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Abstract—Intrinsic bugs are bugs for which a bug-introducing change can be identified in the version control system of a software. In
contrast, extrinsic bugs are caused by external changes to a software, such as errors in external APIs; thereby they do not have an
explicit bug-introducing change in the version control system. Although most previous research literature has assumed that all bugs are
of intrinsic nature, in a previous study, we show that not all bugs are intrinsic. This paper shows an example of how considering
extrinsic bugs can affect software engineering research. Specifically, we study the impact of extrinsic bugs in Just-In-Time bug
prediction by partially replicating a recent study by McIntosh and Kamei on JIT models. These models are trained using properties of
earlier bug-introducing changes. Since extrinsic bugs do not have bug-introducing changes in the version control system, we manually
curate McIntosh and Kamei’s dataset to distinguish between intrinsic and extrinsic bugs. Then, we address their original research
questions, this time removing extrinsic bugs, to study whether bug-introducing changes are a moving target in Just-In-Time bug
prediction. Finally, we study whether characteristics of intrinsic and extrinsic bugs are different. Our results show that intrinsic and
extrinsic bugs are of different nature. When removing extrinsic bugs the performance is different up to 16 % Area Under the Curve
points. This indicates that our JIT models obtain a more accurate representation of the real world. We conclude that extrinsic bugs
negatively impact Just-In-Time models. Furthermore, we offer evidence that extrinsic bugs should be further investigated, as they can
significantly impact how software engineers understand bugs.

Index Terms—Bugs, Extrinsic Bugs, Intrinsic Bugs, Mislabeled Bugs, Bug-introducing changes, Just-In-Time, Bug Prediction
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1 INTRODUCTION

R Ecent studies show that bugs do not have the same
origin [1], [2]. While some bugs have their origin in ex-

plicit changes recorded in the version control system (VCS)
of the software, other bugs are due to external changes that
are not recorded in the VCS, e.g., changes in external APIs,
compatibility changes or even changes in the specifications.

Rodrı́guez-Pérez et al. distinguish between intrinsic bugs
and extrinsic bugs. Intrinsic bugs are those bugs that have an
explicit bug-introducing change (BIC) in the VCS. On the other
hand, extrinsic bugs do not have a BIC recorded in the VCS
because there is no explicit change in the VCS of the project
that introduced the bug [2]. This may be because the bug
was caused (i) by a change in the environment where the
software is used, (ii) because requirements changed, (iii) in
an external library used by the project, or (iv) by an external
change to the VCS of the project, among other reasons.

In the case of extrinsic bugs, it is not possible to identify
a BIC in the VCS for a given bug; therefore we cannot
link the bug-fixing change (BFC) to a BIC. This finding can
put in jeopardy the results of previous studies as software
engineering research has always considered all bugs to
be intrinsic. For instance, Just-In-Time (JIT) bug prediction
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models [3], which are built at change-level, can be affected
as they are built with the assumption that for each bug there
is always a BFC and a BIC in the VCS [4], [5], [6].

Researchers have proposed different bug prediction
techniques [7], [8], [9], [10], [11]. But, JIT bug prediction
has many advantages over other bug predictions tech-
niques [12]. For example, JIT models allow developers to
review risky changes at the time of being produced and they
are built at a finer-granularity as changes are often smaller
than modules.

To build JIT models and predict bugs before they are
discovered in a software component, it is necessary to train
these models using historical data of that software compo-
nent and learn when a bug occurred in the past. During
the training phase, JIT models use datasets that connect bug
reports with the code changes that fixed the bug (the BFC),
and with previous code changes that introduced the bug in
the software (the BIC).

Then, to predict future bugs, JIT models use code change
properties of BICs and BFCs, such as the size of the change,
the number of files modified by the change, or the experi-
ence of the developer. Since extrinsic bugs cannot be linked
to a BIC, we hypothesize that in JIT models the incorrect
identification of BICs in extrinsic bugs may impact the
quality of datasets used to train JIT models, and ultimately
may impact JIT models themselves.

JIT models must be trained using reliable datasets to
improve their performance and increase their trustworthi-
ness [11], [13]. To do so, we need to identify extrinsic bugs
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and remove them from the dataset. Therefore, we can obtain
reliable dataset that only contains intrinsic bugs, i.e., bugs
for which we can identify a BIC.

To study the impact of extrinsic bugs in JIT models, we
partially replicated a recent paper by McIntosh and Kamei
that analyzed the performance of JIT models [14]. Through
this paper, we will refer to McIntosh and Kamei’s paper
as Mc&K’s paper to improve readability. As in previous
research, Mc&K’s paper considered all bugs to be intrinsic.
To quantify the impact of extrinsic bugs on JIT models, we
removed extrinsic bugs from their dataset.

Methodologically, to classify bugs as intrinsic or extrin-
sic, we followed the approach proposed in [1], [2], which
requires manually analyzing the bugs and their textual
information. As this is a very labor-intensive task, we have
focused only on one of the projects used as case study in
Mc&K’s paper: OpenStack. We first manually curated their
dataset and classified 1,880 bugs as intrinsic or extrinsic. We
then used this curated dataset to train JIT models removing
extrinsic bugs and computed their performance when iden-
tifying future BICs. Finally, we compared Mc&K’s results
with our results and deepened in the differences regarding
intrinsic and extrinsic bugs.

Thus, we analyze whether our manually curated dataset
is different from Mc&K’s dataset (RQ1). We have therefore
added a constraint (i.e., “when extrinsic bugs are removed”)
to Mc&K original research questions to study the impact of
extrinsic bugs in JIT models, (RQ2-RQ4). As we found a
significant share of mislabeled bugs in Mc&K’s dataset, we
also analyze what their impact is as well (RQ5). Mislabeled
bugs refer to issue reports that have been considered as
bug reports when, in fact, they are not reporting a bug but
another software maintenance activities, e.g., enhancements
or refactoring. Finally, we study if intrinsic, extrinsic, and
mislabeled bugs have different characteristics (RQ6).

Our results indicate that (1) intrinsic and extrinsic bugs
are different, (2) our manually curated dataset differs, in
terms of number of bugs, over 40% from an automatic ex-
tracted dataset, (3) JIT models obtain different performance
in terms of Area Under the Curve (AUC) (up to 16% AUC
points) when they consider only intrinsic bugs, and (4) AUC
scores are more stable after removing extrinsic bugs.

The remainder of this paper is organized as follows.
Section 2 presents the research questions. Section 3 discusses
related work. Section 4 describes the design of our case
study, and Section 5 presents how the model is constructed
and analyzed. Section 6 presents the results. Section 7 dis-
cusses the findings, while Section 8 contains the threats to
their validity. Finally, Section 9 draws conclusions.

2 RESEARCH QUESTIONS

The research questions addressed in this work are:

• RQ1: How does our manually curated dataset differ
from the one by McIntosh and Kamei?
Motivation: JIT models should use as input intrinsic
bugs, as BICs of extrinsic bugs cannot be identified
in the VCS. Thus, we are interested in studying how
different our manually curated dataset is compared
to the dataset obtained automatically and used in
McIntosh and Kamei.

Results: Over 40% of bugs could not be linked to
a BIC: 11.3% of the bugs in McIntosh and Kamei’s
dataset were classified as extrinsic bugs and 29.1%
as mislabeled issues.

• RQ2: Do JIT models lose predictive power over time
when extrinsic bugs are removed?
Motivation: McIntosh and Kamei found that JIT
models that were trained with old source code prop-
erties of BICs lose predictive power. With this ques-
tion we want to see how only considering intrinsic
bugs affects the predictive power of the models.
Results: JIT models also lose predictive power after
one year of being trained when only intrinsic bugs
are considered. However, our JIT models obtained
a different performance in terms of AUC values (up
to 16% AUC points) and a minor loss of predictive
power for each period (up to 15% AUC points).

• RQ3: How does the relationship between code
change properties and the likelihood of BICs evolve
in terms of time when extrinsic bugs are removed ?
Motivation: If code change properties1 of BICs
change over time, the properties of prior and fu-
ture BICs are different. McIntosh and Kamei studied
this relationship and found that properties of BICs
change through the evolution of project. However,
as the dataset they used contained extrinsic bugs as
well, we think that prior and future events may not
have similar properties. Thereby the impact of code
change properties might fluctuate.
Results: We have found that the impact of code
change properties is indeed different than the one
reported in McIntosh and Kamei. When extrinsic
bugs are removed, the code change properties related
to the magnitude of the change (Size) increase up to
18% AUC points and the code changes properties
related to the code review process (Review) decrease
up to 36% AUC points.

