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Abstract—Keeping track of and managing Self-Admitted Technical Debts (SATDs) are important to maintaining a healthy software project. This requires
much time and effort from human experts to identify the SATDs manually. The current automated solutions do not have satisfactory precision and recall in
identifying SATDs to fully automate the process. To solve the above problems, we propose a two-step framework called Jitterbug for identifying SATDs.
Jitterbug first identifies the “easy to find” SATDs automatically with close to 100% precision using a novel pattern recognition technique. Subsequently,
machine learning techniques are applied to assist human experts in manually identifying the remaining “hard to find” SATDs with reduced human
effort. Our simulation studies on ten software projects show that Jitterbug can identify SATDs more efficiently (with less human effort) than the prior
state-of-the-art methods.

Index Terms—Technical debt, software engineering, machine learning, pattern recognition.
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1 Introduction
Recently, much research has been focused on identifying the “Self-
Admitted Technical Debts” (SATDs) from source code comments.
Keeping track of and managing these SATDs are important to
maintaining a healthy software project as they (1) are diffused
in the codebase; (2) increase over time and accumulate interests
when not fixed in time; (3) even when fixed, it survives long time
(over 1,000 commits on average) in the system [1]; and (4) make
the code more difficult to change in the future [2]. What we found
in this work is that there are two types of SATDs:
• The “easy to find” SATDs, which can be automatically identi-
fied without human verification in almost 100% precision. As an
example, the comments containing keywords like “fixme, todo”
are almost always related to SATDs.

• The “hard to find” SATDs, which only human experts can
accurately decide whether they are SATDs or not. As an ex-
ample, the comment “Modify the system class loader instead -
horrible! But it works!” can be easily classified as an SATD by
human experts but remains a hard problem for algorithms.
The most important message we want to convey is

Do not waste effort on finding the “easy to find” SATDs, focus
more on identifying the “hard to find” SATDs.

Current solutions for identifying SATDs do not separate the
two types of SATDs, and belong to either pattern-based ap-
proaches or machine learning approaches. Researchers exploring
pattern-based approaches first manually inspect code comments
and label each one as SATD or non-SATD, then manually analyze
the labeled items and summarize patterns for SATDs, e.g. if a
comment has keywords like “hack, fixme, probably a bug”, then it
has a high chance of being related to a SATD. On the other hand,
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machine learning approaches first train a classification model on
the manually labeled comments, then predict for which comments
are related to SATDs (usually on a “hold-out” test set so that
performance metrics like precision and recall can be calculated).
Limitations exist in both approaches:
• Pattern-based approaches require large amounts of human effort
in analyzing and summarizing effective patterns.

• Since not all SATDs are “easy to find,” many of the patterns
identified by the pattern-based approaches from some source
projects could be ineffective in a new, unseen project.

• Even the state-of-the-art machine learning approaches can only
reach around 78% F1 score [3] and 74% AUC [4] (to which
the “easy to find” SATDs contribute greatly). That means
the process cannot be fully automated without human experts
checking the algorithms’ decisions and making the final call.
Acknowledging the existence of the two types of SATDs, we

address the SATD identification problem in two steps:
• Step 1: identify the “easy to find” SATDs automatically. The
comments containing keywords like “fixme, todo” are almost
always related to SATDs. This suggests that there exist strong
patterns that could be used to identify such “easy to find” SATDs
automatically, with very high precision. The key challenge of
this step is to automatically identify these strong patterns with
close to 100% precision so that human experts do not need to
verify the results.

• Step 2: guide human experts to manually read the comments
without strong patterns looking for the remaining “hard to
find” SATDs. The remaining “hard to find” SATDs cannot be
accurately identified through machine learning algorithms. Hu-
man efforts are essential for identifying such SATDs. Therefore,
the key challenge of this step is to (1) guide the human effort to
the comments that most likely contain SATDs, and (2) provide
information such as an estimation of the number of undiscovered
SATDs to help human experts make trade-off choices, such as
deciding on when to stop the process.
As shown in Figure 1, We designed Jitterbug, a two-step frame-
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Fig. 1: Workflow of Jitterbug.

work. In Step 1, Jitterbug utilizes a novel pattern recognition
technique to identify patterns that could yield very high precision
(if one comment has the recorded patterns then there is a close
to 100% chance it is related to SATDs). In Step 2, Then machine
learning models are trained to guide humans to discover SATDs
from comments that do not have high precision patterns, as well
as to estimate the number of SATDs left in the comments. This
idea of separating the SATD identification problem into two steps
provides the following advantages: (1) Mining patterns in Step
1 becomes easy since high recall is no longer a requirement. (2)
Human efforts are only spent in Step 2 on the “hard to find”
SATDs— there is zero human effort and consequently negligible
cost for finding the “easy to find” SATDs in Step 1.
Simulated on the latest SATD dataset from Maldonado and

Shihab [5], we ask and answer the following research questions.
RQ1: How to find the strong patterns of the “easy to

find” SATDs in Step 1? First, on 9 training projects, a pattern
recognizer named Easy, with fitness function specifically designed
to achieve high precision, is applied to identify patterns with
precision higher than 80%. Then, the identified patterns are used
on the holdout project to test the performance. We also conduct a
validation study by manually analyzing the comments containing
the strong patterns found with Easy but were labeled as Non-
SATDs in the dataset. Interesting findings were discovered during
our exploration of this step:
1) Easy detects the same set of strong patterns— “todo, fixme,
hack, workaround” for every target project.

2) Easy achieves close to 100% precision (100% on eight projects
and 99% on two projects) on identifying the “easy to find”
SATDs. These results are higher than the human-derived set of
patterns— “todo, fixme, hack, xxx” from Guo et al. [6] (MAT).

3) Easy is even more accurate than human experts in identify-

ing the “easy to find” SATDs since 98% of the conflicting
comments, which were labeled as Non-SATDs by humans but
contain the patterns from Easy, are identified as SATDs in our
validation study.

4) Although Easy is an algorithm with close to 100% precision
and barely any cost (training takes seconds), it alone can only
identify 20% to 90% of the SATDs. Thus it is necessary for
Step 2 to find the remaining “hard to find” SATDs.

RQ2: How to find the “hard to find” SATDs efficiently with
human experts? After all the “easy to find” SATDs are filtered
out, only the “hard to find” SATDs persist in the dataset. First,
we will show in RQ2.1 that the “hard to find” SATDs cannot be
automatically detected without human oracles. Then the human-
in-the-loop approach Hard is designed in RQ2.2 and RQ2.3. As
shown in Figure 1, a machine learning model is trained to rank the
remaining comments. Human oracles are queried for the top rank
comments and then those oracles are used to update the machine
learning model. This loop will iterate until the target level of recall
has been reached in estimation. The advantage of this human-in-
the-loop strategy is that the information in both source projects
and newly labeled data in the target project can be utilized to
better direct human effort towards comments that are more likely
to contain SATDs. Our results in RQ2.2 show that this strategy
finds more SATDs with fewer human oracles than the state-of-the-
art supervised learning techniques where only information from
the training datasets is utilized. Meanwhile, RQ2.3 shows that the
number of undiscovered SATDs can be accurately estimated by
Hard, thus helping the human experts make decisions on whether
to spend more time looking for the “hard to find” SATDs or to
stop at that point.

RQ3: Overall how does Jitterbug perform? We evaluate
the overall performance of Jitterbug with three sub RQs. In
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RQ3.1, it is shown that Jitterbug can always find more SATDs
with less human effort compared to other state-of-the-art methods
as well as Easy or Hard alone. RQ3.2 evaluates Jitterbug
when it stops at 90% target recall. Results show that Jitterbug
always achieves higher recall than another more complex baseline
algorithm CNN [3], and Jitterbug binary dominates CNN [3] in
terms of recall and cost on 2 of the 10 projects. This suggests that
Jitterbug is a better framework than CNN [3] while the model
of CNN [3] has the potential to further improve the performance
of Jitterbug. In RQ3.3, the computational overhead of Jitterbug
is similar to that of a traditional supervised learning model (34
seconds), and is much lower than training a deep learning model
(3,548 seconds [3]). With a human reviewing 3 comments per
minute (estimated with our own experience in classifying SATD
comments), on a medium-sized project with 5,000 comments,
Jitterbug finds in median 97% of the SATDs in 4.5 hours while
reviewing all the comments would have cost 28 hours. Therefore,
more than 23 hours of human work can be saved for each project
when using Jitterbug.

1.1 Contributions of this Paper
1) In this paper, we show that there are two types of SATDs:
the “easy to find” ones that can be identified without human
verification, and the “hard to find” ones that only humans can
make the final decisions on.

2) A novel two-step framework Jitterbug is proposed to identify
the two types of SATDs. This framework first identifies the
“easy to find” SATDs automatically with a novel pattern recog-
nition technique, then applies machine learning techniques to
assist human experts in manually identifying the remaining
“hard to find” SATDs with reduced human effort.

3) A novel pattern recognition technique Easy is presented to find
strong patterns with close to 100% precision for the “easy to
find” SATDs. Results show that its precision is even higher than
humans’, thus making it reliable to be applied automatically.

4) A continuous learning framework Hard is shown to outper-
form other supervised learning models in retrieving the “hard
to find” SATDs with less human effort, and also to provide
information on how many more SATDs there are to be found.

