning correctly for all cases,
the above experiments indicate that the possibility is low to
make the mistakes when D = 2.4. Therefore, in following
experiments, BINMATCH adopts

P = e2.4 ≈ 11.023. (9)

5.3 Analysis across Compilation Settings
5.3.1 Cross-optimization Analysis
In this section, we leverage BINMATCH to match binary
functions compiled with different optimizations. For a com-
piler, higher optimization options contain all strategies spec-
ified by lower ones. Taking GCC v4.9.3 as an example5, the
option -O3 enables all the 68 optimizations of -O2, and
turns on another 9 optimization flags in addition. -O2 also
covers all the 32 strategies specified by -O1. Thus, we only
discuss the case of -O3 (Er) versus -O0 (Et), which has
larger differences than any other pair of cross-optimization
analysis.

Figure 11 shows the accuracy of cross-optimization com-
parisons between each object program compiled by GCC,
Clang, and ICC separately. In Figure 11a, the average ac-
curacy of Top 1, 5, and 10 is 68.9%, 82.5%, and 87.0%. The
performance of BINMATCH increases notably regrading the
Top 5 and 10 target functions in the resulting lists. Thus,
the possibility is high for analyzers to find the real match by
further considering the first five or ten candidates in a target
function list.

The results of Clang- and ICC-compiled programs are
similar. The average accuracy of Top 1, 5, 10 is 71.8%, 85.8%,
90.9% in Figure 11b, and 72.6%, 84.6%, 89.5% in Figure 11c.
Since ICC fails to generate executables for convert and
ffmpeg with the corresponding compilation settings, we
only conduct experiments with the left seven object pro-
grams for ICC. In Figure 11c, the results of puttygen are
much worse than those of other object programs. The Top 1
accuracy of puttygen is 43.6%, while that of every other
object exceeds 70.0%. When generating the executable of
puttygen optimized with -O3, ICC inlines its own library
functions to replace the standard ones, while such optimiza-
tion is not applied to the -O0 version. The test command of
puttygen (as presented in Table 1) triggers the reference
functions which frequently invoke those inlined by ICC,
leading to huge differences in signatures for comparison.
BINMATCH then produces the relative low accuracy.

5.3.2 Cross-compiler Analysis
In this section, BINMATCH is evaluated with binaries
compiled by different compilers. Similar to the cross-
optimization analysis, only the case of -O3 (Er) versus
-O0 (Et) is considered. The results are presented in Fig-
ure 12. BINMATCH performs well in most cases. The average
Top 1, 5 and 10 accuracy of all experiments is 65.0%, 79.4%,
and 84.6% separately.

Compiler-created functions of ICC still constitute the rea-
son that affects the performance of BINMATCH. Specifically,
the average Top 1 accuracy displayed in Figure 12c and 12f is
67.0%, while that of ICC -O3 vs. -O0 in Figure 11c is 72.6%.
Additionally, we find floating-point number is another reason
decreasing the accuracy. GCC leverages x87 floating-point
instructions to implement corresponding operations, while
Clang and ICC uses the SSE (Streaming SIMD Extensions)
instruction set. x87 adopts the FPU (floating point unit)
stack to assist in processing floating-point numbers. The
operations deciding whether the stack is full or empty insert

5. https://gcc.gnu.org/onlinedocs/gcc-4.9.3/gcc/Optimize-
Options.html
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Fig. 12: Accuracy of Cross-compiler Comparison

redundant entries to the semantic signature with compari-
son operand values (§3.1). In contrast, SSE directly operates
on a specific register set (i.e., XMM registers) and has no
extra operations. Besides, x87 could handle single precision,
double precision, and even 80-bit double-extended preci-
sion floating-point calculation, while SSE mainly processes
single-precision data. Due to the different precision of repre-
sentations, even though the floating-point numbers are the
same, their values generated by different instruction sets are
not equal, therefore affecting the accuracy. As a result, when
processing executables compiled by GCC (Figure 12a-12d),
the average Top 1 accuracy is 63.9%. In contrast, when the
comparisons are performed between Clang and ICC (Fig-
ure 12e and 12f), the corresponding accuracy is 68.5%.

