
How to Evaluate Solutions in Pareto-Based
Search-Based Software Engineering: A Critical

Review and Methodological Guidance
Miqing Li , Tao Chen ,Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Withmodern requirements, there is an increasing tendency of consideringmultiple objectives/criteria simultaneously inmany

Software Engineering (SE) scenarios. Such amulti-objective optimization scenario comeswith an important issue—how to evaluate the

outcome of optimization algorithms, which typically is a set of incomparable solutions (i.e., being Pareto nondominated to each other). This

issue can be challenging for the SE community, particularly for practitioners of Search-BasedSE (SBSE). On one hand, multi-objective

optimization could still be relatively new to SE/SBSE researchers, whomay not be able to identify the right evaluationmethods for their

problems. On the other hand, simply following the evaluationmethods for generalmulti-objective optimization problemsmay not be

appropriate for specific SBSE problems, especially when the problemnature or decisionmaker’s preferences are explicitly/implicitly known.

This has beenwell echoed in the literature by various inappropriate/inadequate selection and inaccurate/misleading use of evaluation

methods. In this paper, we first carry out a systematic and critical review of quality evaluation formulti-objective optimization in SBSE.We

survey 717 papers published between 2009 and 2019 from 36 venues in seven repositories, and select 95 prominent studies, throughwhich

we identify five important but overlooked issues in the area.We then conduct an in-depth analysis of quality evaluation indicators/methods

and general situations in SBSE, which, together with the identified issues, enables us to codify amethodological guidance for selecting and

using evaluationmethods in different SBSE scenarios.

Index Terms—Search-based software engineering, multi-objective optimization, Pareto optimization, quality evaluation, quality indicators,

preferences

Ç

1 INTRODUCTION

IN software engineering (SE), it is not uncommon to face a
scenario where multiple objectives/criteria need to be con-

sidered simultaneously [20], [50]. In such scenarios, there is
usually no single optimal solution but rather a set of Pareto
optimal solutions (termed a Pareto front in the objective
space), i.e., solutions that cannot be improved on one objective
without degrading on some other objective. To tackle these
multi-objective SE problems, different problem-solving ideas
have been brought up. One of them is to generate a set of solu-
tions to approximate the Pareto front. This, in contrast with
the idea of aggregating objectives (byweighting) into a single-
objective problem, provides different trade-offs between the
objectives, from which the decision maker (DM) can choose
their favorite solution.

In such Pareto-based optimization, a fundamental issue
is to evaluate the quality of solution sets (populations)
obtained by computational search methods (e.g., greedy
search, heuristics, and evolutionary algorithms) in order to
know how well the methods perform. Since the obtained
solution sets are typically not comparable to each other with
respect to Pareto dominance,1 how to evaluate/compare
them is non-trivial. A straightforward way is to plot the
solution sets (by scatter plot) for an intuitive evaluation/
comparison. Yet this only works well for the bi-objective
case, and when the number of objectives reaches four, it is
impossible to show the solution sets by scatter plot. More
importantly, visual comparison cannot provide a quantita-
tive comparative result between the solution sets.

Another way to evaluate the solution sets is to report
their descriptive statistical results, such as the best, mean,
and median values on each objective from each solution set.
This has been profoundly used in Search-Based SE
(SBSE) [6], [9], [18], [22], [37], [130], [134]. However, some of
these statistic indexes may easily give misleading evalu-
ation results. That is, a solution set which is evaluated better
than its competitor could be never preferred by the DM

� Miqing Li is with the School of Computer Science, University of Birming-
ham, B15 2TT Birmingham, U.K. E-mail: m.li.8@bham.ac.uk.

� Tao Chen is with the Department of Computer Science, Loughborough
University, LE11 3TU Loughborough, U.K. E-mail: t.t.chen@lboro.ac.uk.

� Xin Yao is with the Shenzhen Key Laboratory of Computational Intelli-
gence (SKyLoCI), Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, P. R.
China, and also with the CERCIA, School of Computer Science, University
of Birmingham, B15 2TT Birmingham, U.K. E-mail: xiny@sustc.edu.cn.

Manuscript received 17 Feb. 2020; revised 29 Sept. 2020; accepted 17 Oct. 2020.
Date of publication 9 Nov. 2020; date of current version 16 May 2022.
(Corresponding author: Tao Chen and Xin Yao.)
Recommended for acceptance by S. Nejati.
Digital Object Identifier no. 10.1109/TSE.2020.3036108

1. A solution set A is said to (Pareto) dominate a solution set B if for
any solution in B there exists at least one solution in A dominating it,
where the dominance relation between two solutions can be seen as a
natural “better” relation of the objective vectors, i.e., better or equal on
all the objectives, and better at least on one objective [154].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022 1771

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8607-9607
https://orcid.org/0000-0002-8607-9607
https://orcid.org/0000-0002-8607-9607
https://orcid.org/0000-0002-8607-9607
https://orcid.org/0000-0002-8607-9607
https://orcid.org/0000-0001-5025-5472
https://orcid.org/0000-0001-5025-5472
https://orcid.org/0000-0001-5025-5472
https://orcid.org/0000-0001-5025-5472
https://orcid.org/0000-0001-5025-5472
mailto:m.li.8@bham.ac.uk
mailto:t.t.chen@lboro.ac.uk
mailto:xiny@sustc.edu.cn

under any circumstance. This will be explained in detail in
the text later (Section 5.1.2).

Generic quality indicators, which is arguably the most
straightforward evaluation method that maps a solution set
to a real number that indicates one or several aspects of the
set’s quality, have emerged in the fields of evolutionary
computation and operational research [10], [62], [116], [154].
Today analyzing and designing quality indicators has
become an important research topic. There are hundreds of
them in literature [75], with some measuring closeness of
the solution set to the Pareto front, some gauging diversity
of the solution set, some considering a comprehensive eval-
uation of the solution set, etc. The SBSE community benefits
from this prosperity. A common practice in SBSE is to use
some well-established quality indicators, such as hypervo-
lume (HV) [153] and inverted generational distance
(IGD) [26], to evaluate the obtained solution sets. However,
some indicators may not be appropriate when it comes to
practical SE optimization scenarios. For example, since the
Pareto front of a practical SBSE problem is typically unavail-
able, indicators that require a reference set that well repre-
sents the problem’s Pareto front may not be well suited [75],
such as IGD.

More importantly, specific SBSE problems usually have
their own nature and requirements. Simply following indi-
cators that were designed for general Pareto-based optimi-
zation may fail to reflect these requirements. Take the
software product line configuration problem as an example.
In this problem, the objective of a product’s correctness is
always prioritized above other objectives (e.g., cost and rich-
ness of features). Equally rating these objectives by using
generic indicators like HV (which in fact has been com-
monly practiced in the literature [64], [93], [118], [120]) may
return the DM meaningless solutions, i.e., invalid products
with good performance on the other objectives. This situa-
tion also applies to the test case generation problem, where
the DM may first favor the full code coverage and then
others (e.g., low cost).

Moreover, some SBSE problems may associate with the
DM’s explicit/implicit assumptions or preferences between
the objectives. It is expected for researchers to select indicators
bearing these assumptions/preferences inmind. For instance,
in many SE scenarios, the DM may prefer well-balanced
trade-off solutions (i.e., knee points on the Pareto front)
between conflicting objectives. An example is that when opti-
mizing the conflicting non-functional quality of a software
system (e.g., latency and energy consumption), knee points
are typically the most preferred solutions, as in such case, it is
often too difficult, if not impossible, to explicitly quantify the
relative importance between objectives. Under this circum-
stance, quality indicators that treat all points on the Pareto
front equally (such as IGD)may not be able to reflect this pref-
erence, despite the fact that they have been frequently used in
such scenarios [37], [89].

Finally, the study of quality indicator selection itself in
multi-objective optimization is in fact a non-trivial task.
Each indicator has its own specific quality implication, and
the variety of indicators in literature can easily overwhelm
the researchers and practitioners in the field. On the one
hand, an accurate categorization of quality indicators is of
high importance. Failing to do so can easily result in a

misleading understanding of search algorithms’ behavior,
see [74]. On the other hand, even under the same category,
different indicators are of distinct quality implications, e.g.,
IGD prefers uniformly distributed solutions and HV is in
favor of knee solutions. A careful selection needs to be
made to ensure the considered quality indicators to be in
line with the DM’s preferences. In addition, many quality
indicators involve critical parameters (e.g., the reference
point in the HV indicator). It remains unclear how to prop-
erly set these parameters under different circumstances,
particularly in the presence of the DM’s preferences.

Given the above, this paper aims to systematically survey
and justify some of the overwhelming issues when evaluat-
ing solution sets in SBSE, andmore importantly, to provide a
systematic and methodological guidance of selecting/using
evaluationmethods and quality indicators in various Pareto-
based SBSE scenarios. Such a guidance is of high practicality
to the SE community, as research from the well-established
community of multi-objective optimization may still be rela-
tively new to SE researchers and practitioners. This is, to the
best of our knowledge, the first work of its kind to specifi-
cally target the quality evaluation of solution sets in SBSE
based on a theoretically justifiable methodology.

It is worth mentioning that recently there are some
attempts from the perspective of empirical studies to provide
guidelines for quality indicator selection [4], [138]. Wang et al.
[138] proposed a practical guide for SBSE researchers based
on the observations from experimental results in three SBSE
real-world problems. Ali et al. [4] significantly extended that
work and provided a set of guidelines based on the observa-
tions from experimental results in nine SBSE problems from
industrial, real-world and open-source projects. However,
observations drawn from an empirical investigation on spe-
cific SBSE scenarios may not be generalizable. Indeed, differ-
ent DMs may prefer different trade-offs between objectives,
even for the same optimization problem, as nondominated
solutions are in essence incomparable. Observations obtained
on one (or some) scenario(s) is therefore difficult to be trans-
ferred into other scenarios. As a result, a general and theoreti-
cally sound guidance based upon the DM’s preferences is
needful since the fundamental goal of multi-objective optimi-
zation is to supply the DM a set of solutions which are the
most consistent with their preferences.

For the rest of the paper, we start by providing some
background knowledge of multi-objective optimization and
quality evaluation (Section 2). Then, we conduct a system-
atic survey of the SE problems that involve Pareto-based
search (hence termed Pareto-based SBSE problems) across
all phases in the classic Software Development Life Cycle
(SDLC) [112], along with their problem nature, the DM’s
preferences, the quality indicators and evaluation methods
used (Sections 3 and 4). The survey has covered 717
searched papers published between 2009 and 2019, on 36
venues from seven repositories, leading to 95 prominent
primary studies in the SBSE community. This is followed by
a critical review on the evaluation method selection and use
in those primary studies, based on which we identify five
important issues that have been significantly overlooked
(Section 5). Then, we carry out an in-depth analysis of fre-
quently-used quality indicators in the area (Section 6), in
order to make it clear which indicators fit in which situation.

1772 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

Next, to mitigate the identified issues in the future work of
SBSE, we provide a methodological guidance and proce-
dure of selecting, adjusting, and using evaluation methods
in various SBSE scenarios (Section 7). The last three sections
are devoted to threats to validity, related work, and conclu-
sion, respectively.

2 PRELIMINARIES ON MULTI-OBJECTIVE

OPTIMIZATION

Multi-objective optimization is an optimization scenario
that considers multiple objectives/criteria simultaneously.
Apparently, when comparing solutions2 in multi-objective
optimization, we need to consider all the objectives of a
given optimization problem. There are two commonly used
terms to define the relations between solutions, Pareto dom-
inance and weak Pareto dominance.

Without loss of generality, let us consider a minimization
scenario. For two solutions a;b 2 Z (Z � Rm, where m
denotes the number of objectives), solution a is said to
weakly dominate b (denoted as a � b) if ai � bi for 1 � i � m.
If there exists at least one objective j on which aj < bj, we
say that a dominates b (denoted as a � b). A solution a 2 Z
is called Pareto optimal if there is no b 2 Z that dominates a.
The set of all Pareto optimal solutions of a multi-objective
optimization problem is called its Pareto front.

The above relations between solutions can immediately
be extended to between sets. Let A and B be two solution
sets.

Relation 1. [Dominance between two sets [154]] We say that A
dominates B (denoted as A � B) if for every solution b 2 B
there exists at least one solution a 2 A that dominates b.

Relation 2. [Weak Dominance between two sets [154]] We say
that A weakly dominates B (denoted as A � B) if for every
solution b 2 B there exists at least one solution a 2 A that
weakly dominates b.

We can see that the weak dominance relation between two
sets does not rule out their equality, while the dominance
relation does but it also rules out the case that there exist
same solutions with respect to the two sets. Thus, we may
need another relation to define that A is generally better than
B.

Relation 3. [Better relation between two sets [154]] We say that
A is better than B (denoted as ACB) if for every solution b 2
B there exists at least one solution a 2 A that weakly dominates
b, but there exists at least one solution in A that is not weakly
dominated by any solution in B.

The better relation C reflects the most general assumption
of the DM’s preferences to compare solution sets. However,
the better relation may leave many solution sets incompara-
ble since it is very likely that there exist some solutions
being nondominated with each other in the sets. As typi-
cally the size of the Pareto front of a multi-objective optimi-
zation problem can be prohibitively large or even infinite, a
solution set that can well represent the Pareto front is

preferred, especially when the DM’s preferences are
unavailable. This leads to four quality aspects that we often
care about [75] — Convergence, how close the solution set
is to the Pareto front; Spread, how large the region that the
set covers is; Uniformity, how evenly the solutions are dis-
tributed in the set; Cardinality, how many (unique) nondo-
minated solutions are in the set. Over the last three decades,
numerous quality evaluation methods have been developed
for these four aspects. Among them, quality indicators are
the most popular ones [75]. They typically map a solution
set to a real number that indicates one or more of the four
quality aspects, defining a total order among solution sets
for comparison.

3 REVIEW METHODOLOGY

Despite that we have randomly witnessed several inappro-
priate evaluations of solution sets through our own experi-
ences working in SBSE, the key challenge in this work
remains to systematically understand what the trends of issues
on the way to evaluate solution sets in the SBSE community are,
if any, so that a clarified guidance can be drawn thereafter.
To this end, we at first conduct a systematic literature
review covering the studies published between 2009 and
2019. A reason that we consider this period is that one of the
most well-known SBSE surveys (Harman et al. [50]) has cov-
ered the SBSE work from 1976 to 2008, and we try to cover
the period that has not been reviewed by that work. In addi-
tion, since 2010 or so, there is a rapidly increasing interest in
using Pareto-based optimization techniques to deal with
SBSE. Given these two reasons, we have chosen 2009 as the
starting year of our review. Having said that, we do not aim
to provide a complete review on all parts of the SBSE work,
but specifically on the aspects related to the major trends of
evaluating solution sets.

Our review methodology follows the best practice of a
systematic literature review for software engineering [60],
consisting of search protocol, inclusion/exclusion criteria,
formal data collection process, and pragmatic classification.
Specifically, the review aims to answer three research ques-
tions (RQs):

� RQ1: What evaluation methods have been used to
evaluate solution sets in SBSE? (What)

� RQ2: What are the reasons and practice of using the
generic quality indicators? (Why and How)

� RQ3: In what domain and context the evaluation
methods have been used? (Where)

3.1 Overview of the Literature Review Protocol

As shown in Fig. 1, our literature review protocol obtains
inputs from various sources via automatic search, which we
will elaborate into details in Section 3.2. This gives us 3,156
studies including duplication. We then removed any dupli-
cated studies by automatically matching their titles,3 lead-
ing to 717 searched studies. Next, we filtered the searched
studies by reading through their titles and abstracts using
two simple filtering criteria:

2. For simplicity, we refer to an objective vector as a solution and the
outcome of a multi-objective optimizer as a solution set.

3. Patents, citation entries, inaccessible papers, and any other non-
English documents were also eliminated.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1773

� The paper is not relevant to SBSE.
� The paper does not investigate or compare multi-

objective search/optimization.
A study was ruled out if it meets any of the above two fil-

tering criteria. The aim of filtering is to reduce the found
studies to a much smaller and more concise set, namely the
candidate studies. As can be seen, the process resulted in 298
candidate studies prior to manual search. Starting from the
298 studies, we adopted an iterative forward snowballing
as suggested by Felizardo et al. [33], where the newly
included studies (after filtering) were placed into the next
snowballing round. The reason why we did not do back-
ward snowballing is because we have set strict time scale on
the studies searched within the last decade, and thus back-
ward snowballing would too easily violate such a require-
ment of timeliness. To avoid a complicated process, we
relied on Google Scholar as the single source for forward
snowballing, as it returns most of the searched results as
shown in Fig. 1 and has been followed by software engi-
neering surveys [42]. This snowballing stopped when no
new studies can be found and it eventually led to 319 candi-
date studies, upon which the procedure for the full-text
review begins.

At the next stage, we reviewed all the 319 studies and
temporarily included studies using the inclusion criteria
from Section 3.3, which resulted in 167 candidate studies.
We then applied the exclusion criteria (see Section 3.3) to
extract the temporarily included studies, leading to 101 can-
didate studies. By using the cleaning criteria specified in
Section 3.3, a further cleaning process was conducted to
prune different studies that essentially report on the same
work, e.g., conference extended journal papers. All the

processes finally produced 95 primary studies for data analy-
sis and collection.

On these 95 primary studies, we conducted systematic
and pragmatic data collection via three iterations, whose
details are given in Sections 3.4 and 3.5. The summarized
results were reported thereafter.

3.2 Scope and Search String

From 12th to 19th Aug 2019, we conducted an automatic
search over a wide range of scientific literature sources,
including ACM Library, IEEE Xplore, ScienceDirect, Spring-
erLink, Google Scholar, DBLP and the SBSE repository
maintained by the CREST research group at UCL.4

We used a search string that aims to cover a variety
of problem nature and application domains with respect
to multi-objective optimization. Synonyms and keywords
were properly linked via logical operators (AND, OR) to
build the search term. The final search string is shown as
below:

(“multi objective” OR “multi criteria” OR “Pareto based” OR
“non dominated” OR “Pareto front”) AND “search based
software engineering” AND optimization

We conducted a full-text search on ACM Library, IEEE
Xplore, ScienceDirect, SpringerLink, and Google Scholar,
but rely on searching the title only for DBLP and UCL’s
SBSE repository, due to their restricted feature. Since
DBLP’s search feature cannot handle the whole search
string, we paired each term in the first bracket with
“search based software engineering” to run the
search independently and collect all results returned. We
omitted “optimization” as it rarely appears together
with “search based software engineering” in the
title, and having it along would produce many irrelevant
results. Due to the similar reason, for the UCL’s SBSE repos-
itory, we searched each term from the first bracket indepen-
dently, as it is known that all the studies in this source are
SBSE related.

