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Abstract—Call graphs have many applications in software engineering, including bug-finding, security analysis, and code navigation in

IDEs. However, the construction of call graphs requires significant investment in program analysis infrastructure. An increasing number

of programming languages compile to the Java Virtual Machine (JVM), and program analysis frameworks such as WALA and SOOT

support a broad range of program analysis algorithms by analyzing JVM bytecode. This approach has been shown to work well when

applied to bytecode produced from Java code. In this paper, we show that it also works well for diverse other JVM-hosted languages:

dynamically-typed functional Scheme, statically-typed object-oriented Scala, and polymorphic functional OCaml. Effectively, we get

call graph construction for these languages for free, using existing analysis infrastructure for Java, with only minor challenges to

soundness. This, in turn, suggests that bytecode-based analysis could serve as an implementation vehicle for bug-finding, security

analysis, and IDE features for these languages. We present qualitative and quantitative analyses of the soundness and precision of call

graphs constructed from JVM bytecodes for these languages, and also for Groovy, Clojure, Python, and Ruby. However, we also show

that implementation details matter greatly. In particular, the JVM-hosted implementations of Groovy, Clojure, Python, and Ruby

produce very unsound call graphs, due to the pervasive use of reflection, invokedynamic instructions, and run-time code generation.

Interestingly, the dynamic translation schemes employed by these languages, which result in unsound static call graphs, tend to be

correlated with poor performance at run time.

Index Terms—Call graphs, static analysis, JVM, compilation, Scheme, Scala, OCaml, Groovy, Clojure, Python, Ruby

Ç

1 INTRODUCTION

THE Java Virtual Machine (JVM)was designed for portable
and efficient implementation of Java. By defining a rela-

tively small set of bytecode instructions with clear semantics,
the task of creating an interpreter or just-in-time compiler for
Java is simplified significantly. In recent years, the JVM has
been used to implement programming languages such as
Clojure [1], Groovy [2], OCaml [3], Python [4], Ruby [5],
Scala [6], and Scheme [7]. By compiling these languages to
JVM bytecode, language implementors significantly reduce
the amount of work needed to implement their languages,
and achieve portability acrossmany platforms.

Several frameworks, such as Chord [8], Doop [9], Soot [10],
Wala [11], and OPAL [12], have been developed to support
static analysis of JVM bytecode. These frameworks support a
broad range of algorithms for static pointer analysis, call

graph construction, data-flow analysis, and others. A JVM-
based approach works well for Java because JVM bytecode is
fairly close to Java but avoids a lot of its syntactic sugar. As a
result, bytecode-based analysis frameworks are widely used
in academia and industry.

Together, these developments raise the tantalizing possi-
bility that many languages could get program analysis infra-
structure for free by relying on analyzing generated JVM
bytecode. For this to work, however, JVM-bytecode-based
analysis has to produce good results, as it has been shown to
do for Java. Hence, this paper investigates how well this
JVM-bytecode-based approach works when applied to byte-
code produced from other languages.We examine bytecodes
generated from Scheme, Scala, OCaml, Groovy, Clojure,
Python, and Ruby programs. We show that, while Scheme,
Scala, and OCaml are a diverse set of languages, the com-
pilers for these languages produce bytecode that by-and-
large is amenable to analysis. However, implementation
details matter greatly, and the other languages have com-
plex, reflection-heavy implementations that inhibit good
analysis.

Specifically, we focus on call graph construction because
call graphs enable many applications in software engineer-
ing, such as bug-finding (see e.g., [13]), detecting security
vulnerabilities (see e.g., [14]), IDE features such as code nav-
igation (see e.g., [15]), and application extraction and opti-
mization (see e.g. [16], [17]).

Our focus in this paper is on studying the following three
issues: (i) the soundness of static call graphs computed from
JVM bytecode (i.e., whether they contain all methods and
call edges that can arise during any execution), (ii) the
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precision of the static call graphs (i.e., how many nodes and
edges they contain that cannot arise in any execution), and
(iii) the relationship between the quality of constructed call
graphs and the runtime performance of applications.

To evaluate soundness and precision, we conduct quali-
tative and quantitative experiments. In the qualitative
experiments, we inspect call graphs constructed by compil-
ing a small example to bytecode, and study the translation
of function and method calls. We look for uses of reflection,
dynamic code generation, and invokedynamic instruc-
tions that challenge static analysis. In the quantitative
experiments, we use 10 programs from the Computer Lan-
guage Benchmark Game (CLBG) suite [18] with versions
available for each language. This enables us to study the dif-
ferent programming languages in a uniform and consistent
way. After compiling these programs to JVM bytecode, a
standard 0-CFA analysis [19] provided by WALA [11] is
used to construct static call graphs. Dynamic call graphs are
constructed using WALA’s instrumentation-based dynamic
call graph builder. Using ProBe, a call graph comparison
tool [20], we measure unsoundness by identifying nodes
and edges that occur in the dynamic call graph but not the
static one. Similarly, potential imprecision is reflected by
nodes and edges in the static call graphs but not the
dynamic ones. In such cases, we manually determine if the
static analysis is imprecise, or if the discrepancy is due to
low code coverage in the dynamic graph.

Since the CLBG programs are fairly small, we conducted,
for each of the languages under consideration.1 additional
experiments on two larger subject programs. For these pro-
grams, we performed the same quantitative experiments as
for the CLBG programs. Moreover, in a detailed qualitative
assessment,we determinedwhether additional issues arose in
these larger programs that comprise soundness or precision.

We observe that call graphs constructed for Groovy, Clo-
jure, Python, and Ruby using bytecode-based static analysis
are unsound, due to pervasive use of reflection, dynamic
code generation, and invokedynamic instructions. Even if
these challenges were overcome, the constructed call graphs
would remain highly imprecise due to the ways in which
function calls are translated. On the other hand, sound call
graphs are constructed for Kawa’s implementation of
Scheme, showing that dynamically-typed languages do not
necessitate reflective, hard-to-analyze implementations. For
statically-typed Scala and polymorphic OCaml, the use of
reflection and proxies can cause unsoundness, just as in
Java, but this occurs rarely in practice and similar solutions
would apply [21]. Unsoundness of this kind is hard to avoid
in practice [22], and reflects the state of the art. Bytecode-
based analyses of these languages are as sound as for Java.

We observe that the call graphs constructed for Kawa
programs are generally precise for direct calls, but some
precision is lost with heavy use of lambda expressions. In
Scala, precision suffers because type information is lost
when compiling features such as closures. This is no differ-
ent from the issues that lambda expressions face in Java 8,
and can be addressed by standard forms of context sensitiv-
ity. The OCaml compiler implements closures using the

JVM’s MethodHandles, which WALA analyzes soundly
and precisely.

For the performance experiments, we compiled the same
10 CLBG programs in each language and compared running
times and memory consumption on a standard JVM. Inter-
estingly, other than for Java, the lowest running times and
memory consumption are measured for Scheme, Scala, and
OCaml (i.e., the languages for which the constructed call
graphs are the most sound). This suggests that the same
translation schemes that hamper static analysis also cause
performance bottlenecks.

Overall, we conclude that JVM-bytecode-based analysis is
practical for a wide range of languages—with static, poly-
morphic and dynamic types, and with object-oriented and
functional styles—but it requires careful implementation that
avoids reflective features of Java as a substitute for compila-
tion. This suggests that bytecode-based analysis could serve
as a useful implementation vehicle for solving many prob-
lems in software engineering for languages for which alterna-
tive program analysis infrastructure is not readily available.

In summary, the contributions of this paper are as
follows:

� We study soundness and precision of call graphs con-
structed from JVM bytecode produced from Scheme,
Scala, OCaml, Groovy, Clojure, Python, and Ruby
programs. To our knowledge, this is the first compara-
tive study of static analysis for JVM-hosted languages.

� We show that for Kawa, Scala and OCaml, construc-
ted call graphs are as sound as for Java, compro-
mised only by reflection and proxies in rare cases.
Precision also faces only issues similar to Java.

� We found that, for the languages Groovy, Clojure,
Python, and Ruby, the constructed call graphs are
highly unsound and imprecise. This is due to imple-
mentations that use reflection pervasively. Use of the
new invokedynamic bytecode in some of these
implementations leads to similarly poor results.

� Our performance experiments show that dynamic
translation schemes that cause loss of soundness in
static analysis are correlated with poor performance
at run time.

The remainder of this paper is organized as follows.
Section 2 provides some detail about MethodHandles and
the invokedynamic JVM instruction. Section 3 reviews
our experimental setup. Next, Sections 4, 5, 6, 7, 8, 9, and 10
are concerned with an analysis of the soundness and preci-
sion of call graphs computed for each of the languages
under consideration (Scheme, Scala, OCaml, Groovy, Clo-
jure, Python, and Ruby, respectively). Section 11 reports on
a study in which the performance of these language imple-
mentations is correlated with the observed soundness and
precision results. In Section 12, some observations made
during our studies are discussed, along with threats to
validity. Related work is discussed in Section 13. Finally,
conclusions are presented in Section 14.

2 BACKGROUND

We briefly review MethodHandles and invokedynamic

instructions, two features that were added to the JVM in
1. Except in the case of Ruby, because the JRuby ahead-of-time build

system is unable to handle the larger programs.
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Java 7 in order to facilitate the implementation of dynamic
languages and that are already being used by several of the
language implementations studied in this paper.2 Since the
static analysis community has not paid significant attention
to these features until now, we briefly review the challenges
they pose for static analysis.

2.1 MethodHandles

Amethod handle is a constant value that uniquely identifies
a method and how it should be invoked (e.g., as a static call,
or a virtual call). Furthermore, method handles can apply
transformations to the sequence of arguments passed to the
encapsulated method (e.g., unpacking an array into a
sequence containing its values). Method handles can be
embedded in a class file’s constant pool as constants to be
loaded using ldc instructions. A new type of constant pool
entry, CONSTANT_MethodHandle, refers directly to an
associated CONSTANT_Methodref, CONSTANT_Interfa-
ceMethodref, or CONSTANT_Fieldref entry. Alterna-
tively, method handles can be created at run time by
calling one of the factory methods in class java.lang.

invoke.MethodHandles.Lookup (e.g.,MethodHandles.
Lookup.findVirtual), with arguments specifying the
encapsulated method’s parameter types and return type. The
method encapsulated by a method handle can be invoked by
calling the MethodHandle.invoke() or MethodHandle.
invokeExact() method, with arguments that should be
bound to themethod’s receiver (in the case of virtualmethods)
and formal parameters. In effect, the functionality provided by
method handles is similar to that of the Java reflection API, but
access checking is performed only once, upon creation of the
handle, whereas java.lang.reflect.Method.invoke()

performs an access check for each reflective call. From a static
analysis perspective, by denoting a method explicitly, method
handles enable more precise analysis than what was possible
using the reflective idioms required before Java 7.

2.2 The invokedynamic Instruction

The invokedynamic instruction provides a mechanism for
deferring the association between call sites and the methods
they invoke until runtime. It works as follows:

� When an invokedynamic instruction executes for
the first time, its associated bootstrap method is exe-
cuted. The association between invokedynamic

instructions and their associated bootstrap methods
is recorded in the bootstrap table, a new component of
JVM .class files.