5.3.3 Comparison with Existing Work
In this section, we compare BINMATCH to the state-of-the-
art methods Asm2Vec [22], Kam1n0 [21], and the industrial
tool BinDiff [24] supported by Google, which are all open
for public use. Thus, we could use them to detect similar
binary functions with the same settings as BINMATCH. Since
BINMATCH is evaluated with the executed reference func-
tions, to make fair comparison, we investigate the perfor-
mance of the three solutions with those reference functions

as well. We configure the three solutions with their default
settings, and the results are displayed in Table 2. Similar to
BINMATCH, Asm2Vec returns a list of target functions for
each reference function. Thus, we also present its accuracy
of Top 1, 5, 10 respectively. The last two rows show the
average accuracy for all the experiments and the processing
time of each function on average. Obviously, BINMATCH
performs much better than other three from the perspective
of accuracy. Specifically, on average, its Top 1 accuracy
even outperforms the Top 10 accuracy of Asm2Vec. Besides,
benefiting from the adoption of SimHash and the pruning
strategy, its average processing time of each function is
around 4 seconds. Although BINMATCH is still slower than
the other three, considering the accuracy, it deserves the
time.

Asm2Vec adopts machine learning techniques for binary
function similarity comparison. It treats each path of a
function as a document, and leverage the PV-DM model [40]
to encode the function into a feature vector. Asm2Vec ex-
plores the co-occurrence relationships among assembly code
tokens, aiming to describe a binary function with the most
representative (or the unique) instructions. However, binary
code might be implemented with semantics-equivalent but
different kinds of instructions, especially when the code is
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TABLE 2: Comparison with the state-of-the-art methods Asm2Vec, Kam1n0, and the
industrial tool BinDiff. @K represents the Top K accuracy.

Reference Target
BINMATCH Asm2Vec

Kam1n0 BinDiff
@1 @5 @10 @1 @5 @10

GCC -O3
GCC -O0 0.689 0.825 0.870 0.444 0.623 0.674 0.288 0.338
Clang -O0 0.614 0.748 0.808 0.417 0.580 0.629 0.212 0.273
ICC -O0 0.603 0.756 0.811 0.370 0.553 0.619 0.209 0.277

Clang -O3
Clang -O0 0.718 0.858 0.909 0.425 0.567 0.620 0.251 0.461
GCC -O0 0.667 0.826 0.871 0.412 0.577 0.627 0.271 0.457
ICC -O0 0.696 0.825 0.877 0.386 0.622 0.694 0.224 0.400

ICC -O3
ICC -O0 0.726 0.846 0.895 0.323 0.546 0.627 0.276 0.332
GCC -O0 0.666 0.816 0.865 0.343 0.399 0.465 0.182 0.219
Clang -O0 0.673 0.808 0.853 0.315 0.533 0.628 0.191 0.212

Average Accuracy 0.672 0.813 0.863 0.395 0.574 0.635 0.240 0.328
Time (s) / Function 4.151 1.255 1.332 0.210

generated with variant compilation settings.
Kam1n0 and BinDiff are typical solutions which rely

on syntax and structure features to detect binary similar
functions. Kam1n0 captures features of a function from
its control flow graph (CFG), and encodes the features as
a vector for indexing. Thus, essentially, it detects similar
functions by analyzing graph isomorphism of CFG. The
relatively low accuracy of Kam1n0 indicates that compila-
tion settings indeed affect representations of binaries, even
though two pieces of code are compiled from the same code
base. In addition to measuring the similarity of CFG, BinDiff
considers other features to compare similar functions, such
as function hashing which compares the hash values of raw
function bytes, call graph edges which matches functions
basing on the dependencies in the call graphs, etc. By
carefully choosing suitable features to measure the simi-
larity of functions, BinDiff becomes resilient towards code
transformation resulting from different compilers or opti-
mization options to an extent. Therefore, it performs better
than Kam1n0, but is still at a disadvantage comparing to
BINMATCH.

5.4 Analysis on Obfuscated Code
In this section, we conduct experiments to compare normal
binary programs (Er) with their corresponding obfuscated
code (Et). We adopt OLLVM to obfuscate binary code which
is optimized with -O3 and -O0 separately (OLLVM bases the
compilation on Clang). Because obfuscation would insert
much redundant code, resulting in huge length differences
of signatures for comparison, we disable the pruning strat-
egy in this part of experiments, i.e., P = +∞.

The experimental results are shown in Table 3. Re-
sults of Asm2Vec and BinDiff are also presented as ref-
erences. OLLVM provides three techniques to fulfill the
obfuscation. Instruction substitution (SUB) replaces stan-
dard operators (e.g., addition operators) with sequences of
functionality-equivalent, but more complex instructions. It
obfuscates code on the syntax level, affecting the comparison
accuracy of Asm2Vec which treats binaries as documents,
but posing fewer threats to BINMATCH which is semantics-
based.

