
ACCEPTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SEPTEMBER 2020 1

Real World Scrum
A Grounded Theory of Variations in Practice

Zainab Masood, Rashina Hoda, and Kelly Blincoe

Abstract—Scrum, the most popular agile method and project management framework, is widely reported to be used, adapted,
misused, and abused in practice. However, not much is known about how Scrum actually works in practice, and critically, where,
when, how and why it diverges from Scrum by the book. Through a Grounded Theory study involving semi-structured interviews
of 45 participants from 30 companies and observations of five teams, we present our findings on how Scrum works in practice as
compared to how it is presented in its formative books. We identify significant variations in these practices such as work
breakdown, estimation, prioritization, assignment, the associated roles and artefacts, and discuss the underlying rationales driving
the variations. Critically, we claim that not all variations are process misuse/abuse and propose a nuanced classification approach
to understanding variations as standard, necessary, contextual, and clear deviations for successful Scrum use and adaptation.

Index Terms—Scrum, agile, Scrum by the book, Scrum In practice, variations, grounded theory.

—————————— u ——————————

1 INTRODUCTION
GILE software development methods such as Scrum
[1], [2] and XP [4]-[6] follow a collaborative, people-

oriented approach to software development and embody
the core Agile Manifesto values[7]. Scrum is by far the most
popular and commonly used agile method [8]. It is prac-
ticed by many large and small companies to varying de-
grees (e.g., Yahoo!, Microsoft, and Google) [2]. Scrum is an
iterative and incremental method focusing on project man-
agement practices [9]. Its key practices such as estimation,
breakdown, and prioritization primarily focus on work
planning [1], [2] while the practice of self-assignment is
considered a hallmark feature of self-organizing teams
[28]. In essence, it revolves around organising people and
providing procedures to add business value and deliver
quality through effective planning [10].

Perhaps, one of the reasons behind Scrum’s dominance
[8] is its perceived simplicity and “lightweight” approach
to managing software projects as described in its formative
literature such as the Scrum Guide and the Scrum Primer
[1], [2] (referred to in this paper as ‘Scrum by the book’).
These concise guides provide an easy to understand over-
view of Scrum’s practices, roles, and artefacts.

The perceived simplicity of Scrum by the book is cor-
roborated by Scrum enthusiasts who claim teams must ad-
here to its practices in their entirety and “by the book” to
avail the real benefits [15]. Ken Schwaber, a co-creator of
Scrum suggests teams customize it to suit their ‘dysfunc-
tions’ or ‘inadequacies’ and states “I estimate that 75% of those

organizations using Scrum will not succeed in getting the bene-
fits that they hope for from it” [17]. The other co-creator, Jeff
Sutherland, is equally skeptical of variations and labels
these deviations from the recommended Scrum practices
as “ScrumButts” [33].

Yet, they also acknowledge that Scrum can be “difficult
to master” [1]. This could be because Scrum by the book is
not prescriptive about its key project management prac-
tices (including breakdown, estimation, prioritization,
sprint goal creation, refinement, and work assignment),
leaving implementation details to individual practitioners.
It is no surprise then that many organisations are seen to
use Scrum variants or modify it to suit their settings [12]-
[14]. Research shows contextual adaptations can be neces-
sary and beneficial [16],[18],[19].

While several studies have reported variations ob-
served in practice, these have mostly been identified as sec-
ondary findings in studies with another primary focus, e.g.
understanding the daily standup [23] or the product back-
log [22]. A limited number of studies have exclusively fo-
cused on variations, reporting only preliminary findings
[12], [13], or on a specific role, e.g. the Product Owner (PO)
[11]. Thus far, no study presents descriptive and nuanced
research on Scrum variations, grounded in substantial and
detailed qualitative evidence from practice.

Our Grounded Theory study was guided by the follow-
ing research question: How, when and why does Scrum
practice vary from Scrum by the book? Based on semi-
structured interviews of 45 practitioners and observations
of five teams, we present variations in key Scrum roles, ar-
tefacts, and project management practices (including
breakdown, estimation, prioritization, sprint goal creation,
refinement, and work assignment). Critically, we describe
how, when and why these variations occur and propose a
nuanced classification approach to making sense of varia-
tions in practice.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

A

————————————————
• Zainab Masood is with the Department of Electrical, Computer, and Soft-

ware Engineering, University of Auckland, New Zealand.
E-mail: zmas690@aucklanduni.ac.nz.

• Rashina Hoda is with the Faculty of Information Technology, Monash Uni-
versity, Melbourne, Australia. E-mail: rashina.hoda@monash.edu.

• Kelly Blincoe is with the Department of Electrical, Computer, and Software
Engineering, University of Auckland, New Zealand.
E-mail: k.blincoe@auckland.ac.nz

2 ACCEPTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

2 RELATED WORK
Prior research has investigated various development
methodologies, their adoption and adaptation due to dif-
ferent interpretations, organizational constraints [40]-[42]
in different fields. In software engineering, researchers
have explored how agile methods are tailored to meet or-
ganizational or project needs in practice [16], [18], [19].
“The kinds of projects that the method designers had in mind
when they constructed the first Agile methods” are termed the
agile sweet spot [34]. Differences between the sweet spot
and other contexts and constraints are seen to necessitate
adaptations [11],[16],[20]. Of the popular agile methods,
XP has been found to be surprisingly resistant to adapta-
tion or tailoring [19] reporting less number of studies iden-
tifying variations [44], perhaps explaining in part its grad-
ual decline in industry adoption over the years [3] from a
reported 23% in 2007 [35] to 1% in 2019 [8].

Adaptations to Scrum, on the other hand, have been
widely addressed and largely criticized by Scrum evange-
lists [17],[33] and recorded in research literature
[11],[12],[20]-[23]. Several studies mention or touch upon
variations as part of a related or different study focus [20]-
[23], [43]. These include statistical surveys of agile adop-
tion that also reported on method compliance [21] and ad-
aptation [20]. Kurapati et al. reported one third of their 109
survey respondents were fully compliant, nearly half were
strongly compliant, and the remaining reported weak
(12%) and no compliance (9%) with Scrum [21]. Details and
examples of which specific variations occurred and the po-
tential rationales behind them were not reported. Another
adoption survey in 2011 [20] reported variations in Scrum
roles such as the presence of project managers alongside
Scrum Masters, [37],[8]. Again, the motivations and ration-
ales behind the observed figures were not reported [20].

More recent qualitative studies describe some varia-
tions in practice as part of a different study focus, e.g. a
specific Scrum practice [23] or artefact [22] or as part of the
agile transformational journey in a distributed setting [43].
Based on a comprehensive Grounded Theory study of the
Scrum practice, the daily standup, regular, instead of daily,
standup was recommended as a common variation. Addi-
tionally, the primary purpose of the meeting defined in the
Scrum Guide as “synchronization of activities and plan-
ning” [1] was not seen to be supported in practice. An in-
vestigation into the generation and role of the Scrum arte-
fact, the product backlog, also revealed some variations in its
use in practice such as partial ordering and items lacking
estimation and details [22]. In a case study on agile trans-
formation, Lous et al. found some adaptions of Scrum [43].
Rationales were identified for some of the variations (e.g.
skipping sprint planning meetings as the content of these
meetings was not of interest to the entire team).

Few studies focus exclusively on the topic of Scrum var-
iations and most provide only preliminary findings [11],
[12], [13]. One investigated variations in a single Scrum
role, the Product Owner (PO) [11]. Based on interviews
with five active POs, an observed variation was the PO’s
actual availability on the projects varied compared to the
recommended easy accessibility in Scrum by the book.

A critical study of Scrum variations identified 14 anti-
patterns or “potentially harmful practices” e.g. big require-
ments document, PO without authority, and no sprint ret-
rospective [13]. Based on data from 18 Finnish software
practitioners, it acknowledged that some anti-patterns are
justified in specific cases. The study set an agenda for fu-
ture in-depth studies in wider contexts.

Diebold et al. conducted an investigation into Scrum ad-
aptations across a range of aspects including sprint
lengths, team size, requirements engineering, and quality
assurance [12]. Based on 10 interviews conducted in Ger-
man companies, contrary to [21], compliance to the Scrum
Guide was found to be low. Reported reasons behind vari-
ations included perceived efficiency and legacy habits
from traditional ways of working.

Unlike statistical surveys [20], [21], our qualitative
study aims to answer not just what variations occur, but
how, when and why they occur in practice. Unlike studies
reporting secondary findings on variations as part of dif-
ferent study focus [22], [23], this paper focuses exclusively
on variations. Unlike [12], [13], our results extend beyond
preliminary findings.

