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Abstract—Priority inflation occurs when a Quality-Assurance (QA) engineer or a project manager requesting a feature inflates the priority
of their task so that developers deliver the fix or the new functionality more quickly. We survey developers and show that priority inflation
occurs and misallocates developer time. We are the first to apply empirical game-theoretic analysis (EGTA) to a software engineering
problem, specifically priority inflation. First, we extract prioritisation strategies from 42,620 issues from Apache’s JIRA, then use
TASKASSESSOR, our EGTA-based modelling approach, to confirm conventional wisdom and show that the common process of a QA
engineer assigning priority labels is susceptible to priority inflation. We then show that the common mitigation strategy of having a bug
triage team assigning priorities does not resolve priority inflation and slows development. We then use mechanism design to devise
assessor-throttling, a new, lightweight prioritization process, immune to priority inflation. We show that assessor-throttling resolves 97% of
high priority tasks, 69% better than simply relying on those filing tasks to assign priorities. Finally, we present TheFed, a browser
extension for Chrome that supports assessor-throttling.
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1 INTRODUCTION

Lack of time is actually lack of priorities.
—Timothy Ferriss

P EOPLE often break projects into tasks, then prioritise them.
More important tasks, because they produce something of

value or because other tasks depend on them, have higher priority.
In an issue tracking system with shared prioritisation tooling, QA
engineers, testers, or project managers assign a priority label to
tasks; this label informs a project team about the fixes or features
the next release should incorporate. Priority inflation occurs when
an assessor increases the priority of an issue above their true
assessment, so that tasks they care about are delivered more
quickly [1], [2]. By undermining priority labels, priority inflation
can misallocate developer time.

We contend that priority inflation hampers software develop-
ment for three reasons: 1) Despite the fact that most teams would
prefer to work on important, unclaimed tasks first, we found that
teams using GitHub tend not to use its shared prioritisation tooling
when its use is optional (Section 3.1); 2) We surveyed software
development professionals who reported that priority inflation is
frequent and significantly misallocates resources (Section 3.2); and
3) Industry leaders have deployed processes to triage bug reports
and correct inflated priorities [3], [4].

In this paper, we use game theory to understand and fix priority
inflation, of both new features and bug repair tasks. Game theory
studies mathematical models of conflict and cooperation [5]. It
has already been used in several disciplines, including artificial
intelligence, e-commerce, and networking, because it provides
a theoretical framework for interactions between entities with
different and even conflicting interests [6].
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Standard game-theoretic models of real-world scenarios be-
come intractable when dealing with many players or numerous
strategies [7]. Having a dataset with hundreds of bug reporters and
multiple strategies represents a challenge for classic game-theoretic
approaches. To overcome this, we turn to an empirical game-
theoretic analysis (EGTA), which combines empirically grounded
game reduction with simulation to scale to real-world scenarios [7].
TASKASSESSOR realises our EGTA-based analysis of priority
inflation; it is the first tool to apply EGTA to software engineering.

TASKASSESSOR simulates a process with prioritised tasks.
Given an EGTA model of that process, it computes the model’s
Nash equilibrium to diagnose problems. The Nash equilibrium is a
stable outcome reached by rational and self-interested participants
(players, in game theory). Its stability comes from the fact that
each player enacts the strategy that benefits them the most: any
deviation from the equilibrium strategy decreases a player’s pay-off.
A task prioritisation process immune to priority inflation would
produce a model with a single equilibrium where all the players
— people filing tasks or reporting bugs — adopt a strategy under
which players honestly prioritise tasks.

We first use TASKASSESSOR to model distributed prioritisa-
tion, which distributes prioritisation to the person filing a task or
bug report [8]. To build our model, we use 42,620 issues collected
from the JIRA issue tracker of the Apache Software Foundation.
From them, we extract prioritisation strategies. JIRA priority labels
combine technical severity and business value or risk of an issue.
End users often confuse and conflate the two [9]. Our focus on
priority inflation means that we are, in particular, concerned with
the proportion of resolved tasks that are, in fact, high priority. This
is relevant to software development teams that seek to maximise
the number of tasks resolved. So, we validate that the simulation
component of TASKASSESSOR is sufficiently accurate with respect
to the proportion of high priority tasks completed (Section 5.4).
After validating the model, we compute its Nash equilibrium and
find that the equilibrium shows that the “Always Inflate” strategy
is optimal (Section 6.1). In this way, we have used game theory to



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 2

corroborate the conventional wisdom that distributed prioritisation
is prone to priority inflation.

To combat priority inflation, development teams have incor-
porated bug triage into their prioritisation processes [1]. In this
process, a team of gatekeepers, typically distinct from those who
file or report issues, checks (and may reprioritise) each issue.
Gatekeepers can be technical or business-focused employees. In
Section 6.2, we show that gatekeeper processes reprise distributed
prioritisation, which implies that they are also susceptible to priority
inflation. We confirm this using TASKASSESSOR and find that, at
equilibrium, task filers and QA engineers still have an incentive
to inflate priorities in a gatekeeper process. We use a Jackson
network, from queueing theory [10], to show that gatekeeping
slows development, even in the presence of duplicate tasks or bug
reports. Thus, while gatekeepers can improve the prioritisation of
issues in terms of better matching priorities with their business
value, we have used game theory to contradict the conventional
wisdom; showing that the gatekeeper process does not mitigate
priority inflation and slows development.

Our game theoretic analysis, in short, shows that the current
state of practice does not fix priority inflation which may explain
the extraordinarily low use of priority mechanisms in GitHub. To
fix priority inflation, we turn to mechanism design, the branch of
game theory concerned with designing games whose equilibrium
strategies constrain players to behave in desirable ways. Using
TASKASSESSOR to evaluate process interventions (or mechanisms),
we devised a novel, lightweight prioritisation mechanism, which
we call assessor-throttling, to tackle priority inflation (Section 7).
When they have completed a task of fixed a bug, developers
have also assessed its Jira priority along the way: they know its
technical severity and often have acquired the expertise needed to
evaluate its business value [11]. When they finish a task, assessor-
throttling merely requires developers to record their assessment
of the task’s priority label. If the developer’s assessment differs
from the task’s priority label, the offending reporter’s reputation
drops, which restricts the reporter’s ability to submit tasks or bugs.
Via simulation, we show that assessor-throttling matches an ideal
gatekeeper in the completion of high priority tasks (Section 7.3).
To help developers transition to assessor-throttling and thereby
combat priority inflation, we realised it in TheFed, a browser
plugin for Chrome (Section 7.5) that individual developers can
easily download and install from our project page [12].

Our main contributions follow:

1) We are the first to use empirical game-theoretic analysis
to analyse and improve an important software processes —
bug repair and issue resolution (Section 5).

2) We show that processes in which task filers or QA
engineers prioritise issues are inflationary (Section 6.1)
and the common solution of interposing a gatekeeper —
as advocated by some agile development models — does
not prevent inflation and, in fact, reduces productivity
(Section 6.2).

3) We propose assessor-throttling, a novel and lightweight
task prioritisation process that is immune to priority
inflation (Section 7).

Game theory has great potential to improve software processes
beyond bug repair and issue resolution. Please join us to explore
the possibilities at http://ttendency.cs.ucl.ac.uk/gametheory4se.

2 THE ASSESSOR’S DILEMMA

We now showcase game-theoretic modelling in a software develop-
ment context and use it to illustrate priority inflation at Foo Inc, a
small or medium-sized enterprise (SME).

Economic models represent behaviours where human motiva-
tion can be expressed as a function of price [13]. Neoclassical
economists like Alfred Marshall believed that money is also a
suitable measure for intangibles like desires and aspirations. The
magnitude of a person’s preference towards a product or service
can be approximated as the amount of money this person is willing
to pay for it: this applies to both smartphones and to political
platforms. The ability to approximate motivations — although
imperfectly — with real numbers is what makes economics “the
most exact of social sciences” [13]. In particular, game-theoretic
models require expressing a player’s payoffs as real numbers [14].
In our example below, we meet this requirement by assuming
Foo Inc has a bonus policy tied to bug fixing measures, like the
companies studied by Laplante and Ahmad [15].

Foo Inc. uses an Enterprise Resource Planning (ERP) system
for its daily activities. Alice and Bob work in Foo Inc’s quality
assurance team. They report bugs to a development team that
cannot fix all known bugs, so Alice and Bob are competing
for development time. Foo Inc wants its developers to fix more
important bugs first, so it rewards QA engineers who report higher
priority bugs that the developer team fixes with a higher bonus [15].

Foo Inc’s finance manager tells Alice that the ERP system has
two problems — the cash management module produces incorrect
figures and the financial consolidation module is too slow. The
first problem is severe and costs the company $10,000/day; the
second is inconvenient, costing only $1,000/day. These figures are
arbitrary, but consistent with the cost these bugs might impose
on an SME, like Foo Inc. Crucially, we picked them to separate
a severe bug from a trivial one by an order-of-magnitude. At the
same time, Foo Inc’s Human Resources Manager informs Bob
that the payroll module crashes every day and that the learning
module misplaces images when accessed from mobile devices. The
payroll bug is high priority, costing $10,000/day; while the learning
module bug is minor, costing only $1,000/day since Foo Inc does
not yet widely use mobiles.

At Foo Inc, a fixed, high priority bug increases the reporting
QA engineer’s bonus by $100, while the resolution of a trivial bug
increases it by $50. We assume that Foo Inc has found that these
values are sufficient incentive and within the bonus it is willing
to pay. For the next release, the development team can only fix
three of the four bugs that Alice and Bob report. Thus, they have
both the means and the motivation to inflate their bugs’ priorities.
Table 1 shows Alice’s and Bob’s expected bonuses, assuming that
developers resolve higher priority bugs first and that bugs with
the same priority have the same probability of being fixed. For
example, when both Alice and Bob inflate their priorities, all four
bugs are labelled high priority and have the same probability of
getting fixed. In this case, Alice’s and Bob’s expected pay-off is

1
2
(

1
2
×$100+

1
2
×$50)+

1
2
($100+$50) = $112.5.

Let us analyse Table 1 from Alice’s perspective. If Bob
accurately prioritise his bugs, Alice’s best option is to inflate hers
since she would obtain $150 instead of the $125 she would receive
if she too were honest. If, instead, Bob inflates his bugs’ priorities,
Alice’s best option remains inflating, since her bonus would be
$112.5 vs. $100. Thus, Alice is better off inflating no matter what

http://ttendency.cs.ucl.ac.uk/gametheory4se
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TABLE 1
Pay-off matrix for the assessor’s dilemma: Each cell is the payoff Alice
(A) and Bob (B) obtain, under the combination of actions each takes.