� A bootstrap method returns a java.lang.invoke.

CallSite object that encapsulates a MethodHandle
that identifies the method to be invoked. This method
can be retrieved using the CallSite.getTarget()
method, which is automatically invoked by the JVM
at run time.

� The CallSite object returned by a bootstrap
method is cached, so that for subsequent executions

of an invokedynamic instruction, the JVM only
needs to retrieve the method handle by executing
CallSite.getTarget().

This call resolution mechanism is considerably more flex-
ible than other JVM invoke instructions. In particular,
invokevirtual and invokeinterface specify a target
method, and calls made through them dispatch to methods
transitively overriding this target method. In such cases, the
name and parameter types of the method are known at com-
pile time so that a static analysis can analyze the inheritance
hierarchy to conservatively approximate the set of methods
that may be invoked. In the case of invokedynamic, there
is no obvious way for a static analysis to approximate the
set of possible call targets. Bootstrap methods can be arbi-
trarily complex, and there are no compile-time constraints
on the name and parameter types of the subsequently
invoked method. Further complicating matters, CallSite
objects returned by bootstrap methods may be mutable
(i.e., /nbw> encapsulated method handles may be updated
at runtime). However, if the CallSite object is immutable
and the bootstrap method is the standard Java java.

lang.invoke.LambdaMetaFactory, it is possible for an
analysis to pre-process invokedynamic instructions by
rewriting them using standard invokestatic instructions
that simulate the semantics of the original method calls that
use invokedynamic. Alternatively, the analysis would
have to contain hard-coded models fo the bootstrap meth-
ods to reason about invokedynamic. Such approach is
currently used in practice by some analysis frameworks
such as OPAL [23], WALA [11], and Soot [24] to overcome
the challenges around precise and sound analysis of invo-
kedynamic instructions.

3 EXPERIMENTAL SETUP

3.1 Analysis Details

For all the languages we study in this article, we useWALA’s
implementation of the 0-CFA algorithm [19] for construct-
ing static call graphs, and WALA’s instrumentation-based
dynamic call graph builder (Shrike) for constructing dynamic
call graphs.We used the same configuration for the static and
dynamic call graph analyses across all languages.

We conducted all of our experiments using Oracle’s
Java 8u25 running on a machine with eight dual-core AMD
Opteron 1.4 GHz CPUs (running in 64-bit mode) and
capped the available RAM at 16 GB.

3.2 Comparing Call Graphs

We use ProBe [20], a call graph comparison tool, to identify
nodes/edges that occur in the static call graphs but not the
dynamic ones and vice versa, to find unsoundness and loss
of precision. Comparing static and dynamic call graphs is
complicated by the fact that static call graph builders, such
as WALA’s, analyze the Java runtime libraries to compute
sound and precise call graphs with nodes and edges corre-
sponding to library code. Instrumentation-based dynamic
call graph builders, such as WALA’s, typically do not track
calls inside the runtime, in order to avoid disrupting run-
time mechanisms invisible at the source level. Therefore, in
the call graphs that WALA constructs, code in the Java stan-
dard library is represented by a single node. In order to

2. Note that, starting with Java 8, the bytecodes generated from Java
programs also make use of invokedynamicwhen lambda expressions
(closures) are being compiled. Thus, the analysis challenges noted here
are broadly applicable to statically-typed and dynamically-typed
languages.
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enable a fair comparison, we collapse the parts of the static
call graphs that correspond to code in the Java standard
library into a single node as well. Some additional effort
was involved in handling static initializers and finalizers
consistently in static and dynamic call graphs, by modeling
these as if they are invoked from an anonymous “root”
node.

3.3 Selection of Experimental Subject Programs

In our study,we consider the Scheme, Scala, OCaml, Groovy,
Clojure, Python, and Ruby programming languages and
investigate whether the JVM bytecodes generated by com-
pilers these languages are amenable to static analysis. This
investigation comprises the following three steps:

1) For each programming language under consider-
ation, we first consider a simple “hello, world” pro-
gram to illustrate the challenges that are likely to
arise when trying to analyze any program in that lan-
guage. As we shall see, for several of the program-
ming languages, the study of such a simple example
is already sufficient to conclude that sound and pre-
cise static analysis is infeasible (e.g., due to pervasive
use of reflection or dynamically generated code).

2) Next, we conduct a systematic evaluation in which
we take 10 programs from the Computer Language
Benchmark Game suite [18] for which versions are
available for each language under consideration. The
use of the same benchmark suite for all programs
enables us to study the programming languages in a
uniform and consistent way, and it enables us to
investigate whether correlations exist between the
performance characteristics of the generated JVM
bytecodes and the suitability of those bytecodes for
static analysis. Section 3.4 provides further details on
the CLBG programs under study.

3) Lastly, for each programming language under con-
sideration (with the exception of JRuby, because we
were unable to find two large Ruby programs that
we could successfully compile with JRuby’s ahead-
of-time build system), we selected two larger pro-
grams in an attempt to determine whether any addi-
tional issues arise due to the use of features not
present in the CLBG programs.

3.4 CLBG Benchmark Suite

For the second part of our study, we consider the following
10 programs 3 from the Computer Language Benchmark
Game suite for which versions are available in all languages
under consideration.

� BINARYTREES (BT) prints the time required to allocate
and collect balanced binary trees of various sizes,
before any tree nodes are garbage-collected.

� FANNKUCHREDUX (FK) simulates indexed-accesses to
tiny integer sequences.

� FASTA (FA) generates and writes random DNA
sequences.

� KNUCLEOTIDE (KN) uses the built-in hash table imple-
mentation to accumulate count values for k-nucleo-
tide strings, lookup the count for a given string, and
update the count in the hash table.

� MANDELBROT (MB) generates a Mandelbrot set porta-
ble bitmap file.

� NBODY (NB) models the orbits of Jovian planets using
double-precision N-body simulation.

� PIDIGITS (PD) streams arbitrary-precision arithmetic
for the decimal value of p.

� REGEXDNA (RD) matches DNA 8-mers and substitutes
magic patterns.

� REVCOMP (RC) reads DNA sequences, and writes their
reverse complement.

� SPECTRALNORM (SN) is a program that calculates
Eigenvalues using the power method.

4 SCHEME

Scheme [7] is a dialect of the functional programming lan-
guage Lisp. Scheme is dynamically typed, and has a simple
syntax based on lists and prefix operators. Its distinguishing
features include lexical scoping and higher-order functions.
Kawa [25] implements an extension of Scheme that runs on
the JVM and interoperates well with Java libraries. In our
experiments, we used Kawa version 3.0.

4.1 Translation to JVM bytecode

Fig. 1 shows a Scheme “Hello, World!” program that defines
functions foo and bar. On line 6, foo is invoked with two
arguments: a function and a string. Inside function foo, this
function is invoked with the string as its argument. The
body of the anonymous function on line 6 invokes function
bar on the string constant “Hello, ” and its second argu-
ment, so the call to bar will result in printing “Hello,
World!”.

Fig. 2 shows the relevant fragments of the JVM bytecodes
produced by the Kawa compiler for the program of Fig. 1.
In this diagram and subsequent diagrams, solid arrows rep-
resent a single call graph edge (i.e., a situation where a
method call dispatches to a specific method definition), and
dashed arrows represent sequences of call edges. The Kawa
compiler produces a single class hello containing static
methods foo() and bar() corresponding directly to the
two functions in Fig. 1. The class also contains a static initial-
izer that initializes the environment, and a run() method
corresponding to the top-level code. A main() method
starts execution by invoking runAsMain() (indicated by
the arrow labeled�1 in the figure), which invokes run() via
a library callback (see the arrow labeled �2 ).

For simple function calls, a one-to-one mapping exists
between function calls in the Scheme source code and

Fig. 1. A simple Scheme program.

3. We did not use the other CLBG benchmarks as they are not all
implemented in the JVM-hosted languages under study.
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invokestatic calls in the JVM bytecode produced by the
Kawa compiler. For example, the call to foo on line 6 in
Fig. 1 is reflected by the static method call labeled�3 in Fig. 2.

The translation of higher-order functions is more
involved. The lambda expression on line 6 is represented
using an object of type gnu.expr.ModuleMethod. The
static initializer of class hello creates this object and stores
it into a field that is later read by the run() method and
passed as an argument to foo(), which calls a library
method gnu.mapping.ProcedureN.apply2() to call
the function bound to the argument (see the edge labeled
�4 ). This library method calls several other library methods,
which eventually call hello.bar() (see the arrow labeled
�5 ). In other words, the translation of higher-order functions
involves lengthy sequences of calls through common library

functions, which implies there is potential for significant
loss of precision unless many levels of context-sensitivity
are employed. However, we did not observe any use of
reflection or invokedynamic in the entire sequence of calls
that would compromise the soundness of a bytecode-based
static analysis.

4.2 Qualitative Analysis

Since the Kawa compiler avoids the use of reflection and
invokedynamic, the call graph constructed by WALA for
the example program of Fig. 1 is sound.

4.3 Quantitative Analysis

Table 1 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 2 shows the number of nodes and edges in the
static (columns S) and dynamic (columns D) call graphs for
the Scheme programs in our benchmark suite. Also shown
are the number of nodes/edges in the dynamic call graphs
but not in the static call graphs (columns DnS), and those in
the static call graphs but not in the dynamic call graphs (col-
umns SnD).4 As can be seen from the DnS columns of the
table, all nodes/edges in the dynamic call graphs also occur
in the static call graphs, suggesting that the call graphs are
sound.

Fig. 2. Depiction of the bytecodes produced by the Kawa compiler for the program of Fig. 1.

TABLE 1
Various Characteristics of the Scheme CLBG Programs

LOC Bytecode Size (KB) # classes #methods # call sites

BT 36 3.05 2 7 42
FK 106 2.71 1 4 28
FA 90 4.25 1 8 107
KN 217 4.51 1 10 97
MB 58 2.33 1 4 20
NB 116 4.05 2 13 37
PD 88 4.29 3 17 69
RD 51 3.18 1 4 65
RC 66 2.30 1 4 14
SN 39 2.29 1 8 24

4. The tables in Sections 5, 6, 7, 8, 9, and 10 follow the same structure.
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At first glance the computed static call graphs appear to
be quite imprecise because many nodes/edges in the static
call graphs do not occur in the dynamic call graphs (see col-
umns SnD). However, upon closer inspection we found
nearly all of this imprecision to occur in parts of the static
call graph corresponding to code in the Kawa libraries. The
parts of the call graph corresponding to the application itself
are generally precise for direct calls, though some loss of
precision occurs if lambda expressions are used as in the
example program discussed previously. In summary, for
the programs under consideration, Kawa generates byte-
code that is easily amenable to static analysis. This is in stark
contrast, as we will show later, to the highly unsound static
call graphs for the other dynamically-typed languages
(Groovy, Clojure, Python, and Ruby).

4.4 Additional Case Studies

In addition to the Scheme CLBG programs, we have studied
CHESS and JEMACS,5 two larger Scheme applications that are
publicly available on GitHub and SourceForge, respectively.
CHESS is a Swing-based program for playing chess, in which
two people play against each other. JEMACS is a Java/

Scheme-based Emacs text editor. Both CHESS and JEMACS are
based on Kawa 3.0, which implements Scheme R7RS. Table 3
shows, for both programs (excluding library code), the
number of lines of source code, as well as the size of the gen-
erated bytecodes, the number of classes, methods, and call
sites in the generated bytecodes.