5) All code and data in this work are available1, allowing other
researchers to replicate, improve, or even refute our findings.
The rest of this paper is structured as follows. Background and

related work are discussed in §2. Our methodology is described
in §3. This is followed by the details of the SATD datasets in
§4. Experiment (simulation) design and answers to the research
questions are then presented in §5. In §6, Jitterbug is applied to
identify SATDs from a real-world, unlabeled software project with
a human reading the comments to test its generalizability. Threats
to the validity of this work are analyzed in §7. Lastly, conclusion
and future work are provided in §8.

2 Background and Related Work
2.1 About Technical Debt
When developers cut corners and make haste to rush out code, that
code often contains technical debt (TD), i.e. decisions that must be
repaid, later on, with further work. Technical debt is like dirt in the
gears of software production. As TD accumulates, development
becomes harder and slower. Ever since the term technical debt

1. https://github.com/ai-se/Jitterbug

(TD) was first introduced by Cunningham in 1993 [7], it has
been found to be a widespread problem in the software industry
damaging many aspects of a system including evolvability (how
fast we can add new functionality) and maintainability (how well
we can keep bugs out of the code) [7], [8], [9]:
• In 2012, after interviewing 35 software developers from diverse
projects in different companies, varying both in size and type,
Lim et al. [10] found developers generate TD due to factors
like increased workload, unrealistic deadline in projects, lack of
knowledge, boredom, peer-pressure among developers, unaware-
ness or short-term business goals of stakeholders, and reuse of
legacy or third party or open-source code.

• After observing five large-scale projects, Wehaibi et al. [2] found
that the number of technical debts in a project may be very low
(only 3% on average), yet they create a significant amount of
defects in the future (and fixing such technical debts are more
difficult than regular defects).

• Another study on five software large-scale companies revealed
that TDs contaminate other parts of a software system and most
of the future interests are non-linear in nature with respect to
time [11].

• According to the SIG (Software Improvement Group) study of
Nugroho et al. [9], a regular mid-level project owes $857, 500
in TD and resolving TD has a Return On Investment (ROI) of
15% in seven years.

• Guo et al. [8] also found similar results and concluded that the
cost of resolving TD in the future is twice as much as resolving
immediately.

• As Ozkaya et al. [12] revealed, technical debt affects multiple
aspects of the software development process and is mostly
invisible.
Therefore, identifying TD has a large impact on software devel-
opment. However, limited success has been achieved while much
research tried to identify TD as part of Code Smells using static
code analysis [13], [14], [15], [16], [17]. Static code analysis has
a high rate of false alarms while imposing complex and heavy
structures for identifying TD [18], [19], [20], [21].

2.2 Identifying Self-Admitted Technical Debt

Recently, much more success has been seen in work on the “self-
admitted technical debt” (SATD). Technical debt is often “self-
admitted” by the developer in code comments [22], thus making
it much easier to find. Identifying and tracking these SATDs have
large benefits:
• Removing the SATDs early reduces the maintenance cost of a
software project. As reported by Wehaibi et al. [2] in 2016, these
SATDs have negative implications on the software development
process in particular by making it more difficult to change in the
future.

• SATDs can provide cheap training data for learning to identify
technical debts (TDs). SATDs are not a specific type of TDs,
rather they are the TDs that have been “admitted” by the
developers. SATDs also cover the different types of TDs such
as code, defect, and requirement debts [1].
In 2014, after studying four large-scale open-source software
projects, Potdar and Shihab [22] concluded that developers in-
tentionally leave traces of TD in their comments (saying things
like “hack, fixme, is problematic, this isn’t very solid, probably a
bug, hope everything will work, fix this crap”).

https://github.com/ai-se/Jitterbug
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TABLE 1: Differences between our approach and Guo et al. [6]

How to find patterns for the “easy to find” SATDs How to find the “hard to find” SATDs
Guo et al. [6] Manually find patterns from the test set. Require large

amounts of human effort. Performances are tested on the same
data used for finding those patterns.

Train a supervised learning model on the training set and test its
classification performance on a holdout test set. Users have little
control of the recall and precision achieved.

Our approach Automatically mine patterns from the training set. No human
effort cost. Utilize a holdout set to validate the performance
of the mined patterns.

Continuously train/update a model on both training set and labeled data
from the test set, then use the model to select comments for human
experts to read, these human decisions are then used as new labeled
data for updating the model. Also apply another model to estimate the
total number of SATDs in the comments, thus providing information
for the user about what level of recall has been achieved.

2.2.1 Pattern-Based Approaches
Pattern-based approaches [22], [23], [24], [25], [5] consist of three
steps: (1) manually inspect code comments and label each one as
SATD or non-SATD; (2) manually analyze the labeled items and
summarize patterns for SATDs, e.g. if a comment has keywords
like “hack, fixme, probably a bug”, then it has a high chance of
being related to a SATD; (3) apply the summarized patterns to
unlabeled comments to identify SATDs.
Potdar and Shihar’s work is now considered the first pattern-

based approach for identifying SATDs. They found 62 distinct
keywords for identifying such TDs [22] (similar conclusions were
made by Faris et al. [23], [24], [25]). In 2015, Maldonado et al.
used five open-source projects to manually classify different types
of SATDs [5] and found
• SATDs mostly contain Requirement Debt and Design Debt in
source code comments;

• 75% of SATDs get removed, but the median lifetime of SATDs
ranges from 18 to 173 days [26].
Another study tried to find the SATD-introducing commits in
Github using different features on change level [27]. Instead of
using the bag of word approach, a recent study also proposed word
embedding as a vectorization technique for identifying SATD [28].
These pattern-based studies focused on identifying keywords in
code comments indicating SATDs and then used those keywords
to label comments as SATDs [29].
There are risks and problems to this approach. First, it requires

much manual effort from human experts to find those keywords
by reading thousands of comments. Second, it is natural to believe
that such keywords can vary from projects to projects and will not
produce 100% precision and recall but none of the studies used
a holdout set to evaluate the precision and recall of using such
keywords to identify SATDs.

2.2.2 Machine Learning Approaches
To solve the above mentioned problems, machine learning [30],
[31], [32], [4] approaches are proposed for identifying SATDs.
In these approaches, supervised learning models are trained on
labeled SATD datasets to learn the underlying rules of comments
admitting TDs. For example, Tan et al. [33], [34] analyzed source
code comments using natural language processing to understand
programming rules and documentations and indicates comment
quality and inconsistency. A similar study was done by Khamis
et al [35]. After analyzing and categorizing comments in source
code, Steidl et al. [36] proposed a machine learning technique
that can measure the comment quality according to category.
Malik et al. [37] used a random forest classifier to understand
the lifetime of code comments. A similar study on three open-
source projects was also done by Fluri et al. [38]. In 2017,

Maldonado et al. [30] successfully identified two types of SATD
in 10 open-source projects (average 63% F1 Score) using Natural
Language Processing (Max Entropy Stanford Classifier) using only
23% training data. A different approach was introduced by Huang
et al. [31] in 2018. Using eight datasets, Huang et al. build a
Multinomial Naive Bayes sub-classifier for each training dataset
using information gain as feature selection. By implementing a
boosting technique using all those sub-classifiers, they have found
an average of 73% F1 scores for all datasets [32]. A recent IDE
for Eclipse was also released using this technique for identifying
SATD in java projects [31]. More recently, Zampetti et al. [4]
reported an average precision of 55%, recall of 57%, and AUC of
0.73 with a deep learning-based approach. Recently, some studies
explore different feature engineering for identifying SATDs, e.g.
Wattanakriengkrai et al. [39] applied N-gram IDF as features, and
Flisar and Podgorelec [40] explored how feature selection with
word embedding can help the prediction. The latest progress from
Ren et al. [3] utilized a deep convolutional neural network with
hyperparameter tuning to achieve a higher F1 score than all the
previous solutions.
These machine learning models can be a good indicator for

which comments are more likely to be related to SATDs. However,
with precision ranging from 60% to 85%, it is not reliable to fully
automate the process. Human experts are then required to verify
every decision the machine learning model made and thus costs a
large amount of time and labor but still finding only, say 57% of
the SATDs.

2.2.3 Two-Step Approaches
As described in §1, we take a two-step approach to identify
SATDs: (1) identify patterns for the “easy to find” SATDs with
close to 100% precision and automatically classify comments with
the patterns as SATDs (without human verification); (2) then apply
machine learning techniques to guide human experts to find the
remaining “hard to find” SATDs with least number of comments
read. Interestingly, during the drafting of this paper, we found a
preprint [6] that utilized a similar idea to our two-step approach.
Guo et al. [6] used four keywords (“fixme, todo, hack, xxx”) to
identify the “easy to find” SATDs and applied supervised learning
models to find the remaining “hard to find” SATDs. Although
Guo et al. consider their approach as just a strong baseline, it still
demonstrates the effectiveness of such two-step approaches. The
differences between our approach and Guo et al.’s are listed in
Table 1. More detailed comparisons, along with other state-of-the-
art machine learning algorithms will be presented in §5.

3 Methodology
As shown in Figure 1, Jitterbug consists of two operators— a
pattern recognizer Easy and a continuous learning model Hard.
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To find all possible strong patterns in Step 1, we featurize the
data as a term frequency matrix without stemming or stop word
removal. This section breakdowns the workflow as shown in
Algorithm 1 and introduces the two operators in detail.

Algorithm 1: Psuedo Code for Jitterbug.
Input : 𝑋 , set of training data.

𝑌 , set of test data.
𝑇𝑟𝑒𝑐 , target recall of the "hard to find" SATDs.
𝐶𝐿, the machine learning model applied.

