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The impact of feature importance methods on
the interpretation of defect classifiers

Gopi Krishnan Rajbahadur, Shaowei Wang, Gustavo A. Oliva,
Yasutaka Kamei, and Ahmed E. Hassan

Abstract—Classifier specific (CS) and classifier agnostic (CA) feature importance methods are widely used (often interchangeably) by
prior studies to derive feature importance ranks from a defect classifier. However, different feature importance methods are likely to
compute different feature importance ranks even for the same dataset and classifier. Hence such interchangeable use of feature
importance methods can lead to conclusion instabilities unless there is a strong agreement among different methods. Therefore, in this
paper, we evaluate the agreement between the feature importance ranks associated with the studied classifiers through a case study
of 18 software projects and six commonly used classifiers. We find that: 1) The computed feature importance ranks by CA and CS
methods do not always strongly agree with each other. 2) The computed feature importance ranks by the studied CA methods exhibit a
strong agreement including the features reported at top-1 and top-3 ranks for a given dataset and classifier, while even the commonly
used CS methods yield vastly different feature importance ranks. Such findings raise concerns about the stability of conclusions across
replicated studies. We further observe that the commonly used defect datasets are rife with feature interactions and these feature
interactions impact the computed feature importance ranks of the CS methods (not the CA methods). We demonstrate that removing
these feature interactions, even with simple methods like CFS improves agreement between the computed feature importance ranks of
CA and CS methods. In light of our findings, we provide guidelines for stakeholders and practitioners when performing model
interpretation and directions for future research, e.g., future research is needed to investigate the impact of advanced feature
interaction removal methods on computed feature importance ranks of different CS methods.

Index Terms—Model interpretation, Model Agnostic interpretation, Built-in interpretation, Feature Importance Analysis, Variable

Importance

1 INTRODUCTION

Defect classifiers are widely used by many large software corpora-
tions [1H4] and researchers [SH7]]. Defect classifiers are commonly
interpreted to uncover insights to improve software quality. Such
insights help practitioners formulate strategies for effective testing,
defect avoidance, and quality assurance [8} |9]. Therefore it is
pivotal that these generated insights are reliable.

When interpreting classifiers, prior studies typically employ
a feature importance method to compute a ranking of feature
importances (a.k.a., feature importance ranks) [8, [10H13]]. These
feature importance ranks reflect the order in which the studied
features contribute to the predictive capability of the studied
classifier [[14]. These feature importance methods can be divided
in two categories: classifier-specific (CS) and classifier-agnostic
(CA) methods. A classifier-specific (CS) method makes use of a
given classifier’s internals to measure the degree to which each
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feature contributes to a classifier’s predictions [15]. We note,
however, that a CS method is not always readily available for
a given classifier. For example, complex classifiers like SVMs
and deep neural networks do not have a widely accepted CS
method(s) [16].

For cases such as those, or when a universal way of com-
paring the feature importance ranks of different classifiers is
required [[17, [18], classifier-agnostic (CA) methods are typically
used. Such CA methods measure the contribution of each feature
towards a classifier’s predictions. For instance, some CA methods
measure the contribution of each feature by effecting changes to
that particular feature in the dataset and observing its impact on
the outcome. The primary advantage of CA methods is that they
can be used for any classifier (i.e., from interpretable to black box
classifiers).

Despite computing feature importance ranks using different
ways, CS and CA methods are indiscriminately and interchange-
ably used in software engineering studies (Table[I). For instance,
to compute feature importance ranks for a random forest classi-
fier, Treude and Wagner [19] and Yu et al. [20] use CS meth-
ods: the Gini importance and the Breiman’s importance methods
respectively. On the other hand, Mori and Uchihira [13] and
Herzig [21] use CA methods: Partial Dependence Plot (PDP) and
filterVarImp respectively. Since these methods compute feature
importances differently (Section [3.3), different CS or CA methods
are likely to compute different feature importance ranks for the
same classifier. Yet, we observe that the rationale for choosing
a given feature importance method is rarely motivated by prior
studies (Section 2.1).

The interchangeable use of feature importance methods is



acceptable only if the feature importance ranks computed by these
methods do not differ from each other. Therefore, in order to
determine the extent to which the importance ranks computed by
different importance methods agree with each other, we conduct
a case study on 18 popularly used software defect datasets using
classifiers from six different families. We compute the feature im-
portance ranks using six CS and two CA methods on these datasets
and classifiers. The list of CS methods is summarized in Table
The two CA methods are: permutation importance (Permutation)
and SHapley Additive ExPlanations (SHAP). Finally, we compute
Kendall’s Tau, Kendall’s W, and Top-k (k € {1,3}) overlap to
quantify the agreement between the computed feature importance
ranks by the different studied feature importance methods for a
given classifier and dataset. While Kendall’s measures compute
differences across the different feature importance ranks, the Top-
K overlap measure focuses on the top-k items of these rankings
(more details in Section[3.5]). We highlight our findings below:

o The computed feature importance ranks by CA and CS
methods do not always strongly agree with each other. For
two of the five studied classifiers, even the most important
feature varies across CA and CS methods.

o The computed feature importance ranks by the studied CA
methods exhibit a strong agreement including the features
reported at top-1 and top-3 ranks for a given dataset and
classifier.

e On a given dataset, even the commonly used CS methods
yield vastly different feature importance ranks, including the
top-3 and the top-1 most important feature(s).

We then investigate why the agreement between the different
CS methods and CA and CS methods remains weak, while the
agreement between the computed feature importance ranks by
CA methods is strong. Through a simulation study we find that,
as hinted by prior studies [22H26], feature interactions present
in the studied datasets impact the computed feature importance
ranks of CS methods. We then investigate if removal of feature
interaction in a given dataset (through a simple method like
Correlation-based Feature Selection (CFS) [27, 28]) improves
the agreement between the computed feature importance ranks
of studied feature importance methods. We find that removal of
feature interaction, significantly improves the agreement between
the computed feature importance ranks of CA and CS methods.
However, the improvement in agreement between the computed
feature importance ranks of the studied CS methods remains
marginal. In light of these findings, we suggest that future research
on defect classification should:

1) Identify (e.g., using methods like Friedman’s H-statistic (more
details in Section [5.1)) and remove feature interactions present in
the dataset (e.g., using simple methods like CFS) before interpret-
ing the classifier, as they hinder the classifier interpretation.

2) One should always specify the used feature importance method
to increase the reproducibility of their study and the generalizabil-
ity of its insights.

Paper Organization. Section [2| presents the motivation of our
study and the related work. Section [3]explains how we conducted
our case study. In Section [d] we present the results of our case
study which examines the extent to which the feature importance
ranks computed by different feature importance methods vary. In
Section [5] we investigate the impact of feature interactions on
the computed feature importance ranks by studied interpretation
methods. Section [6] presents the implications of our results and
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avenues for future research. Section [/] lists the threats to the
validity of our study. Finally, Section 8] concludes our study.

2 MOTIVATION AND RELATED WORK

In this section, we motivate our study based on how prior studies
employed feature importance methods (Section [2.1). Next, we
situate our study relative to prior related work (Section [2.2]).

2.1 Motivation

We conduct a literature survey of the used feature importance
methods in prior studies. To survey the literature, we searched
Google Scholar with the terms “software engineering”, “variable
importance”, “feature importance” and the name of each classifier
that is studied in our paper (Section [3.4). We searched the Google
Scholar multiple times, once for each studied classifier. We elimi-
nated all the papers that were from before the year 2000 to restrict
the scope of our survey to recent studies. We read each paper from
the search results in order to check if they employed any feature
importance method(s) to generate insights. We consider all the
studies presented in the google scholar and do not filter based on
venues. However, we do not include the papers in which one of
the authors of this current study was involved to avoid potential
confirmation bias. A summary of our literature survey is shown in
Table

We observe that studies rarely specify the reason for choosing
their feature importance method — only four out of the 29 sur-
veyed studies provide a rationale for choosing their used feature
importance method.

We note that both CA and CS methods are widely used.
For instance, from Table we see that both Gini importance
and filterVarImp have been used to interpret a random forest
classifier. However, given that (i) feature importance methods
are typically used to generate insights and (ii) different methods
compute the feature importance using different approaches, such
interchangeable usage of methods on a given classifier in prior
studies is troublesome [56].

For instance, Zimmermann and Nagappan [31] used an F-Test
on the coefficients of a logistic regression classifier (a CS method)
to show that there exists a strong empirical relationship between
Social Network Analysis (SNA) metrics and the defect proneness
of a file. Later, Premraj and Herzig [38]] used filterVarlmp (a CA
method) and logistic regression classifier to show that empirical
relationship between SNA metrics and the defective files are
negligible. Given that CS and CA methods can produce different
feature importance ranks, it is unclear whether the aforementioned
conflicting result is due to absence of an empirical relationship in
the data or simply due to the differing feature importance methods
and as such leads to conclusion instability.

More generally, the interchangeable use of feature importance
methods (i.e., CS and CA methods), when replicating a study, is
acceptable only if the computed ranks by different methods are not
vastly different on a given dataset. Otherwise, it raises concerns
about the stability of conclusions across the replicated studies.
Hence, we investigate the following research question:

(RQI1) For a given classifier, how much do the computed
feature importance ranks by CA and CS methods differ across
datasets?