Bob: accurate Bob: inflate
Alice: accurate A = 125, B = 125 A = 100, B = 150
Alice: inflate A = 150, B = 100 A = 112.5, B = 112.5

Bob does. This same analysis symmetrically holds for Bob. In
game theory, this outcome is the Nash equilibrium of the game:
no players have an incentive to change their actions in response
to any other player’s actions. Every game with a finite number of
players and action profiles has at least one Nash equilibrium [16].
If players are rational and understand the game, we expect that
repeated play will reach a Nash equilibrium. Empirical evidence in
professional sports suggests this happens in practice [17], [18].

This Nash equilibrium is bad for Foo Inc: it represents a
bug repair process that encourages testers to inflate priorities and
misallocate developer time. Specifically, the Nash equilibrium
entails 0.5 probability that one of the high priority bugs is not fixed
in the next release. In monetary terms, the equilibrium scenario
reduces costs only by $16,500/day, not the $21,000/day that could
have been achieved.

Also, Table 1 shows that, if Bob and Alice honestly reported
priorities, they would be better off than if they took the actions
leading to the equilibrium — $125 vs. $112.5. Rational play,
however, dictates priority inflation; hence, Alice and Bob face
a dilemma. We call this game the Assessor’s Dilemma, since it is
an instance of the Prisoner’s Dilemma [19].

Fortunately, we can rely on game theory, not only to identify
the assessor’s dilemma, but to correct it. Mechanism design is
the branch of game theory that designs games in a way that the
behaviour of agents at equilibrium results in a specific output [20].
In Section 6, we demonstrate that current prioritisation processes
suffer from priority inflation. In Section 7, we use mechanism
design to devise a game, representing a task prioritisation process,
that is immune to priority inflation.

3 IS PRIORITY INFLATION REAL?
Prioritisation is challenging and important, since it drives how
time, money and energy are spent [21]. Thus, we take for granted
that prioritisation is essential for efficient and effective bug repair.
Without prioritisation, one tends to fall into the trap of neglecting
important tasks for the merely urgent1. Task prioritisation is
also at the core of agile software development [23]. For example,
Scrum development starts with a prioritised list of tasks created
by the project sponsor, called the product backlog. In Extreme
Programming, low-priority tasks — called slack — are included in
each iteration to be discarded first in case of unexpected delays.

Shared prioritisation tooling (SPT) is a means for a team to
share their assessments of task priority. The shared dimension of
SPT requires the assessment to be public among team members,
so they can both avoid overlapping and prioritise their work.
By tooling we want to include only software solutions in this
category. Mental prioritisation and pen-and-paper mechanisms
do not constitute SPT solutions. Bug tracking systems — like

1. In a speech in 1954, Dwight D. Eisenhower said “I have two kinds of
problems, the urgent and the important. The urgent are not important, and the
important are never urgent.”. This quote is the basis of the Eisenhower matrix,
to which we refer here [22].

Bugzilla and JIRA — have an SPT as part of their functionality.
The SPT on bug tracking systems requires the inclusion of a
measure of the importance of the bug filed. Bug importance has
two dimensions: impact on system functionality — called severity
— and impact on system value — called priority [24]. For example,
a web application that crashes on Internet Explorer 5.0 has a high
severity since functionality is lost, but low priority if the user base
of that browser is minimal.

3.1 Shared Prioritization Tooling Adoption
SPT exploits collective intelligence to assess and focus work. To
find out how widely SPT is used, we ask:

RQ1: Do developers adopt shared prioritisation tooling?
The GitHub platform offers issue tracking functionality for

software projects, but unlike other issue trackers like JIRA, it
does not assign priority labels to issues by default. Instead, GitHub
offers a generic labelling system, that developers can use to “signify
priority, category, or any other information you find useful” [25].

Thus, to answer RQ1, we performed an exploratory study over
GitHub repositories. We collected GitHub projects and counted how
many use GitHub’s labelling system as SPT. To determine whether
a project is using labels as SPT, we applied two heuristics to its
label’s text and colour: a project uses SPT 1) if the tokenisation and
stemming of label text snippets intersects a bag of priority related
words or 2) if its colour scheme suggests a priority ranking. For #1,
we took the list of priority-related words from the field names and
default priority rankings used by JIRA v6.3 (Section 5.1), JIRA
v6.4 [26] and Bugzilla [27] . For #2, we used the semaphore colours
(red, yellow and green) to identify repositories that colour-encode
priorities, as suggested by industry practitioners [28] [29]. We
evaluated our heuristics by applying them to 60 GitHub repositories,
sampled uniformly. One of us manually assessed these projects’
use of SPT and found that our heuristics have an F1 score of 0.8
for repositories using labels as SPT.

We applied these heuristics to the labels we extracted from the
600 most forked repositories created between January 2017 and
April 2018. The GitHub development model requires contributors
to first create a copy of the repository via a fork, and then submit
code contributions using pull requests [30]. The number of forks is
a good indicator of project activity [31], as it is highly correlated
with the number of contributors, number of commits, and number
of branches [32]. We conservatively considered that the most forked
repositories are more likely to use SPT, as they are more likely to
have active teams that would benefit from the coordination that SPT
provides. Our finding is that developers on GitHub, a pre-eminent
developer collaboration site, rarely use its prioritisation facilities:

Finding 1: Only 6.3% of 60 uniformly sampled GitHub
projects adopt shared prioritisation tooling.

To the extent to which GitHub generalises, development teams
rarely use SPT when its use is optional. We argue that this is
not evidence that shared prioritisation is unneeded, but rather
evidence that existing SPT is not fit for purpose. Next, we describe
a survey of developers who use SPT. The key finding is that priority
inflation is, indeed, a problem. This may explain our initial finding
that developers do not adopt SPT when given the option.

Threats to Validity: Our study faces the standard external
validity threat: it generalises only to the extent GitHub does. We
uniformly sampled the most active GitHub repositories to mitigate
this threat. Since we rely on the number of forks as a proxy
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Fig. 1. Role in the development process: The horizontal axis represents
the number of participants per role. The survey allowed the selection of
multiple roles per participant. This figure represents the answers of 152
software professionals.

measure for projects more likely to use prioritisation, we also face
a construct validity threat. This threat is mitigated by empirical
studies that show the number of forks is correlated with project
activity [30], [31].

3.2 The Cost of Priority Inflation

Finding 1 shows developers generally tend not to use SPT when
its adoption is optional. Here, we investigate whether priority
inflation is the reason, via a survey. We solicited survey participants
from Apache Software Foundation contributors (Section 5.1) and
software engineers in the authors’ social networks. 39 Apache
contributors took our survey as did 113 software engineers from
our social networks. Convenience sampling2 is appropriate given
the exploratory nature of this study [33].

Figure 1 reports the roles covered in the software development
process by the survey respondents in their organisations. The
distribution of data in Figure 1 indicates that the sample is diverse,
with an emphasis on the developer role. Since we did not know
how many roles a respondent might perform, we allowed them to
select more than one role. Developer-architects are the largest group
with 13 participants, followed by only-testers with 9 participants.
Only 3 participants reported performing all 5 roles included in the
survey. We post complete survey responses at our project page [12].

We surveyed using the questionnaire in Table 2. While question
P6 is an open-ended question, the rest of the questionnaire is
multiple-choice. The questions fall into three groups by role: bug
reporting, fixing, and prioritisation. We instructed participants to
only answer questions pertaining to roles they actually perform.

An indicator that priority inflation may have occurred is that
the priority value filled by the original reporter was later corrected
by another member of the team, such as a software developer
or a business analyst. We formulated the survey questions about
bug reporting to investigate this behaviour. In the limit, as priority
inflation becomes the rule, the priority field of issues becomes
irrelevant, since developers will learn to ignore it. The survey’s
bug-fixing questions seek to elucidate the relevance of the priority
field information for bug fixers, when compared with other fields
included in the bug report. We asked survey participants about
the usefulness of a list of bug report fields, including “steps to

2. In convenience sampling, the main selection criteria is ease of collection.

reproduce”, “attached screenshot” and, of course, “priority”. Survey
participants can then indicate, for each field, if they normally find
useful information, or if they find blank, incomplete, or incorrect
information. Finally, the bug prioritisation questions ask developers
directly how prevalent priority inflation (or deflation) is, how it
impacts their work, and what measures are taken to alleviate it.

RQ2: How does priority inflation impact software development
teams?

The bug prioritisation questions aim to discover whether the
bug reporters assign priorities that differ from their true assessment.
Reporters can dishonestly over or understate bug priority. As seen
in Table 3, 25% of the participants reported working on projects
where priority inflation is frequent while another 64% reported that
priority inflation occurs occasionally. Regarding priority deflation,
15% work on projects where the bug report priorities are frequently
understated, while 64.63% report that deflation occurs occasionally.

31% of those who answered P5 affirm that understated/over-
stated priorities have a significant impact on their daily duties, while
50% of them believe the impact is minimal. P5 is inadvertently
ambiguous: we contend that most readers would interpret it to be
one-sided and only about negative impact, but we recognise that
some may interpret it as two-sided. To address this, we analysed P6
in depth and found that from the participants that include an impact
description, 82% reported a negative impact, resource misallocation
being the most common response with 37%. These numbers show
that many participants found that priority inflation has a negative
impact on their daily activities.

Question P6 of our survey is optional. Among 65 responses,
the most popular measures were the following: 1) 34% reported
a gatekeeping procedure, where a third-party verifies the priority
included by the original reporter. This implies that the reported
priority might become irrelevant if the gatekeeper unilaterally
overwrites it; 2) 12% mentioned user training, indicating the
requisites and characteristics required by each level on the priority
hierarchy. In summary:

Finding 2: In a survey of 152 developers, 31% of respondents
reported that inaccurate priorities misallocated development
effort, 25% stated that priority inflation occurs frequently in
their projects, and 15% reported working on projects where
priority deflation is frequent.

This finding suggests that priority inflation is a common
problem in software teams adopting SPTs and that it has a negative
impact on their daily activities. Using convenience sampling to
recruit participants for our survey is a strong threat to this finding’s
external validity. It is, however, standard practice in an exploratory
study such as ours [33].

4 SOFTWARE PROCESSES AS GAMES

This section is a précis of the game theoretic concepts on which
this work rests. First, we present extended form games: a game
representation suitable for process modelling. Extended form
games generate enormous game trees when approaching to real-
world scenarios, so we introduce two game reduction techniques:
empirical game-theoretic analysis (Section 4.2) and the Twins
Player Reduction (Section 4.3). These techniques bring software
processes into the reach of our analysis.
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TABLE 2
The questionnaire presented to 152 software engineers.

