
Change-Patterns Mapping: A Boosting Way
for Change Impact Analysis

Yuan Huang , Jinyu Jiang, Xiapu Luo , Xiangping Chen ,Member, IEEE,

Zibin Zheng , Senior Member, IEEE, Nan Jia, and Gang Huang , Senior Member, IEEE

Abstract—Change impact analysis (CIA) is a specialized process of program comprehension that investigates the ripple effects of a

code change in a software system. In this paper, we present a boosting way for change impact analysis via mapping the historical

change-patterns to current CIA task in a cross-project scenario. The change-patterns reflect the coupling dependencies between

changed entities in a change set. A traditional CIA tool (such as ImpactMiner) outputs an initial impact set for a starting entity. To boost

the traditional CIA tool, our approach retrieves an equivalent entity from various historical change sets for the starting entity. Then, the

change-patterns between the equivalent entity and the rest of entities in the change set are mapped to the CIA task at hand. For current

CIA task, if an entity in the initial impact set involves the similar change-pattern with the starting entity when comparing with the mapped

change-pattern, we will reward the impacted confidence of the entity. Accuracy improvements are observed in the experiments when

applying our boosting method to three famous CIA tools, i.e., ImpactMiner, JRipples and ROSE.

Index Terms—Change impact analysis, change-patterns, coupling dependency, boosting method

Ç

1 INTRODUCTION

SOFTWARE change plays a vital role in software evolu-
tion, agile software development, and maintenance

[1]. Change impact analysis (i.e., CIA) is a special topic
of program comprehension, where the programmers
attempt to understand the ripple effect to a software sys-
tem when making a particular software change. The soft-
ware entities in a software system usually have direct or
indirect dependencies after a long-time evolution, a
slight change may rise ripple effects from an entity to
another [2]. As a result, change impact analysis is a par-
ticularly complex task in software systems, especially for
the ones with years of development history, many of
developers, and a multitude of software artifacts includ-
ing millions of lines of code.

Decades of research efforts have produced a wide spec-
trum of CIA approaches, ranging from the traditional static
and dynamic analysis techniques [3], [4], [5] to the contempo-
rary methods such as those based on coupling dependency
analysis [6], [7], [8] and mining software repositories (MSR)
[9], [10], [11]. Although ample progress has beenmade, there
still remains much work to be done for further improving
the accuracy of the state-of-the-art CIA techniques. For
example, the MSR based CIAmethods try to uncover impor-
tant historical dependencies between software entities, e.g.,
co-changed software entities in the evolutionary history of a
project. The operating principle of the MSR based CIAmeth-
ods has the limitation that they only utilize the historical
dependencies of software entities in a project (i.e., within-
project scenario), rather than the historical dependencies
information from other projects. To overcome this limitation,
we generalize the problem to a cross-project scenario, i.e., the
dependency information we referenced is not only from the
current project, but also from other projects.

For two entities with similar functionality in different
projects, it is possible that their changes will have a similar
ripple effect in the systems. Since these two entities have
similar functionality, they are likely to build similar logical
dependencies with the other entities through data interac-
tion or coupling. And because code change can propagate
along coupling dependencies (i.e., the changes will first
ripple to the entities that have logical dependencies with
the change starting entities) [12], as a result, these two enti-
ties have similar ripple effects in the systems when they
are the change starting entities. We call the coupling
dependencies between the change starting entity and the
impacted entities as change-patterns (will be presented in
Section 4.3). The change-patterns may be used to facilitate
the change impact analysis. For example, there are two
classes cinit and ~cinit, and ~cinit builds a change-pattern with

� Yuan Huang and Zibin Zheng are with the School of Software Engineer-
ing, Sun Yat-sen University, Guangzhou 510006, China.
E-mail: huangyjn@gmail.com, zhzibin@mail.sysu.edu.cn.

� Jinyu Jiang is with the School of Computer Science and Engineering, Sun
Yat-sen University, Guangzhou 510006, China. E-mail: exinpie@163.com.

� Xiangping Chen is with the Guangdong Key Laboratory for Big Data
Analysis and Simulation of Public Opinion, School of Communication
and Design, Sun Yat-sen University, Guangzhou 510006, China.
E-mail: chenxp8@mail.sysu.edu.cn.

� Xiapu Luo is with the Department of Computing, The Hong Kong Poly-
technic University, Hong Kong. E-mail: csxluo@comp.polyu.edu.hk.

� Nan Jia is with the School of Information Engineering, Hebei GEO Uni-
versity, Shijiazhuang 050031, China. E-mail: jianan_0101@hgu.edu.cn.

� Gang Huang is with the Key Laboratory of High Confidence Software
Technologies, Ministry of Education, Peking University, Beijing 100871,
China. E-mail: hg@pku.edu.cn.