• RQ4: How accurately do current importance scores
of code change properties represent future ones when
extrinsic bugs are removed?
Motivation: McIntosh and Kamei found that the
importance scores for some of the most impact-
ful code change properties are consistently un-
der/overestimated. However, we think that the im-
portance score of some properties might change over
time when removing extrinsic bugs.
Results: We found that the importance scores for
some of the most impactful code change properties
are consistently under/overestimated as well.
However, the stability of property importance score
remains similar in both short and long JIT period
models – in McIntosh and Kamei this only applies to
short-term models.

• RQ5: How do mislabeled bugs affect JIT models?
Motivation: While manually curating the dataset in

1. Code change properties are described in Table 3.
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McIntosh and Kamei, we found a considerable share
of mislabeled bugs. In RQ2-RQ4, we considered them
as part of the input data for the JIT models. With
this RQ we want to quantify how they affect the JIT
models. As reported in recent research literature [15],
we expect mislabeled bugs to have a low effect on the
results.
Results: Contrary to our expectations, we have
found that mislabeled bugs also impact JIT models.
When comparing the results of including mislabeled
and intrinsic bugs in the dataset that fed JIT models
with the best results that these models can obtain,
we saw that they lose up to 4% AUC points.

• RQ6: Are the properties of BFCs and BICs linked to
extrinsic, intrinsic, and mislabeled bugs different?
Motivation: The results from RQ2-RQ5 show an
improvement in terms of AUC in JIT models when
removing extrinsic bugs. To ensure that these results
can be considered statistically significant, we need
to analyze how different code change properties of
BFCs and BICs linked to extrinsic and intrinsic bugs
are.
Results: Intrinsic and Extrinsic bugs present sta-
tistically significant differences in the code change
properties of BFCs and BICs linked to them. Fur-
thermore, these properties are more similar between
extrinsic and mislabeled than between intrinsic and
mislabeled bugs.

3 RELATED WORK

In this section, we contextualize our work with past studies
on bug origins, JIT bug prediction models and mislabeling
issues.

3.1 Origin of Bugs

JIT bug prediction models need to identify bug-fixing changes
(BFCs) and bug-introducing changes (BICs) from historical
data, and then use the code change properties of those BFCs
and BICs to train the JIT bug prediction models. That way
JIT models can point out buggy changes before they are
discovered in the software.

Traditionally, JIT bug prediction models use the algo-
rithm proposed by Sliwersky, Zimmermann, and Zeller
(SZZ) [4] to identify past BFCs and BICs. SZZ is a popular
algorithm in bug prediction [16]. It assumes the last change
that touched the line(s) fixed in a BFC introduced the bug [4],
[5], [6], [17]. In short, SZZ is an algorithm that links the VCS
and the issue tracking (ITS) system of a project to identify
the BFCs and their associated BICs.

Some authors have highlighted the limitations of linking
BFCs with BICs, since the origin of some bugs might not
be related to the lines modified in the BFC that fix the bug.
German et al. investigated bugs that manifest themselves
in unchanged parts of the software and their impact across
the whole system [18]. Chen et al. studied the impact of
dormant bugs (i.e., bugs that were introduced in a version
of the software system, but they were not found until much
later) on bug localization [19]. Prechelt and Pepper observed

that BFCs may touch non-buggy lines, and even when they
touched those lines, the actual BIC may have been made
earlier [20]. Ahluwalia et al. investigated the extend to which
defect datasets ignore some defects because they have not
been fixed [21]

Recently, Rodrı́guez-Pérez et al. have analyzed in detail
the origin of bugs and found that some BICs cannot be
identified in the VCS of a project because the change that
caused the bug was not recorded in the VCS. The authors
identified two types of bugs: (1) intrinsic bugs, i.e., bugs
caused by explicit changes recorded in the VCS, and (2) ex-
trinsic bugs, i.e., bugs caused by external factors or changes
to the software, as for instance changes in an external API,
or changes in the requirements [1], [2].

3.2 Just In Time Bug Prediction Models
JIT bug prediction models identify risky software changes
instead of risky files or packages. Kamei et al. proposed
for the first time the JIT quality assurance technique that
predicts defects at change-level [3]. Recent studies have
demonstrated that JIT models obtain sufficient prediction
accuracy to be applied in practice [22], [23].

JIT bug prediction models assume that code change
properties of past BICs are similar to code properties of
future BICs. Therefore, we can use JIT models to learn from
the past and predict the future. To achieve good prediction
accuracy in JIT models, researchers rely on a variety of code
changes properties to predict future BICs. These properties
can be derived from the changes themselves [13], [24],
from VCSs and ITSs [3], [25], [26], or from code review
systems [27], [28].

These properties have been used in previous studies [3],
[26], [28] and can be grouped into six families of code
change properties according to McIntosh and Kamei [14]: (i)
the Size family measures the magnitude of the change, (ii)
the Diffusion family measures the dispersion of the changes
across each modified file, (iii) the History family measures
the bug proneness of prior changes to the modified files,
(iv) the Author Experience family measures the experience
of the author of the change, (v) the Reviewer Experience
family measures the experience the code reviewer(s) of the
change, and (vi) the Review family measures characteristics
of change in the code review process.

We decided to study JIT bug prediction models because
(1) they present many advantages over other bug prediction
techniques [12], (2) they perform with high prediction ac-
curacy [22], and (3) they are a more practical alternative
to traditional bug prediction techniques [29]. Nowadays,
JIT bug prediction models are the best models yielding
actionable results in the current state of the art.

3.3 Mislabeling Issues
As far as we know, there are two approaches to distinguish
mislabeled bugs from real bugs. The first one is a manual
analysis using the classification rules proposed by Herzig et
al. [30]. The second one is an automatic approach that
uses regular expressions to identify (real) bugs from the
commit messages of the BFCs. The SZZ algorithm imple-
ments this approach, so it has been widely used in previous
research [5], [14], [31].



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MAY 2020 4

Although the automatic approach can be quicker and
easier than the manual analysis, it may lead to noise in
the dataset as some issue reports can be mislabeled, i.e.,
issue reports that describe defects but were not classified
as such (or vice versa). Previous studies have shown the
importance of correctly collecting data from VCS. Aranda
and Venolia found that VCS and ITS hold incomplete or
incorrect data [32], which cause mislabeling data. Some
studies have demonstrated that 33.8% [30] to 40% [33] of
the bugs in the ITS are mislabeled.

This mislabeling might impact the performance of bug
prediction models. Kim et al. found that bug prediction
models are considerably less accurate when they are trained
using datasets that have a 20%-35% mislabeling rate [34].
Herzig et al. observed that 33.8% of all issue reports were
mislabeled, and that this impacted the prioritization of files
in bug prediction [30]. Seiffert et al. carried out a compren-
hensive study [35] that confirms Kim et al.’s findings [34].

More recent studies suggest that mislabeled issues might
not be a severe threat in bug prediction models since the
mislabeling may not be necessarily random. For example,
it is more likely that a novice developer mislabels an issue
than an experience developer. Tantithamthavorn et al. found
that precision is rarely impacted by mislabeled issues but
recall is often impacted [15]. They claim that the differences
with Herzig et al. [30] may be explained by the differences
in their defect prediction experiments. Rahman et al. found
that the number of buggy modules has a higher impact
on bug model performance than the mislabeling data [36].
However, both studies agree that cleaning the data before
training the models allows to achieve a better identification
of indeed buggy modules.

Thus, to shed some lights on this topic, we decided
to study how mislabeled bugs impact JIT bug prediction
models. While previous studies looked at mislabeling in
bug prediction models at the file or module level, our study
focuses on the change level.

As far as we know, all previous studies about mislabel-
ing have not differentiated between extrinsic and intrinsic
bugs, considering them together. Therefore, there is no
overlapping between what they considered as mislabeled
bugs and what we refer to as extrinsic bugs in this work.

4 CASE STUDY AND METHOD

In this section, we describe our rationale for selecting the
studied system and the data extraction process.

4.1 Studied System: OpenStack
A qualitative analysis is required to ensure the correct iden-
tification of extrinsic bugs. The output of this analysis is a
manually curated dataset. Creating this dataset is very labor
intensive, since for every issue it is necessary to understand
either the textual information in the issue report and the
source code in the bug-fixing change, if not both. Given this
considerable effort, we selected one of the two case studies
from Mc&K’s paper to partially replicate their study and
understand the impact that extrinsic bugs have on JIT bug
prediction models.