On all the sources exceptDBLPandUCL’s SBSE repository,
we tried two versions of the search string: one with a hyphen
between the commonly used terms (e.g., “multi(-)
objective”) and another without. The returned results with
the highest number of items were used.5 In particular, when
searching on UCL’s SBSE repository, the results of these two
versions were combined, for example, “multi objective”
and “multi-objective” would lead to different results.
We recorded all the results returned under semantically
equivalent terms.

3.3 Inclusion, Exclusion, and Cleaning Criteria

For all the candidate studies identified, we first extract the
primary studies by using the inclusion criteria as below;
studies meeting all of the criteria were temporarily chosen
as the primary studies:

Fig. 1. Systematic literature review protocol.

4. http://crestweb.cs.ucl.ac.uk/resources/sbse_repository
5. This is because their results are not mutually exclusive, e.g., on

Google Scholar, “multi objective” would also return all the studies
that contain “multi-objective” but not the other way around.

1774 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository

1) The study primarily focuses on (or has a section that
discusses) a Pareto-based multi-objective solution to
the SBSE problem. This means we do not consider
papers that utilize the multi-objective treatment that
relies on objective aggregation (e.g., weighted sum),
unless they have explicitly compared the solution
against a Pareto-based multi-objective solution. This
is reasonable as if a clear aggregation of objectives
can be defined, then there would be almost no need
to select quality indicators but rely on the said aggre-
gation to obtain a utility value for comparison.

2) The study explicitly or implicitly discusses (or at
least makes assumptions about) the DM’s preferen-
ces/contextual information between the objectives
for the SBSE problem in hand. By implicit discussion,
we mean that the study does not clearly state the
assumptions, but such assumptions can be easily
interpreted from the paper. For example, in the soft-
ware product line configuration problem, some stud-
ies do not explicitly study the assumptions, but the
number of valid products (one objective to be opti-
mized) is solely used as an indicator to compare the
peer approaches, which gives a clear indication that
it is more important than the other objectives. Note
that this also includes the assumption of no preferen-
ces/contextual information.

3) The SBSE problem in hand can be framed into at
least one phase of the classic SDLC [112].

4) The study uses at least one search algorithm to solve
the problem.

5) The study includes quantitative experimental results
with clear instructions on how the results were
obtained.

6) The study uses at least one method to evaluate the
experimental results.

Subsequently, studies meeting any of the exclusion criteria
below are filtered out from the temporary primary studies:

1) The study neither explicitly nor implicitly mentions
SBSE, where the computational search is the key.

2) The study is not “highly visible” or widely followed.
We used the citation information from Google
Scholar as a single metric to (partially) assess the
impact of a study.6 In particular, we follow a prag-
matic strategy that: a study has 5 citations per year
from its year of publication is counted in, e.g., a 2010
study would expect to have at least 45 citations.7 The
only exception is for the work published in the year
of writing this article (i.e., 2019), we consider those
that were published for shorter than 6 months and
have been cited by more than once, together with the
pre-press ones that have not yet been given an issue
number regardless of their citation counts. The rea-
sons behind this setting are three-folds:

(a) Wedonot attempt to provide a comprehensive
survey on thewhole SBSE field, but rather to gather the

major trends on how solution sets are evaluated, which
can at least provide some sources for detailed analysis
and discussion. Therefore, somemetrics are required to
ensure a trade-off between the trend coverage and a
reasonably required effort for detailed data collections.
This is similar to a sampling of the literature with the
aim to gather the “representative” samples. This
approach was adopted by many works, such as [40]
where they used the citation count fromGoogle Scholar
as a threshold to select studies for review, as we did in
thiswork.

(b) It is not uncommon to see that software
engineering surveys are conducted using some met-
rics to measure the “impact” of a work. For exam-
ple, some restrict their work only at what the
authors believe to be premium venues [42], others
use a threshold on the impact factors of the pub-
lished journals, e.g., Cai and Card [12] use 0.55 and
Zou et al. [155] use 2.0. In our case, it may not be a
best practice to apply a metric at the venue level as
the SBSE work is often multi-disciplinary (as we
will show in Table 2) — it is difficult to quantify the
“impact” across communities. We, therefore, have
taken a measurement at the paper level based on
the citation counts from Google Scholar, which has
been used as the sole metric to differentiate between
the studies in some prior work [27], [40], [42].

(c) Indeed, there is no rule to set the citation
threshold. The settings in this work were taken from
the (rounded) average figure within the population of
the candidate studies. These may seem very high at the
first glance probably due to two reasons: (i) by publica-
tion date, we meant the official date that the work
appears on the publisher’s webpage (for journal work,
this means it has been given an official issue number).
Yet, it is not uncommon thatmany studies aremade cit-
able as pre-prints before the actual publication, e.g.,
ICSE often has around 6 months gap between notifica-
tion and official publication, and there is an even larger
gap for some journals. This has helped to accumulate
citations. (ii) Google Scholar counts the citations made
by any publicly available documents and self-citation,
which can still be part of the impact but implies their
citation count may be higher than those purely made
by peer-reviewed publications.Nevertheless, this could
indeedpose a threat of construct validity,whichwewill
discuss in Section 8.

TABLE 1
Data Collection Items

6. Admittedly, there is no metric that is able to well quantify the
impact of a paper. Nevertheless, the citation count can indicate some-
thing about a paper, e.g., its popularity.

7. All the citations were counted by 23rd Nov 2019.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1775

3) The study is a short paper, i.e., shorter than 8 pages
(double column) or 15 pages (single column).

4) The study is a review, survey, or tutorial.
5) The study is published in a non-peer-reviewed pub-

lic venue, e.g., arXiv.
Finally, if multiple studies of the same research work are

found, we applied the following cleaning criteria to deter-
mine if they should all be considered. The same procedure
is applied if the same authors have published different stud-
ies for the same SBSE approach, and thereby only significant
contributions are analyzed for the review.

� All studies are considered if they report on the same
SBSE problem but different solutions.

� All studies are considered if they report on the same
SBSE problem and solutions but have different
assumptions about the DM’s preference, nature of
the problem, or new findings of the problem.

� When the above two points do not hold, only the lat-
est version or the extended journal version is
considered.

3.4 Data Items Analysis and Classification Strategy

The items to be collected when reviewing the details of the
primary studies have been shown in Table 1. We now
describe their design rationales and the procedure to extract
and classify the data from each item.

The data for I1 to I5 ismerely used as themeta-information
of the primary studies. I6, which answers RQ1, is the key item
of our review. The evaluation method(s) used can be easily
identified in a study, most commonly at the Experiment sec-
tion. In general, apart from identifying the evaluation meth-
ods used in each study, we also seek to classify them into the
following four categories:

� Generic Quality Indicator: This refers to indicators that
are designed to evaluate the quality of solution sets
for generic multi-objective optimization problems
(e.g., HV , IGD and Spread), as documented by Li
and Yao [75]. Formally, a quality indicator is a metric
that maps a set of solutions (i.e., solution vectors) to a
real number that indicates one or several aspects of
the solution set quality [74], [75], e.g., to indicate
how close the set is to the Pareto front and how
evenly solutions are distributed in the set.

� Solution Set Plotting (SSP): This is a straightforward
way to evaluate solution sets — visualizing the
results by plotting them.

� Descriptive Objective Evaluation (DOE): This resorts to
the direct statistical results of objective values, e.g.,
the best/mean/median of the solution set on each
objective.

� Problem Specific Indicator (PSI): This refers to indica-
tors that are not used for generic multi-objective
optimization problems, but specifically designed for
a given SBSE problem.

I7 is heavily relevant to I6, but requiring more detailed
inspection to the studies. By this means, we aim to collect
information about when a generic quality indicator is used,
what quality aspect the study seeks to evaluate by it (for
RQ2), which is the key reason of why such an indicator is

chosen. I7 is classified based on the four quality aspects of a
solution set as concluded by Li and Yao [75], i.e., Conver-
gence, Spread, Uniformity, and Cardinality. For each study,
we first looked for the section where the generic quality
indicators are explained, if no information found, we then
searched for every place where the generic quality indica-
tors are mentioned. We classify each indicator into the qual-
ity aspects based on whether their keywords have been
clearly mentioned, otherwise, the indicator is marked as
Unknown under I7 of a study.

For I8, we wish to understand how the generic quality
indicators are used, as some of them requiring a reference
point (e.g., HV) or a reference Pareto front (e.g., GD and

TABLE 2
The Reviewed Studies Counts and Venues

1776 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

IGD) in order to be used correctly (for RQ2). This is again
following a similar procedure to that of I7; when no such
information can be found for an indicator that requires a ref-
erence, we marked Unknown under the indicator for I8 of
the study.

To answer RQ3, I9 is rather straightforward, and under-
standing it can help us to know whether some evaluation
methods are used appropriately, as some of them have limi-
tations in terms of the number of objectives to be optimized.
I10 is also relatively easy to identify, most commonly from
the Introduction section and we classify the Pareto-based
SBSE problems into the SDLC phases in a classic waterfall
model according to [112]. Note that we choose this model
by no mean to rely on its usefulness, but only because it is
one of the oldest models which consists of very generic
phases that allow us to showcase the categories of SBSE
problems.

Finally, to complete RQ3, I11 is crucial as it enables us to
assess whether the evaluation methods are used correctly,
given the DM’s preferences over the objectives and/or the
contextual information, which is one of the core initiatives
of this paper. To classify the preferences and contextual
information, we followed a pragmatic classification coding:

� Contextual information: Every problem has its own
nature and characteristics; there is no exception for
Pareto-based SBSE problems. In general, such nature
and characteristics of the problem form the contex-
tual information, which is precise, clear, and explic-
itly stated as a fact in a study. For example, in the
software product line configuration problem, many
studies state that there is no doubt that the correct-
ness objective has higher priority than any others, as
an invalid product has no value in practice.

� DM’s preferences: The DMs often have preferences
over certain objectives or are able to provide infor-
mation about their relative importance and expecta-
tion. This may be for example, “objective A is

preferred as long as objective B has at

least reached b”; or well-balanced solutions (a.k.
a. knee solutions) are preferred. When the DM’s
preferences are aligned with contextual information,
they are indeed similar. However, the key difference
is that the contextual information is clear, and it is a
hard requirement that is well acknowledged on the
given Pareto-based SBSE problem regardless of
whether the DM explicitly states it or not. In contrast,
the DM’s preferences are often vague and imprecise,
and it cannot be generalized to all the scenarios of
the given Pareto-based SBSE problem.

� Not specified: When neither of the above categories
can be applied, the preference and contextual infor-
mation is marked as Not specified.

Extracting the data for I11 focuses on understanding
exactly what DM’s preferences and contextual information
are assumed in each study. This was achieved by inspecting
the sections relevant to Problem Statement and Approach
Design. If no information can be found, we then looked for
insights from the Experiment section. For example, when a
single objective, which belongs to part of the search, is explic-
itly discussed and used to compare the peer approaches in

the evaluation, it often reflects the assumptions of contextual
information and/or DM’s preferences in the study.

3.5 Data Collection

For each primary study identified, the data items from
Table 1 were collected and classified based on the coding
from Section 3.4. The first two authors of this paper
reviewed the primary studies independently. The data and
classification extracted by one author were checked by the
other. Disagreements and discrepancies were resolved by
discussing between the two authors or by consulting an
additional researcher.

Following the strategy recommended in a recent sur-
vey [155], we adopted three iterations for the data collection
process, which are detailed as below:

Iteration 1: This iteration aims to conduct an initial data
collection to summarize the data and perform preliminary
classification. During the process, a notable difficulty
between the authors was that the evaluations using descrip-
tive statistics and problem-specific indicators are hard to be
distinguished. This is due to the fact that most of them are
not clearly stated in the studies and there is a wide variety
of problem-specific indicators across all Pareto-based SBSE
problems (we found 34 of them in our review). Therefore,
any study, which the authors suspected that these two types
of methods might have been used but could not be certain,
was placed into a bin for further investigation in the next
iteration. There were 26 studies in the binwhen this iteration
finished.

Iteration 2: In this iteration, the two authors checked the
data and classification from each other to ensure consis-
tency. A study was discussed during the process if either
author has any concern about the data extracted. Any unre-
solved studies from the bin were also checked by the other
author again. Particularly, for each study in the bin, a com-
mon agreement on the descriptive statistics and problem-
specific indicators used was reached via either discussion
between the authors or counseling external researchers. Fur-
ther reading to understand the nature of an evaluation
method (for problem-specific indicators) was conducted
when necessary. Apart from this, other major discussions
raised were concerned with certain generic quality indica-
tors, due to two reasons: (i) some studies have indeed used
generic quality indicators, but the actual name of the indica-
tor is missing, although some detailed calculation has been
provided, e.g., [48], [145]; (ii) some other studies have used
completely different names to refer to the same quality indi-
cator (or even invented their own name), e.g., [69], [147].
These cases require both the authors to thoroughly inspect
the detailed calculation of those indicators before reaching
an agreement. Overall, a total of 60 studies were discussed
in this iteration.

Iteration 3: The process of the final iteration is similar to
that of Iteration 1, but its goal is to eliminate any typo, miss-
ing labels, and errors. The extracted data for 11 studies,
which contain errors, were corrected during the process.

4 RESULTS OF THE REVIEW

A breakdown of the studies identified with respect to the
venues where they were published has been shown in

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1777

Table 2. As can be seen, the studies come from a wide range
of conferences and journals, which are all respectful.8 It is
worth noting that the results do not only include studies
published in software engineering venues, but also those
published in service, system and cloud engineering confer-
ences/journals as well as those in the computational intelli-
gence venues, as long as they are related to problems in the
software engineering domain and comply with the inclu-
sion/exclusion criteria.

Next, we report on the results collected from our system-
atic literature review, which would further motivate the
remaining of our work.

4.1 RQ1: What Evaluation Methods?

The usage of evaluation methods has been presented in
Fig. 2 along with the details for every single primary study
presented in Table A1 (at appendix), which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2020.3036108. As can
be seen, a total of 13 generic quality indicators have been
used in the primary studies (i.e., HV , IGD, GD, Spread, �,
NFS, CI, CS, AS, SP , ED, ER and IGDþ). Explanations of
all the acronyms can be found in Table 3. In particular, HV ,
IGD and GD are the top three most widely used generic
quality indicators across almost all the SBSE problems, due
presumably to their popularity as well as “inertia” (i.e.,
researchers tend to use indicators which were used before
even though they are not the best fit) [75].

There are also 45 primary studies using PSI; for example,
MoJoFM [65] is a commonly used symmetric indicator for
the software modularization problem, which aims to com-
pare two resulted partitions of classes (i.e., two solutions),
thus inapplicable to other optimization scenarios. Note that
since the PSI is highly domain-dependent and they are not
explicitly designed for evaluating solution sets, we do not
specify the usage details for every single one of them. We
do however present which particular PSI is used under
which context, as shown in Table 8 which we will elaborate
in Section 4.3.3. In summary, we found a total of 34 different
PSI over all the Pareto-based SBSE problems.

Apart from the quality indicators, SSP and DOE have
also been overwhelmingly used by 50 and 29 primary stud-
ies respectively to evaluate solution sets. For SSP , we found
only two sub-types: the Parallel Coordinate plot which
shows the solutions’ objective values upon n parallel lines,
where n is the number of objectives; and the Scatter Plot
that plots the solutions in the objective space. DOE involves
more diverse forms, as shown in Table 4, including 27 cases
to compare the mean, best, worst, median, or statistical
results of each objective in the evaluation along with the
remaining five cases that use other three forms.

4.2 RQ2: Why and How Generic Quality Indicators
are Used?

As shown in Table 5, for those primary studies that made use
of generic quality indicators, most commonly there is a clear
statement about what quality aspect(s) they selected an indi-
cator for, as appeared in 73 cases. This is also the reason and
evidence that these studies used to justify their choices.
However, there is still a considerable amount of cases (59)
that weremarked asUnknown, i.e., no clear and explicit ratio-
nale of the choice has been provided. For the reference front

Fig. 2. Usage of evaluation methods in primary studies.

TABLE 3
Acronyms of the Evaluation Methods

TABLE 4
Descriptive Objective Evaluation (DOE) Methods Used

�The mean of all repeated runs are reported. Note that a study could involve
more than oneDOE form.

8. The raw data and minutes recorded during the discussion in the
data collection process are publicly available at: https://github.com/
taochen/sbse-qi.

1778 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

http://doi.ieeecomputersociety.org/10.1109/TSE.2020.3036108
http://doi.ieeecomputersociety.org/10.1109/TSE.2020.3036108
https://github.com/taochen/sbse-qi
https://github.com/taochen/sbse-qi

used for GD and IGD, whilst most of the cases the best Par-
eto front found by all algorithms (i.e., nondominated solu-
tions of the set consisting of the solutions produced by all
algorithms) is used, many still do not explicitly declare such
information. On the reference point used by HV , we see a
diverse way of obtaining such a point, including using the
worst objective value of all the solutions found, the boundary
of the optimization problem in SBSE, and the nadir point
from the Pareto front of all the solutions found.

4.3 RQ3: What Context?

4.3.1 Number of Objectives

Table 6 shows the number of objectives considered by the
evaluation methods. On the generic quality indicators, we
see that IGD has been used for the highest number, i.e., 15
objectives, and all of them (except SP and ER) have ever
been used on the bi-objective cases, which is the minimum
number required to build a Pareto front. Whilst most of the
generic quality indicators have been used under the bi- and
tri-objectives cases, a considerable amount of them have
been used on the objective number over three.

As for PSI, DOE, and SSP , we can observe that they are
used on a relatively wider range of objective numbers as
compared with most of the generic quality indicators.