Output : 𝑇 𝐷, set of SATDs identified from test data.
1 Function Jitterbug (𝑋,𝑌 , 𝑇𝑟𝑒𝑐 , 𝐶𝐿)

// Extract patterns from training data.
2 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ←Easy(𝑋 );

// Identify the "easy to find" SATDs.
3 𝑇 𝐷𝑒𝑎𝑠𝑦 ←Has_Pattern(𝑌 , 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠);

// Remove "easy to find" SATDs from training and test
data.

4 𝑌ℎ𝑎𝑟𝑑 ← 𝑌 \𝑇 𝐷𝑒𝑎𝑠𝑦 ;
5 𝑋ℎ𝑎𝑟𝑑 ← 𝑋\ Has_Pattern(𝑋, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠);

// Identify the "hard to find" SATDs.
6 𝑇 𝐷ℎ𝑎𝑟𝑑 ←Hard(𝑋ℎ𝑎𝑟𝑑 , 𝑌ℎ𝑎𝑟𝑑 , 𝑇𝑟𝑒𝑐 );
7 𝑇 𝐷 ← 𝑇 𝐷𝑒𝑎𝑠𝑦 ∪𝑇 𝐷ℎ𝑎𝑟𝑑 ;
8 return 𝑇 𝐷;

3.1 Easy

Algorithm 2: Psuedo Code for Easy.
Input : 𝑋 , set of training data.
Output : 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, list of identified patterns.

1 Function Easy (𝑋 )
// Set precision threshold as a stopping rule.

2 𝑡ℎ𝑟𝑒𝑠 ← 0.8;
3 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← [];
4 while 𝑇 𝑟𝑢𝑒 do

// Find the pattern of highest fitness score.
5 𝑠𝑐𝑜𝑟𝑒𝑠 ← { p : FitnessFunction (𝑋, 𝑝) foreach

𝑝 ∈All_Patterns(𝑋 ) };
6 𝑝 ← argmax(𝑠𝑐𝑜𝑟𝑒𝑠);

// Check if highest precision is below the
threshold.

7 if Precision(𝑋, 𝑝)< 𝑡ℎ𝑟𝑒𝑠 then
8 break;

// Add p as one of the strong patterns.
9 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠.append(𝑝);

// Remove comments that contain p.
10 𝑋 .remove(Has_Pattern(𝑋, 𝑝));

11 return 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠;

12 Function FitnessFunction (𝑋, 𝑝)
// Calculate the fitness score of input pattern.

13 𝑃, 𝑇 𝑃 ← Metrics(𝑋, 𝑝);
14 𝑠𝑐𝑜𝑟𝑒← 𝑇 𝑃4/𝑃3;
15 return 𝑠𝑐𝑜𝑟𝑒;

16 Function Precision (𝑋, 𝑝)
// Calculate the precision of input pattern.

17 𝑃, 𝑇 𝑃 ← Metrics(𝑋, 𝑝);
18 𝑝𝑟𝑒𝑐 ← 𝑇 𝑃/𝑃;
19 return 𝑝𝑟𝑒𝑐;

20 Function Metrics (𝑋, 𝑝)
// Calculate # Positives and # True Positives.

21 𝑃𝑠 ←Has_Pattern(𝑋, 𝑝);
22 𝑇 𝑃𝑠 ← Is_SATD(𝑃);
23 return |𝑃𝑠 |, |𝑇 𝑃𝑠 |;

Pattern Recognition is an engineering application of Machine
Learning. Machine Learning deals with the construction and study
of systems that can learn from data, rather than follow only
explicitly programmed instructions whereas Pattern recognition
is the recognition of patterns and regularities in data [41]. Here

in Jitterbug, the task of the pattern recognizer Easy is to find
the strong patterns of the “easy to find” SATDs (RQ1). For each
potential pattern (a keyword in the comments in our case), we
measure two metrics:
• 𝑃(𝑝): the number of comments containing the pattern 𝑝 (posi-
tives).

• 𝑇𝑃(𝑝): the number of SATD comments containing the pattern
𝑝 (true positives).

Derived from the above two metrics, we also have
• 𝑃𝑟𝑒𝑐(𝑝) = 𝑇𝑃(𝑝)/𝑃(𝑝): precision of the pattern 𝑝.
To achieve high reliability and thus fully automate the process,
we want to find those patterns with very high precision. On the
other hand, we also want to avoid rare patterns, e.g. if a pattern
only appears once, it is not useful even with 100% precision. As a
result, we define our fitness function as

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝) = 𝑃𝑟𝑒𝑐(𝑝)𝑁 · 𝑃(𝑝) = 𝑇𝑃(𝑝)𝑁 /𝑃(𝑝)𝑁−1 (1)

We set 𝑁 = 4 to find patterns with close to 100% precision.
Using our labeled training data, the pattern recognizer looks for
the pattern with the highest fitness score, then removes comments
containing that pattern from the training data and finds the next
pattern with the highest fitness score (re-calculated). The detailed
algorithm is shown in Algorithm 2.

3.2 Hard

As shown in Algorithm 3, Hard utilizes a machine learner to
continuously learn from both labeled data in the source projects
and human decisions of comments in the target project. This
machine learner in Hard can be any supervised learner in theory.
However, since it will be updated/re-trained frequently, we only
consider models that can be trained within seconds (users will not
wait for more than a few seconds every time they finish a batch
of comments). For this reason, we only test the following fast and
simple learners listed below.

Logistic Regression: Logistic regression is a statistical model
that in its basic form uses a logistic function to model a binary
dependent variable [42]. A standard logistic function is a common
“S” shape with Equation (2):

𝑝(𝑥) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥)

(2)

where 𝑝(𝑥) ∈ (0, 1) for all 𝑡. Through fitting on the training data,
logistic regression looks for the best parameter 𝛽 to classify input
data 𝑥 into two target classes {0, 1}.

Decision Tree: Decision tree learning is a method commonly
used in data mining which uses a decision tree (as a predictive
model) to go from observations about an item (represented in the
branches) to conclusions about the item’s target value (represented
in the leaves). Algorithms for constructing decision trees usually
work top-down, by choosing a variable at each step that best
splits the set of items [43]. Two metrics are commonly applied
to determine the best split:

• Gini impurity: 𝐼𝐺 (𝑝) =
𝐽∑
𝑖=1

𝑝𝑖 (1 − 𝑝𝑖).

• Entropy: 𝐼𝐸 (𝑝) =
𝐽∑
𝑖=1

𝑝𝑖 log2 𝑝𝑖 .
Where 𝐽 is the number of classes and 𝑝𝑖 is the fraction of items
labeled with class 𝑖 in the training dataset. The algorithm will find
the best split after which the value of 𝐼𝐺 (𝑝) or 𝐼𝐸 (𝑝) decreases
the most. In this paper, we use Gini impurity.
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Algorithm 3: Psuedo Code for Hard
Input : 𝑋ℎ𝑎𝑟𝑑 , labeled training data containing “hard to find” SATDs.

𝑌ℎ𝑎𝑟𝑑 , unlabeled test data containing “hard to find” SATDs.
𝑇𝑟𝑒𝑐 , target recall (as stopping rule).

Output : 𝑇 𝐷ℎ𝑎𝑟𝑑 , “hard to find” SATDs identified.
1 Function Hard (𝑋ℎ𝑎𝑟𝑑 , 𝑌ℎ𝑎𝑟𝑑 , 𝑇𝑟𝑒𝑐 )
2 𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ← ∅;
3 𝑇 𝐷ℎ𝑎𝑟𝑑 ← 0;

// Each time query the oracle for 10 comments.
4 𝐾 ← 10;
5 while 𝑇 𝑟𝑢𝑒 do

// Train the machine learning model.
6 𝐶𝐿.fit(𝑋ℎ𝑎𝑟𝑑 ∪𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑);

// Estimate # "hard to find" SATDs.
7 |𝑅𝐸 | ←Estimate(𝐶𝐿,𝑌ℎ𝑎𝑟𝑑 , 𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑);

// Check if target recall has been reached.
8 if |𝑇 𝐷ℎ𝑎𝑟𝑑 |/( |𝑇 𝐷ℎ𝑎𝑟𝑑 | + |𝑅𝐸 |) ≥ 𝑇𝑟𝑒𝑐 then
9 break;

// Select comments with top K prediction
probability.