Similar concerns exist regarding the interchangeable use of
different CA methods, even for the same classifier. From Table



TABLE 1: Different feature importance methods used for interpreting various classifiers in the software engineering literature

Classifier Family Papers using CS Used CS methods Papers using CA Used CA methods

Statistical 2911301 [131 B1H34] Regression  coefficients, [10} 1214137} 138] Boruta™, ﬁlterVarImpJr

Techniques ANOVA

Rule-Based 3917, [40] Interpreting rules, 1371 Boruta™

Techniques varlmp®

Neural Networks [A10* [42])” MODE2 371 Boruta™

Decision Trees [43][44]” [43] Decision branches, Gini [10} 1211137} 138] Boruta™, ﬁlterVarImpJr
importance

Ensemble methods- | [19, 120, 46] [an® [47, | Permutation importance, [10, 13 211 B7 B8l | Boruta™, filterVarmp',

Bagging 48] [49]1* (121500 511 [521* Gini importance 531 [54] PDP, Marks method®,
BestFirst*
Ensemble methods- | - - 10, 2111371 Boruta™, filterVarTmp'

Boosting

% - The used method for computing the feature importance ranks is not mentioned

v - Papers in which the rationale for choosing a given feature importance method is specified

* - https://cran.r- project.org/web/packages/Boruta/index.html

T - https://www.rdocumentation.org/packages/caret/versions/6.0-84/topics/filter Varlmp
% - https://www.rdocumentation.org/packages/FSelector/versions/0.31/topics/best.first.search

@ - https://www.rdocumentation.org/packages/caret/versions/6.0- 84/topics/varImp

we observe that, within each classifier family, different studies
use different CA methods. The rationale for choosing a given
CA method (for instance, filterVarlmp) over another (for instance,
PDP) is rarely provided. For instance, none of the studies using
a CA method in Table [1| provide reasons for choosing one CA
method over another. Yet, the extent to which these CA agree
with each other is unclear. Such a concern becomes particularly
relevant with the recent rise of complex classifiers for defect
prediction [[7, 157, 58]}, as these classifiers do not have a universally
agreed-upon or popular CS method. Hence, we investigate the
following research question:

(RQ2) For a given dataset and classifier, how much do
the computed feature importance ranks by the different CA
methods differ?

A number of general prior studies already note that feature
importance ranks differ vastly between CS methods [59]. How-
ever, such a comparison among CS methods pertaining to different
classifier (i.e., CS method associated with a decision tree classifier
and a random forest classifier) has not been studied, in the context
of defect prediction and software engineering. Such a study is
extremely important to understand the limits of reproducibility
and generalizability of prior studies. For instance, Jahanshahi
et al. [12] replicate the study of McIntosh and Kamei [60] using
random forest (and the CS methods of random forest classifier)
as opposed to the non-linear logistic regression classifier and
its associated CS method. Jahanshahi et al. [12] observe that
their feature importance ranks differ from those of the original
study. In particular, different CS methods are likely to compute
feature importances differently and the difference in insight could
be attributed to the used CS method rather than the underlying
phenomena (e.g., just-in-time defect prediction) that is being
studied. Therefore, we study the following research question along
with the previous ones:

(RQ3) On a given dataset, how much do the computed feature
importance ranks by different CS methods differ?

2.2 Related Work

As summarized in Section 2.1} both CA and CS methods have
been widely used by the software engineering researchers to
compute feature importance ranks. In the following, we describe

related work regarding (i) usage of feature importance methods
in software engineering (ii) the problems associated with widely
used feature importance methods and (iii) sensitivity of feature
importance methods:

Usage of Feature Importance Methods in Software Engineer-
ing. Both CA and CS methods have been widely used by software
engineering researchers to compute feature importance ranks. For
instance, MclIntosh et al. [61]] and Morales et al. [34] construct
regression models and use ANOVA (a CS method) to understand
which aspects of code review impact software quality. In turn,
Fan et al. [50] use the CS methods that are associated with the
random forest classifier to identify the features that distinguish
between merged and abandoned code changes. Similarly, various
CS methods that are associated with the random forest classi-
fier have been used to identify features that are important for
determining who will leave a company [62], who will become
a long time contributor to an open source project [S1], code
metrics that signal defective code [11l], popularity of a mobile
app [63]], likelihood of an issue being listed in software release
notes [64]. Furthermore, CS methods that are associated with
logistic regression and decision trees have also been used to gen-
erate insights on similar themes [37, (39, 65H68]|. Correspondingly,
previous studies also use CA methods to interpret classifiers. For
example, Tantithamthavorn et al. [18] and Rajbahadur et al. [17]
use the permutation CA method to study the impact of data pre-
processing on a classifier’s feature importance ranks. Furthermore,
Dey and Mockus [52] use partial dependence plots (PDP) to
identify why certain metrics are not important for predicting the
change popularity of an npm package, whereas Mori and Uchihira
[13]] use PDP to compute the feature importance of random forest
classifiers. More recently, Jiarpakdee et al. [69] demonstrated how
instance-level CA methods like LIME-HPO (Locally Interpretable
Model-Agnostic Explanations with Hyperparameter Optimization)
and Breakdown [70] can be used to identify features that are
important in determining whether a given module will become
defective. They further show that these instance-level feature
importances mostly agree with the traditional feature importance
ranks.

Problems associated with widely used feature importance
methods. Prior studies investigated the potential problems and
concerns regarding the widely used feature importance methods.
Strobl et al. [S9] find that CS methods associated with the widely
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used random forest classifier are biased and that different CS
methods might yield different feature importance ranks when
features are correlated. To deal with such correlations, Strobl
et al. [71]] propose a conditional permutation importance method.
Similarly, Candes et al. [72] propose ways to mitigate to potential
false discoveries caused by the feature importance method of
generalized linear models. Lundberg et al. [26] and Gosiewska
and Biecek [70] identify that several popular CA methods produce
imprecise feature importance ranks.

Sensitivity of feature importance methods. While the afore-
mentioned studies focus on finding potential problems with exist-
ing methods, very few studies compare the existing and widely
used feature importance methods. For instance, Gromping [73]
compares the feature importance methods of linear regression and
logistic regression and identifies both similarities and differences,
whereas, Auret and Aldrich [74] compare several tree-based fea-
ture importance methods and find that CS method associated with
conditional bagged inference trees to be robust.

Jiarpakdee et al. 8] analyze the impact of correlated features
on the feature importance ranks of a defect classifier. They find
that including correlated features when building a defect classifier
results in generation of inconsistent feature importance ranks. In
order to avoid that, Jiarpakdee et al. [8] recommend practitioners
to remove all the correlated features before building a defect clas-
sifier. Through a different study, Jiarpakdee et al. [75] propose an
automated method called AutoSpearman that helps practitioners
to automatically remove correlated and redundant features from a
dataset. They demonstrate that the AutoSpearman method helps
one to avoid the harmful impact of these correlated metrics on the
computed feature importance ranks of a defect classifier. Similarly,
Tantithamthavorn et al. [[76] find that noise introduced in the defect
datasets due to the mislabelling of defective modules influences
the computed feature importance ranks. They show that, among
the features reported in the top-3 ranks, the noise introduced
by mislabelling does not impact the feature reported at rank 1.
However, it influences the features reported at rank 2 and rank 3
across several defect classifiers that they study.

Similarly, several prior studies from Tantithamthavorn et al.
[IL8} [77, [78]] investigate how various experimental design choices
impact the computed feature importance ranks of a classifier. For
instance, Tantithamthavorn et al. [18] investigated whether class
rebalancing methods impact the computed feature importance
ranks of a classifier. They observe that using class rebalancing
methods can introduce concept drift in a defect dataset. This
concept drift, in turn, impacts the computed feature importance
ranks of a defect classifier constructed on the rebalanced defect
dataset. Tantithamthavorn et al. [[78]]also investigate the impact of
hyperparameter optimization on the computed feature importance
ranks of a classifier. They find that the features reported at
the top-3 features importance ranks differ significantly between
the hyperparameter tuned classifiers and untuned classifiers. Ra-
jbahadur et al. [17] investigate if the feature importance ranks
computed for the regression-based random forest classifiers vary
when computed by a CS method and Permutation CA method.

However, to the best of our knowledge, our study is the
first work to empirically measure the agreement between the
feature importance ranks computed by CA and CS methods across
18 datasets, six classifiers, and 8 feature importance methods,
especially in the context of defect prediction. Our study enables
the software engineering community to assess the impact of
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using various feature importance methods interchangeably. As it
raises concerns about the stability of conclusions across replicated
studies — as such conclusion instabilities might be due primarily
to changes in the used feature importance methods instead of
characteristics that are inherent in the domain.

3 CASE STUDY SETUP

In this section, we describe the studied datasets (Section @), clas-
sifiers (Section [3;2]) and feature importance methods (Section@]).
We then describe our case study approach (Section [3.4), as well
as the evaluation metrics that we employ (Section [3.5).