Bug Reporting Duties
R1: When you create a bug report, which fields do you usually fill out?
R2: If a bug report changes, who changes it?
R3: When does your bug report need updating?
R4: In what percentage of your bug reports does the priority field change?
R5: When writing bug reports, how often do you overstate the priority to speed resolution?
Bug Fixing Duties
F1: How useful are bug reports for fixing bugs?
F2: In what percentage of your bug reports are the priority fields useful?
Bug Prioritisation
P1: How many priority levels are typically supported by the bug reporting system(s) you use?
P2: How many priority levels do you think are needed for your current project(s)?
P3: Considering your current software project(s): How often is priority understated (or deflated) in bug reports?
P4: Considering your current software project(s): How often is priority overstated (or inflated) in bug reports?
P5: Is priority inflation/deflation affecting your work?
P6: If priority inflation/deflation is affecting your work, please detail how and what steps are being taken to address it.

TABLE 3
Survey responses to questions about the frequency of priority inflation

and deflation in the respondent’s current software project.

Anomaly Question Never Occasionally Frequently
Priority Inflation P3 11% 64% 25%

Priority Deflation P4 20% 65% 15%

4.1 Extended Form Games

Software processes are inherently temporal. In game theory,
extensive form games (EFGs) represent players interacting over
time. At their core, EFGs model multi-round games as trees, where
some nodes represent nature and inject non-determinism into the
game and the rest represent players. At each of a player’s nodes,
the player chooses an action, so the number of actions determines
the out-degree of each player node. Formally, we have

Definition 4.1. (Extensive form game) A finite perfect-
information extensive form game is a tuple (N,H, p,A,U) where:

• N is a set of n players;
• H is a set of histories, where a history is a possible sequence

of actions. HT ⊆ H is the set of terminal histories.
• p : H \HT 7→ N is a function that assigns to each non-

terminal history h ∈ H \HT a player who must make a
decision at h.

• For each h ∈ H \HT , A(h) is the set of actions that player
p(h) may take after history h. A player can also randomize
over these actions.

• U = (u1, . . . ,un) where ui : HT 7→ R is the utility function
of player i at a terminal history ∈ HT [34] [14].

The path to a node from a game’s starting node is a history,
since it captures all decisions all the players took to reach that node.
Terminal histories correspond to completed games and contain each
player’s payoff.

Sazawal and Sudan’s extensive-form game model of software
evolution is an excellent example of Defintion 4.1 applied to a
seminal software engineering problem [35]. In their game, end-
users and a development team are players. The user’s actions are
to accept the initial design or make a design change request. The
development team actions are: 1) to accept the change request

and perform minor modifications 2) to accept the change request
and completely restructure the design, or 3) to ignore the change
request.

A game tree grows exponentially in the out-degree of each
node with the number of rounds as the base. Naı̈ve use of EFGs
requires reasoning about astronomically huge trees. Sophisticated
use of EFGs has an extensive literature that details various ways
to employ abstraction to reduce game trees [36]. Among these
approaches, we use two: empirical game theory analysis and the
twins reduction.

4.2 Empirical Game-Theoretic Analysis
Empirical game-theoretic analysis (EGTA), proposed by Well-
man [7], is a game theoretic framework that employs two techniques
to reduce game size: sampling action sequences and simulation
to reduce an EFG to a normal form game, in which all players
move only once, simultaneously. It samples each player’s action
sequences to reduce the out-degree of player nodes and restricts
the tree’s height to the number of players, as shown in Figure 2. In
the abstracted game, each player’s “action” is to choose an action
sequence from among that player’s possible action sequences in
the original game. This restriction of a player’s actions to action
sequences restricts the height of the tree.

EGTA compresses complex games into smaller representations,
and simulation is key to accomplishing this. EGTA simulates each
terminal history of the reduced representation to compute the
corresponding pay-off values per player.

Figure 2 models a two-player three-round rock-paper-scissors
game under EGTA: from a full game tree of height 6 and 364 nodes
we obtain an abstract game of height 2 and 7 nodes. Instead of
having actions at the round level, now a player’s action is to select
an action sequence. Player 1 has two available sequences: rock,
paper, and scissors (RPS) or a stochastic sequence where playing
scissors, then paper and finally rock has a probability of 0.3 and the
probability of playing paper, rock, and scissors is 0.7 (30% SPR /
70% PRS). Player 2 can choose between rock-rock-paper (RRP)
and paper-paper-scissors (PPS). The terminal histories contain the
pay-off values per player. For example, when player 1 selects RPS
and player 2 selects RRP, player 1 wins twice, producing a 2-0
score. However, in the terminal histories that involve a stochastic
sequence (like 30% SPR / 70% PRS) the expected pay-off values
must be obtained by averaging simulation results.
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Fig. 2. EGTA-abstracted game for a 2-player-3-round rock-paper-scissors
game: each round victory is rewarded with 1 point and draws give no
points to either player.

The first realization of EGTA, due to Walsh et al., predates
the definition of EGTA itself [37]. Walsh et al. use heuristic
strategies, defined as “policies that govern the choice of individual
actions” [37]. This definition is very general: if we are using a
game tree representation like the one in Figure 2, any program
that traverses it qualifies as a heuristic strategy. We do not need
this degree of generality, so, in this work, heuristic strategies
are probability distributions over the actions at a decision node,
guarded by a condition over the game state. A game analyst defines
heuristic strategies based on their understanding of the game, to
test hypotheses about player behaviour, or by interviewing experts
or participants.

For example, consider the Assessor’s Dilemma in Table 1
(Section 2) again. The primitive actions in this game are “inflate”
and “accurate”. An extended form version of this game would
permit Alice and Bob to repeatedly choose one of these actions
over a sequence of bugs. A possible heuristic strategy for this
extended game might be “inflate only if there are more than 10
high priority bugs in the development queue”. We call the set of
heuristic strategies for a empirical game its strategy catalogue.

Normal form games are those games in which all players
move only once, simultaneously, like a single round of rock-
paper-scissors. Many game representations can be reduced to a
normal-form, so it is considered “arguably the most fundamental
in game theory” [14]. Walsh et al. represent empirical games using
the normal-form, whose heuristic pay-off table is obtained via
simulation [37]. Once the heuristic payoff table is ready, several
algorithms are available for obtaining its Nash Equilibria [38]. In
this paper, we rely on the algorithm implementations provided
by Gambit, a software tool extensively used in research [39].
Gambit has proven to be an invaluable resource, as it allowed us to
focus our efforts on game-theoretic analysis instead of algorithm
implementation.

When building the pay-off table, Walsh et al. assume a
symmetric game [37]. In symmetric games, pay-off values are
independent of player identity and depend instead only on player
actions. Consider the scenario in Section 2: Bob and Alice have
the same action set and their pay-offs depend only on the action
played. A symmetric game with a player set N and an action set S
needs to compute

(|N|+|S|−1
|N|

)
entries for its pay-off table, instead of

the |S||N| entries required for an asymmetric game.

4.3 The Twins Player Reduction
EGTA is not enough to bring many interesting software processes
into computational reach. Game representation size using the
normal form and a pay-off matrix grows exponentially with the
number of players and strategies [40]. Our bug repair and issue
resolution data, for instance, contains 235 players. Even when we
restrict each player to 7 actions, the resulting games are infeasibly
large. This problem is not new. The EGTA community already
addresses it with several player reduction techniques [41], [42],
[43].

An intuitive player reduction approach is to cluster players
by their payoffs and strategies. Modelling all the players in a
cluster as a single decision maker, however, ignores the fact that
players within a cluster may act differently because of the lockstep
actions of the other players within the cluster. For example, imagine
a simplified priority inflation game with a cluster with 10 QA
engineers, where 9 of them adopt the “accurate” action. Clearly,
the remaining QA engineer has a strong incentive to deviate and
start inflating. Thus, the Nash equilibria computed for games using
naı̈ve clustering can be inaccurate.

To solve this problem, Ficici et al. proposed the Twins Player
Reduction approach [43]. Given a set of pure (i.e. deterministic)
strategies, Ficici et al. compute a feature vector for each player
whose components are the average payoff for each strategy over a
set of sample game instances, then cluster them through k-means.
In Ficici et al.’s nomenclature, players in the same cluster have
the same strategic view. To support a reduced game that permits a
player to deviate from their cluster’s strategy, Ficici et al. represent
each cluster with two players, the eponymous twins, in the reduced
game. In a twins game, assume Player 1 selects Strategy A and his
twin, Player 2, selects Strategy B: player 1’s payoff corresponds
to an agent who plays Strategy A in the full game while all other
agents play Strategy B and player 2’s payoff corresponds to an
agent who plays Strategy B in the full game while all other agents
play Strategy A.

Twins Player Reduction applies to both symmetric and asym-
metric games, but is especially powerful when applied to symmetric
games. When the game is symmetric, all players have the same
expected payoffs for all strategies, hence they all have the same
strategic view and fall into the same cluster. As noted above,
Walsh’s EGTA (Section 4.2) assumes symmetry, so combining it
with the Twins Player Reduction reduces the number of players
to two and improves the scalability of our analysis. Although a
twins game allows a twin to defect, Ficici et al. chose to restrict
their analysis to Twin Symmetric Nash Equilibria (TSNE), a subset
of Nash equilibria in which both twins adopt the same strategy.
Ficici et al. prove that all twin games have a TSNE. We have
followed them here: from the equilibria produced by the game
solver, we keep only TSNE. Ficici et al. obtained pay-offs from a
linear regression model trained with actual game data or simulation
outputs. However, Wiedenbeck and Wellman [42] obtained better
results via direct simulation, so this is the approach we adopt here.

5 TASKASSESSOR: MODELLING BUG REPAIR

Figure 3 describes TASKASSESSOR, our approach for modelling
software processes. It has three inputs. Two involve strategies,
which players use to decide which actions to take. The game analyst
must, of course, find sufficient process data from which to extract
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Fig. 3. TASKASSESSOR: Empirical game design for modelling software processes.

empirical strategies, strategies we observe players following in the
data, and inputs for the process simulator. Heuristic strategies are
obtained from domain experts. The game analyst can also propose
heuristic strategies to test hypotheses about how participants
interact in the game. The analyst must generate a reduced game to
make the analysis tractable. We merge the empirical and heuristic
strategies, then feed them, along with the relevant process data and
the reduced game, to the simulator to compute the payoff matrix.
Finally, we compute the Nash equilibria.

With Nash equilibria in hand, we compare them with the goals
of the process we are analysing. When we apply TASKASSESSOR

to ineffective processes, we expect to find mismatches between
the desired equilibrium and a player’s equilibrium strategies. We
diagnose how a player’s action set and incentives cause these
mismatches, then use mechanism design to consider changes to the
action set and rewards to reduce or eliminate these mismatches.

