
Experimental Evaluation of Test-Driven
Development With Interns Working

on a Real Industrial Project
Bartosz Papis , Konrad Grochowski , Kamil Subzda , and Kamil Sijko

Abstract—Context: There is still little evidence on differences between Test-Driven Development and Test-Last Development,

especially for real-world projects, so their impact on code/test quality is an ongoing research trend. An empirical comparison is

presented, with 19 participants working on an industrial project developed for an energy market software company, implementing real-

world requirements for one of the company’s customers. Objective: Examine the impact of TDD and TLD on quality of the code and the

tests. The aim is to evaluate if there is a significant difference in external code quality and test quality between these techniques.

Method: The experiment is based on a randomized within-subjects block design, with participants working for three months on the

same requirements using different techniques, changed from week to week, within three different competence blocks: Intermediate,

Novice and Mixed. The resulting code was verified for process conformance. The participants developed only business logic and were

separated from infrastructural concerns. A separate group of code repositories was used to work without unit tests, to verify that the

requirements were not too easy for the participants. Also, it was analysed if there is any difference between the code created by shared

efforts of developers with different competences and the code created by participants isolated in the competence blocks. The resulting

implementations had LOC order of magnitude of 10k. Results: Statistically significant advantage of TDD in terms of external code

quality (1.8 fewer bugs) and test quality (5 percentage points higher) than TLD. Additionally, TDD narrows the gap in code coverage

between developers from different competence blocks. At the same time, TDD proved to have a considerable entry barrier and was

hard to follow strictly, especially by Novices. Still, no significant difference w.r.t. code coverage has been observed between the

Intermediate and the Novice developers - as opposed to TLD, which was easier to follow. Lastly, isolating the Intermediate developers

from the Novices had significant impact on the code quality. Conclusion:TDD is a recommended technique for software projects with a

long horizon or when it is critical to minimize the number of bugs and achieve high code coverage.

Index Terms—Empirical software engineering, iterative test last development, Test driven development

Ç

1 INTRODUCTION

UNIT testing is the most fundamental approach to soft-
ware testing [1], in the sense that it verifies the desired

part of the implementation directly, by simply executing it.
Among many possible approaches to unit testing, two main
development techniques are chosen for comparison: Test-
Driven Development (TDD) and Test-Last Development
(TLD). The studies concerning TDD are still reporting
inconsistent results about the merits of TDD [2], [3], [4], [5],
[6] so it is important to keep gathering more data on the sub-
ject. There are two existing research trends concerning mea-
suring this impact: simulation modelling approach and
experimental approach. In this paper, we focus on the latter.

Although there are many existing experimental assess-
ments of unit testing techniques, they are usually con-
strained by their academic or commercial nature (as in [7],
[8], [9]). The purpose of this work is to achieve experimental
conditions that are very rarely met in the studies on the sub-
ject [10]. We have worked with Transition Technologies S.A.,
which, at the time, was employing more than 800 employees
and was a provider of software solutions for the gas and
power industry. The company was successfully convinced
to perform the same real, commercial project for the gas
industry several times simultaneously under our control. It
is worth noting, that this is not a common occurrence [4].

This study is focused on external code quality and test
quality, referred to as code quality and code coverage
respectively. The reasons for focusing on these are that
external code quality is the most important characteristic of
a software to its end users [11] and code coverage is one of
the most important characteristic of internal code quality
[12]. The main goal of this study is to answer two research
questions: (i) is there a significant difference between the
external code quality of code created using Test-Driven
Development and Test-Last Development, (ii) is there a sig-
nificant difference between the code coverage with unit
tests created using Test-Driven Development and Test-Last
Development. Additionally, we address the following addi-
tional hypothesis: (iii) is there a significant difference in

� Bartosz Papis is with the Google Inc., 00-113 Warsaw, Poland.
E-mail: bartoszkp@gmail.com.

� Konrad Grochowski is with the Warsaw University of Technology, 00-661
Warszawa, Poland. E-mail: Konrad.Grochowski@pw.edu.pl.

� Kamil Subzda is with the Nexwell Engineering in Wroclaw, 54-440
Wroclaw, Poland. E-mail: kamil.subzda@gmail.com.

� Kamil Sijko is with the Transition Technologies S.A., Warsaw, Poland.
E-mail: kamil@sijko.pl.

Manuscript received 5 Dec. 2019; revised 3 Sept. 2020; accepted 24 Sept. 2020.
Date of publication 28 Sept. 2020; date of current version 16 May 2022.
(Corresponding author: Konrad Grochowski.)
Recommended for acceptance by C. B. Seaman.
Digital Object Identifier no. 10.1109/TSE.2020.3027522

1644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6290-9349
https://orcid.org/0000-0001-6290-9349
https://orcid.org/0000-0001-6290-9349
https://orcid.org/0000-0001-6290-9349
https://orcid.org/0000-0001-6290-9349
https://orcid.org/0000-0003-3289-4806
https://orcid.org/0000-0003-3289-4806
https://orcid.org/0000-0003-3289-4806
https://orcid.org/0000-0003-3289-4806
https://orcid.org/0000-0003-3289-4806
https://orcid.org/0000-0003-1323-0588
https://orcid.org/0000-0003-1323-0588
https://orcid.org/0000-0003-1323-0588
https://orcid.org/0000-0003-1323-0588
https://orcid.org/0000-0003-1323-0588
mailto:bartoszkp@gmail.com
mailto:Konrad.Grochowski@pw.edu.pl
mailto:kamil.subzda@gmail.com
mailto:kamil@sijko.pl

code quality between teams consisting of members with sig-
nificant difference in their competence level and teams con-
sisting of developers with similar competence level. The
experiment design we propose for these research questions
has the following key features:

The first feature is measuring process conformance at the
end of the experiment. Because we want to compare TDD
with TLD, it is necessary to be sure that the participants
actually use these two development techniques correctly.
Due to our validation procedure it is possible to define how
well the work of each participant represents each technique.
There are many existing approaches to validating con-
straints of software development techniques [13], [5], [14],
[15], [16] and most of them are based on the Hackystat tool
[17]. In this work, we propose to use a special committing
scheme and use a different validation method than pro-
posed in the aforementioned papers.

The second important characteristic of this experiment is
separating the participants of the experiment from infra-
structural concerns. A programming concern is regarded as
infrastructural if it is not solely related to the business logic
needed by the end customer. Such concerns include net-
work communication, database modelling and architectural
decisions. Most of them require either specific technical
knowledge or good documentation searching/reading
skills, which are completely orthogonal to unit testing. Con-
sequently, a shell solution with all these aspects imple-
mented is provided for the experiment. All functions
designed to implement business logic, i.e., the essence of
what the application is doing, are left empty. The partici-
pants seek to implement the missing, business-logic-related
parts of the solution only. The idea of separating partici-
pants from infrastructural concerns is also presented in [10].
This is important for two reasons: i) it reduces the impact of
confounding variables related to subjects’ experience with
any 3rd-party library used in the project ii) it focuses the
study on the part of the software that is most important to
its end users: the business logic [11].

The third aspect of our experiment is random repository
switching, which is an implementation of within-subjects
design. Participants contribute to a group of shared code
repositories, with different programming techniques. Each
repository has a different programming technique assigned
and represents an alternative development timeline of the
same project. In the design proposed in this paper, the par-
ticipant-repository assignment for each week is randomised
(with some constraints), so most of the time they work with
a different technique each week. This helps in making the
results independent of participants’ individual traits. An
additional benefit of such an approach is that this forces the
participants to work with other people’s code, which is
much more realistic than confining oneself to one’s own
implementation.

The last feature of the proposed experiment is employing
two manipulation checks [18]: (i) verifying that the require-
ments to implement are not too easy (ii) verifying if it makes
sense to use a block design for the experiment, where partici-
pants form blocks based on their competence level. For the
first check, participants are also working without writing any
tests at all. Additional code repositories without unit tests
serve as an informal baseline, to check if unit tests, in one

form or another, have any impact on the quality of the imple-
mentation of the tasks. The second check consists of creating
three competence blocks: with intermediate developers only,
with novice developers only, and a mixed block with some
intermediate and some novice developers. The outcomes of
the experiment for the last block, representing a design with-
out competence blocks, are compared with the two former
blocks - a significant difference would give some insight into
whether the block design is the right choice.

Beside the aforementioned design decisions, the contri-
butions of this paper are as follows: (i) the real-world
requirements of an industrial project, implemented by stu-
dents. Experiments with students and professionals are
both considered valuable in current research [19] and quite
common. Little evidence exists on TDD impact for indus-
trial projects [10], (ii) the final solution has around 10k LOC,
which classifies it as a mid-size project. Most other papers
either do not report sizes of their code base [9], [20], or are
focused on small projects [4], [21], [22].

To present the composition of this experiment and report
the results, this paper is structured as follows. The next Sec-
tion 2 briefly summarizes the current research in the field of
experimental evaluation of TDD. Section 3 presents the defi-
nitions of TDD, TLD and No Unit Tests Development
(NUT) as introduced to the participants and describes the
core ideas of this work, i.e., the proposed design of an
experiment for addressing the two main hypotheses con-
cerning comparison of TDD and TLD, and the additional
hypothesis for comparing different compositions of groups
of developers with regard to their competence level. Sec-
tion 4 describes how the experiment is carried out. Section 5
follows, presenting the results of the experiment and their
statistical analysis. The interpretation and discussion are
presented in Sections 6 and 7 concludes the paper.

2 RELATED WORK

2.1 Overview

In recent years, many studies concerning TDD effectiveness
have been conducted. A couple of factors that make them
significantly different may be distinguished, affecting the
strength and scope of their conclusions about the TDD effec-
tiveness as such. These are:

� project requirements – a study may be conducted ‘in
the industry’, on a commercial project with real-
world requirements (e.g., [7]), or ‘in the lab’, on an
artificial project with requirements created solely for
the purpose of the experiment (e.g., [20]),

� conditions controllability – some studies are designed
before the coding work, having therefore an impact
on its organization and being able to collect specific
data crucial to the experiment during its process
(e.g., [9]); while others are in the form of analysis
after the fact, discussing the known sources about
the course of the already executed project (e.g., [8]),

� results comparability – an experiment may concern
only a single project or a group of unique projects,
the features of which may vary, making them hard
to compare (e.g., [7]); on the other hand, it may refer
to a project repeated several times, each time in

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1645

similar circumstances and controllable, experiment-
relevant conditions, including the possibility of con-
trol groups (e.g., [20]),

� developers’ experience – experiments involve pro-
grammers with a different level of experience and
job status – in extreme cases, they deal with the work
of professional and advanced developers qualified
in the validated development technique (e.g., [20]) or
with the work of beginner students completely unfa-
miliar with the technique (e.g., [23]),

� work scale – a set of measurable or qualitative factors
specifying the size and difficulty of the project: its
duration, number of engaged developers, number
of produced lines of code, specificity of the domain
and implementation complexity (see comparison in
Table 1 below).

Typically, these factors tend to have an impact on each
other. Studies conducted on commercial, industry projects
have a more realistic and interesting work scale [24], [25],
while academic experiments are generally shorter and sim-
plified, being detached from real-world concerns, such as cli-
ent demands, management priorities, need of innovative
solutions, critical business deadlines, and the overall R&D
context of the company. The ‘laboratory’ environment gives
a greater possibility to control the requirements and condi-
tions of the experiment [9], as opposed to commercial proj-
ects, which are only intended to be financially effective. For
this reason, industrial projects are usually unique and the
repetition of the experiment is impracticable [4]. On the other
hand, academic experiments are by their nature designed to
be repeatable [26], [23]. They are also often conducted on a
group of students [27], [28], which is another reason for their
simplicity, but sometimes they happen to be executed with
the help of professional developers [5], [21], [29]. Industrial
experiments involve the permanently employed company
workers [20], but still possibly also interns. Studies of indus-
trial cases are sometimes realized in the form of a historical
analysis and the results of the projects are executed with no
scientific inquiry inmind [10], [7], [8]. This makes themmore

realistic, but, at the same time, more obscure for investiga-
tion. On a very different side of the research spectrum, there
are also experiments based on a modelling technique called
software process simulation (SPS), where no real partici-
pants are involved [30]. Table 1 summarizes properties in
other experiments, similar to this study with respect to the
aforementioned factors. In this table, “Controlled” refers to
conditions controllability and “Comparable” to results compara-
bility defined in the list above.