3.1 Studied Datasets

We use the software project datasets from the PROMISE repos-
itory [79]. The data set contains the defect data of 101 software
projects that are diverse in nature. Use of such varied software
projects in our study helps us successfully mitigate the researcher
bias identified by Shepperd et al. [80, [81]. In addition, similar to
the prior studies by Rajbahadur et al. [17] and Tantithamthavorn
et al. [18], we further filter the datasets to study based on two
criteria. We remove the datasets with EPV less than 10 and the
datasets with defective ratio less than 50. After filtering the 101
datasets from PROMISE with the aforementioned criteria, we end
up with 18 datasets for our study: Poi-3.0, Camel-1.2, Xalan-2.5,
Xalan-2.6, Eclipse34_debug, Eclipse34_swt, Pde, PC5, Mylyn,
Eclipse-2.0, JM1, Eclipse-2.1, Prop-5, Prop-4, Prop-3, Eclipse-
3.0, Prop-1, Prop-2. Table[5]in Appendix [A.T|shows various basic
characteristics about each of the studied datasets.

3.2 Studied Classifiers

We construct classifiers to evaluate our outlined research questions
from Section 2.1} We choose the classifiers based on two criteria.
First, the classifiers should be representative of the eight com-
monly used machine learning families in Software Engineering
literature as given by Ghotra et al. [82]. The goal behind this
criterion is to foster the generalizability and applicability of our
results. Second, the chosen classifiers should have a CS method.
We only choose classifiers with a CS method, so that we can
compare and evaluate the computed feature importance ranks by
the CA methods against the CS feature importance ranks for a
given classifier (RQ1). In addition, such a choice enables us to
compare the agreement between the computed feature importance
ranks between different classifiers (RQ3). After the application
of these criteria, we eliminate three machine learning families
(clustering based classifiers, support vector machines, and nearest
neighbour), as the classifiers from those families do not have a
CS method. Furthermore, we split the ensemble methods family
given by Ghotra et al. [[82] into two categories to include classifiers
belonging to both bagging and boosting families. The classifiers
we finally choose are: Regularized Logistic Regression (glmnet),
C5.0 Rule-Based Tree (C5.0Rules), Neural Networks (with model
averaging) (avNNet), Recursive partitioning and Regression Trees
(rpart), Random Forest (rf), Extreme Gradient Boosting Trees
(xgbTree). Table[6]in Appendix [A.2] shows the studied classifiers,
their hyperparameters and machine learning families to which they
belong.

We choose one representative classifier from each of the
machine learning family from the care package in R. Table E]

1. https://cran.r-project.org/web/packages/caret/index.html



also shows the caret function that was used to build the classifiers.
The selected classifiers have a CS method, that is given by the
varImp() function in the caret package.

Inherently interpretable classifiers (e.g., fast-and-frugal trees,
naive-bayes classifiers and simple decision trees) do not benefit as
much from feature importance methods. Hence, such classifiers
are out of the scope of this study. Nevertheless, we strongly
suggest that the future studies should also explore the reliability of
the insights that is derived from simple interpretable classifiers.

3.3 Studied Feature Importance Methods

3.3.1 Classifier Specific Feature Importance (CS) methods

The CS methods typically make use of a given classifier’s internals
to compute the feature importance scores. These methods are
widely used in software engineering to compute feature impor-
tance ranks as evidenced from Table

We use six CS methods that are associated with the six
classifiers that we study, namely: Logistic Regression FI (LRFI),
C5.0 Rule-Based Tree FI (CRFI), Neural Networks (with model
averaging) FI (NNFI), Recursive Partitioning and Regression
Trees FI (RFI), Random Forest FI (RFFI), and Extreme Gradient
Boosting Trees FI (XGFI). Table [7] in Appendix provides a
brief explanation about the inner working of these CS methods
on a given classifier. For a more detailed explanation we refer the
readers to Kuhn [83]].

3.3.2 Classifier Agnostic Feature Importance (CA) meth-
ods

CA methods compute the importance of a feature by treating
the classifier as a “black-box”, i.e., without using any classifier-
specific details. In this study, we use the permutation feature im-
portance (Permutation) and SHapley Additive exPlanation (SHAP)
CA methods. We use these two CA methods instead of others
for the following reasons. First, Permutation is one of the oldest
and most popularly used CA methods in both machine learning
and software engineering communities [17, [18] [84-88]. It was
first introduced by Breiman [89] as way of measuring the feature
importance ranks of a random forest classifier and later was
adopted as a CA method. Second, we consider SHAP, as it one
of the more recent global feature importance method that is
theoretically guaranteed to produce optimal feature importance
ranks (more details are given below) [90]. Though SHAP was
proposed by Lundberg and Lee [91]] only in 2017, it has al-
ready garnered over 2,000 citations. Furthermore, SHAP is being
increasingly adopted in the software engineering community to
compute feature importance ranks, as evidenced by its usage in
recent studies [92, [93]]. Finally, both of these feature importance
methods do not require any hyperparameter optimization unlike
the CA techniques used by Jiarpakdee et al. [69] and Peng and
Menzies [94]. Appendix [A.4] describes Permutation and SHAP in
more detail.

3.4 Approach

Figure [T] provides an overview of our case study approach. We
use this approach to answer all of our aforementioned research
questions in Section

3.4.1 Data Pre-processing

Correlation and redundancy analysis. We perform correlation
and redundancy analysis on the independent features of the studied
defect datasets, since the presence of correlated or redundant
features impacts the interpretation of a classifier and yields un-
stable feature importance ranks [8} 95} |96]]. Similar to Jiarpakdee
et al. [69] we employ the AutoSpearman technique [75] using
AutoSpearman function from the Rnalytica R package to
remove the correlated and redundant features from our studied
datasets.

3.4.2 Classifier Construction

Out-of-sample bootstrap. To ensure the statistical validity and
robustness of our findings, we use an out-of-sample bootstrap
method with 100 repetitions to construct the classifiers [77, [97].
More specifically, for each studied dataset, every classifier is
trained 100 times on the 100 resampled train sets, then these clas-
sifiers are used for computing the 100 feature importance scores.
The performance of these trained classifiers are also evaluated on
the 100 out-of-sample fest sets. Appendix describes the out-
of-sample bootstrap method in more detail.

Classifier construction with hyperparameter tuning. Several
prior studies [[18] 98] show that hyperparameter tuning is pivotal
to ensure that the trained classifiers fit the data well. Further-
more, Tantithamthavorn et al. [18] show that feature importance
ranks shift between hyperparameter tuned and untuned classifiers.
Therefore, we tune the hyperparameters for each of the studied
classifiers using random search [99]] in every bootstrap iteration
using caret R package [100]. In every iteration, we pass the
train set, classifier and the associated hyperparameters outlined
in Table [] to train function of the caret package. similar
to Jiarpakdee et al. [69], we then use the automated hyperpa-
rameter optimization option provided by train function to conduct
a random search (with 10-fold cross-validation) for the optimal
hyperparameters that maximizes AUC measure. Once the optimal
hyperparameters that maximizes the AUC measure for the given
classifier are found, we use these hyperparameters to construct the
classifier on the train set. Finally, we use these hyperparameter
tuned classifiers to conduct the rest of our study.

3.4.3 Performance Computation

Similar to a recent study by Jiarpakdee et al. [69], we compute the
AUC (Area Under the Receiver Operator Characteristic Curve)
and the IFA (Initial False Alarm) to measure the performance
of our classifiers. We choose these two performance measures
in particular over other performance measures for the following
reasons. First, several prior studies recommend the use of the
AUC measure over other performance measures to quantify the
discriminative capability of a classifier [82, (95,101} [102]. Second,
as Parnin and Orso [103] and Huang et al. [[104] argue, the IFA
of a classifier being low is extremely important for a classifier to
be adopted in practice. For these reasons, we choose the AUC and
IFA measures to evaluate the performance of our classifiers. In
Appendix we describe provide more details about AUC and
IFA, including how they are calculated.

3.4.4 Computation of Feature Importance Scores

We use both the CS and CA methods to computer feature im-
portance scores, as detailed in Section @], for all the studied
classifiers in each bootstrap iteration. For CA methods: we use



6

{  Data pre-processing

Classifier construction

ﬁeature importance ranks computa@

-~

¢ | 4 Generate out-of-
sample bootstrap

Classifier
Correlation analysis

&

~

Hyperparameter
tuning

Classifier agnostic
feature importance!
ranks

Classifier Specific
Feature
importance ranks

Redunda_ncy Feature importance
analysis computation
Compute > Scott-Knott ESD
\_  AutoSpearman J Classifier Specific test
feature importance

Performance
computation

\ Repeat 100 times

Compute AUC and
IFA

Hyperparameter
tuned classifier

SN

score

If median
(AUC>=0.70 and
IFA=1) across all the

datasets
X

Compute Classifier-
agnostic

feature importance
score J

Compute Median

Y

AUC and IFA

Fig. 1: Overview of our case study approach.

the vip package and the method outlined by Rajbahadur et al.
[17] to compute the PDP and Permutation CA methods feature
importance scores respectively. For the CS computation, we use
the VarImp () function of the caret R package [83].

3.4.5 Computation of Feature Importance Ranks

We use the Scott-Knott Effect Size Difference (SK-ESD) test
(v2.0) [105]] to compute the feature importance ranks from the
feature importance scores computed in the previous step, as done
by prior studies [8} [102]. For each dataset and studied classifier,
three feature importance scores are computed (one CS score and
two CA scores) for each bootstrap iteration. The SK-ESD test is
applied on these scores to compute three feature importance rank
lists (one CS rank list and two CA rank lists) for all the 6 studied
classifiers on each dataset. The process of feature importance rank
computation from the feature importance scores is depicted in the
right-hand side of Figure m Also, we note that we only compute
the feature importance ranks for classifiers that simultaneously
have a median AUC greater than 0.7 and a median IFA = 1.
We do so, as Chen et al. [7] and Lipton [106]] argue, a classifier
should have a good operational performance for the computed
feature importance ranks to be trusted. Due to this constraint, we
discarded the classifier C5.0Rules from our studied classifiers.

