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Abstract—Refactoring is the process of changing the internal structure of software to improve its quality without modifying its external
behavior. Empirical studies have repeatedly shown that refactoring has a positive impact on the understandability and maintainability of
software systems. However, before carrying out refactoring activities, developers need to identify refactoring opportunities. Currently,
refactoring opportunity identification heavily relies on developers’ expertise and intuition. In this paper, we investigate the effectiveness of
machine learning algorithms in predicting software refactorings. More specifically, we train six different machine learning algorithms (i.e.,
Logistic Regression, Naive Bayes, Support Vector Machine, Decision Trees, Random Forest, and Neural Network) with a dataset
comprising over two million refactorings from 11,149 real-world projects from the Apache, F-Droid, and GitHub ecosystems. The resulting
models predict 20 different refactorings at class, method, and variable-levels with an accuracy often higher than 90%. Our results show
that (i) Random Forests are the best models for predicting software refactoring, (ii) process and ownership metrics seem to play a crucial
role in the creation of better models, and (iii) models generalize well in different contexts.

Index Terms—software engineering, software refactoring, machine learning for software engineering.
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1 INTRODUCTION

R EFACTORING, as defined by Fowler [1] is “the process
of changing a software system in such a way that does not

alter the external behavior of the code yet improves its internal
structure”. Over the years, empirical studies have established
a positive correlation between refactoring operations and
code quality metrics (e.g., [2], [3], [4], [5], [6]). All these
evidence indicates that refactoring should be regarded as a
first-class concern of software developers.

However, deciding when and what (as well as under-
standing why) to refactor have long posed a challenge to
developers. Software development teams should not simply
refactor their software systems at will, or decide not to
refactor a piece of code that causes technical debt, as any
refactoring activity comes with costs [7, 8].

To that aim, software developers have been relying more
and more on different static analysis tools and linters as a way
to collect feedback about their source code [9]. Developers not
only use these tools to find bug-related issues in their systems
(e.g., [10, 11]), but also for code quality-related advice [12,
13]. Popular tools such as PMD, ESLint, and Sonarqube offer
detection strategies for common code smells, such as God
Classes or Long Methods. These tools have been now integrated
into different stages of the developers’ workflow, e.g., inside
IDEs (e.g., PMD’s plugin for IntelliJ or Eclipse), during code
review (by means of bots), or as a overall quality report (for
example, Sonarqube’s Technical Debt report).

Identifying refactoring opportunities is an important

stage that precedes the refactoring process. However, despite
their importance to the software development world, the
state-of-the-art tools that developers have been using to get
refactoring recommendations often present a high number
of false positives [14], making developers to lose their
confidence on them. The tools’ detection strategies are often
either based on hard thresholds of single metrics (e.g., PMD
considers all methods with more than 100 lines of code,
“problematic”), or on Lanza’s and Marinescu’s seminal work
on code smells detection strategies [15] which rely on a
combination of code metrics and thresholds.

While tools provide some degree of customization, e.g.,
PMD lets developers choose their own thresholds, and
Decor [16] enables developers to devise their own code smells
detection strategies, such hand-made detection strategies
may be too simplistic to capture the full complexity of
software systems. This is where we conjecture a ML-based
solution would help. We argue that the task of identifying
relevant refactoring opportunities, which currently heav-
ily relies on developers’ expertise and intuition, should be
supported by sophisticated recommendation algorithms.

Researchers have been indeed experimenting with dif-
ferent AI-based techniques to recommend refactoring, such
as the use of search algorithms [17, 18], and pattern min-
ing [19]. In this paper, we explore how machine learning
(ML) can be harnessed to predict refactoring operations.
ML algorithms have been showing promising results when
applied to different areas of software engineering, such as
defect prediction [20], code comprehension [21], and code
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smells [22]. By learning from classes and methods that
underwent refactoring operations in practice, we surmised
that the resulting models would be able to provide more
reliable refactoring recommendations to developers.

We formulate the prediction of refactoring opportunities
as a binary classification problem. We build models that
recommend several different refactoring operations (the full
list of refactoring operations is shown in Table 2). Each model
predicts whether a given piece of code should undergo a
specific refactoring operation. For instance, given a method,
the Extract Method model predicts whether that method
should undergo a extract method refactoring operation. More
formally, given a set R of possible refactorings for a source
code element, we learn a set of models Mr(e), r ∃ R, that
predict whether a source code element e should be refactored
by means of refactoring operation r.

To probe into the effectiveness of supervised ML algo-
rithms in predicting refactoring opportunities, we apply
six ML algorithms (i.e., Logistic Regression, Naive Bayes,
Support Vector Machines, Decision Trees, Random Forest,
and Neural Network) to a dataset containing more than
two million labelled refactoring operations that happened
in 11,149 open-source projects from the Apache, F-Droid,
and GitHub ecosystems. The resulting models are able to
predict 20 different refactoring operations at class, method,
and variable-levels [1], with an average accuracy often higher
than 90%.

Understanding the effectiveness of the different models is
the first and necessary step in building tools that will
help developers in drawing data-informed refactoring
decisions. This paper provides the first solid large-scale
evidence that ML algorithms can model the refactoring
recommendation problem accurately.

In summary, this paper makes the following contribu-
tions:

(i) A large-scale in-depth study of the effectiveness of
different supervised ML algorithms to predict software
refactoring, showing that ML methods can accurately
model the refactoring recommendation problem.

(ii) A dataset containing more than two million real-world
refactorings extracted from more than 11 thousand real-
world projects.

2 RESEARCH METHODOLOGY

The goal of this paper is to evaluate the feasibility of
using supervised ML algorithms to identify refactoring
opportunities. To this end, we framed our research around
the following research questions (RQs):

RQ1: How accurate are supervised ML algorithms in
predicting software refactoring? In practice, some predic-
tion algorithms perform better than others, depending on
the task. In this RQ, we explore how accurate different super-
vised ML algorithms (i.e., Support Vector Machines, Naive
Bayes, Decision Trees, Random Forest, and Neural networks)
are in predicting refactoring opportunities at different levels
(i.e., refactorings at class, method, and variable-levels), using
Logistic Regression as a baseline for comparison.

RQ2: What are the important features in the refactoring
prediction models? Features (i.e., a numeric representation

of a measurable property that is used to represent a ML
problem to the model) play a pivotal role in the quality of
the obtained models. In RQ1, we build the models using all
the features we had available (for a method-level refactoring,
for example, we use 58 different features). In this RQ, we
explore which features are considered the most relevant by
the models. Such knowledge is essential because, in practice,
models should be as simple as and require as little data as
possible.

RQ3: Can the predictive models be carried over to
different contexts? Understanding whether refactoring pre-
diction models should be trained specifically for a given
contextor whether it generalizes enough to different contexts
can significantly reduce the cost of applying and re-training
these models in practice. We set out to study whether
prediction models, devised in one type of software systems
(e.g., libraries and frameworks from the Apache ecosystem),
are able to generalize to different types of software systems
(e.g., mobile apps in the F-Droid ecosystem). We investigate
the accuracy of predictive models against independent
datasets (i.e., out-of-sample accuracy).

Figure 1 shows an overview of the approach we used to
answer the aforementioned RQs. Essentially, our approach is
three-fold: (i) data collection and feature extraction, (ii) train-
ing and testing, and (iii) evaluation. These steps are outlined
below and later better detailed in the following subsections.

The first step is centered around data preparation. This
step involves mining software repositories for labelled
instances of refactored elements, e.g., a method that was
moved, or an inlined variable, and instances of elements that
were not refactored. To both refactored and non-refactored
instances, we extract code metrics (e.g., complexity and
coupling), process metrics (e.g., number of commits in that
class), and ownership metrics (e.g., number of authors). The
code metrics are calculated at different levels, depending
on the type of refactoring. For a class-level refactoring, we
calculate class-level metrics; for a method-level refactoring,
we calculate both class and method-level metrics; for a
variable-level refactoring, we calculate class, method, and
variable-level metrics.

In the second step, we use the examples of refactored and
non-refactored elements we collected as training and testing
data to different ML algorithms. We generate a model for
each combination of datasets (all datasets together, Apache, F-
Droid, and GitHub), refactoring operations (the 20 refactoring
operations we show in Table 2), and ML algorithms (i.e.,
Logistic Regression, Naive Bayes, Support Vector Machines,
Decision Tree, Random Forest, and Neural Network). Before
training the final model, our pipeline balances the dataset,
performs a random search for the best hyper-parameters, and
stores the best configuration and the ranking of importance
of each feature.

In the third step, we evaluate the accuracy of each
generated model. First, we test the model using single
datasets. Next, we test the models that were trained using
data from just one dataset and test it in all the other datasets
(e.g., the model trained with the Apache dataset is tested on
the GitHub and F-Droid datasets). In all the runs, we record
the model’s precision, recall, and accuracy.
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Results:
Accuracy (precision, recall) 

of each model

Data collection and 
feature extraction

Apache
F-Droid
GitHub

Refactored 
instances

Not refactored 
instances

(step 1)

Extract for 
each instance

Training and
Testing

(step 2)

Supervised ML 
algorithms

Models:
Logistic regression, Naive Bayes, 

SVM, decision tree, random 
forest, deep neural network

Train the model 
using the metrics

Features:
Code metrics

Process metrics
Ownership metrics

Evaluation

(step 3)

Single model
(all datasets)

Contextual
Model

(for each dataset)

Feature
importances

collect data 
from 3 datasets

11,149 repositories
~8.8M commits

2,086,898 
instances

1,006,653 
instances

480 models in total

Fig. 1. Overview of the research methodology.

Number of Total number
Projects of commits

Apache 844 1,471,203
F-Droid 1,233 814,418
GitHub 9,072 6,517,597

11,149 8,803,218
TABLE 1

Overview of the sample used in our study.

2.1 Experimental Sample

We selected a very large and representative set of Java
projects from three different sources:
• The Apache Software Foundation (ASF) is a non-profit

organization that supports all Apache software projects.
The ASF is responsible for projects such as Tomcat, Maven,
and Ant. Our tools successfully processed 844 out of their
860 Java-based projects. We discuss why the processing of
some projects have failed in Section 2.6.

• F-Droid is a software repository of Android mobile apps.
The repository contains only free software apps. Our tools
successfully processed 1,233 out of their 1,352 projects.

• GitHub provides free hosting for open source projects.
GitHub has been extensively used by the open source
community. As of May 2019, GitHub has 37 million users
registered. We collected the first 10,000 most starred Java
projects. Note that ASF and F-Droid projects might also
exist in GitHub; we removed duplicates. In the end, our
tools were able to process 9,072 projects.

The three different sources of projects provide the dataset
with high variability in terms of size and complexity of
projects, domains and technologies used, and community.
The resulting sample can be seen in Table 1. It comprises the
11,149 projects (844 from Apache, 1,233 from F-Droid, and
9,072 from GitHub). These projects together a history of 8.8
million commits, measured at the moment of data collection,
in March of 2019.