Critically, our study presents a descriptive theory of Scrum
variations in its key project management practices,
grounded in practice. Since Scrum primarily focuses on
project management, it is important to understand how,
when and why Scrum project management practices (in-
cluding breakdown, estimation, assignment, prioritiza-
tion, and sprint goal creation) vary from Scrum by the
book.

3 RESEARCH METHODS
We applied the Grounded Theory (GT) method for data
collection, analysis, and reporting our findings [24], [25],
[32]. As the study aimed to understand and investigate
prescribed methods and associated practice variations, GT
was well-suited to our aims as it enables the investigation
of real-world phenomenon as well as comparison across
multiple sources of information, in this case, across find-
ings from studying real-world Scrum teams (in practice)
and seminal Scrum guides (by the book). Our study adds
to the growing body of agile literature using GT [16], [22],
[23], [26]-[29]. We employed the Strauss-Corbinian version
of GT due to its prescriptive and structured approach to
data analysis, and easy to follow guidelines.

3.1 Data Collection
We collected data from two main data sources, industrial
data (in practice) and the basic Scrum guides (by the book):

3.1.1 By the Book
The Scrum Guide [1] supplemented by the Scrum Primer
[2], the formative Scrum texts, were used as the data source
to understand what is prescribed in Scrum by book. These
are are commonly acknowledged and referenced in re-
search studies as the fundamental Scrum references, the
Guide being cited as the definitive source [11], [12], [13],
[18], [19], [20], [22], [23].

MASOOD ET AL.: REAL WORLD SCRUM A GROUNDED THEORY OF VARIATIONS IN PRACTICE 3

TABLE 1 PARTICIPANT AND TEAM OBSERVATIONS

INTERVIEWS
P# ROLE DOMAIN TX AX
P1 Team Lead Info Tech 11 6-7
P2 Software Engineer Info Tech 1 2.5
P3 Associate Team Lead Info Tech 4-5 4-5
P4 Software Engineer Info Tech 2.5 2.5
P5 Team Lead Info Tech 7 7
P6 Senior Software Engineer Info Tech 4 2
P7 Team Lead Info Tech 7.5 7.5
P8 Product Owner Telecom 12 5
P9 Consultant Info Tech 10 3
P10 Team Lead Medical 13 7
P11 Developer; Scrum Master Transport 17 7
P12 Developer Info Tech 10 6
P13 Developer Accounting 2 2
P14 Senior Architect IC Tech 10 3
P15 Test Analyst Finance 10 5
P16 Tester Medical 12 1
P17 Developer; Scrum Master Info Tech 8 3.5
P18 Lead Developer Info Tech 25 9
P19 Developer; Scrum Master Info Tech 12 7
P20 Developer Info Tech 4 3.5
P21 Development Manager Info Tech 14 9
P22 Developer Medical 2.5 1.5
P23 Development Manager Medical 20 2
P24 Lead Developer Medical 20 3
P25 Scrum Master Medical 9 6
P26 Developer Medical 12.5 6
P27 Tester Medical 10 3
P28 Developer Medical 12 2
P29 Developer Medical 10.5 4
P30 Head of Product Delivery Healthcare 13 3
P31 Developer Consultant Retail 10 5
P32 Tester Info Tech 5 3
P33 Consultant Info Tech 11 4
P34 Senior Architect Info Tech 15 10
P35 Tester Finance 16 14
P36 Quality Assurance Analyst Finance 7.5 2.5
P37 Scrum Master Info Tech 4 1.5
P38 Scrum Master Info Tech 3 1
P39 Manager Info Tech 13 8
P40 Team Lead Networking 4 3
P41 Quality Assurance Lead Networking 2 2
P42 Scrum Master Finance 11 3
P43 Development Manager Info Tech 13 4
P44 Product Owner Info Tech 9 6
P45 Scrum Master Info Tech 20 12

TEAM OBSERVATIONS
T# P# Team Size Practices (N) Duration

(mins)
T1 P22-P28 6-10 SP (2), DSM (5), RT (1),

TB (1), CR (1), BP (1)
60, 10-15, 60,
120, 30, 30

T2 P38-P39 6-10 SP (1), DSM (1) 40, 10-15
T3 P40-P41 20-25 DSM (5), QDR (1) 20-25, 30
T4 P43-P44 20-25 SA (1), DSM (1) 115, 20-25
T5 NA 10-15 SP (1), RF (1), RT (1) 90, 15, 45
Participant P#, Domain [Info Tech=Information Technology; IC
Tech=Information and Communication Technologies], total experi-
ence TX, agile experience AX, Team T#, Observations count (N),
Sprint planning SP, Daily stand-ups DSM, Retrospectives RT, Back-
log prioritisation BP, Task breakdown TB, Sprint analysis SA, QA &
design review QDR, Refinement RF

The Guide and Primer generally compensate (one provides
information where the other is silent on the issue) and com-
plement (one expands on what the other prescribes) each
other but do not contradict each other.

3.1.2 In Practice
To understand what occurs in practice, we collected data
through pre-interview questionnaires, semi-structured in-
terviews, and observations. Participants were recruited by
posting calls in popular agile meetup groups in New Zea-
land, Pakistan, and India and general posts on LinkedIn.

Pre-interview questionnaires were sent to each inter-
viewee to gather basic demographic information about the
participant, their team, and organization and information
on their use of agile practices. The responses to these online
questionnaires helped to focus the interviews. Questions in-
cluded: What is your total experience in the software industry
(years)? What is your total agile experience (years)?

To assess the frequency and maturity of their agile prac-
tices, we included the question: Rate the frequency (never,
rarely, occasionally, frequently, always) with which you perform
the following agile practices, with a list of the top 15 most
common agile practices from the annual State of Agile sur-
vey [8]. All participants reported following Scrum prac-
tices such as sprint planning, daily stand-up meetings, and
retrospectives, with varying frequencies.

Semi-structured Interviews. A total of 45 participants,
seven from India (P1-P7), eight from Pakistan (P38-P44),
one from the United Kingdom (P45), and twenty-nine from
New Zealand (P8-P36) were interviewed. Interviews lasted
between 30 and 60 minutes and were conducted either
face-to-face (n=43) or via Skype (n=2). The demographics
of the participants and teams’ observations are summa-
rized in Table 1. The participant numbers [P1-P45] and
team numbers [T1-T5] are used to keep team and partici-
pant’s anonymity as per the university’s human ethics
guidelines. The column header, role lists participant’s pri-
mary roles in the team, e.g. product owner, scrum master,
developer, tester etc. followed by the project domain, e.g.
accounting, healthcare, finance; while the remaining col-
umns list participant’s years of total professional experi-
ence (TX), and agile experience (AX).

The authors collectively prepared the interview guide,
conducted interviews [author1: n=38; author2: n=7) and
analysed [all authors] to mitigate potential bias. All the in-
terviews were recorded and transcribed for analysis either
by the first author or third-party transcribers. Some of the
questions asked during the interviews are: 1] What is the
source of the business requirements for your project? 2] How
does work item definition take place in your team? 3] How do
you perform task breakdown in your team? 4] How and when
does task allocation happen in your team? Can you share a few
examples? 5) How and when does estimation take place in your
team?

Observations of five Scrum teams (two from New Zea-
land [T1, T5] and three [T2, T3, T4] in Pakistan) were con-
ducted. We observed Scrum practices such as daily stand-
up meetings, sprint planning, refinement sessions, break-
down sessions, retrospectives, and reviews. The second
section of the table lists the teams’ observations including
the number, name, duration of the practices observed
againt the team number and the team size.

4 ACCEPTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

These observations supplemented our understanding
of the Scrum process, practices, strategies, and variations
adopted by the team and corroborated our findings from
the interview data. We also interviewed some members of
the observed teams (all seven members of T1, 2 members
of T2, 2 members of T3, and 2 members of T4). Interview-
ing them helped us to gather additional information or
clarify any doubts recorded during the observations.

Data collection was performed in stages with inter-
weaved rounds of data collection and analysis [25]. We
continued collecting data as more and more variations in
various Scrum practices kept being mentioned. The last
rounds of interviews (P37-P45) and observation (T5) firmly
indicated theoretical saturation as no new concepts, catego-
ries, or insights emerged.

3.2 Data Analysis
The Strauss-Corbinian version of GT includes three data
analysis procedures: open, axial, and selective coding [25].
All these procedures and the emerging codes, concepts,
sub-categories, and categories were mutually agreed upon
through frequent and detailed discussions between the co-
authors, including a GT expert, throughout the analysis.
This resulted in further insights captured as memos [30].
All data such as transcripts, observation notes, artefacts,
open codes, and memos were saved and processed using
the NVivo data analysis software. The outcome of the
study is a theory of Scrum variations in Practice with a set
of categories of variations in practices, roles, and artefacts.