3.5 Evaluation Metrics

We measure the difference between the different feature impor-
tance rank lists by measuring how much they agree with each
other.

Kendall’s Tau coefficient (7) [107] is a widely used non-
parametric rank correlation statistic that is used to compute the
similarity between two rank lists [108l [109]]. Kendall’s 7 ranges
between -1 to 1, where -1 indicates a perfect disagreement and 1
indicates a perfect agreement. We use the interpretation scheme
suggested by Akoglu [110]:

weak, if [7]<0.3
Kendall’s 7 Agreement = { moderate, if 0.3 <|7|<0.6
strong if |7]> 0.6

Kendall’s W coefficient [107] is typically used to measure the
extent of agreement among multiple rank lists given by different

raters (CS methods in our case and raters > 2). The Kendall’s W
ranges between 0 to 1, where 1 indicates that all classifiers agree
perfectly with each other and O indicates perfect disagreement.
We use the Kendall’s W in RQ3 to estimate extent to which
the different feature importance ranks that are computed by CS
methods agree across all the studied classifiers for a given dataset.
We use the same interpretation scheme for Kendall’s W as we use
for Kendall’s Tau.

Top-3 overlap is a simple metric that computes the amount of
overlap that exists between features at the top-3 ranks in relation
to the total number of features at the top-3 ranks across n feature
importance rank lists. This metric does not consider the ordinality
of the features in the top-3 ranks, i.e., the order in which a
given feature appears in the top-3 ranks. Rather, it only checks
if a given feature appeared in all of the top-3 rank lists. Top-
3 overlap is adapted from the popular Jaccard Index [111] for
measuring similarity. We compute the top-3 overlap among n
feature importance lists with the equation[T](k = 3), where list; is
the ith feature list and n is the total number of lists of features to
compare (for in RQI and RQ2, n = 2, whereas in RQ3, n = 5).

Nise Features at top k ranks of list;

%o Features at top k ranks of list(il)
We define the interpretation scheme for Top 3 overlap as
follows, which aims to enable easier interpretation of the results:

Top - k overlap =

negligible, if 0.00 < top-3 overlap < 0.25

small, if 0.25 < top-3 overlap < 0.50
Top-3 Agreement = . .

medium,  if 0.50 < top-3 overlap < 0.75

large if 0.75 < top-3 overlap < 1.00

For example, assume that the top-3 features for CS and
CA on a given dataset and classifier are Impcs(Top 3) =
{cbo,loc,pre} and Impca(Top 3) = {loc,lcom3, dit} respec-
tively. Then the top-3 overlap corresponds to 1/5 = 0.2 (as n =
2,k =3).

Top-1 overlap is analogous to the Top-3 overlap metric (Equa-
tion with k = 1). We define the interpretation scheme for Top-1

overlap as follows: if top-1 overlap is < 0.5 then agreement is low,
otherwise agreement is deemed high.



4 CASE STUuDY RESULTS

In this section, we detail the results of our case study with regards
to our research questions from Section [2}

4.1 (RQ1) For a given classifier, how much do the com-
puted feature importance ranks by CA and CS methods
differ across datasets?

Approach: For each of the five constructed classifiers with (me-
dian AUC > 0.7 and median IFA < 1 across the studied datasets),
we compare the feature importance ranks that are computed by
the CA and CS methods across all the studied datasets. For each
classifier, on a given dataset, we compare the feature importance
ranks computed by SHAP and Permutation CA methods with the
feature importance ranks that are computed by the studied CS
method of a classifier. We quantify the agreement between the two
rank lists in terms of Top-1 overlap, Top-3 overlap and Kendall’s
Tau. We compute the Top-1 and Top-3 overlap in addition to the
Kendall’s Tau because some of the prior work primarily examines
the top x important features [1, [7, [112]. Finally, we aggregate
the comparisons with respect to each classifier across the studied
datasets.

For instance, for the avNNet classifier, we first compare
the feature importance ranks that are computed by SHAP (CA
method) with those that are computed by the CS method of
avNNet (i.e. NNFI, see Table [/) on the eclipse—-2.0 dataset.
Next, we determine the agreement between the two lists according
to Top-1, Top-3 overlap, and Kendall’s Tau. We then repeat this
step for every dataset and plot the distribution for each agreement
metric. An analogous process is followed in order to compare the
Permutation method with the NNFI method.

The goal of this RQ is to determine the extent to which the
feature importance ranks that are computed by CA methods differ
from the more widely used and accepted CS methods for each
classifier. If the studied CA methods consistently have a high
agreement with the CS methods for each classifier and across all
the studied datasets, then one can use both CS methods and CA
methods interchangeably.

Results: Result 1) The SHAP and Permutation CA methods
have a low median top-1 overlap with the CS methods on two of
the five studied classifiers. The leftmost lane in Figure [2| shows
the top-1 overlap between the feature importance rank lists that
are computed by the CS and CA methods for each classifier and
across all the studied datasets. We observe that the median top-1
overlap between the studied CA methods and the CS method of a
classifier is low for two classifiers, namely rpart and avNNet. In
other words, even the most important feature varies between the
rankings that are computed by the CA and CS methods for two of
the studied classifiers.

Result 2) Both CA methods have a small median top-3 overlap
with CS methods on two of the five studied classifiers. We see
from the middle lane of Figure 2] that the features that are reported
at the top-3 ranks by both the SHAP and Permutation method do
not exhibit a large overlap with the feature importance ranks that
are computed by the CS method for any of the studied classifiers.
Furthermore, from Figure [2] we observe that even on cases where
the median overlap is medium, the spread of the density plot is
also large (i.e., several datasets exhibit small and even negligible
top-3 overlap).

Result 3) For three out of the five studied classifiers, the
Kendall’s Tau agreement between CA and CS methods is
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only moderate at best. Kendall’s Tau values between the feature
importance ranks that are computed by CA and CS methods for
each classifier and across all the studied datasets are depicted
as density distributions in Figure [2| For both rpart and glmnet,
the median Kendall’s Tau agreement is weak. Even for avNNet,
where the median agreement between the CA and CS methods
is moderate, the spread of the density lot is large with several
datasets exhibiting negligible agreement. We observe that the
median Kendall’s Tau indicates a strong agreement for only for
two of the six studied classifiers, namely xgbTree and rf (note the
vertical bars inside the density plots in the right-most lane).

In summary, the CA and CS methods do not always exhibit
strong agreement for the computed feature importance ranks
across the studied classifiers. Therefore, we discourage the in-
terchangeable use of CA and CS methods in general. In particular,
we suggest that unless agreement between the CA and CS methods
can be improved (we present a potential solution in Section [5.2)),
whenever possible, future defect prediction studies should prefer-
ably choose the same feature importance method when replicating
or seeking to validate a prior study.

The computed feature importance ranks by CA and CS
methods do not always strongly agree with each other. For
two of the five studied classifiers, even the most important
feature varies across CA and CS methods.

4.2 (RQ2) For a given dataset and classifier, how much
do the computed feature importance ranks by the differ-
ent CA methods differ?

Approach: For each of the studied datasets, we check the extent
to which the feature importance ranks computed by SHAP and
Permutation CA methods agree with each other for all the five
studied classifiers. Similarly to the previous RQ, in order to quan-
tify agreement, we compute the Top-1 Overlap, Top-3 Overlap,
and Kendall’s Tau measures.

Result 4) SHAP and Permutation methods have a high median
Top-1 overlap and a strong agreement (in terms of Kendall’s
Tau) across all the studied datasets. Furthermore, SHAP and
Permutation CA methods do not have a small or negligible overlap
across any of the studied datasets. Except on Prop-4 and PC5
datasets, the feature importance ranks computed by SHAP and
Permutation CA methods have a large median Top-3 overlap.
Furthermore, from the rightmost lane in Figure [3| we observe
that except for the rf classifier on prop-4 dataset, the Kendall’s
Tau agreement values are consistently strong for all the studied
classifiers.

The computed feature importance ranks by the studied CA
methods exhibit a strong agreement including the features
reported at top-1 and top-3 ranks for a given dataset and
classifier.

4.3 (RQ3) On a given dataset, how much do the com-
puted feature importance ranks by different CS methods
differ?

Approach: For each of the datasets, we obtain the computed
feature importance ranks by the studied CS methods of each of
the five studied classifiers. We then calculate the Kendall’s W
between the six feature importance rank lists that are computed
by the studied CS method of each classifier. Unlike the previous
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Fig. 3: A density plot of Top-1 Overlap, Top-3 Overlap, and Kendall’s Tau values between the SHAP and Permutation CA methods for
each of the studied classifiers across all the studied datasets. The dotted lines correspond to the metric-specific interpretation scheme
outlined in Section 3.5. The vertical lines inside the density plots correspond to the median of the distributions. Please note the empty
space in the rightmost figure is due to the observed range of Kendall’s Tau values in this case varying between 0.5 and 1. In other words,
across all the studied datasets the computed feature importance ranks of SHAP and Permutation at least had a moderate agreement.