Table 4 shows that only 8 nodes are missing from the static
call graph for JEMACS compared to its dynamic call graph. Fur-
ther investigation of the call graphs shows that all 8 nodes rep-
resent methods that are called from gnu.mapping.Future.

run(), which handles threads in the Kawa runtime library.
WhileWALA supports Java threads, it currently does not sup-
port Kawa-specific threads. Those nodes are the root cause of
missing 28 edges in the static call graph for JEMACS compared to
its dynamic call graph. For CHESS, the static call graph is sound
with respect to nodes, but misses 27 edges compared to the
dynamic call graph. However, all missing edges are within the
Kawa runtime library, which still renders the produced static
call graphs useful for various applications such as code naviga-
tion in development environments.

The precision of the larger Scheme programs is similar to
the pattern in the CLBG programs, where precision is com-
promised largely by lack of sufficient context-sensitivity in
handling indirections through the standard library. How-
ever, there is one issue that we did not encounter in CLBG.
TheKawa implementation uses reflection to handle first-class
function calls that use apply in Scheme. Fig. 3 shows an
example of that idiom from CHESS, in which initialize-

board calls several functions using apply: starting-

color, starting-piece, and starting-status. The
initialize-board function is itself defined using the
do-board macro. Kawa handles syntax-rules in do-

board and generates analyzable code for it. However,
apply uses functions from a table filled in using calls to
MethodHandle.Lookup.findStatic(). The arguments
to findStatic() are a java.lang.Class denoting the
method’s class, a java.lang.String denoting the method
name, and a java.lang.invoke.MethodType denoting
the argument and return types. The class objects are specified
directly in the bytecode, andWALA can track them precisely
in this case. Themethod name string is also specified directly,
andWALA statically tracks that too to the call site. Although
the method type is ignored, WALA has sufficient analysis of
reflection to find all methods with the right name. Since these
are Scheme functions, there is exactly one such method.
Therefore, WALA finds precisely the methods to be called,

TABLE 2
Count of Nodes and Edges in the Static and Dynamic Call

Graphs of the Scheme CLBG Programs

Nodes Edges

S D DnS SnD S D DnS SnD
BT 9,066 501 0 8,565 49,497 686 0 48,811
FK 9,063 503 0 8,560 49,492 680 0 48,812
FA 9,067 511 0 8,556 49,525 704 0 48,821
KN 9,070 707 0 8,363 49,547 1,063 0 48,484
MB 9,063 460 0 8,603 49,487 617 0 48,870
NB 9,072 564 0 8,508 49,506 790 0 48,716
PD 9,076 509 0 8,567 49,518 690 0 48,828
RD 9,063 528 0 8,535 49,483 734 0 48,749
RC 9,063 286 0 8,777 49,480 378 0 49,102
SN 9,067 552 0 8,515 49,493 766 0 48,727

TABLE 3
Various Characteristics of the CHESS and JEMACS

Scheme Programs

LOC Bytecode Size (MB) # classes #methods # call sites

CHESS 582 0.08 9 385 2,428
JEMACS 4,883 1.63 825 8,492 49,441

TABLE 4
Count of Nodes and Edges in the Static and Dynamic Call

Graphs of the CHESS and JEMACS Scheme Programs

Nodes Edges

S D DnS SnD S D DnS SnD
CHESS 12,297 687 0 11,610 77,981 1,293 17 76,705
JEMACS 8,601 1,313 8 7,296 64,148 2,495 28 61,681

Fig. 3. A Scheme program necessitating reflection.

5. Sources are available from https://github.com/ttu-fpclub/kawa-
chess and http://jemacs.sourceforge.net.
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and the call graph remains sound despite this use of reflec-
tion. Precision is lost in this case, though, because all such
methods are stored in tables in the heap.

5 SCALA

Scala [6] is a statically-typed, object-oriented, functional pro-
gramming language. Its functional programming idioms
include pattern matching, lazy evaluation, and closures. In
Scala, method and field definitions can be grouped into traits
that can be mixed into classes. The Scala compiler compiles
to JVMbytecode. Our experiments used Scala 2.10.2.

5.1 Translation to JVM Bytecode

Fig. 4 shows a Scala program that defines traits A and T. The
main method calls bar on the trait composition (T with

A). It then defines a closure identity and calls it, causing
“Hello, World” to be printed.

Fig. 5 shows the revelant bytecode instructions produced
by the Scala compiler for the program of Fig. 4. A Scala trait,
such as T in our example, is translated into two JVM class
files: T and T$class. Interface T contains the declaration
for the method bar of the trait T. The abstract class T

$class defines a static method containing the bytecode
translation of the body of bar. Finally, a trait composition
such as (T with A) is translated into an anonymous class
hello$$anon$1 that implements all its traits. The call to

bar on line 25 corresponds to two method calls in the gen-
erated bytecode: an invokevirtual to hello$$anon$1.

bar (reflected by the arrow labeled �1 in Fig. 5), which con-
tains an invokestatic to the actual implementation in T

$class.bar (see the arrow labeled�2 ).
A Scala closure such as identity is translated into

an anonymous class hello$$anonfun$1 that extends
scala.runtime.AbstractFunction1 that in turn
implements scala.Function1 in which an abstract
method named apply is defined. The anonymous class
hello$$anonfun$1 implements the body of the closure
in a concrete implementation of this apply method. The
call to the identity closure on line 27 corresponds to an
invokeinterface call to Function1.apply, which is
resolved at run time to the apply method of the hello$

$anonfun$1 class (see the arrow labeled �3 in Fig. 5).
For certain Scala features (e.g., mutable fields in anony-

mous classes), the Scala compiler generates JVM bytecodes
containing reflective method calls, which challenges sound
static analysis. A sound static analysis would have to make
conservative approximations that cause the static call graph
to become extremely large and imprecise.

5.2 Qualitative Analysis

For the example of Fig. 4, no significant challenges for static
analysis are evident and a sound call graph is constructed.
Nevertheless, as reported by Ali et al. [26], analyzing JVM
bytecodes generated by the Scala compiler can result in less
precise call graphs than those constructed from Scala source
code. This loss of precision occurs because significant type
information is lost in the process of translating certain Scala
features (e.g., closures) to JVM bytecode.

The Scala compiler translates each call to a closure to an
invokeinterface to the apply method of scala.

FunctionN, where N is the arity of the closure. Therefore, a
bytecode-based static call graph analysis will create edges
to the apply methods of all subclasses of scala.Func-

tionN from each of the call sites to scala.FunctionN.

apply(), thus rendering the produced static call graphs

Fig. 4. A simple Scala program.

Fig. 5. Depiction of the bytecodes produced by the Scala compiler for the program of Fig. 4.
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extremely imprecise. 6 Ali et al. [26] present a family of algo-
rithms for constructing call graphs of Scala programs from
source code that avoids this loss of precision by taking
advantage of the type parameters of scala.FunctionN.
Those types correspond to the parameter and return types
of the closure, but are erased when bytecode is generated
and are therefore unavailable to a bytecode-based analysis.

5.3 Quantitative Analysis

Table 5 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

For each of the benchmark programs in Table 6, the
nodes and edges in the dynamic call graphs are subsets of
those in the corresponding static call graphs, so they are
sound for this execution. However, for FASTAREDUX, one of
the CLBG programs that we did not include in our quantita-
tive experiments, 7 we noticed 2 methods and 2 call edges
that are missing in the static call graph compared to the
dynamic call graphs. Further investigation revealed that
this unsoundness arises from the use of reflection in the
bytecodes generated by the Scala compiler for converting
collections into arrays, similar to what the Java method
java.util.ArrayList.toArray(T[]) does. When we

examined the precision of the static call graphs, we found
that on average, about 15 percent of the edges that are in the
static call graphs but not in the dynamic call graphs involve
calls to/from apply()methods.

5.4 Additional Case Studies

In addition to the Scala CLBG programs, we have studied
FACTORIE and KIAMA,8 the largest two Scala applications from
the DaCapo Scala Benchmarking project [27]. FACTORIE is a
toolkit for probabilistic modeling. It provides its users with
a language for creating relational factor graphs, estimating
parameters and performing inference. KIAMA is a library for
language processing used to compile and execute several
small languages. Table 7 shows, for both programs (exclud-
ing library code), the number of lines of source code, as well
as the size of the generated bytecodes, the number of clas-
ses, methods, and call sites in the generated bytecodes.

For FACTORIE and KIAMA in Table 8, the static call graphs are
not missing any nodes compared to the dynamic call graphs,
but are missing some edges (FACTORIE: 226 edges and KIAMA:
408 edges). Themissing edgesmainly involve reflective Scala
constructs such as scala.reflect.ManifestFactory

and scala.reflect.ClassTag. With respect to precision,
more than 20 percent of the edges (FACTORIE: 22.56 percent
and KIAMA: 23.76 percent) that are in the static call graphs but
not in the dynamic call graphs involve calls to/from apply

() methods. This result shows that the effect of losing type
information on the static call graph precision is worse for
analyzing real-world applications, such as FACTORIE and
KIAMA, compared to the Scala CLBG benchmark programs.

5.5 Recent Developments

There were no significant changes to code generation in
the 2.10 and 2.11 series of Scala releases. Scala 2.12 and 2.13
use a new code generation back-end that targets features
introduced in version 8 of the Java Virtual Machine. In par-
ticular, these versions of Scala compile closures in the same
way as Java 8, using the invokedynamic instruction, as

TABLE 5
Various Characteristics of the Scala CLBG Programs

LOC Bytecode Size (KB) # classes #methods # call sites

BT 27 3.57 4 9 43
FK 45 10.85 9 52 151
FA 95 7.69 6 35 91
KN 51 38.00 27 245 606
MB 35 10.44 10 51 112
NB 62 10.22 9 43 173
PD 87 16.18 12 64 203
RD 30 7.57 7 23 86
RC 22 7.59 5 37 79
SN 30 6.97 8 28 57

TABLE 6
Count of Nodes and Edges in the Static and Dynamic Call

Graphs of the Scala CLBG Programs

Nodes Edges

S D DnS SnD S D DnS SnD
BT 788 515 0 273 1,337 647 0 690
FK 1,315 799 0 516 2,533 1,106 0 1,427
FA 1,011 598 0 413 1,937 808 0 1,129
KN 2,605 1,501 0 1,104 5,985 2,421 0 3,564
MB 993 578 0 415 1,888 771 0 1,117
NB 966 639 0 327 1,846 875 0 971
PD 1,245 690 0 555 2,743 1,008 0 1,735
RD 983 590 0 393 1,711 771 0 940
RC 849 530 0 319 1,488 673 0 815
SN 1,064 616 0 448 1,989 809 0 1,180

TABLE 7
Various Characteristics of the FACTORIE and KIAMA Scala

Programs

LOC Bytecode Size (MB) # classes #methods # call sites

FACTORIE 35,428 8.95 6,401 64,222 115,807
KIAMA 17,914 6.67 5,143 44,847 79,071

TABLE 8
Count of Nodes and Edges in the Static and Dynamic Call

Graphs of the FACTORIE and KIAMA Scala Programs

Nodes Edges

S D DnS SnD S D DnS SnD
FACTORIE 5,796 1,202 0 4,594 17,548 2,244 226 15,530
KIAMA 4,922 1,193 0 3,729 18,952 2,186 408 17,174

6. Unless the analysis maintains multiple levels of (call-string) con-
text-sensitivity, which would be prohibitively expensive.