3.2.1 Open Coding
We iteratively analyzed the interview transcripts and ob-
servation notes using open coding [25]. Fig 1 (A) illustrates
the open coding and constant comparison procedures

through an example, starting from the raw interview tran-
scripts, observation notes and text from Scrum by the book.
The two data sources, industrial data collected during the
study (in practice) and the basic Scrum guides (by the
book) were kept and analysed separately. Applying open
coding on the raw data, key points were represented with
short summary phrases and then further condensed into
codes of 3-4 words each. As presented in the Fig 1 (A), ‘lead
assistance in assignment’ and ‘self-assignment’ emerged as
two different codes from the interview transcripts of two
participants P18 and P28, and ‘lead-driven assignment’
emerged as another code from the observation notes col-
lected while observing the sprint planning of team T4.
Through constant comparison, these and codes from other
interview transcripts and observations were grouped to
produce a higher level of abstraction, concepts, in this case,
‘Work Assignment'.

Open coding and constant comparison were also ap-
plied to the Scrum by the book as shown in Fig 1 (A). As
an example, text from Scrum Primer resulted in code ‘One
item limit’ and similarly text from Scrum Guide resulted in
code ‘assignment time varies’. These codes were grouped un-
der two different concepts ‘assignment quantity’ and ‘assign-
ment time’. These and other assignment-related concepts
(e.g. assignment techniques, assignment quantity) were
grouped under a higher concept ‘Work Assignment’, shown
in see Fig 1 (B). Similarly, we analyzed other practices of
estimations, breakdown, sprint backlog-creation, product back-
log-creation, and refinement and grouped them under re-
spective higher concepts. This served as our basis for com-
parison to identify the variations between practice and by
the book between these sub-categories. In this example,
variations related to assignment found between the prac-

Fig. 1 Application of Strauss-Corbinian Grounded Theory steps: open coding (A), axial coding (B), and selective coding (C)
leading to the theory of Scrum Variations in Practice.

MASOOD ET AL.: REAL WORLD SCRUM A GROUNDED THEORY OF VARIATIONS IN PRACTICE 5

tice data and by the book data led to the next level of ab-
straction, the sub-category, ‘variations in work assignment’
(Section 4.2.3). Following the same procedure, we derived
other sub-categories, such as ‘variations in estimations’ (Sec-
tion 4.2.1) and ‘variations in breakdown’ (Section 4.2.2).

3.2.2 Axial Coding
Axial coding, a hallmark of the Strauss-Corbinian GT, is the
‘process of relating subcategories to a category’ [25]. Using axial
coding (see Fig 1.B), we identified relationships between
our sub-categories and categories. This was driven by team
discussions which involved activities such as referring to
both by the book and in practice data iteratively for con-
textual details to identify correlations, drawing out the re-
lationships on a whiteboard, and refining those relation-
ships through discussions with further insights. These re-
lationships evolved iteratively and retrospectively over-
time. We related sub-categories to categories w.r.t. proper-
ties (techniques/granularity/when/units.) During this
process, the 11 sub-categories were related to three main
categories (see Fig 1.B). Practices-related variations (esti-
mation, breakdown, assignment) were linked to category
‘Variations in Scrum Practices’ (Section 4.2), roles-related
variations mapped to the category ‘Variations in Scrum
Roles’ (Section 4.1). The associated variations in artefacts
were linked to the category ‘Variations in Scrum Artefacts’,
presented as part of Section 4.2.

3.2.3 Selective Coding
During selective coding (Fig 1.C), the sub-categories and
categories derived from the open and axial coding were
related to identify the core-category which explains the
central phenomenon and builds the storyline or theory of
our study [25] i.e. a grounded theory of Scrum Variations
in Practice.

Memos, researcher-written notes exploring relation-
ships in the emerging findings, helped to relate the cate-
gories and sub-categories to the core-category and to un-
cover the variations within and across teams, and be-
tween in practice and by the book data.

Finally, moving from description to conceptualisation
[24], [25], we investigated the need for these variations in
practice, from the collected data, presented as rationales
in Section 4 of the paper. Guided by these, we defined our
classification approach to refine our Grounded theory of
'Scrum Variations in Practice': standard, necessary, contex-
tual, and clear deviation, for practical and research use.
These nuances (degrees) of variations emerged at the later
stages of analysis while understanding the need for these
variations. Not all variations occurred due to same
rationales, some variations were based on the need, choice,
context, while others arose from missing clarity in theory.
Based on these observations, the second author proposed
the nuanced Scrum variations classification approach,
described in section 5.1. The first and second author
discussed the classification approach using multiple
examples from the underlying data and analysis. The first
author then classified each variation evidenced in the
underlying data using the new classification approach,
while the third author reviewed the process and approach.

4 RESULTS

In this section, we describe the main components of our
findings: variations in Scrum roles (Section 4.1), variations in
Scrum practices (Section 4.2), and associated variations in ar-
tefacts, embedded as descriptions within the other two sec-
tions.

In presenting the results, we first describe what Scrum
prescribes by the book followed by what we found in prac-
tice, describing the practices that were in line with Scrum
by the book and the many variations we discovered along
with their rationales.

Throughout this section, we include several original
quotes from the interviews and draw on observations to
support our descriptions and the verifiability of our work.
While this is not a quantitative study, we use some terms
throughout the text to indicate the extent of the prevalence
of practices: ‘few’ refer to less than 25%, ‘many or majority’
refer to greater than 70%, and other cases are referred to by
terms such as some, frequently, often or very often.

4.1 Variations in Scrum Roles

4.1.1 Product Owner
By the Book: As per the Scrum Primer [2], the PO repre-
sents the customer and is responsible for translating the
desired product features into a prioritised list of items. The
PO acts as a bridge between the development team and
stakeholders, such as customers. For internal projects, the
PO and customer are often the same person [2].
In Practice: Most teams had a dedicated PO, which aligns
with Scrum by the book. Some organizations had more
than one Scrum team that shared the same PO.
“We have 2 POs for our entire product with different portfolios.”
P#37

While theory dictates having a single person acting as
PO, some POs had an extended support team of business
analysts to share some of the PO duties. Conversely, other
teams had the PO perform additional duties of other roles.
“The PO is also the technical manager and business analyst”
P#11

RQ: How, when and why does Scrum practice vary from
Scrum by the book?

We found variations between Scrum by the book and in
practice across three categories:

• Variatons in Scrum Roles (section 4.1)
• Variations in Scrum Practices (section 4.2)
• Variations in Scrum Artefacts (discussed with roles

and practices)

The variations in Scrum project management practices span
across: estimation, breakdown, assignment, sprint backlog
creation, product backlog creation, and product backlog re-
finement/prioritization.

Section 4 details the how, when, and why variations occur,
and Table 2 presents a summarized overview of the varia-
tions, including rationales (why).

6 ACCEPTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

A few teams working in service-based domains had the
customer working as the PO.
“In most of our cases our PO is actually the client because we are
a services company, we are not building our own products.”
P#39

4.1.2 Scrum Master
By the Book: The Scrum Master (SM) helps the team stay
organized and ensures Scrum method adherence. The SM
coaches the team and facilitates issue resolutions. The SM
is usually a dedicated role, but smaller teams may have a
team member doubling up on this role [2]. Prerequisite
background skills for the SM are not specified.
In Practice: Most of the teams had a dedicated SM. In some
cases, teams had a single, shared SM. A few teams had no
SM at all because they considered themselves mature
enough to not need one or the previous SM had left. It was
also common for an experienced member, e.g. team lead,
to serve as the SM on a rotational basis.
“We had a volunteer Scrum Master within the team to act for the
two weeks’ time.” P#36

4.1.3 Development Team
By the Book: The development team is a group of seven
(plus or minus two) self-managed, autonomous team
members who possess the expertise necessary to deliver a
potentially shippable product. Scrum team members are
encouraged to be cross-functional. There are no designated
roles or titles such as tester, business analyst, or program-
mer [1], [2].
In Practice: In contrast to what Scrum by the book states,
there were very few cross-functional teams. Most teams
had specialists in specific domains or areas, such as front-
end or back-end development, due to their prior experi-
ence. Additionally, members often had specific designated
roles such as testers, developers, and business analysts,
which does not comply with Scrum by the book.
“Our team make-up is we have four developers, two testers and
a BA and a PO in our team.” P#12

While Scrum by the book encourages cross-functional
teams, our results confirm it is not uncommon that a team
of specialists practice Scrum. It is seen that specialists do
not turn into cross-functional teams instantly, it happens
over time due to factors such as less visible and immediate
benefits, and support of management, team, and individu-
als.