TASKASSESSOR is an instance of Game-Theoretic Process
Improvement (GTPI) [44]. GTPI is a process improvement frame-
work that relies on game-theoretic models for problem diagnosis
and process intervention. TASKASSESSOR is a realisation of
GTPI tailored to address the priority inflation problem of task
prioritisation.

This section introduces and validates TASKASSESSOR, our
simulator that models bug repair and issue resolution as a game.
Section 5.1 describes the bug repair and issue resolution corpus
with which we built and validated TASKASSESSOR. Modelling
task prioritisation requires deciding what is relevant and important
to capture and what is not. Section 5.2 details those decisions and
Section 5.3 describes how we built TASKASSESSOR. Section 5.4
validates TASKASSESSOR, then Section 5.5 discusses the threats to
TASKASSESSOR’s validity. Section 5.6 closes by describing how
to use TASKASSESSOR.

5.1 Bug Repair and Issue Resolution Corpus

We collected bug repair and issue resolution data from open source
projects in the Apache Software Foundation JIRA Repository
(version 6.3.4) [45], using its public REST API [46]. JIRA manages
issues, which represent software artefacts, such as bugs, feature
requests, or tasks. From these data sources, we built a corpus
of issue lifecycle data. In our corpus, 53% of the issues are bug
reports. We dropped JIRA projects that we could not match with
a Git repository [47], because we use Git commits to determine
whether or not an issue was resolved. This gave us 15 projects.

Our game-theoretic model of bug prioritisation is suitable for
scenarios where 1) teams resolve bugs according to their assigned
priority and 2) QA engineers are interested in obtaining fixes
for their reported bugs and therefore compete for developer time

TABLE 4
The TASKASSESSOR Corpus of Issues extracted from JIRA and GitHub.

Project Name Drive-by R. Engaged R. Issues Non-default

OFBIZ 151 95 5120 51.5%

CASSANDRA 281 116 7417 53.7%

CLOUDSTACK 115 99 7463 47.9%

MAHOUT 54 25 1044 36.8%

ISIS 15 5 1125 67.3%

SPARK 35 14 1330 44.4%

and attention. Such projects are subject to the assessor’s dilemma.
Despite the cost of developer time, many projects do not use
the priority field, so we exclude them. For us, a project is not
actively using priorities if the proportion of issues with non-default
priorities is less than 30.0%, the rounded median of non-default
priority usage over our dataset. This project-using-priority filter
left us with 6 projects and their issues, as shown in Table 4. When
building and evaluating TASKASSESSOR, we consolidated the
issues across these projects to maximise the total data available.

Reporters that participate sporadically in bug repair and issue
resolution are not really involved in our task assessment game and
will not learn from or respond to changing rewards: they are not
acting as QA engineers. We define an engaged reporter as one who
files at least 10 different issues on 10 different days. Under this
definition, 53.3% of reporters are engaged. We deem the rest to
be drive-by, unengaged reporters, and discard their issues. Under
this engaged-reporter, i.e. QA engineer, filter, we extracted 23,499
issues from these 6 projects, reported between May 2006 and
November 2015 and involving 354 reporters. The code to extract
our corpus from JIRA is available at our project page [12].

We applied our using-priorities and engaged-reporter filters
to focus on people and projects actively using JIRA’s shared
task prioritisation tooling. They can, of course, also introduce
bias. Ablation showed that removing these filters just slows
experimentation without changing the results. Game generation for
distributed prioritisation under reduced bandwidth (Section 6.1)
takes 96% more time without the filters. When only the engaged-
reporter filter is active, game generation takes 44% more time. This
figures in 28% when the only filter active is using-priorities. All
three of these scenarios produce the same Nash equilibria.

Out-of-the-box, JIRA supports five priority labels: Blocker,
Critical, Major, Minor, Trivial [48]. JIRA defines these labels, but
few developers know JIRA’s definitions and rely instead on their
meanings in ordinary language. These meanings naturally split
these five labels in two: {Blocker, Critical, Major} and {Minor,
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Trivial}. Within each subset, distinctions can be hard to make:
is Blocker worse than Critical? Further, different definitions and
rankings will emerge in different projects, especially in a corpus
that is not Google-scale. For these reasons, we reduce these labels
to two, mapping Blocker, Critical, Major to High and Minor and
Trivial to Low. This boosts signal and allows us to focus on harmful
mislabelling of priority (whether inflation or deflation).

5.2 TASKASSESSOR as a Game
Developers are expensive; their attention is a scarce resource for
which new features and bug fixes compete [49]. Some software
processes rely on “Quality Assurance” (QA) engineers to report
issues, monitor their progress, and verify their resolution. We model
such processes as a tragedy of the commons in which QA engineers
— the players — compete with each other for the shared commons
of developer time.

Our focus is priority inflation in shared prioritisation tooling,
so, in our game, QA engineers can inflate, deflate, or honestly
report an issue’s priority. In line with the competent programmer
hypothesis [50], we assume QA engineers are competent and
usually know the ground truth priority of an issue. In this work, we
are using classic game theory, in which players behave rationally.
Thus, QA engineers seek to maximise the number of their issues
that developers resolve. Later sections show that this simple model
is sufficient to capture actual issue prioritisation behaviour and to
provide a solid foundation for a mechanism design solution to the
problem of priority inflation. Considering behavioural game theory
is future work [51].

In the TASKASSESSOR game, a QA engineer’s strategy is their
propensity to change an issue’s ground truth priority. Let Pg be a
random variable that denotes the ground truth priority of an issue,
Hq be a random variable for the QA engineer q reporting an issue
as high and Lq denote reporting an issue as low priority. A QA
engineer’s inflation probability is PI = P(Hq|Pg = L); it is a QA
engineer’s conditional probability to inflate a low priority task. A
QA engineer’s deflation probability is PD = P(Lq|Pg = H); it is a
QA engineer’s conditional probability to deflate a high priority task.
Hence, the probability for a QA engineer to honestly assess an
issue is 1−PI and 1−PD. A QA engineer is “honest” if s/he never
knowingly misprioritises an issue, i.e. PI = PD = 0 for her/him, and
as “dishonest” if s/he always inflates or deflates, i.e. PI = PD = 1
for her/him.

To determine our players’ empirical strategies, we look to the
data. To learn an engineer’s strategy is to learn his PI and PD. To
do this from data, we need the ground truth. Using labelled data is
a possibility, but we adopt a different strategy: the expedient of 3rd
party assessment. In our data set, 3rd party assessment manifests
itself as a report whose priority label was changed by a 3rd party;
254 bug reporters filed such a report. Section 5.5 discusses the
construct threat this proxy for misprioritisation poses.

To extract empirical strategies from our corpus, we cluster
observed strategies. We used the k-means algorithm implementation
from scikit-learn [52] to cluster the players and infer these
strategies. In Table 5, the rows whose Origin is “Apache data”
show the empirical strategies obtained. We are also very interested
in assessing how the honest and “Always Inflate” (PI = 1 6= PD = 0)
strategies perform in the assessor’s dilemma because we want to
encourage honest prioritisation and discourage inflation. Thus, we
add these two heuristic strategies (Section 4.2) to the empirical
strategies we mined. Table 5, as a whole, is TASKASSESSOR’s
strategy catalogue.

Surprisingly, deflation dominates inflation in three of the five
empirical strategies in Table 5; indeed, persistent deflaters deflate
all high priority issues that pass through their hands. Just over
40.0% of all reporters are deflaters. Clearly, a large portion of
reporters are focusing on reducing the number of high priority
issues that developers see, rather than merely maximising the
number of their issues that developers fix. A payoff function that
counts all of a QA engineer’s issues, would implicitly penalise
deflators and fail to explain their behaviour. Thus, our payoff
function is simply the count of issues that a QA engineer files as
high priority that the developer team fixes:

payoff (r) = ∑
f∈F

h(r, f ), (1)

where F is the set of all fixes or features the development team
implements and h returns 1 if r files f with high priority.

A classical game consists of players, actions, strategies, and
payoff function (Section 2). Here, we have described such a game.
Unfortunately, classical game theory does not scale.

5.3 TASKASSESSOR under Twins and EGTA
Now, we discuss how we reduce our game to make its analysis of
priority inflation tractable. It requires two major changes. Working
top down, we reduce the number of players by clustering them
following the Twins Player Reduction (Section 4.3), then implement
our payoff function as a simulation model to handle temporality, as
required by EGTA (Section 4.2),

Table 6 describes TASKASSESSOR’s parameters. ND is the
size of the development team. TASKASSESSOR uses the queueing
discipline of the development queue to model whether developers
consider the reported priority. Mdev = Priority specifies total trust
in priority labels; Mdev = FIFO specifies total mistrust. When
Mdev = Priority, tie breaking is FIFO. A simulation run stops when
the development team fixes N f bugs.

We also assume that bug fixes and new features are independent
from each other and can be resolved with a single commit made,
since evidence suggests this happens in the majority of cases [53].
QA engineers file reports in the tracking system in batches after
executing a group of test cases. Hence, we model report arrival
with two random variables: the time between batches TIA and the
number of reports per batch Nb.

Each report has a ground truth JIRA priority Pg and is assigned
to QA engineer R. The JIRA project observed that its users tended
to confuse severity, the technical difficulty of a task, with its
priority, its value to an enduser [9]. Thus, they decided to only
keep one field — priority — whose purpose is to define “the order
in which engineers should work on issues” [54]. Since we use
JIRA data, we use JIRA priorities. A QA engineer’s assessment
strategy Sr governs the priority they assign to a task. Tasks require
different time to be fixed, which depends on their JIRA priority;
Trp determines, for each priority p, the amount of time to resolve a
task. Developers ignore some reports; Qp captures this probability.
To set these parameters to TASKASSESSOR, we build empirical
probability distributions based on a linear interpolation between
sample quantiles [55]. We define I to be a tuple of settings bound
to all the parameters in Table 6. We treat I as an associative array
and use I[name] to access its components.

Under the Twins Player Reduction, ours is a symmetric, two
player game. From |S| and I, TASKASSESSOR, as defined in
Algorithm 1, forms the payoff matrix in Table 7. The coordinates
of each cell is a pair of actions, i.e. an action profile. Each cell
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TABLE 5
Strategy catalogue S for our task prioritisation game. PI and PD represent the conditional probabilities that a QA engineer inflates or deflates an issue.

