
ar
X

iv
:2

10
4.

01
53

7v
1 

 [
cs

.S
E

] 
 4

 A
pr

 2
02

1

Code Reviews with Divergent Review Scores:
An Empirical Study of the OpenStack and Qt Communities

Toshiki Hirao∗, Shane McIntosh†, Akinori Ihara‡, Kenichi Matsumoto§

∗dTosh Inc., Japan; toshiki.hirao@dtosh.com
†University of Waterloo, Canada; shane.mcintosh@uwaterloo.ca

‡Wakayama University, Japan; ihara@wakayama-u.ac.jp
§Nara Institute of Science and Technology, Japan; matumoto@is.naist.jp

I. ABSTRACT

Code review is widely considered a best practice for

software quality assurance [1]. The Modern Code Review

(MCR) process—a lightweight variant of the traditional code

inspection process [2]—allows developers to post patches for

review. Reviewers (i.e., other team members) are either: (1)

appointed automatically based on their expertise [3]–[5]; (2)

invited by the author [3], [6], [7]; or (3) self-selected by

broadcasting a review request to a mailing list [8]–[10].

Reviewer opinions about a patch may differ. Divergent

reviews can slow integration processes down [9] and can

create a tense environment for contributors [11]. For instance,

consider review #12807 from the QTBASE project.1 The first

reviewer approves the patch for integration (+2). Afterwards,

another reviewer blocks the patch from being integrated with

a strong disapproval (-2), arguing that the scope of the patch

must be expanded before integration could be permitted.

Those reviewers who provided divergent scores discussed

whether the scope of the patch was sufficient for five days,

but an agreement was never reached. One month later, the

patch author abandoned the patch without participating in the

discussion. Despite making several prior contributions, this is

the last patch that the author submitted to the QTBASE project.

We set out to better understand patches with divergent

review scores and the process by which integration decisions

are made. To do so, we analyze the large and thriving OPEN-

STACK and QT communities. Through quantitative analysis of

49,694 reviews, we address the following research questions:

(RQ1) How often do patches receive divergent scores?

Motivation: Review discussions may diverge among

reviewers. We first set out to investigate how often

patches with divergent review scores occur.

Results: Divergent review scores are not rare. Indeed,

15%–37% of the studied patch revisions that receive

review scores of opposing polarity.

(RQ2) How often are patches with divergent scores even-

tually integrated?

Motivation: Given that patches with divergent scores

receive both positive and negative scores, making an

integration decision is not straightforward. Indeed,

integration decisions do not always follow a simple

1https://codereview.qt-project.org/#/c/12807/

majority rule [12]. We want to know how often these

patches are eventually integrated.

Results: Patches are integrated more often than they

are abandoned. For example, patches that elicit pos-

itive and negative scores of equal strength are even-

tually integrated on average 71% of the time. The

order in which review scores appear correlates with

the integration rate, which tends to increase if negative

scores precede positive ones.

(RQ3) How are reviewers involved in patches with diver-

gent scores?

Motivation: Patches may require scores from addi-

tional reviewers to arrive at a final decision, imposing

an overhead on development. In reviews with divergent

scores, we set out to study (a) if additional reviewers

are involved; (b) when reviewers join the reviews; and

(c) when divergence tends to occur.

Results: Patches that are eventually integrated involve

one or two more reviewers than patches without di-

vergent scores on average. Moreover, positive scores

appear before negative scores in 70% of patches with

divergent scores. Reviewers may feel pressured to

critique such patches before integration (e.g., due to

lazy consensus).2 Finally, divergence tends to arise

early, with 75% of them occurring by the third (QT)

or fourth (OPENSTACK) revision.

To better understand divergent review discussions, we qual-

itatively analyze: (a) all 305 of the patches that elicit strongly

divergent scores from members of the core development

teams; (b) a random sample of 630 patches that elicit weakly

divergent scores from contributors; and (c) a random sample of

305 patches without divergent scores. In doing so, we address

the following research questions:

(RQ4) What drives patches with divergent scores to be

abandoned?

Motivation: In RQ2, we observe that 29% of the

studied patches with divergent scores are eventually

abandoned. Since each patch requires effort to pro-

duce, we want to understand how the decision to

abandon patches with divergent scores is reached.