RQs, we compute the Kendall’s W instead of Kendall’s Tau, as
Kendall’s W is able to measure agreement among multiple feature
importance rank lists (Section . Furthermore, we also calculate
the Top-3 overlap among all the five feature importance rank lists.
We do so for all the studied datasets. A high Kendall’s W and
a high Top-3 overlap across all the studied datasets among the
constructed classifiers would indicate high agreement between the
computed feature importance ranks by different classifiers and the
studied CS method of each classifier.

Results: Result 5) The computed feature importance ranks by
different CS methods vary extensively. None of CS methods

agree on the most important feature (as evidenced by the results
presented in Table[2)). Furthermore, the maximum top-3 overlap is
only small and it happens for only three out of 18 datasets. Finally,
we also observe that, on a given dataset, only on two occasions
the feature importance rank lists computed by the different CS
methods strongly agree with each other. We summarize the Top 1
overlap, the Top-3 overlap and Kendall’s W among the computed
feature importance ranks for all the six studied classifiers across
the studied datasets in Table

From Table 2] we observe that both the Kendall’s W and top-
3 overlap among the feature importance ranks that are computed



TABLE 2: Top-1 overlap, Top-3 overlap, and Kendall’s W among
the computed feature importance ranks by the CS method of each

classifier. Best results for each metric are shown in bold.

Dataset Top-1 overlap | Top-3 overlap Kendall’s W

poi-3.0 Low (0) Negligible (0) Weak (0.13)
camel-1.2 Low (0) Negligible (0) Weak (0.22)
xalan-2.5 Low (0) | Negligible (0.10) Weak (0.18)
xalan-2.6 Low (0) | Negligible (0.16) Weak (0.25)
eclipse34_debug Low (0) | Negligible (0.14) Weak (0.26)
eclipse34_swt Low (0) small (0.33) Strong (0.62)
pde Low (0) Small (0.4) Strong (0.70)
PC5 Low (0) Negligible (0) Weak (0.18)
mylyn Low (0) Small (0.29) Weak (0.16)
eclipse-2.0 Low (0) | Negligible (0.17) Weak (0.26)
JM1 Low (0) | Negligible (0.20) | Moderate (0.31)
eclipse-2.1 Low (0) | Negligible (0.17) | Moderate (0.31)
prop-5 Low (0) Negligible (0) Weak (0.17)
prop-4 Low (0) | Negligible (0.14) | Moderate (0.37)
prop-3 Low (0) | Negligible (0.09) | Moderate (0.32)
eclipse-3.0 Low (0) Small (0.28) | Moderate (0.32)
prop-1 Low (0) | Negligible (0.16) | Moderate (0.36)
prop-2 Low (0) Negligible (0) Weak (0.28)

by studied CS methods associated with each of the classifier —
which are widely used in the software engineering community—
is very low. Such a small Top-3 overlap and Top-1 overlap for
all the datasets indicates that computed feature importance ranks
by CS methods differ substantially among themselves. Hence,
different classifiers and their associated CS methods cannot be
used interchangeably.

On a given dataset, even the commonly used CS methods
yield vastly different feature importance ranks, including the
top-3 and the top-1 most important feature(s).

5 DISCUSSION

5.1 Why do different feature importance methods pro-
duce different top-3 features on a given dataset?

Motivation: From the results presented for RQ1 (Section [{.T) we
observe that, on a given dataset and classifier the CA methods and
CS methods produce different feature importance ranks (including
the top-3 ones). Similarly, from the results presented in RQ3
(Sectionf4.3)), on a given dataset, even the widely used CS methods
produce vastly different feature importance ranks. Such a result
is in spite of us having removed the correlated and redundant
features from the datasets in a pre-processing step using a state-
of-the-art technique like AutoSpearman [75]. However, in contrast
to the results presented in RQI and RQ3, in RQ2 (Section [4.2)),
we observe that the studied CA methods (i.e., Permutation and
SHAP methods) produce similar feature importance ranks on a
given dataset and classifier.

We hypothesize that different CS methods produce different
top-3 feature importance ranks even on the same dataset and
classifier (and when compared to the feature importance ranks
computed by the CA methods) because of feature interactions
that are present in the studied datasets. Feature interactions can
be defined as a phenomenon where the effect of the independent
features on a dependent feature is not purely additive [15}[23]). We
arrive at such a hypothesis as many of the prior studies show that
the presence of feature interactions in a given dataset can affect
the different feature importance methods differently and make
them assign different feature importance ranks to features [22-26].
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Therefore, in this section, we seek to find out if different feature
importance methods (in addition to being inherently different)
yield different feature importance ranks due to the presence of
feature interactions in the dataset.

We further note that computed feature importance ranks by

the CA methods exhibit a high agreement and overlap as both
Permutation and SHAP are typically not impacted by the feature
interactions present in a dataset [15].
Approach: To test our hypothesis and detect if any of the features
presented in a given dataset interact with other features in that
dataset, we compute the Friedman H-Statistic [113] for each
feature against all other features. The Friedman H-statistic works
as follows. First, a classifier (any classifier - we use random forest
as it captures interactions well [114]]) is constructed using the
given dataset. For instance, consider the Eclipse-2.0 dataset and
that we wish to compute the Friedman H-Statistic between the
feature pre and all the other features. We first compute the partial
dependence between pre and the dependent variable with respect
to the random forest classifier (PD_pre) for all the data points.
Following which, partial dependence between all the features (as a
single block) in Eclipse-2.0 (except pre) is computed (PD_rest)
for all the data points. If there is no feature interaction between
pre and the other features in Eclipse-2.0, the outcome probability
of the constructed classifier can be expressed as a sum of PD_pre
and PD_rest. Therefore, the difference between the outcome
probability of the classifier and the sum of PD_pre and PD_rest
is computed and the variance of this difference is reported as the
Friedman H-Statistic. We compute the Friedman H-Statistic for
all the studied datasets 10 times, as Friedman H-Statistic is known
to exhibit fluctuations because of the internal data sampling [15].
We then consider the median score of the Friedman H-Statistic for
each dataset. We use the R package imlE]to compute the Friedman
H-Statistic.

The Friedman H-Statistic is a numeric score that ranges
between 0 and 1. However, it can sometimes exceed 1 when
the higher order interactions are stronger than the individual
features [15]]). A Friedman H-Statistic of 0 or closer to 0 indicates
that no interaction exists between the given feature and the rest of
the features and a Friedman H-Statistic of 1 indicates extremely
high levels of interaction. For a more theoretical and detailed
explanation we refer the readers to [[15, [113]. In this study, we
consider a feature to exhibit interactions with other features if
the Friedman H-Statistic is > 0.3. We choose 0.3 as a cut-off,
to only indicate the existence of a feature interaction, but not to
qualify the strength of the interaction, because the presence of
feature interactions irrespective of the strength could potentially
impact feature importance ranks [22H26]. In addition we also
report the results for the number of features that exhibit a Friedman
H-statistic > 0.5. We choose to report the results on multiple
thresholds to present a comprehensive depiction of the feature
interactions. Furthermore, there is no established guideline in the
literature regarding how one should interpret the Friedman H-
statistic or how thresholds should be selected.

Construction of a synthetic dataset without any feature in-
teractions. Next, to determine if the absence of feature inter-
actions enables the different CS methods to compute the same
top-3 features, we simulate a dataset with no feature interac-
tions. We do so instead of using a real dataset as it is dif-
ficult to find a real-world defect dataset without any feature

2. https://cran.r-project.org/web/packages/iml/index.html


https://cran.r-project.org/web/packages/iml/index.html

interactions. We generate a dataset with 1,500 data points and
11 independent features of which five features carry the sig-
nal: signal = {x1,x2,x3,x4,x5} and six features are just
noise i.e., does not exhibit any relationship to the dependent
feature noise = {nl, n2, n3, n4, n5, né6}. We add
noise features to make our simulated dataset similar to that of
a real-world defect dataset. All the signal features and n1, n5,
n6 are generated by randomly sampling the normal distribution
with mean = 0 and standard deviation = 1. Similarly, we sample
the uniform distribution between 0 and 1 to generate the values for
n2, n3, n4. We use both the normal and the uniform distribu-
tions for generating the noise features to ensure the presence of
different types of noise in our simulated dataset. Next, to construct
our dependent feature for the dataset, we construct Yg;gnq: With
the signal variables as given in Equation 2} We assign different
weights to the different signal features when constructing the
Ysignal O ensure that we know the true importance of each of
the signal features. We then convert the ¥/5;¢nq; in to a probability
vector Yprop With a sigmoid function as given in Equation E}
Finally, we generate the dependant feature by sampling the bi-
nomial distribution to generate the dependent feature Ygcpendant
with y,,0p as given in Equation 4]

Ysignat = 2021 + 1022 + 523+ 2.504 + 0525 (2)
1

Yprob = 1 e=Vsignat )

Ydependant = Binomial(15007 yp“’b) @

Construction of classifiers and calculation of top-1 and top-3
overlaps. We then construct all of the studied classifiers on the
simulated dataset with ygcpendent as the dependent feature. We
construct all the classifiers with 100-Out-of-sample bootstrap on
the simulated dataset and compute the feature importance ranks
computed by the CA and CS methods as outlined in Section [3.4]
For each of the studied classifiers, we calculate the top-1 and top-
3 overlap between the feature importance ranks computed by the
CA and CS methods (similarly to RQ1). Furthermore, we also
calculate the top-1 and top-3 overlaps between feature importance
ranks computed by the studied CS methods (similarly to RQ3). We
then check if they exhibit a top-1 and top-3 overlap close to 1 for
all the classifiers between the computed feature importance ranks
of the CS and the CA methods. In addition we also check the top-1
and top-3 overlap among the computed feature importance ranks
of the various CS methods. If in both the cases they exhibit a top-1
and top-3 overlap close to 1, we can then assert that the feature
interactions in the dataset affects the top-3 features computed by
the different CS methods and vice versa.