2.2 Basic Conclusions in the Current Research

The general results of various experiments in current
research are coherent and indicate mostly that TDD
improves the quality of the output code in some way [6].
However, some researchers do not report such conclusions
and a few claim the contrary. In [25], the authors state
briefly that TDD improved the team performance, and [30]
conclude that it yields better results in terms of code quality.
[21] and [8] note higher quality code when TDD is used, but
increased development time, while [23] states that students
using TDD write more tests, and that writing more tests
increases productivity. [26] do not notice any acceleration in
development process nor change in the quality of code,
however it seems to the authors that writing tests first sup-
ports better understanding of created programs. The
authors of [5] conclude that the reported quality and pro-
ductivity improvements are associated with code granular-
ity and uniformity, rather than with the order of test and
production code writing. In [9], [29], and [10] no statistically
significant differences are reported between most important
metrics used. What is worth noticing, from this short com-
parison of results, is that the actual meaning of the conclu-
sion depends significantly on the conditions and metrics of
the experiment.

In [22] the authors report conducting a set of trials
involving 48 professional programmers working in pairs,
dividing them into six pairs working with the TDD method
and the other six serving as a control group, with a

TABLE 1
Sample Sizes in Experiments Comparing TDD and TLD Effectiveness

Study Year Subjects Number of subjects Duration Real world tasks LOC Controlled Comparable

[27] 2001 Students 12 Eight weeks N ? N Y
[26] 2002 Students 19 One month N ? Y Y
[21] 2003 Professionals 24 ? N 200 Y Y
[22] 2003 Professionals 48 One week N 200 Y Y
[25] 2004 Inexperienced professionals ? ? Y ? ? ?
[23] 2005 Students 24 Few days N 3001 Y Y
[7] (case A) 2006 Professionals 6 Four months Y 10k N N
[7] (case B) 2006 Professionals 5-8 Half a year Y 50k N N
[30] 2006 Simulated contributors ca. 350 Not applicable N 200k Y Y
[4] 2008 Students/Professionals 27 Four months Y/N2 5k N Y
[20] 2008 Professionals 28 One day ? ? Y Y
[8] (case A) 2008 Professionals 9 One year Y 70k N N
[8] (case B) 2008 Professionals 7 Three months Y 200k N N
[9] 2011 Students 23 Five weeks N ? Y Y
[29] 2014 Professionals 13 90 minutes N 300 Y Y
[10] 2016 Professionals 24 Three days N ? Y Y
[5] 2017 Professionals 39 20 days N 1k Y Y

1Assuming 300 LOC for “Bowling Scorekeeper Kata” exercises, by analogy from other studies using this exercise.
2Both real-world and academic tasks.

1646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

waterfall-like approach. They state that TDD teams devel-
oped code that passes approximately 18 percent more test
cases than the code of the control groups, but needed
approximately 16 percent more time to complete the task.
The programmers vary from novices to experts, but the
project itself is short (200 lines of code) and artificial.

The authors of [7] decide not to conduct an experiment,
but analyse an existing, industrial projects in retrospect.
Additionally, they choose two very different projects (the
second one larger and involving more experienced person-
nel), and try to compare the results between the team work-
ing using TDD and a similar team from the same company
that is not using it. Their results also indicate positive
impact of TDD on code quality. In the case of the first proj-
ect, the density of defects is stated to be 2.6 times less for the
TDD team, but the time taken for the task is 25-35 percent
longer. For the second project, these measurements are,
respectively 4.2 and 15 percent. As the researchers report,
the TDD and non-TDD projects, being executed as a part of
an uncontrolled study, might not be on the same level of
development difficulty, and therefore their comparison
might be inadequate.

Janzen and Saiedian in [4] design their experiment to
evaluate the “test-first” factor of the TDD method, striving
to minimize other differences between the TDD group and
the control group. Then, they compare the TDD method
with its reversed, test-last analogue, asking all participants
to work in a rapid test-code or code-test iterations manner.
The teams worked on two real commercial projects of simi-
lar size. The authors conducted pre-experiment surveys to
ensure that there is no significant differences between par-
ticipants’ experience. Having no opportunity to repeat the
development tasks, they decide to split the work in the proj-
ects into two phases, sharing it between two investigated
methods. The researchers conclude that there is a possible
tendency for the developers using the TDD method to write
smaller and simpler blocks of code, such as classes and
methods. However, they admit also that they cannot sub-
stantiate any claim concerning improvement in class cohe-
sion. The authors also indicate that the limited conclusions
are a consequence of a small number of developers
involved, non-random participant selection, and the inabil-
ity to simultaneously control the experiment variables and
sustain the commercial character of the projects.

Broader reviews of current research on the topic of TDD
effectiveness may also be found in a book by Madeyski [6],
which in general focuses on the analysis of impact of pro-
gramming practices like test-first programming, test-last pro-
gramming, pair programming, solo programming and other
closely related approaches. Also, further discussion can be
found in systematic reviews such as [31] or [32]. Munir et al.
[3] present a systematic review which additionally classifies
presented studies according to rigor and relevance.

3 EXPERIMENTAL DESIGN

3.1 Software Development Techniques

Our experiment design concerns three development techni-
ques, namely Test-Driven Development (TDD), Test-Last
Development (TLD) and No Unit Tests (NUT). They vary in
strictness: from completely unstructured and almost

arbitrary NUT, to more clearly defined and methodical
TLD, to almost formally defined and rigid TDD. In the fol-
lowing sections we describe how those methods are defined
for the purpose of this study. The details of the definitions
might be arguable, but the main objective was to compare
the impact of the moment of creation of unit tests. Even
though design is sometimes deemed as the most important
aspect of TDD [4], end users care much more about the soft-
ware working according to specifications [11] – and the end
users are the primary beneficiaries of business use software.
Thus, in this experiment, we focus on the development
aspect of TDD and TLD, and we do not address the impact
of software development techniques on software design [2].

3.1.1 No Unit Tests (NUT)

The name of this technique is introduced for the purpose of
this experiment. It represents an “old school” technique,
where developers wish to create production code as quickly
and as well as possible. The only restriction of this method
is that testing, if any, is performed only manually at the
application level.

3.1.2 Test-Last Development (TLD)

Probably the most well-known approach to automated test-
ing: after developing some part of functionality. Usually it
is the developer’s responsibility to decide when the testing
should start, or, in other words, when functionality is suffi-
ciently complete to be the subject of tests. In this experi-
ment, each task is tightly connected to a complete function
of the system. The word “last” in TLD might suggest writ-
ing a unit test after complete implementation of the whole
application, but that is uncommon. Applications are usually
developed in a sequence of iterations, and “last” is inter-
preted in this experiment as “the last part of a single iter-
ation”, where iteration represents adding a new function,
implementing a single task. In this experiment, we aim to
define small enough tasks to write unit tests after the com-
plete function has been implemented. If needed, fixes or
refactoring can follow. Enforcing the moment of writing
unit tests is introduced to minimize the influence of per-
sonal testing skills and traits of the participants.

3.1.3 Test-Driven Development (TDD)

TDD [33] is defined in the most formal way, by providing
The Three Rules of TDD1: (i) one is not allowed to write any
production code unless it is to make a failing unit test pass, (ii)
one is not allowed to write any more of a unit test than is sufficient
to fail – and compilation failures are failures, (iii) one is not
allowed to write any more production code than is sufficient to
pass the one failing unit test. TDD consists of the following
cycle: (i) create minimal failing test code, (ii) write minimal
production code to make tests pass, (iii) refactor code and
repeat, until the task may be considered done. Such a cycle
should be repeated multiple times during the implementa-
tion of each task and each cycle should be complete in a
matter of minutes.

1. Robert C. Martin, The Three Rules of TDD: http://butunclebob.
com/ArticleS.UncleBob.TheThreeRulesOfTdd

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1647

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

3.2 Research Objectives

The main foci of this study are the following research ques-
tions concerning external code quality (code quality) and
test quality (code coverage):

Is there a significant difference between the code quality of code cre-
ated using Test-DrivenDevelopment and Test-Last Development?

Is there a significant difference between the coverage of code created
using Test-DrivenDevelopment and Test-Last Development?

Additionally, as a form of manipulation check [18], we
evaluate if indeed there are grounds for splitting the partici-
pants into competence-level blocks, which is formulated as
the following additional hypotheses (tested separately for
both TDD and TLD):

Is there a significant difference between the code quality created
by groups of developers with significant differences in their com-
petence level and groups consisting of developers with similar
competence level?

Is there a significant difference between the coverage of code
created by groups of developers with significant differences in their
competence level and groups consisting of developers with similar
competence level?

3.3 Overview

Our experiment is organised into weekly iterations and con-
sists of participants working with code repositories. Each
repository is assigned to one of the three development tech-
niques: TDD, TLD and NUT, as presented in Section 3.1. In
each iteration, participants get assigned to a different repos-
itory, to work using different techniques. The participants
are grouped into three blocks: Intermediate, consisting only
of the non-beginner developers; Novice, consisting only of
the most inexperienced developers; and Mixed, consisting
of the advanced developers working together with the inex-
perienced ones.

Similarly to [23], to compare the three development tech-
niques we use the black-box acceptance tests approach. In
order to validate requirements of the project, we have first
created a reference implementation - solutions for all
experiment’s tasks, along with a reference unit-test suite to
validate the business logic against the requirements. These
reference unit tests were then used as a base to create 8320
automated acceptance tests (15k LOC). The number of fail-
ing acceptance tests represent the external code quality.
When working with TDD or TLD, the participants create
code and unit tests. To measure the quality of the tests cre-
ated by the participants, we calculate code coverage from
their tests at the end of each iteration.

3.4 Variables

The independent variables are: (i) the type of technique
used by a participant each iteration: technique and (ii) the
name of the competence block a participant is assigned to:
competence.

The dependent variables are the number of failing accep-
tance tests: bugs end or Q for “quality” (Q ¼ bugs end) and
the percentage of sequence points from participant’s code
executed when running participant’s unit tests: coverage end
or C for “coverage” (C ¼ coverage end). In addition to the
independent and dependent variables defined for the sake of
formulating the hypotheses, the following covariates can be

identified: the number of the iteration: iteration, process con-
formance (conformance) and the state of the repository at the
beginning of an iteration: number of bugs (bugs start) and
code coverage (coverage start). The last two are the same
quantities as bugs end and coverage end resp., but measured
at the beginning of an iteration, not at the end. Process con-
formance is an important variable since it allows to quantify
how well the code in each repository represents each tech-
nique. The outcomes of each iteration, represented by the
values of the dependent variables, depend on the sequence
of iterations, which is tracked by the iteration number, since
different tasks were implemented during each iteration. The
variables representing the state of the code in each repository
at the beginning of an iteration also impact the outcomes of
each iteration: (i) the more bugs are already present in the
repository when the participant starts their work at the
beginning of the iteration, themorework they need to devote
before they can address the tasks assigned to the current iter-
ation (ii) the better the code coverage is, the less is the chance
of breaking the existing code.

Additionally, we include crashes start to represent the
number of failing acceptance tests that result in an unhandled
exception, which results in collapsing the application. Such
bugs, commonly referred to as “crashes”, are more severe -
the application is not only yielding incorrect results, but
becomes completely unusable. Since “crash” is never an
expected outcome of any business scenario used in acceptance
tests crashes start � bugs start. This variable is introduced
under the assumption that crashes are more meaningful than
non-crashing bugs and thus are more important to avoid. The
results of the experiment show that this distinction is of no
importance in this paper; however, we keep it for the sake of
accuracy and completeness of this report.

The confounding variables in this experiment are related
to personal traits of the participants. They are discussed in
Section 6.1.