4.3.2 Pareto-Based SBSE Problems

From Table 7, it is clear that our systematic review has
revealed 21 distinct Pareto-based SBSE problems, which are
spread across all the six common phases in the SDLC.9 Nota-
bly, we can see that certain problems have attracted more
attention than the others, as evidenced by the much higher
number of primary studies included, such as the software

product line and the white/black-box test case generation
problems. Among others, the software testing phase, as well
as the deployment and maintenance phase contain much
more diverse problems than the other SDLC phases. This is
probably because the nature of those problems, which are
usually in later phases of the SDLC, fits the requirements of
search-based optimizationwell.

Indeed, some of the Pareto-based SBSE problems can argu-
ably fit intomore than one phase of the SDLC; but in this work,
we classify those problems according to which phases can be
better matched with the detailed formalization of the problem
and the hypotheses that the authors made. Further, certain
problems in the deployment and maintenance phase are not
classic software engineering problems (e.g., resource manage-
ment and service composition); however, they have recently
attracted more and more attention from software engineering
researchers and have been increasingly considered as impor-
tant issues in the software engineering domain [49].

4.3.3 Assumptions on Preferences and Contextual

Information of Problems and Their Evaluation

Methods

In Table 8,we summarize the assumptions on theDM’s prefer-
ences and contextual information about the objectives for each
Pareto-based SBSE problem reviewed, and the evaluation
methods used to compare different solution sets under these
contexts. Aswe can see, there are 17 cases, covering 25 primary
studies, have made assumptions on DM’s preferences. The
contextual information, in contrast, has been used in five cases
over 20 primary studies. The others do not clearly state the
assumptions in this regard and hence noted as Not specified.
One of the most notable observations is that a particular SBSE
problem may have multiple, distinct assumptions about the
DM’s preferences and contextual information. In fact, most of
the problems havemore than one assumption on the preferen-
ces/contextual information, and particularly, the project
scheduling problem and software configuration/adaptation
problem involve up to four different types of assumptions.

TABLE 6
Summary of the # Objectives Under Which the Generic Quality

Indicators, SPI, SSP andDOE are Used

The bracket shows the number of problems under which the a pair of objective
number and evaluation method is considered. Note that a study may consider
problems with different # objectives.

TABLE 5
Summary of How Generic Quality Indicators are Used to

Evaluate Solution Sets in the Primary Studies

Q1=Convergence; Q2=Spread; Q3=Uniformity; Q4=Cardinality. The number
of primary studies is shown within the brackets.

9. Note that [16] studies three different problems.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1779

This reflects the fact that many problems are complex and the
actual preferences can be situation-dependent. Yet, it does
bring the requirements that all those situations need to be
catered for. In contrast, problems such as effort estimation and
requirement assignment have assumed only one type of pref-
erences/contextual information, which implies a relatively
more straightforward selection and use in the quality evalua-
tion process on the solution sets.

5 ISSUES ON QUALITY EVALUATION

IN PARETO-BASED SBSE

Based on our systematic literature review, this section pro-
vides a systematic analysis of five issues of quality evaluation,

classified into two categories, from state-of-the-art Pareto-
based SBSEwork.

5.1 Problematic Use of Illustrative and Descriptive
Statistic Evaluation Methods

As shown in Fig. 2, Tables 8 and A1 (at appendix), avail-
able in the online supplemental material, there exist
many SBSE studies, particularly in early days, that relied
on plotting the solution set returned (SSP) and/or on
reporting some DOE results to reflect the quality of solu-
tion sets. Despite these two methods being simple to
apply, they may easily lead to inaccurate evaluations
and conclusions.

TABLE 7
Pareto-Based SBSE Problems in Different SDLC Phases

1780 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

TABLE 8
Assumptions of DM’s Preferences and Contextual Information in the Pareto-Based SBSE Problems

and the Corresponding Evaluation Methods Used

All problem specific indicators are listed in full and marked as ? .
(P) denotes DM’s preferences; (C) denotes contextual information.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1781

5.1.1 ISSUE I: Inadequacy of Solution Set

Plotting (SSP)

A straightforward way to evaluate/compare the quality of
solution sets returned by search algorithms is to plot solu-
tion sets and judge intuitively how good they are. Such
visual comparison is among the most frequently used meth-
ods in SBSE, but it may not be very practical in many cases.

First, it cannot scale up well — when the number of
objectives is larger than three, the direct observation of solu-
tion sets (by scatter plot) is unavailable. Second, the visual
comparison fails to quantify the difference between solution
sets. Finally, when an algorithm involves stochastic ele-
ments, different runs usually result in different solution
sets. So, it may not be easy to decide which run should be
considered. Printing the solution sets obtained in all the
runs can easily clutter the picture. As such, plotting solution
sets does not suffice to the quality evaluation in Pareto-
based SBSE, despite the fact that it has been used solely to
compare solution sets in a considerable amount of the pri-
mary studies, e.g., [11], [44], [51], [68], [84], [148], as shown
in Table A1 (at appendix), available in the online supple-
mental material. Nevertheless, it is worth mentioning that
SSP is useful as an extra evaluation method in addition to
quality indicators, particularly in bi- and tri-objective cases.
This will be discussed in the guidance section (Section 7)
later on.

5.1.2 ISSUE II: Inappropriate Use of Descriptive

Objective Evaluation (DOE)

Many Pareto-based SBSE studies evaluate solution sets by
DOE — statistical objective values in the obtained solution
set(s). For example, as it can be seen in Table 4, the mean
objective value was considered in [6], [7], [9], [102], [105],
[107], [114], [118], [128], [129]; the median value in [6], [37],
[58]; the best value in [9], [21], [30], [65], [82], [88], [100],
[108], [134], [135], [141], [142]; the worst value in [9], [134];
the statistical significance of the differences between distinct
solution sets’ objective values in [1], [76], [123], [137]. Such
DOE measures need to be used in line with the DM’s pref-
erence. For example, comparing the best value of each objec-
tive can well evaluate solution sets if the DM prefers the
extreme points (solutions), but may not be well-suited
when balanced points are wanted, which, unfortunately,
was practiced in some studies such as [137] shown in
Table 8. Worse still, many DOE measures may give a mis-
leading evaluation, including those comparing the mean,
median, and worst values of each objective and comparing
statistically significant differences on each objective. That is
to say, by a DOE measure a solution set is evaluated better
than another set, but in fact, the latter is always preferred by
the DM under any circumstances. Fig. 3 gives such an exam-
ple (minimization) with respect to calculating the mean of
each objective. As shown, the mean of the solution set A on
either objective f1 or f2 is 5, larger than that of the solution
set B (4), thus A being regarded as inferior to B. Yet, A will
always be favored by the DM since there is one solution in
A better than any solution in B.

On the other hand, recalled from Table 4, some work in
the primary studies considers selecting one particular solu-
tion (by using a decision-making method) from the whole

solution set produced by the Pareto-based search for com-
parison. For example, the studies in [76], [137] considered
Mean Fitness Value (MFV) and the studies in [125], [126]
considered Analytic Hierarchy Process (AHP) [41]. How-
ever, one question is that if we know clear weighting
between objectives of the DM (thus being able to take only
one solution from the whole solution set into account), why
not directly integrate this information into the problem
model, thus converting a multi-objective problem into an
easier single-objective problem in the first place.

5.2 Problematic Use of Generic Quality Indicators

As disclosed in Tables 6, 8 and A1 (at appendix), available
in the online supplemental material, it has been commonly
seen in Pareto-based SBSE studies that select or use quality
indicators that cannot accurately reflect the quality of solu-
tion sets. This is virtually because the SBSE researchers/
practitioners may not be very clear about indicators’ behav-
ior, role, and characteristics. This leads them either to fail to
select appropriate indicators to evaluate the generic quality
of solution sets, or to fail to align the considered indicators
with the DM’s preferences or the problem’s contextual
information.

5.2.1 ISSUE III: Confusion of the Quality Aspects

Covered by Generic Quality Indicators

As mentioned, the generic quality of a solution set in Pareto-
based optimization can be interpreted as how well it repre-
sents the Pareto front. It can be broken down into four
aspects: convergence, spread, uniformity, and cardinal-
ity [75]. It is expected that when the DM’s preferences are
unknown a priori, an indicator (or a combination of indica-
tors) can cover all the four quality aspects since a solution
set with these qualities can well represent the Pareto front
and have a great probability of being preferred by the DM.

Unfortunately, as shown in Tables 6 and A1 (at appen-
dix), available in the online supplemental material, in SBSE
many studies only consider part of these quality aspects.
For example, the studies in [48], [69] used the convergence
indicator GD [133] as the sole indicator to compare the solu-
tion sets. The study in [145] considered both PFS [52] and
CI which however are merely for convergence and cardi-
nality. In addition, some indicators were used to evaluate

Fig. 3. An example that comparing the mean on each objective fails to
reflect the quality of solution sets. In this minimization problem, solution
set A dominates solution set B (i.e., any solution in B is dominated by at
least one solution in A), thus always being favored by the DM. Yet, the
mean of A on either objective f1 or f2 is 5, larger than that of B (4); thus
A is regarded as inferior to B.

1782 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

certain quality aspect(s) of solution sets which, unfortu-
nately, were not designed for, as shown in [74]. For exam-
ple, the indicator C [153], designed for convergence
evaluation, was considered for evaluating spread in [138].
SP [121], which can only reflect the uniformity of solution
sets, was used to evaluate the diversity (i.e., both spread
and uniformity) in [109]. PFS, which counts nondominated
solutions in the set, was placed into the category of diversity
indicators in [52], [138], and �-indicator, which is able to
reflect all the quality aspects of solution sets, was placed
into the category of convergence indicators in [138].

As can be seen from Tables 5 and 6, some indicators were
used incorrectly, For example, the indicator Spread (i.e., D
in [29]) as well as its variants (e.g., GS [151]), which is only
effective in the bi-objective case, was frequently used in
optimization problems of SBSE with three or more objec-
tives, such as in [3], [52], [99], [118], [120], [125], [126].
Another example is the setting of the critical parameter ref-
erence point in the HV indicator, which has experienced
various versions. For example, some studies set it to the
worst value obtained for each objective during all runs [34],
[76], [93], [105], [125], [126], [131]; some did it to precisely
the boundaries of the optimization problem in SBSE [30],
[54], [144]; some did it to the nadir point of the Pareto
front [103]. The first two settings may overemphasize the
boundary solutions (as the reference point may be far away
from the set to be evaluated), while the last one may lead to
the boundary solutions to contribute nothing to the HV
value.

It is worth mentioning that as usually the problem’s Par-
eto front in SBSE is unavailable, for indicators which need
the Pareto front for reference, a common practice is to collect
the nondominated set of all the solutions produced as an esti-
mated Pareto front, as we have shown in Table 5. However,
different indicators have different sensitivity to this prac-
tice [75]. For example, IGD and Spread require the Pareto
front consisting of uniformly-distributed points, while HV
and �-indicator do not [75]. Therefore, IGD and Spread may
not be very suitable in SBSE, despite the fact they were fre-
quently used, e.g., in [31], [35], [52], [114], [125], [126], [147].

5.2.2 ISSUE IV: Oblivion of Context Information

As shown in Table 8, in Pareto-based SBSE, many studies
compare solution sets without bearing in mind the contex-
tual information with respect to the considered optimiza-
tion problem. They typically adopt commonly-used quality
indicators to directly evaluate the set of all the solutions
obtained, although some of these solutions may never or
rarely be of interest to the DM. Fig. 4 shows such an exam-
ple, under a scenario of optimizing the code coverage and
the cost of testing time on the software test case generation
problem, borrowed from [74]. As can be seen, the set B is
evaluated better than the set A by all eight commonly used
quality indicators (GD [133], ED [25], �-indicator [154],
GS [151], PFS [52], IGD [26], HV [153] and C [153]) in
SBSE [138]. However, depending on the context (as shown
in Table 8), the DM might first favor the full code coverage
and then possible low cost [150]. This will lead to set A to be
of more interest, as it has the solution (450,1.0) that achieves
full coverage and lower cost than the one in B (500,1.0).

Similar observations have been seen in the optimal prod-
uct selection in software product line [16], [45], [52], [66],
[77], [113], [119], [120], [132] where the correctness of config-
urations is regarded as one objective and equally rated as
other objectives (e.g., richness of features and cost). This
may lead to an invalid product to be evaluated better than a
valid product if the former performs better in other objec-
tives, which is apparently of no value to the DM. In addi-
tion, in many SBSE problems, cost could be an objective to
minimize, but solutions with zero cost are trivial, e.g., the
solution with zero cost and zero coverage in Fig. 4. How-
ever, these solutions may largely affect the evaluation
results. Therefore, it is necessary to remove solutions that
would never be interested by the DM before the evaluation,
which, unfortunately, has been rarely practiced in Pareto-
based SBSE.

5.2.3 ISSUE V: Noncompliance of the DM’s

Preferences

Although every quality indicator is designed to reflect cer-
tain quality aspect(s) of solution sets (i.e., convergence,
spread, uniformity, cardinality, or their combination), they
do have their own implicit preferences. For example, the
indicators HV and IGD, both designed to cover all of the
four quality aspects, have rather distinct preferences. HV
prefers knee points of a solution set, while IGD is in favor
of a set of uniformly distributed solutions. Therefore, it is
important to select indicators whose preferences are in line
with the DM’s. Neglecting this can lead to misleading eval-
uation results. Fig. 5 gives such an example — when prefer-
ring knee points, considering the indicator IGD could
return a misleading result. That is, the set having knee
points is evaluated worse than that having no knee point.
Similar observations also apply to the indicators GD and
CI, as shown in the same figure.

Unfortunately, as what has been revealed in Table 8, such
misuse of indicators is not uncommon in the SBSE commu-
nity. For example, preferring knee points yet using IGD

Fig. 4. An example where lack of considering contextual information may
give unwanted evaluation results [74] . Considering two solutions sets
(A and B) for optimizing the code coverage and the cost of testing time on
the software test case generation problem, where A ¼ fð200; 0:2Þ; ð350;
0:4Þ; ð400; 0:6Þ; ð450; 1:0Þg and B ¼ fð0; 0Þ; ð100; 0:4Þ; ð200; 0:7Þ; ð350; 0:9Þ;
ð500; 1:0Þg.B is evaluated better thanA on eight frequently-used indicators:
GDðBÞ ¼ 0:02 < GDðAÞ ¼ 0:26;EDðBÞ ¼ 0:5 < EDðAÞ ¼ 0:89; �ðBÞ ¼
0:1 < �ðAÞ ¼ 0:3;GSðBÞ ¼ 0:15 < GSðAÞ ¼ 0:46; PFSðBÞ ¼ 5 > PFS
ðAÞ ¼ 4; IGDðBÞ ¼ 0:02 < IGDðAÞ ¼ 0:27;HV ðBÞ ¼ 0:77 > HV ðAÞ ¼
0:43; CðBÞ ¼ 0:8 > CðAÞ ¼ 0:25:However, theDMmay bemore interested
inA (specifically solution (450,1.0)) if they favor the full code coverage and
then possible low cost.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1783

in [37], [89]; preferring knee points yet using GD and CI
in [35], [114]; and preferring extreme solutions yet using
HV and IGD in [131], [134].HV can be somehow in favor of
extreme solutions if the reference point is set far away from
the considered set, but IGD certainly does not prefer
extreme solutions. Therefore, it is of high importance to
understand the behavior, role, and characteristics of the
considered indicators, which may not be very clear to the
community. In the next section, we will detail widely used
quality evaluation methods in the area (as well as other use-
ful indicators) and explain the scope of their applicability.

6 REVISITING QUALITY EVALUATION

FOR PARETO-BASED OPTIMIZATION

In Pareto-based optimization, the general goal for the algo-
rithm designer is to supply the DM a set of solutions from
which they can select their preferred one. In general, the
actual preferences can be either articulated by the DM or
derived from the contextual information of the problem,
which may differ depending on the situation. Having said
that, the Pareto dominance relation is apparently the fore-
most criterion in any case, provided that the concept of opti-
mum is solely based on the direct comparison of solutions’
objective values (other than on other criteria, e.g., robust-
ness and implementability with respect to decision varia-
bles). That is to say, the DM would never prefer a solution
to the one that dominates it.

As discussed in Section 2, the better relation (C) represents
the most general and weakest form of superiority between
two sets. That is, for two solution setsA and B,ACB indicates
that A is at least as good as B, while B is not as good as A. It
meets any preference potentially articulated by the DM. If
ACB, then it is always safe for the DM only to consider solu-
tions inA. Apparently, it is desirable that a quality evaluation
method is able to capture this relation; that is to say, for any
two solution sets A and B, if ACB, then A is evaluated better
than B. Unfortunately, there are very few quality evaluation
methods holding this property.HV is one of them [152]. There

is a weaker property called being Pareto compliant [62], [154],
which ismore commonly used in the literature. That is, a qual-
ity evaluation method is said to be Pareto compliant if and only
if “at least as good” in terms of the dominance relation implies
“at least as good” in terms of the evaluation values (i.e.,
8A;B : A � B) IðAÞ � IðBÞ, where I is the evaluation
method, assuming that the smaller the better). Despite the
relaxation, many quality indicators are not Pareto compliant,
including widely used ones, such as GD, IGD, Spread, GS,
and SP . Pareto compliant indicators are mainly those falling
into the category of evaluating convergence of solution sets
(e.g., C andCI) and the category of evaluating comprehensive
quality of solution sets (e.g., HV , �-indicator, IPF [10],
R2 [46], and PCI [72]). DCI [70] is the only known diversity
indicator compliant with Pareto dominance when comparing
two sets. In addition, some non-compliant indicators can
become Pareto compliant after somemodifications. For exam-
ple,GD and IGD can be transformed into two Pareto compli-
ant indicators (called GDþ and IGDþ) if considering
“superiority” distance instead of euclidean distance between
points [56]. Overall, it is highly recommended to consider (at
least) Pareto compliant quality indicators to evaluate solution
sets; otherwise, it may violate the basic assumption of the
DM’s preferences. That is, recommending the DM a solution
set B over A, where each solution in B is inferior to or can be
replaced by (in the case of equality) some solution inA. This is
what theDOE evaluationmethod that compares themean on
each objective does in the example of Fig. 3.

Now, one may ask why not directly use the better relation
to evaluate solution sets. The reason is that the better relation
may leave many solution sets incomparable since in most
cases there exist some solutions from different sets being
nondominated to each other. Therefore, we need stronger
assumptions about the DM’s preferences, which are
reflected by quality evaluation methods. However, stronger
assumptions (than the better relation) cannot guarantee that
the favored set (under the assumptions) is certainly pre-
ferred by the DM, as in different situations the DM indeed
may prefer different trade-offs between objectives. Conse-
quently, it is vital to ensure the considered evaluation meth-
ods in line with the DM’s explicit or implicit preferences.