Bogus control flow (BCF) adds opaque predicates to a
basic block, which breaks the original basic block into two.

Control flow flattening (FLA) generally breaks a function
up into basic blocks, then encapsulates the blocks with a
selective structure (e.g., the switch structure) [41]. It creates
a state variable for the selective structure to decide which
block to execute next at runtime via conditional compar-
isons. BCF and FLA both change the structure of the orig-
inal function, i.e., modifying the control flow. They insert
extra code which is irrelevant to the functionality of the
original function, generating redundant semantic features
which are indistinguishable from normal ones (e.g., com-
parison operand values of opaque predicates). Thus, they
affect the comparison accuracy of BINMATCH. For the set-
tings of GCC/Clang/ICC -O3 vs. OLLVM -O0, when com-
paring with functions obfuscated by BCF, the average
Top 1 accuracy is 51.3%, and 48.1% for FLA, while that
of GCC/Clang/ICC -O3 vs. Clang -O0 is 66.8%. However,
BINMATCH still achieves more than 1.5 times the average
Top 1 accuracy of Asm2Vec, and 1.7 times of BinDiff,
i.e., 63.8% of BINMATCH, 41.0% of Asm2Vec, and 37.4% of
BinDiff. On average, the Top 1 accuracy of BINMATCH still
outperforms the Top 10 accuracy of Asm2Vec.

Additionally, because the pruning strategy is disabled,
BINMATCH spends 21.678 seconds on average to process
each reference function, while that of comparisons with
pruning is 4.151 seconds. The results indicate the impor-
tance of the pruning strategy for improving the efficiency.

5.5 Analysis across Architectures

In this section, we evaluate the capacity of BINMATCH to
compare the similarity of binary functions of variant ISAs,
across x86, ARM and MIPS. All the executables for com-
parison are compiled with GCC -O3. The ARM and MIPS
binaries are generated or executed in the environments
emulated by QEMU [42].

The experimental results are presented in Table 4, which
are compared to those of CACompare [25], the state-of-the-
art cross-architecture similar binary function detector. The
average Top 5 accuracy of BINMATCH is comparable to
that of CACompare. Besides, for each reference function,
BINMATCH is 1.2 seconds faster than CACompare on av-
erage. Since there are 3,078 reference functions, BINMATCH
then saves about 1 hour for the experiments. In fact, when
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TABLE 3: Accuracy of comparing with obfuscated code. The target executables are obfuscated with OLLVM (BCF: Bogus
Control Flow, FLA: Control Flow Flattening, SUB: Instructions Substitution). @K represents the Top K accuracy.

Reference Target Obf.
BINMATCH Asm2Vec

BinDiff
@1 @5 @10 @1 @5 @10

GCC -O3

OLLVM
-O3

SUB 0.755 0.873 0.912 0.530 0.710 0.760 0.678
BCF 0.615 0.722 0.773 0.509 0.676 0.718 0.311
FLA 0.521 0.629 0.705 0.358 0.529 0.565 0.430

OLLVM
-O0

SUB 0.692 0.821 0.859 0.336 0.489 0.568 0.385
BCF 0.504 0.561 0.580 0.302 0.473 0.535 0.211
FLA 0.452 0.495 0.551 0.166 0.280 0.323 0.312

Clang -O3

OLLVM
-O3

SUB 0.890 0.977 0.985 0.766 0.874 0.897 0.805
BCF 0.647 0.752 0.842 0.624 0.777 0.814 0.334
FLA 0.560 0.616 0.682 0.470 0.633 0.680 0.541

OLLVM
-O0

SUB 0.758 0.901 0.942 0.351 0.525 0.590 0.497
BCF 0.532 0.592 0.616 0.356 0.524 0.567 0.053
FLA 0.485 0.546 0.611 0.241 0.398 0.441 0.280

ICC -O3

OLLVM
-O3

SUB 0.621 0.750 0.805 0.482 0.632 0.691 0.609
BCF 0.718 0.848 0.896 0.398 0.558 0.622 0.208
FLA 0.473 0.523 0.609 0.292 0.414 0.469 0.272

OLLVM
-O0

SUB 0.730 0.847 0.876 0.264 0.409 0.482 0.248
BCF 0.501 0.570 0.605 0.254 0.368 0.423 0.095
FLA 0.507 0.556 0.631 0.148 0.239 0.296 0.160

Average Accuracy 0.638 0.736 0.784 0.410 0.560 0.613 0.374

TABLE 4: Performance of cross-architecture comparison.
All executables are compiled with GCC -O3, but with

different instruction set architectures. @K represents the
Top K accuracy.