3.5 Hypotheses

We have two main hypotheses, namely HQ and HC , that
concern the code quality (Q ¼ bugs end) and code coverage
(C ¼ coverage end), resp. and additional hypotheses HBQ

and HBC concerning competence level groups - as a form of
manipulation check. Denoting with an additional index 0
the null hypothesis, and with 1 the alternative hypothesis,
our hypotheses can be formulated as follows:

HQ0 : QðTDDÞ ¼ QðTLDÞ
HQ1 : QðTDDÞ 6¼ QðTLDÞ
HC0 : CðTDDÞ ¼ CðTLDÞ
HC1 : CðTDDÞ 6¼ CðTLDÞ

HBQ0 : QðIntermediateÞ ¼ QðMixedÞ ^QðNoviceÞ ¼ QðMixedÞ
HBQ1 : QðIntermediateÞ 6¼ QðMixedÞ _QðNoviceÞ 6¼ QðMixedÞ
HBC0 : CðIntermediateÞ ¼ CðMixedÞ ^ CðNoviceÞ ¼ CðMixedÞ
HBC1 : CðIntermediateÞ 6¼ CðMixedÞ _ CðNoviceÞ 6¼ CðMixedÞ:

The HQ1 represents our expectation that TDD influences
code quality, i.e., developers using TDD will not make the

1648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

same number of mistakes as developers working with TLD.
HC1 expresses our second expectation, i.e., that TDD has sig-
nificant impact of the quality of tests created. HBQ1 presents
the claim that mixing different developer competence levels
has significant impact on the code quality and HBC1 repre-
sents the same for code coverage. HBQ and HBC hypotheses
are formulated using conjunctions and alternatives. The
consequence of this formulation is that if the data supports
rejecting the null hypothesis, we will not know if it was
because of the difference between Intermediate and Mixed
developers or because of the difference between Novice and
Mixed developers. This is however enough to validate the
design decision of creating competence blocks and simpli-
fies the analysis.

3.6 Design

The design of the experiment is based on a set of code repos-
itories, with a different technique assigned to every one of
them. Depending on the repository, every participant is
working either using the TDD, TLD or NUT technique.
Each repository contains a complete solution, developed by
different participants using the assigned technique, starting
from the same shell solution.

The NUT technique serves as a way of validating the
complexity of the tasks given to the participants - the first
proposed manipulation check [18]. This way we can evalu-
ate if the unit tests, no matter how created, have any influ-
ence on the quality of the code created during the
experiment. If the code created using the NUT technique is
free of bugs, it would suggest that the tasks in our experi-
ment are too easy for the participants. For a task created
without any mistake, there is no room for improvement in
terms of external code quality. So, for the software develop-
ment techniques, for which one of the purposes is to mini-
mize the number of bugs, any comparisons in such context
are not meaningful. However, the existence of any bugs
would show that the tasks are not trivial, at least at the level
of proficiency of the participants and measuring how TDD
and TLD improve external quality makes sense.

We employ a randomised within-subjects block design,
with elements of a counterbalanced design [34]. The blocks
consist of participants with a similar competence level, and
all participants use all development techniques in a differ-
ent, random order. The aim for creating blocks is to mini-
mize the impact of the competence level on quality. We
propose to use three blocks: Novice, Intermediate, and
Mixed. The last block is used to address the additional
hypotheses HBQ1 and HBC1, to implement the second
manipulation check, verifying that using competence blocks
is justified. If the results for Mixed block are not different
than for other blocks, it would suggest that the blocks are
not a necessary part of the design of the experiment.

The experiment is divided into iterations. Each iteration
lasts one week and has a predefined list of tasks assigned
that are expected to be completed within the iteration. Dur-
ing each iteration, each participant is working with a differ-
ent repository than in the previous iteration, using a
different technique.

Switching techniques/repositories from week to week
serves two purposes: i) to minimize the impact of

differences in personal skills between participants on code/
test quality in the given repository, ii) to make the experi-
ment closer to real-world conditions, where developers
need to become acquainted with someone else’s code before
starting to work on assigned tasks. On the other hand,
switching techniques while working on the same code base
with similar tasks does not seem like a natural way of work-
ing. However, it is a part of the design of the experiment
aimed to fully utilise the available sample size – each partic-
ipant contributes to each evaluated technique.

3.7 Subjects

The participation in the experiment requires at least basic
programming skills. The knowledge about TDD and TLD is
not required, since the experiment is preceded by a training,
aimed to present uniform definitions of TDD and TLD to all
participants. The proposed recruitment consists of solving a
set of four design and programming tasks: 1) Propose a
data structure to hold information about daily gas flow for
every hour in local time. 2) Assuming all required data for
the structure designed in task 1 is stored in a text file, pro-
pose a method of verifying its correctness. The participants
assume the availability of a method GetNumberOfHour-

sInDay which returns an integer and accepts a single
DateTime parameter. 3) Write unit tests for the validation
of the method from task 2. 4) Implement the method from
task 2 using TDD.

The resulting code is to be rated anonymously, for exam-
ple using a scale 1–5. Even though the tasks do not seem
easy for novice developers, the rating is mainly focused on
the following points: 1) Understanding that day can have a
variable number of hours, instead of using a fixed 24-hour
data structure. 2) Understanding what a unit test should
look like. 3) Understanding the basics of TDD. 4) General
programming skills.

3.8 Objects

3.8.1 Context

The objective for the participants is to implement a backend
provider of web services supporting gas market and under-
ground gas storage facility operations. The company has
more than 10 years of expertise in this area, so the project
has well defined requirements, based on the real-world
needs of the company’s clients. These services are focused
on processing of time series, called data signals. Each signal
can have one of multiple data types (ranging from simple
integer numbers to character strings) and time granularity
(i.e., a discretization unit, ranging from second to year). The
server must support simple operations, such as storing time
series data in a database, and more complex ones concern-
ing the conversion of signal’s granularity and filling missing
data in time series using various algorithms. The project
was created in .NET, using the C# language.

The participants ara given a shell implementation: code
with all infrastructure related to web services, data transfer
objects to domain objects mapping, and integration with a
relational database through an ORM engine. The shell solu-
tion consists of 59 classes and 28 interfaces counting total
3226 LOC. Only the parts containing domain specific logic
are left empty, to be filled in by the participants. Separating

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1649

participants from infrastructural concerns in such a way
should significantly reduce the influence of participants’
personal traits based on their technical knowledge and pre-
vious experience with particular libraries and frameworks
(e.g., database setup, DAL/nHibernate intricacies, WCF
configuration etc.). This is especially important for a partici-
pant with no professional experience, but can be useful also
in the context of professional developers, since even profes-
sional developers are not always necessarily familiar with
all possible tools and frameworks. Additionally, the web
service layer constitutes a common, well defined API, which
allows the running of acceptance tests in the same way for
each implementation.

Acceptance tests are used to evaluate implementations
created by the participants during each iteration. They are
constructed similarly to unit tests, but are executed in a
complete environment via web services and with a working
database. This makes them fully separated from the details
of each implementation.

The shell implementation was extracted from the com-
plete working implementation of the project with all
requirements, created by the authors beforehand to validate
the feasibility of the requirements. This implementation
was also used to check correctness of the acceptance tests.
Participants are not aware of the implementation nor of the
acceptance tests’ existence.

3.8.2 Tasks

During the experiment, the participants are required to
work on two types of tasks. The tasks of the first type are
defined before the experiment, based on the requirements
given by the real-world customer needs. All participants
receive the same tasks of the first type at the same time
and they do not know the full list of tasks until the end of
the experiment. This way, the experiment resembles nor-
mal day-to-day work, when developers receive new
requirements. To enforce the need of modification of
existing code even further, some tasks are designed as a
“change in specification”. This also allows participants to
implement simpler algorithms first and become accus-
tomed to the domain.

The second type of tasks are bugs detected at the end of
each iteration. For each repository, each bug detected in iter-
ation n results in a task assigned to the iteration nþ 1. This
task is then included in the overall list of tasks, together
with the predefined tasks of the first type.

To minimize potential misunderstandings and misinter-
pretations, all tasks are described in a language knownwell to
all participants’, and accompanied by small code examples,
demonstrating how the desired feature is to be used (i.e., how
the web service function call looks, and what are the expected
results). Participants are asked to be frank, when in any doubt
regarding the interpretation of task descriptions or how the
tasks should fit into the existing implementation. If a question
is general enough, it should be answered in an e-mail
addressed to all the participants. All that effort is aimed at
reducing the impact of participants’ personal understanding
of the tasks on experiment results.

All participants are instructed to prioritize their work as
follows:

1) Fix compilation problems and failing unit tests.
2) Fix reported bugs (tasks of second type).
3) Finish any unfinished work from the previous

iteration.
4) Implement tasks assigned to the current iteration.

3.9 Instrumentation

The technological infrastructure needed for implementation
of the tasks should be prepared in a standardized way
before the experiment: same machines with the same oper-
ating system and coding environment. Participants should
work on commit-based repositories.

Before each iteration, an automated process sets the access
rights to the repositories, so the participants can only work
with a repository assigned to them in the current iteration.

Code quality should be measured by executing accep-
tance tests using web services for each repository at the end
of each iteration. Similarly, code coverage should be mea-
sured by executing participants’ unit tests at the end of each
iteration.

3.10 Data Collection Procedure

The procedure of collecting data consists of running the set
of acceptance tests and participants’ unit tests at the end of
each iteration. The reports from the tests’ execution are
used for the following purposes:

� measuring code quality of each implementation, in
the form of a list of failing acceptance tests,

� measuring code coverage of each implementation, in
the form of code coverage information,

� creating bug reports, which constituted tasks of the
second type (see Section 3.8.2).

Another set of data collected from the experiment is
needed to assess how well the participants conform to the
rules of the techniques assigned to each repository. Know-
ing whether participants actually use the techniques we
want to evaluate is essential for drawing meaningful con-
clusions from the experiment. The existing approaches [13],
[5], [14], [15], [16], based on the Hackystat tool [17] were not
directly applicable for this experiment because at the time it
was only compatible with Visual Studio 2008. The mini-
mum version for the project used in this experiment was
Visual Studio 2010. Instead, we propose the following, sim-
pler approach.

To enable the evaluation of process conformance for each
development technique, participants are asked to document
their work using a special committing scheme – creating
separate commits for tests and implementation. It is a minor
inconvenience, as committing this way corresponds to the
rules of TDD and TLD. Also, small, frequent commits are
well supported by Git. For example, working in TDD
requires the participants to proceed in the following way:

1) write test code,
2) commit #1,
3) write production code,
4) commit #2,
5) refactor code,
6) commit #3,
7) repeat.

1650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

(an analogous committing scheme is required for TLD, but
with the production code step going first, before the test
code step).

Due to this, calculating process conformance for a reposi-
tory or a participant can be performed automatically. The
algorithm can be as follows: first, divide commits into three
categories: i) implementation commits, ii) test commits, iii)
mixed commits. The third group is instantly discarded, as
being too ambiguous. Such commits can be either invalid
steps or, for example, refactorings that change a name of a
function or a parameter, which should be allowed. Next,
verify if implementation commits and test commits follow
the rules of a technique assigned to this repository. The
overview of the procedure used for implementation com-
mits is presented in Figs. 1 and 2. Test commits should
be processed using procedures shown in Figs. 3 and 4. The

algorithm categorizes each commit separately, in the
context of the preceding commit, as good – if it conforms to
the presented rules, bad if it does not, and unknown when it
is difficult to decide. An example for the last case is pre-
sented in Fig. 2 when after an implementation commit,
which usually should increase the amount of untested code
and thus decrease code coverage, we actually observe code
coverage increasing. This is inherently not a bad thing, and
can occur during refactoring, so one cannot classify this as a
bad commit. But one also can not be sure whether it is a good
commit, hence as a compromise, the unknown category is
assigned. In a typical case, coverage either decreases or
stays the same, so the commit can be classified as good.

Given such a procedure it needs to be decided how to
treat unknown commits. For the sake of simplicity, we pro-
pose to treat unknown commits in the same way as bad com-
mits. In principle they are not the same, but we prefer type
II errors in this case. Thanks to this, the analysis is robust in
dealing with participants who do not follow the rules. As a
result, for each repository, the percentage of good commits
can be calculated.