4.2 Variations in Scrum Practices
We now present the identified variations in Scrum project
management practices: estimation, breakdown, assign-
ment, sprint backlog creation, product backlog creation,
and product backlog refinement/prioritization.

Table 2 presents a summarized overview of the varia-
tions in the practices along with the associated roles and
artefacts. The first column captures the Scrum project man-
agement practices. Each of these spans three rows. The first
row (without shading) represents By the Book (B), the se-
cond light grey row lists what actually occurs in practice
(P), and third the dark grey row lists the rationales behind
the variations (R). We number each rationale as [R#], going

from R1-R20, and use this notation throughout the results
to map back to the summary in Table 2.

4.2.1 Estimation
By the Book: Estimation involves predicting the effort re-
quired to carry out a work item. Scrum teams are meant to
estimate collectively. Estimates can be measured in differ-
ent ways, e.g. in person hours/days or story points [31].
The Scrum Guide specifies that Product Backlog items
must have an estimate, but it does not impose any particu-
lar estimation technique or prescribe when estimation
must be done.
In Practice: There are variations in who does estimation,
how it is done, and when it is done.

Individual Estimation: Contrary to Scrum by the book,
members often estimated work items individually. Team
leads or an experienced developer used their domain
knowledge and experience to ensure accurate estimates
[R4].
“We [team] rely on our technical leads for estimates.” P#37

Sometimes, the individual estimation was prompted by
the PO who asked an individual team member for an esti-
mate due to their expertise (rationale [R3]).
“Most of the time the PO goes, ‘Hey, can you have a look at this,
and come back to me with how long that’s going to take’.” P#35

Individual estimation was also seen in a case where an
influential PO made the estimates themselves (rationale
[R3] in Table 2).

Collective Estimation: Collective estimation was ob-
served in most of the Scrum teams. As noted during an ob-
servation of a sprint planning session, the estimates were
proposed, discussed, and evaluated collectively by the en-
tire team. This also happened in pairs (typically the lead
and a developer). In many cases, the team lead made the
final decision after the collective discussions.
“Dev [Development] lead sets the estimation in hours after dis-
cussing with the developer.” P#44
When the entire team was involved, the SM (sometimes)
and PO (almost always) also participated. The involve-
ment of the PO helped the team understand work items
and the PO to set reasonable expectations and priorities for
future sprints (rationale [R2] and [R3] in Table 2). But, in-
volving all members was also reported as ineffective re-
source utilization (rationale [R3]) (P#43).
Estimation Techniques and Units: Scrum teams followed
many different techniques, such as Planning Poker using
fingers or cards. The units of measurement also varied, in-
cluding story points, hours, and t-shirt sizes. The tech-
niques and units were selected based on team and individ-
ual preferences (rationale [R1]) as indicated in the listed
quote where SM expresses dislike towards planning poker
and prefers t-shirt sizes instead.
“I [Scrum Master] hate that [Poker], that’s meaningless, it’s just
a number... how long it takes, so that's what the PO wants to
know. So, I prefer my team to give a rough estimation in small,
medium and large.” P#19

Estimation Levels: Many Scrum teams did estimations
at two levels: for the Product and Sprint backlog items. In-
terestingly, teams used different units (e.g. points for PB
and hours for SB) as per their preferences (rationale [R1]).

MASOOD ET AL.: REAL WORLD SCRUM A GROUNDED THEORY OF VARIATIONS IN PRACTICE 7

TABLE 2 SUMMARY OF VARIATIONS IN SCRUM PRACTICE

PM Area B/P/R Practice Roles Artefacts

ES
TI

M
A

TI
O

N

B
Techniques: Not prescribed, relative size
Units: Not prescribed, story points
When: Not prescribed, before Sprint

Development team (collective) Product
backlog

P

Techniques: Varied (e.g. planning poker) [R1]
Units: Varied (e.g. story points, hours) [R1]
When (PB): Refinement session[R2]
When (SB): before/during Sprint planning
When (changes): any time

Individual estimation[R3]

Team Lead, developer (domain expert) [R4], or PO
Collective estimation
§ Development team + SM and PO[R5]
§ Pair (Team Lead + assigned dev)

Product
backlog
Sprint
backlog[R6]

R

[R1] team and individual preferences
[R2] more accurate SB estimates, help PO set priorities,
greater autonomy

[R3] more effective resource utilization
[R4] accurate estimates
[R5] increases PO clarity of priorities and team understanding
of user perspective
[R6] individual accountability, manageable workload

B
R

EA
K

D
O

W
N

 B

Techniques: not prescribed
Granularity: stories -> tasks
When: during Sprint planning (current Sprint)
Units: one day or less

Development team (collective) Sprint
backlog

P

Techniques vertical[R9], horizontal
Granularity: stories -> tasks or sub-tasks[R7], no breakdown
When: Sprint planning, during Sprint, never
Units: one day or less, max points per task

Individual work breakdown[R8]
Collective
§ Development team + SM {additional people okay}
§ Pair[R14] (same roles; same or different product area)

Sprint
backlog

R [R7] better understanding, involvement [R8] expertise, domain knowledge leads to better breakdown
[R9] earlier customer delivery and feedback

A
SS

IG
N

M
EN

T

B
Techniques: Self-organize, volunteer
When: Sprint planning, during Sprint
Quantity: one assigned item per team member

Development team (individually volunteer) Sprint
backlog

P

Techniques: Self-organize[R9], Manager/TL assigned
When: Sprint planning, daily standups, during Sprint
Quantity: assigned item(s) per team member[R1]
Techniques [selection criteria]: ad-hoc[R10], dedicated[R11]

Individual assignment
§ Dev team member self-assigns
§ Lead/manager assigns[R13]
Collective assignment[R14]
§ Dev team collectively
§ Pairs (Team lead or SM with dev)

Sprint
backlog

R

[R10] many factors, e.g. interests and opportunity to learn
[R11] faster completion, individual accountability
[R12] empowerment, autonomy, learning, manager time
saved

[R13] team lack experience or domain knowledge, urgent work
[R14] shared accountability, knowledge sharing, helps new or
inexperienced team members

SP
R

IN
T

B
A

C
K

LO
G

C

R
EA

TI
O

N

B

When: Sprint planning
Goal setting: one Sprint goal (optional)
Order: define goal then select items
Quantity: based on velocity

Development team (collective) Sprint
backlog

P

When: Sprint planning
Goal setting: one goal; multiple goals[R15]; no goal
Order: define goal then select items to fit, pull first then define
goal(s) to fit
Quantity: velocity, velocity + stretch tasks

Individual sprint backlog creation (PO[16], a business
consultant, a project manager, or the client)
Collective
§ dev team + SM
§ PO or customer + dev team rep

 Sprint
backlog

R [R15] hard to map items to one goal [R16] higher visibility, knows what they want from Sprint

PR
O

D
U

C
T

B
A

C
K

LO
G

 C

R
EA

TI
O

N

B

Content: ordered list of features, functions, requirements,
enhancements, and fixes with
description, order, estimate, and value
Type of work items: technical; user stories or other
Tools: not prescribed

PO (individual) Product
backlog

P

Content: ordered; un-ordered; semi-ordered
Type of work items: technical and non-technical; epics,
features, stories, tasks, incidents, tickets, bugs, and spikes[R17]
Tools: online project management tool like Jira, and Team
Foundation Server

Varies. PO, clients, end-users, support team[R18]

Product
backlog

R [R17] team preferences [R18] organisational structure

PR
O

D
U

C
T

B
 A

C
K

LO
G

R

EF
IN

EM
EN

T
/

PR
IO

R
IT

IS
A

TI
O

N

B
When (Prioritization): refinement session
What (Prioritization): All PB items
When (Refinement): refinement session

Prioritization: PO (individual)
Refinement: Development team + SM + PO (collective)

Product
backlog

P

When (Prioritisation): when adding to PB; during refinement;
during Sprint planning
What (Prioritisation): all /some/no PB items [R20]
When (Refinement): Sprint planning (current Sprint),
refinement session (future Sprint)

Prioritisation
§ PO or a Business Analyst or Business consultant
§ Development team (collective)
Refinement
§ Development team (collective)
PO + dev team representative[R19]

Product
backlog

 R [R19] scope change [R20] contextual factors

Non-shaded (white) rows summarise what Scrum by the Book (B) states about the Scrum practices, roles and artefacts, light grey rows list the
variations in practice (P), and dark grey rows list the rationales behind the variations (R). Each rationale is numbered [R#] and is used to map
to the relevant variation in practice (in the P row) in superscript [R#].