We chose OpenStack because we are more familiar with
OpenStack –in our previous study [1] we investigate Nova,

a component of OpenStack– than with Qt. Furthermore, we
believe that OpenStack is an interesting and worthwhile
project to study the impact of extrinsic bugs in JIT bug pre-
diction models because it has more than 10,300 contributors
with significant industrial support from several major IT
companies such as Red Hat, Huawei, and IBM. Currently,
OpenStack has more than 330K commits with more than
48M lines of code and around 8,400 active developers.2 All
its history is available and saved in a VCS (git), an ITS
(Launchpad3), and a source code review system (Gerrit4).

4.2 Data Extraction

To study the impact of extrinsic bugs on JIT bug predic-
tion models, we used the replication package5 provided by
Mc&K’s paper [14]. With the information of the issues in the
ITS and the VCS, we were able to manually annotated bugs
on whether they were intrinsic or extrinsic. We also found
many issues that were wrongly considered bugs.

Figure 1 provides an overview of the phases followed to
obtain our final dataset. In the remainder of this section, we
describe each phase in detail.

Fig. 1: Overview of the steps followed to curate the dataset.

4.2.1 Obtaining the Issue-VCS dataset

The replication package only provides the final dataset to
feed the JIT models studied in Mc&K’s paper. We identified
which of these changes were related to intrinsic or extrinsic
bugs, and then removed the property of being a BIC when
the change was an extrinsic bug. For that, we required access
to the issues in the ITS and their links to the changes in the
VCS. To ensure that we could address our research questions
with the same dataset as Mc&K, we asked them for the
Issue-VCS dataset and obtained it.

The Issue-VCS dataset contains unique identifiers (is-
sueIDs) of the issues and the timestamp when they were
reported. The issueIDs were used to link issues to code
changes (changeIDs). Thus, for each issueID there is one
BFC and one or more changeIDs flagged as BICs. In total,
the Issue-VCS dataset contains 1,880 issueIDs linked to
1,904 changeIDs identified as BFCs, and 3,486 changeIDs
identified as possible BICs. Note that issueIDs and BFCs do
not have to be related one-to-one, since an issueID can be
fixed by more than one changeID.

2. http://stackalytics.com
3. https://launchpad.net/openstack
4. https://review.openstack.org/
5. https://github.com/software-rebels/JITMovingTarget
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TABLE 1: First step: Classification rules for classifying issues
as bug report or not a bug report (mislabeled).

An issue is classified as not a bug report (Mislabeled) if ...
(1) It reports a bug in test files. We assume that these bugs are caused by how
developers understand and test the code. Thus, there is no change introducing
buggy code to source code of the project.
(2) It reports a clean up in the source code that does not interfere with
the performance of the software.
(3) It reports a misspelling or typo in the inline comments.
(4) It reports a change in the source code to prevent future bugs.
(5) The report has discordance in the comments between developers.
(6) The report does not have a BFC.

An issue is classified as bug report if ...
(1) It reports a misspelling or typo in the source code.
(2) It reports that a previous change to the source code caused the bug.
(3) It reports a buggy functionality implemented that should be known
at the time of coding.
(4) It reports an omission in the original code that should be considered
at the time of coding.

TABLE 2: Classification rules for classifying bug reports as
intrinsic or extrinsic.

A bug report is classified as extrinsic if ...
(1) It reports a bug caused by a change in the environment
where the software is used.
(2) It reports a bug because requirements have changed.
(3) It reports a bug caused by an external change to the VCS of the project.
(4) It reports a bug in an external library used by the project.

A bug report is classified as intrinsic if ...
(1) There is no evidence to be classified as an extrinsic bug.

4.2.2 Classifying issues
During the manual analysis, we noticed that the data used
by Mc&K not only contained extrinsic bugs, but issues that
in fact were not bugs (e.g., other kind of issues such as
request for new features or maintenance activities [30]).

Thus, first, following the guidelines provided by
Herzig et al. [30], we manually classified the 1,880 issueIDs
into bug report, or not a bug report (i.e., mislabeled). Table 1
shows the rules used in this first step.Then, we manually
classified the issues identified as bug reports as intrinsic
or extrinsic bugs. For doing so, we used the approach by
Rodrı́guez-Pérez [1]. Table 2 offers the specific rules used in
this second step.

To remove subjectivity and bias in the classification, two
raters having at least a master’s degree in Computer Science
manually classified the issueIDs. The raters were individu-
ally trained in different stages, in each of them analyzing 100
random issueIDs from the data until they reached a near
perfect agreement (0.81 - 1). The ratio agreement between
both raters was computed using Krippendorff’s alpha, and
the disagreements were resolved with online meetings. Af-
ter each stage, the raters discussed the discordance and
added additional rationale to the guidelines.

Once the raters reached a near perfect agreement, they
individually analyzed 25% (470) of the issueIDs. At this
point, the raters obtained a Krippendorff’s alpha of 0.974
classifying issueIDs as a bug or not a bug, and a Krippen-
dorff’s alpha of 0.823 classifying bugs reports as extrinsic or
intrinsic. We considered that the raters’ agreement was high

TABLE 3: Taxonomy of changes provided by McIntosh and
Kamei [14].

Property Description Acron.

Size
Lines added Number of lines added by the

change.
la

Lines deleted Number of lines deleted by the
change.

ld

Diff.
Subsystems Number of modified subsystems. ns
Directories Number of modified directories. nd
Files Number of modified files. nf
Entropy Spread of modified lines across

files.
ent

Hist.
Unique Changes Number of prior changes to the

modified files.
nuc

Developers Number of developers who have
modified the file in the past.

ndev

Age Time interval between the last
and the current change.s

age

Author/
Reviewer
Exp.

Prior Changes The number of prior changes that
an actor6 has participated7 in.

aexp

Recent Changes The number of aexp weighted by
the age of the changes.

arexp

Subs.Changes Number of prior changes to the ns
that an actor has participated in.

asexp

Awareness Proportion of aexp to ns hat an
actor has participated in.

asawr

Review
Iterations Number of times that a change

was revised before integration.
nrev

Reviewers Number of reviewers who have
voted on integrating a change.

app

Comments Number of non-automated, non-
owner comments during the re-
view of a change.

hcmt

Review Window Time length between creation of a
request and its final approval for
integration.

rtime

enough to analyze the remaining 1,410 issueIDs only by one
rater (i.e., each rater classified 705 of the issueIDs).

The result of the classification procedure is a dataset
where issues are labeled as (1) intrinsic bug, (2) extrinsic
bug, or (3) not a bug (mislabeled).

4.2.3 Characteristics of the Changes
Mc&K extracted several code and review properties for
each change from the VCS of OpenStack. The properties
were grouped in six families: Size, Diffusion, History, Author
Experience, Reviewer Experience, and Review. We use this infor-
mation “as is”. The complete list of properties can be found
in Table 3.

4.2.4 Final Dataset
To obtain the final dataset that fed the JIT bug predic-
tion models, Mc&K merged the Issue-VCS dataset using
changeID and issueID. This merging filtered the dataset and
mitigated false positives. In addition, the dataset provided
by Mc&K (1) ignores potential BICs that only updated code
comments or white spaces (an improvement to SZZ by
Kim et al. [5]); (2) filters out potential BICs that appear
after the date that the implicated bug was reported [4]; and
(3) ignores suspicious BFCs and suspicious BICs using the
framework proposed by da Costa et al. [31].

Our goal is to study the impact of extrinsic bugs. Thus,
we removed the changeIDs that were not BICs. Since ex-
trinsic bugs do not have BICs, we removed the link between
issueIDs classified as extrinsic bugs and their BICs following
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TABLE 4: Number of unique issues and unique BICs that
survive each step of the filtering process.

# Filter Issues BICs
F0 Issue-VCS dataset 1,880 3,486
F1 Extrinsic Bugs 1,668 2,925
F2 Too much Churn 1,668 2,920
F3 To many Files 1,668 2,911
F4 No lines added 1,668 2,907
F5 Period 1,668 2,506

the recommendation of Rodrı́guez-Pérez et al. [2]. Besides,
we ignored changes that modified either at least 10,000
lines (“too much churn”) or 100 files (“too many files”) as
they were likely no BICs. The dataset obtained at this point
is what we have called the final dataset. Finally, to study
whether properties of BICs are consistent, we stratified the
final dataset into periods of three and six months as Mc&K’s
paper recommend [14]. Table 4 shows the number of issues
and BICs after each filtering phase.

Furthermore, in RQ5 (see 6.5) we discuss what the im-
pact of removing mislabeled issues is. Thus, we added an
additional filter to remove the links between issueIDs that
were classified as mislabeled with their changeIDs identified
as BFCs and BICs.