Fig. 1. Decision diagram for TDD process conformance, for an imple-
mentation commit (applied sequentially to each commit, taking its parent
commit into account). Note that the two decision blocks with the same
name, namely “Some tests fixed?” address two different situations,
depending on the parent decision: “New failing tests?”. It is allowed to fix
tests in small steps – i.e., some tests are still failing, but some were fixed,
but it should not be allowed to break any new tests. The situation when
some tests were fixed, but some previously passing tests are now failing
is considered ambiguous.

Fig. 2. Decision diagram for TLD process conformance, for an imple-
mentation commit (applied sequentially to each commit, taking its parent
commit into account).

Fig. 3. Decision diagram for TDD process conformance for a test commit
(applied sequentially to each commit, taking its parent commit into account).

Fig. 4. Decision diagram for TLD process conformance for a test commit
(applied sequentially to each commit, taking its parent commit into
account).

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1651

4 EXECUTION

The experiment lasted three months (July, August and Sep-
tember 2016) with 19 participants in three cities (13 in the
Lublin office, four in the Warsaw office and two in the Bia-
»ystok office). Fig. 5 shows the general course of the experi-
ment. After two weeks of training (including presentations
and exercises) the participants started to work in iterations.
Each iteration started on Monday and finished on Friday.
Before each iteration, the assignment of repositories to the
participants was changed in such a way that on each Mon-
day each participant would start working with a different
programming technique than in the previous iteration.
Tasks were revealed to participants at the beginning of the
week, together with a new assignment of the repositories.
The procedure was repeated for each week of the experi-
ment. During each iteration (from Monday to Friday) the
participants worked as they pleased, but with constraints
imposed by the priorities presented in Section 3.8.2. Within
the tasks of the same priority they could choose the order of
implementation. On Friday, access to the repositories was
revoked and the automatic acceptance test suite was run.
The detected bugs were added to the task lists of the appro-
priate repositories. This made the experiment correspond to
a real-world scenario, in which a developer is often faced
with the task of fixing bugs in a code written by someone
else. If a participant did not manage to implement all of the
tasks assigned for an iteration, the unfinished tasks
remained in the repository’s task list, waiting for the next
participant. Note that the process of switching repositories
(i.e., reassignment before each iteration) always occurred on
weekends, to help participants switch to a different pro-
gramming technique smoothly. Also, during the weekends
the code in each repository was made anonymous by
removing user name information from commits, so partici-
pants were not aware who worked previously with their
current repositories.

4.1 Sample

The participants of the experiment were students. The main
reason for this decision was that hiring students instead of
professionals solely for the purpose of an experiment signif-
icantly reduced costs for the company. Since hiring students
could be one of the workarounds for workforce shortages in
the IT market, the conclusions from this experiment could
still be relevant for IT companies – especially that students
were shown to be good representatives for developers in
general in software engineering experiments [35]. An addi-
tional benefit was that students seemed to be less likely to
have developed any personal preconceptions or preferences
regarding software development techniques than professio-
nals. The participants were chosen during a few months
long recruitment process. The accepted candidates were
employed as paid summer interns in the company, with the
prospect of potential future ordinary employment. Passing

the internship was also required by their universities; so as
a result, the participants should have been motivated to
work as they would work in normal circumstances.

There were 60 candidates that enrolled for the experi-
ment. The solutions for the design and implementation
tasks from the recruitment process explained in Section 3.7
were blindly graded by the authors of this paper. After-
wards, by inspecting the average grades and the solutions,
we have agreed that participants with initial grades of at
least three out of five show sufficient programming profi-
ciency to qualify for the experiment. Thus, we have chosen
a threshold of three for the candidates to qualify. Out of 60
candidates, only 26 received an average grade of three or
more. Unfortunately, seven of them resigned from the
experiment before it had started, leaving 19 participants.
The distribution of the initial grades was as follows: no one
received a grade of five, six participants received a grade of
four, 20 participants received a grade of three, 29 partici-
pants received a grade of two and one participant received
a grade of one. Four participants did not show up for the
initial assessment. When grading the candidates, the aver-
age standard deviation between the authors of the experi-
ment was 0.42. After the recruitment, the 19 chosen
participants were asked to fill out a survey about their pro-
gramming experience. The survey consisted of questions
about their subjective assessment of their programming skill
in various programming languages, their programming lan-
guage preferences and their experience in TDD and TLD.
The initial grades for the recruitment design and implemen-
tation tasks and grades from the survey were combined
with different weights to form final grades assigned to the
participants. The average standard deviation of the grades
given by the authors individually was 0.38. The final grade
was the average. Ten participants received a final grade of
four, eight received a final a grade of three, and one partici-
pant received a final grade of two. These final grades were
used to split participants into two categories: “A” (average
grade of four or higher in 1–5 scale) and “B” (grade of three
or lower). The categories were then used to form blocks for
the experiment (see Section 3.6). Five randomly chosen par-
ticipants have formed the Mixed block (two with category
“A”, and three with category “B”, identified as M1–M5).
The remaining participants with category “A” formed the
Intermediate block (seven participants, identified as I1–I7),
and the remaining ones categorized as “B” were used to
form the Novice block (identified as N1–N7).

Having 19 participants, five in the Mixed block, seven in
the Intermediate block and seven in the Novice block, 19
separate code repositories were created and split across the
blocks to match the number of participants in each block.

Development techniques were assigned to repositories –
each repository contained code created using a single tech-
nique (TDD, TLD, or NUT). As comparing TDD with TLD
was considered more important than comparing any of
them with NUT, only three NUT repositories were created

Fig. 5. Experiment flow overview.

1652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

(NUT1-NUT3). The remaining 16 repositories were split
equally between TDD and TLD (TDD1-TDD8, TLD1-TLD8).
Repositories were assigned to each block as follows: 1) Inter-
mediate: TDD1-TDD3, TLD1-TLD3, NUT1; 2) Novice:
TDD4-TDD6, TLD4-TLD6, NUT2; 3) Mixed: TDD7-TDD8,
TLD7-TLD8, NUT3.

4.2 Preparation

The tasks where implemented on machines running the
Windows 10 operating system with Visual Studio 2017 and
the Firefox web browser. For communication purposes,
Skype and Microsoft Outlook mail client were available.
Repositories were provided to the participants via a local
GitLab instance.

Before the experiment a list of tasks of the first type was
defined. The tasks had different levels of complexity, which
could be estimated by comparing the number of acceptance
tests needed to verify each task. There were 18 tasks, which
were covered by 462 acceptance tests on average (SD 519).
The simplest tasks, like “Deleting a signal” required only
three acceptance tests, while others like “Implement first-
order interpolation for signal data” were covered by 1197,
up to 1750 for the most complex tasks. The cyclomatic com-
plexity of the reference implementation for these tasks
ranged from 2 for “Deleting a signal” to 13 for “Implement
gap-filling for signal data using another signal”, with an
average of 3.5 (SD 3.43). The tasks were assigned to itera-
tions, so all participants had to implement the same require-
ments in each iteration. Then, all the tasks were
implemented by the authors of the experiment, resulting in
a reference implementation of a full server application. The
reference implementation was developed using .NET envi-
ronment (C#) in the Domain-Driven Design paradigm [36],
as may be seen in Fig. 6.2 By removing the business logic
from the domain layer, shell code was created, which could
serve as a starting point for the participants. The compo-
nents from the reference implementation, which were part
of the shell code are shown as dark grey in Fig. 6. Partici-
pants were not allowed to modify these projects.

The reference implementation served multiple purposes: 1)
was used to validate the definitions of tasks for the participants
(their completeness and complexity), 2) enabled development
of a shell of the project, given to the participants in order to sep-
arate them from infrastructural concerns, 3) was used for creat-
ing black-box acceptance tests for the participants’ code, 4) is
nowbeing used by the company in its products.

The reference implementation had approx. 9k LOC
(Lines-Of-Code), approx. 200 reference unit tests and a few
integration tests. These tests were created directly from the
business requirements. Each business requirement described
a desired behavior of the system, related to one of the web
service methods of the server. Each reference unit test repre-
sented an aspect of or a whole business requirement related
to a single web service method. After creating the reference
implementation, these reference unit tests were used as a
base for creating the black-box acceptance tests, used to
measure code quality of each repository at the end of each
iteration during the experiment.

To execute the repository switching procedure, a plan of
assigning participants to repositories was also defined
beforehand. The order of repositories for each participant
was random, but with two constraints imposed: (i) no par-
ticipant should work two weeks in a row using the same
technique and (ii) each participant should always work
with a repository they did not work with before. It was
impossible to meet these constraints fully, because of the
relation between the number of developers and the number
of techniques (number of repositories) and the number of
iterations, but they were satisfied for most iterations. For
example, the second requirement could not be fulfilled for
the Mixed block, and in the last iteration, participants did
revisit some of previously encountered repositories (as they
have already worked with all of them at this point). An
example sequence of repositories over the course of the
experiment is: TLD2, TDD1, TLD1, TDD3, TLD3, TDD2,
NUT1 for iterations 1–7. The complete assignment plan can
be found in the replication package.3

The first two weeks of the experiment were devoted to
training. During first day of the training, our proposed defi-
nitions of TDD and TLD were presented (see Section 3.1)
using a short slide deck, created for the purpose of this
experiment. The next part was organised in a form of a
workshop, consisting of demonstrating the working envi-
ronment (Visual Studio 2010, Git basics, the structure of the
shell code) and presenting the required committing scheme
(see Section 3.10). Then, the participants were asked to
implement two easy, introductory tasks – one for each train-
ing week, using both TDD and TLD, in a common reposi-
tory with the shell code. This way, the participants could
practice both techniques used in the experiment and get
accustomed to the shell code and to the required commit-
ting scheme. All questions asked by the participants were
occasionally compiled into a single FAQ-like e-mail, sent to
all the participants.

4.3 Data Collection Performed

As planned, at the end of each iteration the acceptance tests
and participants’ unit tests were executed in an automated
manner. Code quality was measured using a set of Python
scripts that executed acceptance tests using web services for
each repository and produced an extensive report. In partic-
ular, the report included the list of failing acceptance tests.
The reports were used to create tasks of the second type,

Fig. 6. Project’s architecture overview.

2. The reference implementation is publicly available at GitHub:
https://github.com/bartoszkp/TDDEvaluation in the master branch.

3. Replication Package can be found at https://github.com/
bartoszkp/TDDEvaluation in the “Replication package” folder of the
“master” branch

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1653

https://github.com/bartoszkp/TDDEvaluation
https://github.com/bartoszkp/TDDEvaluation
https://github.com/bartoszkp/TDDEvaluation

related to bugs introduced by the participants. Addition-
ally, we have performed a manual inspection of the imple-
mentations, which led us to extending the suite of
acceptance tests to cover additional corner cases. To cover
all possible execution paths when testing unknown code, it
was necessary to include tests covering all possible combi-
nations of possible values of all function arguments (to
some extent, i.e., when an argument is an integer, testing
for all possible integers is obviously infeasible). As a result,
more than 8000 acceptance tests were used for the experi-
ment. Participants were not aware of the existence of the
acceptance tests, nor did they ever see their code. Using
automatically generated reports of correctness for each
repository, manually prepared bug reports were assigned
to appropriate repositories, usually revealing a single fail-
ing test case. This approach was also justified by our
efforts to simulate a common life cycle of software, where
customers usually find one scenario demonstrating an
application’s incorrect behavior.

Code coverage was measured by a similar set of Python
scripts that executed participants’ unit tests with the NCover4

coverage-measuring tool enabled to gather information about
test coverage at the end of each iteration for each participant
and for each repository.

Also, a Python script was designed for the purpose of
executing the process conformance calculation algorithm
outlined in Section 3.10.

5 ANALYSIS

5.1 Overview

The set of repositories, with their fully reproducible history
of project changes, is the direct source for all measurements,
including their varying over time through the whole period
of the project’s progress.5;6 The analysis is based on these
measurements.

We start with presenting the analysis of process confor-
mance among the participants in Section 5.2. Results from
this analysis allow us to test the main hypotheses under
investigation in the context of how well the participants
performed w.r.t. to process conformance. The next section,
Section 5.3, describes the statistical methods used for anal-
ysis and presents details for each of the main hypotheses,
namely:

� HQ1: TDD has impact on code quality (Section 5.3.2),
� HC1: TDD has impact on test quality (Section 5.3.3).
In Section 5.4 we present an analysis of the additional

hypotheses HBQ1 and HBC1 (impact of mixing competence
levels on code quality and code coverage) for TDD and TLD
separately. Finally, in Section 5.5 we show a brief validation
of the level of complexity of the tasks in the experiment,
comparing TDD and TLD outcomes to working without
any unit testing technique.