Settings
BINMATCH

CACompare
@1 @5 @10

x86 vs. ARM 0.628 0.743 0.798 0.807
x86 vs. MIPS 0.721 0.827 0.866 0.770

ARM vs. MIPS 0.703 0.816 0.867 0.810

Average Accuracy 0.667 0.789 0.839 0.795
Time (s) / Function 3.451 4.694

all the similarity comparisons are performed with Jaccard
Index and LCS, i.e., L = +∞, BINMATCH is able to achieve
the average Top 1 accuracy of 86.2% which indicates the
upper bound capacity of BINMATCH. Nevertheless, it needs
to spend 137.760 seconds on average in processing each ref-
erence function. Thus, BINMATCH has the ability to become
more accurate than CACompare, but it also requires more
time. According to the scenarios and requirements, users
could choose the suitable L for it to balance accuracy and
efficiency.

CACompare samples a function with random values as
inputs, and extracts the code features via emulation as well.
Illegal memory accessing is also tackled by providing ran-
dom values. However, the random values lack semantics.
They could hardly bypass the input checks of a function,
and usually trigger paths which handle exceptions. In con-
trast, BINMATCH captures the signatures of target functions
by emulating them with runtime values migrated from real
executions. As a result, in some cases, BINMATCH is more
robust than CACompare. Besides, it could generate results

with higher accuracy if there is no strict time limit.

5.6 Threats to Validity
We construct the dataset of the experiments by compiling
binaries from nine open-source projects (§5.1.1). Besides, we
conduct experiments to infer suitable parameter values for
BINMATCH (§5.2). Although the dataset consists of various
types of programs, it cannot cover all cases in the real world,
neither can the corresponding parameter values of L and P .

BINMATCH adopts IDA Pro to acquire information of
binary functions (§4.1). However, function boundary iden-
tification of IDA Pro is not perfect, which is actually still
an issue of reverse engineering [43], [44], [45]. Addition-
ally, BINMATCH is implemented with Valgrind and angr
which both adopt VEX-IR as the intermediate representa-
tion (§4.2). However, VEX-IR is not perfect that 16% x86
instructions could not be lifted, although only a small subset
of instructions is used in executables in practice and VEX-IR
could handle most cases [46]. The incompleteness of VEX-IR
might affect the accuracy of semantics signature extraction,
while BINMATCH still produces promising results in above
experiments.

6 DISCUSSION AND FUTURE WORK

6.1 Application Scope and Scenarios
In this paper, BINMATCH is implemented to process 32-bit
code. The solution could be applied to 64-bit code as well. To
fulfill the target, there might exist the following problems:
• Calling Conventions: BINMATCH identifies and assigns

the arguments of a binary function according to its
calling convention (§3.2 and §3.3.2). 64-bit instruction
set architectures commonly prepare arguments with
specific registers, e.g., RDI, RSI, RDX, RCX, R8, R9 of
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x86-64 on Linux, and additional ones are passed via the
stack. Thus, we need to consider those specific registers
firstly, then analyze the stack if necessary.

• Floating-point Numbers: Different instruction set archi-
tectures employ instructions of various precision to
process floating-point numbers, such as x87 and SSE
of x86, SSE2 of x86-64. That would affect the detection
accuracy of BINMATCH (§5.3.2). A possible solution is
to unify the precision of floating-point values, repre-
senting the high-precision value with lower precision,
e.g., representing double-precision values with single-
precision. That would be left as future work.

Because BINMATCH needs to execute the reference func-
tions, it is more suitable for scenarios where the reference
functions have available test cases, such as known vulnera-
bility detection (as shown in §2.1), patch analysis [13], [47].
In contrast, static methods are applicable to cases which
require the high coverage of the reference code, such as pla-
giarism detection [2]. Dynamic methods are appropriate for
the situation where the code behaviors are emphasized or
the capacity of deobfuscation is required, such as malware
lineage analysis [11].