Manuscript received 19 Mar. 2020; revised 4 Feb. 2021; accepted 9 Feb. 2021.
Date of publication 16 Feb. 2021; date of current version 18 July 2022.
(Corresponding author: Xiangping Chen.)
Recommended for acceptance by S. Apel.
Digital Object Identifier no. 10.1109/TSE.2021.3059481

2376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-9548-0208
https://orcid.org/0000-0002-9548-0208
https://orcid.org/0000-0002-9548-0208
https://orcid.org/0000-0002-9548-0208
https://orcid.org/0000-0002-9548-0208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0001-8234-3186
https://orcid.org/0000-0001-8234-3186
https://orcid.org/0000-0001-8234-3186
https://orcid.org/0000-0001-8234-3186
https://orcid.org/0000-0001-8234-3186
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0002-4686-3181
https://orcid.org/0000-0002-4686-3181
https://orcid.org/0000-0002-4686-3181
https://orcid.org/0000-0002-4686-3181
https://orcid.org/0000-0002-4686-3181
mailto:huangyjn@gmail.com
mailto:zhzibin@mail.sysu.edu.cn
mailto:exinpie@163.com
mailto:chenxp8@mail.sysu.edu.cn
mailto:csxluo@comp.polyu.edu.hk
mailto:jianan_0101@hgu.edu.cn
mailto:hg@pku.edu.cn

its impacted class ~cn, and class cn has similar change-pat-
tern with cinit when comparing with one of ~cinit and ~cn.
Then, cn is likely to be an impacted class by cinit when cinit
is the change starting point.

Based on such an idea, we propose the change-patterns
to boost the performance of the traditional CIA tools in this
paper. Specifically, we first download a number of change
sets from the evolutionary history of more than one hun-
dred projects, and identify the starting changed class (i.e.,
starting class) in each change set. For a starting class cinit in
the CIA task at hand, we retrieve an equivalent starting
class ~cinit with similar functionality from the historical
change sets to cinit, and the change-patterns of ~cinit are
mapped to the CIA task of cinit. Meanwhile, we employ a
traditional CIA tool to get an initial impact set for cinit. After
that, we boost the classes in the initial impact set when they
involve similar change-patterns as comparing with the ones
between ~cinit and its impacted classes. We chose 7 open-
source projects for CIA tasks, which are considered to be
high-quality, well evolved and widely used in related stud-
ies [13], [14], [15]. We found that the combination of tradi-
tional CIA methods and our boosting method is superior to
the standalone CIA methods, i.e., the maximum relative
improvements of precision for ImpactMiner, JRipples and
ROSE are 21.98, 6.52 and 11.81 percent, respectively.

The contributions of our work are shown as follows:

� We propose the concept of change-pattern to mea-
sure the coupling dependencies between changed
software entities, and using vectorized representa-
tion make the change-pattern measurable.

� Due to the metrizability, the change-patterns from
different projects can be used to assist the CIA task
at hand, and then the MSR based CIA method is gen-
eralized to a cross-project scenario by us.

� We demonstrate that there are a lot of similar
change-patterns (i.e., 213,554) across projects, which
provides a solid foundation for us using the similar
change-patterns to boost CIA methods.

� We introduce a set of criteria for evaluating the use-
fulness of our CIA boosting method. Accuracy
improvements are observed when applying our
boosting method to ImpactMiner, JRipples and
ROSE.

We have uploaded the source code of the boosting
method to the Github, and the URL is: https://github.
com/CIABoosting/Change-Patterns-Mapping. We describe
the basic requirements and steps for running the proposed
method. Besides, we upload the key dataset to the Github,
such as, the starting classes of the commits, the change-pat-
terns, and the original impacted sets generated by the tools
Impactminer, Jripples and Rose, etc. The more detailed
information about the key dataset can be found at the
URL: https://github.com/CIABoosting/IntermediaryData-
for-ChangePatternsMapping.

The rest of this paper is organized as follows. Section 2
shows a motivating scenario and the overview of main
steps. Section 3 introduces the traditional change impact
analysis. Section 4 describes the process of seeking similar
change-patterns from the cross-project scenario. Section 5
introduces the setups of the case study. The result of the
case study is presented in Section 6. Section 7 shows a quali-
tative analysis. Section 8 is the discussion and threats to
validity. Section 9 summarizes the related works. Section 10
summarizes our approach and outlines directions of future
work.

2 MOTIVATING SCENARIO AND OVERVIEW

OF MAIN STEPS

2.1 Motivating Scenario

This section overviews a motivating scenario with an exam-
ple that uses the similar change-patterns to determine the
impacted entities in CIA task. As shown in Fig. 1, the start-
ing points JEditTextArea (Fig. 1a) and TextArea-

Painter (Fig. 1b) in the two change sets have similar
functionality. The source code of these classes is adapted
and simplified for presentation purposes. Due to the

Fig. 1. Different change sets involved in similar change-patterns.