5.2 Process Conformance

Table 2 presents process conformance for each participant,
calculated as a percentage of valid repository commits (good
commits, see Section 3.10), where their validity depends on
the correspondence to the rules of each technique. Table 3
shows this data aggregated for categories “A” and “B”.
Using the Shapiro-Wilk test, we can retain the assumption
that the samples for TDD and TLD for both categories are
normal (p-values for TDD “A”, “B” and TLD “A”, “B”
respectively: 0.53, 0.76, 0.41, 0.17). Then, using Welch’s
unequal variances two-tailed T-test we compare the mean
process conformance with TDD and TLD techniques
between category “A” participants and category “B” partici-
pants. As can be seen in Tables 3 and 4, the results show that
the process conformance is significantly higher among the
intermediate programmers than among the novices. The
reported p-values (0.0002 and 0.0178 for TDD and TLD
resp., have been adjusted using the Bonferroni correction
[37]). Cohen’s d effect sizes for TDD and TLD are 0.5 and
0.14 resp. As suggested in [38] the effect size for TDD can be

TABLE 2
Process Conformance Per Participant (Represented by Their
Identifier) for Each Technique (Percent of Good Participant’s
Commits in TDD and TLD Repositories Separately) and Per

Participant Overall (Percent of Good Participant’s Commits in all
TDD/TLD Repositories)

Technique

Id Category Block TDD TLD Overall Ambiguous

[%] [%] [%] [%]

P1 A Intermediate 57 71 63 18
P2 A Mixed 45 76 52 43
P3 A Intermediate 54 70 57 33
P4 A Intermediate 51 71 58 32
P8 A Mixed 36 79 52 32
P10 A Mixed 36 83 57 26
P14 A Intermediate 65 86 69 27
P15 A Intermediate 64 97 71 28
P16 A Intermediate 56 85 61 29
P17 A Intermediate 70 87 73 21
P5 B Novice 33 66 42 8
P6 B Novice 30 77 49 18
P7 B Novice 20 63 27 17
P9 B Novice 39 82 47 33
P11 B Novice 31 66 39 29
P12 B Novice 40 71 49 23
P13 B Novice 27 63 41 12
P18 B Mixed 34 67 41 40
P19 B Mixed 27 75 30 56

The last column shows the percentage of unknown commits, which are treated
in the same way as bad in this experiment, but in fact are ambiguous.

TABLE 3
Descriptive Statistics for Process Conformance

Within the Categories

TDD conformance TLD conformance

Category Mean [%] St. Dev. [%] Mean [%] St. Dev. [%]

A 53 12 80 9
B 31 6 70 7

4. https://www.ncover.com/

5. The repositories are publicly available at GitHub: https://github.
com/bartoszkp/TDDEvaluation in appropriate branches

6. The replication package for the statistical analysis is available in
the same repository in the “Replication package” folder of the “master”
branch

1654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

https://www.ncover.com/
https://github.com/bartoszkp/TDDEvaluation
https://github.com/bartoszkp/TDDEvaluation

classified as medium and for TLD as very small. However, the
common language effect size [39] is 96 and 83 for TDD and
TLD resp., which means there is a very high probability
(0.96 and 0.83 resp.) of observing higher process confor-
mance for an intermediate programmer than for a novice.

There is a statistically significant difference (Two-tailed
Welch’s T-test for samples, p < 0.05) in the process confor-
mance between the participants who received a grade of
four or higher (category “A” – the Intermediate/Mixed
group) and the rest of them (category “B” – the Novice/
Mixed group) in the initial, anonymous evaluation per-
formed by the authors. This strengthens the rationale using
the competence blocks and that they were created in an
objective and appropriate way. The range of the results for
TDD technique is wide: between 27 and 70 percent, unlike
the range for TLD (between 62 and 97 percent).

The process conformance variance within each block is
still considerable. Because of that, in addition to compe-
tence blocks, we include average conformance level for
each technique and each participant in the statistical mod-
els used to analyse the outcomes of the experiment in the
following section.

5.3 Main results

5.3.1 Statistical Methods Used

We speculate that software development technique (TDD
versus TLD) has impact on code quality and test quality.
These two features are represented by the number of bugs
and the code coverage at the end of each iteration, measured
(weekly) for each participant. For this reason we decide to
take iteration as our unit of analysis (row in a data frame).
There are 7 iterations overall, with 19 participants, which
gives 133 possible combinations. The data is analysed using
R language for statistical computing,7 with lme4

8 and

ggplot2
9 packages.

The data is correlated because the number of bugs and
code coverage are repeatedly observed for the same partici-
pants and for the same tasks. Linear Mixed-Effects Models
(LMM) are selected as an appropriate tool for the analysis,
since they allowed dealing with problems frequently pres-
ent in longitudinal studies [40], such as:

1) heterogeneity of participants and tasks, caused by
individual differences,

2) correlated measurement errors,
3) missing observations,
4) coexisting time-invariant and time-related covariates.
To test our hypotheses we first prepare a reference

model which predicts the outcome (code quality or code
coverage) with the help of fixed effects (contextual varia-
bles, full list below) and random effects associated with
participants and tasks. Then we build a model that rep-
resents our hypotheses by including information about
the software development technique used (TDD versus
TLD) with process conformance as an additional variable
in the regression model. We use Likelihood Ratio Test
(LRT)[41] to verify if the estimate for an additional vari-
able is not zero. If it is, following the guidelines from
[41], for p� value < 0:05 we assume it is justified to use
the more complex model that includes the additional
variable.

The following variables are used in the models:

� techniqueTDD – a dummy variable that indicates the
cases when the technique used in a repository for an
iteration is TDD. For such cases, the values of depen-
dent variables are relative to the reference level
given by the results for TLD,

� techniqueTLD – a dummy variable that indicates the
cases when the technique used in a repository for an
iteration is TLD. Used for cases when all three tech-
niques are compared - then, for both techniqueTDD
and techniqueTLD, the values of dependent varia-
bles are relative to the reference level given by the
results for NUT,

� conformance – mean conformance level for a given
participant and given technique (TDD or TLD)
across the course of the study, expressed as percent-
age (0-100) of commits adhering to the rules of the
technique used (see Section 3.10),

� iteration – the iteration number,
� bugs start – the number of failing acceptance tests at

the beginning of the iteration,
� crashes start – the number of bugs at the beginning

of the iteration, which result from an unhandled
exception,

� coverage start – code coverage at the beginning of
the iteration,

� competencenovice – a dummy variable that indicates
the participants from the Novice block. The values of
the dependent variables are relative to the reference
level given by results for the Intermediate block.

� competencemixed – a dummy variable that indicates
the participants from the Mixed block. The values of
the dependent variables are relative to the reference
level given by results for the Intermediate block.

� competenceintermediate – a dummy variable that the
indicates the participants from the Intermediate
block. If present with one of the two former varia-
bles, their values are relative to the reference level
given by results for the third, remaining block.

To verify each of the main hypotheses we create three
LMMmodels:

TABLE 4
Two-tailed Welch’s Unequal Variances T-Test Results and Effect

Sizes for Comparing Participant’s Process Conformance
Between “A” and “B” Categories

TDD TLD

T-test 0.0002 0.0178
Cohen’s d effect size 0.5000 0.1386
Common language effect size [39] [%] 96 83

95% confidence interval for ðA�BÞ 22:18� 9:21 10:5� 7:59

7. R: A Language and Environment for Statistical Computing,
http://www.R-project.org/

8. Bates D, M€achler M, Bolker B, Walker S (2015). “Fitting Linear
Mixed-Effects Models Using lme4.” Journal of Statistical Software, 67
(1), 1–48. doi: 10.18637/jss.v067.i01.

9. Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.
tidyverse.org.

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1655

http://www.R-project.org/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org

1) Reference Model:
This model serves as a baseline for comparison. It

assumes nested characteristics of the dataset (different
tasks and different participants) and fixed effects for
important contextual variables: iteration number (or the
number ofweeks since the beginning of the experiment),
competence block, number of bugs, number of crashes,
and code coverage at the beginning of the iteration.

2) Technique Model:
This model includes information about the devel-

opment technique used in an iteration. This tests

hypotheses HQ1 and HC1 directly. The development
technique is one-hot encoded with TLD as a reference
group. A statistically significant parameter for the
TDD level would mean that groups differ in quality /
coverage, hence affirming the alternative hypotheses.

3) Conformance Model:
In this model, we include information about the

average level of process conformance for each partic-
ipant and for each technique. The actual results for
process conformance give a fine-grained insight into
how well the participants adhered to the rules of
each development technique.

In each regression model, we include a random intercept
for both nesting effects (participant and task).

5.3.2 Code Quality

The results forHQ1 for all models are presented in Table 5.
We compare the models with LRT to verify if including

techniqueTDD and conformance variables is statistically
significant. While the results for Technique Model in
Table 6 suggest that including techniqueTDD variable in
the analysis is not justified (p ¼ 0:38), the additional com-
plexity of Conformance Model including techniqueTDD
and conformance variables is justified (p < 0:05), as shown
in Table 7.

The results for Conformance Model in Table 5 show that
higher process conformance has a minimal effect on reduc-
ing the number of bugs (�0:067) however, following TDD
gives 1.8 fewer bugs per iteration, than when using TLD.

5.3.3 Code Coverage

For testing the code coverage hypothesis, HC1, we use the
same strategy as for code quality. The results for HC1 for all
models are presented in Table 8.

Similarly to the code quality analysis, we compare the
models with LRT to verify if including techniqueTDD and
conformance variables is statistically significant. The results
for Technique Model in Table 9 justify including
techniqueTDD variable in the analysis (p < 0:05). In the
same way as presented in Table 10, the analysis justifies

TABLE 5
Models That Inform HypothesisHQ1 (Code Quality)

bugs_end

(1) (2) (3)

techniqueTDD 0.378 �1.814
(0.419) (0.883)

conformance �0.067
(0.024)

iteration 0.722 0.761 0.767
(0.321) (0.327) (0.314)

bugs_start �0.021 �0.046 �0.067
(0.145) (0.147) (0.144)

coverage_start �0.022 �0.025 �0.025
(0.017) (0.017) (0.017)

crashes_start 0.0003 0.0004 0.0004
(0.0004) (0.0004) (0.0004)

competencemixed 0.199 0.195 �0.764
(0.592) (0.591) (0.615)

competencenovice 1.950 1.947 0.639
(0.567) (0.566) (0.687)

Constant 1.594 1.544 7.399
(1.185) (1.200) (2.366)

Columns (1), (2) and (3) Present Reference Model, Technique Model and Con-
formance Model Respectively. Each row presents estimates with their standard
errors. The values for techniqueTDD are relative to the reference level given
by results for TLD technique. The values for competencenovice and
competencemixed are relative to the reference level given by the results for
the Intermediate block.

TABLE 6
LRTComparison of the Reference Model and Technique Model (Containing techniqueTDD Additional Variable) for Code Quality

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 10 516.26 543.44 �248.13 496.26
Technique Model 11 517.48 547.38 �247.74 495.48 0.78 1 0.3771

The bottom-right value shows the p-value for the justification for using the more complex model.

TABLE 7
LRTComparison of the Reference Model and Conformance Model (Containing techniqueTDD and conformance

Additional Variables) for Code Quality

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 10 516.26 543.44 �248.13 496.26
Technique Model 12 511.34 543.97 �243.67 487.34 8.9122 2 0.01161

The bottom-right value shows the p-value for the justification for using the more complex model.

1656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

including both techniqueTDD and conformance comparing
to the Reference Model (p < 0:05). As presented in Table 11,
comparing Technique Model and Conformance Model

suggests that it is better to stick to the simpler of these two
(p ¼ 0:57 for additionally including conformance in the
analysis).

The result for Technique Model in Table 8 show that fol-
lowing TDD gives 5 percentage point (pp) more code cover-
age per iteration, than when using TLD.