6.2 Obfuscation

In the evaluation, BINMATCH is shown to be effective in
analyzing obfuscated binary code which is generated by
OLLVM (§5.4). The robust of BINMATCH is due to the nature
of dynamic analysis and the adoption of semantics-based
signatures. However, that does not mean BINMATCH could
handle all kinds of obfuscations. Besides, the OLLVM code
actually affects the accuracy of BINMATCH in the experi-
ments. When analyzing benign code, BINMATCH achieves
better results. For GCC/Clang/ICC -O3 vs. Clang -O0, the
average Top 1, 5, and 10 accuracy is 66.8%, 80.4% and
85.8%, while for GCC/Clang/ICC -O3 vs. OLLVM -O0, the
corresponding ratio is 60.9%, 70.1%, and 74.0% respectively.
In the literature, deobfuscation has been well studied [48],
[49], [50], [51]. Therefore, if BINMATCH fails to detect an
obfuscated function, it is a better choice to deobfuscate it
firstly, then perform further analysis.

6.3 Function Interfaces

In this paper, we assume a pair of matched functions shares
the same interface, i.e., the same argument number and
order. When the interface of the target function is modified,
e.g., by obfuscation, BINMATCH becomes ineffective. For
example, the reference function R has the interface

R(rarg_0, rarg_1, rarg_2),

while the interface of its corresponding match (target func-
tion T) is

T(targ_2, targ_1, targ_0, targ_3).

Note that not only a redundant argument targ_3 is added
to T via obfuscation, but also the first three arguments
are disordered. For targ_3, as described in the previous
section, extra analysis is necessary, such as deobfucation.
That is out of the scope of this paper. For the disordering,
a possible solution is to provide T with the permutation

of R’s argument list. In the example, after targ_3 is re-
moved, BINMATCH generates the permutation of R’s argu-
ment list, overall 6 (= P 3

3 ) cases, then assigns them to T
and computes the similarity score separately. The largest
one among the six values, theoretically when the order
is (rarg_2, rarg_1, rarg_0), is considered as the final
similarity score of (R, T). It is left as future work.

6.4 Accuracy vs. Efficiency
It is a classical issue of program analysis. In this paper, since
the lengths of signatures extracted via (emulated) executions
are huge, we propose the hybrid method, combining LCS
and SimHash for similarity comparison, to reach the com-
promise between efficiency and accuracy (§3.4). To improve
the accuracy, it is possible to execute the reference function
with different inputs to capture more semantics information
and generate the signature. Furthermore, we could adopt
the metrics from testing to evaluate each run of the refer-
ence function, such as delta code coverage [52]. Specifically,
BINMATCH only records the signature extracted from the
execution covering enough new code of the function, which
is not executed before. It is left as future work.

7 RELATED WORK

Binary code similarity comparison (or clone detection) has
many important applications in fields of software engi-
neering and security, typically including plagiarism detec-
tion [19], [53], bug detection [15], malware analysis [11], etc.

Syntax and structural features are widely adopted to
detect binary clone code. Sæbjørnsen et al. [54] detect binary
clone code basing on opcode and operand types of instruc-
tions. Hemel et al. [55] treat binary code as text strings and
measure similarity by data compression. The higher the
compression rate is, the more similar the two pieces of
binary code are. Khoo et al. [5] leverage n-gram to compare
the control flow graph (CFG) of binary code. David et al. [6]
measure the similarity of binaries with the edit distances of
their CFGs. BinDiff [24] and Kam1n0 [21] extract features
from the CFG and call graphs to search binary clone func-
tions.

As discussed earlier in this paper, the main challenge of
binary code similarity comparison is semantics-equivalent
code transformation resulting from link-time optimization,
obfuscation, etc. Because of the transformation, representa-
tions of binary code are altered tremendously, even though
the code is compiled from the same code base. There-
fore, syntax and structure-based methods become ineffec-
tive, and semantics-based methods prevail. Jhi et al. [2] and
Zhang et al. [3] leverage runtime invariants of binaries to
detect software and algorithm plagiarism. Ming et al. [11]
infer the lineage of malware by code similarity comparison
with the system call traces as the semantic signature. How-
ever, those solutions require the execution of binary pro-
grams and cannot cover all target functions. Egele et al. [18]
propose blanket execution to match binary functions with
full code coverage which is achieved at the cost of de-
tection accuracy. Luo et al. [19], [53] and Zhang et al. [4]
detect software plagiarism by symbolic execution. Although
their methods are resilient to code transformation, sym-
bolic execution is trapped in the performance of SMT/SAT
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solvers which cannot handle all cases, e.g., indirect calls.
David et al. propose Esh [56] which decomposes the CFG of
a binary function into small blocks and measures the simi-
larity of the small blocks basing on a statistical model. How-
ever, the boundaries of CFG blocks would be changed by
code transformation, affecting the accuracy of the method.
BinSequence [57] explores the control flow graphs of binary
functions and aligns the paths for similarity measurement.
Then, it would suffer from control flow transformation, e.g.,
control flow flattening.