5 MODEL CONSTRUCTION AND ANALYSIS

In this section, we describe the model construction and anal-
ysis approach. Since we were partially replicating Mc&K’s
paper, we exactly followed their model construction pro-
cedure. Thus, we used Mc&K’s design decisions with our
final dataset, i.e., we did not modify any design decision
from Mc&K for the construction or analysis of the model.

5.1 Model construction
5.1.1 Handling Collinear Properties
Before constructing JIT models, we removed collinear code
change properties to avoid distorting the modeled rela-
tionship between these code change properties and the
likelihood of introducing bugs.

We used the Spearman rank correlation tests ρ to remove
code change properties that were highly correlated with one
another. For code change properties with correlation |ρ| >
0.7, we only included one of the properties in the models.

Then, we fit preliminary models that explain each prop-
erty using the others to remove redundant code change
properties. For that purpose, we used the redun function
available in the rms R package.

5.1.2 Fitting Regression Model
Software Engineering researchers often use a nonlinear
variant of multiple regression modeling to understand the
relationship between software quality and software devel-
opment practices [37], [38]. We fit JIT models using this tech-
nique as it relaxes the assumption of a linear relationship
between the likelihood of introducing bugs and the code
change properties; thus we can achieve a more accurate fit of
the data. We used restricted cubic splines, which fit smooth
transitions at the points where curves change in direction,
to fit our curves.

5.2 Model Analysis

To answer our research questions, we analyzed the output
of the JIT models using the different datasets.

5.2.1 Analyzing the Performance of the Models (RQ2)
The performance of JIT prediction models was assessed
using two metrics: the Area Under Curve (AUC) and the
Brier score.

The AUC is an evaluation metric for assessing the dis-
criminatory power of a model, i.e., in our case its ability to
differentiate between a BIC and not a BIC. AUC is calculated
by measuring the area under the curve that plots the true
positive rate of BICs against the false positive rate of BICs.
Its values range from 0 to 1; thus, the higher the AUC, the
better the model is at predicting a BIC or not a BIC. When
AUC is approximately 0.5, the model has no discrimination
capacity, and it performs as random guessing.

The Brier score measures the calibration of the model.
It is computed by measuring the mean squared difference
between the predicted probability assigned to the possible
outcomes (being a BIC or not) for a change and its actual
outcome. The Brier score can range from 0 to 1; 0 indicates
a perfect calibrated model, while 1 indicates the worst
possible calibration for a model.

5.2.2 Analyzing Property Importance (RQ3)
Each of the six change properties families is comprised of
several properties, and each property has been allocated
with three degrees of freedom. A model term represents
each degree of freedom. Thus, to estimate the impact that
each family has on the explanatory power of the JIT models
we jointly tested the set of model terms for each family
using the Wald χ2 maximum likelihood tests [38]. We nor-
malized the Wald χ2 values by the total Wald χ2 score of
the JIT model to compare multiple models. The larger the
normalized Wald χ2 score, the more significant the impact
a particular family of code change properties has on the
explanatory power of our JIT models.

5.2.3 Analyzing Property Stability (RQ4)
To evaluate the stability of the importance scores for each
family of code change properties f over time, we calculated
the difference between the importance scores of f in a model
that is trained using a period n and a future model that is
trained using a period n+ χ where χ > 0.

6 RESULTS

6.1 RQ1: How does our manually curated dataset differ
from the one by McIntosh and Kamei?

Approach Our manually curated dataset distinguishes
among intrinsic bugs, extrinsic bugs, and mislabeled bugs,
but Mc&K’s dataset does not. Thus, to further understand
the differences between our manually curated dataset and
an automatically extracted dataset (Mc&K’s paper), we com-
puted the distributions and the probability density of the
1,880 issues in the two datasets. We used a kernel plot to
present the distribution shape of the datasets. In kernel
plots, wider sections represent a higher probability that
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members of the population will take on the given value;
skinnier sections represent a lower probability.

Results While manually curating the dataset, we identi-
fied 1,120 intrinsic bugs, 212 (11.3%) extrinsic bugs, and 548
(29.1%) mislabeled bugs. We found that in Mc&K’s dataset,
there are 1,413 BFCs linked to extrinsic bugs, 3,690 BFCs
linked to intrinsic bugs, and 3,147 BFCs linked to mislabeled
bugs.
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Fig. 2: Distributions of the commits identified as BICs per
bug report for each category of bug.

Figure 2 shows a violin plot with the distribution of
the number of commits identified as BICs for each cate-
gory. This figure offers evidence that (1) extrinsic, intrinsic,
and mislabeled bugs have different distribution shapes; (2)
Mc&K’s bugs (All) and intrinsic bugs have similar distribu-
tion shapes; and (3) the distribution shapes of extrinsic and
mislabeled bugs differ from the one of intrinsic bugs.

Answer to RQ1: Over 40% of the McIntosh and
Kamei [14]’s dataset are not intrinsic bugs. Extrinsic
and mislabeled bugs show different distribution
shapes than intrinsic bugs.

6.2 RQ2: Do JIT models lose predictive power over
time when extrinsic bugs are removed?

To study how quick JIT models lose their predictive
power we follow the same methodology as McIntosh and
Kamei [14]. We split the data into periods, i.e., three-month
and six-month periods of data. Then, we train the JIT models
for each period and measure their performance on future
periods.

Approach Since older changes may have different char-
acteristics than more recent ones, we used a short period
model to train each period. Short period models are JIT
models trained only using changes that occurred during
one time period, the latest one before the test period. Since
some studies suggest that the more training data, the better
the results in bug detection models [36], [39], we also used
long period models to train each period. These long period
models are JIT models trained using all the changes that
occurred during or prior to the test period.

After training our JIT models in short and long periods,
we measured their performance when they were applied
in the test period. The performance of our JIT models was
measured using the AUC and the Brier score, as explained
in Section 5.2. For example, for training period 4, the short

period model was trained using the changes in this period,
and was tested using changes from period 5 onward; while
the long period model was trained using changes in periods
1, 2, 3, and 4 and tested using period 5. In both cases, the
AUC and Brier measures were computed for each testing
period individually.

Results Figure 3 shows heat-maps with the trend in AUC
and Brier performance scores for each period tested for our
short and long period JIT models. The shade of the box indi-
cates the performance value (from 0 to 1): Blue colors stand
for strong performance, white colors for random guessing
performance, and red colors for weak performance.

The columns of Figure 3a show that the values tend
to improve as the training period increases. For instance,
column 4 of the long period model has 0.66 of AUC score
when the model was trained using period 1. However, the
AUC score is 0.71, an improvement of 5% points, when it
was trained using period 3. All in all, the long period model
in Figure 3a presents a steady AUC score improvement of
5-9% points when we trained the models using the most
recent data instead of data from period 1. While the short
period model presents a AUC score improvement of 6-10%
points. The columns in Figure 3c also show a rise in Brier
scores of 1-5% points for the long period and 1-4% points for
the short period. The six-month period models have almost
the same performance, Figure 3b and Figure 3d show AUC
and Brier improvements that reach 7-8% and 3-8% points
for the long period, respectively.

The columns of Figure 3a show as well an improving
trend in AUC scores that is more stable in long than in short
period models. For instance, columns 5, 6, and 7 show that
the AUC improvement gained by adding the most recent
period to the long period is 2 percentage point in column 5
(0.72 and 0.74 for training periods 3 and 4), 1 in column 6
(0.70 and 0.71 for training periods 4 and 5) and 0 in column
7 (0.71 and 0.71 for training periods 5 and 6). While the
improvement gained by adding the most recent period to
periods 5, 6, and 7 in the short period models is 0, 2 and
-1 respectively. Figure 3b shows a similar tendency for six-
month periods. Figure 3c and Figure 3d indicate that the
improving trend in the Brier score is stable in both, short
and long period models.

When comparing these results with Mc&K’s paper, we
noticed a considerable increase in the blue shades, which
points out that our models perform stronger in terms of
AUC scores. For three-month periods, JIT models without
extrinsic bugs improved the AUC score from 1-16% AUC
points for testing periods 3-9 in the short and long peri-
ods. This improvement is for example noticeable in testing
periods 3, 4, and 5 with training periods 1 and 2. While
Mc&K’s models obtain almost the performance of a random
guess, our models obtain an AUC score improvement of 6-
16% points for both short and long periods.

Furthermore, after removing extrinsic bugs, our JIT mod-
els increase their stability by reducing two points in the
short and long period (after period 5), while Mc&K’s models
obtain a stability of -5.2% and -1.2% points for the short and
long period, respectively; our models obtain -2.1% and 0.2%
points for both periods respectively.