5.4 Competence Groups

The results for testing the additional hypothesis HBQ1 are
shown in Table 12. We choose a similar approach as for the
main hypotheses. For TDD and TLD separately, we start with
the Reference Model which takes into account the following
variables: iteration number (or number of weeks since the
beginning of the experiment), number of bugs, number of
crashes and code coverage at the beginning of the iteration.
The alternative model, Competence Model takes into account
the competence block for each participant. This results in four
models, two for TDD and two for TLDwhich are presented in
subsequent columns of Table 12.

To decide if the competenceintermediate and
competencenovice variables have significant impact on the
results we again use the LRT approach. The results are pre-
sented in Table 13 for TDD and in Table 14. The results for
both techniques suggest that the competence block makes a
significant difference and needs to be taken into account
(p� value < 0:05 for both TDD and TLD). Table 12 shows
that more skilled developers make fewer bugs (�1:15 per
iteration) when working without the less proficient with
TDD. For TLD, the effect seems negligible - fewer than one
bug per iteration. On the other hand, novices tend to make
more mistakes when working on code that is not shared
with more proficient developers (about 3 bugs per iteration
more for TDD). Again, the effect is much smaller for TLD.

TABLE 8
Models that Inform HypothesisHC1 (Code Coverage)

coverage_end

(1) (2) (3)

techniqueTDD 5.353 6.913
(2.085) (4.981)

conformance 0.048
(0.140)

iteration �0.657 0.338 0.365
(1.834) (1.520) (1.508)

bugs_start 0.045 �0.419 �0.419
(0.745) (0.738) (0.741)

coverage_start 0.326 0.237 0.234
(0.089) (0.083) (0.083)

crashes_start �0.001 �0.0003 �0.0003
(0.002) (0.002) (0.002)

competencemixed �1.290 �1.330 �0.649
(3.413) (3.361) (3.912)

competencenovice �5.989 �6.065 �5.128
(3.240) (3.190) (4.231)

Constant 58.421 59.221 55.178
(6.811) (5.688) (13.413)

Columns (1), (2) and (3) present Reference Model, Technique Model and Con-
formance Model respectively. Each row presents estimates with their standard
errors. The values for techniqueTDD are relative to the reference level given
by results for TLD technique. The values for competencenovice and
competencemixed are relative to the reference level given by the results for
the Intermediate block.

TABLE 9
LRTComparison of the Reference Model and Technique Model (Containing techniqueTDD Additional Variable) for Code Coverage

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 10 885.29 912.48 �432.65 865.29
Technique Model 11 879.70 909.60 �428.85 857.70 7.5934 1 0.005858

The bottom-right value shows the p-value for the justification for using the more complex model.

TABLE 10
LRTComparison of the Reference Model and Conformance Model (Containing techniqueTDD and conformance

Additional Variables) for Code Coverage

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 10 885.29 912.48 �432.65 865.29
Technique Model 12 881.38 914.00 �428.69 857.38 7.9157 2 0.0191

The bottom-right value shows the p-value for the justification for using the more complex model.

TABLE 11
LRTComparison of the Technique Model (Containing techniqueTDD Additional Variable) and Conformance Model (Containing

techniqueTDD and conformance Additional Variables) for Code Coverage

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 11 879.70 909.6 �428.85 857.70
Technique Model 12 881.38 914.0 �428.69 857.38 0.3223 1 0.5702

The bottom-right value shows the p-value for the justification for using the more complex model.

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1657

The same four models are constructed for hypothesis
HBC1 and are presented in Table 15.

The results for LRT for TDD are shown in Table 16 and for
TLD in Table 17. While for TLD the competence level is signifi-
cant (p� value < 0:05) it is not the case for TDD
(p� value ¼ 0:93). The results in Table 15 for TLD show that
proficient developers produce better code coverage by only
about 1pp when working alone than when sharing code with
the less proficient. On the other hand, the effect is more pro-
nouncedwhen comparing novices working alone to when they
have a proficientmember on their team:�12ppworse code cov-
erage. For TDD, there is no significant difference between the
Mixed block and the uniform (Intermediate andNovice) blocks.

5.5 Unit testing

For verifying if unit testing makes any sense in the context
of the tasks we designed for the participants, we compare
the overall results from all iterations between TDD, TLD

and NUT. We create a model taking into account the NUT
technique. The results are presented in Table 18. The rows
with dummy variables techniqueTDD and techniqueTLD
indicate when TDD or TLD were used resp., and show val-
ues relative to the reference level given by results for the
NUT technique. While the biggest effect comes from the
competence level, both unit-testing techniques result in 1.1
bugs fewer for TDD and 1.4 bugs fewer for TLD on average
per iteration than without using unit testing at all.

6 INTERPRETATION

The results of the analysis of the process conformance show
that it is much easier to follow rules of TLD than TDD. This
effect is especially present in the Novice block, and since the
difference between category “A” participants and category
“B” participants is statistically significant, we conclude that
the block design with blocks representing competence

TABLE 12
Models That Inform HypothesisHBQ1: Impact of Mixing

Competence Levels on Code Quality

bugs_end

(1) (2) (3) (4)

iteration 0.650 0.699 0.745 0.746
(0.394) (0.380) (0.422) (0.367)

bugs_start 0.222 0.077 0.208 �0.073
(0.159) (0.164) (0.156) (0.153)

coverage_start �0.029 �0.030 �0.026 �0.010
(0.021) (0.020) (0.025) (0.022)

competenceintermediate �1.153 0.829
(0.652) (0.765)

competencenovice 0.271 3.699
(0.630) (0.892)

Constant 2.730 3.314 1.978 �0.049
(1.417) (1.446) (1.478) (1.401)

Columns Show Results for Two Pairs of Models (1, 2) and (3, 4) for TDD and
TLD resp. Each pair consists of a Reference Model (columns 1 and 3 for TDD
and TLD resp.) and Competence Model (columns 2 and 4 for TDD and TLD
resp.). Each row presents estimates with their standard errors. The values for
competencenovice and competenceintemediate are relative to the reference
level given by the results for Mixed block.

TABLE 13
LRTComparison of the Reference Model and Competence Model (Containing competencenovice and competenceintermediate Addi-

tional Variables) for Code Quality With TDD

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 7 252.85 267.03 �119.43 238.85
Technique Model 9 250.48 268.71 �116.24 232.48 6.3735 2 0.04131

The bottom-right value shows the p-value for the justification for using the more complex model.

TABLE 14
LRTComparison of the Reference Model and Competence Model (Containing competencenovice and competenceintermediate Addi-

tional Variables) for Code Quality With TLD

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 7 281.49 295.67 �133.74 267.49
Technique Model 9 267.78 286.01 �124.89 249.78 17.704 2 0.0001431

The bottom-right value shows the p-value for the justification for using the more complex model.

TABLE 15
Models that Inform HypothesisHBC1: Impact of Mixing

Competence Levels on Code Coverage

coverage_end

(1) (2) (3) (4)

week 0.786 0.799 2.539 2.414
(1.591) (1.597) (1.100) (1.118)

bugs_start �0.800 �0.697 �1.415 �0.333
(0.822) (0.891) (0.654) (0.705)

coverage_start 0.202 0.198 0.075 0.009
(0.096) (0.097) (0.078) (0.078)

levelintermediate 0.585 1.671
(3.754) (4.062)

levelnovice �0.740 �12.020
(3.636) (4.625)

Constant 63.749 63.787 61.870 67.623
(5.709) (6.309) (4.084) (4.868)

Columns show results for two pairs of models (1, 2) and (3, 4) for TDD and
TLD resp. Each pair consists of a Reference Model (columns 1 and 3 for TDD
and TLD resp.) and Competence Model (columns 2 and 4 for TDD and TLD
resp.). Each row presents estimates with their standard errors. The values for
competencenovice and competenceintermediate are relative to the reference
level given by the results for Mixed block.

1658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

groups was an appropriate choice for this experiment. This
also indicates that the TDD technique has some consider-
able entry barrier, and was hard to follow for the novices,
with at most 40 percent process conformance among the
novices for TDD. The results for the intermediate develop-
ers also suggest that TDD is much harder than TLD: 51%�
70% range for TDD versus 70%� 97% for TLD.

The results and the analysis of the main outcomes of the
experiment suggest a significant impact of the software
development technique used on code quality and code cov-
erage. Using TDD gives on average 1.8 fewer bugs per week
and on average 5pp more code coverage per week, than
when following TLD. This implies the following conclusion
for the main hypotheses of this paper:

� HQ0 hypothesis is rejected in favor of HQ1: there is a
significant difference between the code quality of
code created using TDD and TLD, in favor of TDD,

� HC0 hypothesis is rejected in favor of HC1: there is a
significant difference between the coverage of code
created using TDD and TLD, in favor of TDD.

The effect for code quality is 1.8 which is relatively small
for short projects. Given the considerable entry barrier for
TDD, it may not be worth pursuing for teams not familiar
with this technique, just for avoiding at most eight bugs at
the end of a month-long project. This of course depends on
the criticality of the software and the severity of the bugs -
for systems dealing with business domains such as industry
process control, aviation or medicine, even a single bug is
unacceptable. For projects lasting longer than a month, 1.8
bugs per week piles up to a significant backlog, which may
be impossible to address when the team is focused on deliv-
ering subsequent features.

The effect for code coverage also seems small - only 5pp;
however, the code coverage at the end of an iteration
comes also from the code coverage at the beginning of the
iteration (0:24pp with 0.083 standard error). So, every per-
cent point of code coverage early in the project is easy to
maintain and hard to reclaim. The reason is that most fea-
tures developed by the participants are independent, and
there is no requirement in the experiment to improve the
code coverage first (as opposed to the requirement to fix
all remaining bugs first).

As a result, TDD seems to be a good practice to recom-
mend for long-term projects, where 1.8 bugs per week costs
more than an extensive TDD training for the developers.

Including the average conformance into the statistical
analysis is essential for observing the impact of TDD on
code quality. This is because there is considerable variance
in the conformance level between participants from the
same competence block. Thus, taking into account the actual
measure of the degree of conformance with the develop-
ment technique’s rules produce better differentiation
between the actual proficiency levels of the developers.
Figs. 7 and 8 present how the process conformance influen-
ces the outcome of the experiment. While TDD is much
harder to follow (the levels of process conformance are con-
siderably lower than for TLD), it improves code quality
much earlier on the conformance scale than TLD. Adhering
to TDD rules 60 percent of the time seems to be as good as
working according to TLD rules for 80� 90% of the time.
Similarly, much lower conformance levels (40� 70%) give
better code coverage than even the biggest conformance lev-
els for TLD (exceeding 90 percent). The reason might be that

TABLE 16
LRTComparison of the Reference Model and Competence Model (Containing competencenovice and competenceintermediate Addi-

tional Variables) for Code Coverage With TDD

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 7 437.32 451.5 �211.66 423.32
Technique Model 9 441.17 459.4 �211.59 423.17 0.1539 2 0.9259

The bottom-right value shows the p-value for the justification for using the more complex model.

TABLE 17
LRTComparison of the Reference Model and Competence Model (Containing competencenovice and competenceintermediate Addi-

tional Variables) for Code Coverage With TLD

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Reference Model 7 451.12 465.30 �218.56 437.12
Technique Model 9 445.50 463.73 �213.75 427.50 9.6142 2 0.008172

The bottom-right value shows the p-value for the justification for using the more complex model.

TABLE 18
Model for Number of Bugs at the End of
the Iteration for TDD and TLD With the

Reference Level Given by the NUT Technique

bugs_end

techniqueTDD �1.056
(0.627)

techniqueTLD �1.360
(0.622)

bugs_start �0.124
(0.146)

crashcount_start 0.001
(0.0004)

competencemixed �0.049
(0.612)

competencenovice 2.074
(0.595)

Constant 3.741
(0.979)

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1659

TDD’s rules are more strict and give more structure to the
way a developer works. As a result, even following these
rules loosely, gives more rigor to the software development
process than a simpler framework, such as TLD.

This also shows that process conformance is an essential
metric to take into account in experiments such as this one.
It is impossible to compare two techniques fairly when one
is followed in a considerably stricter manner than the other.