7. We did not include FASTAREDUX in our study because versions of
this program are not available for Scheme, OCaml, Groovy, and
Python.

8. Sources are available from https://github.com/factorie/factorie
and https://bitbucket.org/inkytonik/kiama.
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discussed in Section 2. This eliminates the need for the com-
piler to generate a separate class (like hello$$anonfun$1

in Fig. 4) for every closure in the program. In addition, these
versions of Scala compile traits to Java interfaces and imple-
ment methods using the default interface methods that
were introduced in Java 8. This eliminates the need for a
class to implement the methods of each trait (like T$class

in Fig. 4). Dotty, the compiler that will be used for Scala 3
when it is released, also uses these new code generation
techniques.

6 OCAML

OCaml is a general-purpose programming language sup-
porting functional, imperative and object-oriented styles.
Types are strong, static, and inferred by the compiler.
OCaml-Java [28] compiles OCaml code to JVM bytecode.
We used OCaml-Java 2.0-alpha2, based on OCaml 4.01.0.

6.1 Translation to JVM Bytecode

Fig. 6 shows an OCaml program that declares functions foo
and bar. This program illustrates currying, in the partial
call to bar with one argument “Hello,”. This closure is
passed to foo along with the argument “World\n”. Func-
tion foo calls its argument x (which is bound to bar) with
y (bound to “World\n”) as a parameter. Function bar

prints both its arguments, resulting in the expected “Hello,
World!” output.

Fig. 7 visualizes the bytecodes produced by the OCaml
compiler for the program of Fig. 6. The OCaml Java runtime
compiles the Hello class to extend AbstractNativeR-

unner, which provides the machinery to invoke module-

Main in a threading harness (see the dashed arrow labeled
�1 ). The top-level code from Fig. 6 is translated to method
entry(), which is called from moduleMain() (see the call
edge labeled �2 ).

OCaml-Java translates functions into methods, and direct
function calls into invokestatic calls. For instance, the
call to foo at line 41 is represented by the edge labeled �3 .
Currying is translated by constructing a closure object using
org.ocamljava.runtime.values.Value.create-

Closure(), in combination with an extra function object.
Crucially, first-class functions are named explicitly using
MethodHandles and stored as bytecode constants. In the
example of Fig. 6, the partial call to bar at line 41 is trans-
lated by calling createClosure(), calling setClosure

() on it with a MethodHandle representing bar(), and
then recording the closure parameter “World!\n” by call-
ing set2() on the closure. Then, the closure itself is
invoked (see the edge labeled �4 ), which invokes bar using
MethodHandle.invokeExact() (see edge �5 ), avoiding
string-based reflection.

6.2 Qualitative Analysis

OCaml-Java exploits MethodHandles to great effect, mak-
ing heavy use of constant MethodHandles embedded in
the bytecode, and avoiding string-based reflection. Thus,
first-class functions manifest as explicit method constants;
WALA models these constants and invocations on them.
Hence, functions such as bar appear in the call graph. This
does not, in itself, make an analysis precise. Functions passed
as arguments may cause imprecision in a context-insensitive
analysis, just as dynamic dispatch on parameters can in
object-oriented languages. However, this is the same well-
studied problem of context-sensitivity that has inspired so
many techniques for object-oriented languages [9], [29].

Fig. 6. A simple OCaml program.

Fig. 7. Depiction of the bytecodes produced by the OCaml compiler for the program of Fig. 6.
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6.3 Quantitative Analysis

Table 9 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 10 presents quantitative results for the OCaml
CLBG programs. The impact of using MethodHandles in a
way that is amenable to static analysis is apparent from the
absence of unsoundness in the methods in all of the static
call graphs. There is some unsoundness in the edges—
always less than 5 percent—mostly due to idioms in the
OCaml runtime involving the use of java.lang.reflect.
Proxy for method calls. WALA does not understand this
reflective idiom, so edges are missing from the static graph.
This sometimes causes further missing edges as needed
code is deemed unreachable by the static analysis. Also,
proxies result in runtime-generated code appearing on the
stack, so the dynamic call graphs contain edges that do not
correspond to any source code and hence will be missing
from the static call graph. However, manual investigation
of these missing edges show that they all occur within the
OCaml runtime library. Therefore, the produced static call
graphs could still be useful for various applications (e.g.,
code navigation support in integrated development envi-
ronments such as Eclipse).

Precision is low across all programs—many nodes and
edges in the static call graphs are not present in the dynamic
ones. There are several causes. First, values are sometimes
stored in a boxed form (org.ocamljava.runtime.Value)

and indirections used to access and convert them make
our context-insensitive analysis imprecise. Second, Method-
Handle objects are passed to runtime primitives to handle
calls, and context-insensitive analysis of these primitives
causes significant imprecision. These issues cause more of the
standard library to be reachable, which adds further impreci-
sion as edges and nodes from those functions get added. We
expect that the imprecision in our OCaml analysis can be
addressed to a great extent by existing techniques (e.g., using
the Cartesian Product Algorithm [30]).

6.4 Additional Case Studies

In addition to the OCaml CLBG programs, we have studied
OCAMLLEX and OCAMLDOC,9 two larger OCaml applications
that are publicly available on GitHub. OCAMLLEX is the lexer
generator part of the OCaml-Java compiler. OCAMLDOC is the
documentation generator tool that ships with the OCaml-
Java compiler. Both OCAMLLEX and OCAMLDOC are based on
OCaml 4.01.0. Table 11 shows, for both programs (excluding
library code), the number of lines of source code, as well as
the size of the generated bytecodes, the number of classes,
methods, and call sites in the generated bytecodes.

Table 12 shows that only 4 nodes are missing from the
static call graphs for OCAMLLEX and OCAMLDOC compared to
their respective dynamic call graphs. Further investigation
shows that all 4 nodes are involved in reflective method
calls to/from methods in the class org.ocamljava.run-
time.annotations.parameters.Parameters. The
code that allocates some of these objects uses java.lang.
reflect.Proxy.newProxyInstance, which is not cur-
rently modelled soundly by WALA. With respect to call
graph edges, the static call graphs for OCAMLLEX and OCAML-

DOC are missing 9 and 11 percent, respectively, of the total
number of edges present in their dynamic call graphs. Our
manual investigation shows that those edges are missing
primarily due to the missing nodes that are caused by the
unsound handling of reflection in WALA, as well as some
runtime-generated code that creates objects on the stack.
Similar to our observation with the CLBG OCaml programs,
most of those edges occur within the OCaml runtime

TABLE 9
Various Characteristics of the OCaml CLBG Benchmarks

LOC Bytecode Size (KB) # classes #methods # call sites

BT 45 10.87 4 101 438
FK 83 10.71 4 101 390
FA 124 13.08 4 101 594
KN 43 13.17 4 101 626
MB 30 9.83 4 101 271
NB 120 11.61 4 101 599
PD 63 12.95 4 101 723
RD 29 11.68 4 101 558
RC 53 10.22 4 101 353
SN 40 10.28 4 101 358

TABLE 10
Count of Nodes and Edges in the Static and Dynamic Call

Graphs of the OCaml CLBG Programs

Nodes Edges

S D DnS SnD S D DnS SnD
BT 5,963 532 0 5,431 75,056 1,464 64 73,656
FK 5,973 544 0 5,429 74,883 1,487 70 73,466
FA 5,966 349 0 5,617 75,363 1,165 8 74,206
KN 5,981 586 0 5,395 77,949 1,793 89 76,245
MB 5,958 527 0 5,431 74,832 1,417 61 73,476
NB 6,977 526 0 6,451 88,592 1,468 61 87,185
PD 5,986 424 0 5,562 76,230 1,413 25 74,842
RD 5,962 696 0 5,266 75,056 2,074 102 73,084
RC 5,960 345 0 5,615 75,133 1,166 8 73,975
SN 5,963 532 0 5,431 75,028 1,455 61 73,634

TABLE 11
Various Characteristics of the OCAMLLEX and OCAMLDOC OCaml

Programs

LOC Bytecode Size (MB) # classes #methods # call sites

OCAMLLEX 2,895 1.61 756 13,079 82,225
OCAMLDOC 21,823 4.73 2,514 28,401 376,194

TABLE 12
Count of Nodes and Edges in the Static and Dynamic Call
Graphs of the OCAMLLEX and OCAMLDOC OCaml Programs

Nodes Edges

S D DnS SnD S D DnS SnD
OCAMLLEX 6,065 1,046 4 5,023 94,811 3,669 340 91,482

OCAMLDOC 26,834 3,756 4 23,082 2,352,782 19,959 2,260 2,335,083

9. Sources are available from https://github.com/xclerc/ocamljava.
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library, which still renders the generated static call graphs
useful for some applications such as IDE support.

The majority of methods (more than 82 percent) and
edges (more than 96 percent) in the static call graphs for
OCAMLLEX and OCAMLDOC are not present in the dynamic call
graphs, mainly due to the indirections that arise from stor-
ing values in a boxed form, and the context-insensitive han-
dling of calls that involve MethodHandle objects. Those
are the same reasons for imprecision as in the smaller CLBG
OCaml programs. We did not observe any additional issues
that would further compromise precision.

7 GROOVY

Groovy [2] is a dynamically-typed object-oriented scripting
language that seamlessly integrates with Java. The Groovy
compiler provides the option of generating code that makes
use of the invokedynamic instruction. We conducted two
sets of experiments, with and without this option, to under-
stand the impact of this feature. For our experiments, we
used Groovy version 2.4.3.

7.1 Translation to JVM Bytecode

For calls between Groovy methods, every class contains sev-
eral static methods that construct an array of CallSite

objects, implemented in the standard library. This array is
indexed by numbers that are assigned to each call site in the

class. Each CallSite object is initialized with the name of
the method to be called. At a call site, the generated byte-
code retrieves the corresponding CallSite object from the
array and invokes a method named call on it, passing any
parameters. The callmethod invokes many other methods
in multiple classes within the Groovy standard library, and
ultimately looks up an object of type GroovyObject and
calls invokeMethod() on it. Using a dynamic representa-
tion of the class hierarchy, invokeMethod() looks up the
name of the target method and calls it through reflection.
The translation of closures involves the creation of an addi-
tional object, and invoking its doCall() method using a
similar sequence of reflective method calls that starts with
an invocation of a method callCurrent.

Fig. 9 shows the relevant bytecodes produced by the
Groovy compiler for the program of Fig. 8. In the translated
code, the generated main() method invokes CallSite.

call() to reflectively invoke the run()method containing
the top-level code (see the edges labeled �1 and �2 ). The run
() method calls CallSite.callCurrent() to invoke
method foo() (edges �3 and �4 ), which in turn invokes
CallSite.call() again to invoke the closure assigned to
variable bar (edges�5 and�6 ).