Back to the example in Fig. 4 where optimizing the objec-
tives code coverage and cost of testing time, essentially
these two solution sets are not comparable with respect to
the better relation despite the fact that most solutions in A
are dominated by some solution in B. As stated, the DM
may be more interested in full code coverage and then pos-
sible lower cost, thus preferring A to B. However, the con-
sidered eight indicators fail to capture this information and
give opposite results. This clearly indicates the importance
of understanding quality evaluation methods (including
what kind of assumptions they imply). Next, we will review
several quality evaluation methods which are commonly
used in the SBSE community (as we have shown in Table 2)
and at the same time are very representative to reflect cer-
tain aspect(s) of solution set quality.

6.1 Descriptive Objective Evaluation (DOE)

As stated before, the DOE methods evaluate a solution set
(or several sets obtained by a search algorithm in multiple

Fig. 5. An example that preferring knee points while using the indicator
IGD (as well as GD and CI) can lead to misleading results. Consider
two solution sets (A and B) for a bi-objective minimization scenario,
where A ¼ fð2; 6Þ; ð9; 2Þg are the two knee points of the Pareto front,
and B ¼ fð1; 10Þ; ð7; 5Þ; ð12; 1:5Þg are three well-distributed non-knee
points on the Pareto front. Apparently, if the DM prefers knee points then
solutions in A will certainly be selected. Yet, A is evaluated worse than
(or as equal as) B by IGD, GD and CI: IGDðAÞ ¼ 2:154 > IGDðBÞ ¼
1:433, GDðAÞ ¼ GDðBÞ ¼ 0, and CIðAÞ ¼ 0:4 < CIðBÞ ¼ 0:6. In con-
trast, the indicator HV can reflect this preference, A being evaluated
better than B: HV ðAÞ ¼ 71:0 > HV ðBÞ ¼ 45:5 (the reference point is
(13,11)).

1784 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

runs) by directly reporting statistical results of objective val-
ues of its solutions, such as the mean, median, best, worst,
and statistical significance (in comparison with other sets).
Unfortunately, such methods are rarely being Pareto com-
pliant and unlikely to be associated with the DM’s preferen-
ces. However, an exception is the method that considering
the best value of some objective(s) in a solution set, since it
is Pareto compliant and able to directly reflect the DM’s
preferences in the case that they prefer extreme solutions.
Overall, the DOE methods are not recommended, unless
the DM explicitly expresses their preferences in line with
them.

6.2 Contribution Indicator (CI)

The CI indicator [87], which was designed to compare the
convergence of two solution sets, has been frequently used
in SBSE, e.g., in [35], [114], [115], [142], [145], [149]. CI calcu-
lates the ratio of the solutions of a set that are not dominated
by any solution in the other set. Formally, given two sets A
and B,

CIðA;BÞ ¼ jA \ Bj=2þ jA�Bj þ jAf\cBj
jA \ Bj þ jA�Bj þ jAf\cBj þ jB�Aj þ jBf\cAj

;

(1)

where A�B stands for the set of solutions inA that dominate
some solution of B (i.e., A�B ¼ fa 2 Aj9b 2 B : a � bg), and
Af\cB stands for the set of solutions inA that do not weakly
dominate any solution in B and also are not dominated by
any solution in B (i.e., Af\cB ¼ fa 2 Aj@b 2 B : a �
b _ b � ag).

The CI value is in the range of [0,1]. A higher value is
preferable. It is apparent that CIðA;BÞ þ CIðB;AÞ ¼ 1. A
clear strength of the indicator CI is that it holds the better
relation,10 i.e., if ACB then CIðA;BÞ > CIðB;AÞ. Moreover,
if A � B, then CIðB;AÞ ¼ 0. In addition, apart from compar-
ing the convergence of solution sets, CI can reflect their car-
dinality to some extent. A set having a larger number of
solutions is likely to be favored by the indicator.

A clear weakness of CI is that it relies completely on
the dominance relation between solutions, thus providing
little information about to what extent one set outper-
forms another. Moreover, they may leave many solution
sets incomparable if all solutions from the sets are nondo-
minated to each other. This may happen frequently in
many-objective optimization, where more objectives are
considered.

There is another well-known dominance-based quality
indicator (called C or CS) [153], used in e.g., [5], [17], [125],
[146]. It measures the proportion of solutions in a set that is
weakly dominated by some solution in the other set; in
other words, the percentage of a set that is covered by its
opponent. The details of the indicator C can be found
in [75]. C tends to be more popular in the multi-objective
optimization community, despite sharing the above
strengths and weaknesses with CI. Finally, it is worth men-
tioning that despite only partially reflecting the convergence
of solution sets, such dominance-based indicators are useful

since most problems in SBSE are combinatorial ones, where
the size of the Pareto front may be relatively small and it is
likely to have comparable solutions (i.e., dominated/dupli-
cate solutions) from different sets [75].

6.3 Generational Distance (GD)

As one of the most widely used convergence indicators in
SBSE (used in e.g., [2], [5], [17], [35], [99], [105], [114], [115],
[125], [147]), GD [133] is to measure how close the obtained
solution set is from the Pareto front. Since the Pareto front is
usually unknown a priori, a reference set, R, which consists
of nondominated solutions of the collection of solutions
obtained by all search algorithms considered, is typically
used to represent the Pareto front in practice. Formally,
given a solution set A ¼ fa1; a2; . . . ; ang, GD is defined as

GDðAÞ ¼ 1

n

Xn
i¼1

ðmin
r2R

dðai; rÞÞp
 !1=p

; (2)

where dðai; rÞ means the euclidean distance between ai and
r, and p is a parameter determining what kind of mean of
the distances is used, e.g., the quadratic mean and arithme-
tic mean.

The GD value is to be minimized and the ideal value is
zero, which indicates that the set is precisely on the Pareto
front. In the original version, the parameter p was set to 2.
Unfortunately, this would make the evaluation value rather
sensitive to outliers and also affected by the size of the solu-
tion set (when N ! 1, GD ! 0 even if the set is far away
from the Pareto front [122]). Setting p ¼ 1 has now been
commonly accepted.

Compared to those dominance-based convergence indi-
cators (e.g., CI and C), GD is more accurate in terms of mea-
suring the closeness of solution sets to the Pareto front due
to it considering the distance between points. However, a
clear weakness of GD is not being Pareto compliant [61],
[154]. This is very undesirable since GD, as a convergence
indicator, fails to provide reliable evaluation results with
respect to the weakest assumption of the DM’s preferences.
A simple example was given in [154]: consider two solution
sets A ¼ fð2; 5Þg and B ¼ fð3; 9Þg on a bi-objective minimi-
zation scenario, where the reference set is R ¼ fð1; 0Þ;
ð0; 10Þg. Clearly, A dominates B, butGD returns an opposite
result: GDðAÞ ¼ ffiffiffiffiffi

26
p

> GDðBÞ ¼ ffiffiffiffiffi
10

p
. Recently, a modi-

fied GD was proposed to overcome this issue, called
GDþ [56], where the euclidean distance between ai and r in
Equation (2) is modified by only considering the objectives
where r is superior to ai. Specifically,

dþðai; rÞ ¼
Xm
j¼1

ðmaxfaij � rj; 0gÞ2
 !1=2

; (3)

where m denotes the number of objectives, and aij denotes
the value of solution ai on the jth objective. This modifica-
tion makes the indicator compliant with Pareto dominance.
Going back to the above example, now we have the evalua-
tion results of A better than B (GDþðAÞ ¼ 2 < GDþðBÞ ¼ 3.
Finally, note that for both GD and GDþ, normalization of
solution sets is needed as their calculation involves objective
blending [75].

10. Note that it is not unusual that binary indicators (i.e., those
directly comparing two sets) holds the better relation [75].

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1785

6.4 Spread (D)

The indicator Spread (aka D) [29] and its variants [125], [151]
have been commonly adopted to evaluate the diversity (i.e.,
spread and uniformity) of solution sets in the field, e.g.,
in [31], [52], [99], [118], [120], [125], [126], [147]. Specifically,
the indicator D of a solution set A (assuming the set only
consisting of nondominated solutions) in a bi-objective sce-
nario is defined as follows.

DðAÞ ¼ dupper þ dbottom þPn�1
i¼1 jdi � dj

dupper þ dbottom þ ðn� 1Þd ; (4)

where n denotes the size of A, di (i ¼ 1; 2; . . .n� 1) is the
euclidean distance between consecutive solutions in the A,
and d is the average of all the distances di. dupper and dbottom
are the euclidean distance between the two extreme solu-
tions of A and the two extreme points of the Pareto front,
respectively.

A small D value is preferred, which indicates a good dis-
tribution of the set in terms of both spread and uniformity.
When D ¼ 0means that solutions in the set are equidistantly
spaced and their boundaries reach the Pareto front
extremes.

A major weakness of D (including its variants) is that it
only works reliably on bi-objective problems as where non-
dominated solutions are located consecutively on either
objective. With more objectives, the neighbor of a solution
on one objective may be far away on another objective [71].
This issue applies to any distance-based diversity indica-
tor [75]. For problems with more than two objectives, region
division-based diversity indicators are more accurate [75].
They typically divide the space into many equal-sized cells
and then consider cells instead of solutions (e.g., counting
the number of these cells). This is based on the fact that a set
of more diversified solutions usually populate more cells.
However, such indicators may suffer from the curse of
dimension as they typically need to record information of
every cell. In this regard, the diversity indicator DCI [70]
may be a pragmatic option since its calculation only
involves non-empty cells, thus independent of the number
of cells (linearly increasing computational cost in objective
dimensionality).

In addition, another indicator Spacing (aka SP) [121] has
also been used to evaluate the diversity of solution sets in
e.g., [109], [125]. However, this indicator can only reflect the
uniformity (not spread) of solution sets [75].

6.5 Nondominated Front Size (NFS)

Used in e.g., [52], [103], [145], the NFS (also called Pareto
Front Size, PFS) is to simply count how many nondomi-
nated solutions are in the obtained solution set. However,
this indicator may not be very practical as in many cases all
solutions in the obtained set are nondominated to each
other, particularly in many-objective optimization. In addi-
tion, as by definition duplicate solutions are nondominated
to each other, a set full of duplicate solutions would be eval-
uated well by NFS if there is no other solution in the set
dominating them.

As such, a measure that only considers unique nondomi-
nated solutions which are not dominated by any other set
seems more reasonable. Specifically, one can consider the

ratio of the number of such solutions in each set to the size
of the reference set (which consists of unique nondominated
solutions of the collections of solutions obtained by the algo-
rithms). In other words, we quantify the contribution of
each set to the combined nondominated front of all the sets.
Formally, let Aunf be the unique nondominated front of a
given solution set A (i.e., Aunf 	 A ^Aunf � A ^ 8ai 2
Aunf;@aj 2 Aunf; j 6¼ i : aj � ai). Then, the indicator, denoted
as Unique Nondominated Front Ratio (UNFR), is defined as

UNFRðAÞ ¼ ja 2 Aunfj@r 2 Runf : r � aj
jRunfj ; (5)

where Runf denotes the reference set which consists of the
unique nondominated solutions of the collections of all sol-
utions produced.

The UNFR value is in the range of [0,1]. A high value is
preferred. Being zero means that for any solution in A there
always exists some solution better in the other sets. Being
one means that for any solution in the other sets there
always exists some solution in A better than (or at least
equal to) it (i.e., the reference set is precisely comprised by
solutions of A). In addition, UNFR is Pareto compliant.

6.6 Inverted Generational Distance (IGD)

IGD [26] is a well-known indicator in the field (e.g., in [5],
[13], [32], [37], [39], [43], [52], [80], [89], [91], [126], [131]). As
the name suggests, IGD, an inversion of GD, is to measure
how close the Pareto front is to the obtained solution set.
Formally, given a solution set A and a reference set R, IGD
is calculated as

IGDðAÞ ¼ 1

jRj
X
r2R

mina2Adðr; aÞ; (6)

where dðr; aÞ is the euclidean distance between r and a. A
low IGD value is preferable.

IGD is capable of reflecting the quality of a solution set in
terms of all the four aspects: convergence, spread, unifor-
mity, and cardinality. However, a major weakness of IGD
is that the evaluation results heavily depend on the behavior
of its reference set. A reference set of densely and uniformly
distributed solutions along the Pareto front is required; oth-
erwise, it could easily return misleading results [75]. This is
particularly problematic in SBSE since the reference set is
created normally from the collection of all the obtained solu-
tions; its distribution cannot be controlled.

Consider an example in Fig. 6a, where comparing two
solution sets A and B. The reference set is comprised of all
the nondominated solutions, i.e., the three solutions of A
and the two boundary solutions of B. As can be seen, B per-
forms significantly worse than A in terms of convergence,
with its solutions being either dominated by some solution
in A or slightly better on one objective but much worse on
the other objective; thus B unlikely to be preferred by the
DM. However, IGD gives an opposite evaluation:
IGDðAÞ
 2:80 > IGDðBÞ
 1:08.

In addition, the way of how the reference set is created
makes IGD prefer a specific distribution pattern consistent
with the majority of the considered solution sets [75]. In
other words, if a solution set is distributed very differently

1786 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

from others, then the set is likely to assign a poor IGD value
whatever its actual distribution is. Fig. 6b is such an exam-
ple. When comparing A with B (the reference set comprised
of these two sets), we will have A evaluated better than B
(IGDðAÞ
 1:41 < IGDðBÞ
 2:12). But if adding another
set C which has the similar distribution pattern to B into the
evaluation, and now the reference set is comprised of the
three sets, we will have A worse than B (IGDðAÞ

1:82 > IGDðBÞ
 1:72). A potential way to deal with this
issue is to cluster crowded solutions in the reference set first
and then to consider these well-distributed clusters instead
of arbitrarily-distributed points, as did in the indicator
PCI [72]. Yet, this could induce another issue — how to
properly cluster the solutions in the reference set subject to
potentially highly irregular solution distribution.

6.7 Hypervolume (HV)

Like IGD, HV [153] evaluates the quality of a solution set in
terms of all the four aspects. Due to its desirable practical
usability and theoretical properties, HV is arguably the
most commonly used indicator in SBSE, e.g., used in [24],
[30], [34], [37], [54], [93], [99], [103], [105], [125], [126], [131],
[139], [144]. For a solution set, its HV value is the volume of
the union of the hypercubes determined by each of its solu-
tions and a reference point. It can be formulated as

HV ðAÞ ¼ �ð
[

a2Afxja � x � rgÞ; (7)

where r denotes the reference point and � denotes the Leb-
esgue measure. A highHV value is preferred.

A limitation of the HV indicator is its exponentially
increasing computational time with respect to the number
of objectives. Many efforts have been made to reduce its
running time, theoretically and practically (see [75] for a
summary), which makes the indicator workable on a solu-
tion set with more than 10 objectives (under a reasonable set
size).

As stated previously, HV is in favor of knee points of a
solution set, thus a good choice when the DM prefers knee
points of the problem’s Pareto front. In addition, the settings
of the reference point can affect its evaluation results. Con-
sider the two solution sets A and B in Fig. 7, where A con-
sists of two boundary solutions, and B consists of four

uniformly distributed inner solutions. When the reference
point is set to (6,6) (Fig. 7a), A is evaluated worse than B.
When the reference point is set to (11,11) (Fig. 7b), A is eval-
uated better than B. Fortunately, we can make good use of
such a behavior of HV to enable the indicator to reflect the
DM’s preferences. If the DM prefers the extreme points,
then a reference point can be set to be fairly distant from the
solution sets’ boundaries, e.g., doubling the Pareto front’s
range, namely, ri ¼ nadiri þ li where nadiri is the nadir
point of the Pareto front (or the reference set, i.e., the com-
bined nondominated front) on its ith objective, and li is the
range of the Pareto front (or the reference set) on the ith
objective. If there is no clear preference from the DM, unfor-
tunately, no consensus regarding how to set the reference
point has been reached in the multi-objective optimization
field. A common practice is to set it 1.1 times of the range of
the combined nondominated front (i.e., ri ¼ nadiri þ li=10).
Some recent studies [55] suggested to set it as ri ¼
nadiri þ li=h, where h is an integer subject to Chþm�1

m�1 � n <
Chþm

m�1 (m and n being the number of objectives and the size
of the considered set, respectively). In any case, the refer-
ence point setting is non-trivial — an appropriate setting
needs to consider not only the number of objectives and the
size of the solution set, but also the actual dimensionality of
the set, its shape, etc.

Fig. 6. Two examples that the collection of solution sets as the reference set may lead to misleading evaluations for IGD. (a) For two bi-objective sets
A ¼ fð1; 3Þ; ð2; 2Þ; ð3; 1Þg and B ¼ fð0:75; 10Þ; ð3; 3Þ; ð10; 0:75Þg, A should be highly likely to be preferred to B as solutions of B are either dominated by
some solution in A or slightly better on one objective but significantly worse on the other objective. but IGD gives opposite results: IGDðAÞ
 2:80 >
IGDðBÞ
 1:08. (b) For three bi-objective sets A ¼ fð0; 10Þ; ð5; 5Þ; ð0; 10Þg, B ¼ fð2:5; 7:5Þ; ð7:5; 2:5Þg and C ¼ fð2; 8Þ; ð7; 3Þg, in general A may be
likely to be preferred by the DM than B and C as it provides better spread and cardinality, but IGD gives opposite results:
IGDðAÞ
 1:82 > IGDðBÞ
 1:72 > IGDðCÞ
 1:61.