2.2 Extraction of Labelled Instances

In a nutshell, our data collection process happens in three
phases. In the first phase, the tool clones the software
repository, uses RefactoringMiner [23] to collect refactoring

operations that happened throughout the history of the
repository, and collects the code metrics of the refactored
classes. In the second phase, where all the refactoring
operations and their respective files are already known,
the tool then collects the process and ownership metrics
of the refactored classes. Finally, the tool collects instances
of non-refactored classes (as well as their code, process, and
ownership metrics).

For each project, we visit its entire master branch from
the oldest to the most recent commit. For each commit, we
invoke RefactoringMiner [23]. The tool can receive, as an
input, a pair of commits. It then uses the diff between the
two provided commits to identify refactoring operations
that have happened1. We highlight that RefactoringMiner
is the current state-of-the-art tool to identify refactoring
operations, having the highest recall and precision rates
(98% and 87%, respectively) among all currently available
refactoring detection tools [23].

For each refactoring operation that is detected by Refactor-
ingMiner, we extract code metrics of the refactored element
in its version before the refactoring has been applied. The
intuition behind using the version before the refactoring
is that models should learn how to identify refactorings
by looking at the elements as they were prior to being
refactored. We collect the information at the precise level
of the refactoring. For example, if the refactoring is at class-
level, we collect all the class-level metrics related to the
class under refactoring; if it is a method-level refactoring,
we collect metric-level metrics related to the method under
refactoring; the same applies for variable-level refactorings.

After all the refactorings were identified, our tool collects
the process and ownership metrics of the refactored classes.
These metrics are also collected at the version before the
refactoring had been applied.

Finally, our tool collects instances of non-refactored classes,
methods, and variables, i.e., code elements that did not undergo
any refactoring operations, to serve as counterexamples to
the model. This is a fundamental step as binary classification
models should learn how to separate between the two classes;

1. Given that we need a pair of commits in order to identify the
refactoring operations, we skip the first commit of the repository, and
start from commit no. 2.
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Refactoring Problem and Solution

Class-level refactorings
Extract Class A class performs the work of two or more classes. Create a class and move the fields and methods to it.
Extract Subclass A class owns features that are used only in certain scenarios. Create a subclass.
Extract Super-class Two classes own common fields and methods. Create a super class and move the fields and methods.
Extract Interface A set of clients use the same part of a class interface. Move the shared part to its own interface.
Move Class A class is in a package with non-related classes. Move the class to a more relevant package.
Rename Class The class’ name is not expressive enough. Rename the class.
Move and Rename Class The two aforementioned refactorings together.

Method-level refactorings
Extract Method Related statements that can be grouped together. Extract them to a new method.
Inline Method Statements unnecessarily inside a method. Replace any calls to the method with the method’s content.
Move Method A method does not belong to that class. Move the method to its rightful place.
Pull Up Method Sub-classes have methods that perform similar work. Move them to the super class.
Push Down Method The behavior of a super-class is used in few sub-classes. Move it to the sub-classes.
Rename Method The name of a method does not explain the method’s purpose. Rename the method.
Extract And Move Method The two aforementioned refactorings together.

Variable-level refactorings
Extract Variable Hard-to-understand/long expression. Divide the expression into separate variables.
Inline Variable Non-necessary variable holding an expression. Replace the variable references with the expression itself.
Parameterize Variable Variable should be a parameter of the method. Transform variable into a method parameter.
Rename Parameter The name of a method parameter does not explain its purpose. Rename the parameter.
Rename Variable The name of a variable does not explain the variable’s purpose. Rename the variable.
Replace Variable w/ Attribute Variable is used in more than a single method. Transform the variable to a class attribute.

TABLE 2
The 20 refactoring operations that are studied in this paper. Definitions derived from Fowler [1].

in this case, between methods that need to be refactored, and
methods that do not need to be refactored.

Given that there is no clear way of extracting code
elements that do not need to be refactored out of the source
code history of software systems, we propose an heuristic:
we consider a class to be a non-refactoring instance if it was
modified (i.e., a change committed in the Git repository)
precisely k times without a single refactoring operation
being applied in between this time. The heuristic aims at
identifying classes that can still be evolved by developers
(as developers have been evolving them) without the need
for a refactoring (as we see that they did not apply any
refactorings). We conjecture that such classes can serve as
good counterexamples for the model.

After experimentation, we set k = 50 (we discuss the
influence of k in Section 4.1). The tool, therefore, collects
all classes that were modified precisely k times and did not
go through any refactoring operation. We then extract its
source code, process, and ownership metrics. Note that we
extract the metrics at time 0, and not at time k, as we want
the models to learn from the code element that, back then,
did not require any refactoring from developers. The same
element can appear more than once in this dataset (although
always with different metric values), as whenever we collect
an instance of non-refactoring, we restart its counter and
continue to visit the repository.

Note that our approach ignores test code (e.g., JUnit
files) and only captures refactoring operations in production
files. Test code quality has been the target of many studies
(e.g., [24, 25, 26]). In this work, we assume that refactorings
that happen in test code are naturally different from the ones
that happen in production code; our future agenda includes
the development of refactoring models for test code.

In Table 3, we show the number of refactored and non-
refactored instances we collected per dataset. We highlight
the fact that the number of instances varies per refactoring,
which reflects how much developers apply each of these

All Apache GitHub F-Droid

Class-level refactorings
Extract Class 41,191 6,658 31,729 2,804
Extract Interface 10,495 2,363 7,775 357
Extract Subclass 6,436 1,302 4,929 205
Extract Superclass 26,814 5,228 20,027 1,559
Move And Rename

Class
654 87 545 22

Move Class 49,815 16,413 32,259 1,143
Rename Class 3,991 557 3,287 147

Method-level refactorings
Extract And Move

Method
9,723 1,816 7,273 634

Extract Method 327,493 61,280 243,011 23,202
Inline Method 53,827 10,027 40,087 3,713
Move Method 163,078 26,592 124,411 12,075
Pull Up Method 155,076 32,646 116,953 5,477
Push Down Method 62,630 12,933 47,767 1,930
Rename Method 427,935 65,667 340,304 21,964

Variable-level refactorings
Extract Variable 6,709 1,587 4,744 378
Inline Variable 30,894 5,616 23,126 2,152
Parameterize Variable 22,537 4,640 16,542 1,355
Rename Parameter 33,6751 61,246 261,186 14,319
Rename Variable 324,955 57,086 250,076 17,793
Replace Variable w/

Attr.
25,894 3,674 18,224 3,996

Non-refactoring instances
Class-level 10,692 1,189 8,043 1,460
Method-level 293,467 38,708 236,060 18,699
Variable-level 702,494 136,010 47,811 518,673

TABLE 3
Overview of the number of instances of refactoring and non-refactoring

classes.

refactorings. For example, the dataset contains around 327
thousand instances of Extract Method, but only 654 instances
of Move and Rename Class. We see this as a positive point
to our exploration, as the model will have to deal with
refactorings where the number of instances is not high.
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Class-level (total of 46 metrics)
Source Code (37 metrics): CBO, WMC, RFC, LCOM, number of
methods, number of static methods, number of public methods,
number of private method, number of protected method, num-
ber of abstract methods, number of final methods, number of
synchronized methods, number of fields, number of static fields,
number of public fields, number of private fields, number of
protected fields, number of default fields, number of final fields,
number of synchronized fields, number of static invocations, lines
of code, number of ’return’ statements, number of loops, number
of comparison expressions, number of try catches, number of
expressions with parenthesis, number of string literals, number
of ’number constants’, number of assignments, number of math-
ematical operators, number of declared variables, max number
of nested blocks, number of anonymous classes, number of sub
classes, number of lambda expressions, number of unique words.
Process (5 metrics): Quantity of commits, sum of lines added,
sum of lines deleted, number of bug fixes, number of previous
refactoring operations.
Ownership (4 metrics): Quantify of authors, quantity of minor
authors, quantity of major authors, author ownership.

Method-level (total of 20 metrics + 37 code metrics at class-level)
Source Code (20 metrics): CBO, WMC, RFC, lines of code, number
of ’return’ statements, number of variables, number of parameters,
number of loops, number of comparison operators, number of try/-
catches, number of expressions with parenthesis, number of string
literals, number of ’number constants’, number of assignment,
number of mathematical operators, max number of nested blocks,
number of anonymous classes, number of sub-classes, number of
lambda expressions, number of unique words.

Variable-level (total of 1 metric + 57 method+class level)
Source Code (1 metric): Number of times the variable is used.

TABLE 4
List of features collected at class, method, and variable levels.

2.3 Feature Selection
We extract source code, process, and ownership metrics of all
refactored and non-refactored instances. These three types of
metrics have been proven useful in other prediction models
in software engineering (e.g., [27, 28, 20]). Moreover, earlier
studies based on the correlation between refactoring and
code quality metrics postulated that an increase in the former
leads to improvements in the latter (e.g., [3], [4], [6]).2 Table 4
lists all the metrics we chose to train predictive models. In
our online appendix [30], we show the distribution (i.e.,
descriptive statistics) of the values of each feature. The
following subsections detail the source code, process, and
code ownership metrics we collect.
Source Code Metrics. Features in this category are derived
from source code attributes. We collect CK metrics [31] as
they express the complexity of the element. More specifically,
CBO, WMC, RFC, and LCOM. We also collect several
different attributes of the element, e.g., number of fields,
number of loops, number of return statements. These metrics
are collected at class (37 metrics), method (20 metrics), and
variable-levels (1 metric).
Process Metrics. Process metrics have been proven useful in
defect prediction algorithms [32, 33]. We collect five different
process metrics: quantity of commits, the sum of lines added
and removed, number of bug fixes, and number of previous
refactoring operations. The number of bug fixes is calculated
by means of an heuristic: Whenever any of the keywords

2. It is worth noting that studying the effect of refactoring on software
quality is a topic that remains relatively underdeveloped (despite being
a highly active topic). Therefore, while this research topic is evolving,
the evidence is likely to be far from clear-cut and, in some cases, it might
even be contradictory (e.g., [29, 5]).

{bug, error, mistake, fault, wrong, fail, fix} appear
in the commit message, we count one more bug fix to that
class. The number of previous refactoring operations is based
on the refactorings we collect from RefactoringMiner.

Code Ownership Metrics. We adopt the suite of ownership
metrics proposed by Bird et al. [34]. The quantity of authors
is the total number of developers that have contributed to
the given software artifact. The minor authors represent the
number of contributors that authored less than 5% (in terms
of the number of commits) of an artifact. The major authors
represent the number of developers that contributed at least
5% to an artifact. Finally, author ownership is the proportion
of commits achieved by the most active developer.

The cardinality of the set of features we use to train each
model varies. The feature set for training models whose
desired output is to predict class-level refactoring comprises
46 features: 37 source code metrics, 5 process metrics, and
4 ownership metrics. As for the training of method-level
models, we use a set of features that comprises all the 37
class-level source code metrics plus 20 method-level source
code metric features, totaling 57 features. The same holds for
variable-level models, all class, method, and variable-level
source code metrics features are used to fit these models.