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2377

https://github.com/CIABoosting/Change-Patterns-Mapping
https://github.com/CIABoosting/Change-Patterns-Mapping
https://github.com/CIABoosting/IntermediaryData-for-ChangePatternsMapping
https://github.com/CIABoosting/IntermediaryData-for-ChangePatternsMapping

method renaming (i.e., code lines with underlines are the
changed lines, and “-” denotes code removing, and “+”
denotes code adding) in JEditTextArea and TextArea-

Painter, JEditTextArea transfers the change ripple
effect to ChunkCache and DisplayManager, and Tex-

tAreaPainter transfers the change ripple effect to
Buffer and OffsetManager.

We found that classes JEditTextArea and TextArea-

Painter have similar ripple effects on the systems, and they
have similar change-patterns with their impacted entities. As
Fig. 1 shows, JEditTextArea builds change-pattern
< SAI,1 MMAIM2> with DisplayManager, which is the
same with the change-pattern between TextAreaPainter

and OffsetManager. Another change-pattern <CMAIM,3

SAI> between JEditTextArea and ChunkCache is also
similar with the one (i.e., <CMAIM, SAI>) between Tex-

tAreaPainter and Buffer.
The change-patterns can be used to facilitate the change

impact analysis. For example, if JEditTextArea is a start-
ing point that developer try to change, and he (or she) finds
a similar class TextAreaPainter to JEditTextArea

from the historical change set, and the change-patterns
between TextAreaPainter and its impacted classes (i.e.,
Buffer and OffsetManager) are given. Then, the devel-
oper can regard the classes that have similar change-pat-
terns (comparing with the change-patterns between
TextAreaPainter and its impacted classes) to JEdit-

TextArea as the potentially impacted entities, i.e.,
ChunkCache and DisplayManager.

2.2 Overview of Main Steps

Fig. 2 shows the main steps of the proposed approach. The
approach includes three phases: data preprocessing, tradi-
tional CIA processing and boosting phase (i.e., the parts
connected by dotted arrows in Fig. 2). In the data prepro-
cessing phase, our goal is to identify a starting class for each
change set, and analyze the change-patterns between the
starting class and the rest of classes in the change set. In the
traditional CIA processing phase, we employ the traditional
CIA tools to get the initial impact set of a given starting

class, and generate a ranking list for the impacted classes
according to their change confidence. In the boosting phase,
we retrieve a similar starting class from the historical
change sets for the given starting class, and map the
change-patterns in the historical change sets to the CIA task
at hand, and use the change-patterns to boost the rankings
of impacted classes obtained by the traditional CIA tools.

To identify a starting class of each change set, we employ
the ISC tool proposed in our previous study [12], [16], which
can identify the root change that causes the change of the rest
of entities in a change set. Meanwhile, we employ the tradi-
tional CIA tools, ImpactMiner [17], JRipples [18] and ROSE
[9], to obtain an initial impact set for a given starting class. To
retrieve a similar starting class from the historical change sets
for the given starting class, we apply code semantic and syn-
tactic information tomeasure the similarity between classes.

3 CHANGE IMPACT ANALYSIS

3.1 Basic Conceptions

Given a starting entity (such as a class: cinit), a traditional
change impact analysis approach can infer the software
entities (such as a class: ci) that need to be further changed
in the software system [17], [18]. In general, the change
impact analysis approach gives a confidence [2], [19] for
each entity, that is, the likelihood that further changes be
applied to the software entity

confðcinit; ciÞ ¼ P ðcinit; ciÞ: (1)

The notation P ðcinit; ciÞ indicates the likelihood of ci to be
changed when cinit is changed. Different CIA methods
employ different mechanisms to estimate the P ðcinit; ciÞ. For
example, the default model of ImpactMiner [17] employs
latent semantic indexing to estimate the P ðcinit; ciÞ, and
JRipples [18] analyzes the software entity dependency
graph to estimate the P ðcinit; ciÞ. ROSE [9] estimates the
P ðcinit; ciÞ by analyzing the co-changed entities in the evolu-
tionary history of the project.

Then, for a starting entity cinit, a CIA method will output
an impact set that contains all the potentially affected soft-
ware entities

CIAðcinitÞ ¼ Impact Setfc1; c2; . . . ; cng: (2)

Fig. 2. Overview of main steps.

1. SAI: static variable invoking.
2. MMAIM: method invoking through defining a method member

variable.
3. CMAIM: method invoking through defining a class member

variable.

2378 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Also, we can get a ranking list for the impacted entities
according to their change confidence in descending order.
Then, several evaluation metrics (e.g., precision and recall)
can be introduced to evaluate the performance of a CIA
method with considering a fixed size of the impacted enti-
ties in the ranking list, known as cut-off points in [2], [20].