Fig. 7. An example that distinct reference points lead to that HV prefers
different solution sets, where the set A consists of two boundary solu-
tions (A ¼ fð0; 5Þ; ð5; 0Þg), and the set B consists of four uniformly distrib-
uted inner solutions (B ¼ fð1; 4Þ; ð2; 3Þ; ð3; 2Þ; ð4; 1Þg). The grey area
� HV ðAÞ but ~HV ðBÞ and the hatched area � HV ðBÞ but ~HV ðAÞ. In
(a) where the reference point is (6,6), A is evaluated worse than B:
HV ðAÞ ¼ 11 < HV ðBÞ ¼ 19. In (b) where the reference point is (11,11),
A is evaluated better than B:HV ðAÞ ¼ 96 > HV ðBÞ ¼ 94.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1787

6.8 �-indicator

�-indicator is another well-established comprehensive indi-
cator frequently appearing in SBSE, e.g., [13], [32], [43], [52],
[135]. It measures the maximum difference between two
solution sets and can be defined as

�ðA;BÞ ¼ max
b2B

min
a2A

max
i2f1...mg

ai � bi; (8)

where ai denotes the objective of a for the ith objective and
m is the number of objectives. A low value is preferred.
�ðA;BÞ � 0 implies that A weakly dominates B. When
replacing B with a reference set that represents the Pareto
front, the �-indicator becomes a unary indicator, measuring
the gap of the considered set to the Pareto front.

�-indicator is Pareto compliant anduser friendly (parameter-
free and quadratic computational effort). Yet, the calculation of
�-indicator only involves oneparticular objective of one particu-
lar solution in either set (where the maximum difference is),
rendering its evaluation omitting the difference on other
objectives and other solutions. This may lead to different solu-
tion sets having same/similar evaluation results, as reported in
[78]. In addition, in some studies [111], �-indicator has been
empirically found to behave very similarly as HV in ranking
solution sets.

6.9 Summary

Table 9 summarizes the above 12 indicators on several
aspects, namely, (i) what kind of quality aspect(s) they are
able to reflect, (ii) if they are Pareto compliant, (iii) what we
need to take care of when using them, and (iv) what situa-
tion they are suitable for. The following guidelines can be
derived from the table.

� If the DM wants to know the convergence quality of
a solution set to the Pareto front, GDþ (instead of
GD) could be an ideal choice — it is Pareto compli-
ant and the reference set required can be set as the
combined nondominated front of all the considered
sets, not necessarily a set of uniformly-distributed
points. If the DM wants to know the relative quality
between two solution sets in terms of the Pareto
dominance relation, CI (or C) could be a choice.

� If the DM wants to know the diversity quality
(both spread and uniformity) of a solution set, for bi-
objective cases, D is a good choice; for problems with
more objectives, DCI can be used. SP can only reflect
the uniformity of a solution set whichmay not be very
useful — uniformly distributed solutions concentrat-
ing in a tiny area typically not in the DM’s favor.

� The indicator UNFR should replace NFS to measure
the cardinality of solution sets.

� Regarding comprehensive evaluation indicators, HV
can generally be the first choice, especially when the
DM prefers knee points. In addition, if the DM pre-
fers extreme solutions, the reference point needs to
be set fairly distant from the solution sets’ bound-
aries. �-indicator is user-friendly, but is less sensitive
to solution sets’ quality difference than HV since its
value only lies upon one particular solution on one
particular objective. IGD may not be very practical

as it requires a Pareto front representation consisting
of densely and uniformly distributed points.

7 METHODOLOGICAL GUIDANCE TO QUALITY

EVALUATION IN PARETO-BASED SBSE

In this section, we provide guidance on how to select and
use quality evaluation methods in Pareto-based SBSE. As
discussed previously, selecting and using quality evaluation
methods needs to be aligned with the DM’s preferences.11 A
solution set being evaluated better means nothing but its
solutions having a bigger chance to be picked out by the
DM. However, to different problems or even to the same
problem but under different circumstances, the articulation
of the DM’s preferences may differ. In some cases, the DM
is confident to articulate their preferences (or can be easily
derived from contextual information); e.g., they see one
objective more important than others. In some cases, the
DM may experience difficulty in precisely articulating their
preferences; e.g., they are only able to provide some vague
preference information such as a fuzzy region around one
point. In some other cases, the DM’s preferences may not be
available at all; e.g., when the DM wants to see what the
whole Pareto front looks like before articulating their prefer-
ences. Therefore, quality evaluation needs to be conducted
in accordance with different cases. Next, we consider four
general cases of quality evaluation with respect to the DM’s
preferences.

7.1 When the DM’s Preferences Are Clear

The case of the DM’s preferences being clear can often fall
into two categories over Pareto-based SBSE problems. The
first is when relative importance/weighting among the
objectives considered can be explicitly expressed and quan-
tified, e.g., in [125]. It is worth noting that the weighting
between objectives may not need to be fixed a priori. For
example, in the case of interactive Pareto-based SBSE for
software modeling and architecting problems [128], the DM
is asked to explicitly rank the relative importance of the
objectives as the search proceeds. Under this circumstance,
the sum of the weighted objectives can be used to find the
fittest solution from a solution set, and then determine the
quality of the set.

The other category concerns when the DM prefers some
objective to some other (i.e., a clear priority can be assumed,
which is a unique situation that often implies some clear
contextual information of a hard requirement under the
SBSE problem), or when the DM is only interested in solu-
tions which is up to scratch on some objective (which could
be seen as a constraint). This happens frequently in the soft-
ware product line configuration problem [52], [54], [93],
[118], [119], [120], [144], where the correctness of the prod-
ucts (i.e., the feature model’s dependency compliance) is
always of higher priority than other objectives such as the
richness and the cost of the model — only the solutions
(products) that achieve full dependency compliance are of

11. For convenience, from this point forwards we use DM’s prefer-
ence information as a general term, which refers to not only the prefer-
ences that the DM articulates but also the requirements derived from
problem nature and contextual information.

1788 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

TABLE 9
A Summary of Representative Quality Indicators Used in SBSE, Their Usage Note/Caveats and Applicable Conditions

“þþ” generally means that the indicator can well reflect the specified quality (or meet the specified property). “��” for convergence means that the indicator can
reflect the convergence of a set to some extent; e.g., indicators only considering the dominance relation as convergence measure. “��” for spread means that the
indicator can only reflect the extensity of a set. “��” for uniformity means that the indicator can reflect the uniformity of a set to some extent; i.e., a disturbance to
an equally-spaced set may not certainly lead to a worse evaluation result. “��” for cardinality means that adding a nondominated solution into a set is not surely
but likely to lead to a better evaluation result and also it never leads to a worse evaluation result. “��” for Pareto compliance means that the indicator holds the
property subject to certain conditions.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1789

interest. This is obvious, as a violation of dependency
implies faulty and incorrect configuration, thus valueless in
practice. A similar situation applies to the test case genera-
tion problem [53], [103], [104], [124], [150] where the DM is
typically interested in test suites with full coverage. In addi-
tion, the DM may only be interested in solutions that reach
a certain level on some objective. For example, in software
deployment and maintenance, it is not uncommon to have a
statement like “The software service shall be

available for at least 95 percent of the time”. In
such a case, it is rather clear that any value of availability
less than 95 percent is unacceptable, while anything beyond
95 percent can be considered.

An appropriate way to perform evaluation under the
above circumstance is to transfer the DM’s preferences into
the solution set to be evaluated. This can be done by first
removing solutions that are irrelevant from the set. After
that, the set of the remaining solutions is evaluated, subject
to two situations: if the remaining solutions are of the same
value on the objective(s) where the DM articulates their
preferences, then the quality evaluation is performed only
on the other objectives; otherwise, the evaluation is done on
all the objectives. The former has been commonly seen
when the DM is only interested in solutions which achieve
the best of the objective, such as the solutions with full cov-
erage for the test case generation problem, whereas the lat-
ter often applies when the DM is interested in a particular
threshold of solution quality on the objective, such as in the
software deployment and maintenance case mentioned
above, only the solutions with availability values not less
than 95 percent would be evaluated.

7.2 When the DM’s Preferences Are Vague/Rough

It is not uncommon that there exist important, yet imprecise
preferences in the SDLC. In general, they are mainly
derived from the non-functional requirements recorded in
documentations, notes, and specifications, which are often
vague in nature, as in [1], [11], [51], [67], [84]. For example,
in the software configuration and adaptation problem,
some statements may be rather ambiguous like “the first

objective should be reasonable and the others

are as good as possible”. In such a situation, one may
not be able to integrate the preferences into the quality eval-
uation since it is not possible to quantify qualitative descrip-
tions like “reasonable”. As such, a safe choice is to treat
them as a general multi-objective optimization case (i.e.,
without specific preferences).

In other situations, the SBSE researchers/practitioners
may give some preference information around some val-
ues/thresholds on one (or several) objective. This, in con-
trast to the case of the DM’s preferences being clear, allows
some tolerances on the specified value/threshold. For
example, the software may have a requirement stating that
“the cost shall be low while the product shall

support ideally up to 3000 simultaneous users”.
This typically happens for SME where the budget of a soft-
ware project (e.g., money for buying required Cloud resour-
ces or the consumption of data centers) is low, and thus it is
more realistic to set a threshold point such that certain level
of performance (e.g., 3000 simultaneous users) would be

sufficient (anything beyond is deemed as equivalent). How-
ever, while the requirement gives a clear cap of the best per-
formance expected, it does not constrain on the worst case,
implying that it allows tolerances when the 3000 users goal
cannot be met.

Despite not impossible, it can be a challenging task to
find a quality indicator that is able to reflect such preference
information. First, the quality indicator should be capable of
accommodating such preference information in the sense
that the evaluation results can embody it. Second, the intro-
duction of the preferences should neither compromise the
general quality aspect that the indicator reflects, nor violate
properties that the indicator complies with (e.g., being Par-
eto compliant). In this regard, the indicator HV [153] could
be a good choice since it (i) can relatively easily integrate
the DM’s preference information [136], [152] and (ii) can still
be Pareto compliant after a careful introduction of the DM’s
preference information [152].

To integrate preferences into HV , one approach, called
the weighted HV presented in [152], is to interpret the HV
value as the volume of the objective space enclosed by the
attainment function [28] and the axes. Here, the attainment
function is to give for each vector in the objective space the
probability that it is weakly dominated by the outcome of
the solution set. Then, to give different weights to different
regions by a weight distribution function, the weighted HV
is calculated as the integral over the product of the weight
distribution function and the attainment function [152].
This essentially transforms the preference information into
a weight distribution function to unequalize the HV contri-
bution from different regions. However, it is not trivial to
construct a weight distribution function that is able to reflect
preferences expressed by the SBSE researchers/practi-
tioners. Even for the situation that the preference informa-
tion is clear (e.g., clear weighting between objectives), the
preferences cannot be used as the weight distribution func-
tion because of the interaction of the weight distribution
function and the attainment function in the calculation.

Another (perhaps more pragmatic) approach is to
directly transform the original solutions into new solutions
which accommodate the preference information, and then
apply HV (or other quality indicators) to the new solutions,
provided that such a transformation is in line with the
selected indicator. For instance, consider the above example
that the cost shall be low while the product shall ideally
support up to 3000 users. Let us say that there are two solu-
tions a ¼ ð1500; 3000Þ and b ¼ ð2000; 4000Þ obtained for this
problem. Solution a has a lower cost while solution b can
support more users. However, according to the preference
information, for the number of users anything beyond 3000
can be deemed as equivalent. As such, the user number of
the solution b can be transformed to 3000, that is, now b ¼
ð2000; 3000Þ, worse than (i.e., dominated by) a. TheHV indi-
cator can capture such dominance relation information — a
dominated solution is always evaluated worse by HV than
one dominating it. Next, we look at a case study based on
this example to see how such transformation affects the
evaluation results.

Consider a situation of designing a product with the
requirements that “the cost shall be low while the

product should be able to support at least 1500

1790 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

simultaneous users and ideally reach 3000

users”. As can be seen, the first objective cost is a normal
one (i.e., the lower the better), while for the second objective
the number of simultaneous users, there are two types of
preferences: clear one and vague one. The statement
“support at least 1500 users” is a clear one, which
means the product is useless if it cannot support 1,500 users.
The statement “ideally reach 3000 users” is a vague
one, which implies that despite the threshold, it is accept-
able to support less users and it will have the same level of
satisfaction even if more users are supportable. As such, we
can have the following transformation function.

a02 ¼
3000; a2 > 3000
a2; 1500 � a2 � 3000
to disgard a; a2 < 1500

8<
: ; (9)

where a0i denotes the transformed value of solution a on the
ith objective.

Now let us assume two solution sets A ¼ fa1; a2; a3g;B ¼
fb1;b2;b3g obtained by two search algorithms, where a1 ¼
ð750; 1500Þ; a2 ¼ ð1000; 2000Þ; a3 ¼ ð1500; 3000Þ;b1 ¼ ð500;
1000Þ;b2 ¼ ð1250; 2500Þ;b3 ¼ ð2000; 4000Þ, shown in Figs. 8a
and 8b. We want to evaluate and compare them under the
circumstances with/without the preference information
given above to see how transferring preferences into solu-
tions affects the evaluation results. As seen in Figs. 8a and
8b, without considering the preferences A is evaluated
worse than B (HV ðAÞ ¼ 4; 375; 000 < B ¼ 4; 625; 000. This
makes sense as the solutions of B spread more widely than
those of A. Yet, when considering the preferences of the DM
(transferred by Equation (9)), while the set A stays
unchanged (A0 ¼ A), the solution b1 will be discarded and
the solution b3 will become ð2000; 3000Þ. As a result, A0 is
evaluated significantly better than B0 (HV ðA0Þ ¼ 4; 375;
000 > B0 ¼ 3; 375; 000), as shown in Figs. 8c and 8d. This
shows that the integration of the DM’s preferences can
completely change the evaluation results between solution
sets.

7.3 When the DM’s Interest Is in Some Specific
Parts of the Pareto Front

Sometimes, the DM may be more interested in specific
part/solutions of the Pareto front than others. Knee

points are certainly among such solutions, preferred in
many situations, e.g., in [17], [19], [35], [37], [44], [68],
[89], [114], [137]. Knee points are points on the Pareto
front where a small improvement on one objective would
lead to a large deterioration on at least one other objec-
tive. They represent “good” trade-offs between conflicting
objectives, thus naturally more of interest to the DM. For
example, on the cloud autoscaling problem [17], where
different cloud tenants (users) may introduce conflicting
objectives due to the interference and shared infrastruc-
ture. From the perspective of the cloud vendor, ensuring
fairness among tenants of the same class is often the top
priority and thus the knee solutions are more of interest.
As we explained previously, HV is a good choice in such
a situation, alongside other indicators like the �-indica-
tor [154], IGDþ [56] and PCI [72], whereas unfortunately
IGD [26] is not one of them, despite being widely used,
e.g., in [37], [89].

Another relatively common situation is that the DM may
be more interested in the extreme solutions (e.g., in [131],
[134], [148]), namely, solutions achieving the best on one
objective or another. For example, for the service composi-
tion problem [134], one may prefer the extreme solutions
around the edges, e.g., those with low latency but high cost,
or vice versa. For this situation, HV can also be a viable
solution. As shown previously (Section 5.7), setting the
reference point fairly distant from the combined nondomi-
nated solution set gives the extreme solutions bigger
weighting on the evaluation results. Besides, one may
directly compare solution sets through their best value on
the corresponding objective(s). Such a DOE measure, in
contrast to HV which provides comprehensive evaluation
results, returns the objective values which are straightfor-
ward for the DM to understand.

7.4 When the DM’s Preferences Are Completely
Unavailable

As can be seen in Table 8, the majority of studies in Pareto-
based SBSE effectively do not involve any preference. For this
situation, a solution set that well represents the whole Pareto
front is preferred. As aforementioned, the “representation”
can be broken down to the quality aspects convergence, diver-
sity (i.e., spread and uniformity), and cardinality. Naturally, it

Fig. 8. HV comparison of with/without integrating the DM’s preferences “the cost shall be low while the product should be able to sup-

port at least 1500 simultaneous users and ideally reach 3000 users” into solutions on the basis of transformation function Equa-
tion (9). Without considering the preferences ((a) and (b)), the solution set B is evaluated by HV better than A as it can provide more diverse
solutions. Yet, when considering the preferences, the solution b1 in B will be no interest to the DM (thus discarded) as its supported user number is
less than 1500, and the number of users that b3 supports can be regarded down to 3000 as 3000 is the best expected value. After this transformation
((c) and (d)), the set B0 is evaluated significantly worse thanA0.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1791

is expected to consider quality indicators which (together) are
able to cover all of them.

In general, there are two ways to implement that in prac-
tice. One is to consider several indicators, each responsible for
one specific aspect. For example, GDþ [56] is for a solution
set’s convergence, D [29] for diversity (under the bi-objective
circumstance), and UNFR for cardinality. The other one is to
consider a comprehensive indicator to evaluate all the aspects.
Such indicators include HV , IGD, and �-indicator. Today,
there is a tendency to use comprehensive indicators. Numer-
ous recent studies usedHV and IGD. However, as explained
previously, IGDmay not be an ideal indicator in Pareto-based
SBSE as a Pareto front representation with densely and uni-
formly distributed points is usually unavailable in practice.

In addition, when using comprehensive indicators we
suggest to consider multiple differently-behaving indicators
if applicable. Each indicator has its own (explicitly or implic-
itly) preferences. A solution set evaluated better on an indi-
cator is often evaluated better as well on another similar
indicator; this means nothing but the set favored under this
type of preference.When a solution set is evaluated better on
all of the considered indicators whose preferences are quite
different, then that set certainly has a higher chance to be
chosen by the DM. Unfortunately, many comprehensive
indicators behave similarly asHV [78], [111], namely, prefer-
ring knee points of the Pareto front rather than a set of uni-
formly-distributed solutions on the Pareto front, such as
R2 [46] and �-indicator (except IGD which, however, is not
applicable typically). Therefore, as a supplement toHV , con-
sidering a quality indicator that can well evaluate the diver-
sity of a solution set sounds reasonable. In this regard, the
indicator D (Spread) [29] may be chosen for the bi-objective
case andDCI [70] for themore-objective case.

7.5 Aided Evaluation Methods

The above are four general cases of solution sets’ quality evalu-
ation on the basis of the DM’s preferences. On top of those,
there exist some quality indicators for specific SBSE scenarios
(see Table 8), which we call problem-specific indicators (PSI).
For example, in the library recommendation [99], top-k accu-
racy, precision, and recall on history datasets are commonly
usedPSI for evaluating recommendation systems. For another
example, in the software modularization problem the PSI
MoJoFM [65], derived from theMoJo distance, compares a pro-
duced solution to a given “golden rule” solution, which natu-
rally represents the DM’s preference over the objectives such
as cohesion and coupling [140]. Another example can be seen
in the test case generation problem where some works use
multi-objectivization to improve the code coverage [100], [101],
[102]. They reformulate the coverage criterion as a many-
objective optimization problem,where the objectives to be opti-
mized are different coverage targets (e.g., branches in [100]),
but only the total coverage of all test cases in the produced test
suite is of interest. In this case, such a total coverage criterion
can be regarded as a problem-specific indicator, as it does
reflect the quality of a solution set in this specific problem but
not directly involved in the search-based optimization. Overall,
such PSI indicators not only represent more “accessible” qual-
ity evaluation of solution sets (i.e., how they perform under the
practical problem background), but also usually imply some

preferences from the DM. Therefore, it is highly recommended
to include them in the evaluation if existing.