Strategy PI PD Cluster Size Origin Description

Honest 0.00 0.00 – Heuristic Players adopting this strategy always report their priority assessment

Always Inflate 1.00 0.00 – Heuristic Players adopting this strategy report every bug discovered as high priority

Empirically Honest 0.05 0.01 50.39% Apache data Empirical strategy with the lowest probability for dishonesty

Empirically Inflater 0.19 0.02 9.06% Apache data Empirical strategy with the highest probability for priority inflation

Persistent Deflater 0.08 1.00 7.87% Apache data Empirical strategy with the highest probability for priority deflation

Regular Deflater 0.04 0.58 16.54% Apache data Empirical strategy with a significant probability for priority deflation

Occasional Deflater 0.06 0.26 16.14% Apache data Empirical strategy with a high probability for priority deflation

TABLE 6
PlayGame’s input variables. Random variables are sampled during a run
until the number of bugs fixed equals N f . The nonrandom variables are

constant during a simulation run.

Nonrandom Parameters

R The set of QA engineers (reporters).

ND Size of the developer team.

Mdev Queuing discipline of the development queue (FIFO or Priority).

Nr Number of simulation runs.

N f Number of bugs to fix in a simulation run.

Random Parameters

TIA Interarrival time of report batches.

Nb Count of bug reports contained in a report batch.

Pg Ground-truth priority of a bug (High or Low).

R QA engineer (reporter) who filed a report or issue.

{Sr} Set of mixed strategies over inflate/deflate/honest each reporter r adopts.

Trp Resolution time of issues/bug reports with JIRA priority p.

Qp Probability the developer team ignores a bug with priority p.

Algorithm 1 [TASKASSESSOR] This algorithm uses TWINS,
Algorithm 2, to construct a payoff matrix for our priority inflation
game.
Input: S, The strategy catalogue, defined Table 5.

I, tuple of PlayGame’s simulation parameters in Table 6.
Output: payoffMatrix, TASKASSESSOR’s payoff matrix.

1: for all (si,s j) ∈ S×S do
2: payoffMatrix[i, j] := TWINS(si,s j, I)
3: return payoffMatrix

contains TWINS(s1,s2, I), the payoff for each player under that
action profile.

Algorithm 2, which defines TWINS, manifests TASKASSES-
SOR’s use of the Twins players reduction, in the context of a
symmetric game: it binds one action to a distinguished player and
binds the other action to all the other players on line 4, then swaps
those bindings on line 6.

PlayGame, defined in Algorithm 3, lies at Algorithm 2’s core.
Algorithm 2 calls PlayGame Nr times and returns the average of
the results of the payoffs of each run. When

⋃
Ai = A, the set of

agents, PlayGame({(Ai,si)}, I) runs our issue resolution and bug
repair game among the players in A, using the action si for the
agents in Ai and the simulation parameters in I. It returns the payoff
function defined in Equation 1.

TABLE 7
Pay-off matrix TASKASSESSOR builds: since it is symmetric, the game
has only two players (Twin1 and Twin2) and both player has |S| actions.
Algorithm 2, TWINS, computes the payoff for each pair of actions for

each cell.

Twin2: s1 · · · Twin2: sn

Twin1: s1 u1,u2 = TWINS(s1,s1, I) · · · u1,u2 = TWINS(s1,sn, I)
· · · · · · · · · · · ·

Twin1: sn u1,u2 = TWINS(sn,s1, I) · · · u1,u2 = TWINS(sn,sn, I)

Algorithm 2 [TWINS] This algorithm uses symmetric twins player
reduction to estimate the payoff of an action profile in a symmetric
twins game (Section 4.3) via the PlayGame simulation.
Input: s1, Twin1’s action.

s2, Twin2’s action.
I, tuple of PlayGame’s simulation parameters in Table 6.

Output: Average payoffs for Twin1 and Twin2.
1: r := choose I[R]
2: U1,U2 := {},{}
3: for i = 1 to I[Nr] do
4: payoffs := PlayGame({({r},s1),(I[R]\{r},s2)}, I)
5: U1 :=U1∪{payoffs(r)}
6: payoffs := PlayGame({({r},s2),(I[R]\{r},s1)}, I)
7: U2 :=U2∪{payoffs(r)}
8: return 1

I[Nr ]
∑u∈U1

u, 1
N ∑u∈U2

u

Adapting TASKASSESSOR to a new task prioritisation process
requires only redefining PlayGame, a simple but extremely general
task prioritisation simulation. In this work, we use three different
definitions to model the three different processes we discuss in
later sections. For each of these prioritisation processes, we were
able to reuse large parts of the PlayGame algorithm.

Finally, TASKASSESSOR passes the resulting payoff matrix to
game solver. Although we are using Gambit [56] in this paper,
TASKASSESSOR is solver agnostic. TASKASSESSOR produces
payoff values for each cell of the payoff matrix, that can then be
organised in the format required by a specific solver. The solver
computes one or more probability distributions over each player
actions (the rows or columns in Table 7, corresponding to heuristic
strategies), or a mixed strategy per player in game-theoretic terms.
This map of players to strategies is called a strategy profile, and
each strategy profile produced by the solver corresponds to a
Nash equilibrium. According to the TSNE definition (Section 4.2),
TASKASSESSOR only considers strategy profiles in which both twin
players perform the same mixed strategy. There are various ways
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Algorithm 3 [PlayGame] This algorithm is discrete-event queueing
simulator for generating the number of resolved issues per QA
engineer.

Input: I = 〈Mdev,ND,N f ,TIA,NB,Pg,PR,Trp,{Sr},Qp〉,
the simulation parameters defined in Table 6.

Output: Fixes, a map from reporters to their fixes.
1: time := 0
2: IssueQueueDev := createQueue(Mdev)
3: Devs := initDeveloperTeam(ND)
4: Fixes := {} # An empty map
5: while notFinished(Fixes,N f ) do
6: if newBatch(TIA, time) then
7: Batch := generateBatch(NB,Pg,PR,Trp)
8: for all issue ∈ Batch do
9: reportedPriority := assignPriority(issue,{Sr})

10: enqueue(issue,reportedPriority, IssueQueueDev)
11: for all dev ∈ Devs do
12: devIssue := dev.currentIssue
13: if done(devIssue, time) then
14: Fixes[devIssue.reporter] += payoff (devIssue)
15: if notIgnore(IssueQueueDev,Qp) then
16: dev.currentIssue := dequeue(IssueQueueDev)
17: time += 1
18: return Fixes

to interpret the probability distributions TASKASSESSOR returns.
We adopt the learning interpretation: the probability associated to
each action is the fraction of the time this action is adopted in the
limit, when the game is played multiple times [14].

5.4 Validating TASKASSESSOR

There is no point in diagnosing or fixing a process using an
inaccurate model; useful models capture a phenomenon under study
with sufficient accuracy to support decisions. Thus, validation is
key to assuring stakeholders that our model effectively reflects their
software development process and, therefore, is a solid test bed
for evaluating the effects of the mechanism design decisions, like
those in Section 7.

To validate TASKASSESSOR (Section 5.3), we assess the ability
of its core simulator, PlayGame, to produce output indistinguish-
able from the process it is modelling. Specifically, PlayGame
outputs fl , the percentage of low, and fh, high priority issues
resolved. We start by splitting our dataset into training, validation
and testing. We obtain PlayGame’s parameters from the training
dataset (Table 6). We calibrate PlayGame on the validation dataset.
As usual, we reserve the test data to measure the quality of
PlayGame’s simulation. We selected 60% of our data for training-
validation purposes and the other 40% for testing.

In discrete-event simulation, validation techniques range from
hypothesis testing to human assessment. Hypothesis testing can be
too strict and rule out simulation models that are sufficiently precise
for decision making [57], which in the context of TASKASSESSOR

is process diagnosis. The approach we adopted evaluates if the
simulation output and the real system are close enough to ensure
stakeholder trust via confidence intervals. To this end, we build a
confidence interval from the simulation output, obtain the best-case
and worst-case error of the interval with respect to the measure
in the testing dataset, and accept or reject the simulation model
by comparing the errors obtained with a threshold ε . The value

of ε should be “small enough to allow valid decisions” [57]. We
set ε = 20% to ensure PlayGame is at most 20% wrong when
predicting the percentage of reported bugs that were fixed. Despite
this imprecision, our subsequent results show that PlayGame
captures the influence of priorities in bug fixing while keeping
PlayGame’s model simple, easy to understand, and quick to
execute.

Results: In the testing dataset, 16.1% of low priority bugs
were fixed on average and 33.8% of high priority ones. When
Mdev = Priority, the 95.0% confidence interval for fl , obtained
from 1,000 simulation runs, is [18.1%,20.4%]. When the tested
value falls outside the confidence interval as ours does, the best-
case error is 18.1%− 16.1% = 2.0% and the worst-case error
is 20.4%− 16.1% = 4.0%. Under our validation procedure [57,
Chapter 10, p.326], the validation of PlayGame for fl succeeds
because its worst-case error is 4.0% ≤ 20.0% = ε . By similar
reasoning, validation succeeds for fh as well, since the worst-case
error is 17.0% ≤ 20% = ε , despite the fact that fh = 33.8% /∈
[45.6%,50.1%].

5.5 Threats to Validity
TASKASSESSOR faces the standard threat to its external validity:
its results generalise only to the extent to which its corpus is
representative. It is drawn from JIRA projects, filtered for use
of git, use of prioritisation, and engaged reporters. These filters
can introduce bias not already present in the JIRA projects. As
we showed in Section 5.1, however, the last two filters do not
change the Nash equilibria we compute. To extract empirical
strategies from our corpus, we used the number of third-party
corrections to indicate dishonest reporting. Their use to proxy
inflation or deflation rates represent a construct validity threat. Of
course, a third-party may reprioritise a report for reasons other
than a dishonest initial assessment, including honest mistakes and
new information. However, under our assumptions, a dishonest
QA engineer benefits from an inflated report while a third-party
assessor does not. Thus, we think it is reasonable to assume that
third-party assessment is more likely to be accurate. Mistakes or
logic errors in TASKASSESSOR’s design or implementation are the
main internal validity threat to this work. We mitigate this threat in
two ways. First, we have detailed TASKASSESSOR’s construction
so that readers can themselves assess its logical validity. Second, we
validated TASKASSESSOR output using state of practice techniques
from the simulation community as described in Section 5.4.