More recently, with the prevalence of IoT devices, bi-
nary code similarity comparison is proposed to perform
on ARM and MIPS, or even across architectures. Multi-
MH [15], discovRE [16], Genius [17], and Xmatch [58]
are proposed to detect known vulnerabilities and bugs in
multi-architecture binaries via code similarity comparison.
BinGo [7], CACompare [25], and GitZ [59] are proposed to
analyze the similarity of binary code across architectures as
well. However, discovRE and Genius still heavily depend
on the CFG of a binary function. Xmatch extracts symbolic
expressions of a binary function as the features, and treats
them as sets for similarity comparison, ignoring the relative
order (semantics information) of the expressions. Multi-
MH, BinGo and CACompare sample a binary function with
random values to capture corresponding I/O values as the
signature, while the random values are meaningless that
they merely trigger limited behaviors of the function. Thus,
it is difficult for them to cover the core semantics of a binary
function. Similar to Esh, GitZ bases the analysis on blocks of
functions as well. It lifts LLVM-IR from function blocks, and
counts on the optimization strategies of Clang to normalize
the representations of the IR code. Then, it measures the
similarity of IR code syntactically. Following their previous
work (Esh and GitZ), David et al. propose FirmUp [60] to
detect known vulnerabilities of firmware. They consider
the similarity comparison as a back-and-forth game which
further ensures the accuracy of the detection. BinArm [61]
is propose to detect known vulnerabilities of firmware as
well. It introduces a multi-stage strategy which firstly filters
functions with the syntax and structure information, then
performs graph matching of control flow graphs.

Additionally, machine learning techniques are also
adopted for binary code similarity comparison. Xu et al. [62]
leverage the neural network to encode CFGs of binary
code into vectors. αDiff [63] trains the convolutional neural
network with raw bytes of binary code, generating the
best parameter values for the model. Then they apply the
model to comparing the similarity of binary code. Thus,
essentially, the two solutions still process with syntax and
structure features. Asm2Vec [22] considers the assembly
code disassembled from the binary code as documents.
It attempts to discover the semantics hidden in the co-
occurrence relationships among the assembly tokens, and
adopts the most representative instructions as the feature
of a function. However, Asm2Vec still originates in the
text of assembly code as well. It is not robust enough
to the semantics-equivalent code transformation, as indi-
cated in the experiments (§5.3.3). Inspired by the work of
Luo et al. [19], Zuo et al. [64] firstly compute the likeness of
basic blocks, then align the basic blocks of a path, and finally
infer the similarity of code components with multiple paths.

They regard binary code as natural language, embedding
instructions basing on word2vec [65], then adopting the
neural machine translation model to compare basic blocks in
a deep learning manner. Comparing to the previous basing
on symbolic execution, the solution becomes much more
efficient.

To sum up, the topic of binary code similarity com-
parison mainly focuses on two points: i) what signature
to adopt, such as opcodes and operand types (syntax),
CFG (structure) and system calls (semantics); ii) how to
capture the signatures, such as statically disassembling,
sampling, or dynamically running, etc. BINMATCH lever-
ages the combination of output values, comparison operand
values, and invoked standard library functions as the sig-
nature which is able to better reveal the semantics of a
binary function. Besides, it captures the signature via both
execution and emulation, which not only ensures the rich-
ness of semantics, but also covers all target functions to be
analyzed.

8 CONCLUSION

Binary code similarity comparison is a fundamental
methodology which has many important applications in
fields of software engineering and security. In this paper,
we propose BINMATCH to compare the similarity of binary
code. BINMATCH completely relies on semantics-based sig-
natures which are extracted either in a static or in a dynamic
manner, via (emulated) executions. Thus, it is able to achieve
high comparison accuracy and coverage at the same time.
Besides, to balance accuracy and efficiency, in addition to the
longest common subsequence algorithm, the accurate string
matching method, BINMATCH also adopts the approximate
matching technique SimHash for the function signature
similarity measurement. The experimental results show that
BINMATCH not only is robust to the semantics-equivalent
code transformation caused by different compilation set-
tings, commonly-used obfuscations, and variant ISAs, but
also fulfills the function comparison efficiently. Additionally,
BINMATCH also achieves better performance than the state-
of-the-art solutions as well as industrial tool of binary code
similarity comparison.
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