2https://community.apache.org/committers/lazyConsensus.html

http://arxiv.org/abs/2104.01537v1
https://codereview.qt-project.org/#/c/12807/
https://community.apache.org/committers/lazyConsensus.html


Results: Abandoned patches with strong divergent

scores more often suffer from external issues than

patches with weakly divergent scores and without

divergent scores do. These external issues most often

relate to release planning and the concurrent develop-

ment of solutions to the same problem.

(RQ5) What concerns are resolved in patches with diver-

gent scores that are eventually integrated?

Motivation: In the 71% of patches with divergent

scores that are eventually integrated (see RQ2), the

reviewer concerns are being addressed. We set out to

study which types of concerns are typically addressed.

Results: In OPENSTACK and NOVA, reviewer concerns

are more often indirectly addressed (e.g., through

integration timing) in patches with strong divergent

scores than patches with weakly divergent and without

divergent scores. On the other hand, in QTBASE,

reviewer concerns are often directly addressed through

patch revision, irrespective of whether divergent scores

are present.

Based on our results, we suggest that: (a) software or-

ganizations should be aware of the potential for divergent

review discussion, since patches with divergent scores are not

rare and tend to require additional personnel to be resolved;

(b) automation could relieve the burden of reviewing for

external concerns; and (c) authors should note that even the

most divisive patches are often integrated through constructive

discussion, integration timing, and careful revision.

REFERENCES

[1] K. E. Wiegers, Peer Reviews in Software: A Practical Guide. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[2] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.

[3] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. Matsumoto, “Who should review my code? a file location-based
code-reviewer recommendation approach for modern code review,” in
Proceedings of the 22nd International Conference on Software Analysis,

Evolution, and Reengineering, 2015, pp. 141–150.
[4] M. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending peer

reviewers in modern code review.” Transactions on Software Engineer-

ing, vol. 42, no. 6, pp. 530–543, 2015.
[5] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: Code reviewer

recommendation in github based on cross-project and technology expe-
rience,” in Proceedings of the 38th International Conference on Software

Engineering, 2016, pp. 222–231.
[6] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of

code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th

Working Conference on Mining Software Repositories, 2014, pp. 192–
201.

[7] T. Hirao, A. Ihara, Y. Ueda, P. Phannachitta, and K. Matsumoto, “The
impact of a low level of agreement among reviewers in a code review
process,” in Proceedings of the 12th International Conference on Open

Source Systems, 2016, pp. 97–110.
[8] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software

peer review practices: a case study of the apache server,” in Proceedings

of the 30th International Conference on Software Engineering, 2008, pp.
541–550.

[9] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd

International Conference on Software Engineering, 2011, pp. 541–550.

Satisfying the criteria for journal first presenta-

tion at ICSE2021.

Criterion Response

The associated accepted
journal paper was accepted
to a journal from the
list below no earlier than
November 1st, 2019 and no
later than November 1st,
2020:

The article was accepted
for publication in the IEEE
Transactions on Software
Engineering on February
25th, 2020.

The paper is in the scope of
the conference.

The paper fits under the fol-
lowing topics of interest that
appear in the ICSE 2021 call
for papers: “Mining software
repositories” and “Evolution
and maintenance”.

The paper reports
completely new research
results and/or presents
novel contributions that
significantly extend and
were not previously reported
in prior work.

Yes, this paper makes sev-
eral novel contributions (see
Section 1 of the paper for an
overview).

The paper does not extend
prior work solely with ad-
ditional proofs or algorithms
(or other such details pre-
sented for completeness), ad-
ditional empirical results, or
minor enhancements or vari-
ants of the results presented
in the prior work.

This paper is not an extended
version of our prior work or
that of others.

The paper has not been pre-
sented at, and is not under
consideration for, journal-
first programs of other con-
ferences.

ICSE 2021 would be the
first conference at which this
work would be presented.

The paper should not ex-
clusively report a secondary
study, e.g., systematic re-
views, mapping studies, sur-
veys.

As far as we know, this paper
is not an exclusion from any
of other studies.

[10] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen,
“Communication in open source software development mailing lists,”
in Proceedings of the 10th Working Conference on Mining Software

Repositories, 2013, pp. 277–286.

[11] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in Proceedings of

the 40th International Conference on Software Engineering, Software

Engineering in Practice track (ICSE SEIP), 2018.

[12] T. Hirao, A. Ihara, and K. Matsumoto, “Pilot study of collective decision-
making in the code review process,” in Proceedings of the Center for

Advanced Studies on Collaborative Research, 2015, pp. 248–251.


	I Abstract
	References