5.6 Using TASKASSESSOR

TASKASSESSOR is a diagnosis tool for task prioritisation processes,
tailored to a specific process by redefining its PlayGame simulator.
When modelling a process that is immune to priority inflation,
TASKASSESSOR outputs a single equilibrium with a probability of
1.0 for the Honest Strategy. Such output means that at equilibrium
every task has a reliable priority. In contrast, processes susceptible
to priority inflation have a positive probability for inflationary
strategies — where PI > 0 like “Always Inflate” or “Empirically
Inflater” in Table 5 — at one of its equilibria. A non-zero probability
for these strategies means inflated reports at equilibrium. A worst-
case scenario is a single equilibrium where “Always Inflate” has
a probability of 1.0. It is also possible that TASKASSESSOR finds
multiple, opposing equilibria for a task prioritisation process: like
“Always Inflate” with a probability of 1.0 in one equilibrium and
Honest with a probability of 1.0 in another. As stated in Section 1, a
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Nash equilibrium is stable: once reached, players have no incentive
to deviate. When a game-theoretic model has multiple equilibria,
the analyst can then adopt a learning model that explains how
players interact and reach an specific equilibrium profile [37].

One needs to discuss TASKASSESSOR’s equilibrium results
with stakeholders to validate whether they explain a prioritisation
process. Process modelling is hard: usually one needs to discuss
several models before stakeholder acceptance. If stakeholders
reject TASKASSESSOR’s results, revise the simulation model: over-
simplification or over-engineering can distort pay-off calculations.
Also, ensure that the strategy catalogue does not obviate common
or impactful prioritisation behaviour. Once stakeholders agree with
TASKASSESSOR’s results, it can also evaluate process interventions
to improve a prioritisation process, as we do in Section 7.3.

We implemented TASKASSESSOR in Python3. We implemented
TASKASSESSOR’s Algorithm 2 component in Simpy, a discrete-
event simulation library [58]. You issue

t a s k A s s e s s o r . py −r 100 −d 50 −n 50 −o e q u i l i b r i a . c sv

to generate a payoff matrix for 100 QA engineers and 50 developers,
running until Nt = 50 bugs are fixed and storing the equilibria in
e q u i l i b r i a . c sv .

6 DIAGNOSING CURRENT PRACTICE

Figure 4 describes our understanding of task prioritisation using
the Software Process Engineering Metamodel (SPEM) notation
to represent its roles, tasks and work products [59]. Three tasks,
coloured blue, are common to all the task prioritisation processes
under analysis: reporting, prioritising, and resolving tasks.

Three different task prioritisation processes superimpose in
Figure 4. In distributed prioritization, the reporter role both files
and prioritises tasks. In Section 6.1, we show that distributed
prioritisation is susceptible to priority inflation (Finding 3). To
correct distributed prioritisation’s tendency to priority inflation,
development teams have taken prioritisation away from reporters
and given it to a gatekeeper (light red in Figure 4). In Section 6.2,
we present two findings. First (Finding 4), we make an argument
from queueing theory that gatekeeping only slows task resolution.
Second (Finding 5), we show that even a perfect gatekeeper that
correctly prioritises all reports does not remove the incentive for
inflating priorities. In short, we first confirm the conventional
wisdom about distributed bug prioritisation, then we contradict the
conventional wisdom that gatekeepers improve bug repair.

We are especially interested in the impact of developer
bandwidth on priority inflation: intuitively, scarce development time
magnifies the reward for inflating priorities. Hence, we compute
Nash equilibria for the following two scenarios: in full bandwidth
D, all the developers actively remove reports from the development
queue; in reduced bandwidth D

2 , only half of them are active. In
all scenarios, we assume the developers consider a task’s priority
label when deciding whether to work on the task. Without this
assumption, we cannot distinguish the inflationary propensity of
the two processes we analyse below.

6.1 Distributed Bug Prioritisation
A bug prioritisation process can assign the reporting and prioritisa-
tion of bugs to the QA engineer role. Such processes are common in
both FOSS and industry projects. A company, for instance, adopts

3. TASKASSESSOR is available on our project page [12].

such a process when they decide to outsource the development
services to an external IT provider. In this scenario, the outsourcing
company fixes the bug that the contracted company reports and
prioritises [8]. A QA role appears in some agile settings, where the
team member that discovers a bug is in charge of logging a bug
and assigning its priority [60].

We call bug prioritisation process involving a QA engineer dis-
tributed bug prioritization, because it distributes bug prioritisation
to QA engineers, or bug reporters. Common knowledge suggests
that this process encourages priority inflation as is already reported
by practitioners [2] [1]. To verify this, we ask

RQ3: Is distributed bug prioritisation susceptible to priority
inflation?

We built game-theoretic models by applying our approach
(Section 5) to each bandwidth scenario D and D

2 , finding a
single equilibrium where the probability of “Always Inflate” is
1.0. This differs from the desired outcome of an equilibrium
with a probability of 1.0 for Honest. This finding corroborates
conventional wisdom and validates the accuracy of our approach.
In summary:

Finding 3: Distributed bug prioritisation is susceptible to
priority inflation.

6.2 Do Gatekeepers Prevent Priority Inflation?
A standard approach to address priority inflation is to appoint a
bug triage team, that inspects and corrects bug reports, including
the reported priority [1]. We call such a process a gatekeeper
process, because these teams act as gatekeepers who control access
to developer time. We show that a gatekeeper process does not
prevent priority inflation and, in fact, can only slow development.

Not all software organisations use gatekeepers, but several have
reported on their use. For example, Microsoft reports that their
gatekeeper is a cross-discipline team [4], while Google reports that
some teams delegate this task to a tester-developer pair [3]. In
open-source projects, developers establish a gatekeeping rota, or
they rely on volunteers from the community to perform gatekeeping
duties [61], [62]. Teams adopting an agile process can also include
bug triage tasks, where the product owner, a developer, or a
customer representative performs the gatekeeper role [63], [64].
Our survey also shows that a gatekeeper is a common way to
tackle priority inflation: 34% of responses (Section 3.2). Although
developers can be part of the gatekeeping process, in our experience,
gatekeepers are usually not software developers. Given the high
salaries of developers, we believe teams prefer to invest their time
in building features rather than gatekeeping.

In a gatekeeper process, QA engineers place their issues into
the gatekeeper’s queue, not the development team’s queue. This
process reprises distributed prioritisation in one of two ways. In the
first one, gatekeepers face priority distortion instead of developers;
while in the second one gatekeepers are the ones distorting priorities
for the development team.

Two justifications are usually advanced for adopting a gate-
keeper process. One is to involve business expertise in task
prioritisation to ensure that priorities correctly reflect business
value. The other is economic: gatekeepers are usually cheaper than
developers [49] and, since they focus on issue/bug report quality,
become more efficient at that task than developers. These two
justifications are often in tension because of the cost of business
expertise.
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Fig. 4. Bug prioritisation processes: The blue components are shared between the three processes (including distributed prioritisation), the red ones
are exclusive to the gatekeeper process and the green ones to the assessor-throttling process. The solid lines represent the input/output of an activity,
and the dashed lines link an activity with its performing role.

When an organisation opts for business expertise, it assigns
product managers, business analysts, or even clients to the
gatekeeper role. These stakeholders can potentially be scarce,
expensive, and busy even before taking on a gatekeeper role. As
gatekeepers, they tend to make development slower and more
costly. The economic justification of gatekeeping breaks down
when gatekeeping is a role that developers or product managers
play. Recall that JIRA priorities, which we perforce use in this work,
combine technical severity, i.e. difficulty of resolution, and value,
including risk, to end-users. Regardless of who fills the gatekeeper
role, in general gatekeepers do not learn their technical severity,
since they do not actually resolve issues. When gatekeepers are
drawn from technical employees, like testers, they are no better or
worse at learning to assess business value than developers.

The gatekeeping process includes a bug triage queue that
protects developers from poor issue descriptions, but can be a
bottleneck, especially if the gatekeeping team lacks resources. To
represent this process, we added two elements to our simulation
model in Section 5: a bug triage queue, with a queuing discipline
of Mgk = FIFO, and a gatekeeping team G, whose members take
R time to triage a task with an error rate of Agk.

RQ4: What is the impact of a gatekeeper on issue resolution?

Researchers have successfully used queuing systems with
Poisson arrivals and exponential service times to model real-
world bug repair processes [65], [66]; we follow their lead. We
assume QA engineers file issues under a Poisson distribution, a
gatekeeper takes exponentially distributed time to review them, and
the development team take exponentially distributed time to fix
them. When E(WG) is the mean sojourn time of an issue in the
gatekeeper (or triage) queue, E(WD) is the mean sojourn time of
an issue in the development team queue, and E(WGP) is the mean,
end-to-end, sojourn time of an issue/bug report in a gatekeeping
process, we have

Finding 4: Over a sequence of issues, a gatekeeper can
only slow issue resolution: E(WGP) = E(WG)+E(WD).

Under our assumptions of Poisson arrivals and exponential
service times, the gatekeeper process is a Jackson network using
tandem queues (a triage queue for gatekeepers and a developer
queue) [10]. In Jackson networks, the mean sojourn time of the
whole system at steady state — that is, the time an issue/bug spends
in the system from reporting to fixing — is the sum of the mean

sojourn times of each individual queue of the system [67].
Finding 4 matters even when an organisation adopts gate-

keeping to detect and remove duplicate issues before they reach
developers. In general, a gatekeeper must observe and consider
several issues before 1) determining that they are duplicates and
2) learning to quickly identify and drop them. Let k denote the
expected number of issues one needs to view before realising
that they are duplicate and that each gatekeeper filters reports
for a team of n developers. A developer is at least as good as a
gatekeeper at detecting duplicate bug reports, but each developer
learns independently, so, collectively, they will need to see nk
duplicates before they all can quickly drop them. Both gatekeepers
and developers can learn in parallel; so, given enough duplicates,
the expected time needed to learn recognise duplicates for both
a gatekeeper and a developer team is the same. For m duplicate
reports, there are three cases. If m< k, gatekeeping does not remove
duplicates before they reach developers. If m > kn, then all the
developers will have learned to identify and remove them. In this
case, the gatekeeper provides no advantage in the limit. It is only
when k ≤ m≤ kn that gatekeepers remove duplicates at less cost
than simply asking developers to do it.

Under Finding 4, whenever an issue’s mean sojourn on the
triage queue exceeds zero, a gatekeeper reporting process slows the
delivery of bug fixes. Despite the overhead the gatekeeper process
imposes, if it reduces or eliminates priority inflation, it might be
worth adopting, so we ask

RQ5: Is gatekeeper prioritisation susceptible to priority
inflation?

For the equilibrium analysis, we consider a team of G = 2
gatekeepers that spend R = 20 minutes assessing the priority of an
issue. We set G = 2 because Ayewah reported that Google used
this number [68]; we set R = 20 because Page reported 20 minutes
as the approximate triage effort per bug at Microsoft [4]. We also
explored three performance profiles: a fallible gatekeeper with an
error rate of Agk = 50%, an expert gatekeeper with an error rate of
Agk = 10% and an ideal gatekeeper with an error rate of Agk = 0%.