8 ACCEPTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Product backlog estimation was conducted during refine-
ment sessions, mostly using story points. Teams that esti-
mated product backlogs well in advance were seen to
make more accurate estimates for the sprint backlog, mak-
ing it easier for the PO to set priorities (rationale [R2]).
However, not all teams made early estimations.

Sprint backlog estimation was typically conducted before
or during Sprint planning. Most teams collectively esti-
mated tasks using hours as the unit. Teams that estimated
Sprint backlog items were more likely to create a manage-
able Sprint workload and displayed individual accounta-
bility (rationale [R6]). However, not all teams estimated the
Sprint backlog items; some simply pulled the estimated
product backlog items directly onto the Sprint backlog.

Changes to estimations: Estimates for Product or Sprint
backlog items can be increased or decreased at any time
with reason. In one case, during a Sprint backlog refine-
ment session, we observed a team re-estimating several
product backlog items because not all team members had
been involved in the original estimation (rationale [R7]).

Another team re-estimated a couple of the Product
Backlog items when they discovered a scope change (ra-
tionale [R19]). When estimations changed, the team dis-
cussed this in the daily stand-ups and work assignments
were modified accordingly.
“When you estimate task it’s not a line cut in stone. Obviously,
you have some room in that…no one will stop you to update the
related estimations if needed [In Jira].” P#9

4.2.2 Work Breakdown
By the Book: The Product backlog has items of varying
sizes and complexities. During the Sprint planning meet-
ing, the team decomposes the highest priority user stories
into individual tasks ‘to units of one day or less’ [1]. The
entire development team should participate.
In Practice: There are variations in who does the break-
down, how and/or when it is done, and the granularity.

Individual Breakdown: Contrary to Scrum by the book,
team members performed the breakdown independently
in some cases, relying on their own expertise (rationale
[R8]). This usually happened during the second part of the
sprint planning after the team had selected the stories for
the sprint.
“Then, we pick the story [second part of sprint planning], and
then we’ll break it down into the tasks ourselves [individually]
what we think we need to do [for the entire sprint].” P#24

Collective Breakdown was done by most teams by the
entire team or in pairs. This was reported to improve
shared understanding and collective ownership of tasks,
especially for inexperienced members (rationale [R14]).
When the entire team participated, breakdown was per-
formed through discussions in the Sprint planning meet-
ing. Either the SM recorded all tasks or members recorded
their own tasks using post-its on a physical board or elec-
tronically.
“Everyone writes a task ... one person typing at a time, and we
just pass the keyboard around...” P#11
“We [developers] would do that during that session, while we
were discussing the solution, the Scrum master would be sitting
and typing tasks.” P#18

When a pair performed task breakdown, they would
have the same role (e.g. two testers). However, the pair did
not always work on the same product area, ensuring dif-
ferent perspectives were considered and knowledge trans-
fer opportunities (rationale [R14]).

Breakdown Techniques: Teams broke down items ei-
ther horizontally or vertically.

Horizontal Breakdown involves breaking down stories by
the type of work required or the components that are in-
volved (e.g. all the User Interface or database work).
“Let’s finish all the infrastructure for the project and then let’s
do all the backend, and then let’s do all the front-end...” P#21

Vertical Breakdown breaks down work items across func-
tional layers so that new functionality can be delivered to
the customer as early as possible (rationale [R9]).
“So, to deliver value we should do as part of the story a bit of
frontend, a bit of the backend, so that we can go and deliver some-
thing to the customer ASAP.” P#21

Level of Granularity: For most teams, new features
were created as user stories (high granularity) and every-
thing else, such as enhancements and bugs, were created
as tasks (low granularity). During breakdown, teams de-
composed user stories into tasks.
“Usually the user story is what we [team] take in and we break
down into multiple tasks.” P#21

Detailed breakdown helped the team members better
understand the tasks during implementation (rationale
[R7]). In line with Scrum by the book, teams reported
breaking down the bigger stories first, aiming for some
maximum number of points per task.
“…if a story is bigger than eight points, then it’s probably too
big and we should try to break it down if we can.” P#20

However, some teams did not perform work break-
down at all treating the work item as a story throughout
the development process (rationale [R1]).
“We don’t create separate tasks, it’s just a story which covers de-
velopment and testing work.” P#32

The level of granularity is also influenced by the experi-
ence of the team members. New teams were seen to use an
overly detailed breakdown. For example:
“reproduce the bug, fix the bug, and verify that it’s fixed’ this
[level of breakdown] is an indicator of less experience”. P#23

On the other hand, mature teams may not need as de-
tailed of a breakdown:
“It was obvious that building an API would cover writing an
endpoint, refactoring existing code, integrating the database
change”. P#21

4.2.3 Work Assignment
By the Book: The Scrum team is meant to self-organise to
carry out work assignments during the Sprint planning
meeting and throughout the Sprint. Scrum by the book en-
courages people to volunteer for tasks, one at a time, based
on business value. It also encourages selecting tasks that
promote learning (e.g. by pairing with a specialist to work
on something they are not skilled at).
In Practice: We observed a wide range of variations around
who, when, how much, and how assignment occurs.

Collective Assignment: was practiced to support new
or less-experienced members (rationale [R14]). Members

MASOOD ET AL.: REAL WORLD SCRUM: VARIATIONS IN PRACTICE VS BY THE BOOK 9

were seen collaborating, offering help, and negotiating
with each other while making assignment decisions. We
observed a developer ask another developer during a daily
stand-up to re-assign a task due to some unexpected tech-
nical issues. Such transparency held team members ac-
countable collectively and supported knowledge sharing.
“During the sprint, we [team] see if some tickets need to be
shifted around and shuffled, that’s on us.” P#40
“If he [new member] can’t decide which ones to choose… then
team members will advise him saying, ‘oh, try this one!’.” P#30

Individual Assignment: Many teams practiced self-as-
signment because this was recommended by Scrum by the
book and was seen to encourage empowerment, auton-
omy, and learning, and minimized the time managers
spent on assigning (rationale [R12]). However, individual
work assignment in Scrum teams also happened through
the manager or the team lead. This often happened when
team members were less experienced or lacked domain
knowledge (rationale [R13]). Other factors, such as ur-
gency of the task, also caused managers or leads to directly
assign work to the team members (rationale [R13]). Even
teams practicing self-assignment had instances when work
was assigned to them by the manager or lead.
“there are urgent stuff that gets put onto my desk.” P#22

Assignment Time: Teams assigned tasks at different oc-
casions during the Sprint including during the Sprint plan-
ning, during the daily stand-ups, or in an ad-hoc manner
at any time during the Sprint. When assignment happened
during the Sprint Planning meeting, it was in the presence
of the development team, Scrum Master and PO or Tech-
nical Manager. If it happened during the daily stand-up,
then the PO was not present which indicates that the pres-
ence of PO did not affect the self-assignment decision.
When it happened ad-hoc during the Sprint, it usually only
involved one or two team members, who recorded the as-
signment on the physical board or in the digital project
management tool (e.g. JIRA).
“Basically, what will happen is, when someone decides to pick up
a task, they’ll go to our physical board, and they’ll move it to
make it in progress. And they’ll start work.” P#20

Assignment Quantity: Many teams followed Scrum by
the book and volunteered for one task at a time [2]:
“...when someone comes free, they’ll just look down from the top,
and go, okay, this is the next task that needs to be done” P#11

But as a variation, it was not uncommon for teams to
assign multiple work items to each member. Their com-
plexity, relevance, and dependency influenced the number
of items being assigned (rationale [R17]).
“It depends on the complexity of the feature or the item or what-
ever it is, the task. They’ll [developers] pick more than one, we’ll
[testers] pick more than one.” P#32

Assignment Techniques: Items were assigned in either
an ad hoc or dedicated way. When ad hoc, members picked
up any task from the Sprint backlog based on their inter-
ests, roles, expertise, opportunity to learn, or other factors
(rationale [R10]). The dedicated technique meant team
members were dedicated to finishing a user story and
picked up tasks related to only that user story (rationale
[R11]). Multiple team members could be dedicated to the
same user story (e.g., we observed a developer working on

the functionality while a tester worked on the associated
test cases). This technique was more common in less cross-
functional teams.

4.2.4 Sprint Backlog (SB) Creation
By the Book: During the Sprint Planning meeting, the
Scrum team defines a sprint goal to set the objective of the
Sprint and commits to a list of selected product backlog
items, which becomes the Sprint backlog. The team should
collectively pull and commit to these Sprint backlog items.
In Practice: We observed variations in creating the Sprint
backlog and the Sprint goals.