10 𝑄 ←argsort(𝐶𝐿.decision_function(𝑌ℎ𝑎𝑟𝑑 \𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑))[:𝐾 ];
11 𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ← 𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ∪𝑄;

// Query oracles for the selected comments.
12 𝑇 𝐷ℎ𝑎𝑟𝑑 ← 𝑇 𝐷ℎ𝑎𝑟𝑑∪Is_SATD(𝑄);
13 return 𝑇 𝐷ℎ𝑎𝑟𝑑 ;

14 Function Estimate (𝐶𝐿,𝑌ℎ𝑎𝑟𝑑 , 𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑)
15 if |𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑 | == 0 then
16 return 𝑁𝑎𝑁 ;
17 |𝑅𝐸 |𝑙𝑎𝑠𝑡 ← 0;
18 𝑌𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ← 𝑌ℎ𝑎𝑟𝑑 \𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ;
19 foreach 𝑥 ∈ 𝑌ℎ𝑎𝑟𝑑 do
20 𝐷 (𝑥) ← 𝐶𝐿.𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_ 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥);
21 if 𝑥 ∈ 𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑 and Is_SATD(𝑥) then
22 𝐿 (𝑥) ← 1;
23 else
24 𝐿 (𝑥) ← 0;

25 |𝑅𝐸 | ←
∑

𝑥∈𝑌ℎ𝑎𝑟𝑑

𝐿 (𝑥);

26 while |𝑅𝐸 | ≠ |𝑅𝐸 |𝑙𝑎𝑠𝑡 do
// Fit and transform Logistic Regression

27 LogisticRegression.fit(𝐷 (𝑌ℎ𝑎𝑟𝑑) , 𝐿 (𝑌ℎ𝑎𝑟𝑑));
28 𝐿𝑅𝑒𝑔 (𝑌𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑) ←

LogisticRegression.predict_proba(𝐷 (𝑌𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑);
29 𝐿 ← 𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑟 𝑦𝐿𝑎𝑏𝑒𝑙 (𝐿𝑅𝑒𝑔, 𝐿);
30 |𝑅𝐸 |𝑙𝑎𝑠𝑡 ← |𝑅𝐸 |;

// Estimation based on temporary labels
31 |𝑅𝐸 | ←

∑
𝑥∈𝑌ℎ𝑎𝑟𝑑

𝐿 (𝑥);

32 return |𝑅𝐸 |;

33 Function TemporaryLabel (𝐿𝑅𝑒𝑔, 𝐿)
34 𝑐𝑜𝑢𝑛𝑡 ← 0;
35 𝑡𝑎𝑟𝑔𝑒𝑡 ← 1;
36 𝑐𝑎𝑛← [];

// Sort 𝑌𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 by descending order of 𝐿𝑅𝑒𝑔
37 𝑌𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ← argsort(LReg)[::-1];
38 foreach 𝑥 ∈ 𝑌𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 do
39 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 𝐿𝑅𝑒𝑔 (𝑥);
40 𝑐𝑎𝑛.append(𝑥);
41 if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑡𝑎𝑟𝑔𝑒𝑡 then
42 𝐿 (𝑐𝑎𝑛 [0]) ← 1;
43 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡𝑎𝑟𝑔𝑒𝑡 + 1;
44 𝑐𝑎𝑛← [];

45 return 𝐿;

Random Forest: Random forest classifier is an ensemble
learning method that operates by constructing a multitude of deci-
sion trees at training time and outputting the class that is the mode
of the classes of the individual trees [44]. Each decision tree from
the random forest model is independently trained on all the training
data but with only a subset of the features. In this way, these
decision trees are 100% accurate on training data and yet have
different generalization errors. When used together for inference,
these decision trees correct for each other’s generalization errors
and thus avoid overfitting on the training data.

Naive Bayes: Naive Bayes classifiers are a family of simple
“probabilistic classifiers” based on Bayes’ theorem with strong
(naïve) independence assumptions between the features [45]. With
the strong assumption that all features are mutually independent, a
Naive Bayes classifier predicts the conditional probability of data
𝑥 belonging to class 𝐶𝑖 to be

𝑝(𝐶𝑘 | 𝑥1, . . . , 𝑥𝑛) ∝ 𝑝(𝐶𝑘 )
𝑛∏
𝑖=1

𝑝(𝑥𝑖 | 𝐶𝑘 ) (3)

where 𝑝(𝐶𝑘 ) and 𝑝(𝑥𝑖 | 𝐶𝑘 ) are counted from the training data.
Multinomial Naive Bayes model assumes that each 𝑝(𝑥𝑖 | 𝐶𝑘 ) is a
multinomial distribution, which works well for text data.

Support Vector Machine: A Support Vector Machine (SVM)
is a discriminative classifier formally defined by a separating
hyperplane [46]. Soft-margin linear SVMs are commonly used
in text classification given the high dimensionality of the feature
space. A soft-margin linear SVM looks for the decision hyperplane
that maximizes the margin between training data of two classes
while minimizing the training error (hinge loss):

min𝜆‖𝑤‖2 +
[
1
𝑛

𝑛∑︁
𝑖=1
max (0, 1 − 𝑦𝑖 (𝑤 · 𝑥𝑖 − 𝑏))

]
(4)

where the class of 𝑥 is predicted as 𝑠𝑔𝑛(𝑤 · 𝑥 − 𝑏).
Hard also utilizes an estimator to estimate the number of

“hard to find” SATDs and thus determine when to stop. This
estimator, also described in Algorithm 3, is adopted from our
previous work [47] where it was shown to outperform any other
state-of-the-art estimators. The idea behind this estimator is that it
(1) assigns temporary labels to unlabeled data points following the
probability prediction from a logistic regression model, (2) then
updates that logistic regression model on the temporary labeled
data, (3) iterates the above two steps until convergence (when the
number of temporarily assigned labels stays unchanged).

4 Datasets
While §3 shows how Jitterbug should be applied in practice with
human reading source code comments looking for the “hard to
find” SATDs, it is too expensive for humans to test different
treatments and answer all the research questions. As a result,
the performance of Jitterbug is tested through simulations on
a publicly available SATD dataset originally collected by Mal-
donado and Shihab [5]. This dataset contains ten open-source
java projects on different application domains (five of these
projects were added by the same authors later after its first
release), varying in size and the number of developers and most
importantly, in the number of comments in source code. All of
these ten projects, namely Apache-Ant-1.7.0, Apache-Jmeter-2.10,
ArgoUML, Columba-1.4-src, EMF-2.4.1, Hibernate-Distribution-
3.3.2.GA, jEdit-4.2, jFreeChart-1.0.19, jRuby-1.4.0, SQL12 were
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collected from GitHub. The provided dataset contains project
names, classification type (if any) with actual comments. Note
that, our problem does not concern with the type of SATD, rather
we care about a binary problem of being a SATD or not. So,
we have changed the final label into a binary problem by defining
𝑊𝐼𝑇𝐻𝑂𝑈𝑇_𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐶𝐴𝑇 𝐼𝑂𝑁 as 𝑛𝑜 and the rest (for example
𝐷𝐸𝑆𝐼𝐺𝑁) as 𝑦𝑒𝑠. A few examples from the dataset are given in
Table 2 for readers’ ease.

TABLE 2: Examples from Dataset

project classification commenttext label
Apache
Ant

DEFECT // FIXME formatters are not
thread-safe

yes

EMF IMPLEMENTATION // TODO Binary incompatibil-
ity; an old override must over-
ride putAll.

yes

JFreeChart DESIGN // calculate the adjusted data
area taking into account the 3D
effect... this assumes that there
is a 3D renderer, all this 3D
effect is a bit of an ugly hack...

yes

JRuby WITHOUT CLAS-
SIFICATION

// build first node (and ignore
its result) and then second node

no

Columba WITHOUT CLAS-
SIFICATION

// get message header no

JMeter WITHOUT CLAS-
SIFICATION

// parameters to pass to script
file (or script)

no

4.1 Independent Variables
When Maldonado and Shihab [5] created this dataset, jDeo-
drant [48] was applied, which is an Eclipse plugin for extracting
comments from the source code of java files. After that, Maldon-
ado and Shihab [5] used four filtering heuristics to the comments.
A short description of the filtering heuristics is given below.
• Removed licensed comments, auto-generated comments, etc.
because according to the dataset authors, they do not contain
SATD by developers.

• Removed commented source codes as commented source codes
do not contain any SATD.

• Removed Javadoc comments that do not contain the words such
as “todo”, “fixme”, “xxx” etc. because according to the dataset
authors, the rest of the comments rarely contain any SATDs.

• Multiple single-line comments are grouped into a single com-
ment because they all convey a single message and it is easy to
consider them as a group.
After Maldonado and Shihab [5] applied these heuristics, the

number of comments in each project reduced significantly (for
example, the number of comments in Apache Ant reduced from
21, 587 to 4140, almost 19% of the original size).

4.2 Dependent Variables
In the work of Maldonado and Shihab [5], two humans then man-
ually classified each comment according to the six different types
of TD mentioned by Alves et al. [49] if they contained any SATD
at all, else marked them𝑊𝐼𝑇𝐻𝑂𝑈𝑇_𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐶𝐴𝑇 𝐼𝑂𝑁 . Strat-
ified sampling of the dataset was applied to check personal bias
and found a 99% confidence level with a confidence interval of
5%. A third human verified the agreement between the two using
stratified sampling and reported a high level of agreement, using
Cohen’s Kapp [50] coefficient of +0.81. Such a high confidence
level, as well as a higher level of agreement indicates that the
dataset is unbiased and reliable. A detailed description of the
dataset is given in in Table 3.

TABLE 3: Dataset Details

Project Release
/ Year

Domain Comments SATDs Ratio

Apache
Ant

1.7.0 /
2006

Automating
Build

4098 131 3.2%

JMeter 2.10 /
2013

Testing 8057 374 4.64%

ArgoUML - UML Dia-
gram

9452 1413 14.95%

Columba 1.4 /
2007

Email
Client

6468 204 3.15%

EMF 2.4.1 /
2008

Model
Framework

4390 104 2.37%

Hibernate 3.3.2 /
2009

Object
Mapping
Tool

2968 472 15.90%

JEdit 4.2 /
2004

Java Text
Editor

10322 256 2.48%

JFreeChart 1.0.19
/ 2014

Java
Framework

4408 209 4.74%

JRuby 1.4.0 /
2009

Ruby for
Java

4897 622 12.70%

SQuirrel - Database 7215 286 3.96%
SUM 62275 4071 6.54%
MEDIAN 5682.5 271 4.77%

5 Experiments and Results

Experiments are conducted on the SATD dataset with 10 projects
described in §4. Each time, one project is selected as a target
project (with labels unknown) and the rest 9 datasets are treated as
source projects (with labels known). In Step 2, when oracles are
queried for the target project, the ground truth labels are applied
to label the queried comments, thus simulating the human-in-the-
loop process without a real human in the loop. The rest of this
section will provide details on the experiments and results for
answering the research questions listed in §1.