Nevertheless, it is worth noting that PSI indicators usually
need to work together with generic quality indicators (e.g.,
those in Table 9) to provide reliable evaluations since they
may be irrelevant to Pareto-based optimization (e.g., only
focusing on particular objectives in evaluation). For example,
the study [106]mainly relies onAPFD, the average percentage
of fault detected, to evaluate the solution set of prioritized test
cases. Indeed, APFD is a frequently used PSI in the test case
prioritization, but it can only reflect the rate of fault detected,
not the reliance of test cases, both of which are the objectives
to be optimized for the problem.

In addition, plotting representative solution sets (SSP) is
also desirable as an auxiliary evaluation, as it empowers the
SBSE researchers/practitioners to get a sense of what the
solution set looks like. This is very helpful not only for solu-
tion set comparison, but also for the DM to understand the
problem and then perhaps to refine their preferences further.

To use SSP , for an algorithm involving stochastic elements
we suggest plotting the solution set in a particular run which
corresponds to the evaluation result (obtained by a compre-
hensive quality indicator, e.g., HV) that is the closest to the
median value in all the runs. Alternatively, for optimization
problems with two and three objectives, median attainment
surfaces [38], [63], [79] can be used to visualize the perfor-
mance of the algorithm with respect to all the runs (which
have already been adopted in the literature [24], [34], [142],
[148]). For problems with more objectives, the parallel coordi-
nates plot (instead of the scatter plot) is a helpful tool, which
can reflect the convergence and diversity of a solution set to
some extent [73]. It has started to be used recently, e.g., in [53],
[89], [91], [143], [144].

7.6 A General Procedure

Based on the above, we now are in a good position to pro-
vide a general procedure of how to evaluate solution sets in
Pareto-based SBSE in Fig. 9. At first, we suggest conducting
some screening (P1 in the figure) to filter out trivial solu-
tions in the considered solution sets according to the nature
of the optimization problem in SBSE. The trivial solutions
can be seen as those which are straightforward to obtain
and would never be of interest to the DM, but may affect
the evaluation result. e.g., the solution with zero cost and
zero coverage in the example of Fig. 4.

After the filtering, it comes to evaluating solution sets
according to the DM’s preference information (D1). If there is
no preference information available at all (e.g., the effort esti-
mation and test case prioritization problem),we suggest to con-
sider quality indicators that together are able to accurately
reflect all the quality aspects (D2–D5). For example, one can
consider separately evaluating distinct quality aspects of solu-
tion sets, e.g.,GDþ for convergence (togetherwithCI if willing
to know the dominance relation between sets), DCI for diver-
sity (when involving� 3 objectives), andUNFR for cardinality.
Alternatively, one can consider evaluating the comprehensive
quality of solution sets, e.g., HV in most cases; or even some
mix (e.g.,HV plusUNFR) if it requires understanding on some
specific quality aspects on top of solution sets’ general quality.
Note that the cardinality of solution sets tends to have more

1792 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

weight in the SBSE area than some other areas such as evolu-
tionary computation, since many SBSE problems are combina-
torial ones, where their Pareto front size may be relatively
small and it is likely to have comparable solutions (e.g., domi-
nated/duplicate solutions) from different sets. In any case,
whatever indicators considered, the way of using them needs
to complywith their usage note and caveats (see Table 9).

If there is preference information available,we recommend
first to see whether (part of) it belongs to clear preferences
(D6); if so, such as the software product line configuration
problem, one can transfer the clear preferences into the solu-
tions (P2), as what we discussed in Section 7.1. It is necessary
to note that sometimes after the transfer there is only one
objective left to be considered (e.g., in the example of Fig. 4).
In this case, the best value on that remaining objective repre-
sents the quality of the solution set.

After considering clear preferences, one needs to see
whether there exist some vague preferences (D7). if the
answer is yes, e.g., the software configuration and adapta-
tion problem, then we transfer those that are transferable
(D8, P3, D9), e.g., the example in Fig. 8 and resolution from
Section 7.2. After that, we recommend to check whether the
rest preferences can be transferred into an indicator (D10);
if so, one can then transfer them (P4), e.g., transferring cer-
tain preferences into a weight distribution function in the
weighted HV [152], and use that indicator to evaluate the
solution sets as shown in Section 7.2.

When the preference information cannot be accommo-
dated into an indicator, the next step is to check if the DM
prefers a specific part of the Pareto front (D11), such as the
software modularization and service composition problem.
As we discussed in Section 7.3, if one prefers knee points on
the Pareto front (i.e., well-balanced solutions between con-
flicting objectives), then HV is a good option. If one prefers
boundary solutions, thenHV with an unusual configuration

of its reference point can be used, alongside with reporting
the best value of relevant objective(s) in the population.

Note that the DM may present several types of preference
information. For example, onemay specify a clear threshold on
one objective and at the same time be interested in knee points
on the Pareto front — a typical case when non-functional
requirements of the software are involved. Another example
has been seen in the situation of Fig. 8, where the DM’s prefer-
ences contain both clear and vague information. In addition, it
is necessary to mention that there do exist some situations
where the DM’s preferences cannot be quantified/transferred
properly, e.g., the DM may state like “the cost should be

reasonable”. In such a situation, we suggest proceeding to
D2 — the general multi-objective optimization case (without
specific preferences).

After going through all possible cases of the DM’s prefer-
ences, it comes to check the last two quality evaluation
methods, problem-specific evaluation, i.e., PSI (D13), and
solution set plotting, i.e., SSP (D14). These are two very
helpful methods in reflecting the solution set’s quality that
may have not been captured by generic quality indicators.

8 THREATS TO VALIDITY

Threats to construct validity can be raised by the research
methodology, which may not serve the purpose of survey-
ing the evaluation methods for Pareto-based optimization
in existing SBSE studies. We have mitigated such threats by
following the systematic review protocol proposed by
Kitchenham et al. [60], which is a widely recognized search
methodology for conducting a survey in the SE research.
Another threat is related to the citation count used in the
exclusion criteria. Indeed, it is difficult to set a threshold for
such, as the citation count itself cannot well reflect the
impact of work. Since there is no metric that suffices to do

Fig. 9. General procedure of quality evaluation in Pareto-based SBSE.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1793

so, in this work we used the citation count and set a thresh-
old by averaging the candidate studies. It is however worth
noting that we do not seek to provide a comprehensive
review over the entire SBSE field, but to capture major
trends on the evaluation of solution sets, which can at least
provide some sources for analyzing and building the meth-
odological guidance. Therefore it is necessary to reach a
trade-off between the trend coverage and the efforts
required for detailed data collections of the studies.

Threats to internal validity may be introduced by having
inappropriate classification and interpretation of the SBSE
papers, their implied preferences, and used quality indica-
tors/evaluationmethods.We have limited this by conducting
three iterations of study reviews by the first two authors. Error
checks and investigations were also conducted to correct any
issues found during the search procedure. The key issues
identified have also been resolved among the first two authors
or by counseling external researchers.

Threats to external validity may restrict the generalizabil-
ity of the proposed guidance and considered cases. We have
mitigated such by conducting the survey more widely and
deeply: it covers 717 searched papers published between
2009 and 2019, on 36 venues from seven repositories; while
at the same time, extracting 95 prominent primary studies
following the exclusion and inclusion procedures. This has
included 21 most noticeable SBSE problems that spread
across the whole SDLC. The extracted assumptions of the
DM’s preferences, together with rigorous analyses of the 12
representative quality indicators (i.e., either used widely in
SBSE or proposed herein for a more accurate evaluation),
have provided rich sources for us to establish a general
methodological guidance for the community.

Finally, although our guidance has been designed in a
way that it aims to cover a wide range of SBSE problems, it
is always possible that there are situations which we have
unfortunately missed; for example, the behavior of solu-
tions in the decision space, e.g., their diversity and robust-
ness. As different settings of parameters (i.e., decision
variables) may lead to similar/same solutions’ quality (e.g.,
multiple points in the decision map to a single point in the
objective space), the DM of course likes those which are eas-
ier to implement. Therefore, a set of diverse solutions in the
decision space are preferred, providing more options for
the DM. Another aspect that the DMmay consider is robust-
ness [13], which is related to how fast the quality of solu-
tions degrades when varying their parameters (decision
variables). This issue is particularly important in an uncer-
tain environment where the solution may not be able to be
deployed accurately and/or the objective functions esti-
mated may be of a margin of error. Therefore, robust solu-
tions are preferred to sensitive ones even if their quality is
slightly lower in some circumstances. Overall, in those
cases, an evaluation of solution sets’ quality both in the deci-
sion space and in the objective space is needed.

9 RELATED WORK

Various surveys on SBSE (e.g., [47], [50], [85]) reveal intense
interests in developing computational search methods for
complex optimization problems in SE. Some of them focus on
or are relevant to Pareto-based multi-objective optimization.

For example, Sayyad et al. [117] performed a brief literature
review of SBSE studies that used Pareto-based evolutionary
algorithms for multi-objective optimization problems; Bous-
saı̈d et al. [8] conducted a comprehensive survey on search-
based model-driven engineering and classified relevant
search algorithms into single- and multi-objective ones;
Ram�ırez et al. [110] reviewed SBSE studies on a subarea of
multi-objective optimization, many-objective optimization,
where the number of objectives is larger than 3. In general,
these papers concentrate on the development of search algo-
rithms for Pareto-based multi-objective optimization prob-
lems; very few touch on the quality evaluation of the results
obtained by search algorithms until recently.

Wang et al. [138] proposed a practical guide for SBSE
researchers/practitioners to select quality indicators in Par-
eto-based optimization, on the basis of the results of experi-
mental studies evaluating eight quality indicators in three
industrial and real-world problems. They first classified
these indicators into four categories, convergence, diversity,
combination, and coverage, and then they, based on empiri-
cal observations, have drawn several conclusions about the
indicator selection. For example, they have concluded that
it does matter which indicator to select in the diversity cate-
gory, but it does not matter which indicator to select within
the same convergence or combination category.

Very recently, Ali et al. [4] substantially extended Wang
et al.’s work [138] and provided a set of guidelines drawn
from an extensive empirical evaluation in nine SBSE prob-
lems from industrial, real-world and open-source projects.
From these experiments, they produced 22 observations
based on statistical comparisons between six multi-objective
evolutionary algorithms. They have claimed that the differ-
ences in SBSE problems have high effect on the consistency
of quality indicators’ evaluation results, whereas the effect
of search algorithms is low. A noticeable difference from
[138] is that the guidance provided did not build on a classi-
fication of indicators.

Li et al. [74] conducted a critical review of Wang et al.’s
work [138]. They argued that some conclusions (e.g., it mat-
ters which indicator to select in the category diversity) are
actually caused by the inaccurate classification of the consid-
ered indicators. More importantly, they argued that even if
an accurate classification is made, one still cannot draw any
conclusions like it does not matter which indicator to select,
whether in the same category or across different categories.

Indeed, as can be seen in Section 6, each quality indicator
has its own distinct quality implications. A solution set being
evaluated better by an indicator doesnotmean that it generally
has higher quality, but rather that it is preferred under the
assumption that the indicator accurately reflects the DM’s
preferences. However, different DMs may prefer different
trade-off solutions between objectives, even for the same prob-
lem. For example, for the project scheduling problem, in some
scenarios, the DMmay prefer knee solutions [35], [44], [114], in
some other scenarios, the DM may prefer widely distributed
solutions [24], in some other scenarios, theDMmayprefer spe-
cific solutions relying on the Analytic Hierarchy Process [125].
Consequently, observations on quality indicators drawn from
an empirical investigation on specific SBSE scenarios may not
bewell generalized. This suggests a need of a general, method-
ological guidance on how to select and use indicators in SBSE.

1794 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

Such a guidance is not based upon empirical studies on
specific problems but upon the fundamental goal of multi-
objective optimization — supplying the DM a set of solutions
which are themost consistent with their preferences.

It is worth mentioning that a recent survey paper [75] on
quality evaluation in multi-objective optimization appeared,
albeit not specific for SBSE. It systematically reviewed 100
quality indicators, analyzed correlations between represen-
tative indicators, discussed several important issues in
designing indicators, and suggested a few future research
directions. One key purpose of that work is about indicator
design and development, i.e., to inform the researchers and
practitioners on what aspects to bear in mind when design-
ing new indicators. In contrast, our work here is about indi-
cators (and other evaluation methods) selection and use, i.e.,
to guide the researchers and practitioners on how to select/
use existing indicators, or even specialize them, for evaluat-
ing solution sets in SBSE. Another major difference between
the two works is that the work [75] considered the general
situation that the DM’s preferences are not available,
whereas our work considers the situations based precisely
upon various DM’s preferences.

As such, these two works complement well with each
other. If the SBSE researchers/practitioners want to under-
stand correlations between different quality indicators, to
know some important issues (e.g., scaling, normalization and
effect of dominated/duplicate solutions) when performing
quality evaluation for a practical problem, or even by them-
selves to design/develop new indicators, they can refer to the
general survey paper in [75]. In contrast, if the SBSE research-
ers/practitioners want to select and use existing indicators in
various optimization scenarios in SBSE, or to adapt existing
indicators to fit explicit/implicit preferences from the DM in
the given SBSE problem, thiswork can bewell served.

Overall, in comparison with the existing works, this work
presents several additional contributions. First, we conduct a
systematic literature review on quality evaluation for Pareto-
based optimization in SBSE. Second, we, from that review,
present a variety of inappropriate/inadequate selection and
inaccurate/misleading use of evaluation methods, and iden-
tify five important but overlooked issues. Third, from the per-
spective of the goal of multi-objective optimization, we discuss
the reasons that quality indicators are needed, carry out an in-
depth analysis of frequently-used quality indicators in the
area, and explain the scope of their applicability. Finally, we
provide amethodological guidance and procedure of selecting
and using evaluationmethods in various SBSE scenarios.

10 CONCLUSION

The nature of considering multiple (conflicting) objectives in
many SBSE problems leads to a link between SE and multi-
objective optimization. However, compared to the flourish
of the use/design of multi-objective optimizers in SBSE, the
evaluation of the optimizers’ outcome remains relatively
“casual”. Existing SBSE researches often work by analogy,
namely, following popular (or previously used) quality
evaluation methods without considering whether they are
truly suitable for their specific situation. In this paper, we
have carried out a systematic and critical review of the qual-
ity evaluation in Pareto-based SBSE, covering 95 prominent

studies published between 2009 and 2019 from 36 venues in
seven repositories. We have found that in many studies the
selection/use of evaluation methods is not appropriate and
can even be misleading, based on which we summarize five
critical issues, namely:

� Inadequacy of Solution Set Plotting.
� Inappropriate use of DescriptiveObjective Evaluation.
� Confusion of the quality aspects covered by generic

quality indicators.
� Oblivion of context information.
� Noncompliance of the DM’s preferences.
Through revisiting the pros and cons of widely used

quality indicators in SBSE, we have provided a methodolog-
ical guidance and procedure of selecting, adjusting and
using quality evaluation methods on the basis of the follow-
ing availability/types of the DM’s preferences:

� There are clear preferences between the objectives.
� There are vague/rough preferences between the

objectives.
� There are preferences on some specific parts of the

Pareto front.
� There are no preferences available.
We hope that our guidance would help to mitigate the

evaluation issues in future SBSE work, and more impor-
tantly, would enable the quality evaluation of solution sets
easier, clearer and more accurate for SBSE researchers and
practitioners.

ACKNOWLEDGMENTS

This work was supported by the Guangdong Provincial Key
Laboratory (Grant No. 2020B121201001), the Program for
Guangdong Introducing Innovative and Enterpreneurial
Teams (Grant No. 2017ZT07X386), Shenzhen Science and
Technology Program (Grant No. KQTD2016112514355531),
and the Program for University Key Laboratory of Guang-
dong Province (Grant No. 2017KSYS008). We are grateful to
the editor and anonymous reviewers for their constructive
comments on the early version of this paper. Miqing Li and
Tao Chen contributed equally to this research.

REFERENCES

[1] H. Abdeen, H. Sahraoui, and C. Debreceni, “Multi-objective opti-
mization in rule-based design space exploration,” in Proc. IEEE/
ACM Int. Conf. Autom. Softw. Eng., 2014, pp. 289–300.

[2] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search
and neural networks,” in Proc. IEEE/ACM Int. Conf. Autom. Softw.
Eng., 2016, pp. 63–74.

[3] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algo-
rithms,” in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng., 2018,
pp. 1016–1026.

[4] S. Ali, P. Arcaini, D. Pradhan, S. A. Safdar, and T. Yue, “Quality
indicators in search-based software engineering:Anempirical eval-
uation,” ACM Trans. Softw. Eng. Methodol., vol. 29, no. 2, pp. 1–29,
2020.

[5] W. K. G. Assuncao, T. E. Colanzi, S. R. Vergilio, and A. Pozo, “A
multi-objective optimization approach for the integration and
test order problem,” Inf. Sci., vol. 267, no. 2, pp. 119–139, 2014.

[6] G. Bavota, F. Carnevale, A. D. Lucia, M. D. Penta, and R. Oliveto,
“Putting the developer in-the-loop: An interactive GA for soft-
ware re-modularization,” in Proc. Int. Symp. Search Based Softw.
Eng., 2012, pp. 75–89.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1795

[7] S. Boukharata, A. Ouni, M. Kessentini, S. Bouktif, and H. Wang,
“Improving web service interfaces modularity using multi-objective
optimization,”Autom. Softw. Eng., vol. 26, no. 2, pp. 275–312, 2019.

[8] I. Boussaı̈d, P. Siarry, and M. Ahmed-Nacer, “A survey on
search-based model-driven engineering,” Autom. Softw. Eng.,
vol. 24, no. 2, pp. 233–294, 2017.