Individual creation: In contrast to Scrum by the book,
the entire team was not always involved in creating the
Sprint backlog. We observed it being done by a single per-
son: the PO, business consultant, project manager, or the
client (rationale [R16]) due to their higher visibility of
Sprint goals.
“Our lead PO selects these tasks … for the sprint.” P#44

Collective creation: We observed cases where the team
collectively selected the sprint items as suggested by the
book. Even in these cases, due to a higher level of visibility
and domain experience, the Team lead finalised the Sprint
backlog (rationale [R16]).
“I [team lead] decide them [Sprint items], coz I have greater vis-
ibility so I basically sit down with the team and then we prioritise
the tickets like this feature needs to be implemented before that,
or something like that.” P#40

Sometimes a team member would assist the PO or client
in selecting the items for the Sprint backlog.
“We [business and team representative] do a compilation of all
the requirements received from customers, and internally from
within the organisation. After prioritisation and triaging inter-
nally, we come up with a Sprint backlog.” P#30

Quantity: The number of items selected for the Sprint
backlog was often based on the team’s velocity, selecting
the number of tasks expected to be completed in the Sprint.
However, we also saw cases where the Sprint backlog had
‘stretch tasks’ that were not expected but could be com-
pleted if others were finished (rationale [R16]).

Sprint Goal: In line with Scrum by the book, most teams
set a single, specific Sprint goal during Sprint planning, fa-
cilitating their selection of the Sprint items. For example, a
Sprint goal was to release a specific feature. With this goal
in mind, the team pulled the stories aligned with the goal
from the Product backlog.
“The new thing we recently introduced [after X years] is we [PO
and team] try to come up with a sprint goal and then pull the
features which aligned with our sprint goals.” P#37

Other teams had multiple, often unrelated, goals or sub-
goals where teams were often working on many features
and created goals to fit the items on the Sprint backlog (ra-
tionale [R15]), rather than selecting the backlog items to fit
the goal.

Some teams (T2, T3) had no Sprint goal due to lack of
understanding on its purpose or difficulty in finding a
common purpose due to scattered priorities (rationale
[R15]).

10 ACCEPTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

4.2.5 Product Backlog (PB) Creation
By the Book: Keeping in mind the needs of the stakehold-
ers and the business strategy, the PO is responsible to de-
fine the product features as PB items. The PB is a priori-
tized list of work items with varying sizes and details, but
they are usually vague high-level descriptions of features
in the form of user stories or use cases.
In Practice: We observed variations in who creates the PB
items, type of work items, and tools used.

Who: In addition to the PO, backlog items came from a
variety of sources: clients, end-users, and support team.
“Generally, we get requirements directly from our client(s) who
use our product, we also get ideas during the demonstration of
our product to other prospects…strategic requirements
too…proposed by COO… [and others] suggested by team or re-
ported by the client or the QA team.” P#44

In some teams, PB items were created by someone other
than the PO due to organization structure (rationale [R18]).
For example, the Support Team could create a ‘support
ticket’. The team would then investigate if it described a
bug, feature request, or enhancement and add it to the PB.

Type of work items: In addition to new features, the PB
included both technical work (e.g. enhancing/maintaining
features, fixing bugs, migrating data, configuring environ-
ments, reducing technical debt, and providing technical
support to other teams) and non-technical work (such as
creating user guides, conducting feasibility studies, pre-
paring demos, and coordinating with other teams).

These work items were included on the PB as epics, fea-
tures, stories, tasks, incidents, tickets, bugs, and spikes.
The type of items varied across teams (rationale [R17]).
Some teams tracked all work items as tickets or incidents
irrespective of whether it was a bug, enhancement, or a
new feature. Other teams reported treating all items as fea-
tures represented as user stories.
“If it’s a bug then that is treated the same as a new feature [in the
form of stories].” P#11

Tools: Most teams use an online project management
tool to host their PB items. Jira, Team Foundation Server,
YouTrack, and GitLab were commonly used (rationales
[R17] and [R18]).

4.2.6 Product Backlog Refinement and Prioritisation
By the Book: The PO is responsible for prioritising the
items on the PB. The highest priority items should be re-
fined (or groomed) with additional details to allow the team
to execute them. Refinement is done collaboratively with
the team, SM, and PO.
In Practice: We observed variations in who did the refine-
ment and prioritisation and when (if) it occurred.

Prioritisation: The PO or a Business Analyst was often
responsible for prioritisation, but the team also prioritised
in some cases. We observed that the PB was not always pri-
oritised or items were missing priorities. During a Sprint
planning meeting, we observed one team, with a non-pri-
oritized PB, prioritise items as they added them to the
Sprint backlog.

Prioritisation was based on a variety of contextual fac-
tors, such as users’ requests, severity of a particular issue
or new requirements, or the estimated impact of the work

item (rationale [R17]).
Refinement was typically done collectively through

discussions with the entire team, in line with Scrum by the
book. This enabled the team to provide the technical per-
spective while the PO provided the business perspective.
However, sometimes it involved only the PO and the team
lead to represent the team to address any scope change, or
because some refinements did not need the entire team (ra-
tionales [R17] and [R19]). Refinement typically occurred in
the first part of the Sprint planning meeting or in a refine-
ment session.

5 DISCUSSION
5.1 A Nuanced Classification Approach
Based on the evidence around variations seen in practice
(study data) and in careful comparison to the prescribed
Scrum by the book (the Scrum Guide and Primer), we clas-
sify variations as:
1. standard variations, variations allowed by the book,
2. necessary variations, variations created in practice to

address vagueness or ambiguity in Scrum by the book,
3. contextual variations, temporary and/or infrequent

justified variations contradicting Scrum by the book,
4. clear deviations, ongoing or frequent unjustified varia-

tions contradicting Scrum by the book.
We present these classifications using examples from

the study that had enough supporting details and evi-
dence. We do not classify all variations observed (e.g. in
Table 2), because not all have enough contextual infor-
mation to warrant confident classification.

Standard Variations are specific variations already
mentioned in Scrum by the book as optional implementa-
tion pathways. An example of this is assignment time. In
Scrum by the book, the Guide states that work assignment
can occur “both during sprint planning and as needed through-
out the sprint”, a notion supported by the Primer. In prac-
tice, assignment occurred during sprint planning, daily
standup, and on an ad-hoc basis through the sprint, follow-
ing the variations allowed by the book. In other words,
standard variations were observed in practice.

Another example of standard variations is estimation
techniques. The word ‘estimate’, in the context of estima-
tion, appears 9 times in the Guide and 37 times in the Pri-
mer. The Guide does not prescribe how to estimate but the
Primer compensates by recommending “relative size” as a
guideline and “story points” and “hours” as concrete exam-
ples of allowed variations. In practice, estimation was
practiced as per standard variations, i.e. using story points
and hours as allowed by the book, and also using t-shirt
sizes (small, medium, large, extra-large), which although
not mentioned as a specific example in the Primer follows
the guideline around using a “relative size” measure.

Necessary Variations are variations that are created to
address vagueness or ambiguity in Scrum by the book. An
example of a necessary variation is Scrum teams adapting
the order of the project management practices. While
Scrum by the book (both Guide and Primer) refers to
breakdown, estimation, and assignment, it is unclear what
order they are meant to occur in, or whether a particular

MASOOD ET AL.: REAL WORLD SCRUM: VARIATIONS IN PRACTICE VS BY THE BOOK 11

order is preferred. Such ambiguity necessitates variations
in practice. Some teams estimated items before breakdown
and assignment (e.g. T1, T5). Others performed assign-
ment before estimation and breakdown (e.g. T2).

Another example of necessary variations is refinement.
The Guide leaves the implementation of the refinement
practice to the team, stating “Scrum teams decides how and
when refinement is done”. In practice, teams held specific re-
finement sessions before sprint planning in some cases (T5)
and during analysis sessions in others (T4).

Contextual Variations contradict what Scrum by the
book prescribes, justified by rationales covering practical
constraints and contextual factors, resorted to on a tempo-
rary or infrequent basis, typically with the intention to
align with Scrum by the book over time.

An example of a contextual variation is assignment
quantity and technique. The Guide does not prescribe how
many items should be assigned to individuals but is com-
pensated by the Primer, which clearly states “volunteer one
task at a time…that will on purpose involve learning”. The lat-
ter part of the statement supports the cross-functional
teams’ concept, also promoted by the Guide. In practice,
teams (T1, T5) selected multiple items during sprint plan-
ning based on individual expertise and specialisation (as
opposed to cross-functionality) contradicting Scrum by the
book. However, this was justified in case(s) where: the
team was still transitioning into Scrum and their cross-
functionality had not matured. We know this was tempo-
rary because these teams were also observed practicing
learning-led self-assignment on a smaller scale.