Determining whether feature interactions impact interpreta-
tion. To verify that the feature interactions present in the dataset
impact only the studied CS methods and not the studied CA
methods, we compute the feature importance ranks for all the
studied classifiers with the studied CS and CA methods on a
simulated dataset with feature interactions. To simulate a dataset
with interactions, we take the simulated dataset from earlier (the
one without any interactions) and introduce interactions by mod-
ifying the Equation E} We modify the Ysignal_with_interactions
to depend on hidden interactions as given by Equation [5]
The rest of the data generation process remains the same
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as earlier i.e., the independent features are still given
by independent features = {signal,noise} where
signal = {xl,xZ,x3,x4,x5} and noise = {nl, n2,
n3, n4, n5, n6}- FinaHYa Ydependant_with_interactions is
generated using Equations [3]and ]

Ysignal_with_interactions = y_signal +alxz3+x2*23+22 21
®)
We then construct all of the studied -classifiers with
Ydependent_with_interactions ON the simulated dataset with inter-
actions using 100-Out-of-sample bootstrap. Next, we compute the
feature importance ranks using the studied CA and CS methods.
Finally, we calculate the top-1 and top-3 overlap between the
computed feature importance ranks of CA and CS methods,
respectively (similarly to RQ2 and RQ3). If feature interactions
do not impact the CA methods, we should observe high top-1
and top-3 overlaps (close to 1) between the computed feature
importance ranks of the CA methods and vice versa. Similarly,
if the feature interactions impact the computed feature importance
ranks of CS methods, we should observe low top-1 and top-3
overlaps between the computed feature importance ranks of the
different CS methods and vice versa.

Results: Result 6) At least two features and as many as eight
features interact with the rest of the features in all of the 18
studied datasets (i.e., Friedman H-Statistic > 0.3). Furthermore,
we find that 14 of the 18 datasets have at least two features
with a Friedman H-Statistic > 0.5. We present the number of
features in each dataset with a Friedman H-statistic > 0.3 and
> 0.5 in Table [§] (Appendix [B). From Table [8] we observe that
all datasets contain more than two features that interact with the
other features. Though Friedman H-Statistic only computes if a
given feature interacts with the rest of the features and excludes
other feature interactions like second-order interactions, pairwise
interactions, and higher-order interactions, it gives us a hint as to
the presence or absence of feature interactions in a dataset.

Result 7) The top-3 and the top-1 overlap between the feature
importance ranks computed by the CS and CA methods on each
of the classifiers is 1 on our simulated dataset devoid of feature
interactions. In addition, the top-3 and top-1 overlap between the
computed feature importance ranks of the CS methods on the
simulated dataset without interaction is 1. Such a result indicates
that in the dataset without feature interactions, all the studied
feature importance methods identify the same top-3 features. Fur-
thermore, we also observe that all the studied important features
are identified x1, x2, x3 as the top-3 features in the same order of
importance. Thus, we assert that the different feature importance
methods are able to assign the feature importance ranks correctly
when independent features’ contribution to the dependent feature
is additive without any interactions.

Result 8) The top-3 and the top-1 overlap between the feature
importance ranks computed by the studied CA methods is 1
on the simulated dataset with interactions. In turn, we find that
the top-1 and top-3 overlap between the feature importance ranks
computed by the different CS methods is 0 on the simulated
dataset with interactions. Such a result indicates that studied
CA methods (i.e., SHAP and Permutation) are not impacted by
the feature interactions in the simulated dataset. However, the
computed feature importance ranks of the studied CS methods
are heavily influenced by the presence of feature interactions in
the dataset.



Hence, we conclude that the presence of feature interactions in
the studied defect datasets could be the reason why different CS
methods produce a different top-3 set of features. In addition, we
conclude that alongside the fact that different feature importance
methods compute feature importances differently, feature interac-
tions in the datasets can also be a key confounder that affects
the computed feature importance ranks by the studied feature
importance methods.

5.2 Can we mitigate the impact of feature interactions?

Motivation: From the results presented in Section[5.1| we observe
that feature interactions impact feature importance ranks computed
by the CS methods. Such a result indicates that CS methods cannot
be interchangeably used. Though comprehensively identifying and
removing all the feature interactions from a dataset is still an
open area of research, there exist several simple methods like
Correlation-based Feature Selection (CFS) [27], wrapper meth-
ods [27] that allows us to remove lower order feature interac-
tions [L1SHI17].

Therefore, in this discussion, we investigate if removing the
feature interactions present in a dataset through a simple method
like CFS would increase the agreement between the computed
feature importance ranks of the studied CS methods on a given
dataset. We also investigate if removing feature interactions yields
an improved agreement between the computed feature importance
ranks of CA and CS methods. Finally we also study if the
removal of feature interactions has any impact on the agreement
between the feature importance ranks computed by the studied
CA methods. If it does, then we can recommend researchers and
practitioners to remove the feature interactions in their datasets
using CFS prior to building the machine learning classifiers.

Approach: We use the CFS method to remove the feature in-
teractions across the studied datasets. We use the CFS method
in lieu of other methods like Wrapper in the dataset for the
following reasons. First, several prior studies show that, in addition
to eliminating correlation between the features, CFS method is
also useful for mitigating feature interactions [27, 28]. Second,
CFS method has been widely used in the software engineering
community (though for removing correlated features) [69]. Third,
it is simple to implement and is extremely fast. Finally, since its
a filter type method, it does not make any assumptions about the
dataset or the subsequent classifier that is to be built.

Therefore, for each of the studied datasets, following the re-
moval of correlated and redundant features using AutoSpearman,
we apply the CFS [27] method to remove the feature interactions.
The CFS method chooses a subset of features that exhibits the
strongest relationship with the dependent feature while exhibiting
a minimal correlation among themselves. It is important to note
that we apply the CFS method to the features that were not flagged
as correlated/redundant by AutoSpearman technique (as opposed
to applying CFS method by itself to eliminate both the observed
inter-feature correlation and feature interaction), as Jiarpakdee
et al. [69] argue CFS method might not remove all the correlated
features from the dataset effectively.

After removing the feature interactions using CFS methods,
we re-run the analysis that we conducted in RQ1 (Section E])
and RQ3 (Section[4.3) using the same approach. We then evaluate
whether the agreement in terms of top-1 and top-3 overlap in-
creases between the CA and CS methods (compared to the results
presented in Section [A.I). Similarly, we also evaluate whether
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the agreement between the computed feature importance ranks
of different CS methods on a given dataset increases in terms of
top-1 and top-3 overlaps (compared to the results presented in
Section [4.3)).

TABLE 3: The median top-1 and top-3 overlap improvements
upon removal of feature interactions (FI) between the computed
feature importance ranks of the studied CA and CS methods.

Top-1 Overlap Top-3 Overlap

Classifier | RQ1 After RQ1 After
results removal of | results removal of
FI FI

xgbTree High High Medium Strong
rpart Low High Medium Strong
rf High High Medium Strong
glmnet High High Small Moderate
avNNet Low Low Small Moderate

TABLE 4: The median top-1 and top-3 overlap improvements
upon removal of feature interactions (FI) between the computed
feature importance ranks of the studied CS methods.

Top-1 Overlap Top-3 Overlap
Dataset RQ3 re- | After re- | RQ3 re- | After re-
sults moval of | sults moval of
FI FI
poi-3.0 Low Low Negligible | Negligible
camel-1.2 Low Low Negligible | Small
xalan-2.5 Low Low Negligible | Medium
xalan-2.6 Low High Small Small
eclipse34_debug | Low High Small Small
eclipse3_swt Low Low Negligible | Small
pde Low Low Small Small
PC5 Low Low Negligible | Negligible
mylyn Low Low Small Small
eclipse-2.0 Low Low Negligible | Negligible
M1 Low Low Negligible | Small
eclipse-2.1 Low Low Negligible | Small
prop-5 Low High Negligible | Negligible
prop-4 Low High Negligible | Small
prop-3 Low Low Negligible | Negligible
eclipse-3.0 Low Low Small Small
prop-1 Low Low Negligible | Small
prop-2 Low Low Negligible | Small

Results: Result 9) Removing the feature interactions increases
the median top-1 and top-3 overlap between the studied CA
and CS methods across all the five studied classifiers. From
Table 3] we observe that across all the classifiers, the top-1 and top-
3 overlaps improve by at least one level. Such a result indicates
that, removing feature interactions with CFS generally yields a
higher agreement between the CA and CS methods with regards
to feature ranking (i.e., promotes stability of the results).