In both bandwidth scenarios D and D
2 , the fallible gatekeeper

(Agk = 50%) has a single equilibrium with probability 1.0 for
inflating priorities, the “Always Inflate” strategy. This is the
expected result: a fallible gatekeeper leaves the door open to
QA engineers profiting from inflating their reports. The expert
gatekeeper (Agk = 10%) does no better: in both D and D

2 , the expert
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gatekeeper also has a single equilibrium profile with probability 1.0
for the “Always Inflate” strategy: even 90% prioritisation accuracy
is insufficient. What about perfect accuracy? Under the ideal
gatekeeper (Agk = 0%), each scenario produces multiple equilibria:
3 under D

2 bandwidth and 4 under D, not our desired result: a single
equilibrium with probability 1.0 for honest prioritisation4. These
equilibria do not rule out priority inflation. The reason is, under the
ideal gatekeeper, each QA engineer’s pay-off is the same regardless
of their prioritisation decisions. In summary,

Finding 5: Gatekeeper prioritisation is susceptible to priority
inflation.

7 THE ASSESSOR-THROTTLING PROCESS

The gatekeeper process slows issue resolution and bug repair and
does not prevent priority inflation. In this section, we present
assessor-throttling: a novel task prioritisation process that, unlike
gatekeeping, is lightweight and removes priority inflation.

We first present mechanism design (Section 7.1), then apply
it to priority inflation to define and model assessor throttling,
our novel task prioritisation process (Section 7.2). In Section 7.3,
we validate that assessor-throttling prevents priority inflation. In
Section 7.4, we compare distributed prioritisation, gatekeeping, and
assessor-throttling with respect to the expected proportion of high
priority issues resolved. In closing, Section 7.5 presents TheFed, a
tool to support teams who adopt assessor-throttling.

7.1 Mechanism Design
In game theory, the discipline that handles game design in order to
obtain a specific behaviour is called mechanism design. Mechanism
design is also called “inverse game theory”: in game theory, we
try to predict the outcome of a strategic interaction or suggest
to players a course of action, in mechanism design, we wish to
design a strategic interaction that produces the player behaviour we
desire. Using game-theoretic terminology, the goal of mechanism
design is to design a game whose equilibrium maximises the global
utility, independent of player preference [69]. Since we focus on
modelling software processes, the global utility depends not only
on the development team — the players — but especially on the
project stakeholders. In a bug repair context, software quality is a
key stakeholder requirement.

A mechanism has three elements [20]: 1) the strategies players
are able to perform within a game, 2) the mechanism centre that
keeps track of players behaviour, and 3) an outcome rule. The
mechanism centre uses the outcome rule to assign a pay-off value
to each player, according to the strategies they all perform in the
game. This outcome rule must be known to all players.

A mechanism should ideally be strategy-proof and incentive
compatible. We called a mechanism strategy-proof if all the
agents have a dominant strategy. These mechanisms have the
advantage that players do not need to consider the other players’
actions to maximize their pay-offs [20]. A mechanism is incentive
compatible, or truthful, when it requires players to reveal their
private information — in the game context— at equilibrium. For
example, when modelling an auction an incentive compatible
mechanism requires the bidders to bid their private value for the
auctioned item. According to the revelation principle of mechanism
design, every mechanism, as defined above, can be transformed to

4. These equilibria are available at our project page [12].

an equivalent mechanism that is incentive compatible, where all
players reveal their preferences [40]. A mechanism designer’s goal
is to find such transformations.

7.2 Modelling Assessor-Throttling

Assessor-throttling (AT) rests on the insight that developers natu-
rally assess tasks while resolving them. Currently, this developer
assessment is wasted. We can use it to assess the priority assigned
to a task by the bug reporter or QA engineer who filed it. To
construct an incentive compatible mechanism from this developer
assessment of task priority, we rate each QA engineer’s assessment
accuracy; this rating becomes a QA engineer’s reputation. A QA
engineer’s reputation then controls their access to the developer
team in two ways: 1) we use reputation to control how many issues
a QA engineer can add to the development queue when it is under
contention and 2) we display the QA engineer’s reputation when
developers are considering whether to take up a task from the
work queue. Honest QA engineers tend to get more developer time;
dishonest (or incompetent) ones will get less, and eventually, no
access.

The assumption that underlies this reputation mechanism is
that developers can accurately assess a task’s or bug’s priority.
JIRA priorities combine technical severity and business value.
Developers necessarily overcome a task’s technical severity when
they resolve it. While developers vary in expertise and some
might find a bug more difficult, and thus more severe, than other
developers, they are better placed to assess severity than testers
or triage teams. Assessing business value is harder. The ground-
truth assessment of business value relies on the role that generates
software requirements, like the customer, a business analyst, or the
business owner. Nonetheless, software engineers can estimate the
business value when they work in the same domain long enough,
they can eventually qualify as domain experts [11].

Like distributed prioritisation, assessor-throttling decentralises
prioritisation: AT does not introduce a second queue, in contrast
to gatekeeping, and requires both QA engineers and developers to
assess task priority. We model developer assessment mistakes with
Adev. The developer’s assessment is the green task in Figure 4. QA
engineers and task assessors have a reputation Rr. When a developer
finishes a task, they consider its assigned priority. If the developer
agrees with that priority, she rewards the assessor by increasing Rr

by T+; if she disagrees, she penalises the assessor by decreasing
Rr by T−. To allow an assessor to recover from a mistake, we have
T+ > 0; to discourage priority distortion, T+� T−. Assuming that
developer assessment approximates the ground-truth, this behaviour
penalises both dishonest and incompetent QA engineers. AT does
not rely on QA engineer’s intentions to improve bug prioritisation:
both dishonest and incompetent prioritisation are indistinguishable
and discouraged under our model, under the weak assumption that
QA engineers learn over time.

Under AT, developers take action: they reward or penalise QA
engineers. This action implies that we should model them as strate-
gic agents, or players, rather than a commons, as TASKASSESSOR

currently does. Indeed, developers might abuse their power to rank
QA engineers who prioritise tasks they like. As we explain in
Section 5.3, however, adding developers as players to our game-
theoretic model would produce an immense game tree and break
the symmetry assumption on which a number of the game reduction
techniques we use depend (Section 4.2). Treating developers as
players is future work.
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TABLE 8
Pay-off matrix for the assessor’s dilemma using assessor throttling.

Bob: accurate Bob: inflate
Alice: accurate A = 125, B = 125 A = 125, B = 100
Alice: inflate A = 100, B = 125 A = 112.5, B = 112.5

Simulation in Section 7.3 demonstrates the effectiveness of our
mechanism. This is unsurprising, because it aligns with previous
work: restricted to bug repair, Guo et al. found that bug reporter
reputation is a key factor in the likelihood of a bug being fixed [70].
They define reputation as the proportion of reported bugs that are
fixed, following Hooimeijer and Weimer [71]. Neither of these prior
works propose a new process that exploits reputation. AT is a novel
task prioritisation process that exploits a reporter’s reputation and
permits developers to change a QA engineer’s reputation. Further,
AT defines reputation as an agreement with a task resolver, not the
proportion of bugs reported and fixed. Integrated into AT’s reward
system, this operationally changes the definition of reputation into
a measure of honest reporting.

7.3 Assessor-Throttling Prevents Priority Inflation
Let us see how throttling works in the situation described in
Section 2. If Alice reports the accurate priorities of her bugs
and Bob inflates his reports, we have two possible outcomes:
Alice gets only her high priority report fixed — Bob’s inflation
was detected after all his patches were delivered — or she gets
two fixes, because Bob’s inflated trivial bug was fixed first so
he was marked as an offender. Hence, Alice’s expected pay-off
is 0.5× 100+ 0.5× (100+ 50) = 125 and offender Bob obtains
0.5× (100+50)+0.5×50 = 100.

If we update the original pay-off matrix with the throttling pay-
off values, we obtain the matrix in Table 8. The Nash Equilibrium
of the new matrix has both Alice and Bob reporting the accurate
priorities, which is in Foo Inc.’s best interest. Assessor-throttling
appears to prevent priority inflation. To confirm, we ask

RQ6: Is assessor-throttling susceptible to priority inflation?
Assessor-throttling depends on two parameters: the error rate

of the development team (Adev) for detecting dishonesty and the
penalty they apply when they detect such behaviour (T−). In our
experiments, the development team error rate was fixed to Adev =
5%: it is a more palatable value than Adev = 50%, which makes the
priority field irrelevant, or Adev = 100%, which would necessarily
lead to an equilibrium with dishonest prioritisation. Regarding
inflation penalty T−, it needs to have a value big enough so that
the expected benefits from inflation are less than the expected
penalty due to reputation loss. For the sake of deployability, we
want T− to be small since big penalties can face resistance. We
start with T− = 3% and progressively augment it until obtaining
an equilibrium with honest prioritisation. Each value of T− was
analysed under the 2 bandwidth scenarios used in Section 6.

When applying TASKASSESSOR to assessor-throttling with
T− = 3%, the D

2 bandwidth scenario produced a single equilibrium
where the probability of the “Always Inflate” strategy was 1.0. As
explained in Section 5.6, that result identifies a process susceptible
to priority inflation. This lead us to think that the value of the
penalty with respect to the inflation reward is too low to discourage
this behaviour.

If the dishonesty penalty is set to T− = 10%, TASKASSESSOR

produced one TSNE equilibrium for each bandwidth scenario. In

the D
2 bandwidth scenario, TASKASSESSOR outputs the desired

equilibrium where the honest strategy has a probability of 1.0, while
in the D bandwidth scenario this probability is 0.97. Although close,
for the D bandwidth scenario we still do not obtain priority inflation
immunity. By increasing the penalty value, we now observe that
equilibria with high probability for honest behaviour start to appear.

When applying TASKASSESSOR to an assessor-throttling
process with T−= 20%, we obtain the same result in both scenarios:
a single equilibrium where the honest strategy has a probability
of 1.0. We obtain the same result with a dishonesty penalty of
T− = 22%. Having the expected equilibrium with such a low
penalty value is an indicator of the actionability of the assessor-
throttling process. This also reflects that penalty calibration is a
key factor for its effectiveness. In summary:

Finding 6: Assessor-throttling prevents priority inflation.

After calibrating the penalty-value parameter, assessor-
throttling produces an equilibrium where the honest strategy has a
probability of 1.0, which implies honest bug prioritisation.

7.4 Racing to the Fixes
We now compare each of the task prioritisation processes presented
under the mean percentage of high priority bugs that were
fixed E(gh). We show that assessor-throttling always performs
at least as well as the other two prioritisation processes in the
bandwidth scenarios used in Section 6. In fact, assessor-throttling
is statistically indistinguishable from an ideal gatekeeper. The
comparison is made in terms of impact on software quality, so our
last research question is

RQ7: What is the impact of the adopted task prioritisation
process on the quality of the software product?