Figure 4 shows a heat-maps of the difference in AUC
and Brier performance scores between training and testing
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(a) AUC in the three-month periods
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(b) AUC in the six-month periods
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(c) Brier score in the three-month periods
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(d) Brier score in the six-month periods

Fig. 3: The predictive performance of JIT models as the studied
system age.

periods over time of our short and long period JIT models.
The shade of the box offers information about the difference:
blue colors stand for improvements performance, white
colors for unchanged performance, and red colors for drops
in performance in the testing period.

The analysis of the rows in Figure 4 offers evidence that
our models lose predictive power after 12 months of being
trained. Figure 4a and Figure 4b show that our short and

long period models lose 8-19% and 10-19% AUC points 12
months after being trained (i.e., testing period = training
period + 4) respectively. Both figures show that after 12
months there is (often) a drop in the AUC. At the same
time we can observe a boost in Brier scores (see Figures 4c
and 4d respectively).

Thus, similar to Mc&K’s results, we lose predictive
power in our JIT models after one year of being trained.
However, our models lose less amount of predictive power
in each period when using testing periods 1, 2, 3, and 4.
Also, AUC scores are more stable after removing extrinsic
bugs. For example, Mc&K’s models lose 3-34% AUC points
in short period models after one year, while our models only
lose 8-19% AUC points. Thus, our models lose 15% AUC
points less and gained stability up to 20% AUC points.

To observe the predictive power of long and short period
JIT models, we focus on the data from period 2 and later
since the AUC and Brier values of period 1 are identical
in both periods. This is because there is no additional data
added when training the long period model. The rows of
Figure 4a and Figure 4b show that the short period models
of periods 3 and later retain more predictive power than
their long period counterparts in terms of AUC, i.e., the drop
in the AUC values is smaller since these values are close to 0.
Figure 4a shows that when the long period model is trained
using period 3, it drops 10% AUC points when it is tested
in period 4, while it only drops 7% AUC points in the short
period model under the same circumstances.

Figure 4b offers evidence that with six-month periods,
both models retain similar predictive power; period 5 drops
8% AUC points in both models. Figures 4c and 4d show that
there is also an improvement in the retention of Brier score
in short period models. Furthermore, Figure 4 indicates that
short period JIT models retain more predictive power than
long periods.

Answer to RQ2: When removing extrinsic bugs, JIT
models obtain better performance in terms of AUC
(up to 16% AUC points). Models that only consider
intrinsic bugs also lose predictive power 12 months
after being trained, but they lose up to 15% AUC
points less and are up to 20% AUC points more
stable.

6.3 RQ3: How does the relationship between code
change properties and the likelihood of BICs evolve in
terms of time when extrinsic bugs are removed?

Approach To answer this question, we followed Mc&K’s
approach [14] and computed the normalized Wald χ2 im-
portance score (see Section 5.2) for each family of code
change properties, and for short and long period JIT models.
Furthermore, we computed the ρ-values associated with
these scores.

Results Figure 5 offers a series of heat-maps with the
importance score of the six code change property families.
The darker the shade of the box, the more important the
family is to our model.

Figure 5a shows that in both short and long period
models of three-month periods, the families of code changes
that contribute the most are Size, Diffusion, and Review for
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(a) AUC in the three-month periods
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(b) AUC in the six-month periods
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(c) Brier score in the three-month periods
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(d) Brier score in the six-month periods

Fig. 4: The delta in the estimate performance of JIT models as the studied system age.
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Fig. 5: Evolution of the importance scores of the six studied
families of code change properties over time. Shades indicates
magnitude while asterisks indicate significance according to
Wald χ2 test, where:* ρ < 0.05; **ρ < 0.01; ***ρ < 0.001.

the last periods. Size accounts for 20-49%, Diffusion for 0-
39%, and Review for 6-26% of the explanatory power in
the short period models. In the long period models, Size
accounts for 21-33%, Diffusion for 3-18%, and Review for 10-
25% of the explanatory power.

The six-month period models present similar results.
Figure 5b shows that the Size and Review families account
for more of the explanatory power in both short and long
period models. Size accounts for 21-43% and 22-33%, and
Review for 9-24% and 14-21%.

For the six-month periods models, Figure 5 shows that
the Size family is the top contributor in all periods of both
short and long period models. For the three-month periods
models, Figure 5 shows that, in both short and long period
models, the Size family is the top contributor in 8 out of
9 periods. The Review family is the top contributor in the
remaining periods.

The contributed explanatory power of the Size family
is statistically significant (ρ < 0.01, ρ < 0.001) in all of
the periods for our long and short period models in the
three-month and six-month periods. The Review family’s
explanatory power is also statistically significant (ρ < 0.01,
ρ < 0.001) in all of the periods in the long period model
of the three-month periods and for both models of the six-
month periods. However, in the short period models of the
three-month periods, the Review family’s explanatory power
is statistically significant only in 6 out of 9 periods.

Compared to Mc&K’s paper, when removing extrinsic
bugs in both short period models of three- and six-month
periods, the explanatory power of the Size family increases
from 3-37% to 20-49%, and from 16-25% to 24-43%. How-
ever, the explanatory power of the Review family decreases
considerably from 2-59% to 6-26%, and from 8-38% to 9-24%.
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In both long period models of three- and six-month periods,
when removing extrinsic bugs, the explanatory power of
the Size family also increases from 11-37% to 21-33%, and
from 15-19% to 22-33%, but the explanatory power of the
Review family decreases considerably from 15-43% to 10-
25%, and from 24-37% to 14-21%. This may indicate that
extrinsic bugs have different characteristics affecting the
Review family. Moreover, the statistical significance power of
the Review and Size families also increases when removing
extrinsic bugs. Our models increase the number of periods
with statistical significance of the Diffusion family in both
long and short periods of the three-months periods and six-
months periods.

Furthermore, our models increase the number of the
significant periods in Diffusion for both long and short
six-month and three-month period models. However, the
number of significant periods of the History family decreases
for both long and short three- and six-month period models.

Finally, fluctuations of the properties of BICs are more
stable in our JIT models. This suggests that although prop-
erties of intrinsic bugs tend to evolve as projects age, the
properties of extrinsic bugs fluctuate more drastically from
period to period.

Answer to RQ3: When removing extrinsic bugs, the
importance of the Size family increases (up to 18%
AUC points), but the importance of the Review fam-
ily decreases (up to 36% AUC points). Furthermore,
the importance of most families of code changes are
more stable through periods, suggesting that the
properties of BICs tend to evolve less drastically
with the project over time.

6.4 RQ4: How accurately do current importance scores
of code change properties represent future ones when
extrinsic bugs are removed?
Approach As Mc&K’s paper, we used the Family Impor-
tance Score (FIS) metric to study the stability of the im-
portance scores of each family of code change properties.
FIS(f,n) is the jointly tested model terms for all metrics
belonging to a family f in the model of period n.

These periods can be the training periods which are
represented by i, or the testing periods –or future periods–
which are represented by j. Thus, for each one of the JIT
models (short and long period) and for each family f , we
computed the differences between the importance scores of
each family in the training periods i and future periods j
using FISDiff(f, i, j) = FIS(f, i) - FIS(f, j).

When the difference between the importance scores of a
family f in periods i and j is higher than 0, this family has
a larger importance in period i (training) than in period j
(future). In such cases, the JIT model (trained using period
i) overestimates the future importance of family f . On the
contrary, when that difference is lower than 0, it indicates
that family f has smaller importance in period i (training)
than in period j (future). If this occurs, the JIT model
(trained using period i) underestimates the future importance
of family f .

When the model overestimates the future importance of
a family f , the impact of that family at the end of the period
might be smaller than anticipated. On the other hand, when

the model underestimates the future importance of a family
f , the impact of that family at the end of the period might be
bigger than anticipated. Software Quality Assurance (SQA)
teams can use these importance scores to estimate quality
improvements for future periods.

Results Figure 6 presents a series of heat-maps with
the differences between the importance score in period i
and j for each of the six code change property families.
Furthermore, each cell reports the statistical significance of
the importance score.

In the three-month period models, Figure 5a shows that
the Size family spikes in period 5 with a score of 0.49.
Training periods 1, 2, 3, and 4 in Figure 6a show that the
importance of Size is underestimated by 22%, 24%, 29%, and
18% AUC points respectively for testing period 5 in short
periods. In the long period models, the underestimation of
the importance of Size for testing period 5 has similar values.
When period 5 becomes the training period in Figure 6a,
the importance of the Size family is overestimated in the
short period model by up to 29% AUC points. However,
in the long period model, the maximum overestimation is
significantly smaller: 9% AUC points.