Process and ownership metrics are only used in class-level
refactoring models. Our tool relies on Git data to measure
ownership and process metrics. However, Git provides
information solely at file and line levels. While process and
ownership metric values for a file are good approximations
of process and ownership metric values for classes, the
same does not hold for methods and variables. Technically
speaking, extracting such metrics in a fine-grained manner
(i.e., which methods or variables were modified, precisely)
would cost extra computational analysis, which we decided
to avoid. We discuss the importance of such metrics later in
Section 4.3.3

2.4 Model Training

In this step, we train different ML algorithms to predict
refactoring opportunities. We use the collected refactoring
instances (and their non-refactoring counterexamples) as
training data.

We make use of six different (binary classification) super-
vised ML algorithms, all available in the scikit-learn [36] and
keras:

(i) Logistic Regression [37]: Logistic Regression is, similarly
to linear regression, centered on combining input values
using coefficient values (i.e., weights) to predict an out-
come value. However, differently from linear regression,
the outcome value being modeled ranges from 0 to 1.

3. Recent work by Higo et al.[35] proposes a “finer Git”, which tracks
changes in individual methods. Such tool was not available at the time
of this research.

By using class-level features in the training of method-level refactoring
prediction models (or similarly, class-level and method-level features in
variable-level refactoring models), we give models a “sense of context”.
The intuition is that developers might not decide to refactor a method
by only looking at it; rather, they might look at the overall context (i.e.,
class) that the method belongs to.

Subsequently, the input to a trained model is a feature vector
containing the source code, process, and ownership metrics of the class,
method, or variable one wants to predict.
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(ii) (Gaussian) Naive Bayes [38]: Naive Bayes algorithms
describe a set of steps to apply Bayes’ theorem to
classification problems. These algorithms use training
data to compute the probability of each outcome based
on the information extracted from feature values.

(iii) Support Vector Machines [39]: Support Vector Machines
computes a hyper-plane in a high-dimensional space
to classify data into predefined classes. The algorithm
searches for the best hyper-plane to separate the training
instances into their respective classes.

(iv) Decision Trees [40]: Decision Tree algorithms yield
hierarchical models composed of decision nodes and
leaves. Essentially, the resulting models represent a
partition of the feature space.

(v) Random Forest [41]: Random Forest is an ensemble of
decision tree predictors. That is, such algorithm uses a
number of decision trees with random subsets of the
training data.

(vi) Neural Networks [42]: Neural Networks are a family
algorithms designed to loosely resemble how the hu-
man brain processes information. The elements that
comprise the architecture of such algorithms are similar
to neurons, and Neural Networks are made up of one
or more layers of these neurons. Essentially, these layers
of neurons act as a function, mapping inputs into their
respective classes.

We decided to choose a mixture of simple/less sophisti-
cated learners (e.g., Logistic Regression and Naive Bayes) and
smarter learners (e.g., Decision Trees and Random Forests).
Simple learners serve as a baseline to understand whether
more complex learners are needed.

Our training pipeline works as follows:

(i) We collect the refactoring and the non-refactoring in-
stances for a given dataset d and a refactoring R. We
merge them in a single dataset, where refactoring in-
stances are marked with a true value and non-refactoring
instances are marked with a false value. These instances
will later serve as training and test data.

(ii) The number of refactoring instances vary per refactoring;
thus, the number of refactoring instances might be
greater than or smaller than the (fixed) number of non-
refactoring instances. Thus, we balance the dataset as to
avoid the model to favour the majority class. To that aim,
we use scikit-learn’s random under sampling algorithm,
which randomly selects instances of the over-sampled
class.4.

(iii) We scale all the features to a [0, 1] range to speed up
the learning process of the algorithms [43]. We use the
Min-Max scaler provided by the scikit-learn framework.

(iv) We tune the hyper parameters of each model by means
of a random search. We use the randomized search
algorithm provided by the scikit-learn. We set the
number of iterations to 100 and the number of cross-fold
validations to 10. Thus, we create 1,000 different models
before deciding the model’s best parameters. For the
Support Vector Machines (SVM) in particular, we use
number of iterations as 10 and number of cross-fold
validations to 5, given its slow training time (which we

4. We discuss the impact of balancing the classes in Section 6.2.

discuss more below). For each algorithm, we search the
best configuration among the following parameters:
• Logistic Regression: C: This parameter specifies, in-

versely, the strength of the regularization. Regular-
ization is a technique that diminishes the chance of
overfitting the model.

• Naive Bayes: Smoothing: It specifies the variance of
the features to be used during training.

• SVM: C: This parameter informs the SVM optimiza-
tion algorithm how much it is desired to avoid
misclassifying training instances. Like the C param-
eter in the Logistic Regression, it helps in avoiding
overfitting. Moreover, given that our goal is to also
understand which features are important to the model
(RQ2), we opt only for the linear kernel of the SVM.
Future research should explore how non-linear kernels
perform.

• Decision tree: Max depth: It specifies the maximum
depth of the generated tree. The deeper the tree, more
complex the model becomes; Max features: It defines
the maximum number of features to be inspected
during the search for the best split, generating inner
nodes; Min sample split: It indicates the minimum
number of instances needed to split an internal node,
supporting the creation of a new rule; Splitter: It
defines the strategy in choosing the split at each node,
varying from “best to random” strategies; Criterion: It
defines the function to measure the quality of a split.

• Random Forest: The max depth, max features, min
samples split, and criterion parameters have similar
goals as to the ones in the Decision Tree algorithm;
Bootstrap: It specifies whether all training instances or
bootstrap samples are used to build each tree; Number
of estimators: It indicates the number of trees in the
forest.

• Neural Network: As we intend to explore sophisti-
cated and more appropriated Deep Learning architec-
tures in the future work (Section 4), here we compose
a sequential network of three dense layers with 128,
64, and 1 units, respectively. Also, to avoid overfitting,
we added dropout layers between sequential dense
layers, keeping the learning in 80% of the units in
dense layers. The number of epochs was set to 1000.
This architecture is similar to a Multilayer Perceptron,
in the sense that it is a feedforward deep network.

(v) Finally, we perform a stratified 10-fold cross-validation
(i.e., 9 folds for training and 1 fold for testing) using the
hyper parameters established by the search. We return
the precision, recall, and accuracy of all the models.

Once a binary classification model for a given refactoring
R is trained, given a code element e (i.e., a class, method, or
a variable), the model would predict true in case e should
undergo through a refactoring R, or false in case e should
not undergo through a refactoring R.5

5. For completeness, in such models, a false positive would mean that
the model predicted true for an element e that, in fact, did not undergo
a refactoring R; a false negative would mean that a model predicted
false for an element e that, in fact, did undergo a refactoring R.
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2.5 Evaluation
To answer RQ1, we report and compare the mean precision,
recall, and accuracy among the different models after the 10
stratified cross-fold executions6. We apply stratified sampling
in all the cross-fold executions to make sure both training
and test datasets contain the same amount of positive and
negative instances. For SVM and the Neural Network, we set
the number of cross-folds to 5. The SVM and the Neural
Network models training and validation processes took
237 and 232 hours, respectively. The precision, recall, and
accuracy across the five folds of both models were highly
similar, indicating that the models are stable (numbers can
be found in our appendix [30]), and thus, we have no reason
to believe that the smaller number of cross-fold validations
for the SVM and Neural Network affected their results.

For clarity, we revisit what a correct prediction means in
this context. We recall that the feature vectors of the posi-
tive labels (i.e., elements that underwent some refactoring
operations) are represented by the code metrics collected at
the commit right before developers refactored them. In other
words, the feature vector represents the code element at the
moment that the developer decided that it needed to undergo
a refactoring. On the other hand, the feature vectors of the
negative labels are represented by the code metrics of classes
that did not undergo the refactoring operation for k commits
in a row. In other words, code that can be maintained for at
least k commits without undergoing a refactoring. Thus, a
correct prediction means that the model was able to predict
that a code element with that characteristic underwent a
refactoring operation.

For example, let us suppose a method m1() underwent a
Extract Method in commit 10. This means a developer, when
working with m1()’s implementation at version 9 decided
the method needed a Extract Method. When testing the model,
we give a feature vector representing m1() in commit 9,
and we expect the model to return “true” (i.e., this method
needs a Extract Method). If the model returned “false”, that
would result in a false negative. Moreover, suppose another
method m2() that was changed 50 times between commits
[10, 200]. In none of these changes developers refactored this
method. When testing the model, we give a feature vector
representing method m2() in commit 10, and we expect the
model to return “false” (i.e., the method does not need a
Extract Method). If the model returned “true”, that would be
an example of a “false negative”.

To answer RQ2, we report how often each feature (from
Table 4) appears among the top-1, top-5, and top-10 most
important features of all the generated models. We use
scikit-learn’s ability to extract the feature importance of
the Logistic Regression, SVM, Decision Trees, and Random
Forest models. The framework does not currently have a
native way to extract feature importance of Gaussian Naive
Bayes and Neural Networks. We intend to extract the feature
importance of both algorithms via “permutation importance”
in future work. Given the high number of different models
we build (we extracted the feature importance of 320 out of
the 480 models we created), we have no reason to believe the
lack of these two models would affect the overall findings
of this RQ. Given that the number of features vary per

6. We kept the 50-50 distribution in all the 10 folds.

refactoring level, we generate different rankings for the
different levels (i.e., different ranks for class, method, and
variable-level refactorings). Some models (e.g., SVM) might
return the importance of a feature as a negative number,
indicating that the feature is important for the prediction of
the negative class. We consider such a feature also important
to the overall model, and thus, we build the ranking using
the absolute value of feature importance returned by the
models.

Finally, to answer RQ3, we test each of our dataset-specific
models on the other datasets. For example, we test the
accuracy of all Apache’s models in the GitHub and F-Droid
datasets. More formally, for each combination of datasets d1
and d2, where d1 6= d2, and refactoring r we: 1) load the
previously trained r model of the d1 dataset, 2) open the
data we collected for r of the d2 dataset, 3) apply the same
pre-processing steps (i.e., sampling and scaling), 4) use d1’s
model to predict all data points of d2’s dataset, 5) and report
the precision, recall, and accuracy of the model.

2.6 Implementation and Execution

The data collection tool is implemented in Java and stores all
its data in a MySQL database. The tool integrates natively
with RefactoringMiner [23] (also written in Java) as well as
with the source code metrics tool.

The tool gives RefactoringMiner a timeout of 20 seconds
per commit to identify a refactoring. We define the timeout
as RefactoringMiner performs several operations to identify
refactorings, and these operations grow exponentially, accord-
ing to the size of the commit. Throughout the development
of this study, we observed some commits taking hours to be
processed. The 20 seconds was an arbitrary number decided
after experimentation. In practice, most commits are resolved
by the tool in less than a second. Given that its performance
is related to the size of the commit and not to the size of
the class under refactoring or the number of refactorings in
a commit, we do not believe that ignoring commits where
RefactoringMiner takes a long time influences our sample in
any way.