[9] M. Bowman, L. C. Briand, and Y. Labiche, “Solving the class
responsibility assignment problem in object-oriented analysis
with multi-objective genetic algorithms,” IEEE Trans. Softw. Eng.,
vol. 36, no. 6, pp. 817–837, Nov./Dec. 2010.

[10] B. Bozkurt, J. W. Fowler, E. S. Gel, B. Kim, M. K€oksalan, and
J. Wallenius, “Quantitative comparison of approximate solution
sets for multicriteria optimization problems with weighted Tche-
bycheff preference function,” Operations Res., vol. 58, no. 3,
pp. 650–659, 2010.

[11] S. A. Busari and E. Letier, “RADAR: A lightweight tool for
requirements and architecture decision analysis,” in Proc. 39th
Int. Conf. Softw. Eng., 2017, pp. 552–562.

[12] K.-Y. Cai and D. Card, “An analysis of research topics in software
engineering–2006,” J. Syst. Softw., vol. 81, no. 6, pp. 1051–1058, 2008.

[13] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska, and
N. Paoletti, “Designing robust software systems through
parametric Markov Chain synthesis,” in Proc. IEEE Int. Conf.
Softw. Architecture, 2017, pp. 131–140.

[14] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella,
and S. Panichella, “Defect prediction as a multiobjective optimi-
zation problem,” Softw. Testing Verification Rel., vol. 25, no. 4,
pp. 426–459, 2015.

[15] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella,
and S. Panichella, “Multi-objective cross-project defect pre-
diction,” in Proc. IEEE 6th Int. Conf. Softw. Testing Verification Val-
idation, 2013, pp. 252–261.

[16] J. Chen, V. Nair, R. Krishna, and T. Menzies, “‘Sampling’ as a
baseline optimizer for search-based software engineering,” IEEE
Trans. Softw. Eng., vol. 45, no. 6, pp. 597–614, Jun. 2019.

[17] T. Chen and R. Bahsoon, “Self-adaptive trade-off decision mak-
ing for autoscaling cloud-based services,” IEEE Trans. Services
Comput., vol. 10, no. 4, pp. 618–632, Jul./Aug. 2017.

[18] T. Chen, R. Bahsoon, S. Wang, and X. Yao, “To adapt or not to
adapt?: Technical debt and learning driven self-adaptation for
managing runtime performance,” in Proc. ACM/SPEC Int. Conf.
Perform. Eng., 2018, pp. 48–55.

[19] T. Chen, K. Li, R. Bahsoon, and X. Yao, “FEMOSAA: Feature
guided and knee driven multi-objective optimization for self-
adaptive software,” ACM Trans. Softw. Eng. Methodol., vol. 27,
no. 2, 2018, Art. no. 5.

[20] T. Chen, M. Li, K. Li, and K. Deb, “Search-based software engi-
neering for self-adaptive systems: Survey, disappointments,
suggestions and opportunities,” 2020, arXiv:2001.08236.

[21] T. Chen, M. Li, and X. Yao, “On the effects of seeding strategies:
A case for search-based multi-objective service composition,” in
Proc. Genetic Evol. Comput. Conf., 2018, pp. 1419–1426.

[22] T. Chen, M. Li, and X. Yao, “Standing on the shoulders of giants:
Seeding search-based multi-objective optimization with prior
knowledge for software service composition,” Inf. Softw. Technol.,
vol. 114, pp. 155–175, 2019. [Online]. Available: https://doi.org/
10.1016/j.infsof.2019.05.013

[23] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “MULTI: Multi-objective
effort-aware just-in-time software defect prediction,” Inf. Softw.
Technol., vol. 93, pp. 1–13, 2018.

[24] F. Chicano, F. Luna, A. J.Nebro, and E. Alba, “Usingmulti-objective
metaheuristics to solve the software project scheduling problem,” in
Proc. Conf. Genetic Evol. Comput., 2011, pp. 1915–1922.

[25] J. L. Cochrane and M. Zeleny, Multiple Criteria Decision Making.
Columbia, SC, USA: Univ. South Carolina Press, 1973.

[26] C. A. C. Coello and M. R. Sierra, “A study of the parallelization
of a coevolutionary multi-objective evolutionary algorithm,” in
Proc. Mex. Int. Conf. Artif. Intell., 2004, pp. 688–697.

[27] T. E. Colanzi, W. K. G. Assunç~ao, P. R. Farah, S. R. Vergilio, and
G. Guizzo, “A review of ten years of the symposium on search-
based software engineering,” in Proc. Int. Symp. Search-Based
Softw. Eng., 2019, pp. 42–57.

[28] V. G. Da Fonseca, C. M. Fonseca, and A. O. Hall, “Inferential per-
formance assessment of stochastic optimisers and the attainment
function,” in Proc. Int. Conf. Evol. Multi-Criterion Optim., 2001,
pp. 213–225.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans.
Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[30] J. J. Durillo, V. Nae, and R. Prodan, “Multi-objective energy-
efficient workflow scheduling using list-based heuristics,” Future
Gener. Comput. Syst., vol. 36, no. 3, pp. 221–236, 2014.

[31] J. J. Durillo, Y. Y. Zhang, E. Alba, and A. J. Nebro, “A study of the
multi-objective next release problem,” in Proc. Int. Symp. Search
Based Softw. Eng., 2009, pp. 29–60.

[32] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke,
“Empirical evaluation of Pareto efficient multi-objective regres-
sion test case prioritisation,” in Proc. Int. Symp. Softw. Testing
Anal., 2015, pp. 234–245.

[33] K. R. Felizardo, E. Mendes, M. Kalinowski, �E. F. de Souza, and
N. L. Vijaykumar, “Using forward snowballing to update sys-
tematic reviews in software engineering,” in Proc. 10th ACM/
IEEE Int. Symp. Empir. Softw. Eng. Meas., 2016, pp. 53:1–53:6.

[34] J. Ferrer, F. Chicano, and E. Alba, “Evolutionary algorithms for
the multi-objective test data generation problem,” Softw. Pract.
Experience, vol. 42, no. 11, pp. 1331–1362, 2012.

[35] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take
this anymore: Multi-objective overtime planning for software
engineering projects,” in Proc. 35th Int. Conf. Softw. Eng., 2013,
pp. 462–471.

[36] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang,
“A search based approach to fairness analysis in requirement
assignments to aid negotiation, mediation and decision making,”
Requirements Eng., vol. 14, no. 4, pp. 231–245, 2009.

[37] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi,
“Model transformation modularization as a many-objective opti-
mization problem,” IEEE Trans. Softw. Eng., vol. 43, no. 11,
pp. 1009–1032, Nov. 2017.

[38] C. M. Fonseca and P. J. Fleming, “On the performance assessment
and comparison of stochastic multiobjective optimizers,” in Proc.
Int. Conf. Parallel Problem Solving Nat., 1996, pp. 584–593.

[39] S. Frey, F. Fittkau, and W. Hasselbring, “Search-based genetic
optimization for deployment and reconfiguration of software in
the cloud,” in Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 512–521.

[40] W. Fu, T.Menzies, and X. Shen, “Tuning for software analytics: Is it
really necessary?,” Inf. Softw. Technol., vol. 76, pp. 135–146, 2016.

[41] J. F€ul€op, “Introduction to decision making methods,” in Proc.
BDEI-3 Workshop, 2005, pp. 1–15.

[42] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou,
“Variability in software systems—A systematic literature review,”
IEEE Trans. Softw. Eng., vol. 40, no. 3, pp. 282–306,Mar. 2014.

[43] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based
synthesis of probabilistic models for quality-of-service software
engineering (T),” in Proc. IEEE/ACM Int. Conf. Autom. Softw.
Eng., 2016, pp. 319–330.

[44] S. Gueorguiev, M. Harman, and G. Antoniol, “Software project
planning for robustness and completion time in the presence
of uncertainty using multi-objective search based software
engineering,” in Proc. Conf. Genetic Evol. Comput., 2009,
pp. 1673–1680.

[45] J. Guo et al., “SMTIBEA: A hybrid multi-objective optimization
algorithm for configuring large constrained software product
lines,” Softw. Syst. Model., vol. 18, no. 2, pp. 1447–1466, 2019.

[46] M. P. Hansen and A. Jaszkiewicz, “Evaluating the quality of
approximations to the nondominated set,” Technical University
of Denmark, Denmark, Tech. Rep. IMM-REP-1998–7, 1998.

[47] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and
Y. Zhang, “Search based software engineering for software prod-
uct line engineering: A survey and directions for future work,”
in Proc. 18th Int. Softw. Product Line Conf., 2014, pp. 5–18.

[48] M. Harman, J. Krinke, J. Ren, and S. Yoo, “Search based data sen-
sitivity analysis applied to requirement engineering,” in Proc.
Conf. Genetic Evol. Comput., 2009, pp. 1681–1688.

[49] M. Harman, K. Lakhotia, J. Singer, D. R. White, and S. Yoo,
“Cloud engineering is search based software engineering too,” J.
Syst. Softw., vol. 86, no. 9, pp. 2225–2241, 2013.

[50] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based soft-
ware engineering: Trends, techniques and applications,” ACM
Comput. Surv., vol. 45, no. 1, 2012, Art. no. 11.

[51] W. Heaven and E. Letier, “Simulating and optimising design
decisions in quantitative goal models,” in Proc. IEEE 19th Int.
Requirements Eng. Conf., 2011, pp. 79–88.

1796 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

https://doi.org/10.1016/j.infsof.2019.05.013
https://doi.org/10.1016/j.infsof.2019.05.013

[52] C. Henard, M. Papadakis, M. Harman, and Y. L. Traon,
“Combining multi-objective search and constraint solving for
configuring large software product lines,” in Proc. IEEE/ACM
Int. Conf. Softw. Eng., 2015, pp. 517–528.

[53] R. M. Hierons, M. Li, X. Liu, J. A. Parejo, S. Segura, and X. Yao,
“Many-objective test suite generation for software product lines,”
ACMTrans. Softw. Eng.Methodol., vol. 29, no. 1, 2020, Art. no. 2.

[54] R. M. Hierons, M. Li, X. Liu, S. Segura, andW. Zheng, “SIP: Opti-
mal product selection from feature models using many-objective
evolutionary optimization,” ACM Trans. Softw. Eng. Methodol.,
vol. 25, no. 2, pp. 1–39, 2016.

[55] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “How to spec-
ify a reference point in hypervolume calculation for fair perfor-
mance comparison,” Evol. Comput., vol. 26, no. 3, pp. 411–440, 2018.

[56] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Modified
distance calculation in generational distance and inverted gener-
ational distance,” in Proc. Int. Conf. Evol. Multi-Criterion Optim.,
2015, pp. 110–125.

[57] H. L. Jakubovski Filho, T. N. Ferreira, and S. R. Vergilio,
“Preference based multi-objective algorithms applied to the vari-
ability testing of software product lines,” J. Syst. Softw., vol. 151,
pp. 194–209, 2019.

[58] S. Kalboussi, S. Bechikh, M. Kessentini, and L. B. Said,
“Preference-based many-objective evolutionary testing generates
harder test cases for autonomous agents,” in Proc. Int. Symp.
Search Based Softw. Eng., 2013, pp. 245–250.

[59] W. Kessentini, H. Sahraoui, and M. Wimmer, “Automated meta-
model/model co-evolution: A search-based approach,” Inf.
Softw. Technol., vol. 106, pp. 49–67, 2019.

[60] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, “Systematic literature reviews in software engi-
neering - A systematic literature review,” Inf. Softw. Technol.,
vol. 51, no. 1, pp. 7–15, 2009.

[61] J. D. Knowles and D. W. Corne, “On metrics for comparing non-
dominated sets,” in Proc. Congress Evol. Comput., 2002, vol. 1,
pp. 711–716.

[62] J. D. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the perfor-
mance assessment of stochastic multiobjective optimizers,” ETH
Zurich, Switzerland, Tech. Rep. 214, 2006.

[63] J. D. Knowles, “A summary-attainment-surface plotting method for
visualizing the performance of stochasticmultiobjective optimizers,”
inProc. 5th Int. Conf. Intell. Syst. Des. Appl., 2005, pp. 552–557.

[64] S. Kumar, R. Bahsoon, T. Chen, K. Li, and R. Buyya, “Multi-tenant
cloud service composition using evolutionary optimization,” in
Proc. 24th IEEE Int. Conf. Parallel Distrib. Syst., 2018, pp. 972–979.

[65] A. C. Kumari and K. Srinivas, “Hyper-heuristic approach for
multi-objective software module clustering,” J. Syst. Softw.,
vol. 117, pp. 384–401, 2016.

[66] N.-Z. Lee, P. Arcaini, S. Ali, and F. Ishikawa, “Stability analysis for
safety of automotive multi-product lines: A search-based
approach,” in Proc. Genetic Evol. Comput. Conf., 2019, pp. 1241–1249.

[67] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and infor-
mation value in software requirements and architecture,” in
Proc. Int. Conf. Softw. Eng., 2014, pp. 883–894.

[68] H. Li, G. Casale, and T. Ellahi, “SLA-driven planning and optimi-
zation of enterprise applications,” in Proc. Joint Wosp/sipew Int.
Conf. Perform. Eng., 2010, pp. 117–128.

[69] L. Li, M. Harman, E. Letier, and Y. Zhang, “Robust next release
problem: Handling uncertainty during optimization,” in Proc.
Conf. Genetic Evol. Comput., 2014, pp. 1247–1254.

[70] M. Li, S. Yang, and X. Liu, “Diversity comparison of Pareto front
approximations in many-objective optimization,” IEEE Trans.
Cybern., vol. 44, no. 12, pp. 2568–2584, Dec. 2014.

[71] M. Li, S. Yang, and X. Liu, “Shift-based density estimation for
Pareto-based algorithms in many-objective optimization,” IEEE
Trans. Evol. Comput., vol. 18, no. 3, pp. 348–365, Jun. 2014.

[72] M. Li, S. Yang, and X. Liu, “A performance comparison indicator
for Pareto front approximations in many-objective optimization,”
in Proc. Genetic Evol. Comput. Conf., 2015, pp. 703–710.

[73] M. Li, L. Zhen, and X. Yao, “How to read many-objective solu-
tion sets in parallel coordinates,” IEEE Comput. Intell. Mag.,
vol. 12, no. 4, pp. 88–97, Nov. 2017.

[74] M. Li, T. Chen, and X. Yao, “A critical review of “A practical guide
to select quality indicators for assessing Pareto-based search algo-
rithms in search-based software engineering”: Essay on quality
indicator selection for SBSE,” in Proc. IEEE/ACM 40th Int. Conf.
Softw. Eng.: New Ideas Emerg. Technol. Results, 2018, pp. 17–20.

[75] M. Li and X. Yao, “Quality evaluation of solution sets in multiob-
jective optimisation: A survey,” ACM Comput. Surv., vol. 52,
no. 2, 2019, Art. no. 26.

[76] Y. Li, T. Yue, S. Ali, and L. Zhang, “Zen-ReqOptimizer: A search-
based approach for requirements assignment optimization,”
Empir. Softw. Eng., vol. 22, no. 1, pp. 175–234, 2017.

[77] X. Lian, L. Zhang, J. Jiang, and W. Goss, “An approach for opti-
mized feature selection in large-scale software product lines,” J.
Syst. Softw., vol. 137, pp. 636–651, 2018.

[78] A. Liefooghe and B. Derbel, “A correlation analysis of set quality
indicator values in multiobjective optimization,” in Proc. Genetic
Evol. Comput. Conf., 2016, pp. 581–588.

[79] M. L�opez-Ib�anez, L. Paquete, and T. St€utzle, “Exploratory analy-
sis of stochastic local search algorithms in biobjective opti-
mization,” in Proc. Exp. Methods Anal. Optim. Algorithms, 2010,
pp. 209–222.

[80] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-
objective code-smells detection using good and bad design
examples,” Softw. Quality J., vol. 25, no. 2, pp. 1–24, 2016.

[81] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-
view refactoring of class and activity diagrams using a multi-
objective evolutionary algorithm,” Softw. Qual. J., vol. 25, no. 2,
pp. 1–29, 2015.

[82] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective auto-
mated testing for Android applications,” in Proc. 25th Int. Symp.
Softw. Testing Anal., 2016, pp. 94–105.

[83] T. Mariani, G. Guizzo, R. S. Vergilio, and T. R. A. Pozo,
“Grammatical evolution for the multi-objective integration and
test order problem,” in Proc. Genetic Evol. Comput. Conf., 2016,
pp. 1069–1076.

[84] A.Martens, H. Koziolek, S. Becker, and R. Reussner, “Automatically
improve software architecture models for performance, reliability,
and cost using evolutionary algorithms,” inProc. JointWOSP/SIPEW
Int. Conf. Perform. Eng., 2010, pp. 105–116.

[85] P. McMinn, “Search-based software testing: Past, present and
future,” in Proc. IEEE 4th Int. Conf. Softw. Testing Verification Vali-
dation Workshops, 2011, pp. 153–163.

[86] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and
R. Sasnauskas, “A search-based approach for accurate identifica-
tion of log message formats,” in Proc. 26th Conf. Program Compre-
hension, 2018, pp. 167–177.

[87] H. Meunier, E. G. Talbi, and P. Reininger, “A multiobjective
genetic algorithm for radio network optimization,” in Proc. Con-
gress Evol. Comput., 2000, vol. 1, pp. 317–324.

[88] L. L. Minku and X. Yao, “Software effort estimation as a multiob-
jective learning problem,” ACM Trans. Softw. Eng. Methodol.,
vol. 22, no. 4, pp. 402–418, 2013.

[89] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Cinn�eide, and
K. Deb, “On the use of many quality attributes for software
refactoring: A many-objective search-based software engineer-
ing approach,” Empir. Softw. Eng., vol. 21, no. 6, pp. 2503–2545,
2016.

[90] M. W. Mkaouer, M. Kessentini, S. Bechikh, and K. Deb,
“Recommendation system for software refactoring using innov-
ization and interactive dynamic optimization,” in Proc. ACM/
IEEE Int. Conf. Autom. Softw. Eng., 2014, pp. 331–336.

[91] W. Mkaouer et al., “Many-objective software remodularization
using NSGA-III,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 3,
pp. 17:1–17:45, 2015.