If the use of invokedynamic is enabled, the bootstrap
method used by Groovy returns a MutableCallSite that
initially points to the same general lookup code that is used
in the case without invokedynamic. The first time the call
site is executed and the desired target method is looked up,
the MutableCallSite is updated with the MethodHan-

dle of the target method. Subsequent calls invoke this
MethodHandle directly. However, from the point of view
of a static analysis, the initial procedure used to determine
the target of a call is equally complicated.

Fig. 8. A simple Groovy program.

Fig. 9. Depiction of the bytecodes produced by the Groovy compiler for the program of Fig. 8.
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7.2 Qualitative Analysis

Each of the dashed lines in Fig. 9 represents a sequence of
calls containing at least one reflective method call. In gen-
eral, the many levels of call indirection, object creation,
dynamic data structure lookup, and reflection are too com-
plicated for a static analysis to model. In particular, no call
edges are created for the calls on lines 42 and 44 in the
Groovy code example in Fig. 8.

7.3 Quantitative Analysis

Table 13 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Quantitative results for the Groovy benchmarks 10 are
shown in Table 14. Only the main method appears in the
static call graphs, because WALA is unable to compute any
call edges for any call sites in application code. The com-
puted static call graphs have very similar sizes because they
call approximately the same methods in the Groovy library
from boilerplate code in the generated main class.

In the case without invokedynamic, the static call
graphs are much larger than the dynamic ones because the
static analysis infers that most of the Groovy library could be
called, but the benchmark programs use only a small fraction
at run time. Furthermore, there is significant unsoundness
due to the use of reflection. If invokedynamic is enabled,
the static call graphs are much smaller because much less
boilerplate initialization code is reachable. However, the
analysis results become more unsound because analysis of
the complex, reflection-heavy code reachable via invoke-

dynamic calls is beyond the state of the art.

7.4 Additional Case Studies

In addition to the Groovy CLBG programs, we have studied
CODENARC and GRULES,11 two large Groovy applications that
are publicly available on GitHub. CODENARC is a static analy-
sis tool for Groovy source files that checks for a pre-defined
set of coding standards and best practices. GRULES is a rule
engine for data preprocessing. Table 15 shows, for both pro-
grams (excluding library code), the number of lines of
source code, as well as the size of the generated bytecodes,
the number of classes, methods, and call sites in the gener-
ated bytecodes.

For CODENARC and GRULES in Table 16, a significantly low
percentage of the methods and call edges that appear in the
static call graphs are for call sites in the application code
(CODENARC: 0.25 percent methods and 0.33 percent edges;
GRULES: 0.17 percent methods and 0.18 percent edges). Simi-
lar to our quantitative analysis of the Groovy CLBG pro-
grams, the static analysis is simply unable to compute any
call edges for most of the call sites in the application code.
Moreover, compiling the applications with support for
invokedynamic does not improve the results (CODENARC:
0.13 percent methods and 0.09 percent edges; and GRULES:
0.03 percent methods and 0.02 percent edges).

8 CLOJURE

Clojure [1], [31] is a dialect of Lisp; key language features
include higher-order functions, a powerful macro system,
and concurrency control based on Software Transactional

TABLE 13
Various Characteristics of the Groovy CLBG Programs (Top:
Without invokedynamic, Bottom: With invokedynamic)

LOC Bytecode Size (KB) # classes #methods # call sites

BT 45 7.22 2 69 235
FK 83 5.19 1 40 206
FA 124 7.02 1 62 357
KN 43 9.57 4 68 281
MB 30 4.92 1 39 209
NB 120 12.19 3 98 436
PD 63 10.26 3 107 314
RD 29 7.05 3 59 151
RC 53 8.68 2 77 507
SN 40 4.84 1 44 196

LOC Bytecode Size (KB) # classes #methods # call sites

BT 52 6.37 2 63 158
FK 108 4.60 1 37 159
FA 154 6.00 1 59 209
KN 232 8.49 4 58 202
MB 104 4.63 1 36 141
NB 190 10.89 3 89 384
PD 29 9.20 3 98 251
RD 53 6.52 3 50 118
RC 89 7.14 2 71 287
SN 41 4.31 1 41 154

TABLE 14
Count of Nodes and Edges in the Static and Dynamic Call

Graphs of the Groovy CLBG Programs (Top: Without invoke-
dynamic, Bottom: With invokedynamic)

Nodes Edges

S D DnS SnD S D DnS SnD
BT 6,089 744 37 5,382 30,242 1,632 281 28,891
FK 6,089 726 19 5,382 30,242 1,573 204 28,873
FA 6,248 812 34 5,470 30,987 1,712 274 29,549
KN 6,089 832 57 5,314 30,243 1,835 390 28,798
MB 6,089 759 45 5,375 30,243 1,552 237 28,928
NB 6,089 842 57 5,304 30,243 1,850 378 28,771
PD 6,089 736 31 5,384 30,242 1,675 308 28,875
RD 6,089 761 43 5,371 30,242 1,576 226 28,892
RC 6,089 745 51 5,395 30,242 1,504 221 28,959
SN 6,089 737 20 5,372 30,242 1,667 284 28,859

Nodes Edges

S D DnS SnD S D DnS SnD
BT 613 645 216 184 1,513 1,197 410 726
FK 613 623 196 186 1,513 1,131 347 729
FA 618 655 224 187 1,521 1,250 468 739
KN 613 742 296 167 1,514 1,380 567 701
MB 613 651 224 186 1,514 1,222 445 737
NB 613 727 285 171 1,514 1,383 572 703
PD 613 670 242 185 1,513 1,257 473 729
RD 613 629 199 183 1,513 1,163 392 742
RC 613 606 183 190 1,513 1,087 321 747
SN 613 632 202 183 1,513 1,224 439 728

10. CLBG does not provide Groovy implementations of KNUCLEOTIDE

and FANNKUCHREDUX. Therefore, we ported existing CLBG implementa-
tions to Groovy. We verified correctness by comparing their output
against expected output detailed in CLBG.

11. Sources are available from https://github.com/CodeNarc/
CodeNarc and https://github.com/zhaber/grules.
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Memory. In our experiments, we have used Clojure
version 1.5.1.

8.1 Translation to JVM Bytecode

Fig. 10 shows a simple Clojure program in which –main

calls foo, foo calls bar, and bar prints “Hello, World!”.
The Clojure compiler translates each Clojure function into a
class (for convenience, we will refer to such classes as
“function classes” in the discussion below). In the case of
our example, function classes hello.core$foo and
hello.core$bar are generated. Each such class defines a
method doInvoke() that contains code corresponding to
the original function in the Clojure source code, and a

method getRequiredArity() that returns its number of
required arguments. We will use Fig. 11, which shows some
of the bytecodes produced by the Clojure compiler for the
program of Fig. 10, to illustrate how a typical function call
such as the one from foo to bar is translated:

1) hello.core$foo.doInvoke() calls IFn.invoke

(). This call (labeled�1 in the figure) dynamically dis-
patches to RestFn.invoke() (the interface IFn and
the class RestFn are both part of the Clojure runtime
library).

2) RestFn.invoke() performs some bookkeeping,
including a call to getRequiredArity() (labeled
�2 ) on the object representing the target function.

3) Lastly, RestFn.invoke() calls doInvoke()

(labeled �3 ) on the object representing the target
function, which represents the actual method body
of the callee bar.

In the static initializer of class hello.core, which con-
tains the main() method for the compiled program, code
is dynamically loaded by calling RT.var(“clojure.

core”,“load”).invoke(“hello.core”). The “hello.
core” argument is ultimately used as a classname by the
Clojure runtime in a call to the Java Reflection API. Then, in
hello.core.main(), a call ((IFn)main__var.get()).
applyTo() is executed to launch the actual program, which
ultimately calls hello.core$_main.doInvoke() using
the callingmechanism illustrated above.

Fig. 10. A simple Clojure program.

Fig. 11. Depiction of the bytecodes produced by the Clojure compiler for the program of Fig. 10.

TABLE 15
Various Characteristics of the CODENARC and GRULES Groovy

Programs

LOC Bytecode Size (MB) # classes #methods # call sites

CODENARC 56,269 2.18 1,185 15,259 43,470
GRULES 6,793 0.29 163 1,752 6,743

TABLE 16
Count of Nodes and Edges in the Static and Dynamic Call
Graphs of the CODENARC and GRULES Groovy Programs (Top:
Without invokedynamic, Bottom: With invokedynamic)

Nodes Edges

S D DnS SnD S D DnS SnD
CODENARC 7,188 1,320 1,302 7,170 40,420 2,513 2,492 40,399

GRULES 7,142 430 416 7,128 40,121 837 821 40,105

Nodes Edges

S D DnS SnD S D DnS SnD
CODENARC 6,718 873 864 6,709 38,632 1,663 1,655 38,624
GRULES 6,735 251 248 6,732 38,659 464 463 38,658
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8.2 Qualitative Analysis

The use of reflection in compiled code will cause most static
analyses to miss some code entirely. Specifically, in our
example, since class hello.core__init (where function-
classes such as hello.core$foo and hello.core$bar

are instantiated) is loaded by reflection, any static analysis
that resolves method calls by keeping track of sets of instan-
tiated classes would omit methods such as hello.core

$foo.doInvoke() from the static call graph. Also, in
main(), the call to applyTo() should resolve to RestFn.

applyTo(ISeq), which is inherited by hello.core$foo

and will ultimately call hello.core$foo.doInvoke().
However, since all function classes are deemed not instanti-
ated, no implementor of RestFn is deemed instantiated. As a
result, ((IFn)man__var.get()).applyTo() is resolved
to call just a few trivial classes rather than the actual bodies of
the user-defined functions. Similarly, we found that the trans-
lation of module imports by the Clojure compiler also
involves the generation of reflective code.

8.3 Quantitative Analysis

Table 17 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 18 shows the number of nodes and edges in static
and dynamic call graphs that we constructed for Clojure
versions of the programs from the CLBG suite. All static call
graphs have the same number of nodes and edges because

they consist of only a main() method and parts of the Clo-
jure runtime libraries. The application logic is completely
missing in each case because analyzing complex reflective
code is beyond the state of the art as discussed above. This
makes the analysis extremely unsound. Manual inspection
of the parts of the call graphs corresponding to the runtime
libraries also reveals significant imprecision, which is due
to the complex call-chains introduced during the translation
of function calls that cannot be analyzed precisely by a con-
text-insensitive analysis.

8.4 Additional Case Studies

In addition to the Clojure CLBG programs, we have studied
CHESHIRE and INSTAPARSE,12 two large Clojure applications
that are publicly available on GitHub. CHESHIRE provides a
suite of tools for fast encoding and decoding of JSON and
JSON SMILE (binary JSON format), with added support for
more types and the ability to use custom encoders. INSTA-

PARSE is an engine that builds parsers for context-free gram-
mars. Table 19 shows, for both programs (excluding library
code), the number of lines of source code, as well as the size
of the generated bytecodes, the number of classes, methods,
and call sites in the generated bytecodes.