The short period models of Figure 6a shows several
fluctuations in the importance score of each family over the
periods. In the six-month period models, Figure 6b shows
the same trend for the Size family but with less severe
overestimation or underestimation.

Thus, similar to Mc&K’s paper, the importance of the Size
family is underestimated while the Review family is overesti-
mated when removing extrinsic bugs, especially in training
periods 1, 2, and 3. However, we found that either long
or short period models perform similar. The fluctuations in
importance in long period models are not smoother than the
fluctuations in short periods.

Answer to RQ4: When removing extrinsic bugs,
long-period models do not outperform short peri-
ods when analyzing the stability of the importance
scores. Larger amounts of training data will not
smooth the impact or fluctuations between periods.

6.5 RQ5: How do mislabeled bugs affect JIT models?
Approach Although we manually identified mislabeled
bugs, we decided to include them into the dataset that fed
JIT bug prediction models, i.e., we just removed extrinsic
bugs in answers RQ2-RQ4. The reason for doing this is be-
cause Tantithamthavorn et al. recently found that mislabeled
bugs do not have much impact in defect prediction when
analyzing whether a file will be buggy or not [15], so we
expected it to be the same for JIT models. With RQ5, we
want to evaluate if this is true.

We created a ground truth dataset by removing extrin-
sic and mislabeled bugs from Mc&K’s dataset. Since this
dataset only contains intrinsic bugs, the most accurate JIT
bug prediction models are to be obtained when using this
dataset for training the models. Therefore, to study the
impact of mislabeled bugs on JIT bug prediction models,
we compared the results obtained after training JIT models
using the ground truth dataset with the results obtained
after training JIT models using intrinsic and mislabeled
bugs.
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Fig. 6: The stability of the importance scores of the studied families of code change properties (FISDiff(f,i,j)).

Finally, to obtain a complete picture, we compared the
results using the ground truth dataset (i.e., only intrinsic
bugs) with the results of (1) intrinsic and mislabeled bugs,
(2) intrinsic and extrinsic bugs, and (3) intrinsic, extrinsic,
and mislabeled bugs (i.e., Mc&K’s results).

Results. While manually curating the dataset, we have
identified 548 mislabeled bugs (29.1%) and 212 extrinsic
bugs (11%) in Mc&K’s dataset. The percentage of misla-
beled bugs is similar to the percentage reported in previous
studies, ranging from 33% to 40% [30], [33]. Furthermore,
the percentage of extrinsic bugs is also similar to the one
reported in previous studies (9-21%) [2].

Extrinsic bugs were removed in RQ2 and RQ3. To obtain
the ground truth dataset, we removed the 548 mislabeled
bugs from our dataset. Since mislabeled bugs are not bugs,
they do not have a BIC. But, they have a BFC. So, we
removed the link between issueIDs classified as mislabeled
bugs and their BICs, and we trained again the JIT models,
this time using this new dataset (i.e., using the ground truth
dataset, composed of 1,120 issues and 1,571 BICs).

We followed the procedures described in RQ2 and RQ3
to analyze the most accurate performance that JIT models
can have using the ground truth dataset. We compared
these results with (1) the performance of JIT models when
mislabeled bugs are included in the dataset; (2) the perfor-
mance of JIT models when extrinsic bugs are included in
the dataset; and (3) the performance of JIT models when
mislabeled and extrinsic bugs are included in the dataset.
We will report the results of this RQ in textual form, due to
space constraints. All figures corresponding to the ones in
RQ2-RQ4 for the scenarios under study in RQ5 can be found
in the online appendix8.

Table 5 shows the delta comparison between the ideal
results (only intrinsic bugs) and the results of the different
JIT models implemented for this RQ. We obtain a complete
picture of how extrinsic bugs and mislabeled bugs affect the

8. http://gemarodri.github.io/2019-Study-of-Extrinsic-Bugs/

performance of JIT bug prediction models. A score of 0 in
the table means that for that particular case, the JIT model
performs as good as the ideal JIT model.

Training JIT models with intrinsic and mislabeled
bugs: when the datasets contain intrinsic bugs and misla-
beled bugs, the performance of the models decrease up to
4% AUC points for both short and long periods of the three
month period models. Furthermore, the performance also
decreases 2% AUC points for both short and long periods
of the six month period models. These models are almost as
stable as the models trained with only intrinsic bugs.

The importance of the studied families differ from the
ideal scenario. Although the importance of the Size family
is sightly overestimated, the importance of the Diffusion
and the History families are overestimated up to 14% AUC
and 12% AUC points for the three month short periods.
Moreover, the History family is underestimated up to 13%
AUC points for the three month long periods.

Training JIT models with intrinsic and extrinsic bugs:
the performance of these models decreases up to 3% AUC
points for both short and long periods of the three month
period models. However, the performance of both long
periods of the three and six month period models increases
up to 3% AUC points. This means that these models are
over-fitted. These models are as stable as the models trained
with only intrinsic bugs for the three month long periods
and the six month short periods.

The importance of the Rev.Exp. family is overestimated
up to 12% AUC points, but underestimated up to 10% AUC
points for the three month long periods and six month short
periods, respectively. There are sightly no differences in the
importance of the remaining families.

Training JIT models with intrinsic, mislabeled, and
extrinsic bugs: the performance of these models increases
up to 15% AUC points and 9% AUC points for both short
and long periods of the three- and six-month period models
respectively. Therefore, these models are over-fitted, which
may cause a poor predictive performance.

http://gemarodri.github.io/2019-Study-of-Extrinsic-Bugs/
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The importance of the Size, Diffusion, and History families
is either overestimated or underestimated for the three and
six month periods. The importance of the Review family is
overestimated up to 20% AUC points for the three short
period models.

Answer to RQ5: Mislabeled bugs affect JIT models
reducing their performance up to 4% AUC points
and underestimating the importance of the History
family. Extrinsic bugs affect JIT models reducing their
performance up to 3% AUC points and overestimating
the importance of the Rev.Exp. family.

6.6 RQ6: Are the properties BFCs and BICs linked to
extrinsic, intrinsic, and mislabeled bugs different?

Approach During the manual classification, we found that
Mc&K’s dataset not only contained extrinsic bugs, but also
mislabeled bugs. Thus, to further understand whether code
change properties are different among these categories, we
analyzed the distributions and probability density of the six
families of code change properties (see Table 3) of (1) the
commit identified as BFCs and (2) the commits identified as
BICs. Notice that, although extrinsic bugs and mislabeled
bugs cannot be linked to a BIC, in this RQ we analyze
whether there are differences between the BICs linked to
intrinsic bugs and those BICs (incorrectly) linked to extrinsic
bugs and mislabeled bugs.

We then compute whether the differences between these
three groups were statistically significant across the six
families of code change properties for BFCs and BICs. For
that, we used the the Kruskal-Wallis test [40]. This test is a
non-parametric statistical test that assesses the differences
among three or more independently sampled groups on a
single, non-normally distributed continuous variable9.

Finally, we analyze how different these three groups are
when they are paired in two groups i.e., Extrinsic-Intrinsic,
Extrinsic-Mislabeled, and Intrinsic-Mislabeled. For that, we
used the Wilcoxon Signed Rank test [41] which is a non-
parametric test that statistically compares the average of two
dependent samples and assesses for significant differences.

Results a) Code Change Properties of BICs for intrin-
sic, extrinsic, and mislabeled bugs

Figure 7 shows violin plots with the distribution for each
family of code change properties of the manually classified
intrinsic, extrinsic, and mislabeled issues. The kernel plot
indicates the distribution shape of the data. Wider sections
represent a higher probability that members of the popula-
tion will take on the given value; skinnier sections represent
a lower probability.

Figure 7 shows the distribution shape among the three
groups per family of code change properties. Figure 7a
shows a bimodal distribution for extrinsic bugs. The dis-
tribution shape of intrinsic and mislabeled bug is however
uni-modal. Besides, Figure 7b shows that the distribution
frequency of intrinsic bugs are concentrated in lower values
while the distribution frequency for extrinsic and mislabeled
bugs is more uniform.

9. We found that the final dataset contained skewed data using the
function skewness with the e1071 package in R.

Figure 7 offers evidence that (1) intrinsic and extrinsic
bugs have different distributions and medians for all the
six families; (2) intrinsic and mislabeled bugs also have a
different distribution and medians; and (3) extrinsic and
mislabeled bugs are more similar than intrinsic and mis-
labeled bugs in terms of distributions shape and median.