Another example of contextual variation is work as-
signment. Both the Guide and the Primer recommend “self-
assignment” and explicitly discourage delegation. In prac-
tice, the team lead practices delegation or direct assign-
ment during early stages of onboarding novice members
(P#18) or the manager delegates urgent high priority items
to the most skilled person for faster delivery every once in
a while (T1 or P#22). Both cases represent temporary con-
tradictions to Scrum by the book with justifications.

Clear Deviations are variations that contradict what
Scrum by the book clearly prescribes, not justified by ration-
ales, and practiced on a frequent or on-going basis, typi-
cally with no intention to align with Scrum by the book
over time. An example of a clear deviation is team lead-
driven assignment on a regular and/or permanent basis
with no effort to transition closer to self-assignment (T3).
Another example of clear deviation is the PO/Business Con-
sultant/Project Manager deciding how much and what work
the team will deliver during the Sprint in practice (T4, T3).
This is contrary to Scrum Primer stating ‘Team decides how
much work it will complete, rather than having it assigned to
them by the Product Owner’.

Clear deviations likely stem from misunderstanding of
Scrum by the book or as remnants of traditional software
development mindsets and can be considered misuse or
abuse depending on intention.

Variations to Scrum by the book are inevitable.
Method tailoring, adaptations, and deviations of software
development methods have been acknowledged for the
past two decades [11, 12, 13, 16, 40, 43]. However, this prior

work did not consider the classification of variations, con-
sidering any variation as misuse or abuse. From our find-
ings, we show that there are different types of variations
including some that are required and necessary. We pre-
sent a nuanced Scrum variations classification approach.
Future work can extend our nuanced approach to differen-
tiate when these Scrum variations can facilitate different
settings e.g. extending Scrum to scaled or distributed soft-
ware teams or merging with other agile methods leading
to hybrids [43].

5.2 Recommendations for Scrum Practitioners
1. Use of standard variations are in line with Scrum by the

book and within the range of allowed variations.
2. Because of vagueness or ambiguity in Scrum by the

book, practitioners must apply necessary variations.
Necessary variations do not constitute misuse or abuse.

3. Contextual variations are applied temporarily to ad-
dress contextual constraints, e.g. while a team transi-
tions into Scrum, with conscious effort to move closer
in line with Scrum by the book over time. As such, con-
textual variations are not misuse or abuse of Scrum.

4. Clear deviations are juxtaposed to the essence and fundamen-
tals of Scrum and are excuses for not implementing
Scrum by the book, same as ‘ScrumButt’.
Based on our own comparative analysis between

Scrum by the book and in practice and previous related
work [19], we propose that part of Scrum's sustained
growth in industrial practice over the years can be at-
tributed to two factors: the light-weight and flexible nature
of its seminal guides [1], [2] such that Scrum by the book
is neither entirely vague nor completely prescriptive; and
the Scrum variations in practice, enabling real-world soft-
ware teams to tailor it to their needs. The flipside of these
same factors may explain in part XP's steady decline in in-
dustrial popularity [1], [8], [35], i.e. the relatively elaborate
XP guidelines [36] and its documented resistance to tailor-
ing [19]. Based on these observations, we recommend that

A Nuanced Scrum Variations Classification Approach

Variations to Scrum by the book are inevitable. Not all
variations are process misuse or abuse. Our nuanced
Scrum variations classification approach explains varia-
tions in practice as:

• standard variations, variations allowed by the
book

• necessary variations, variations created in practice
to address vagueness or ambiguity in Scrum by the
book

• contextual variations, temporary and/or infre-
quent justified variations contradicting Scrum by
the book, and

• clear deviations, ongoing or frequent unjustified
variations contradicting Scrum by the book, ex-
cuses for poor implementation.

Our classification approach can be extended to make
sense of variations in other Scrum practices and poten-
tially in other agile methods and practice frameworks.

12 ACCEPTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

both practitioners and researchers avoid hastening to la-
bel all variations as deviations, instead use our nuanced
classification approach to make sense of Scrum variations.

5.3 Limitations and Verifiability
A Grounded Theory study does not claim generalization,
rather produces a mid-ranged theory applicable to the con-
texts studied [30], [32]. Our data collection does not repre-
sent the entire international agile community and is lim-
ited to agile practitioners who responded to our call for
participation. The details of these participants, their com-
panies, and third-party clients have been kept confidential
as per the human ethics guidelines governing this study.

Throughout the study, the data collection and analysis
procedures, emerging codes, and insights were collabora-
tively discussed, debated, and finalized by all authors to
overcome any potential biases. We propose our variations
classifications can be extended to apply more widely to
other aspects of Scrum, beyond project management prac-
tices, and potentially to other agile methods, however, this
remains to be validated in practice. We hope future studies
can use, validate, and extend our classifications. The study
focus is key project management practices such as plan-
ning (includes. estimation, breakdown, SB/PB creation,
prioritization) and assignment so variations in practicing
retrospectives and sprint reviews or the quality
management, design or implementation aspects are out of
scope. However, retrospectives could often bring up as-
signment and planning issues, so we included them as part
of our data collection while interviewing participants and
observing teams’, but our findings did not identify signifi-
cant variations focusing project management practices. We
believe Scrum variations towards quality management,
design and implementation is another facet of Scrum and
could be included in future studies.

The verifiability of a grounded theory (outcome) can
be derived from the robustness of the GT (method) as evi-
denced from the description of its application [28], [29],
[32]. To achieve this, we have described our application of
the Strauss-Corbinian GT method in substantial detail
(Section 3 and Fig 1) and included original quotes from the
underlying data in our description of the findings (Section
4). In doing so, we have demonstrated how our theory ful-
fills the GT evaluation criteria: (a) the categories derived fit
the underlying data (see Fig 1 and Table 2), (b) the theory
works in that it explains the main concerns of the partici-
pants (practicing Scrum within real-world constraints)
while answering the research question, (c) it has relevance
for the agile practice and research communities, and (d) is
modifiable through future studies [32].

6 CONCLUSION
Scrum is a popular agile method that can be difficult to im-
plement by the book since it does not prescribe the ‘how’
for many of its practices, roles, and artefacts. Labeling all
variations as misuse, abuse, and deviations displays over-
sight of the vagueness inherent in the fundamental Scrum
guidelines and of real-world challenges and constraints
practitioners face. Between the two extremes, Scrum by the
book and ScrumButts, a variety of variations exist and may

be necessary in real-world software projects.
Our theory describes variations in Scrum practices,

roles, and artefacts and their underlying rationales.
Through empirical evidence of Scrum variations based on
extensive GT analysis of Scrum by the book (i.e. Guide and
Primer) and Practice (i.e. 45 interviews and 5 observa-
tions), we introduce a nuanced approach to understanding
variations. Variations are classified as standard (listed in
Scrum by the book), necessary (required due to vagueness
or ambiguity in Scrum by the book), contextual (temporary
or infrequent justified variations contradicting Scrum by
the book), and clear deviations (ongoing or frequent unjus-
tified variations contradicting Scrum by the book). Clear
deviations are misuse or abuse, same as ScrumButt.

We believe acknowledging and understanding the need
and use of these variations will help Scrum by the book
work in practice. Our findings and classification approach
lay the foundations for future research. Future studies can
investigate the impact of these variations on productivity
and quality and extend our variation classifications.

ACKNOWLEDGMENT
We would like to thank all the study participants. This
study was conducted with approval from the Human Par-
ticipants Ethics Committee at the University of Auckland.

REFERENCES
[1] K. Schwaber, and J. Sutherland, “The Scrum GuideTM the definitive

guide to Scrum: The rules of the game. Scrum Alliance,”, 2017.
[2] P. Deemer, G. Benefield, C. Larman, and B. Vodde, “Scrum Primer A

lightweight guide to the theory and practice of scrum, version 2”, 2012.
[3] R. Hoda, N. Salleh, and J. Grundy, “The rise and evolution of agile soft-

ware development,” IEEE Software, vol. 35, no. 5, pp. 58-63, 2018
[4] K. Beck, “Embracing change with extreme programming,”, Computer,

10, pp. 70-77, 1999.
[5] C3 Team, “Chrysler goes to ‘extremes’,”, Distributed Computing, 10,

pp. 24-28, 1998.
[6] K. Beck, and E. Gamma, “Extreme programming explained: embrace

change,”, Addison-Wesley professional, 2000.
[7] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,

M. Fowler, J. Grenning, J. Highsmith, A. Hunt, and R. Jeffries, “Mani-
festo for agile software development,”, 2001.

[8] VersionOne, “13th Annual state of agile software development,”
[Online]. Available: https://www.stateofagile.com/#ufh-i-521251909-
13th-annual-state-of-agile-report/473508. [Accessed: 20 Aug 2019]

[9] T. Dybå, and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,”, Information and software technology,
vol. 50, no. 9-10, pp. 833-859, 2008.