Result 10) Removing the feature interactions increases the
median top-1 and top-3 overlap between the studied CS methods
on four and five of the 18 studied datasets respectively. Table [
depicts the improvements in top-1 and top-3 overlaps between
the studied CS methods across all the studied datasets. From
Table F] we observe that the removal of feature interactions
with CFS yields only small improvements. Therefore, we suggest
that researchers and practitioners should be cautious when using
different CS methods interchangeably even after removing feature
interactions. However, our inference is exploratory in nature and
thus further research should be conducted to understand advanced
feature interaction removal methods may help improve the agree-
ment across different CS methods.



Result 11) After removing the feature interactions, SHAP and
Permutation yield a strong agreement on all datasets. From the
results presented in Section 4.2 we observe that the Permutation
and SHAP had less than large overlap only on the Prop-4 and
PCS5 datasets. However, upon removal of feature interactions from
these two datasets, the feature importance ranks computed by the
studied CA methods have a large top-1 and top-3 overlap across
all the studied datasets and classifiers.

6 IMPLICATIONS

In this section, we outline the implications that one can derive
from our results, including potential pitfalls to avoid and future
research opportunities.

Implication 1) Researchers and practitioners should be aware
that feature interactions can hinder classifier interpretation. We
recommend these stakeholders to detect feature interactions in
their datasets (e.g., by means of the Friedman’s H-statistic) and,
in the positive scenario, remove these interactions if possible
(e.g., by preprocessing the dataset with the CFS method). From
Section and Section we find that removing the feature
interactions, even with a simple method like CFS, increases the
agreement between the feature importance rankings produced by
the studied feature importance methods. In other words, once
feature interactions are removed, the final feature ranking tends
to change. Hence, we consider that feature interactions hinder the
interpretability of machine learning models in defect prediction.
We thus encourage researchers and practitioners to detect feature
interactions in their dataset (e.g., by means of the Friedman’s H-
statistic). In case interactions are discovered, we encourage these
stakeholders to remove them if possible (e.g., by preprocessing the
dataset with the CFS method).

Implication 2) The lack of clear specification of the feature
importance method employed in software engineering studies
seriously threatens the reproducibility of these studies and the
generalizability of their insights. 14% of the studies listed in
Table [T] do not specify their employed feature importance method
to arrive at their insights. The absence of the specification of the
feature importance method employed is more prevalent for random
forest classifiers (3/11 studies) — the classifier that is widely used
in software engineering. This poses a serious threat, as many
random forest implementation across the popular data mining
toolboxes come with many different ways of computing the
feature importance. For instance, random forest implementation in
the R package randomForesﬂ has 3 feature importance methods
available and the R package partykiﬂ has 2 implementations of
feature importance methods for random forest.

Implication 3) Future research should evaluate the extent to
which SHAP and Permutation can be used interchangeably.
We conjecture that using either SHAP or Permutation would
lead to similar rankings for defect datasets that have similar
characteristics to those studied by us. We also conjecture that the
feature importance rankings of prior studies in defect classification
would not change much if Permutation were to be replaced with
SHAP or vice-versa. Nonetheless, we do emphasize that even
small changes in rankings could be meaningful in practice and lead
to completely different action plans (e.g., in terms of prioritizing
pieces of code to be tested or reviewed). Hence, despite the similar

3. https://cran.r-project.org/web/packages/randomForest/index.html
4. https://cran.r-project.org/web/packages/partykit/index.html
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rankings produced by SHAP and Permutation, concluding that
they can be used interchangeably would be an overstatement. We
thus invite future work to further evaluate the differences in the
rankings produced by SHAP and Permutation (e.g., by evaluating
defect datasets that have different characteristics compared to the
ones that we studied).

Implication 4) Future research should consider investigating
whether more advanced feature interaction removal methods can
increase the agreement between the feature interaction rankings
produced by different feature importance methods. By means of
a simple feature interaction removal method like CFS, we are
able to improve the agreement between the feature importance
rankings produced by CS and CA methods (Section [5.2). Even
between the computed feature importance ranks of CS methods,
removing feature interactions helps to improve agreement in some
cases. Such a result suggests that more sophisticated feature
interaction removal methods have the potential to further improve
the agreement between the computed feature importance ranks of
different feature importance methods.

7 THREATS TO VALIDITY
In the following, we discuss the threats to the validity of our study.

Internal validity. We choose classifier families who has a CS
method. As previous studies show that different classifiers may
have different performance on a given dataset [[17 82], this could
be a potential threat. However, we choose representative classifiers
from 6 of the 8 commonly used classifier families as outlined by
Ghotra et al. [82].

We use the AUC and IFA performance measures to shortlist
the classifiers used in this study. However, using different per-
formance measures like Popp0, MCC, and F-Measure to shortlist
the classifiers to include in our study might potentially bias the
conclusion of our study and we declare it as a threat to internal
validity. We invite the future studies to revisit our study by using
different performance measures to shortlist the classifiers to be
used to compare feature importance ranks computed by different
feature importance methods.

The classifiers that we choose to study are either probabilistic
or stochastic in nature. We do not include any deterministic
classifiers like Naive Bayes in our study and it could be a potential
threat to the internal validity of our study. Particularly since, Wu
et al. [118] point out that computed feature importance ranks of
classifiers like decision trees can be particularly sensitive to data
characteristics. We invite the future research to revisit our findings
on deterministic and stable learners.

Construct validity. In our study, we choose classifiers where
all the studied datasets achieved an AUC above 0.70. According
to Muller et al. [119], an AUC score above 0.70 indicates the
fair discriminative capability of a classifier. Furthermore, these
datasets have been used in many of the studies as outlined in
Table[Tl

We use a simple random search method to hyperparameter
tune our studied classifiers. Our decision stems from the work
of Tantithamthavorn et al. [78] who show that, irrespective of
the performance measure considered, different hyperparameter
tuning methods (including grid search, random search, differential
evolution based methods and genetic algorithm based methods)
yield similar performance improvements. The authors suggest that,
as far as performance improvements are concerned, researchers


https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/partykit/index.html

and practitioners can safely use any of the aforementioned au-
tomated hyperparameter tuning methods to tune defect classifiers.
Therefore, we consider that employing different or more advanced
hyperparameter optimization methods would not necessarily result
in better hyperparameters for our studied classifiers. Nonetheless,
we invite future work to revisit our findings by using more
advanced hyperparameter tuning methods to tune the classifiers.

The hyperparameters that we tune for our studied classifiers
are limited. Similar to Jiarpakdee et al. [69]], we use the automated
hyperparameter optimization option provided by caret package to
tune the hyperparameters of the studied classifiers. caret pack-
age only supports tuning a limited number of hyperparameters
(please see Table [6). Tuning a wider range of hyperparameters
for the studied classifiers might potentially change our findings.
We consider it a threat and invite the future studies to revisit
our findings by tuning a wider range of hyperparameters for the
studied classifiers.

External validity. In this study, we choose 18 datasets that
represent software projects across several corpora (e.g., NASA
and PROMISE) and domains (both proprietary and open-source).
However, our results likely do not generalize to all software
defect datasets. Nevertheless, the datasets that we use in our
study are extensively used in the field of software defect pre-
diction [2 18, [17, 131} [38, [77] and is representative of several
corpora and domains. Therefore we argue that our results will still
hold. However, future replication across different datasets using
our developed methodology might be fruitful.

Secondly, we only consider one defect prediction context in
our study (i.e., within-project defect prediction). Yet, there are
multiple defect prediction contexts such as Just-In-Time defect
prediction [120, [121] and cross-project defect prediction [2].
Hence future studies are needed to explore these richer contexts.

Finally, we study a limited number of CS and CA methods and
therefore, our results might not readily generalize to other feature
importance methods. For instance, there are recent developments
like LIME [122] that have been proposed in the machine learning
community for generating feature importance ranks. Nevertheless,
the approach and the metrics that we use in our study are
applicable to any feature importance method. Therefore, we invite
future studies to use our approach to re-examine our findings on
other (current and future) feature importance methods.

8 CONCLUSION

Classifiers are increasingly used to derive insights from data.
Typically, insights are generated from the feature importance ranks
that are computed by either CS or CA methods. However, the
choice between the CS and CA methods to derive those insights
remains arbitrary, even for the same classifier. In addition, the
choice of the exact feature important method is seldom justified. In
other words, several prior studies use feature importance methods
interchangeably without any specific rationale, even though dif-
ferent methods compute the feature importance ranks differently.
Therefore, in this study, we set out to estimate the extent to
which feature importance ranks that are computed by CS and CA
methods differ.

By means of a case study on 18 defect datasets and 6 defect
classifiers, we observe that while the computed feature importance
ranks by different CA methods strongly agree with each other,
the computed feature importance ranks of CS methods do not.
Furthermore, the computed feature importance ranks of studied
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CA and CS methods do not strongly agree with each other
either. Except when using different studied CA methods, even the
feature reported as the most important feature differs for many
of the studied classifiers — raising concerns about the stability of
conclusions across replicated studies.

We further find that the commonly used defect datasets are
rife with feature interactions and these feature interactions impact
the computed feature importance ranks of the CS methods (not
the CA methods). We also demonstrate that removing these
feature interactions, even with simple methods like CFS improves
agreement between the computed feature importance ranks of CA
and CS methods. We end our study by providing several guidance
for future studies, e.g., future research is needed to investigate
the impact of advanced feature interaction removal methods on
computed feature importance ranks of different CS methods.
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APPENDIX A

CASE STUDY: ADDITIONAL INFORMATION

A.1 Studied Datasets

Table |3 shows various basic characteristics about each of the
studied datasets.