5.1 RQ1: How to find the strong patterns of the “easy to find”
SATDs in Step 1?

In this experiment, we compare the performance of the following
two treatments:
• Easy: The pattern recognizer of Jitterbug described in Algo-
rithm 2, which iteratively selects the pattern with the highest
fitness score in (1) until the selected pattern has lower than 80%
precision on the training data.

• MAT: a baseline approach from Guo et al. [6] where a set of
human-derived patterns— “todo, fixme, hack, xxx” is applied to
find the “easy to find” SATDs.
on three different performance metrics
• Precision: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃).
• Recall: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁).
• F1 score: 𝐹1 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙).
where 𝑇𝑃 is the number of true positives (SATD comments
predicted as SATDs), 𝐹𝑃 is the number of false positives (non-
SATD comments predicted as SATDs), and 𝐹𝑁 is the number of
false negatives (SATD comments predicted as non-SATDs).
Table 4 (Original) shows the results of the experiment on the

original dataset. Our observation from the results are
1) Choosing any project as the holdout set, the strong patterns
discovered by the pattern recognizer are always the same—
“todo, fixme, hack, workaround”, except for JRuby where the
strong patterns are “fixme, hack”.
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TABLE 4: Experimental results for Step 1 on every targeting project. Easy represents the pattern recognizer in Jitterbug while MAT
is a baseline approach from Guo et al. [6]

that uses human-derived patterns— “todo, fixme, hack, xxx” to find SATDs. The column Better summarizes how many times one treatment is better than the
other on the given metric. This table presents results on two sets of ground truth labels: (1) Original: the ground truth labels provided by Maldonado and

Shihab [5], and (2) Corrected: labels after validating the conflicts between Easy and original ground truth, as shown in Figure 2.
Ground
Truth

Metrics Treatment SQuirrel JMeter EMF Apache
Ant

ArgoUML Hibernate JEdit JFreeChart Columba JRuby Better

O
ri

gi
na

l Precision Easy 0.85 0.87 0.69 0.89 0.85 0.94 0.95 0.72 0.91 0.93 3
MAT 0.85 0.87 0.67 0.90 0.85 0.94 0.81 0.72 0.91 0.92 1

Recall Easy 0.54 0.75 0.33 0.24 0.88 0.74 0.21 0.47 0.87 0.52 5
MAT 0.54 0.75 0.29 0.47 0.88 0.73 0.19 0.46 0.86 0.90 2

F1 Easy 0.66 0.80 0.44 0.38 0.87 0.83 0.35 0.57 0.89 0.67 6
MAT 0.66 0.80 0.40 0.62 0.86 0.82 0.30 0.56 0.88 0.91 2

C
or

re
ct

ed

Precision Easy 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 6
MAT 1.00 0.99 1.00 0.96 0.99 0.99 0.85 1.00 0.99 0.99 0

Recall Easy 0.58 0.77 0.41 0.27 0.90 0.75 0.22 0.55 0.88 0.90 4
MAT 0.58 0.77 0.38 0.49 0.90 0.74 0.19 0.55 0.87 0.91 2

F1 Easy 0.74 0.87 0.58 0.42 0.94 0.86 0.37 0.71 0.93 0.95 4
MAT 0.73 0.87 0.55 0.65 0.94 0.85 0.31 0.71 0.93 0.95 1

Fig. 2: Validation results for double-checking false positives of
Easy. GT means the original ground truth label and DC means
the double-checking result. The values of “yes (Easy)” show the
number of comments that the double-checking result agrees with
the Easy results (Easy=yes AND GT=no AND DC=yes) while
the values of “no (GT)” show the number of comments that the
double-checking result agrees with the original ground truth labels
(Easy=yes AND GT=no AND DC=no). This graph shows that
most (426 out of 434) of the false positives are actually true
positives that were previously wrongly labeled in the original
dataset.

2) Compared with manually discovered patterns— “todo, fixme,
hack, xxx” from Guo et al. [6] (MAT), the patterns automati-
cally learned by Easy showed higher or similar precision and
recall on 8 out of 10 target projects.
The results above suggest that our automated pattern recog-

nizer Easy performed better than the human-derived patterns from
Guo et al. [6] (MAT). However, it did not reach close to 100%
precision on many target projects as we expected. One possible
reason for this is human errors— labels in the original dataset
may not always be correct. Therefore, we manually analyzed the
false positives (comments containing the strong patterns but were
labeled as Non-SATDs) of Easy to double-check their labels.
Two graduate students were employed to classify the 434 (out
of 62,275, 7‰) comments where the original ground truth labels
(GT) are no but the Easy predictions are yes. Surprisingly, the two
graduate students found the comments very easy to classify and
both made the same classification. Table 5 shows some example
comments whose labels were flipped. As shown in Figure 2, most

of the false positives (98%) were wrongly labeled in the original
dataset. That means these strong patterns identified by Jitterbug
are even more accurate than human experts in finding the “easy to
find”.
After the ground truth labels were corrected, we reran the

experiments and collected results in Table 4 (Corrected). This
time, we observe:
1) Easy detects the same set of strong patterns— “todo, fixme,
hack, workaround” for every target project including JRuby
after correcting the human errors. This also greatly increases
the recall on JRuby.

2) Easy achieves close to 100% precision (100% on eight projects
and 99% on two projects) on identifying the “easy to find”
SATDs. These results are higher than the human-derived set of
patterns— “todo, fixme, hack, xxx” from Guo et al. [6] (MAT).

3) Easy achieves much lower recall and F1 score than MAT
on Apache Ant. This is because only on the Apache Ant
project, “xxx” is a strong pattern of fitness score 25. On the
other projects, fitness scores for “xxx” range from 0 to 2.
Therefore, the pattern of “xxx” can help only on Apache Ant
and will damage the precision when used on other projects.
This is exactly the advantage of Easy over MAT— to avoid
such “trap” patterns like “xxx” by training on a collection of
projects.

4) Easy is even more accurate than human experts in identify-
ing the “easy to find” SATDs since 98% of the conflicting
comments, which were labeled as Non-SATDs by humans but
contain the patterns from Easy, are identified as SATDs in our
validation study.

5) Although Easy is an algorithm with close to 100% precision
and barely any cost (training takes seconds), it alone can only
identify 20% to 90% of the SATDs. Thus it is necessary for
Step 2.

5.2 RQ2: How to find the “hard to find” SATDs efficiently with
human experts?

After all the “easy to find” SATDs are filtered out from the
datasets, it is now a problem to find the remaining “hard to
find” SATDs (which are 10-80% of all the SATDs). To solve this
problem, we first ask the following question.
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TABLE 5: Examples of Corrected Labels

Project Comment Text GT Easy
Apache
Ant

//TODO Test on other versions of weblogic
//TODO add more attributes to the task, to take
care of all jspc options //TODO Test on Unix

no yes

ArgoUML // skip backup files. This is actually a
workaround for the cpp generator, which al-
ways creates backup files (it’s a bug).

no yes

JFreeChart // FIXME: we’ve cloned the chart, but the
dataset(s) aren’t cloned and we should do that

no yes

JRuby // All errors to sysread should be SystemCallEr-
rors, but on a closed stream Ruby returns an
IOError. Java throws same exception for all
errors so we resort to this hack...

no yes

Columba // FIXME r.setPos(); no yes

5.2.1 RQ2.1: Can the “hard to find” SATDs be automatically de-
tected without human oracles?

To answer this question, we trained supervised learning models on
source projects and tested them on the target project (both source
projects and target projects do not contain comments that have the
patterns identified by Step 1). The following models are evaluated
in this experiment:
• LR: logistic regression model described in §3.2. Implemented
with scikit-learn2 package LogisticRegression in Python with
balanced class weight.

• DT: decision tree model described in §3.2. Implemented with
scikit-learn package DecisionTreeClassifier in Python with bal-
anced class weight.

• RF: random forest model described in §3.2. Implemented with
scikit-learn package RandomForestClassifier in Python with
class_weight = balanced_subsample.

• SVM: linear soft-margin support vector machine model de-
scribed in §3.2. Implemented with scikit-learn package SGD-
Classifier in Python with balanced class weight.

• NB: Multinomial Naive Bayes model described in §3.2. Imple-
mented with scikit-learn package MultinomialNB in Python.

• TM: ensemble model from Huang et al. [32] where a Multi-
nomial Naive Bayes model is trained on selected features with
information gain on each source project and the majority vote of
the predictions from each model on the target project is utilized
to make the final prediction. TM is considered as one of the
state-of-the-art solutions for identifying SATDs so here we apply
it as a baseline algorithm.
To assess whether the above supervised learning models can iden-
tify the “hard to find” SATDs precisely without human oracles, we
apply the following P@10 metric:
• P@10: precision for the top 10 predictions. For example, if
there are 6 SATDs amongst the 10 comments with the highest
prediction probability, 𝑃@10 = 0.6. We choose this metric since
a model is definitely imprecise if the precision for its top 10
confident predictions is already low.
Figure 3 shows that at most three out of ten projects have P@10
higher than 0.5. That means all of the machine learning models
predict wrongly with higher than 50% probability even for the 10
most confident predictions on most of the projects. Therefore, we
conclude that directly using the model predictions as classification
results will result in a large number of false positives. As a result,
human experts have to verify each prediction result to decide
whether it is SATD or not. This leads to our next research question.