Similar to our quantitative analysis of the Clojure CLBG
benchmarks, Table 20 shows that the static call graphs for
CHESHIRE and INSTAPARSE have the same number of nodes and
edges. Further investigation shows that those nodes and
edges are the same set of nodes and edges that the static call
graph analysis computes for the Clojure CLBG programs,
except for the nodes and edges involving the main()

method. This result shows that regardless of the size or
complexity of the analyzed Clojure program, the JVM

TABLE 17
Various Characteristics of the Clojure CLBG Programs

LOC Bytecode Size (KB) # classes #methods # call sites

BT 22 21.31 16 44 493
FK 43 26.59 15 35 1,124
FA 77 38.15 26 62 1,300
KN 38 76.39 60 146 2,067
MB 32 27.40 18 45 702
NB 89 31.60 20 76 764
PD 30 14.06 9 23 333
RD 30 15.59 9 24 361
RC 20 19.90 12 47 613
SN 15 19.33 13 31 550

TABLE 18
Count of Nodes and Edges in the Static and Dynamic Call

Graphs of the Clojure CLBG Programs

Nodes Edges

S D DnS SnD S D DnS SnD
BT 1,687 2,996 2,541 1,232 10,791 5,664 4,941 10,068
FK 1,687 3,022 2,561 1,226 10,791 5,753 5,019 10,057
FA 1,687 2,989 2,530 1,228 10,791 5,633 4,913 10,071
KN 1,687 3,252 2,770 1,205 10,791 6,312 5,546 10,025
MB 1,687 2,996 2,554 1,245 10,791 5,638 4,942 10,095
NB 1,687 3,066 2,565 1,186 10,791 5,808 5,005 9,988
PD 1,687 3,856 3,368 1,199 10,791 7,907 7,123 10,007
RD 1,687 2,998 2,540 1,229 10,791 5,674 4,945 10,062
RC 1,687 2,929 2,492 1,250 10,791 5,485 4,795 10,101
SN 1,687 2,941 2,497 1,243 10,791 5,504 4,805 10,092

TABLE 19
Various Characteristics of the CHESHIRE and INSTAPARSE

Clojure Programs

LOC Bytecode Size (MB) # classes #methods # call sites

CHESHIRE 385 4.25 3,458 11,868 128,685
INSTAPARSE 9,003 4.14 3,487 11,225 126,678

TABLE 20
Count of Nodes and Edges in the Static and Dynamic Call
Graphs of the CHESHIRE and INSTAPARSE Clojure Programs

Nodes Edges

S D DnS SnD S D DnS SnD
CHESHIRE 1,687 4,369 3,820 1,138 10,791 9,914 8,998 9,875
INSTAPARSE 1,687 4,234 3,690 1,143 10,791 10,413 9,425 9,803

Fig. 12. A simple Python program.

12. Sources are available from https://github.com/dakrone/
cheshire and https://github.com/Engelberg/instaparse.
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bytecodes generated for it are not amenable to static call
graph analysis. This is mainly due to heavy use of reflection
and using complex call-chains for function calls.

9 PYTHON

Python [4] is a popular dynamically-typedobject-orientedpro-
gramming language. In addition to classes and objects, it sup-
ports lists, sets, and dictionaries as built-in data structures.
Other key Python features include lambda expressions, com-
prehensions, and generators. Jython [32] is a JVM-based imp-
lementation of Python. In our experiments, we used Jython
2.7-b3, which is compatiblewith Python 2.7.

9.1 Translation to JVM bytecode

Fig. 12 shows a small Python program that we will use to
illustrate how Jython translates Python source code to JVM .

class files. The program declares two functions, foo() and
bar(). The program calls foo() on line 57, foo() calls bar
() on line 54, which in turns prints “hello world” on
line 56. For this program, the Jython compiler generates a class
hello$py containing the main application logic. In general,
each function call in the Python source code is mapped to a
sequence of method calls in the generated bytecode. For exam-
ple, for the call on line 54, the following sequence is generated:

1) hello$py.foo$1() calls PyObject.__call__

(), a method in the Jython runtime libraries.
2) PyObject.__call__() invokes another library

method, PyCode.call(), which is dynamically
dispatched to PyBaseCode.call().

3) PyBaseCode.call() invokes another call()

method in the same class that dispatches to an over-
riding definition in PyTableCode.

4) PyTableCode.call() invokes hello$py.call_
function() in the class containing the translated
application functions.

5) hello$py.call_function() contains a switch
statement in which each branch calls one of the
application functions depending on the value of its
first parameter, fid. The value of fid originates from
an instance field.

Fig. 13 shows the relevant bytecodes produced by the
Jython compiler for the program of Fig. 12. In this figure, the
previous five calls are visualized by the correspondingly-
annotated arrows.

9.2 Qualitative Analysis

Suppose we want to construct a call graph for the program
of Fig. 12 by analyzing the bytecodes generated for it by
the Jython compiler. As mentioned, hello$py.call_

function() calls each of f$0(), foo$1(), and bar$2(),
which correspond to the top-level code and the functions
foo() and bar() in the Python source code. For any other
method call in the program (e.g., the call to foo() from
top-level code), a similar chain of call edges exists that
includes hello$py.call_function(). Consequently,
every call site in a Python source file is translated into a chain
of method calls that involves hello$py.call_function
(), which calls every method corresponding to a function in
the same Python file.13

Based on this observation, it is difficult to see how a
bytecode-based analysis of the JVM bytecodes produced by
Jython could compute a useful call graph. A precise static
analysis would need to employ many levels of call-string

Fig. 13. Depiction of the bytecodes produced by the Jython compiler for the program of Fig. 12.

13. Jython generates a separate class for each Python source file,
each with its own call_function()method.
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context-sensitivity. It would also need to reason about heap-
allocated objects and values, which is beyond the current
state-of-the-art. Therefore, we conclude that generating pre-
cise call graphs from JVM bytecodes produced by Jython is
infeasible. Soundness is compromised for similar reasons:
all methods in imported modules are missing because
Jython generates code that relies on reflection to implement
module import.

9.3 Quantitative Analysis

Table 21 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

As Table 22 shows, on average, about 76 percent of the
methods and about 95 percent of the edges in the static
call graphs do not occur in the dynamic call graphs. This
significant imprecision mainly arises from the call chains
involving call_function() discussed above. Moreover,
features such as module imports that are implemented
using reflection cause about 6 percent of the methods and
9 percent of the edges in the dynamic call graphs to be
absent from the static call graphs.

9.4 Additional Case Studies

In addition to the Python CLBG programs, we have studied
GRAKO and PYBARCODE,14 two larger Python applications that

are publicly available on GitHub. GRAKO is a parser generator
for input grammars that are written in a variation of the
extended Backus-Naur form (EBNF). PYBARCODE is a Python
package that provides a convenient way to create barcodes
given their numerical value as input using only built-in
Python libraries. Table 23 shows, for both programs (exclud-
ing library code), the number of lines of source code, as well
as the size of the generated bytecodes, the number of classes,
methods, and call sites in the generated bytecodes.

Table 24 shows that the overwhelmingmajority (more than
99 percent) of methods and edges in the static call graphs for
both GRAKO and PYBARCODE do not occur in the dynamic call
graphs. These results are in linewith our quantitative analysis
of the Python CLBG benchmarks, showing that the static call
graphs for GRAKO and PYBARCODE are also significantly impre-
cise. Similarly, the majority of methods and edges (more than
91 percent) in the dynamic call graphs for GRAKO and PYBAR-

CODE are absent from the static call graphs, mainly due to the
use of reflection andmodule imports. We did not observe any
additional issues in the larger applications that would further
compromise unsoundness or precision.

10 RUBY

Ruby is a popular object-oriented programming language
for server-side scripting. JRuby [33] is a JVM-based imple-
mentation of Ruby. In our experiments, we used JRuby ver-
sion 1.7.13. Similar to Groovy, the JRuby compiler (jrubyc)
has a flag for enabling the generation of bytecode containing
invokedynamic instructions.

10.1 Translation to JVM Bytecode

Fig. 14 shows a simple Ruby program that defines functions
foo and bar, and top-level code that invokes foo. The
function foo calls bar, and bar prints “Hello, World!”.

Jrubyc translates each Ruby source file into a separate
class that defines methods main(), load(), and __file__

(). The generated classes contain an additional method for
each function in the Ruby source code. 15 For the program
of Fig. 14, a class hello with methods method__0$RUBY

TABLE 21
Various Characteristics of the Python CLBG Programs

LOC Bytecode Size (KB) # classes #methods # call sites

BT 37 2.92 1 8 183
FK 47 3.01 1 7 227
FA 68 4.44 1 12 401
KN 29 4.31 1 12 277
MB 106 2.85 1 7 157
NB 110 4.93 1 11 541
PD 33 2.51 1 6 157
RD 53 3.24 1 8 145
RC 19 3.16 1 9 130
SN 111 3.05 1 11 219

TABLE 22
Count of Nodes and Edges in the Static and Dynamic Call

Graphs of the Python CLBG Programs

Nodes Edges

S D DnS SnD S D DnS SnD
BT 10,449 1,761 71 8,759 110,549 3,141 229 107,637
FK 10,403 1,753 61 8,711 100,230 3,095 203 97,338
FA 10,481 3,267 132 7,346 110,739 6,675 406 104,470
KN 10,465 4,790 702 6,377 106,949 10,702 1,614 97,861
MB 10,444 1,770 75 8,749 107,851 3,148 233 104,936
NB 10,465 1,792 70 8,743 109,564 3,234 224 106,554
PD 10,290 1,736 62 8,616 104,167 3,104 213 101,276
RD 10,335 4,301 525 6,559 92,436 9,899 1,513 84,050
RC 10,377 4,264 304 6,417 95,170 9,819 1,035 86,386
SN 10,418 1,771 91 8,738 102,946 3,194 278 100,030

TABLE 23
Various Characteristics of the GRAKO and PYBARCODE

Python Programs

LOC Bytecode Size (MB) # classes #methods # call sites

GRAKO 6,682 0.35 53 1,435 32,951
PYBARCODE 1,165 0.24 11 171 4,145

TABLE 24
Count of Nodes and Edges in the Static and Dynamic Call
Graphs of the GRAKO and PYBARCODE Python Programs

Nodes Edges

S D DnS SnD S D DnS SnD
GRAKO 23,606 555 549 23,600 3,690,843 1,057 1,054 3,690,840
PYBARCODE 23,736 93 85 23,728 3,763,699 160 155 3,763,694

14. Sources are available from https://bitbucket.org/neogeny/
grako/ and https://bitbucket.org/whitie/python-barcode/.

15. In fact, JRuby generates 2 overloaded methods for each function
in the source code, where one performs additional checks before invok-
ing the other. In our example, only the method that does not perform
argument-checking is used.
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$bar() and method__1$RUBY$foo() is generated. The
compiler names the class hello because the Ruby source is
in a file called hello.rb. Each function call in the Ruby
source code is translated to a sequence of method calls in
the generated bytecode. For the call from foo to bar, the
following sequence is generated:

1) method__1$RUBY$foo() invokes org.jruby.

runtime.CallSite.call(), which dynamically
dispatches to org.jruby.runtime.callsite.

CachingCallSite.call().
2) then, CachingCallSite.call() invokes Cach-

ingCallSite.cacheAndCall(), a method in the
same class.