The results of the last part of the analysis additionally
validate the split between the Intermediate and the Novice
developers. The competence level is a significant factor for
code quality with TDD and TLD, with the biggest impact on
the Novices creating 3.6 bugs per iteration more when
working without a support of proficient developers. At the
same time, Intermediates make fewer mistakes (1.2 bugs
per iteration) when working without novices on the team.

Another interesting outcome of the analysis can be seen for
code coverage. On the one hand, the competence level is a sig-
nificant factor for TLD, showing that Novices lose 12pp of
code coverage per iteration when working alone, and Inter-
mediates gain 1:6pp of code coverage per iteration when
working without the influence of the Novices. On the other
hand, the competence level is not significant for TDD when
comes to code coverage. The reason for this might be that
TDD, being a more strict process than TLD, narrows the gap
between the Intermediate and the Novice developers when it
comes to code coverage. Overall, we conclude that HBQ0 and
HBC0 hypotheses should be rejected in favor of HBQ1 and
HBC1: mixing competence levels has significant impact on
code quality (for TDD andTLD) and code coverage (for TLD).

These two findings related to Novices working alone or
togetherwith Intermediates imply two important conclusions:

� for the industry: novice developers have a significant
negative impact on the work done by their more
experienced teammates in terms of external code
quality. This effect can be partially mitigated by
using TDD, as the difference becomes insignificant
in terms of code coverage,

� for research: isolating intermediate and novice devel-
opers has a significant impact on the outcomes of an
experiment.

Finally, the short validation at the end of the analysis sec-
tion suggests that the tasks chosen for the experiment are of
appropriate complexity, making it easier not to make mis-
takes if unit testing is employed. Thus, applying unit testing
techniques for these tasks is justified.

6.1 Threats to Validity

The validity of the proposed experiment design is analysed
with respect to four types of validity: conclusion, construct,
internal, and external [42]. The conclusion validity threats
impact the quality of the statistical analysis of the results,
construct validity threats impact the relevance of the results
to the studied phenomenon, internal validity threats influ-
ence the independent variables without the researcher’s
knowledge and external validity threats influence the possi-
ble generalization of the results to the industrial practice.

The following threats to validity are identified:

� Conclusion validity: Sample size, Selective and rigor-
ous process conformance analysis, Different task types

� Internal validity: Selection of the participants, Task
experience carry-over, Technique switching carry-
over, Fatigue of the participants, Maturation of the
participants, Enforced committing scheme

� External validity: Selection of the participants, Task
experience carry-over, Technique switching carry-
over, Separation from infrastructural concerns,
Enforced committing scheme

� Construct validity: Selection of the participants,
Selective and rigorous process conformance analysis,
Task experience carry-over, Technique switching
carry-over, Enforced committing scheme, Separation
from infrastructural concerns

We analyse them in the following paragraphs, with the
last subsection containing the conclusion of the validity
threat analysis.

Sample Size. Given the complexity and the diversity of the
subject, 19 participants working on an over month-long
project with six iterations does not appear to be a large sam-
ple. However, in the context of related work, 19 subjects are
not uncommon (see Table 1 in Section 2.1). Also, with about

Fig. 7. Diagram of the influence of process conformance on the number
of bugs for TDD and TLD. All the data points have conformance in the
range ½20%; 97%� and the number of bugs in the range ½0; 17� - graph
axes are clamped to these ranges for better graph readability.

Fig. 8. Diagram of the influence of process conformance on the code
coverage for TDD and TLD. All the data points have conformance in the
range ½20%; 97%� and the coverage in the range ½22%; 94%� - graph axes
are clamped to these ranges for better graph readability.

1660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

3040 person-hours, this experiment is classified as large
using the scale proposed in [31].

Selective and Rigorous Process Conformance Analysis. The
process conformance analysis proposed in this paper is rig-
orous in the sense that commits classified as unknown are
not ignored, but treated in the same way as bad. Such com-
mits may contain a valid step, perfectly acceptable within
the rules of a technique – however, our classification algo-
rithm is unable to detect that. While this impacts the values
of the conformance variable, and thus, the results of the sta-
tistical tests, it makes our conclusions valid for a very strict
definition of the analysed techniques. On average, there are
only 28 percent of unknown commits among the participants
(SD 11 percent), so the vast majority of their work is classi-
fied properly.

Another aspect of rigorous process conformance is that
very few participants appear to have followed the rules of
techniques as they should have. It can be argued that it is
hard to make any conclusions about TDD when even the
more experienced participants have not been working
according to the rules of TDD roughly half of the time.
However, our process conformance validation has very
high sensitivity and low specificity to ensure not counting
any actions not evidently valid as representative for a given
technique. Thus, we argue that the differences among the
participants are more important than the absolute values of
the results of the process conformance validation procedure
and the statistical differences between the competence
blocks are significant.

Additionally, while the process conformance analysis is
rigorous when comes to the committing scheme it does not
cover ensuring that no tests were written when working
with the NUT technique, and that the development steps
when working with TDD and TLD are of appropriate sizes.
For example, even though TLD is defined as creating tests
after first draft of a complete task has been completed, there
is no way of verifying that the participants did so. This is a
very hard problem in general, that can be solved only by
screen recording or personal supervision of each partici-
pant. Selection of the Participants. Personal experience has a
great impact on the effectiveness of using development
techniques. A comparison of TDD and TLD, as equally well
defined methods, should be organized with the participa-
tion of developers equally acquainted with them. This is
theoretically possible, but difficult to achieve. What makes
it especially hard is the status of the TDD method – still con-
sidered “new” and not universally adopted, both in aca-
demic education and in the industry. This is mitigated by
the following measures:

� the same training attended by the same participants,
followed up by one warm-up iteration,

� dividing participants into competence blocks,
� switching of techniques, so every participant is con-

tributing to each technique equally,
� commit strategy, which provides a uniform, struc-

tured process of working for the participants,
� monitoring of process conformance, which allows

excluding commits not matching rules of the
required technique and is accounted for in statistical
analysis.

Another aspect of selection of the participants validity
threat is participants’ personal attitudes. Any comparison
between software development techniques cannot be blind,
the participants need to know what method they are using
and thus cannot escape any personal attitude towards
them. In the case of the TDDmethod, there still seem to exist
some strong convictions in the industry that make it look
novel, counter-intuitive, challenging, and weird. All these
features can have a psychological impact on a pro-
grammer’s approach, making them more or less willing and
more or less at ease with the work.

Finally, the participants were inexperienced developers
and the experiment aims to measure aspects of techniques
employed by professionals. This is not necessarily a bad
thing: the more experienced a developer the more personal
convictions toward specific techniques, including having
favorite or hated technique. While it is not uncommon in the
industry to employ students, that group may seem to be not
representative for all developers. Students do however rep-
resent the group of people that will, in a year or two,
become junior developers. Thus, the conclusions of this paper
are mainly relevant to junior programmers, however, when
considering a new programming technique, students have
been shown to be as representative as professionals in soft-
ware engineering research [35].

Maturation of the Participants. The experience of the pro-
grammers can significantly increase as the project develops
and change the quality of their work through time. Neither
can we exclude a dependency resulting from communica-
tion between the participants during each iteration. The par-
ticipants were asked not to talk to each other about their
tasks/repositories, but we are unable to judge what their
mutual influence was. This aspect is hard to avoid – espe-
cially novice programmers can be expected to advance
quickly in their fluency with an exercised technique.

Task Experience Carry-Over. The carry-over problem arises
when a task is left unfinished in a repository (i.e., some
acceptance tests for this task are failing) at the end of an iter-
ation. During the next iteration, this task is solved by
another participant. The solution is however influenced by
the fact that it is this participant’s second attempt, because
they have already been working on the same task in a differ-
ent repository, during the previous iteration. Implementing
the same task for the same project twice in a row does not
seem like something that happens often in the real world.
The impact of such a scenario however does not seem
completely undesirable – the failing acceptance tests and
unit test coverage from the issue’s original iteration are cor-
rectly accounted for and the accumulation of bugs is some-
thing that happens in the real world. The disturbance is that
the next developer has less time to work on issues assigned
to their current iteration because bugs need to be fixed first.
But this again, can be seen as a consequence of the technique
assigned to that particular repository.

Technique Switching Carry-Over. The authors of [9] argue
that switching between development techniques can signifi-
cantly distort the results of an experiment. Switching from
TLD to TDD seems not to be an issue, since the qualifica-
tions for the first one are also essential to the latter. Switch-
ing back from TDD to TLD may be problematic. We cannot
rule out the possibility that an implementation committed

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1661

before a unit test was actually created with a unit test or at
least a rough idea for a unit test in mind. We have tried to
minimize this possibility with two counter-measures: (i)
every participant attended exactly the same two week train-
ing, where TDD and TLD were presented as two very simi-
lar approaches with some vital differences in the ordering
of the activities involved in creating implementation and
tests, (ii) the repository switching procedure was always
executed through the weekend, so, each participant finished
their work on Friday, and started working with a different
technique on Monday, after a two day rest. Additionally,
TDD and TLD iterations were separated with NUT itera-
tions whenever possible.

Also, we cannot rule out a possibility that for any tech-
nique the order of commits was fake and did not reflect the
true sequence of implementation steps. Our only counter-
measure for this problem was that the participants were not
aware of the existence of process conformance calculation
procedure and they knew that repositories were anony-
mized after each iteration, so their performance would not
be used for any personal evaluation. Additionally, they
were asked for honesty, and meeting each of them person-
ally, we had no suspicion of bad intentions (but this of
course cannot be verified).

Fatigue of the Participants. The schedule during the experi-
ment was relaxed – the subjects were allowed to decide
how many hours they are willing to work each day, as per-
formance and time optimization were not under investiga-
tion in the experiment. The working time was not
controlled or monitored, however excessive overtime was
impossible due to offices being closed in the afternoon. The
subjects had no other responsibilities, so fatigue could only
come from the participation in the experiment itself, which
is unavoidable.

Enforced Committing Scheme. The enforced work scheme,
although mitigating some other validity threats, introduces
an uncommon work pattern for the participants. Instead of
focusing on the technique, they can be only blindly follow-
ing the commit pattern. Also, this way of working does not
represent the way developers work in the real world. Thus,
it can be argued that the results of the experiments cannot
attributed solely to TDD, but were a result of the rigid com-
mitting scheme. To mitigate, during training weeks, the
commit scheme was introduced as part of the techniques
(as additional steps), not as a driving force of the technique.
While there is no way to decide how this pattern could
influence the results, it is important to note that the partici-
pants were not aware of the results of the conformance vali-
dation, so they could not try to influence their results
during the experiment. Also, committing scheme is related
to the way a source control system is used, not necessarily
relevant to the development technique and can be seen only
as a minor distraction when writing the code.

Separation From Infrastructure Concerns. In industry, pro-
grammers usually work with the complete system and are
not restricted to a selected set of objects within it. Even
when the system is split into components and different
teams are responsible for various items, complete separa-
tion from underlying infrastructure is not possible. How-
ever, when a new person is joining the already existing
large project, it takes weeks or months to comprehend the

complete system. During that time the novice programmer
treats the unknown parts of the system as black-box, simi-
larly as in this experiment.

Different Task Types. The difference between bugs – left-
overs from previous iteration and new features – tasks
assigned to the current iteration is not taken into account
directly in the analysis, so may confound the results. How-
ever, the bugs start variable is included in the linear models
used for analysis and it tells how many leftovers there were
in each iteration. Since the number of new features is prede-
fined and identical among all participants, the values of this
variable imply the relation between the amount of bug-fix-
ing work and new-features work.

Conclusion. The results of this experiment are analysed
using well known statistical techniques. The chosen vari-
ables: number of failing acceptance tests and code cover-
age are appropriate for representing the quality of
produced software and can be measured in an objective
way, relying on automatic tests and code coverage tool.
The validity threats that seem to be the most impactful
are related to the enforced committing scheme and the
sample size. Hence, the conclusions from this experiment
might not relate to a typical, practical approach to TDD
and the experiment should be replicated to increase the
sample size.