2. https://scikit-learn.org/

Fig. 3: P@10 results for supervised learning models on the “hard
to find” SATDs. At most three out of ten projects have P@10
higher than 0.5. This suggests that all these supervised learners
are not precise enough to fully automate the process of identifying
the “hard to find” SATDs. Human oracles have to be queried to
make the final decisions.

5.2.2 RQ2.2: How to more efficiently utilize human oracles to find
the “hard to find” SATDs?
Since it is inevitable to spend human effort on verifying the
prediction results in Step 2, the Hard strategy is applied to
learn from this incrementally acquired information and update its
model for better predictions, as described in Algorithm 3. In this
experiment, we record the recall and its corresponding cost (of
human effort) for each algorithm as the cost increases.

𝑅𝑒𝑐𝑎𝑙𝑙 =
|{SATDs} ∩ {human verified comments}|

|{SATDs}| (5)

𝐶𝑜𝑠𝑡 =
|{human verified comments}|

|{comments}| (6)

To simplify the comparison between different algorithms, we
calculate the area under the recall-cost curve as a performance
metrics:
• APFD: first proposed in test case prioritization [51], APFD
calculates the area under the recall-cost curve. Ranging from
0.0 to 1.0, a larger APFD means higher recall can be achieved at
a lower cost, thus the better. An APFD of 0.5 can be achieved by
randomly select the next item each time. We choose to evaluate
the overall performance with APFD since it is a single metric
that evaluates the entire recall-cost curve, while other metrics
(e.g. precision, recall, F1 score) only evaluate a single point of
the curve. In this way, we do not need to decide the stopping
point before comparing different treatments.
Table 6 shows the APFD results for different models with or
without the Hard strategy. Given that most of the results are
deterministic and are close to each other, we applied Cohen’d
effect size test to determine which results are similar. To that end,
we calculated:

𝑆𝑚𝑎𝑙𝑙𝑠𝑡𝑒𝑝2 = 0.2 · 𝑆𝑡𝑑𝐷𝑒𝑣(All APFD results) = 0.02. (7)

We then consider all the results that are higher than the best result
minus the 𝑆𝑚𝑎𝑙𝑙𝑠𝑡𝑒𝑝2 as the best results on each target project
(colored in gray in Table 6). From these results we can see
• Continuously updating the model (Hard) helps improve the
performance on 4 out of 5 models (except for the decision tree
model).

https://scikit-learn.org/
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TABLE 6: APFD (higher the better) results for different models with or without the Hard strategy on the “hard to find” SATDs.
Medians and IQRs (delta between 75th percentile and 25th percentile, lower the better) are calculated for easy comparisons. If Hard =
no, human oracles on the target project are not utilized, the model is just a one-time trained supervised learning model. On the other
hand, if Hard = yes, human oracles on the queried comments are utilized to update the model before it is applied to find its next highest
predictions for humans to verify. Jitterbug utilizes Hard = yes. A threshold of Cohen’d small effect size (0.02) is applied to determine
which treatment performs best in each target project and color them in gray . The column #Best shows the number of projects each
treatment performs the best in.

Model Hard SQuirrel JMeter EMF Apache
Ant

ArgoUML Hibernate JEdit JFreeChart Columba JRuby Median IQR #Best

LR no 0.69 0.85 0.80 0.88 0.93 0.80 0.80 0.80 0.90 0.83 0.82 0.07 2
yes 0.74 0.84 0.83 0.89 0.93 0.81 0.85 0.81 0.92 0.83 0.84 0.07 3

DT no 0.78 0.78 0.84 0.78 0.88 0.76 0.86 0.71 0.87 0.86 0.81 0.08 0
yes 0.71 0.64 0.71 0.77 0.8 0.77 0.75 0.53 0.78 0.81 0.76 0.07 0

RF no 0.82 0.79 0.81 0.83 0.88 0.78 0.82 0.73 0.91 0.83 0.82 0.03 0
yes 0.91 0.85 0.93 0.90 0.96 0.83 0.92 0.89 0.98 0.91 0.91 0.04 9

SVM no 0.58 0.83 0.75 0.83 0.90 0.75 0.71 0.74 0.84 0.74 0.75 0.09 0
yes 0.91 0.86 0.91 0.90 0.92 0.83 0.95 0.79 0.97 0.92 0.91 0.05 8

NB no 0.41 0.74 0.67 0.62 0.75 0.57 0.37 0.63 0.65 0.67 0.64 0.09 0
yes 0.47 0.75 0.67 0.66 0.79 0.59 0.42 0.64 0.66 0.68 0.66 0.08 0

TM no 0.73 0.7 0.72 0.80 0.69 0.75 0.77 0.69 0.77 0.89 0.74 0.07 0

Fig. 4: Recall-cost curves for three different treatments on finding
the “hard to find” SATDs on target project SQuirrel. Hard repre-
sents RF with Hard=yes while RF represents RF with Hard=no.
APFD results in Table 6 were calculated as the area under these
curves. Figures on other target projects are shown in the Appendix
as Figure A.1.

• Random forest and support vector machine models with the
Hard strategy achieved the highest median APFD of 0.91.
Given that the #Best of random forest is higher, we choose
random forest as the internal model of Hard for the rest of
the experiments.

• Random forest model with the Hard strategy outperformed the
baseline algorithm TM on finding the “hard to find” SATDs.
For a more intuitive comparison, Figure 4 shows the recall-cost
curves of three different treatments on target project SQuirrel. The
APFD results in Table 6 were calculated as the area under these
curves. As we can see, Hard (RF with Hard=yes) has the highest
APFD score of 0.91. Also, in Figure 4 it almost always reaches
the same recall at a lower cost than RF (RF with Hard=no) with
APFD score of 0.82 and TM with APFD score of 0.73. Recall-cost
curves on other target projects can be found in Figure A.1 from
the Appendix.

5.2.3 RQ2.3: When to stop Hard in Step 2?
RQ2.2 shows that overall, Hard achieves higher recall at a lower
cost than other methods. However, it is still necessary to decide a
stopping point of Hard in real-world applications. Our solution to

Fig. 5: Recall-cost and estimation-cost curves for finding 90% of
the “hard to find” SATDs with Hard on target project SQuirrel.
Results shown in Table 7 were derived from these curves. Figures
on other target projects are shown in the Appendix as Figure A.2.

this problem is that, with an accurate estimation of the number of
undiscovered SATDs, human experts are easier to make decisions
on whether to spend more time looking for the “hard to find”
SATDs or to stop at that point. To assess the accuracy of the
estimation, we plot out the recall-cost curves with the following
estimation:

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =
estimated number of SATDs

|{SATDs}| (8)

As we can see from Figure 5, Hard tends to overestimate in the
beginning but converges to the actual value after around 10%
cost and it does help to determine when has 90% recall been
reached. These recall-cost and estimation-cost curves on other
target projects can be found in Figure A.2 from the Appendix.
Table 7 shows the final recall and cost when Hard stops at 90%
recall through estimations. Overall, Hard could stop close to the
target 90% recall with the estimations.

5.3 RQ3: Overall how does Jitterbug perform?
In this research question, we evaluate the overall performance
of Jitterbug in three aspects: (1) APFD measures its overall
efficiency without stopping rules; (2) Precision, Recall, F1 score,
and Cost measures its performance when finding 90% “hard
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TABLE 7: Performance of Hard aiming to find 90% of the “hard to find” SATDs with the estimator.

Targeting
90% Recall

SQuirrel JMeter EMF Apache
Ant

ArgoUML Hibernate JEdit JFreeChart Columba JRuby Median IQR

Recall 0.92 0.93 0.99 0.87 0.88 0.81 0.94 0.99 1.00 0.92 0.92 0.08
Cost 0.18 0.35 0.28 0.24 0.12 0.25 0.17 0.19 0.23 0.27 0.24 0.08

TABLE 8: APFD (higher the better) results for different treatments on finding all the SATDs. Medians and IQRs (delta between 75th
and 25th percentile, lower the better) are calculated for easy comparisons. The proposed treatment Jitterbug=Easy+Hard. A threshold
of Cohen’d small effect size (0.01) is applied to determine which treatment performs best in each target project and color them in gray .
The column #Best shows the number of projects each treatment performs best in.

Treatment SQuirrel JMeter EMF Apache
Ant

ArgoUML Hibernate JEdit JFreeChart Columba JRuby Median IQR #Best

Jitterbug 0.97 0.97 0.95 0.93 1.00 0.96 0.94 0.97 1.00 0.99 0.97 0.03 10
Easy+RF 0.93 0.95 0.91 0.87 0.99 0.95 0.87 0.88 0.99 0.99 0.94 0.09 4

Hard 0.95 0.95 0.95 0.91 0.91 0.89 0.95 0.90 0.98 0.92 0.93 0.04 2
MAT+RF 0.91 0.97 0.88 0.92 0.99 0.96 0.86 0.87 0.98 0.98 0.94 0.09 4

TM 0.83 0.94 0.90 0.88 0.91 0.88 0.92 0.84 0.98 0.91 0.90 0.04 0
RF 0.91 0.93 0.84 0.88 0.90 0.88 0.88 0.84 0.97 0.92 0.89 0.04 0

Fig. 6: Recall-cost curves for finding all SATDs with different
treatments on target project SQuirrel. APFD results in Table 8
were calculated as the area under these curves. Figures on other
target projects are shown in the Appendix as Figure A.3.

to find” SATDs based on estimation; (3) runtime measures the
additional computation cost of Jitterbug besides the human effort
cost.