3) CachingCallSite.cacheAndCall() retrieves a
DynamicMethod object froma cache that ismaintained
at run time and invokes org.jruby.internal.

runtime.methods.DynamicMethod.call() on
that object. This triggers a sequence of calls to methods
in the JRuby runtime and Java standard libraries that
ultimately invokes a method call() in a class hello
$method__0$RUBY$bar that is generated at run time.

4) Finally, method hello$method__0$RUBY$bar.

call() invokes hello.method__0$RUBY$bar().
Fig. 15 shows the relevant bytecodes produced by the

JRuby compiler for the program of Fig. 14. In the figure,
each of the steps discussed above is visualized using a cor-
respondingly-labeled arrow.

Enabling the use of invokedynamic follows a similar
approach to that used in Groovy. The code that actually

determines the target method is the same whether that fea-
ture is enabled or not. A static analysis would then suffer
from the same issues we previously discussed in Section 7.

10.2 Qualitative Analysis

The code generated by jrubyc poses serious challenges to
static analysis. First, classes such as hello$method__0

$RUBY$bar are generated at run time. A static analysis is
unable to reason about the behavior of such classes. There-
fore, the analysis will miss calls to methods such as hello.
method__0$RUBY$bar(), which renders the computed
call graph unsound.

Furthermore, CachingCallSite.call() and Dynami-

cMethod.call() are invoked for every call in the source
code. These methods, in turn, invoke all methods correspond-
ing to source code functions such as hello.method__0

$RUBY$bar() and hello.method__1$RUBY$foo(). As
with Jython, precise static analysis would need many levels
of context sensitivity and it would need to understand heap-
allocated cached objects; this is beyond the current state of the
art. Therefore,we conclude that generating precise call graphs
from JVMbytecodes produced by JRuby is infeasible.

In Ruby, the require construct is used to import code
from another file. JRuby implements this idiom by dynami-
cally loading a script from a file using a ClassLoader, and
then relying on the mechanisms described above to inter-
pret these scripts. In general, static analysis is incapable of
precisely accounting for code interpreted at run time in this
way, resulting in additional unsoundness.

10.3 Quantitative Analysis

Table 25 shows, for each program in our benchmark suite
(excluding library code), the number of lines of source code,
as well as the size of the generated bytecodes, the number of
classes, methods, and call sites in the generated bytecodes.

Table 26 shows the sizes of dynamic and static call graphs
for the JRuby benchmarks. The numbers are very similar

Fig. 14. A simple Ruby program.

Fig. 15. Depiction of the bytecodes produced by the JRuby compiler for the program of Fig. 14.
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across all benchmarks because the large JRuby library con-
tains overwhelmingly more methods than the benchmark
programs themselves. As discussed above, the static call
graphs miss large numbers of nodes and edges from the
dynamic call graphs, primarily because methods in classes
generated at run time are not known to the static analysis.

The computed call graphs also exhibit significant impre-
cision: in each benchmark, approximately 70 percent of the
methods and 90 percent of the call edges in the static call
graph are absent from the dynamic call graph. This impreci-
sion occurs overwhelmingly in the JRuby standard library.
Due to the library’s complex structure, any current analysis
would find almost all of the standard library to be reach-
able, although only a relatively small fraction is used at run
time by our subject programs. As expected, the results are
very similar regardless whether or not the use of invoke-
dynamic is enabled.

10.4 Additional Case Studies

In addition to the Ruby CLBG programs, we have
attempted to study CHUNKYPNG and PSD.RB,16 two larger Ruby
applications that are publicly available on GitHub. CHUN-

KYPNG is a tool that provides read and write functionalities
to PNG images in pure Ruby. PSD.RB is a Ruby-based general
purpose Adobe Photoshop17 file parser. Table 27 shows, for
both programs (excluding library code), the number of lines
of source code, as well as the size of the generated byteco-
des, the number of classes, methods, and call sites in the
generated bytecodes.

Unfortunately, the ahead-of-time build system for JRuby
seems not to support building such large codebases. We were
not able to get the JRuby runtime to execute without depend-
ing on dynamically interpreting a large number of ruby scripts.
Such setup makes it almost impossible to perform any reason-
able comparison between static and dynamic call graphs.

11 PERFORMANCE

Reflection- and indirection-heavy implementations hamper
static analysis, and plausibly might harm performance as
well. To observe whether any correlations exist between
compilation strategies and run-time performance, we inves-
tigate the performance of the bytecode generated by the
compilers for the various languages on the CLBG bench-
marks. As a baseline for comparison, we evaluated the Java
versions as well. We evaluate the performance in terms of
running time and memory usage rate.

11.1 Setup

We used the Java Microbenchmarking Harness (JMH)
tool [34] that ships with the JDK to build, run, and analyze
the CLBG benchmarks written in Java and the other lan-
guages under study that target the JVM. Our experimental
setup uses JMH 1.12 with 30 warmup iterations and 30 mea-
surement iterations. However, we had to exclude the

TABLE 25
Various Characteristics of the Ruby CLBG Programs (Top:
Without invokedynamic, Bottom: With invokedynamic)

LOC Bytecode Size (KB) # classes #methods # call sites

BT 37 4.61 1 12 4
FK 47 4.10 1 8 4
FA 68 6.63 1 15 4
KN 29 5.31 1 18 4
MB 106 8.43 1 43 4
NB 110 7.61 1 18 4
PD 33 3.18 1 6 4
RD 53 5.47 1 14 4
RC 19 3.58 1 10 4
SN 111 8.41 1 46 4

LOC Bytecode Size (KB) # classes #methods # call sites

BT 37 5.04 1 12 4
FK 47 4.67 1 8 4
FA 68 6.88 1 15 4
KN 29 5.65 1 18 4
MB 106 9.21 1 43 4
NB 110 8.03 1 18 4
PD 33 3.52 1 6 4
RD 53 5.57 1 14 4
RC 19 3.77 1 10 4
SN 111 9.27 1 46 4

TABLE 27
Various Characteristics of the CHUNKYPNG and PSD.RB Ruby

Programs

LOC Bytecode Size (MB) # classes #methods # call sites

CHUNKYPNG 4,516 0.32 48 1,770 192
PSD.RB 5,638 0.61 140 2,750 560

TABLE 26
Count of nodes and edges in the static and dynamic call

graphs of Ruby CLBG programs (top: without invokedynamic,
bottom: with invokedynamic).

Nodes Edges

S D DnS SnD S D DnS SnD
BT 14,208 7,015 2,679 9,872 73,685 15,302 8,077 66,460
FK 14,139 6,956 2,667 9,850 73,373 15,165 8,037 66,245
FA 14,187 7,115 2,734 9,806 73,471 15,834 8,506 66,143
KN 14,212 7,224 2,773 9,761 73,620 15,877 8,440 66,183
MB 14,126 7,382 2,943 9,687 73,400 16,757 9,209 65,852
NB 14,210 7,054 2,679 9,835 73,613 15,638 8,312 66,287
PD 14,091 6,846 2,672 9,917 73,172 14,860 8,001 66,313
RD 14,206 7,118 2,749 9,837 73,477 15,589 8,323 66,211
RC 14,162 7,047 2,722 9,837 73,472 15,393 8,198 66,277
SN 14,135 7,079 2,738 9,794 73,430 16,061 8,753 66,122

Nodes Edges

S D DnS SnD S D DnS SnD
BT 14,128 7,087 2,744 9,785 73,308 15,629 8,450 66,129
FK 14,116 7,071 2,724 9,769 73,265 15,517 8,295 66,043
FA 14,129 7,123 2,739 9,745 73,280 16,157 8,791 65,914
KN 14,129 7,179 2,760 9,710 73,303 16,212 8,805 65,896
MB 14,095 7,408 2,942 9,629 73,265 17,175 9,562 65,652
NB 14,117 7,124 2,755 9,748 73,286 15,982 8,692 65,996
PD 14,056 6,954 2,750 9,852 73,046 15,105 8,224 66,165
RD 14,090 7,137 2,795 9,748 73,112 15,807 8,638 65,943
RC 14,099 7,126 2,771 9,744 73,235 15,720 8,510 66,025
SN 14,093 7,143 2,770 9,720 73,257 16,475 9,115 65,897

16. Sources are available from https://github.com/wvanbergen/
chunky_png and https://github.com/layervault/psd.rb.

17. http://www.adobe.com/ca/products/photoshop.html
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programs KN, MB, RD, and RC from the Clojure bench-
mark, because they use program constructs that eventually
call System.exit() in the Java runtime library. This call
causes JMH to prematurely shutdown the JVM which
causes the execution to stop before reporting any measure-
ments. Similarly, we had to exclude the programs NB, PD,
and RD from the benchmark for JRuby with invokedy-

namic. The code for these programs ends up re-initializing
constant values in the generated bytecode when the flag for
invokedynamic in the JRuby compiler is enabled, causing
the JVM to throw a runtime exception, which in turn pre-
vents JMH from reporting its measurements. Including
these CLBG programs would require editing their code to
avoid those runtime errors, which might invalidate the
results of this experiment. Therefore, we opted for exclud-
ing them from the performance evaluation.

Using JMH, we measure the running time using the aver-
age running time that JMH reports for each program. For
the memory consumption, we use the gc.alloc.rate.

norm output from JMH, which measures the normalized
number of allocated bytes per operation for each program.

11.2 Results

Figs. 16 and 17 present the running times andmemory usage
rates, respectively, in logarithmic scale, normalized to that of
Java, for each of the 10 benchmark programs per language.

Across all the languages that we have studied, Scala gen-
erates JVM bytecodes with the best performance in terms of

running time and memory usage. In fact, the Scala byteco-
des run 1.4� faster than their Java counterparts, while using
1.7�more memory. This discrepancy in running time is pri-
marily due to the benchmarks SN and KN. Our manual
investigation shows that SN is approximately 15� slower in
Java compared to Scala, which contributes the most to this
discrepancy. This is because the Java version is multi-
threaded, while the Scala version is single-threaded. Given
the 32-core machine that we ran our experiments on, the
synchronization barrier for the Java version is very expen-
sive, and is roughly 15� the cost of the real computation
that the benchmark actually does. KN exhibits the same
behaviour, but to a smaller extent where the synchroniza-
tion barrier causes the Java version to be approximately 3�
slower than its Scala counterpart.

Surprisingly, the JVMbytecodes generated by dynamically-
typed Kawa have the same performance as Java with respect
to running time,while using an average of 4.3�morememory.
This performance is better than that of the JVM bytecodes gen-
erated by OCaml, the only other statically-typed language in
our study. When compared to Java, OCaml generates JVM
bytecodes that run 10� slower, and use 10�morememory.

Another surprising observation is that dynamically-
typed Clojure generates JVM bytecodes that run faster than
their OCaml counterparts. This may be attributed to the
Clojure JVM bytecodes being more amenable to the optimi-
zations that the Java Just-in-Time (JIT) compiler performs at
runtime. On the other hand, the Clojure JVM bytecodes use

Fig. 16. The program running time, in logarithmic scale, normalized to that of Java, of the 10 CLBG benchmark programs.

Fig. 17. The memory usage rate, in logarithmic scale, normalized to that of Java, of the 10 CLBG benchmark programs.
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23�more memory than Java, which is more than double the
memory than the OCaml JVM bytecodes use.