Given that our tool integrates different tools, there are
many opportunities for failures. We have observed (i) the
code metrics tool failing when the class has an invalid
structure (and thus, ASTs can not be built), (ii) our tool failing
to populate process and ownership metrics of refactored
classes (often due to files being moved and renamed multiple
times throughout history, which our tool could not track in
100% of the cases), (iii) RefactoringMiner requiring more
memory than what is available in the machine. To avoid
possible invalid data points, we discard all data points that
were involved in any failure (a total of 10% of the commits
we analyzed).

We had 30 Ubuntu 18.04 LTS (64bits) VMs, each with 1
GB of Ram, 1 CPU core, and 20 GB of disk available for data
collection. These machines, altogether, spent a total of 933
hours to collect the data. We observe that the majority of
projects (around 99% of them) took less than one hour to be
processed. 159 of them took more than one hour, and 70 of
them more than two hours. A single project took 23 hours.

The ML pipeline was developed in Python. Most of
the code relies on the scikit-learn framework [36] and keras
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for the Neural Networks training. To the ML training,
we had under our disposition two machines: one Ubuntu
18.04.2 LTS VM, 396GB of RAM, 40 CPU cores, and one
Ubuntu 18.04.2 LTS VMS with 14 CPUs and 50 GB of RAM.
Given the hyperparameter search and cross-validations, our
ML pipeline experimented with a total of 404,080 models.
The overall computation (training and testing) time was
approximately 500 hours.

2.7 Reproducibility
Our online appendix [30] contains: (i) the list of the 11,149
projects analyzed, (ii) a spreadsheet with the full results,
(iii) the source code of the data collection and the ML tools,
and (iv) a two million refactorings dataset.

3 RESULTS

In the following subsections, we answer each of the RQs.

3.1 RQ1: How accurate are supervised ML algorithms
in predicting software refactoring?
In Table 5, we show the precision, recall, and accuracy of each
ML algorithm in each one of the 20 refactoring operations,
when training and testing in the entire dataset. Due to space
constraints, we show the results of training and testing in
individual datasets, as well as the confusion matrix, in our
appendix [30].

Observation 1: Random Forest models are the most accu-
rate in predicting software refactoring. Random Forest has
the highest overall accuracy among all types of refactorings.
Its average accuracy for class, method, and variable-level
refactorings, when trained and tested in the entire dataset, are
0.93, 0.90, and 0.94, respectively. The only three refactorings
that are below the 90% threshold are Extract Class, Extract and
Move Method, and Extract Method. Its average accuracy among
all refactorings in all the datasets together, as well as Apache,
GitHub, and F-Droid datasets only, are 0.93, 0.94, 0.92, and
0.90, respectively. As a matter of comparison, the second best
model is Decision Trees, which achieves an average accuracy
of 0.89, 0.91, 0.88, and 0.86 in the same datasets.

Observation 2: Random Forest was outperformed only a
few times by Neural Networks. In the F-Droid dataset,
Neural Networks outperformed Random Forest 4 times (in
terms of accuracy). Neural Networks also outperformed
Random Forest in two opportunities in both the Apache and
GitHub datasets. However, we note that the difference was
always marginal (around 1%).

Observation 3: Naive Bayes models present high recall,
but low precision. The Naive Bayes models presented recalls
of 0.94, 0.93, 0.94, and 0.84 in the entire dataset, Apache,
GitHub, and F-Droid datasets, respectively. These numbers
are often slightly higher than the ones from Random Forest
models, which were the best models (on average, 0.01
higher). Nevertheless, Naive Bayes models presented the
worst precision values: 0.62, 0.66, 0.62, and 0.67 in the same
datasets. Interestingly, no other models presented such low
precision.

Observation 4: Logistic Regression, as a baseline, shows
good accuracy. Logistic Regression being, perhaps, the most

straightforward model in our study, presents a somewhat
high overall accuracy, always outperforming Naive Bayes
models. The average accuracy of the model in all the
refactorings in the entire dataset is 0.83. Its best accuracy
was in the Move Class refactoring: 0.94 (which also presented
high values in the individual datasets: in F-Droid, 0.94, in
GitHub, 0.93, and in Apache, 0.95), and its worst accuracy,
0.77, was in the Extract and Move Method and Inline Method
refactorings. The overall averages are similar in the other
datasets: 0.85 in Apache, 0.83 in GitHub, and 0.78 in F-Droid.

3.2 RQ2: What are the important features in the refac-
toring prediction models?
In Table 6, we show the most important features per refactor-
ing level. The complete ranking of features importance can
be found in the online appendix [30].

Observation 5: Process metrics are highly important in
class-level refactorings. Metrics such as quantity of commits,
lines added in a commit, and number of previous refactorings
appear in the top-1 ranking very frequently. In the top-5
ranking, seven out of the first ten features are process metrics;
six out of the first ten are process metrics in the top-10
ranking. Ownership metrics are also considered important
by the models. The author ownership metric appears 32 times
in the top-1 ranking; the number of major authors and number
of authors metrics also appear often in the top-5 and top-10
rankings.

Observation 6: Class-level features play an important role
in method-level and variable-level refactorings. Method-
level refactoring models often consider class-level features
(e.g., lines of code in a class, number of methods in a class)
to be more important than method-level features. In the
top-1 ranking for the method-level refactoring models, 13
out of the 17 features are class-level features. In variable-
level refactoring models, the same happens in 11 out of 17
features. Interestingly, the most fine-grained feature we have,
the number of times a variable is used appears six times in the
top-1 ranking for the variable-level refactoring models.

Observation 7: Some features never appear in any of the
rankings. For class-level refactoring models, the number of
default fields, and the number of synchronized fields7 do not
appear even in the top-10 ranking. Nine other features never
appear in the top-10 feature importance ranking of method-
level refactoring models (e.g., number of comparisons, math
operations, and parenthesized expressions), and ten features
never make it in the variable-level refactoring models (e.g.,
number of loops, and parenthesized expressions).

3.3 RQ3: Can the predictive models be carried over to
different contexts?
We show the precision and recall of each model and refac-
toring, in all the pairwise combinations of datasets in our
appendix [30]. In Table 7, we show the overall average
precision and recall of the Random Forest models (the best

7. By looking at the features distribution in our appendix [30], we
observe that most classes do not have synchronized fields; we discuss
how feature selection might help in simplifying the final models in
Section 4.
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Logistic SVM Naive Bayes Decision Random Neural
Regression (linear) (gaussian) tree Forest Network

Pr Re Acc Pr Re Acc Pr Re Acc Pr Re Acc Pr Re Acc Pr Re Acc

Class-level refactorings
Extract Class 0.78 0.91 0.82 0.77 0.95 0.83 0.55 0.93 0.59 0.82 0.89 0.85 0.85 0.93 0.89 0.80 0.94 0.85
Extract Interface 0.83 0.93 0.87 0.82 0.94 0.87 0.58 0.94 0.63 0.90 0.88 0.89 0.93 0.92 0.92 0.88 0.90 0.89
Extract Subclass 0.85 0.94 0.89 0.84 0.95 0.88 0.59 0.95 0.64 0.88 0.92 0.90 0.92 0.94 0.93 0.84 0.97 0.89
Extract Superclass 0.84 0.94 0.88 0.83 0.95 0.88 0.60 0.96 0.66 0.89 0.92 0.90 0.91 0.93 0.92 0.86 0.94 0.89
Move And Rename Class 0.89 0.93 0.91 0.88 0.95 0.91 0.69 0.94 0.76 0.92 0.95 0.94 0.95 0.95 0.95 0.88 0.94 0.91
Move Class 0.92 0.96 0.94 0.90 0.97 0.93 0.67 0.96 0.74 0.98 0.96 0.97 0.98 0.97 0.98 0.92 0.97 0.94
Rename Class 0.87 0.94 0.90 0.86 0.96 0.90 0.63 0.96 0.69 0.94 0.91 0.93 0.95 0.94 0.94 0.88 0.94 0.91

Method-level refactorings
Extract And Move Method 0.72 0.86 0.77 0.71 0.89 0.76 0.63 0.94 0.69 0.85 0.75 0.81 0.90 0.81 0.86 0.79 0.85 0.81
Extract Method 0.80 0.87 0.82 0.77 0.88 0.80 0.65 0.95 0.70 0.81 0.86 0.82 0.80 0.92 0.84 0.84 0.84 0.84
Inline Method 0.72 0.88 0.77 0.71 0.89 0.77 0.61 0.94 0.67 0.94 0.87 0.90 0.97 0.97 0.97 0.77 0.85 0.80
Move Method 0.72 0.87 0.76 0.71 0.89 0.76 0.63 0.93 0.70 0.98 0.87 0.93 0.99 0.98 0.99 0.76 0.84 0.78
Pull Up Method 0.78 0.90 0.82 0.77 0.91 0.82 0.68 0.95 0.75 0.96 0.88 0.92 0.99 0.94 0.96 0.82 0.87 0.84
Push Down Method 0.75 0.89 0.80 0.75 0.90 0.80 0.66 0.94 0.73 0.97 0.76 0.87 0.97 0.83 0.90 0.81 0.92 0.85
Rename Method 0.77 0.89 0.80 0.76 0.90 0.80 0.65 0.95 0.71 0.78 0.84 0.80 0.79 0.85 0.81 0.81 0.82 0.81

Variable-level refactorings
Extract Variable 0.80 0.83 0.82 0.80 0.83 0.82 0.62 0.94 0.68 0.82 0.83 0.82 0.90 0.83 0.87 0.84 0.89 0.86
Inline Variable 0.76 0.86 0.79 0.75 0.87 0.79 0.60 0.94 0.66 0.91 0.85 0.88 0.94 0.96 0.95 0.81 0.82 0.82
Parameterize Variable 0.75 0.85 0.79 0.74 0.86 0.78 0.59 0.94 0.65 0.88 0.81 0.85 0.93 0.92 0.92 0.80 0.83 0.81
Rename Parameter 0.79 0.88 0.83 0.80 0.88 0.83 0.65 0.95 0.71 0.99 0.92 0.95 0.99 0.99 0.99 0.82 0.87 0.84
Rename Variable 0.77 0.85 0.80 0.76 0.86 0.79 0.58 0.92 0.63 0.99 0.93 0.96 1.00 0.99 0.99 0.81 0.84 0.82
Replace Variable With Attribute 0.79 0.88 0.82 0.78 0.89 0.82 0.64 0.95 0.71 0.90 0.84 0.88 0.94 0.92 0.93 0.79 0.92 0.84

TABLE 5
The precision (Pr), recall (Re), and accuracy (Acc) of the different ML models, when trained and tested in the entire dataset (Apache + F-Droid +

GitHub). Values range between [0,1]. Numbers in bold represent the highest accuracy for each refactoring operation.