[92] C. Ni, X. Chen, F. Wu, Y. Shen, and Q. Gu, “An empirical
study on Pareto based multi-objective feature selection for soft-
ware defect prediction,” J. Syst. Softw., vol. 152, pp. 215–238,
2019.

[93] R. Olaechea, D. Rayside, J. Guo, and K. Czarnecki, “Comparison
of exact and approximate multi-objective optimization for soft-
ware product lines,” in Proc. 18th Int. Softw. Product Line Conf.,
2014, pp. 92–101.

[94] A. Ouni, M. Kessentini, and H. Sahraoui, “Search-based refactor-
ing using recorded code changes,” in Proc. Eur. Conf. Softw. Main-
tenance Reengineering, 2013, pp. 221–230.

[95] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum,
“Maintainability defects detection and correction: A multi-
objective approach,” Autom. Softw. Eng., vol. 20, no. 1, pp. 47–79,
2013.

[96] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “Search-
based refactoring: Towards semantics preservation,” in Proc.
IEEE Int. Conf. Softw. Maintenance, 2012, pp. 347–356.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1797

[97] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “The use
of development history in software refactoring using a multi-
objective evolutionary algorithm,” in Proc. 15th Annu. Conf.
Genetic Evolutionay Comput. Conf., 2013, pp. 1461–1468.

[98] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb,
“Multi-criteria code refactoring using search-based software
engineering: An industrial case study,” ACM Trans. Softw. Eng.
Methodol., vol. 25, no. 3, 2016, Art. no. 23.

[99] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and
K. Inoue, “Search-based software library recommendation using
multi-objective optimization,” Inf. Softw. Technol., vol. 83, pp. 55–75,
2017.

[100] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating
branch coverage as a many-objective optimization problem,” in
Proc. IEEE Int. Conf. Softw. Testing, Verification Validation, 2015,
pp. 1–10.

[101] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test
case generation as a many-objective optimisation problem with
dynamic selection of the targets,” IEEE Trans. Softw. Eng., vol. 44,
no. 2, pp. 122–158, Feb. 2018.

[102] A. Panichella, F. M. Kifetew, and P. Tonella, “Incremental control
dependency frontier exploration for many-criteria test case gen-
eration,” in Proc. Int. Symp. Search Based Softw. Eng., 2018,
pp. 309–324.

[103] A. Panichella, R. Oliveto, M. D. Penta, and A. D. Lucia,
“Improving multi-objective test case selection by injecting diver-
sity in genetic algorithms,” IEEE Trans. Softw. Eng., vol. 41, no. 4,
pp. 358–383, Apr. 2015.

[104] J. A. Parejo, A. B. S�anchez, S. Segura, A. Ruiz-Cort�es,
R. E. Lopez-Herrejon, and A. Egyed, “Multi-objective test case
prioritization in highly configurable systems: A case study,” J.
Syst. Softw., vol. 122, pp. 287–310, 2016.

[105] G. G. Pascual, R. E. Lopez-Herrejon, L. Fuentes, and A. Egyed,
“Applying multiobjective evolutionary algorithms to dynamic
software product lines for reconfiguring mobile applications,” J.
Syst. Softw., vol. 103, no. C, pp. 392–411, 2015.

[106] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, “REMAP:
Using rule mining and multi-objective search for dynamic test
case prioritization,” in Proc. IEEE Int. Conf. Softw. Testing, Verifi-
cation Validation, 2018, pp. 46–57.

[107] D. Pradhan, S. Wang, T. Yue, S. Ali, and M. Liaaen, “Search-
based test case implantation for testing untested configurations,”
Inf. Softw. Technol., vol. 111, pp. 22–36, 2019.

[108] K. Praditwong, M. Harman, and X. Yao, “Software module clus-
tering as a multi-objective search problem,” IEEE Trans. Softw.
Eng., vol. 37, no. 2, pp. 264–282, Mar./Apr. 2011.

[109] A. Ram�ırez, J. R. Romero, and S. Ventura, “A comparative study
of many-objective evolutionary algorithms for the discovery of
software architectures,” Empir. Softw. Eng., vol. 21, no. 6,
pp. 2546–2600, 2016.

[110] A. Ramirez, J. R. Romero, and S. Ventura, “A survey of many-
objective optimisation in search-based software engineering,” J.
Syst. Softw., vol. 149, pp. 382–395, 2019.

[111] M. Ravber, M. Mernik, and M. �Crepin�sek, “The impact of
quality indicators on the rating of multi-objective evolution-
ary algorithms,” Appl. Soft Comput., vol. 55, pp. 265–275,
2017.

[112] N. B. Ruparelia, “Software development lifecycle models,” ACM
SIGSOFT Softw. Eng. Notes, vol. 35, no. 3, pp. 8–13, 2010.

[113] T. Saber, D. Brevet, G. Botterweck, and A. Ventresque, “Is seed-
ing a good strategy in multi-objective feature selection when fea-
ture models evolve?” Inf. Softw. Technol., vol. 95, pp. 266–280,
2018.

[114] F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren,
“Adaptive multi-objective evolutionary algorithms for overtime
planning in software projects,” IEEE Trans. Softw. Eng., vol. 43,
no. 10, pp. 898–917, Oct. 2017.

[115] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective soft-
ware effort estimation,” in Proc. IEEE/ACM 38th Int. Conf. Softw.
Eng., 2016, vol. 21, pp. 619–630.

[116] S. Say{n, “Measuring the quality of discrete representations of
efficient sets in multiple objective mathematical programming,”
Math. Program., vol. 87, no. 3, pp. 543–560, 2000.

[117] A. S. Sayyad and H. Ammar, “Pareto-optimal search-based soft-
ware engineering (POSBSE): A literature survey,” in Proc. 2nd
Int. Workshop Realizing Artif. Intell. Synergies Softw. Eng., 2013,
pp. 21–27.

[118] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Optimum
feature selection in software product lines: Let your model and
values guide your search,” in Proc. Int. Workshop Combining
Modelling Search-Based Softw. Eng., 2013, pp. 22–27.

[119] A. S. Sayyad, J. Ingram, T.Menzies, andH.Ammar, “Scalable prod-
uct line configuration: A straw to break the camel’s back,” in Proc.
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2013, pp. 465–474.

[120] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of user
preferences in search-based software engineering: A case study
in software product lines,” in Proc. 35th Int. Conf. Softw. Eng.,
2013, pp. 492–501.

[121] J. R. Schott, “Fault tolerant design using single and multicriteria
genetic algorithmoptimization,”Master’s thesis, Dept. Aeronautics
Astronautics,Massachusetts Inst. Technol., Cambridge,MA, 1995.

[122] O. Schutze, X. Esquivel, A. Lara, and C. C. A. Coello, “Using the
averaged hausdorff distance as a performance measure in evolu-
tionary multiobjective optimization,” IEEE Trans. Evol. Comput.,
vol. 16, no. 4, pp. 504–522, Aug. 2012.

[123] S. Segura, R. E. Lopez-Herrejon, and A. Egyed, “Multi-objective
test case prioritization in highly configurable systems,” J. Syst.
Softw., vol. 122, no. C, pp. 287–310, 2016.

[124] A. Shahbazi and J. Miller, “Black-box string test case generation
through a multi-objective optimization,” IEEE Trans. Softw. Eng.,
vol. 42, no. 4, pp. 361–378, Apr. 2016.

[125] X. Shen, L. Minku, R. Bahsoon, and X. Yao, “Dynamic software
project scheduling through a proactive-rescheduling method,”
IEEE Trans. Softw. Eng., vol. 42, no. 7, pp. 658–686, Jul. 2016.

[126] X. Shen, L. Minku, N. Marturi, Y. Guo, and Y. Han, “A Q-learning-
based memetic algorithm for multi-objective dynamic software
project scheduling,” Inf. Sci., vol. 428, pp. 1–29, 2018.

[127] S. Y. Shin, S. Nejati, M. Sabetzadeh, L. C. Briand, and F. Zimmer,
“Test case prioritization for acceptance testing of cyber physical
systems: A multi-objective search-based approach,” in Proc. 27th
ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2018, pp. 49–60.

[128] C. L. Simons and I. C. Parmee, “Elegant object-oriented software
design via interactive, evolutionary computation,” IEEE Trans.
Syst. Man Cybern. C, vol. 42, no. 6, pp. 1797–1805, Nov. 2012.

[129] C. L. Simons, I. C. Parmee, and R. Gwynllyw, “Interactive, evolu-
tionary search in upstream object-oriented class design,” IEEE
Trans. Softw. Eng., vol. 36, no. 6, pp. 798–816, Nov./Dec. 2010.

[130] D. Sobhy, L. L. Minku, R. Bahsoon, T. Chen, and R. Kazman,
“Run-time evaluation of architectures: A case study of diversifi-
cation in IoT,” J. Syst. Softw., vol. 159, 2020, Art. no. 110428.
[Online]. Available: https://doi.org/10.1016/j.jss.2019.110428

[131] B. Tan, H. Ma, Y. Mei, and M. Zhang, “Evolutionary multi-objec-
tive optimization for web service location allocation problem,”
IEEE Trans. Services Comput., to be published.

[132] T. H. Tan, Y. Xue, M. Chen, J. Sun, Y. Liu, and J. S. Dong,
“Optimizing selection of competing features via feedback-
directed evolutionary algorithms,” in Proc. Int. Symp. Softw. Test-
ing Anal., 2015, pp. 246–256.

[133] D. A. Van Veldhuizen and G. B. Lamont, “Evolutionary compu-
tation and convergence to a Pareto front,” in Proc. Late Breaking
Papers Genetic Program. Conf., 1998, pp. 221–228.

[134] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “E3: A multiobjective
optimization framework for SLA-aware service composition,”
IEEE Trans. Services Comput., vol. 5, no. 3, pp. 358–372, 2012.

[135] F.Wagner,A.Klein, B.Klopper, F. Ishikawa, andS.Honiden, “Multi-
objective service compositionwith time- and input-dependent QoS,”
inProc. IEEE Int. Conf.Web Services, 2012, pp. 234–241.

[136] T. Wagner and H. Trautmann, “Integration of preferences in
hypervolume-based multiobjective evolutionary algorithms by
means of desirability functions,” IEEE Trans. Evol. Comput.,
vol. 14, no. 5, pp. 688–701, Oct. 2010.

[137] S. Wang, S. Ali, and A. Gotlieb, “Cost-effective test suite minimi-
zation in product lines using search techniques,” J. Syst. Softw.,
vol. 103, no. C, pp. 370–391, 2015.

[138] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, “A practical guide
to select quality indicators for assessing pareto-based search
algorithms in search-based software engineering,” in Proc. IEEE/
ACM 38th Int. Conf. Softw. Eng., 2016, pp. 631–642.

[139] Z. Wang, K. Tang, and X. Yao, “Multi-objective approaches to
optimal testing resource allocation in modular software sys-
tems,” IEEE Trans. Rel., vol. 59, no. 3, pp. 563–575, Sep. 2010.

[140] Z. Wen and V. Tzerpos, “An effectiveness measure for software
clustering algorithms,” in Proc. 12th IEEE Int. Workshop Program
Comprehension, 2004, pp. 194–203.

1798 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

https://doi.org/10.1016/j.jss.2019.110428

[141] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improve-
ment of programs,” IEEE Trans. Evol. Comput., vol. 15, no. 4,
pp. 515–538, Aug. 2011.

[142] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep
parameter optimisation,” in Proc. Annu. Conf. Genetic Evol. Com-
put., 2015, pp. 1375–1382.

[143] Y. Xiang, X. Yang, Y. Zhou, and H. Huang, “Enhancing
decomposition-based algorithms by estimation of distribution
for constrained optimal software product selection,” IEEE Trans.
Evol. Comput., vol. 24, no. 2, pp. 245–259, Apr. 2020.

[144] Y. Xiang, Y. Zhou, Z. Zheng, and M. Li, “Configuring software
product lines by combining many-objective optimization and
SAT solvers,” ACM Trans. Softw. Eng. Methodol., vol. 26, no. 4,
2018, Art. no. 14.

[145] S. Yoo and M. Harman, “Using hybrid algorithm for Pareto
efficient multi-objective test suite minimisation,” J. Syst. Softw.,
vol. 83, no. 4, pp. 689–701, 2010.

[146] G. Zhang, Z. Su,M. Li, F. Yue, J. Jiang, and X. Yao, “Constraint han-
dling in NSGA-II for solving optimal testing resource allocation
problems,” IEEE Trans. Rel., vol. 66, no. 4, pp. 1193–1212, Dec. 2017.

[147] Y. Zhang, M. Harman, and S. L. Lim, “Empirical evaluation of
search based requirements interaction management,” Inf. Softw.
Technol., vol. 55, no. 1, pp. 126–152, 2013.

[148] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective
next release problem,” in Proc. Genetic Evol. Comput. Conf., 2007,
pp. 1129–1137.

[149] Y. Zhang, M. Harman, G. Ochoa, G. Ruhe, and S. Brinkkemper,
“An empirical study of meta-and hyper-heuristic search for
multi-objective release planning,” ACM Trans. Softw. Eng. Meth-
odol., vol. 27, no. 1, 2018, Art. no. 3.

[150] W. Zheng, R. M. Hierons, M. Li, X. H. Liu, and V. Vinciotti,
“Multi-objective optimisation for regression testing,” Inf. Sci.,
vol. 334, pp. 1–16, 2016.

[151] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Combining
model-based and genetics-based offspring generation for multi-
objective optimization using a convergence criterion,” in Proc. IEEE
Congress Evol. Comput., 2006, pp. 892–899.

[152] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indica-
tor revisited: On the design of pareto-compliant indicators via
weighted integration,” in Proc. Int. Conf. Evol. Multi-Criterion
Optim., 2007, pp. 862–876.

[153] E. Zitzler and L. Thiele, “Multiobjective optimization using evo-
lutionary algorithms - A comparative case study,” in Proc. Int.
Conf. Parallel Problem Solving Nat., 1998, pp. 292–301.

[154] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. G. Da Fonseca, “Performance assessment of multiobjective
optimizers: An analysis and review,” IEEE Trans. Evol. Comput.,
vol. 7, no. 2, pp. 117–132, Apr. 2003.

[155] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How practi-
tioners perceive automated bug report management techniques,”
IEEE Trans. Softw. Eng., vol. 46, no. 8, pp. 836–862, Aug. 2020.

Miqing Li is currently a lecturer at the School
of Computer Science, University of Birmingham,
U.K. His research is principally on multi-objective
optimisation, where he focuses on developing
population-based randomised algorithms (mainly
evolutionary algorithms) for both general challeng-
ing problems (e.g., many-objective optimisation,
constrained optimisation, robust optimisation,
expensive optimisation) and specific challenging
problems (e.g., those in software engineering, sys-
tem engineering, product disassembly, post-disas-

ter response, neural architecture search, reinforcement learning for
games). He has published more than 60 research papers in scientific jour-
nals and international conferences. Some of his papers, since published,
have been amongst the most cited papers in corresponding journals such
as the IEEE Transactions on Evolutionary Computation, Artificial Intelli-
gence, the ACM Transactions on Software Engineering and Methodology,
the IEEE Transactions on Parallel and Distribution Systems, and the ACM
Computing Surveys. His work has received the Best Student Paper Award
or Best Paper Award nomination in EC mainstream conferences, CEC,
GECCO, and SEAL. He is the founding chair of the IEEE CIS’ Task Force
onMany-ObjectiveOptimisation.

Tao Chen (Member, IEEE) received the PhD
degree from the School of Computer Science,
University of Birmingham, U.K., in 2016. He is
currently a lecturer (assistant professor) in com-
puter science at the Department of Computer
Science, Loughborough University, U.K. He has
broad research interests on software engineer-
ing, including but not limited to performance
engineering, self-adaptive software systems,
search-based software engineering, data-driven
software engineering, and computational intelli-

gence. As the lead author, his work has been published in internationally
renowned journals, such as the IEEE Transactions on Software
Engineering, the ACM Transactions on Software Engineering and Meth-
odology, the IEEE Transactions on Services Computing, and the Pro-
ceedings of the IEEE; and top-tier conferences, e.g., ICSE, ASE, and
GECCO. Among other roles, He regularly serves as a PC member for
various conferences in his fields and is an associate editor for the Serv-
ices Transactions on Internet of Things.

Xin Yao (Fellow, IEEE) received the BSc degree
from the University of Science and Technology
of China (USTC), Hefei, China, in 1982, the MSc
degree from the North China Institute of Computing
Technologies, Beijing, China, in 1985, and the PhD
degree from theUniversity of Science andTechnol-
ogy of China, China, in 1990. He is a chair profes-
sor of computer science at the Southern University
of Science andTechnology (SUSTech), Shenzhen,
China, and a part-time professor of computer sci-
ence at the University of Birmingham, U.K. His cur-

rent research interests include evolutionary computation, machine
learning, and their real world applications, especially to software engineer-
ing. He started his work on search-based software engineering (SBSE)
more than a decade ago, including “Coevolving Programs and Unit Tests
from Their Specification” at ASE’07 and “Software Module Clustering as a
Multi-Objective Search Problem” in March 2011’s the IEEE Transactions
on Software Engineering. His latest work on SBSE includes ”Software
Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap
Resampling” in January 2019’s the ACM Transactions on Software Engi-
neering and Methodology and “Synergizing Domain Expertise With Self-
Awareness in Software Systems: A Patternized Architecture Guideline” in
July 2020’s the Proceedings of the IEEE. He was a recipient of the Royal
Society Wolfson Research Merit Award, in 2012, the IEEE Computational
Intelligence Society (CIS) Evolutionary Computation Pioneer Award, in
2013 and the IEEE Frank Rosenblatt Award, in 2020. His work won the
2001 IEEE Donald G. Fink Prize Paper Award, the 2010, 2016, and 2017
the IEEE Transactions on Evolutionary Computation outstanding paper
awards, the 2011 the IEEE Transactions on Neural Networks Outstanding
Paper Award, and many other best paper awards at conferences. He was
the President of IEEE CIS from 2014 to 2015 and the editor-in-chief of the
IEEE Transactions on Evolutionary Computation from 2003 to 2008. He
was a distinguished lecturer of IEEECIS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ET AL.: HOW TO EVALUATE SOLUTIONS IN PARETO-BASED SEARCH-BASED SOFTWARE ENGINEERING: A CRITICAL REVIEW... 1799

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