The JVM bytecodes generated by all the other dynami-
cally-typed languages have worse performance with res-
pect to running time and memory usage. In particular,
JRuby JVM bytecodes run 136� slower and use 232� more
memory than Java. Compiling Ruby scripts with the invo-
kedynamic flag turned on improves the performance for
the JRuby JVM bytecodes as they run 101� slower and use
127� more memory than Java. On the other hand, using
invokedynamic doubles the memory usage of the Groovy
JVM bytecodes without any significant win with respect to
the running time.

The results of this experiment show that there is a strong
correlation between runtime performance and the extent to
which the generated JVM bytecode is amenable to static
analysis. This suggests that efforts by language implemen-
tors that aim to improve the run-time performance of gener-
ated code may benefit other applications of bytecode-based
program analysis as well.

12 DISCUSSION AND THREATS TO VALIDITY

12.1 Discussion

For soundness of analysis, the systems that we studied
mostly fall into two classes. The Kawa, Scala and OCaml-
Java systems produced sound call graphs in our experi-
ments, which we believe is due to relatively straightforward
translations that make judicious use of some features of
recent Java versions such as MethodHandles. MethodHan-
dles encode reflective accesses in a way that is directly read-
able from the bytecode. This allows analysis to soundly
and precisely model which methods are denoted, which, in
turn, enables sound construction of call graphs that use
these features. On the other hand, the other languages make
heavy use of string-based reflection and frequently store
and retrieve these strings to and from the heap. This makes
good approximations problematic, and results in unsound
call graphs. We experimented with versions of some lan-
guages that employ invokedynamic; these implementa-
tions employed similar string-based techniques and yielded
similarly unsound results.

12.2 Language Features

A critical reader might argue that the programs studied in
this paper are small, that they do not cover the full range of
each language’s features, and that they are perhaps not rep-
resentative of real-world programs. We do not consider the
above considerations to be serious reasons for concern,
because the primary conclusions of our study (i.e., whether
soundness or imprecision occurs for each language under
consideration) are evident from the manual analysis of
small example programs, and supported by our quantita-
tive experiments with the CLBG programs.

To further address the concern about the CLBG pro-
grams being fairly small, we conducted, for each of the lan-
guages under consideration (except Ruby), additional
experiments on two larger subject programs. For these pro-
grams, we performed the same quantitative experiments as
for the CLBG programs. Moreover, in a detailed qualitative
assessment, we determined whether additional issues arose

in these larger programs that comprise soundness or preci-
sion. From this assessment, we conclude that the larger pro-
grams exhibit the same issues as the smaller programs and
do not fundamentally alter our conclusions.

12.3 Code Coverage

In general, computing precise static call graphs is undecid-
able, and in this paper, we have used dynamic call graphs
to estimate the precision of static call graphs. However, a
dynamic call graph provides an under-approximation of a
precise static call graph, and the reader may wonder if code
coverage is reasonable. To address this concern, we mea-
sured basic block coverage. On average, across all the lan-
guages under consideration, the program input used to run
the CLBG benchmark suite provides a basic block coverage
of 87 percent, which is quite high.

12.4 Generality of Results

The choice of WALA and its 0-CFA analysis does not overly
bias our results as the analysis challenges we found are
more fundamental. For example, the qualitative studies we
have conducted show that dynamic translation schemes
such as run-time code generation and reflection potentially
cripple any bytecode-based static call graph analysis, not
just WALA’s.

12.5 Applicability of Results

We chose to study call graph construction because call graphs
have many applications in software engineering, including
bug-finding (see e.g., [13]), detecting security vulnerabilities
(see e.g., [14]), IDE features such as code navigation (see e.g.,
[15], and application extraction and optimization (see e.g.,
[16], [17]). Furthermore, call graphs are deeply connected to
pointer analysis, another fundamental analysis technology
[35]. Hence, our results indicate that bytecode-based program
analysis could be used for a range of applications on a range
of languages.

12.6 Ephemeral Results

We have used multiple versions of the language implemen-
tations over the course of the study, with no major impact.
Even the use of the invokedynamic instruction appears to
have little or no impact on analysis results. In fact, Fig. 17
shows that using invokedynamic leads to worse memory
performance for the language implementation for Groovy.
We therefore expect that the results of our study will still
hold for future versions of these systems.

13 RELATED WORK

In this section, we discuss several categories of relatedwork.

13.1 Empirical Studies

Reif et al. [36] study how unsoundness arises in call graph
construction algorithms for Java due to a number of features
and mechanisms, including: the use of reflection, unsafe
native APIs, serialization, lambdas and method references,
and default methods. In their study, they craft example
programs that exercise each of these features and determine
if loss of soundness is observed when analyzing these
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programs using existing implementations of call graph con-
struction algorithms in SOOT [10] and WALA [11]. The
study concludes that WALA provides better support than
SOOT for trivial uses of reflection (e.g., using string literals)
and Java 8 features such as lambdas, but that both WALA
and SOOT lose soundness when serialization or the unsafe
native APIs are used.

Sui et al. [37] present a similar study that investigates
how the soundness of call graph construction algorithms
is compromised by dynamic language features such as
reflection and dynamic loading, proxies, serialization, the
invokedynamic instruction, and the unsafe native API.
They define a micro-benchmark consisting of a set of pro-
grams that exercise each of the dynamic features. Each pro-
gram specifies its expected execution behavior using Java’s
annotation mechanism. Specifically, annotations specify
whether methods are always executed, never executed, or
sometimes executed (which may happen if the execution of
methods is platform-dependent). Sui et al. conduct a study
where they apply call graph construction algorithms from
the SOOT [10], WALA [11], and DOOP [9] frameworks to
their benchmark, and report that, while none of the frame-
works handles all the dynamic features soundly in all cases,
each framework appears to have some unique strengths. In
particular, WALA and DOOP [38], [39] support invokedy-
namic and proxies, and SOOT relies on Tamiflex to analyze
reflective code. In contrast to these studies, which consider
the challenges posed by dynamic language features in the
context of synthetic benchmarks, our work has focused on
identifying and analyzing the challenges posed to static anal-
ysis that arise in the JVM bytecodes produced by compilers
for 7 programming languages on programs taken from an
existing benchmark suite and from open-source repositories.

Most studies of non-Java JVM-hosted languages focus on
the dynamic behavior of bytecode from the point of view of
a JVM that executes it. Li et al. [40] studied JVM bytecode
generated by Scala, Clojure, Jython, and JRuby for the
CLBG programs. They measured the diversity of bytecode
instruction sequences executed, the sizes of methods, the
depths of the run time stack, the hotness distribution of
methods and basic blocks, the sizes and lifetimes of objects,
and the amount of boxing of primitive types. Sarimbekov
et al. [41] studied Clojure, Jython, and JRuby versions of the
CLBG programs. They measured polymorphic calls, immu-
tability of fields, objects, and classes, lifetimes of objects,
amount of memory zeroing, and the number of evaluations
of identity hash codes. Sewe et al. [27] introduced a bench-
mark suite for Scala similar to the DaCapo suite [42] for
Java and compare the dynamic behavior of these programs
to that of the DaCapo Java programs. The use of dynamic
features has also been studied for languages that are not
normally compiled to JVM bytecode. Richards et al. [43],
[44] studied the use of dynamic features in JavaScript, espe-
cially the eval construct. Hills et al. [45] studied the use of
various features in PHP programs, including eval. In con-
trast to these studies, our work examines JVM bytecode
from a static analysis perspective.

13.2 Multilingual Virtual Machines

The translation of various programming languages to byte-
code-based platforms has received considerable attention.

Several works consider the compilation of Scala to JVM
bytecode [46], [47], [48], [49]. Other languages, in addition
to those that were already discussed, include Star [50],
Pizza [51], [52], and even machine language code [53]. The
Microsoft Common Language Runtime (CLR) was designed
from the outset to support multiple source languages,
including C#, C++, and Visual Basic, and has since been
used as the target of many others. Gordon et al. [54] pre-
sented a type system for the CLR Intermediate Language
(CIL). Bebenita et al. [55] used CIL as the bytecode language
for a tracing just-in-time compiler specifically designed for
dynamic scripting languages like JavaScript. Recent work
has adapted the virtual machine more deeply to support
new languages. Castanos et al. [56] modified an existing JIT
compiler to exploit dynamic characteristics of Python for
improved performance. W€urthinger et al. [57] built a virtual
machine that allows custom source front-ends for a variety
of languages. This work laid the foundation for the later
development of the GraalVM [58], a universal virtual
machine that supports running JavaScript, Python, Ruby, R,
in addition to JVM-hosted languages. The custom front-
ends in GraalVM, which are typically implemented on top
of the Truffle language implementation framework, inter-
pret, profile, and optionally transform source programs.
The system later partially evaluates these interpreters to
generate machine code. Savrun-Yeniceri et al. [59] consider
forms of threaded code generation to speed up JVM-hosted
interpreters, by reducing indirect jumps to improve branch
prediction. While these approaches help improve the run-
time performance of executing dynamic languages, they still
do not influence how such languages are amenable to static
analysis.

13.3 Custom Data Structures

Xu and Rountev evaluated a regression test selection analy-
sis for AspectJ [60]. They found the analysis to be extremely
imprecise when based on call graphs constructed from byte-
code generated from AspectJ code. To improve precision,
they introduced the interaction graph, a structure similar to a
call graph that explicitly models AspectJ features, and eval-
uated an analysis for constructing such graphs from AspectJ
source code [61].

14 CONCLUSIONS AND FUTURE WORK

Getting free program analysis infrastructure for a wide
range of languages is an attractive prospect, and we have
investigated whether JVM bytecode based analysis for Java
can be used on other languages that compile to bytecode.
We show that this is indeed possible for a wide range of
statically-typed and dynamically-typed languages, based
on our results for functional Scheme, object-oriented Scala,
and polymorphic OCaml. Call graphs for these languages
are as sound as for Java, and present similar challenges for
obtaining precision. This suggests that bytecode-based anal-
ysis could serve as a useful implementation vehicle for
applications such as bug-finding, security analysis, and
code navigation in IDEs for languages where program anal-
ysis infrastructure is not readily available otherwise.

However, we demonstrate that the implementation of the
bytecode generation is crucial, and complex, reflection-heavy
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implementations prevent good analysis for Groovy, Clojure,
Python, and Ruby. We also show performance results indi-
cating that these implementations tend to result in poor per-
formance aswell.

Overall, the results are encouraging in that high-quality
JVM-based implementations can benefit not only from the
JVM’s mature implementation, but from its associated
mature program analysis infrastructure as well. While the
experiments in this paper focus on call graph construction,
we consider our conclusions to be broadly applicable to
bytecode-based interprocedural static analyses, because call
graphs are a prerequisite for most static analyses.

When designing new programming languages and imple-
menting compilers for them, designers consider and balance
many different objectives for each particular language. The
ability to analyze compiled code using existing JVM analysis
tools can be one such objective. The results of our study show
how easily the various possible compilation strategies can be
analyzed by existing JVM analysis tools. Thus, they provide
the data that language implementers need to balance the goal
of analyzability against other objectives in the implementation
of each new programming language. The data can be used to
initiate discussion and future research about the relative bene-
fits and drawbacks of various compilation strategies in the
context of specific newprogramming languages.
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