5.3.1 RQ3.1: How does Jitterbug perform in terms of APFD?

Table 8 shows the overall APFD scores for finding all the SATDs
in the target project. The following treatments are tested in this
experiment:
• Jitterbug: First apply Easy to automatically identify the “easy
to find” SATDs with zero human effort, then apply Hard to
guide humans in identifying the “hard to find” SATDs.

• Easy+RF: First apply Easy to automatically identify the “easy
to find” SATDs with zero human effort, then apply a supervised
learner random forest to rank the comments for humans to
identify the “hard to find” SATDs.

• Hard: Directly apply Hard to guide humans in identifying both
“easy to find” and “hard to find” SATDs.

• MAT+RF: First applyMAT to automatically identify the “easy
to find” SATDs with zero human effort, then apply a supervised
learner random forest to rank the comments for human to
identify the “hard to find” SATDs.

• TM: Apply TM to rank all comments for humans to identify
SATDs.

• RF: Apply random forest classifier to rank all comments for
humans to identify SATDs.
Similarly to RQ2.2, we applied the following threshold from

Cohen’d small effect size to determine the best treatments in each
target project:

𝑆𝑚𝑎𝑙𝑙𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 0.2 · 𝑆𝑡𝑑𝐷𝑒𝑣(All APFD results) = 0.01. (9)

From these results, we observed
• Jitterbug outperforms the state-of-the-art solutions TM, RF,
andMAT+RF.

• Jitterbug (Easy+Hard) outperforms Easy+RF, which means
the Hard strategy outperforms RF in Step 2 and this contributes
to the overall performance.

• Jitterbug (Easy+Hard) outperformsHard, which means apply-
ing Easy in Step 1 does contribute to the overall performance.
For a more intuitive comparison, Figure 6 shows the recall-cost
curves of the compared treatments on target project SQuirrel. The
APFD results in Table 8 were calculated as the area under these
curves. As we can see, Jitterbug has the highest APFD score of
0.97. Also, in Figure 6 it almost always reaches the same recall
at a lower cost than other treatments. Recall-cost curves on other
target projects can be found in Figure A.3 from the Appendix.
In conclusion, Jitterbug outperforms the state-of-the-art so-

lutions (TM, RF, MAT+RF) in identifying SATDs in terms of
APFD, and both of the two components Easy andHard contribute
to its good performance.

5.3.2 RQ3.2: How does Jitterbug perform overall when targeting
at finding 90% of the “hard to find” SATDs?

Table 9 shows the overall performance scores for finding all the
SATDs in the target project. To compare against the latest state-
of-the-art deep convolutional neural network-based approach [3],
precision, recall, F1 score, and cost are applied to evaluate each
treatment on the original (uncorrected) dataset. The following
treatments are tested in this experiment:
• Easy: Apply Easy to automatically identify the “easy to find”
SATDs with zero human effort, then stop.

• Jitterbug: First apply Easy to automatically identify the “easy
to find” SATDs with zero human effort, then apply Hard to
guide humans until 90% of the “hard to find” SATDs are
identified (according to estimation).
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TABLE 9: Comparison between Easy, Jitterbug, and the best performing state-of-the-art supervised learning approach— CNN [3] on
the original datasets in terms of precision, recall, F1 score, and cost. Here, Jitterbug=Easy+Hard targets at finding 90% of the “hard
to find” SATDs with its estimator and its Easy part costs zero human effort.

Metrics Treatment SQuirrel JMeter EMF Apache
Ant

ArgoUML Hibernate JEdit JFreeChart Columba JRuby Median IQR

Precision
Easy 0.85 0.87 0.69 0.89 0.85 0.94 0.95 0.72 0.91 0.93 0.88 0.11
Jitterbug 0.21 0.13 0.10 0.12 0.62 0.48 0.16 0.23 0.33 0.65 0.22 0.39
CNN [3] 0.79 0.87 0.79 0.58 0.82 0.93 0.77 0.69 0.83 0.81 0.8 0.09

Recall
Easy 0.54 0.75 0.33 0.24 0.88 0.74 0.21 0.47 0.87 0.52 0.53 0.47
Jitterbug 0.97 0.98 0.96 0.93 0.99 0.95 0.96 0.98 0.99 0.96 0.97 0.02
CNN [3] 0.69 0.79 0.59 0.76 0.95 0.74 0.49 0.80 0.88 0.93 0.77 0.22

F1
Easy 0.66 0.80 0.44 0.38 0.87 0.83 0.35 0.57 0.89 0.67 0.66 0.41
Jitterbug 0.35 0.23 0.19 0.21 0.76 0.64 0.27 0.37 0.49 0.77 0.36 0.45
CNN [3] 0.74 0.83 0.68 0.66 0.88 0.83 0.60 0.74 0.85 0.86 0.78 0.18

Cost
Easy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Jitterbug 0.16 0.31 0.21 0.24 0.08 0.19 0.15 0.17 0.06 0.12 0.16 0.11
CNN [3] 0.03 0.04 0.02 0.04 0.17 0.13 0.02 0.06 0.03 0.15 0.04 0.1

• CNN: Apply a convolutional neural network (on word2vec fea-
tures and with hyperparameter tuning) to classify each comment
into SATD or non-SATD [3]. Due to the difficulty of reproduc-
ing a deep learning solution, we used the same precision, recall,
F1 scores reported in Ren et al. [3], and the cost metric for CNN
is calculated as

𝐶𝑜𝑠𝑡 =
|𝑆𝐴𝑇𝐷𝑠 | × 𝑟𝑒𝑐𝑎𝑙𝑙

|𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 | × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

.
From the results in Table 9, we observed
• Precision: Easy always achieves the highest precision except
for the EMF project. We know from Table 4 that once the labels
are corrected, the precision of Easy on the EMF project will be
close to 100%. Therefore, Easy can reach higher precision than
CNN on every project.

• Recall: Jitterbug achieves the highest recall on every project.
Also, since the target of Jitterbug is to stop at finding 90% of
the “hard to find” SATDs, its final recalls should all be higher
than 90%, which is consistent with the results shown in Table 4.

• F1: CNN always achieves the highest F1 score except for the
Columba project. This suggests that the cutoff point of CNN
is more balanced (between precision and recall) than Easy and
Jitterbug.

• Cost: While Easy always cost zero human effort, CNN costs
less human effort than Jitterbug in 8 out of 10 projects due to
its higher precision than Jitterbug.

• Overall: there is no clear winner except for three projects: (1)
on ArgoUML and Jruby, Jitterbug achieves both higher recall
and a lower cost than CNN; (2) on Hibernate, Easy achieves
the same recall at a lower cost than CNN.
In conclusion, there is no clear win of Jitterbug over CNN except
on the ArgoUML and Jruby projects where Jitterbug achieves
higher recall at a lower cost than CNN. On the rest eight projects,
Jitterbug always achieves higher recall but also at a higher cost
than CNN.
Besides the fact that Jitterbug outperforms CNN on two out

of ten projects. The advantage of Jitterbug is that (1) it separates
the “easy to find” SATDs from the “hard to find” ones so that the
“easy to find” SATDs can be automatically identified with zero
human cost; and (2) it can guarantee a high level of recall on the
“hard to find” SATDs with accurate estimation.
On the other hand, CNN also shows its strong prediction

capability with its complex model and hyperparameter tuning. It
is promising that replacing the random forest classifier in Hard

with CNN can further improves the performance of Jitterbug in
the future.
Therefore, we believe that CNN has the potential to further

improve Jitterbug in the future but Jitterbug is a better solution in
terms of framework. Imagine using CNN for SATD identification
on a new project, the user will be told that on average 80% of
the predicted comments will contain SATDs. If the user check
all the predicted comments, they will be checking on average 4%
of the comments and finding 78% of the SATDs and this is the
end of it. On the other hand, when using Jitterbug, the user will
first be told that the selected comments by Easy are 100% related
to SATDs. On average, those comments cover 53% of the total
SATDs. If the user wants to find more SATDs, Hard will guide
the user to check the comments most likely to be SATDs among
the remaining “hard to find” ones. During this process, a recall will
be estimated to inform the user what percentage of the “hard to
find” SATDs have been identified. Thus Jitterbug can guarantee
to reach the user-specified recall.

5.3.3 RQ3.3: How much computation cost does Jitterbug add to
the process besides the human effort cost?
The runtime for Jitterbug is split into two parts:
• Easy takes 12 seconds to train on 62,275 comments and to detect
the “easy to find” SATDs on one target project.

• Hard takes on average 20.5 seconds to train the random forest
model and 1.5 seconds to estimate recall in each iteration.
As a result, the total runtime for Jitterbug would be 12 + 22 × 𝑁

seconds where 𝑁 is the number of iterations (10 comments per
iteration). For projects that require many iterations of Hard, the
total runtime for Jitterbug can be hours. However, given the fact
that human needs more than 22 seconds to classify 10 comments
in each iteration, in practice, the training time of Hard can hide
behind the human classification time. That is to say, we can
train the model once, provide the first 20 comments to human,
then update the model for every 10 labeled comments and utilize
the updated model to provide the next 10 comments for human
classification3. In this way, the additional computation cost is 34
seconds for Jitterbug which is similar to training a traditional
supervised learning model (TM, RF) and is much lower than
training a deep learning model (3,548 seconds for training a CNN
model in Ren et al. [3]).