After computing the Kruskal-Wallis test for the six fami-
lies of code change properties, we obtained p − values <
0.05 in five of them. Thus, the Size (1.9E.-014), Diffusion
(2.2E.-16), Reviewer (1.6E.-06), Author (2.6E.-05), and Review
(0.0005) families can be considered different for BICs linked
to extrinsic, intrinsic and mislabeled bugs.

Table 6 shows which pairs of groups are different for the
six families of BIC code change properties. This table offers
evidence that the differences between intrinsic bugs and
extrinsic bugs or mislabeled bugs are statistically significant
for five out of six families. Furthermore, this table also points
out that extrinsic bugs and mislabeled bugs are similar in
four out of six families, i.e., Author, Reviewer, History, and
Review. This finding illustrates that (1) intrinsic, extrinsic,
and mislabeled bugs are not the same; and (2) extrinsic bugs
and mislabeled bugs have code change properties that are
very similar.

Results b) Code Change Properties of BFCs for intrin-
sic, extrinsic, and mislabeled bugs

After computing the Kruskal-Wallis test for the six
families code change properties of BFCs, we obtained
p−values < 0.05 in three of them. Thus, the Size (4.8−016),
Reviewer (0.0003), and Author (0.002) families can be con-
sidered different for BFCs linked to extrinsic, intrinsic and
mislabeled bugs.

Table 7 shows which pairs of groups are different for
the six families of BIC code change properties. This table
offers evidence that (1) the differences between intrinsic
and extrinsic bugs are statistically significant for Size and
Author, (2) the differences between intrinsic and mislabeled
bugs are statistically significant for Size, Author, Reviewer
and Review; and (3) the differences between extrinsic bugs
and mislabeled bugs are statistically significant for the Size
family.

Answer to RQ6: Intrinsic and extrinsic bugs have
different code change properties. When analyzing
mislabeled bugs as well, we have found that the
nature of extrinsic bugs is closer to them than to
intrinsic bugs. These differences are statistically sig-
nificant in five out of six families for BICs. For
BFCs, half of code change families are statistically
different.

7 DISCUSSION AND FURTHER RESEARCH

In this section, we discuss the impact of our results first
on JIT models and then on software engineering practice in
general. We also discuss the implications of our results for
researchers and practitioners.

7.1 Impact on JIT

Our results show that JIT models fed exclusively with
intrinsic bugs obtain a more accurate representation of the
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TABLE 5: Comparison of the results of the different JIT prediction models implemented in this study with respect to the
ideal JIT bug prediction model (only intrinsic bugs). “[Intrinsic+Mislabeled] Bugs” stands for the models after removing
extrinsic bugs. “[Intrinsic+Extrinsic] Bugs” stands for the models after removing mislabeled bugs. “[Intrinsic+Mislabeled+
Extrinsic] Bugs” stands for McIntosh and Kamei’s models [14].

[Intrinsic + Mislabeled] Bugs [Intrinsic + Extrinsic] Bugs [Intrinsic + Mislabeled + Extrinsic] Bugs

Issues 1,668 1,332 1,880
Total BICs 2,506 2,132 3,067

3 months 6 months 3 months 6 months 3 months 6 months
Short Long Short Long Short Long Short Long Short Long Short Long

∆ % AUC [-4,3] [-4,1] -2 -2 [-3,8] [-3,3] [-1,3] [-1,3] [-2,15] [2,15] [2,9] [3,9]
∆ Stability [-1,1] 1 1 1 [-3,-1] 0 0 2 [1,3] -1 -1 -1
∆ % Size Fam. [2,3] [1,-2] [4,5] 2 [-2,-1] [-2,2] [-2,5] [-4,2] [-10] [-9,6] [-13,-6] [-5,12]
∆ % Diffusion Fam. [14] 4 [1,10] [1,2] [1,2] [2,3] [2,4] [-3,-2] 16 [-1,14] 10 2
∆ % History Fam. [1,12] [-13,-3] [-3,-2] [-1,2] [2,3] [-2,3] [-4,2] [1] [2] [-4,4] [-4,6] [-1,10]
∆ % Auth.Exp. Fam. 0 0 0 1 3 1 1 -2 3 3 1 2
∆ % Rev.Exp. Fam. [-7,1] -2 -7 -2 -2 [1,12] [-5,1] [-10,-2] 6 [-4,-3] 6 [3,4]
∆ % Review Fam. [-3,-2] -10 -9 [1,-8] [3,7] [-3,-1] [-3] [1,3] [-2,20] [5,8] [1,3] [2,11]
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Fig. 7: Distribution of intrinsic bugs, extrinsic bugs, mislabeled bugs and all bugs for the six families of code change properties.
The families of code change properties are shown in Table 3.

TABLE 6: p-values between Bug-Introducing Changes
linked to different kind of bugs (Wilcoxon rank sum test).

Size Diffusion Author Reviewer History Review

Int.-Ext. 2.4E.-09 1.4E.-13 0.001 0.0002 0.9 0.005

Int.-Mis. 4.8E.-08 3.1E.-02 0.002 0.002 0.9 0.012

Ext.-Mis. 2.7E.-01 4.8E.-14 0.6 0.5 0.9 0.7

TABLE 7: p-values between Bug-Fixing Changes linked to
different kind of bugs (Wilcoxon rank sum test).

Size Diffusion Author Reviewer History Review

Int.-Ext. 0.02 0.15 0.043 0.05 0.15 0.113

Int.-Mis. 4.9E.-16 0.71 0.005 0.0004 0.17 0.03

Ext.-Mis. 0.005 0.15 0.95 0.61 0.38 0.96

real world; issues that are mislabeled bugs and bug reports
that are due to extrinsic bugs should be removed.

The impact of this finding is significant, as over the past
15 years many studies have used automatic techniques to
collect bug datasets which are formed by bug reports, bug-
fixing commits, and bug-introducing changes. These dataset
are then used to train bug prediction models [9], [26], [29],
[42], [43], [44], [45].

Hence, the results of hundreds of studies on bug pre-
diction [11] may be not as accurate as they could, as they
have not discriminated between intrinsic and extrinsic bugs
when training their models.

On the other hand, our results support some of Mc&K’s
results for JIT models. When JIT models are trained without
extrinsic bugs, we found that (1) they lose a large amount
of predictive power one year after being trained; (2) when
trained using periods that are closer to the testing period
tend to outperform models that are trained using older pe-
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riods; (3) long period JIT models do not always retain more
predictive power for longer than short period JIT models;
and (4) the Size family is consistently the top contributor in
our JIT models, and fluctuations in short period JIT models
are more common than in long period JIT models.

As already mentioned, there is a debate in the research
literature on the impact of mislabeled bugs. Some authors
found that they introduce noise in the results of prediction
models [30], [34], while others contradict this finding [15].
Our paper sheds more light on this topic, as it offers evi-
dence that JIT models that used only intrinsic bugs obtained
a more accurate representation of bugs, as intrinsic code
change metrics fit better in JIT models. We believe that
researchers should be aware of the noise that mislabeled
bugs introduce in their dataset. Furthermore, we believe that
a necessary criteria to assess the quality of the dataset is to
select projects based on their policies to distinguish between
bugs and non-bugs.

While mislabeled bugs have been widely studied in
previous works [30], [33], [46], extrinsic bugs have been
recently discovered [2] and we still do not understand them
fully. In our opinion, further research should be devoted to
them. It should be noted that in our case study the effect
on 212 extrinsic bugs is similar to the one of 568 mislabeled
bugs. Future research lines should continue studying how
the characteristics of extrinsic bugs impact not just JIT bug
prediction models, but also other bug prediction techniques.

7.2 Impact on Software Engineering
We knew that not all the bugs are the same; they could be
intrinsic or extrinsic depending of their origin [1], [2]. In this
paper, we offer evidence that intrinsic and extrinsic have
different code change properties.

We have also found more similarity between extrinsic
bugs and mislabeled bugs in the patterns shown in Figure 7.
This result is also supported by Table 6 and Table 7 which in-
dicate similar code changes properties between mislabeled
bugs and extrinsic when analyzing BFCs and BICs linked to
these bugs. Furthermore, we have observed that some code
change properties, i.e., Author, History, Review, and Reviewer
of the BFC linked to extrinsic bugs and mislabeled bugs
are similar. This finding might suggest that fixing a bug
which does not have a BIC in the VCS can be compared to
developing other kind of issues such as a mislabeled bug. In
short, extrinsic bugs have similar characteristics than non-
buggy changes. We find this evidence worth further research
in order to understand the different natures of bugs, and in
particular extrinsic bugs.