Class-level refactorings
Top-1: quantity of commits (68), author ownership (32),
lines added (6)
Top-5: quantity of commits (108), lines added (63), pre-
vious refactorings (63), author ownership (56), unique
words in the class (47)
Top-10: quantity of commits (111), lines added (90),
previous refactorings (90), unique words in the class (78),
class LOC (70)

Method-level refactorings
Top-1: class LOC (39), number of unique words in a class
(15), number of methods in a class (13), class LCOM (9),
number of fields in a class (6)
Top-5: class LOC (74), number of methods in a class (55),
number of unique words in a class (52), class LCOM (37),
number of final fields in a class (25)
Top-10: number of methods in a class (90), class LOC (88),
class LCOM (71), number of unique words in a class (54),
class CBO (54)

Variable-level refactorings
Top-1: class LOC (27), class LCOM (10), number of unique
words in a class (9), method LOC (7), number of public
fields in a class (7)
Top-5: class LOC (61), number of unique words in a class
(48), number of string literals in a class (38), number of
variables in the method (30), number of public fields in a
class (24)
Top-10: number of string literals in a class (72), class LOC
(71), number of unique words in a class (66), number of
variables in a class (55), number of variables in a method
(49)

TABLE 6
Most important features for the models at different refactoring levels.

Top-1, Top-5, and Top-10 indicate the number of times (in parenthesis) a
specific feature appeared in the top-N ranking. For class and method

level refactorings, a feature can at most appear 112 times; 96 times for a
variable level refactoring. We show only the first five features per ranking;

full list in the online appendix [30].

model, according to RQ1 results) when trained in one dataset
and tested in another dataset.

Observation 8: Random Forest still presents excellent
precision and recall when generalized, but smaller when
compared to previous results. Random Forest models
achieve precision and recall of 0.87 and 0.84, when trained
using the GitHub repository, the largest repository in terms
of data points, and tested in Apache. When trained in the
smallest dataset, F-Droid, Random Forest still performs
reasonably well: precision and recall of 0.77 and 0.73 when
tested in Apache, and 0.81 and 0.76 when tested in GitHub.
Nevertheless, we remind the reader that in terms of accuracy,
Random Forest achieved average scores of around 90%. In
other words, models seem to perform best when trained with
data collected from different datasets.

Observation 9: Method and variable-level refactoring mod-
els perform worse than class-level refactoring. In general,
class-level refactoring models present higher precision and
recall than the method- and variable-level refactoring models.
Using a model trained with the GitHub data set and tested
in the F-Droid data set, the average precision and recall for
Random Forest models at class-level are 0.92 and 0.92. On
the other hand, the average precision and recall for Random
Forest models at method-level are 0.77 and 0.72, respectively;
at variable-level, we observe precision and recall of 0.81 and
0.75.

Observation 10: SVM outperforms Decision Trees when
generalized. We observed Decision Trees being the second
best model in RQ1. When carrying models to different
contexts, however, we observe that SVM is now the second
best model, and only slightly worse than the Random Forest.
For example, in the appendix, we see that for a model trained
in GitHub and tested in Apache, the average precision and
recall of SVM models is 0.84 and 0.83 (in contrast, Random
Forest models have 0.87 and 0.84). The difference between
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Apache GitHub F-Droid
Pr Re Pr Re Pr Re

Apache - - 0.84 0.79 0.77 0.70
GitHub 0.87 0.84 - - 0.84 0.80
F-Droid 0.77 0.73 0.81 0.76 - -

TABLE 7
The average precision (Pr) and recall (Re) of the 20 refactoring

prediction Random Forest models, when trained in one dataset and
tested in another dataset. Rows represent datasets used for training,

and columns represent datasets used for testing.

both models is, on average, 0.02.

Observation 11: Logistic Regression is still a somewhat
good baseline. Logistic Regression baseline models, when
carried to different contexts, still present somewhat good
numbers. As an example, the models trained with GitHub
data and tested in the Apache dataset show an average
precision and recall of 0.84 and 0.83. The worst averages
happen in the models trained with the Apache dataset and
tested in the F-Droid dataset (precision of 0.75 and recall of
0.72).

Observation 12: Heterogeneous datasets might generalize
better. More homogeneous datasets (i.e., the Apache and F-
Droid datasets), when carried to other contexts, present lower
precision and recall. This phenomenon can be seen whenever
Apache and F-Droid models are cross tested; their precision
and recall never went beyond 0.78. This phenomenon does
not happen when GitHub, a more heterogeneous dataset in
terms of different domains and architectural decisions, is
tested on the other two datasets.

4 DISCUSSION

In the following, we extensively discuss some important
ramifications of our research. More specifically, we discuss:

1) the challenges in defining k as a constant to collect non-
refactored instances,

2) the features used for model building as well as their
interpretability,

3) the importance of process and ownership metrics (and
the need for fine-grained metrics),

4) the need for larger and more heterogeneous datasets to
achieve higher generalizability,

5) how to prioritise the refactoring recommendation sug-
gestions given by the models,

6) the need for more fine-grained refactoring recommenda-
tions,

7) the recommendation of high-level refactorings,
8) taking the developers’ motivations into account,
9) the use of Deep Learning (and Natural Language

Processing algorithms) for software refactoring, and
10) the challenges of deploying ML-based refactoring rec-

ommendation models in the wild.

4.1 Collecting non-refactored instances via an heuris-
tic

The identification of negative instances, i.e., code elements
that did not undergo a refactoring operation, is an important
theoretical problem that our research community should
overcome.

We propose the use of code elements that did not undergo
refactoring operations for k commits in a row. In this
particular paper, we chose k = 50 (i.e., 50 commits in a
row without being refactored) as a constant to determine
whether a class, its methods, and its variables should be
considered an instance of a non-refactoring. The number 50
was chosen after manual exploration in the dataset.

To measure the influence of k in our study, we re-executed
our data collection procedure in the entire dataset (11,149
projects) with two different values for k:
• k = 25. The half of the value used in the main experiment.

A threshold of 25 means that we are less conservative when
considering instances for the non-refactoring dataset. In
this dataset, we have a total of 7,210,452 instances (at class,
method, and variable levels). This represents an increase
of 7.1 times when compared to the dataset in the main
experiment.

• k = 100. The double of the value used in the main
experiment. A threshold of 100 means that we are more
conservative when it comes to considering a class as an
instance of a non-refactoring. In this dataset, we have a
total of only 120,775 instances. This represents around 12%
of the dataset in the main experiment.

We note that the distribution of the features values of
the non-refactored instances in k = 25 and k = 100 datasets
are somewhat different from each other. As examples, the
quantiles of the CBO at class-level in k = 25 dataset are
[1Q=17, median=35, mean=57, 3Q=69], whereas the quantiles
in k = 100 dataset are [1Q=6, median=28, mean=54, 3Q=75];
for the WMC at class-level, we observe, [1Q=59, median=145,
mean=273, 3Q=343]for k = 25, and [1Q=72, median=266,
mean=425, 3Q=616] for k = 100; for the LOC at class-level,
we observe [1Q=320, median=734, mean=1287, 3Q=1626] for
k = 25, and [1Q=466, median=1283, mean=1568, 3Q=2189]
for k = 100.

We trained Random Forest models (given that it was the
algorithm with the best accuracy in RQ1) in both k = 25
and k = 100 datasets. In k = 25, the average of the
absolute difference in the precision and recall of the 20
refactoring models, when compared to k = 50, are 0.0725 and
0.099, respectively. In k = 100, the average of the absolute
difference in precision and recall when compared to k = 50
are 0.0765 and 0.064, respectively. The precision and recall of
each refactoring is in our online appendix [30].

In k = 25, however, in only four (Move Class, Move and
Rename Class, Extract Method, and Rename Method; out of 20)
models, the precision values were better than in the k = 50.
Similarly, only a single model (Rename Method) had a better
recall when compared to k = 50. This might indicate that
k = 25 is not a good threshold, as it might be too small. In
k = 100, while it is hard to distinguish whether it has a better
precision than k = 50 (11 models did better with k = 50
and 9 models did better with k = 100), models in k = 100
had almost always a better recall (16 models out of 20). This
might indicate that more conservative thresholds might help
in increasing recall at the expense of precision performance.
This discussion shows the importance of finding the right
threshold to determine classes, methods, and variables that
can serve as non-refactoring instances.

It is worth emphasizing that our proposed heuristic
to detect counterexamples of refactoring instances is an
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approximation. While we believe that our assumption that
classes that can still be evolved by developers without the
need for refactoring can serve as good counterexamples for
the model, these data points are simply approximations.
There might be other more effective counterexamples that
would contribute to the creation of better models.

As an alternative, when designing the model, we consid-
ered the possibility of doing the extraction of non-refactored
instances at commit-level. For example, whenever a refac-
toring R was detected in a class, method, or variable a, we
extracted all the other elements that existed in the modified
files of that commit as examples of non-refactored instances.
We relied on the assumption that the elements that did not
change in that commit could be used as counterexamples
during model creation. We, however, discarded this idea
after some exploration. When looking at individual commits
only and not at larger time windows, one can not determine
whether a code element is an example of an element that
does not need to be refactored. The same code element might
have changed in the subsequent commit, thus rendering
the previously collected data invalid (i.e., mischaracterizing
the counterexample). Furthermore, another factor we took
into account was that, if we consider all elements that were
not refactored in every single commit as a counterexample,
the number of extracted data points would be orders of
magnitude higher than the number of data points for
refactoring instances. That would make the dataset highly
imbalanced. We decided not to deal with a highly imbalanced
datased because that is a known challenge in ML [44].

Given that the current state-of-the-art enables us to
precisely identify refactoring operations that have happened
in software systems, but the identification of non-refactoring
instances is challenging, we suggest the possibility of training
models using solely a single class. In this case, one would
train the model solely on the real-world refactoring instances,
and use the outcome probability of the model to decide
whether to recommend a refactoring operation. We expect
models to return a very low probability in methods that
do not need to undergo refactoring. Note that, in this way,
there is no need for collecting non-refactoring data points,
which would avoid the problem discussed in the previous
subsection. We therefore suggest future work to explore the
performance (as well as the drawbacks) of such models in
recommending software refactoring.

Nevertheless, the fact that our community does not have
an accurate dataset composed of examples of code elements
that do not need refactoring is a threat to any study in
software refactoring. Our community has been working
on several approaches to point developers to problematic
pieces of code for a long time. However, less research
has been dedicated to revealing exemplary pieces of code
(exemplary in the sense that these pieces of code do not
warrant refactoring operations). Given the data-driven era
we find ourselves in, research investigating the identification
and creation of a sample of such pieces of code might be
highly relevant.

4.2 Features and their interpretability

Our models use a set of source code, process, and ownership
metrics as features (see Table 4 for the complete list). The

choice of features was mostly based on previous ML models
for software engineering tasks (e.g., [27, 28, 20]).