3. Note that the current design of the Jitterbug does not implement this. We
plan to develop a more interactive and user-friendly tool of Jitterbug utilizing
this query strategy in our future work.
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Jitterbug outperforms the state-of-the-art SATD identifi-
cation solutions by reaching higher recall at a lower cost
and negligible additional computation time (34 seconds).
This is attributed to two factors of Jitterbug: (1) it first
identifies the “easy to find” SATDs with close to 100%
precision, thus 20 to 90% of the SATDs can be found
with zero human effort; (2) for the remaining “hard to
find” SATDs, it utilizes the human classification results
to update its prediction model incrementally and thus can
make better guidance to which comments are more likely
to be SATDs.

In summary:

6 Apply Jitterbug to A New Project
To test the generalizability of Jitterbug while also demonstrating
how researchers and developers can use Jitterbug, we applied Jit-
terbug to identify SATDs from a new, unlabeled project Apache
httpd-2.4.64.

Data collection:we applied srcML5 and extracted 17,208 code
comments from the Apache httpd-2.4.6 project, similar to what
Potdar and Shiha [22] did.

Easy: the Easy algorithm trained on the 10 labeled datasets
(the four patterns of “fixme, todo, hack, workaround”) was applied
to extract the “easy to find” SATDs from the 17,208 code com-
ments. As a result, 148 comments were extracted as the “easy to
find” SATDs.

Validation of Easy: given the close to 100% precision of
Easy, the 148 comments should be automatically treated as SATDs
without human verification. However, to test the generalizability of
Easy, we validated these 148 comments by manually inspecting
and classifying each one. We found 4 false-positives from these
148 comments, as listed in Table 10. Therefore, the precision of
Easy on the Apache httpd-2.4.6 project is 144/148=97%. The full
validation results of all 148 comments are available on the GitHub
repository6.

TABLE 10: False-Positives of Easy on Apache Httpd

Comment Text Easy Human
/ See TODO in ap_queue_info_set_idle() / yes no
/ See TODO in ap_queue_info_set_idle() / yes no
/ basedir is either "", or "/%2f" for the "squid %2f hack" / yes no
/ Add a link to the root directory (if %2f hack was used) / yes no

Hard: the remaining 17,060 comments contain only the “hard
to find” SATDs. To identify such “hard to find” SATDs, the Hard
model trained on the 10 labeled datasets was applied to sample
10 most informative comments from the 17,060 comments. Then
the first author (acting as a user) manually inspected and labeled
the sampled 10 comments. Next, the Hard model was re-trained
with the newly added 10 labeled data. These processes should
iterate until the number of “hard to find” SATDs identified meets
the desired recall (based on the estimation of the total number of
“hard to find” SATDs in the 17,060 comments). However, with
limited human effort available, we only inspected and labeled 100

4. https://archive.apache.org/dist/httpd/httpd-2.4.6.tar.gz
5. https://www.srcml.org/
6. https://github.com/ai-se/Jitterbug/blob/master/httpd/httpd_easy_

validated.csv

comments with the help of Hard, interactively. Among these 100
inspected comments, 87 were found to be SATDs. Therefore, the
precision@100 for Hard on Apache httpd-2.4.6 is 87%. The full
inspection results are available at the GitHub repository7.

Summary: on Apache httpd-2.4.6, the precision of Easy is
97% and the precision@100 for Hard is 87%. These results
suggest that Jitterbug can be successfully applied to unlabeled
software projects. As an existing work, Potdar and Shiha [22]
applied their keyword-based method to identify SATDs on Apache
httpd-2.4.6. They found 112 SATDs in total. The Jitterbug result
is better than Potdar and Shiha [22] since by manually inspecting
100 comments, Jitterbug identified 144+87 = 231 SATDs, of
which the 144 “easy to find” SATDs did not require any human
effort. More details on how to apply Jitterbug to extract SATDs
from an unlabeled project are available on our GitHub repository8.

7 Threats to Validity
There are several validity threats [52] to the design of this study.
Any conclusion made from this work must be considered with the
following issues in mind:

Conclusion validity focuses on the significance of the treat-
ment. To enhance conclusion validity, we ran experiments on
10 different target projects and found that our proposed method
always performed better than the state-of-the-art approaches.

Internal validity focuses on how sure we can be that the
treatment caused the outcome. To enhance internal validity, we
heavily constrained our experiments to the same dataset, with the
same settings, except for the treatments being compared.

Construct validity focuses on the relation between the theory
behind the experiment and the observation. To enhance construct
validity, we compared solutions with and without our strategies
in Table 8 and showed that both components (Easy and Hard)
improve the overall performance. However, we only showed that
with our setting of featurization and default parameters of each
learner, random forest learner is the best choice. What we have
not shown is that whether the performance can get even better by
tuning the parameters or using a different set of features. We plan
to explore these in our future work.

External validity concerns how widely our conclusions can
be applied. In order to test the generalizability of our approach,
we always kept a project as the holdout test set and never used
any information from it in training. In addition, we have applied
Jitterbug to identify SATDs from an unlabeled software project
Apache httpd-2.4.6 with a real human inspecting the comments.
The results shown in §6 demonstrated the success of Jitterbug in
this real-world application.

8 Conclusion and Future work
Identifying self-admitted technical debts (SATDs) from source
code comments is important to maintain a healthy software
project. Current solutions cannot automate this process due to
the lack of precision of machine learning models in predicting the
SATDs. To reduce the human effort required in identifying SATDs,
this paper first showed that there are two types of SATDs— (1)
the “easy to find” SATDs that can be automatically identified with
close to 100% precision; and (2) the “hard to find” SATDs that

7. https://github.com/ai-se/Jitterbug/blob/master/httpd/httpd_rest_coded.csv
8. https://github.com/ai-se/Jitterbug/blob/master/README.md

https://archive.apache.org/dist/httpd/httpd-2.4.6.tar.gz
https://www.srcml.org/
https://github.com/ai-se/Jitterbug/blob/master/httpd/httpd_easy_validated.csv
https://github.com/ai-se/Jitterbug/blob/master/httpd/httpd_easy_validated.csv
https://github.com/ai-se/Jitterbug/blob/master/httpd/httpd_rest_coded.csv
https://github.com/ai-se/Jitterbug/blob/master/README.md
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only human experts can make the final decisions on. Then a half-
automated two-step approach was proposed— Step 1: apply a
novel pattern recognition technique to learn and utilize strong pat-
terns of the “easy to find” SATDs to identify them automatically;
Step 2: (a) train/update a continuous learning model incrementally
on both historically labeled data and new human decisions, and
(b) guide the human experts to screen the comments that most
likely contain the “hard to find” SATDs according to the model’s
prediction, iterate (a) and (b) until a target recall has been reached
according to the model’s estimation. Based on simulation results
on ten software projects, we conclude that
• Step 1 solution Easy can find 20-90% of the SATDs with close
to 100% precision automatically.

• Step 2 solution Hard outperforms the state-of-the-art methods
in finding the remaining “hard to find” SATDs (Hard finds more
SATDs with less human effort).

• Step 2 solution Hard can also provide an accurate estimation of
the number of “hard to find” SATDs undiscovered, thus offers a
practical way to stop at the target recall.

• Overall, the proposed two-step solution Jitterbug is most effi-
cient in identifying SATDs.
That said, Jitterbug still suffers from the validity threats discussed
in §7. To further reduce those threats and to move forward with
this research, we propose the following future work:
1) Apply hyper-parameter tuning on data preprocessing and
model configuration to see if our current conclusions still hold
and whether tuning can further improve the performance.

2) Prototype Jitterbug as a tool to make it more user-friendly.
3) Explore more complex patterns (other than just single word
patterns Easy has explored) in Step 1.

4) Explore more advanced feature engineering in Step 2 for
finding the “hard to find” SATDs. E.g. explore N-gram
patterns [39] and word embeddings with deep neural net-
works [40].

5) Explore whether replacing the random forest model in Jitter-
bug with a deep learning model (CNN [3]) will further improve
its performance.

6) Extend the work to other types of technical debts and compare
it with other state-of-the-art methods which continue to appear.

One important message this paper tries to convey is that— do not
waste effort on finding the “easy to find” SATDs, future research
on identifying SATDs should mostly focus on the “hard to find”
SATDs.

Appendix A
This appendix shows the recall-cost curves on every target project
in Figure A.1, Figure A.2, and Figure A.3.
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(a) Apache Ant (b) JMeter

(c) ArgoUML (d) Columba

(e) EMF (f) Hibernate

(g) JEdit (h) JFreeChart

(i) JRuby (j) SQuirrel

Fig. A.1: Recall-cost curves for finding “hard to find” SATDs on every target project.
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(a) Apache Ant (b) JMeter

(c) ArgoUML (d) Columba

(e) EMF (f) Hibernate

(g) JEdit (h) JFreeChart

(i) JRuby (j) SQuirrel

Fig. A.2: Recall-cost and estimation-cost curves for finding 90% of the “hard to find” SATDs with Hard on every target project.
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(a) Apache Ant (b) JMeter

(c) ArgoUML (d) Columba

(e) EMF (f) Hibernate

(g) JEdit (h) JFreeChart

(i) JRuby (j) SQuirrel

Fig. A.3: Recall-cost curves for finding all SATDs on every target project.
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