Several techniques are available in the simulation and opera-
tions research communities for finding the best simulated system
design according to an expected performance measure [72]. The
two-stage Bonferroni procedure proposed by Nelson and Matej-
cik [73] is one of the many techniques that rely on an indifference
zone. Indifference zone techniques are known to be statistically
conservative: they guarantee a lower bound to the probability of
selecting the best system 1−α given that this system is at least
ε better than the rest of the systems [74]. In our context, the
system designs under comparison are the prioritisation processes
at their equilibria (Table 9) and the performance measure is E(gh).
The two-stage Bonferroni procedure takes three parameters: ε ,
1−α , and the first-stage sample size R0. We execute R0 iterations
on each task prioritisation process at equilibrium, which is then
used as an input to obtain the second-stage sample size R. When
R > R0, two-stage Bonferroni requires executing additional R−R0
iterations. From the simulation iterations, we obtain E(gh) per task
prioritisation process at equilibrium. From the simulation results,
we build confidence intervals. From them, we can conclude that a
task prioritisation process is either inferior to the best performer or
statistically indistinguishable from it.

Due to computational costs, we simulate each scenario for
R0 = 120 iterations. We would also like a 95% confidence of
obtaining the best process, given that the best differs from the
second best by at least gh = 5%. That translates to 1−α = 0.95
and ε = 0.05. Table 9 presents the E(gh) for each task prioritisation
process in a D

2 bandwidth scenario: in case the task prioritisation
process has more than one equilibrium, we report the one with
the best performance. The statistically indistinguishable best repair
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TABLE 9
Performance comparison of task prioritisation processes in the D

2
bandwidth scenario.

Reporting process # equilibria E(gh) at best

Distributed Prioritization 1 28%

Gatekeeper Agk = 50% 1 52%

Gatekeeper Agk = 10% 1 97%

Gatekeeper Agk = 0% 3 97%

Assessor-throttling T− = 3% 1 22%

Assessor-throttling T− = 10% 1 97%

Assessor-throttling T− = 20% 1 97%

processes are gatekeeper with Agk = 10% error rate, gatekeeper with
a Agk = 0% error rate, assessor-throttling with T−= 20% dishonesty
penalty and assessor-throttling with T− = 10% dishonesty penalty.
The best performer has a performance value of E(gh) = 0.97, which
is significantly better than the ones marked as inferior.

Under D, when all developers are available, the best performer
is one of the equilibria of the gatekeeper with Agk = 0% error
rate with a performance value of E(gh) = 0.96. Distributed
prioritisation with E(gh) = 0.57 and assessor-throttling with a
T− = 3% dishonesty penalty and E(gh) = 0.16 are inferior, while
the rest are statistically indistinguishable from the best performing
equilibrium of a gatekeeper with Agk = 0%. Given a sufficiently
strong penalty value, we find

Finding 7: Developers fix as many high priority bugs under
assessor-throttling as under an ideal, error-free gatekeeper.

7.5 TheFed: Tool Support for Assessor-Throttling

Assessor-throttling relies on a reputation system for task assessors,
so we built a software tool to track assessor reputation and support
the teams who want to adopt assessor-throttling. Our tool, TheFed5,
is a Chrome extension for JIRA. TheFed is open source [75] and
has these key features: TheFed

1) tracks each QA engineer’s reputation.
2) allows developers to penalise inflation.
3) rewards honest QA engineers.

In assessor-throttling, developers and task assessors make
decisions based on the reputation score Rr, so TheFed must
calculate and store these values. To this end, TheFed uses JIRA’s
REST API [76] to obtain how many times a QA engineer incorrectly
prioritised an issue, relative to the priority assessment of the
developer who resolved the issue. Rr is a function of the number
of these “infractions”, so developers need to update it when a
priority assignment is inaccurate. To support this feature, TheFed
relies on JIRA’s existing functionality for updating priority; issue
resolvers use this functionality to state that they disagree with a
QA engineer’s priority assessment. Assessor-throttling aims to give
high-reputation task assessors a higher probability that their bugs
will be fixed than low-reputation assessors. To this end, TheFed
provides a prioritised inbox. This inbox shows open and unassigned
bugs sorted by Rr: honest QA engineers will have their bugs listed
on top. Also, TheFed displays QA engineers, ranked by Rr.

5. TheFed stands for Federal Reserve: the central banking system of USA.
As such, it defines target inflation rates.

We hope that development teams adopt assessor-throttling. This
cannot happen if its adoption disrupts existing practices and tools.
To maximise the deployability, TheFed

1) is compatible with existing toolkits;
2) tackles priority inflation immediately after installation;

and
3) deploys to clients, not servers.

The penalty value per infraction is a key parameter. As is
shown in Section 7.3, a penalty value that is too low might not
produce the desired output of a single equilibrium with the honest
strategy probability of 1.0. TheFed allows this parameter to be
configurable. To this end, we allow users of TheFed to customise
its behaviour via the options page of Chrome extensions. Some
of the parameters available are penalty_per_infraction,
issues_in_inbox and JIRA_project.

Tools drive software development: text editors, IDE’s and
bug tracking systems are among them. TheFed integrates easily
with existing tools. The current version of TheFed is a Chrome
extension that relies on JIRA’s REST API to access issue data.
Chrome extensions are also compatible with the Opera browser;
TheFed can be extended to other bug tracking systems that expose
a RESTful API, like Bugzilla [77]. From the moment it is installed,
TheFed provides value: it immediately tackles priority inflation,
calculating Rr using priority updates accessed through JIRA’s API.
From this useful starting point, TheFed only improves through
network effects. Developers directly and immediately benefit from
TheFed since it helps them better prioritise their work. Crucially,
developers can install TheFed locally. This allows individual team
developers to adopt it without requiring support from a JIRA system
administrator, unlike a JIRA plugin.

8 RELATED WORK

Game Theory was made popular in 1940 when John von Neumann
used it for economic analysis [78], and since then it has been
applied to many fields including Computer Science [6]. While
we are not the first to apply it to software engineering, this
paper is the first end-to-end process improvement approach driven
by empirical game-theoretic analysis. In this section, we review
previous applications of game theory to software engineering,
describing their proposals and how we differ.

Grechanik et al. proposed that the conflict of interests between
project management, the customer organisation and the develop-
ment team devise a game [79]. Since these conflicting interests
can produce undesired outcomes to the development organisation,
he proposed game theory for analysing these strategic interactions.
He modelled the software development process as a game, but he
did not validate his model nor calculate its Nash equilibrium. Oza
proposed a two-player game for offshore development, between
the customer organisation and an offshore software development
team [80]. He also claimed that this game is an instance of
the Prisoner’s Dilemma and discussed issues to consider when
designing a model. For example, Oza suggests modelling the
power a vendor acquires while providing value for the client,
and mutual perceptions before contract negotiation. Both papers,
like us, identify the importance and relevance of game-theory for
software engineering scenarios, but do not formulate or analyse
explicit game-theoretic models. Hata et al. [81] used game theory
to model contributor behaviour in open source projects. Using a
game in extensive form, they analysed if any improvement to the
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development environment setup — like documentation — would
translate to code contributions. They later verify their findings
with data from open-source projects in GitHub. Their model only
considers two players with two actions each, and they recognise it
can be an oversimplification. Our EGTA-based approach does not
suffer this limitation.

Other publications focus on modelling agile practices. For
example, instead of considering the software development team as
a monolithic player, Hazzan and Dubinsky explore the interactions
between software development team members using game theory:
they proposed that the cooperation dynamics inside a team is
an instance of the Prisoner’s Dilemma [82]. They also described
how cooperation scenarios relate to extreme programming (XP)
practices, but no formal game-theoretic analysis methods were
applied. Hasnain et al. studied the role of communication in
developing trust among agile development team members [83].
The authors used an experimental game-theoretic approach, using
students and practitioners to play several instances of a simulated
work-shrink game — an instance of Prisoner’s Dilemma — to see
the impact of stand-up meetings in the development of trust, finding
a positive correlation among them. Being a study with human
participants, the scope of the work is limited: only 28 iterated
games instances were used. In this work we rely on simulation and
equilibrium calculation to be able to analyse scenarios with multiple
players and iterations while keeping experimentation cost-effective.

Software Testing is another activity within the software process
that has been analysed from a game-theoretic perspective. Feijs
modelled the whole software testing process as a strategic-form
game played between the development team and the testing team,
where their action set is defined by their performance at work
(i.e. do a good job or a bad job) [84]. According to the pay-off
values given by their assumptions, he concluded that the Testing
Game is an instance of the Prisoner’s Dilemma. As a way of
validating the proposed model the author applied it to the text copy
testing game (TCTG), an artificial testing scenario. In TCTG, the
specification is to transcribe an input string. Both the actions for
the developer and the tester are different performance levels. In
the case of the developer, performance is a function of characters
wrongly transcribed and for the tester performance is a function
of the number of characters inspected. Also in the testing domain,
Kukreja et al. proposed a game-theoretic approach for randomising
test case execution [85]. Due to resource constraints, an entire
regression test suite often cannot be executed, so the authors
propose modelling test execution as a security game between
testers and developers, where developers try to introduce code
without being tested and testers try to force them to test all code.
They demonstrate their method on a toy example and compare it
with uniform randomisation, leaving a more exhaustive evaluation
to future work.

In the same fashion as this work, there have been previous
attempts for software process improvement through mechanism
design. Yilmaz et al. proposed modelling a software process as a
mechanism and provided an example, but the validation of this
approach was relegated to future work [86]. Bacon et al. [87]
approached software estimation as a mechanism design problem,
exploring the characteristics of scoring systems that would lead
developers to share information with managers — who estimate
tasks — and to perform their best during implementation. They test
their scoring systems via simulation but, unlike TASKASSESSOR,
their models are not based on process data and rely on assumptions.
A key benefit of TASKASSESSOR is its data-driven approach, which

makes models closer to the process under study.

9 CONCLUSION AND FUTURE WORK

Improving software processes is challenging: initiatives for change
face resistance and several barriers [88]. Game theory can help
bring down these barriers, because games are a way to describe,
investigate and optimise processes. We have shown how to
conceptually and pragmatically recognise and prevent priority
inflation using game theory. We believe problems like priority
inflation occur all too often in software development and that
game theory can diagnose and fix them, as readily as it led us to
a solution for priority inflation. You can join us in this effort at
http://ttendency.cs.ucl.ac.uk/gametheory4se.
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