Our conjecture when we settled on using structural
metrics was that the structure of a class or method is an
important factor that developers take into consideration
when identifying pieces of code to refactor, e.g., a complex
method is much more prone to being refactored than a
structurally less complex method. Given the high accuracy,
precision, and recall that we observed in our empirical study,
our conjecture seems to hold. We understand that some of the
metrics might seem counterintuitive. Some developer might
be hard-pressed to explain why something as the number
of mathematical operations in a given part of the code may
indicate that refactoring is warranted.

Given the amount of features that are readily available
and that have been used in the literature, we decided not
to perform manual feature selection (i.e., manually selecting
the most appropriate features given the data and the model).
Rather, we decided to let the model decide which ones have
more predictive power.

Interestingly, as the results we used to answer our RQ2

seem to suggest, models tend to selected features that
also make more sense to humans. For example, number
of methods in a class (which was chosen 13 times as the most
important predictor in method-level refactorings) or number
of lines of code in a class (which was selected 39 times as
the features that most contributed to model building). On
the other hand, the number of parenthesized expressions
and number of lambdas do not seem to help models in
learning how to recommend refactoring; such features were
automatically discarded (i.e., never used) by these models.

We, nevertheless, understand that the interpretability of
these models can play a decisive factor in whether developers
will accept the recommendation. Developers might want to
know why the model is suggesting a specific refactoring.
While interpretability of models is a complex problem in the
area of ML in general [45, 46], making use of metrics that
developers can better relate to, as well as showing them what
metrics most influenced the model to recommend a given
refactoring might make the developer more confident in ac-
cepting the recommendations. Interpretability of refactoring
recommendation models is therefore an important future
work.

4.3 The importance of process and ownership metrics
(and the need for fine-grained metrics)

We observed that process metrics are indeed considered
important by the models (see RQ2). For example, the number
of commits metric figured as the most important feature in the
class-level refactoring models. Additionally, related research
suggests that defect prediction models [32, 33, 20] also benefit
from process metrics.

While source code metrics are able to capture the structure
of a code element, process metrics are able to capture its
evolution history (e.g., number of changes, code churn,
number of bugs, or refactorings over time). Such charac-
teristics seem to play an important factor when deciding
whether to refactor the code element. We would argue that
this is inline with general knowledge on software design.
For example, changing a class several times eventually
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leads to brittle design (following Lehman’s laws of software
evolution [47, 48]), which drives developers to remedy the
situation by refactoring the class; or a class that has presented
a high number of bugs tend to require more “clean up” than
classes that do not suffer from the same issue. Process metrics,
thus, provide models with a perspective on the evolution of
the class.

We currently use process and ownership metrics to
support the prediction of class-level refactorings only. These
metrics are naturally collected at file-level, and collecting
them in a more fine-grained manner (i.e., method and
variable ownership) would require complex tooling to be
developed. We can only conjecture that process metrics
would also help models in better predicting refactoring at
method and variable levels. To that aim, it is our goal to
(i) develop a tool that is able to collect process and ownership
metrics at method and variable levels, (ii) feed our models
with these new features, (iii) re-execute our ML pipeline and
examine how accuracy is affected.

In addition, D’Ambros et al. [20] observed that the
number of bugs, when extracted by means of string matching
in the commit message (which is our case), might reduce
the quality of the resulting predictor. Our models currently
indicate that the “number of bugs” feature is relevant. This
feature frequently appeared in the top five and top ten
ranking of features that most contributed to model building.
We surmise that a more precise approach to detecting and
counting bugs, which might require better integration with
issue tracking systems, will improve the quality of the
recommendations.

4.4 Making a case for larger and more heterogeneous
datasets
According to the results we used to answer RQ3, larger
and more heterogeneous datasets tend to generalize better.
We would argue that large amounts of diverse refactoring
operations contribute to the creation of stronger, more
accurate models.

While our dataset might be already considered a large
one, with around 3 million labelled instances, we believe
that the collection of even larger datasets compressed of
different types of systems and refactoring operations will
result in more helpful models able to provide developers
with more accurate refactoring recommendations. Moreover,
it is a common observation in ML studies (not only in
software engineering tasks) that simple models trained on
large datasets often work better than complex models trained
on small datasets [49, 50]. Simple models are cheaper to train
and store.

4.5 Prioritizing refactoring recommendations
All our models currently perform binary classification. In
other words, each model is only able to predict a single
refactoring operation. Our empirical study shows that, when
tested in isolation, models have high accuracy.

We envision a recommendation tool making use of
all the models together in order to recommend all the
possible refactorings. Suppose we want to offer refactoring
recommendations for a given method, we would need to
pass the method through the seven different method-level

refactoring models; each of these seven models would give
its own prediction, and we would show the resulting list of
recommendations to the developer.

We understand that in a scenario in which developers are
faced with lots of refactoring recommendations it might be
hard for them to work out which refactorings to prioritize. An
avenue to explore in future work is to take advantage of the
probability values that are internally produced by the models
to prioritize which refactorings are more appropriate in a
given context. A tool that presents these probability values to
the end-users could allow them to decide which refactorings
they should apply and in which order (we discuss more
usability concerns of such a tool in Section 4.10).

4.6 The need for more fine-grained refactoring recom-
mendations
In this first step, we have showed that ML can model
the refactoring recommendation problem. Although the
current models provide recommendations at different levels
of granularity (i.e., class, method, and variable levels), there
is room for improvement by fine-tuning models to offer
even more fine-grained refactoring recommendations. Take
as an example the Extract Method refactoring. Our models
can identify which method would benefit from an extraction;
however, it currently does not point to which parts of that
method should be extracted (i.e., initial token and end token).
Another example are refactorings that involve more than one
class, e.g., Move Method or Pull Up Method: to which class
should the method be moved to?

We see a future where, for each of the refactorings we
studied, a highly-specific model, able to provide fine-grained
recommendations, is devised. We conjecture that models that
learn precisely, e.g., what tokens to extract out of a method,
would need to be deep. Therefore, we believe that deep
learning will play an important role in the field of software
refactoring in the near future. We discuss deep learning later
in this section.

4.7 The recommendation of high-level refactorings
In this study, we explore recommendations of low-level
refactorings, i.e., small and localized changes that improve
the overall quality of the code. We did not explore recom-
mendations of high-level refactorings, i.e., larger changes
that improve the overall quality of the design.

We see that the great challenge of recommending high-
level refactorings is that the model requires even more
context to learn from. Before applying a design pattern to the
source code, developers often think about how to abstract
the problem in such a way that the pattern would fit.

As an initial step, the book of Kerievsky [51] might serve
as a guide. In his book, the author shows how to move code,
that is often implemented in a procedural way, to a design
pattern oriented solution, by means of low-level refactorings.
Our next step is to explore how we can “aggregate” several
low-level refactoring recommendations in order to provide
developers with high-level refactoring suggestions.

4.8 Taking the developers’ motivations into account
Empirical research shows that developers refactor for several
reasons, other than to “only improve the quality of the code”
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(e.g., [7, 52]). In our first foray into applying ML algorithms
to predict refactoring operations, our models do not factor
in “motivation”. Nevertheless, note that our large dataset
of refactorings contains refactorings that have happened for
varying reasons (given that we never filtered refactoring
based on motivation from the projects). Interestingly, our
models still show high accuracy. Exploring whether models
built specifically for, e.g., “refactoring to add new functional-
ity”, would provide even better results, not only in terms of
accuracy, but also in terms of “developer satisfaction”. We
defer this development to future work.

4.9 The use of Deep Learning (and Natural Language
Processing algorithms) for software refactoring
Programming languages have phenomena like syntax and
semantics [53, 54, 55]. Motivated by several recent works that
use advanced ML algorithms on source code with the goal of
(semi) automating several non-trivial software engineering
tasks such as suggesting method and class names [56], code
comments [57], generation of commit messages [58], and
defect prediction [59], we intend to experiment NLP-specific
deep learning architectures to deal with code refactorings.
Using models like Seq2Seq [60] and Code2Vec [49], both
refactorings predictions and refactored code can be outputs of
the model, having the source code only as input. To facilitate
the work of future researchers interested on the topic, our
online appendix [30] contains a dataset with all the refactored
classes studied here.

4.10 Refactoring recommendation models in the wild
As mentioned, popular tools such as PMD and Sonarqube
offer detection strategies for common code smells, e.g.,
God Classes and Long Methods. These tools have been in-
tegrated into different stages of the developers’ workflow,
e.g., inside IDEs, during code review, or their results have
been incorporated into quality reports. We envision a ML-
powered refactoring recommendation tool finding its way
into the daily life of a developer in the same way linters and
code quality recommendation tools (e.g., PMD, Checkstyle,
Sonarqube) currently belong to their daily routine. However,
the deployment of ML-based refactoring recommendation
models does not come without its challenges.

First, prediction models take up a lot of disk space (some
of the models we built throughout this research take up
around 700MB to 1GB of disk space), which makes them
unwieldy to deploy inside IDEs (without mentioning that
loading them into memory would require sizable memory
resources). While the ML research field is still looking for
efficient ways of compressing large models (see [61] for
details), introducing the 20 ML models that we built into the
developers’ machines/IDEs is certainly not a feasible solu-
tion. A possible workaround to this challenge would be to
provide a centralized server that provides recommendations
to clients (e.g., IDEs and code review tools).

Another way to reduce the size of our models would be
to build leaner models. In RQ2, we show that some features
never make to the top-10 ranking features; others were never
even used. Future work should investigate which features
can be removed without significant loss of prediction power,
thus on removing features that have no real prediction power,

and on identifying the simplest model that works by, e.g.,
performing feature reduction. As a reference, we refer the
reader to Kondo et al’s work [62]. Authors explored the
impact of eight different feature reduction techniques on
defect prediction models; we suggest the same line of work
for refactoring recommendation models.

Moreover, our empirical study shows that the training
of these models take hours (some of our Random Forest
models took approximately 2 hours running on a machine
equipped with a 40-core processor). On the other, once these
models are trained, prediction happens almost instantly. This
is due to the fact that our models require a feature vector
composed solely by code metrics that are easily extracted
from source code. The long training time reinforces the
need for generalizable models (which are possible to obtain
according to our results), given that many companies are not
able to afford the costly model training.

Second, program analysis tools solely require access to
the source code of the program for the recommendation to
happen. Our current ML models also require ownership and
process metrics. While our results show that these metrics
play an important role in the models, they are less trivial
to be calculated, requiring access to the full history of the
project as well as maintenance. Future work should evaluate
what to do in cases where the developer does not have access
to these metrics, i.e., when offering consultancy to a company
that does not provide the consultant with the full repository,
or when the project is in earlier stages and the repository still
does not contain useful data.