7 CONCLUSIONS AND FUTURE WORK

This paper presents an experiment intended to compare the
effects of software development techniques, namely Test-
Driven Development (TDD) and Test-Last Development
(TLD) on code quality. The experiment’s design combines
the following features:

� Using a commercial, industrial project, with real-
world requirements;

� Validating how well the participants conform to the
rules of the required programming technique;

� Focusing the implementation on the business logic
and separating the participants from infrastructural
concerns;

� Random repository switching, among 19 repositories
with the same requirements implemented;

� Validating tasks’ complexity to justify application of
unit testing techniques.

The most important findings are as follows:

� TDD results in significantly higher external code
quality than TLD (1.8 bugs per week fewer),

� TDD results in significantly higher test quality than
TLD (5pp code coverage per week more),

� TDD is a difficult practice to follow, especially for
novices, resulting in significantly lower process con-
formance with the technique’s rules than for TLD,

� including process conformance results in analysis is
essential to observe TDD’s positive influence,

� even though following TDD strictly is much more
difficult for novices, it results in no significant differ-
ence w.r.t. code coverage between intermediate and
novice developers (this is not the case for TLD),

� for external code quality, isolating intermediate
developers from the novices has a significant impact

1662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

on the outcome of experimental comparison of soft-
ware development techniques.

All findings are consistent with the majority of current
research.

Future work includes continuing the experiment on the
same code base, with follow-up requirements (possibly
from the company’s customers). Data from two months and
another 19 developers would greatly improve the quality of
the results. Including some professional developers in the
experiment with the same code-base and requirements
would provide valuable insights into the difference between
TDD and TLD. Given the findings of the current experi-
ment, for a similar task complexity and a similar number of
participants the following experiment could use all the
available resources on comparing TDD and TLD in isolated
competence groups, without sacrificing part of the data for
the Mixed block and No Unit Tests technique. Also, to help
understanding and tuning the proposed process confor-
mance analysis, a baseline could be obtained from someone
known to know TDD and TLD well.

ACKNOWLEDGMENTS

This work was funded within the GasLux product group,
by Transition Technologies S.A. Thanks are due to Dr Katar-
zyna Bartkiewicz and Dr Piotr Gawkowski for the article
review and valuable comments.

REFERENCES

[1] M. Cohn, Succeeding With Agile: Software Development Using Scrum,
Reading, MA, USA: Addison-Wesley, 2010.

[2] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep, and H. Erdog-
mus, “What do we know about test-driven development?,” IEEE
Softw., vol. 27, no. 6, pp. 16–19, Nov./Dec. 2010.

[3] H. Munir, M. Moayyed, and K. Petersen, “Considering rigor and
relevance when evaluating test driven development: A systematic
review,” Inf. Softw. Technol., vol. 56, no. 4, pp. 375–394, 2014.

[4] D. Janzen and H. Saiedian, “Does test-driven development really
improve software design quality?,” IEEE Softw., vol. 25, no. 2,
pp. 77–84, Mar. 2008.

[5] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo, “A
dissection of the test-driven development process: Does it really
matter to test-first or to test-last?,” IEEE Trans. Softw. Eng., vol. 43,
no. 7, pp. 597–614, Jul. 2017.

[6] L. Madeyski, Test-Driven Development: An Empirical Evaluation of
Agile Practice. Berlin, Germany: Springer, 2010.

[7] T. Bhat and N. Nagappan, “Evaluating the efficacy of test-driven
development: Industrial case studies,” in Proc. 5th ACM/IEEE Int.
Symp. Empir. Softw. Eng., 2006, pp. 356–363.

[8] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams,
“Realizing quality improvement through test driven develop-
ment: Results and experiences of four industrial teams,” Empir.
Softw. Eng., vol. 13, no. 3, pp. 289–302, Jun. 2008. [Online]. Avail-
able: http://dx.doi.org/10.1007/s10664–008-9062-z

[9] M. Pan�cur and M. Ciglari�c, “Impact of test-driven development
on productivity, code and tests: A controlled experiment,” Inf.
Softw. Technol., vol. 53, no. 6, pp. 557–573, Jun. 2011.

[10] A. Tosun et al., “An industry experiment on the effects of test-
driven development on external quality and productivity,” Empir.
Softw. Eng., vol. 22, pp. 1–43, 2016.

[11] A. Ko et al., “The state of the art in end-user software engineer-
ing,” ACM Comput. Surv., vol. 43, pp. 1–44, 2011.

[12] T. W. Williams, M. R. Mercer, J. P. Mucha, and R. Kapur, “Code
coverage, what does it mean in terms of quality?,” in Proc. Int.
Symp. Product Quality Integrity Annu. Rel. Maintainability Symp.,
2001, pp. 420–424.

[13] D. Fucci, B. Turhan, and M. Oivo, “Impact of process conformance
on the effects of test-driven development,” in Proc. 8th ACM/IEEE
Int. Symp. Empir. Softw. Eng. Meas., 2014, Art. no. 10.

[14] K. Becker, B. de Souza Costa Pedroso, M. S. Pimenta, and
R. P. Jacobi, “Besouro: A framework for exploring compliance
rules in automatic TDD behavior assessment,” Inf. Softw. Technol.,
vol. 57, pp. 494–508, 2015.

[15] Y. Wang and H. Erdogmus, “The role of process measurement in
test-driven development,” in Proc. Conf. Extreme Program. Agile
Methods, 2004, pp. 32–42.

[16] H. E. Hongbing Kou, and Philip M. Johnson, “Operational defini-
tion and automated inference of test-driven development with
zorro,” Automated Softw. Eng., vol. 17, no. 1, 2010, Art. no. 57.

[17] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Kagawa, and
T. Yamashita, “Practical automated process and product metric
collection and analysis in a classroom setting: Lessons learned
from hackystat-UH,” in Proc. Int. Symp. Empir. Softw. Eng., 2004,
pp. 136–144.

[18] J. Hoewe, Manipulation Check. Atlanta, GA, USA: American Can-
cer Society, 2017, pp. 1–5.

[19] D. Falessi et al., “Empirical software engineering experts on the
use of students and professionals in experiments,” Empir. Softw.
Eng., vol. 23, pp. 452–489, 2017.

[20] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A. Visaggio,
“Productivity of test driven development: A controlled experi-
ment with professionals,” in Proc. 7th Int. Conf. Product-Focused
Softw. Process Improvement, 2006, pp. 383–388.

[21] B. George and L. Williams, “An initial investigation of test driven
development in industry,” in Proc. ACM Symp. Appl. Comput.,
2003, pp. 1135–1139.

[22] B. George and L. Williams, “A structured experiment of test-
driven development,” Inf. Softw. Technol., vol. 46, no. 5, pp. 337–
342, 2004. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0950584903002040

[23] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effective-
ness of the test-first approach to programming,” IEEE Trans.
Softw. Eng., vol. 31, no. 3, pp. 226–237, Mar. 2005.

[24] L. Williams, E. M. Maximilien, and M. Vouk, “Test-driven devel-
opment as a defect-reduction practice,” in Proc. 14th Int. Symp.
Softw. Rel. Eng., 2003, pp. 34–45.

[25] K. M. Lui and K. C. C. Chan, “Test driven development and soft-
ware process improvement in china,” in Proc. 5th Int. Conf.
Extreme Program. Agile Processes Softw. Eng., 2004, pp. 219–222.

[26] O. H. M. M€uller, “Experiment about test-first programming,”
IEEE Proc. Softw., vol. 149, no. 5, pp. 131–136, Oct. 2002.

[27] M. M. M€uller and W. F. Tichy, “Case study: Extreme program-
ming in a university environment,” in Proc. 23rd Int. Conf. Softw.
Eng., 2001, pp. 537–544.

[28] D. S. Janzen and H. Saiedian, “On the influence of test-driven
development on software design,” in Proc. 19th Conf. Softw. Eng.
Educ. Training, 2006, pp. 141–148.

[29] H. Munir, K. Wnuk, K. Petersen, M. Moayyed, and K. Se, “An
experimental evaluation of test driven development vs. test-last
development with industry professionals,” in Proc. ACM Int. Conf.
Proc. Series, 2014, pp. 1–10.

[30] M. C. Turnu, “Modeling and simulation of open source develop-
ment using an agile practice,” J. Syst. Archit., vol. 52, no. 11,
pp. 610–618, 2006.

[31] B. Turhan, L. Layman, M. Diep, F. Shull, and H. Erdogmus, How
Effective is Test Driven Development. Sebastopol, CA, USA: O’Reilly
Media, 2010, pp. 207–219.

[32] W. Bissi, A. G. S. S. Neto, and M. C. F. P. Emer, “The effects of test
driven development on internal quality, external quality and pro-
ductivity: A systematic review,” Inf. Softw. Technol., vol. 74,
pp. 45–54, 2016.

[33] K. Beck, Test Driven Development: By Example. Boston, MA, USA:
Addison-Wesley, 2002.

[34] M. L. Mitchell and J. M. Jolley, Research Design Explained. Belmont,
CA, USA: Wadsworth Publishing, 2012.

[35] I. Salman, A. T. Misirli, and N. Juristo, “Are students representa-
tives of professionals in software engineering experiments?” in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., 2015, pp. 666–676.

[36] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Reading, MA, USA: Addison-Wesley, 2003.

[37] R. Miller, Simultaneous Statistical Inference. New York, NY, USA:
Springer, 2012.

[38] S. Sawilowsky, “New effect size rules of thumb,” J. Modern Appl.
Statist. Methods, vol. 8, pp. 597–599, 2009.

[39] K. O. McGraw and S. P. Wong, “A common language effect size
statistic,” Psychol. Bull., vol. 111, pp. 361–365, 1992.

PAPIS ETAL.: EXPERIMENTAL EVALUATION OF TEST-DRIVEN DEVELOPMENTWITH INTERNS WORKING ON A REAL INDUSTRIAL... 1663

http://dx.doi.org/10.1007/s10664--008-9062-z
http://www.sciencedirect.com/science/article/pii/S0950584903002040
http://www.sciencedirect.com/science/article/pii/S0950584903002040

[40] R. D. Gibbons, D. Hedeker, and S. DuToit, “Advances in analysis
of longitudinal data,” Annu. Rev. Clin. Psychol., vol. 6, no. 1,
pp. 79–107, Mar. 2010.

[41] H. Baayen, D. Davidson, and D. Bates, “Mixed-effects modeling
with crossed random effects for subjects and items,” J. Memory
Lang., vol. 59, pp. 390–412, 2008.

[42] C. Wohlin, P. Runeson, M. H€ost, M. Ohlsson, B. Regnell, and
A. Wessl�en, Experimentation in Software Engineering. Berlin,
Germany: Springer, 2012.

Bartosz Papis received the MSc and PhD
degrees in computer science from the Warsaw
University of Technology, Poland, in 2008 and
2015, respectively. From 2006 to 2018 he was
with Transition Technologies S.A. in Warsaw,
working as a developer, software architect, and
scrum master. From 2018 he was with Sonova
working as a software engineer and since 2019
he has been working at Google. His research
interests include machine learning and software
engineering.

Konrad Grochowski received BSc and MSc
degrees in computer science from the Warsaw
University of Technology, Poland, in 2008 and
2010, respectively. From 2006 to 2014 he was
with Transition Technologies S.A. in Warsaw,
working as a Software Architect. From 2014 he is
with Warsaw University of Technology working as
research assistant. Since 2014 he is also working
with N7 Space Sp. z o.o. on development of
space on-board software. His research interests
include software engineering and systems
dependability.

Kamil Subzda received the MSc degree in elec-
tronics from theWroc»awUniversity of Science and
Technology, Poland, in 2009. From 2008 he is with
Nexwell Engineering in Wroc»aw, working as a
developer and embedded software architect.

Kamil Sijko received the MA degree in psychol-
ogy. Heworked at theWarsawSchool of Social Sci-
ences, Polish Educational Research Institute,
currently working at Transition Technologies S.A.
as a lead data scientist. Experienced in social
research (surveys, sampling, qualitative and quan-
titative approach), educational research (IRT, inter-
national surveys, complex sampling). Currently
working with big-data in medical field. founder and
board member of CoderDojo Poland Foundation,
fellowmentor at CoderDojo Zambr�ow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