TABLE 5: Overview of the datasets studied in our case study

Project DR #Files #Fts #FACRA EPV

Poi-3.0 63.5 442 20 12 14.05
Camel-1.2 35.53 608 20 10 10.8
Xalan-2.5 48.19 803 20 11 19.35
Xalan-2.6 46.44 885 20 11 20.55
Eclipse34_debug | 24.69 1065 17 10 15.47
Eclipse34_swt 43.97 1485 17 9 38.41
Pde 13.96 1497 15 6 13.93
PC5 27.53 1711 38 13 12.39
Mylyn 13.16 1862 15 7 16.33
Eclipse-2.0 14.49 6729 32 9 30.47
IM1 21.49 7782 21 7 79.62
Eclipse-2.1 10.83 7888 32 9 26.69
Prop-5 15.25 8516 20 12 64.95
Prop-4 9.64 8718 20 12 42
Prop-3 1149 10274 20 12 59
Eclipse-3.0 14.8 10593 32 9 49
Prop-1 14.82 18471 20 13 136.9
Prop-2 10.56 23014 20 13 121.55

DR: Defective Ratio, FACRA: Features After Correlation and Redun-
dancy Analysis, Fts: Features

A.2 Studied Classifiers

Table @ shows our studied classifiers, the machine learning fami-
lies to which they belong, and the caret function that was used to
build the classifiers.

TABLE 6: Studied classifiers and their hyperparameters

Family Classifier Caret Hyperparameters
method

Statistical Regularized Lo- | glmnet alpha, lambda

Techniques gistic Regression

Rule-Based C5.0 Rule-Based | C5.0Rules| None

Techniques Tree

Neural Net- | Neural Networks avNNet size, decay, bag

works (with model aver-

aging)
Decision Recursive Parti- | rpart K,L, cp
Trees tioning and Re-
gression Trees

Ensemble Random Forest rf mtry

methods-

Bagging

Ensemble Extreme xgbTree nrounds,

methods- Gradient max_depth,

Boosting Boosting Trees eta, gamma, col-
sample_bytree,
min_child_weight,
subsample

A.3 Classifier Specific Feature Importance (CS) meth-
ods

Table [7| provides a brief explanation about the inner working of
the CS methods that we study in this paper. For a more detailed
explanation we refer the readers to Kuhn [83].

A.4 Classifier Agnostic Feature Importance (CA) meth-
ods

In the following, we describe the two CA methods that we employ
in this study.
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Permutation feature importance (Permutation). We use the
same permutation feature importance method used by Rajbahadur
et al. [17]. First, the performance of a classifier is calculated
on the non-permuted dataset (we use AUC for measuring the
performance in our study). Then each feature in the training set
is randomly permuted one by one and this permuted feature along
with the other non-permuted features are used to measure the
performance of the classifier. If the permutation of a feature de-
creases the performance of the classifier, compared to the classifier
built on the non-permuted dataset, then that feature is considered
important. The magnitude of performance changes decides the
importance scores of features in a given dataset.

SHapley Additive ExPlanations (SHAP). We use the method
outlined by Lundberg and Lee [91]. SHAP uses the game-theory
based Shapley values [123|to fairly distribute the credit for a
classifier’s output among its features. To do so, for each data
point in the train set, SHAP first transforms all the features into
a space of simplified binary features. Then SHAP estimates how
the output probability of the classifier for the given data point can
be expressed as a linear combination of these simplified binary
features. These computed feature importance scores are theoreti-
cally guaranteed to be optimal, additive, and locally accurate for
each data point. Therefore, the overall feature importance scores
for each studied feature in the classifier can be given by simply
summing the feature importance score of each feature across all
the data points in the train set [90]. For more details about how
SHAP computes the feature importance ranks we refer the readers
to studies by Lundberg and Lee [91], Esteves et al. [93]. We use
the vipﬂ R package for computing the SHAP feature importance
scores in our study.

A.5 Out-of-sample Bootstrap

The out-of-sample bootstrap is a model validation technique that
aims to create a test set that has a similar distribution to that of
the training set in each validation iteration. In the following, we
briefly describe how it works:

1) For a given dataset, N (where N=size of the given dataset) data
points are randomly sampled with replacement. These N data
points are used as the frain set for the classifiers.

2) As the data points were sampled with replacement in the prior
step, on an average, 36.8% of the data points do not appear as a
part of the train set [97]. We use these data points as the fest set
for measuring the performance of the constructed classifiers.

The aforementioned process should be repeated k times for
each of the studied dataset. Typical values for k include 100, 500,
and 1,000.

A.6 Performance Computation

In the following, we briefly describe each of our adopted perfor-
mance measures and the rationale for choosing them:

AUC. The ROC curve plots the True Positive Rate (TPR = TP
/ (TP + FN)) against the False Positive Rate (FPR = FP / (FP +
TN) for all possible classification thresholds (i.e., from O to 1). The
use of the AUC measure has several advantages [82} 195101} 102].
First, AUC does not require one to preemptively select a classifica-
tion threshold. Hence, the AUC measure prevents our study from
being influenced by the choice of classification thresholds [17].

5. https://cran.r-project.org/web/packages/vip/index.html



TABLE 7: Brief explanation about the working of caret’s CS methods that are used in our study.

CS method

Brief explanation

Logistic Regression FI (LRFI)

Classifier coefficient’s t-statistic is reported as the feature importance score

C5.0 Rule-Based Tree FI (CRFI)

The number of training data points that are covered by the leaf nodes, created from the split of a feature is
given as the feature importance score for that feature. For instance, the feature that is split in the root node
will have a 100% importance as all the training samples will be covered by the terminal nodes leading
from it.

Neural Networks (with model av-
eraging) FI (NNFI)

The feature importance score is given by combining the absolute weights used in the neural network

Recursive Partitioning and Re-
gression Trees FI (RFI)

The feature importance score is given by the sum of the reduction in loss function that is brought about
by each feature at each split in the tree.

Random Forest FI (RFFI)

Average of difference between the Out-of-Bag (OOB) error for each tree in the forest where none of the
features are permuted and the OOB error where each of the features is permuted one by one. The feature
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permutation’s impact on the overall OOB error is reported as the feature importance score

Extreme Gradient
Trees FI (XGFI)

Boosting

trees of the xgboost tree.

Feature importance score is given by counting the number of times a feature is used in all the boosting

For instance, when measuring the performance of a classifier with
other performance measures like precision and recall, a threshold
(e.g., 0.5) needs to be set up to discretize the classification
probability into the “Defective” and “Non-Defective” outcome
classes. However, setting this threshold is challenging in practice.
The AUC measure circumvents this problem by measuring the
TPR and FPR at all possible thresholds. Following this, the
performance of the classifier is given as the area under this curve.
Another commonly used measure to evaluate the performance of a
classifier is the Matthews Correlation Coefficient (MCC). We use
AUC instead of MCC because (i) MCC is threshold-dependent
(similarly to precision and recall) and (ii) there is empirical
evidence showing that AUC is generally more discriminative
than MCC (even though AUC and MCC tend to be statistically
consistent with each other) [124]. AUC is robust to imbalanced
class [101] (even more so than other performance measures like
MCC [124])). As a consequence, class imbalances that are typically
inherent to defect datasets [[125,/126] are automatically accounted
for. The AUC measure ranges from O to 1. An AUC measure
close to 1 indicates the classifier’s performance is very high.
Conversely, an AUC measure close to 0.5 indicates that the
classifier’s performance is no better than a random guess.

IFA. The IFA measures the number of false alarms that are
encountered before the first defective module is detected by a
classifier [69}[104]]. We choose the IFA measure in lieu of others
(e.g., False Alarm Rate) because several prior studies in fault
localization argued that practitioners tend to distrust a classifier
whose top recommendations are false alarms. In particular, Parnin
and Orso [103]], found that developers tend to avoid automated
tools if the first few recommendations given by them are false
alarms. Therefore, we argue that the number of false alarms that
are encountered before the first defective module is detected is a
better measure to evaluate the usability of our constructed defect
classifiers in practice. The IFA measure is calculated by first
sorting the modules in the descending order of their risk as given
by the classifiers (i.e, the probability of a module being defective).
Then the number of non-defective modules that are predicted as
defective before identifying the first true positive (i.e., defective
module) is the IFA of a classifier. The IFA measure ranges from 1
(best) to the number of modules in the dataset.

APPENDIX B
FRIEDMAN H-STATISTIC PER DATASET

TABLE 8: No. of features per dataset with Friedman H-Statistic >
0.3 and > 0.5

Dataset #F with H > 0.3 | #F with H > 0.5
Poi-3.0 3 0
Camel-1.2 5 4
Xalan-2.5 4 3
Xalan-2.6 2 0
Eclipse34_debug 6 3
Eclipse34_swt 3 0
Pde 5 4
PC5 4 0
Mylyn 4 4
Eclipse-2.0 6 4
JM1 7 5
Eclipse-2.1 6 3
Prop-5 5 4
Prop-4 5 3
Prop-3 5 3
Eclipse-3.0 6 5
Prop-1 6 2
Prop-2 8 4
F - Features
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