Third, the usability aspects that such a tool would need
in order for developers to trust it. In this paper, we do not
explore such aspects. While this is not unique to ML-based
recommendation models, we believe this is an important
aspect to be explored, given that the interpretability of these
(black box) models are harder than the detection strategies
our community currently relies on. Guidelines on how to
recommend software refactoring [19] as well as lessons
learned on building large-scale recommendation tools [63, 64]
are of great help. Given that ML models are drawing a
lot of attention from the software engineering community,
other researchers have already started to probe into the
usability-related issues of ML-powered solutions to software
engineering tasks (e.g., [65]).

Finally, understanding whether it is possible for a com-
pany to reuse existing models (a practice commonly used
in other communities, such as the reuse of pre-trained
models as Word2Vec [66] and BERT [67]) and how often
the refactoring recommendation models should be re-trained
are fundamental questions that still need to be answered.

5 RELATED WORK

After the publication of Fowler’s seminal book [1], refactoring
went mainstream and many surveys and literature reviews
on the subject were performed. One of the early surveys
that brought refactoring into the limelight of researchers
was carried out by Mens and Tourwé [68]: their survey is
centered around refactoring activities, supporting techniques,
and tool support. Specifically, their discussion is organized
around software artifacts and how refactoring applies to
them, so the authors emphasize requirement refactoring,
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design refactoring, and code refactoring. Additionally, Mens
and Tourwé briefly share their outlook on the impact of
refactoring on software quality. Their survey, however, took
only a few studies on identifying refactoring opportunities
into account and did not follow a systematic approach. As
mentioned, since then several systematic literature reviews
have been conducted on refactoring.

The existing literature discusses different automatic refac-
toring approaches whose purpose is helping practitioners in
detecting code smells, some of which are even able to suggest
the refactoring activities that should be performed by the
practitioners in order to remove the detected code smells.
Most approaches are either based on rules, employ search-
based algorithms, or ML approaches. A recent systematic
literature review [69] shows that there has been an increase in
the number of studies on automatic refactoring approaches.
According to the results of such literature review, source
code approaches have been receiving more attention from
researchers than model based approaches. In addition, the
results indicate that search-based approaches are gaining
increasing popularity and researchers have recently begun
exploring how ML can be used to help practitioners in
identifying refactoring opportunities. The concepts and rule-
based approaches proposed by early researchers that laid the
theoretical foundation for more recent advances in the area
are presented in Subsection 5.1. Related work on search-
based approaches applied to refactoring is discussed in
Subsection 5.2 and related work on ML is reviewed in
Subsection 5.3.

5.1 Code smell detection

In hopes of providing a insightful understanding of code
smells, the goals of studies on code smells, approaches used
to probe into code smells, and evidence that bolsters the
fundamental premise that code smells are symptoms of
issues in the code, Zhang et al. [70] carried out a systematic
literature review in which they synthesized the results of 39
studies on code smells. Since we consider the identification
of code smells and the detection of refactoring opportunities
two related problems, it is also worth mentioning the
systematic literature review performed by Al Dallal [71]. Al
Dallal discusses studies that consider both code smells and
refactoring opportunities from a different perspective: the
main focus of their literature review is providing an overview
of code smell identification approaches. Based on an analysis
of 47 studies, Al Dallal concluded that although there was
a sharp increase in the number of studies on identifying
refactoring opportunities, up to 2013 the results of these
studies were derived mostly from relatively small datasets.
Singh and Kaur [72] extended the systematic literature review
carried out by Al Dallal focusing on code smells identification
and anti-patterns. The two main contributions of their survey
is highlighting the datasets and the tools employed in the
selected studies and the identification of the code smells that
were most used in these studies.

Recently, Santos et al. [73] performed a systematic litera-
ture review to summarize knowledge about how code smells
impact software development practices, which the authors
termed “smell effect”. Santos et al. selected and analyzed
64 studies that were published between 2000 and 2017. One

of the main findings reported by the authors is that human-
based evaluation of smells is not reliable: a trend in the
selected studies seems to indicate that developers have a
low level of consensus on smell detection. Furthermore, their
analysis of the selected studies suggests that demographic
data as developers’ experience can significantly impact code
smell evaluation.

Fernandes et al. [74] carried out a systematic literature
review on code smell detection tools. Their study is centered
around the identification of code smell detection tools, their
main features, and the types of code smells that these
tools are able to identify. Fernandes et al. also performed a
comparison of the four most widely used tools (i.e., most
frequently mentioned in the selected studies). It is worth
mentioning that considering the selected studies, which were
published from 2000 to 2016, no tool implements a ML based
approach: this indicates that only recently researchers have
begun investigating ML models in this context. Rasool and
Arshad [75] also performed a systematic literature review
on tools and approaches to mining code smells from the
source code. Essentially, Rasool and Arshad classified tools
and approaches based on their detection methods. Rasool
and Arshad emphasized mining approaches, thus they did
not take ML-based approaches into account.

5.2 Search-based refactoring
Mariani and Vergilio [17] carried out a systematic literature
review of how search-based approaches have been applied
to refactoring. Mariani and Vergilio found that evolutionary
algorithms and, in particular, genetic algorithms were the
most commonly used algorithms in the analyzed studies.
In addition, they found that the most widely used and
investigated refactorings are the ones in Fowler’s catalog [1].
More recently, Mohan and Greer [76] also looked at search-
based refactoring. However, differently from the literature
survey by Mariani and Vergilio, Mohan and Greer give a
more in-depth review of the selected studies in the sense that
Mohan and Greer also cover other aspects of the literature.
For instance, Mohan and Greer also discuss the tools used
in the selected studies as well as provide an investigation
of how some metrics have been tested and discussed in
the selected literature. In addition, Mohan and Greer detail
how the search-based approaches described in the selected
studies have evolved over time. Similarly to the results
presented by Mariani and Vergilio, Mohan and Greer also
found that evolutionary algorithms are the most commonly
used algorithms in the selected studies.

5.3 ML algorithms
To our best knowledge, only one systematic literature re-
view [77] has been conducted with the purpose of summariz-
ing the research on ML algorithms for code smell prediction.
Azeem et al. selected 15 studies that describe code smell
prediction models. Azeem et al. analyzed the selected studies
in terms of (i) code smells taken into account, (ii) setup of
the ML based approaches, (iii) how these approaches were
evaluated, and (iv) a meta-analysis on the performance of
the code smell prediction models described in the selected
studies. According to the results, God Classes, Long Methods,
Functional Decomposition, and Spaghetti Code are the most
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commonly considered code smells. Decision Trees and SVM
are the most widely used ML algorithms for code smell
detection. Additionally, JRip and Random Forest seem to be
the most effective algorithms in terms of performance.

6 THREATS TO VALIDITY

This section outlines the threats to the validity of our study.

6.1 Construct validity

Threats to construct validity concern the relation between
the theory and the observation, and in this work are mainly
due to the measurements we performed.
• Our strategy for gathering the large amount of data we

investigated entailed mining a large number of software
repositories for instances of class, method, and variable
refactorings. Thus, the main internal validity threat is the
data collection process. We cannot rule out the issues that
arise when performing large scale data extraction (issues
indeed happened, as discussed in Section 2.6). We provide
a replication package containing all experimental scripts
and datasets used in our study so that researchers and
practitioners can fully replicate and confirm our results.

• As mentioned in Section 2.3, over the course of our data ex-
traction process, we determined the number of bug fixes by
employing a keyword matching approach. The approach
is widely used by the mining software repositories com-
munity to detecting bug fix related information in software
repositories. It is worth noting that the effectiveness of
such approach depends on the keywords used during the
data extraction process, so we acknowledge the possibility
that we might have overlooked the inclusion of relevant
keywords.

• Our data collection mechanism makes use of Refactor-
ingMiner [23], a tool that is able to identify refactoring
operations in the history of a repository. Therefore, the
soundness of our approach hinges on the effectiveness
of refactoring detection tool we used. RefactoringMiner
presents a precision and recall of 98% and 87%, respectively,
in detecting the refactoring operations we study. We did
not re-evaluate the precision and recall of RefactoringMiner
in the studied sample, as this was already established
in their research. Given how RefactoringMiner works
internally and that RefactoringMiner was evaluated on
projects with similar characteristics (in fact, 65% of the
projects in RefactoringMiner’s evaluation dataset are in
our dataset), we have no reason to believe that the accuracy
reported in the literature would not apply to our study.

• An underlying assumption of our research is that refactor-
ings that have happened in the past are good examples
of refactorings that will happen in the future. Our models
never learn from “refactorings that developers find to be
important, but never got around to carrying them out”.
Nevertheless, given the amount of data points we use for
training, we have no reason to believe that “refactorings
that developers consider relevant but ended up never
being carried out” are so intrinsically different from the
“refactorings that developers carried out”. In ML terms,
we do not believe their feature vectors would have such
a different distribution that models would not be able to

predict them with a reasonably good accuracy. This is,
however, a conjecture. Case studies in industrial settings,
in which developers annotate not only whether the recom-
mendations of ML-based models were pertinent, but also
refactorings they would like to perform in elements that
our models do not identify refactoring opportunities, is a
necessary step in order to test this conjecture.

• Finally, one of the metrics we also used to train our models
was the “number of default methods” (at class-level).
However, later in one of our inspections, we observed
that, due to a bug in the metric collections tool, the number
of default methods was always zero.8 All the learning
algorithms ignored this metric, as it indeed added no value
to the learning process; in fact, it appeared on the list of
features that were never used by our model. Therefore, we
affirm that this bug does not influence the overall results of
our paper. Moreover, we have no reason to believe that the
adding this feature would bring significant improvements.
Nevertheless, we propose researchers to use this feature in
future replications of this paper.

6.2 Internal validity
Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations
being investigated.
• We removed projects that failed during data collection.

As we discussed in Section 2.1, our pipeline is composed
of several tools, all of them being prone to failures, e.g.,
RefactoringMiner running out of memory. The percentage
of failed projects is small (8%), and does not affect the
representativeness of our final dataset.

• Owing to the fact that, in most cases, there are more
instances of the non-refactoring class in our dataset than
instances of the refactoring class (see Table 3), we had
to cope with an imbalanced dataset. Given that there is
no reliable estimate on the distribution of refactoring and
non-refactoring instances “in the wild”, we decided to
perform under-sampling. That is, we chose to remove
instances from the over-represented class by means of
random under-sampling. This means that the dataset for
each refactoring operation is bounded by the minimum
between the number of positive and the number of
negative instances (e.g., as we see in Table 3, although
we have 41,191 instances of Extract Class refactorings, we
have only 10,692 instances of non-refactored classes, and
thus, our model is trained on all the 10,692 instances of non-
refactored classes + 10,692 randomly sampled instances of
refactored classes).
To better measure the impact of this choice, we re-created
the Random Forest models using a “Near Miss” under-
sampling strategy [78]. While the average absolute differ-
ence in precision and recall are 0.116 and 0.052, respectively,
it is hard to distinguish which strategy helps the model in
improving accuracy. In nine out of 20, Near Miss improved
the precision when compared to the random sampling
strategy (and thus, random performed better in 11 models),
whereas in 12 out of 20, Near Miss improved the recall.
As we conjecture that, in the refactoring problem, classes

8. https://github.com/mauricioaniche/ck/commit/
f60590677271fb413ecfb4c2c5d0ffbaf8444075.

https://github.com/mauricioaniche/ck/commit/f60590677271fb413ecfb4c2c5d0ffbaf8444075
https://github.com/mauricioaniche/ck/commit/f60590677271fb413ecfb4c2c5d0ffbaf8444075
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will always be unbalanced by nature, future research is
necessary to better understand how to under (or even over)
sample. Nevertheless, we acknowledge that a balanced
dataset may be different from the distribution that is
expected in real life. Hence, a balanced dataset has the
potential to lead to less accurate models in practice.
Exploring the performance of models trained on datasets
that reflect reality is important future work that should
be tackled once, as a community, we understand what the
real distribution is.