[10] F.M. Fowler, “Scrum Artifacts”, In Navigating Hybrid Scrum Environ-
ments, Apress, Berkeley, CA, pp. 55-57, 2019.

[11] H.S. Sverrisdottir, H. T. Ingason, and H. I. Jonasson, “The role of the
product owner in scrum-comparison between theory and practices,”,
Procedia-Social and Behavioral Sciences, vol. 119, pp. 257-267, 2014.

[12] P. Diebold, J.P. Ostberg, S. Wagner, and U. Zendler, “What do practi-
tioners vary in using scrum?,”,. Int’l Conf. on Agile Software Develop-
ment. Springer, Cham, pp. 40-51, 2015.

[13] V.-P. Eloranta, K., Koskimies, and T. Mikkonen, “Exploring Scrum-
But—An empirical study of Scrum anti-patterns,”, Information and
Software Technology, vol. 74, pp. 194-203, 2016.

[14] M. Lárusdóttir, Å. Cajander, G. Erlingsdottir, T. Lind and J. Gulliksen,

MASOOD ET AL.: REAL WORLD SCRUM: VARIATIONS IN PRACTICE VS BY THE BOOK 13

“Challenges from Integrating Usability Activities in Scrum: Why Is
Scrum so Fashionable?”, Integrating User-Centred Design in Agile De-
velopment, Springer, Cham , pp. 225-247, 2016.

[15] K. Schwaber, “The enterprise and scrum,”, Microsoft Press, 2007.
[16] R. Hoda, P. Kruchten, J. Noble, and S. Marshall, “Agility in context,”,

ACM Sigplan Notices, vol. 45, no. 10, ACM, pp. 74-88, 2010.
[17] M. Callanan, “Ken Schwaber on Scrum,” 2019. [Online]. Available:

http://blog.mattcallanan.net/2010/02/ken-schwaber-on-
scrum.html [Accessed: 17-Aug-2019].

[18] A.S. Campanelli, and F. S. Parreiras, “Agile methods tailoring–A sys-
tematic literature review,”, Journal of Systems and Software, vol. 110,
pp. 85-100, 2015.

[19] K. Conboy and B. Fitzgerald, “Method and developer characteristics
for effective agile method tailoring: A study of XP expert opinion,”,
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, issue 1, no. 2, 2010.

[20] M. C. Paulk, “A Scrum Adoption Survey. Software Quality Profession-
als,”, ASQ, vol. 15, no. 2, pp. 27-34, 2013.

[21] N. Kurapati, V.S.C. Manyam, and K. Petersen, “Agile software devel-
opment practice adoption survey”, Int’l Conf. on Agile Software De-
velopment, Springer, Berlin, Heidelberg, pp. 16-30, 2012.

[22] T. Sedano, P. Ralph, and C. Péraire, “The product backlog,” in 41st Int’l
Conference on Software Engineering, IEEE Press, pp. 200-211, 2019.

[23] V. Stray, D.I. Sjøberg, and T. Dybå, “The daily stand-up meeting: A
grounded theory study,”, Journal of Systems and Software, vol. 114,
pp. 101-124, 2016.

[24] J. Corbin, and A. Strauss, “Techniques and procedures for developing
grounded theory. Basics of Qualitative Research,”, 3rd ed., Sage: Thou-
sand Oaks, CA, USA, 2008.

[25] A. Strauss, and J.M. Corbin, “Basics of qualitative research: Grounded
theory procedures and techniques,”, Sage Publications, 1990.

[26] T. Sedano, P. Ralph, and C. Péraire, “Software development waste”,
Int’l Conf. on Software Engineering, IEEE Press, pp. 130-140, 2017.

[27] M. Waterman, J. Noble, and G. Allan, “How much up-front: A
grounded theory of agile architecture”, Int’l Conf. on Software Engi-
neering, vol 1, IEEE Press, pp. 347-357, 2015.

[28] R. Hoda, and J. Noble, “Becoming agile: a grounded theory of agile
transitions in practice”, Int’l Conf. on Software Engineering, IEEE
Press, pp. 141-151, 2017.

[29] K.-J. Stol, P. Ralph and B. Fitzgerald, “Grounded theory in software en-
gineering research: a critical review and guidelines”, Int’l Conf. on
Software Engineering (ICSE), IEEE, pp. 120-131, 2016.

[30] B. Glaser, “Theoretical sensitivity. Advances in the methodology of
grounded theory,”, 1978.

[31] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in ag-
ile software development: a systematic literature review”, Int’l Conf.
on predictive models in software engineering, ACM, pp. 82-91, 2014.

[32] B. Glaser, A.L. Strauss, “The discovery of grounded theory,”, Aldine,
Chicago, 1967.

[33] J. Sutherland, “ScrumButt Test - aka the Nokia Test,” 2010, [Online].
Available: http://jeffsutherland.com/scrum/ScrumButtTest.pdf. [Ac-
cessed: 21 August 2019].

[34] P. Kruchten, “Scaling down large projects to meet the agile sweet
spot,”, The Rational Edge, 2004. [Online]. Available: https://peo-
ple.eecs.ku.edu/~saiedian/811/Papers/Agility/large-agile-pro-
jects.pdf. [Accessed: 21 August 2019].

[35] VersonOne, 1st Annual State of Agile Survey: “The State of Agile De-
velopment,” 2007, [Online]. Available: http:// stateofagile.ver-
sionone.com, [Accessed: 21 August 2019].

[36] D. Wells, “Extreme Programming: A gentle introduction,”, 1999,

http://www.extremeprogramming.org/, Last accessed 21 Aug 2019.
[37] Y. Shastri, R. Hoda, and R. Amor, “Does the “Project Manager” still ex-

ist in Agile Software Development Projects?”, Asia-Pacific Software
Engineering Conference (ASPEC), Hamilton, 2016.

[38] Y. Shastri, R. Hoda, and R. Amor, “Understanding the roles of the man-
ager in agile project management,”, Innovations in Software Engineer-
ing Conference, ACM, pp. 45-55, 2017.

[39] J. M. Bass, “Scrum master activities: process tailoring in large enterprise
projects,”, Int’l Conf. on Global Software Engineering, IEEE, 2014.

[40] B. Fitzgerald, “An empirical investigation into the adoption of
systems development methodologies,”, Information and Man-
agement, 34, pp. 317-328, 1998.

[41] P. Mi, W. Scacchi, “Modelling Articulation Work in Software En-
gineering Processes,” Int’l Conf. on the Software Process, pp.
188– 201, 1991.

[42] D.L. Parnas, P.C. Clements, “A rational design process: How and
why to fake it,” in IEEE Transactions on Software Engineering,
pp. 251-257, 1986.

[43] P. Lous, P. Tell, C. B. Michelsen, Y. Dittrich, and A. Ebdrup, "From
Scrum to Agile: a journey to tackle the challenges of distributed
development in an Agile team," Int’l Conf. on Software and Sys-
tem Process, pp. 11-20. 2018.

[44] D. Martin, J. Rooksby, M. Rouncefield, I. Sommerville, “'Good'
Organisational Reasons for 'Bad' Software Testing: An Ethno-
graphic Study of Testing in a Small Software Company,”, Int’l
Conf. on Software Engineering, IEEE, pp. 602-611, 2007.

AUTHOR BIOGRAPHIES

Zainab Masood is currently pursuing her doc-
toral degree at the University of Auckland (Elec-
trical, Computer, and Software Engineering),
New Zealand. Her research interests include ag-
ile software development, software testing and
quality assurance, and human aspects of soft-

ware engineering.

Rashina Hoda is an Associate Dean (Academic
Workforce) and an Associate Professor in soft-
ware engineering at the Faculty of Information
Technology at Monash University. Her research
focuses on human-centred software engineering,
agile software development, and grounded the-
ory. She serves on the IEEE TSE reviewer board

and IEEE Software advisory panel, and Journal of Systems and Soft-
ware editorial board. Rashina is currently writing a book on
Grounded Theory for Software Engineering. More: www.rashina.com

Kelly Blincoe is a Senior Lecturer at the University
of Auckland’s Department of Electrical, Com-
puter, and Software Engineering. Her research is
mainly in the human aspects of software engineer-
ing with a focus on collaborative software devel-
opment and software requirements. She currently
serves on the editorial board of the Empirical Soft-

ware Engineering Journal and the Journal of Systems and Software.
She is also on the Executive Board of Software Innovation New Zea-
land. For more information visit: kblincoe.github.io