We think our findings might have a broader impact than
just improving bug prediction models.

Practices and processes In the paper we have seen that,
when removing extrinsic bugs, the explanatory power of
the Size family increases from 11%-43% to 20%-49%, but the
explanatory power of the Review family decreases consider-
ably from 2%-59% to 6%-21% (see RQ3). This points out that
review practices may affect extrinsic and intrinsic bugs in a
different manner, and thus should be addressed differently.
In this regard, it would be interesting to see if there are
practices that minimize the number (or at least the effect)
of extrinsic bugs. We imagine as well that some software
architectures could be more robust than others.

Education We believe that there is currently a strong
bias towards training future software engineers exclusively
on intrinsic bugs when identifying the origin of bugs as
previous studies do not consider the extrinsic nature of
bugs [1], [2]. Our findings suggest that we should educate
students in the fact that software bugs do not always have
their origin in a change in the VCS. If tools and practices
to support bug fixing of extrinsic bugs appear, we should
incorporate them to the curriculum.

7.3 Implications

Besides the impact that our results have on JIT models
and Software Engineering, we discuss the implications for
developers, researchers, and practitioners.

Data Awareness: If researchers include all bugs in their
datasets, they are using a dataset which has not been
conveniently prepared, and the results could differ from
reality. Thus, if developers are aware of the type of bug
they are fixing and start labeling them accordingly in bug
tracking systems or commit messages, researchers could
obtain better datasets for bug prediction models and foster
research on this issue. We hypothesize that software projects
will benefit from this as well in the long run.

In the past, we had a similar situation when developers
started to indicate the ITS bug id in the BFC; this helped
considerably in the improvement of the SZZ algorithm [47].
ITSs also offer the possibility to categorize issues as mis-
labeled bugs. At this point, we do not if our results may
lead to a drastic changes for developers because with one
case study we are not able generalize. But, in the case
of OpenStack the models without extrinsic bugs perform
usually slightly better, sometimes much better.

Furthermore, researchers should be aware of their data
and put more attention in the data collection process. They
must ensure that when gathering data the ITSs selected for
the study distinguish between bug reports and other kind
of issues. Therefore, data validation is recommended [30].

Tools: The curation of bugs is a labor-intensive task that
requires expert knowledge of the software system, which
makes it a very costly process. Thus, the development of
tools that help in the classification of bugs might be useful
for researchers. In the same manner as tools have been
developed that help to lower mislabeling [47], [48], [49],
new tools could automatically detect intrinsic and extrinsic
bugs. These tools can help practitioners and researchers to
ensure the maintainability of software systems, nonetheless
the quality of the datasets used to train bug prediction
models. For example, a new search could be how to use
natural language processing techniques in combination with
deep learning techniques to classify bugs as extrinsic or
intrinsic based on the textual information from the bug
reports. Also, another research line could study different
techniques to automate as much as possible the theoretical
model proposed by Rodrı́guez-Pérez et al. [2] to identify
extrinsic and intrinsic bugs. We envision that these tools
might be of benefit in other fields of software engineering
such as testing/verification, software analytics and software
maintenance and evolution.

Research: The different nature of extrinsic bugs com-
pared to intrinsic ones demands as well further research;



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MAY 2020 15

based on our previous work [1], [2], we conjecture that
previous studies have focused much on the latter, but there
is a lack of understanding, research and tools on the former.
We call for more investigations on the topic. We need to
know more about extrinsic bugs. We know very little about
them. Are there different types of extrinsic bugs? Are they
more costly than intrinsic bugs? Are they re-opened more
often? Can we write software that is less prone to contain
extrinsic bugs? Our aim with this paper has been not to
focus only on the impact on extrinsic bugs on JIT bug
prediction, but to draw attention to the fact that there is a
new field of research in knowing more about extrinsic bugs.

8 THREATS TO VALIDITY

The validity of this study is described in terms of the
three main threats to validity that affect empirical software
engineering research: construct, internal, and external [50].

Construct Validity Since we are using the replication
package provided in Mc&K’s paper [14], this study suffers
from the same construct validity threats reported in Mc&K’s
study. We have attempted to mitigate some of these threats.
For example, they used the SZZ algorithm to identify BICs
without further refinement. SZZ is widely used algorithm in
bug prediction research [3], [26], [42], but it is well-known
that it suffers from several limitations [16], [31]. In this work,
we manually identify those issues that are not related to a
bug and then discriminate between extrinsic and intrinsic
bugs. Only for the latter the use of SZZ makes sense. The
classification of 705 issues by only a single rater can be
a threat to the validity. However, we tried to minimize
the impact of this threat by training the two raters until
they achieved a near perfect agreement before they starting
classifying the 705 issues. This training include the analysis
of 470 issues (25%).

Internal Validity Although we have experience in Open-
Stack from investigating it for several years, we have no
advanced development expertise in this system. This fact
may have influenced the manual classification of bugs into
the different types. To mitigate this threat, we discussed
the unclear cases, and when no agreement was reached, we
treated these cases as Mc&K’s paper did (i.e., we considered
that these bug reports were “true” bug reports and not other
kind of issues).

External Validity A notable difference between Mc&K’s
study and ours is that they had two case studies (OpenStack
and Qt), while we have only one (OpenStack). The rationale
for this is that our study is very labor-intensive; while Mc&K
apply directly SZZ to the dataset of 1,880 issues, we have
curated them manually. The curation procedure requires
to understand the bug in its very detail, which is a non-
trivial task. In total, raters have devoted over 250 hours
carrying out the task of classifying these 1,880 issues. The
study of just one case study prevents us to generalize our
findings to other systems. However, our goal was not claim
that our results would stand to all systems, but rather to
show the exception, we have found that extrinsic bugs can
have a significant impact on bug prediction models, at least
in one project. We think that our research is successful in
this regard, as we demonstrate that intrinsic and extrinsic
bugs show different characteristics. In the particular case

of JIT models, we offer sufficient evidence that researchers
and practitioners should be aware of extrinsic bugs (in
addition to mislabeled bugs). Case studies contribute to
increase knowledge and gain a deep understanding of
particular phenomenon [51]. Also, some theorist argument
that case studies help to draw attention to things that need
change [52].

9 CONCLUSIONS

Previous studies on Just In Time (JIT) bug prediction have
not only assumed that future BICs are similar to past ones,
but also that all bugs from the project can be linked to
explicit BICs. As the research literature has shown [1], this
does not always happen. Often it is not possible to find a BIC
for a bug fix. Those bugs are referred to as extrinsic bugs,
and are mainly caused by external factors to the project,
such as changes to APIs or changes in the requirements.

Through a case study of the OpenStack system, we
have investigated whether extrinsic bugs have an impact
on JIT models. Our results indicate the negative role that
extrinsic bugs have on the performance of JIT approaches.
When removing extrinsic bugs from the trained data used
in OpenStack, JIT models obtain a more accurate represen-
tation of the real world as indicated by their different (often
higher) AUC values in their performance. These models
capture change properties better. Therefore, JIT models that
are fitted only with intrinsic bugs obtain more stable AUC
scores and lose less predictive power.

Our findings also support in part McIntosh and Kamei’s
results [14]. We found that after removing extrinsic bugs,
the values of the importance score of the six source code
change families fluctuate as the system evolves and that
these fluctuations can lead to underestimate or overestimate
the future impact of those families.

Researchers and practitioners should be aware of the
data that feed JIT bug prediction models. They should per-
form data validation to ensure that only intrinsic bugs are
considered when training their models. Although with the
current state of the art data validation might be tedious and
very labor-intensive to achieve, at least researchers should
be aware that considering extrinsic bugs during the training
of the models might impact bug prediction results.

All in all, we show evidence that extrinsic bugs are of
different nature than intrinsic bugs. Actually, they are more
similar to issues that are not bugs than to intrinsic bugs.
We think that this finding is not only relevant for JIT bug
prediction models, but that it may impact many other areas
of software engineering practice and research, and would
like to call for further research on extrinsic bugs.

A future line of research will be the semi-automation of
the process to identify extrinsic bugs. Our experience shows
that this will not be an easy process because researchers
have to understand at least the bug description (in natural
language) and the change (code). We envision that a semi-
automated process will require the combination of different
techniques and tools. For example, to understand the bug
description researchers can implement natural language
processing; and to understand the source code they can
use tools that help researchers to backtrack the evolution
of source code lines from their introduction in the file until
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their modification in the bug fixing commit. More details
can be found in our replication package.

Replication package: We have set up a replication pack-
age10 including data sources, intermediate data, and scripts.
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