• Our ML pipeline performs scaling and undersampling.
Improving the pipeline, e.g., by applying better feature
reduction, different balancing strategies, and extensive
hyperparameter search, will only make our results better.
While developing production-ready models was not the
main goal of this paper, we note that our open-source
implementation available in our appendix [30] enables it
effortlessly. In other words, any researcher or company
can download our implementation and datasets, use their
available infrastructure, and train (even more accurate)
models.

• Code smells are symptoms that might indicate deeper
problems in the source code [1]. While code smells have
been shown to greatly indicate problematic pieces of
code, in this work, we did not use them as features
to our model. However, we note that code smells are
detected by combinations of proxy metrics (i.e., detection
strategies [79]). These proxy metrics are commonly related
to the structure of the source code (e.g., complexity/WMC,
coupling/CBO) and are highly similar to the structural
metrics we use as features (see Table 4). In other words,
we train our models with metrics that are similar to
the metrics used by the code smells detection strategies.
Therefore, we conjecture that using code smells as features
would add only a small amount of information for the
models to learn from. That being said, making sure that
all catalogued code smells are covered by our features is
interesting future work which might increase the accuracy
of refactoring recommendation models. Our own previous
research shows that code smells might be architecture-
specific [80, 81, 82, 83], e.g., MVC systems might suffer
from different and specific smells than Android systems.

• As we discuss in Section 4, we did not take into account the
different reasons a developer might have when deciding
to refactor, e.g., to add a new functionality, or to improve
testability. These motivations might indeed change (or even
help the developer to prioritize) which refactors to apply.
Nevertheless, we affirm that the goal of this first study
was to explore whether ML can model the refactoring
recommendation problem. Given that we observed high
accuracy, we can only conjecture that taking the motivation
into consideration will only increase the accuracy (or again,
help in prioritization) of the models. We leave it as future
work.

• We consider our dataset as a set of unordered refactorings.
As a contrast, studies in defect prediction consider datasets
as a set of ordered events, e.g., they do not mix “past”
and “future” when evaluating the accuracy of their models
(e.g., [84]). We argue that there is no need for such design,
given that we devise a single cross-project model, based
on hundreds of thousands of data points from more

than 11k projects altogether. In other words, we do not
devise one model per project, as commonly done in defect
prediction. Thus, we affirm that the model has little chance
of memorizing specific classes. Our 10-fold random cross
validation (and the individual precision and recall of each
fold, that can be seen in our appendix [30]) also gives
us certainty that this is not a threat. Nevertheless, to
empirically show that our decision of not ordering the
dataset does not influence our results, we trained Random
Forest models using the first 90% of refactorings that have
happened (ordered by time) and tested on the remaining
10% of refactorings that happened afterwards. We obtained
an average accuracy of 87% among the 20 refactorings. The
individual results per type of refactoring can be seen in
our online appendix [30].

• In RQ3, when studying the generalization of our models,
we observed that class-level refactoring models outper-
formed method- and variable-level refactorings. We took a
harder look at our data and noticed that this phenomenon
tends to happen when models are built from smaller
datasets, F-Droid and Apache. When training our models
with GitHub data (the largest dataset), the phenomenon
still occurs, although with a smaller difference. Neverthe-
less, we can not offer a clear explanation on why that
happens, based on the data we collected. There might
be an unseen factor which we did not collect data and
analyze. Future work should understand the reasons for
this phenomenon.

6.3 External validity

Threats to external validity concern the generalization of
results.

• Our results are based only on open source projects, which
might affect their generalizability to industrial settings. It
is worth mentioning, however, that our sample contains
many industrial-scale projects that span different domains.
To the best of our knowledge, this is the most extensive
study of ML algorithms for the prediction of refactorings
to date. Nevertheless, replicating this research in a large
dataset of industry projects is necessary.

• One of our goals was to understand whether ML models
trained on a set of systems are able to accurately rec-
ommend refactoring operations to improve completely
different software systems. We experimented with different
ecosystems as an approximation for “completely different
software systems”. While we believe this is a reasonable
approximation, we are not able to make strong assump-
tions about the accuracy of those models in large-scale
enterprise industrial systems. We suggest that researchers
perform case studies together with industrial partners in
hopes of providing evidence to support such hypothesis.

• Moreover, since we considered Java as the language of
choice, we cannot be sure that our results carry over to
other programming languages. Thus, replications of this
study are needed for different programming languages.
However, we cannot think of any reason why the results
would be different for other imperative object-oriented
languages.
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7 CONCLUSION

Supervised ML algorithms are effective in predicting refac-
toring opportunities and might indeed support developers
in making faster and more educated decisions concerning
what to refactor.

Our main findings show that:
1) Random Forest models outperform other ML models in

predicting software refactoring;
2) Process and ownership metrics seem to play a crucial

role in the creation of better models; and
3) Models trained with data from heterogeneous projects

generalize better and achieve good performance.
More importantly, this paper shows that ML algorithms

can accurately model the refactoring recommendation
problem. We hope that this paper will pave the way for
more data-driven refactoring recommendation tools.

Given that we are more confident that ML models might
provide accurate recommendations to developers, the next
step of this research should work on devising and building
the necessary tools to deploy and perform case studies on
the efficiency of refactoring recommendation models in the
wild.
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[68] T. Mens and T. Tourwé, “A survey of software refactor-
ing,” IEEE Transactions on Software Engineering, vol. 30,
no. 2, pp. 126–139, 2004.

[69] A. A. B. Baqais and M. Alshayeb, “Automatic software
refactoring: a systematic literature review,” Software
Quality Journal, 2019.

[70] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells:
A review of current knowledge,” Journal of Software

Maintenance and Evolution: Research and Practice, vol. 23,
no. 3, pp. 179–202, 2011.

[71] J. Al Dallal, “Identifying refactoring opportunities in
object-oriented code: A systematic literature review,”
Information and Software Technology, vol. 58, pp. 231–249,
2015.

[72] S. Singh and S. Kaur, “A systematic literature review:
Refactoring for disclosing code smells in object oriented
software,” Ain Shams Engineering Journal, vol. 9, no. 4,
pp. 2129–2151, 2018.

[73] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S.
do Nascimento, M. F. Freitas, and M. G. de Mendonça,
“A systematic review on the code smell effect,” Journal
of Systems and Software, vol. 144, pp. 450–477, 2018.

[74] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and
E. Figueiredo, “A review-based comparative study of
bad smell detection tools,” in Proceedings of the 20th
International Conference on Evaluation and Assessment in
Software Engineering. ACM, 2016, pp. 18:1–18:12.

[75] G. Rasool and Z. Arshad, “A review of code smell
mining techniques,” Journal of Software: Evolution and
Process, vol. 27, no. 11, pp. 867–895, 2015.

[76] M. Mohan and D. Greer, “A survey of search-based
refactoring for software maintenance,” Journal of Soft-
ware Engineering Research and Development, vol. 6, no. 1,
pp. 3–55, 2018.

[77] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine
learning techniques for code smell detection: A system-
atic literature review and meta-analysis,” Information
and Software Technology, vol. 108, pp. 115–138, 2019.

[78] J. Zhang and I. Mani, “kNN Approach to Unbalanced
Data Distributions: A Case Study Involving Information
Extraction,” in Proceedings of Workshop on Learning from
Imbalanced Datasets, vol. 126, 2003, pp. 1–7.

[79] R. Marinescu, “Detection strategies: Metrics-based rules
for detecting design flaws,” in 20th IEEE International
Conference on Software Maintenance, 2004. Proceedings.
IEEE, 2004, pp. 350–359.

[80] S. Goularte Carvalho, M. Aniche, J. Verı́ssimo, R. Durelli,
and M. Gerosa, “An empirical catalog of code smells
for the presentation layer of android apps,” Empirical
Software Engineering, vol. 24, no. 6, p. 3546–3586, 2019.

[81] M. Aniche, G. Bavota, C. Treude, M. Gerosa, and
A. van Deursen, “Code smells for model-view-controller
architectures,” Empirical Software Engineering, vol. 23,
no. 4, pp. 2121–2157, 2018.

[82] M. Aniche, G. Bavota, C. Treude, A. van Deursen,
and M. Gerosa, “A validated set of smells in model-
view-controller architectures,” in Proceedings 2016 IEEE
International Conference on Software Maintenance and
Evolution, ICSME 2016. United States: IEEE, 2016, pp.
233–243.

[83] M. Aniche, C. Treude, A. Zaidman, A. van Deursen, and
M. Gerosa, “Satt: Tailoring code metric thresholds for
different software architectures,” in 16th International
Working Conference on Source Code Analysis and Manipula-
tion (SCAM). United States: IEEE, 2016, pp. 41–50.

[84] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-
grained just-in-time defect prediction,” Journal of Systems
and Software, vol. 150, pp. 22–36, 2019.

http://doi.acm.org/10.1145/3106237.3106290

	1 Introduction
	2 Research Methodology
	2.1 Experimental Sample
	2.2 Extraction of Labelled Instances
	2.3 Feature Selection
	2.4 Model Training
	2.5 Evaluation
	2.6 Implementation and Execution
	2.7 Reproducibility

	3 Results
	3.1 RQ1: How accurate are supervised ML algorithms in predicting software refactoring?
	3.2 RQ2: What are the important features in the refactoring prediction models?
	3.3 RQ3: Can the predictive models be carried over to different contexts?

	4 Discussion
	4.1 Collecting non-refactored instances via an heuristic
	4.2 Features and their interpretability
	4.3 The importance of process and ownership metrics (and the need for fine-grained metrics)
	4.4 Making a case for larger and more heterogeneous datasets
	4.5 Prioritizing refactoring recommendations
	4.6 The need for more fine-grained refactoring recommendations
	4.7 The recommendation of high-level refactorings
	4.8 Taking the developers' motivations into account
	4.9 The use of Deep Learning (and Natural Language Processing algorithms) for software refactoring
	4.10 Refactoring recommendation models in the wild

	5 Related Work
	5.1 Code smell detection
	5.2 Search-based refactoring
	5.3 ML algorithms

	6 Threats to validity
	6.1 Construct validity
	6.2 Internal validity
	6.3 External validity

	7 Conclusion