3.2 Ranking Boosting

In order to optimize the performance of the CIA methods,
researchers always want to boost the rankings of truly
impacted entities in the list as much as possible. For exam-
ple, Gethers et al., [20] introduce an adaptive approach to
improve the rankings of truly impacted entities via combin-
ing various boosting mechanisms such as information
retrieval, dynamic analysis, etc. Kagdi et al., [2] introduce
conceptual couplings to improve the rankings of truly
impacted entities.

Intuitively, the co-changed entities in the evolution his-
tory of a project can be used as a vital reference for the CIA
task. Based on this idea, Zimmermann et al. propose to use
historical co-changed entities for CIA task [9]. Different
from the previous works, we introduce the historical
change-patterns to optimize the rankings of truly impacted
entities. We call the coupling dependencies from a starting
entity to impacted entities as change-pattern. For example,
in a historical change set, the change-pattern between
a starting entity ~cinit and an impacted entity ~cj is denoted

by < ~cinit �!~cj
cd

> when ~cinit builds coupling dependency

(i.e., �!cd
) with ~cj.

A CIA method can recommend an impact set for a start-
ing entity cinit, and the starting entity cinit may have cou-
pling dependencies with an entity ci in the impact set. Then,
if cinit and ci have a similar change-pattern when comparing
with ~cinit and ~cj (which come from historical change set), we
can improve the confidence of the impacted entity ci by
rewarding a value of Pscp. Then, the final confidence (i.e.,
conf) of entity ci is

confðcinit; ciÞ ¼ P ðcinit; ciÞ þ Pscpðcinit; ciÞ: (3)

After applying Pscp to the confidence of ci, the ranking of
ci in the list will be improved.

4 SEEKING SIMILAR CHANGE-PATTERNS

To determine whether a starting entity cinit and its impacted
entity ci have similar change-patterns in historical change
sets, we need to first identify the starting entity ~cinit in
each historical change set, and then generate the change-

pattern < ~cinit �! ~cj
cd

>; then we can compare the similarity

of change-patterns via < cinit �!cd
ci > and < ~cinit �! ~cj

cd

>

: At last, the similar change-pattern < ~cinit �! ~cj
cd

> can be
mapped to the CIA task for cinit.

4.1 Identifying Starting Entity

The algorithm of identifying starting entity ~cinit from a histor-
ical change set has been proposed in our previous study [12],
[16], known as ISC, and we employ ISC to identify the start-
ing entity in a historical change set in this paper. The starting
entity is also called salient entity in [12], [16], and the salient
entity is the root change that causes the modification of the
rest of entities in a change set, while the rest of entities are the
dependency modification along with the salient one. There-
fore, the salient entity is the starting entity in this study.

We added a real world example from jEdit (i.e., commit
22,828) project to illustrate how ISC identifies the starting
entity in a historical change set in this paper, as shown in
Figs. 3a, 3b, and 3c. The commit is adapted and simplified
for presentation purposes. As Fig. 3a shows, developer
updates the method abbreviate() to abbreviateView() (the
minus “�” represents the deleted code and the plus “+”
represents the added code) in class MiscUtilities, and the
code change has ripple effect cross another 2 classes, i.e.,
Buffer, BufferPrinter1_3 as Figs. 3b and 3c show. Obviously,
MiscUtilities is the starting entity.

Because a code change tends to propagate from the initial
node of change occurrence to the node that has coupling
relationship with the initial node, ISC uses structural cou-
pling information between entities as one of the features to
identify the starting entity. For example, the coupling rela-
tionship of method invocation (i.e., abbreviateView())
between classes MiscUtilities and Buffer. Meanwhile, since
the starting entity in a change set is initially modified, start-
ing and non-starting entities differ in the amount of code

Fig. 3. An example of identifying the starting entity by ISC.

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2379

involved in the modification. Therefore, ISC employs the
update degree (e.g., the number of changed code state-
ments) of an entity in a change set to identify the starting
entity. For example, the number of changed code statements
in MiscUtilities and Buffer are different. In addition, ISC
also uses the types of commit to distinguish the starting and
non-starting entities in a change set. For example, the com-
mit 22,828 is a “Re-Engineering” [12], [16] change set as it
involves method renaming. ISC will identify the class Mis-
cUtilities as the starting entity via analyzing these features
extracted from the commit. ISC achieves an accuracy of
87 percent in identifying the starting entity. More introduc-
tion of ISC can be found in [12], [16].

4.2 Seeking Equivalent Starting Entity

For a current CIA task, we have a starting entity cinit, and try
to seek a starting entity ~cinit with similar functionality to cinit
from the historical change sets, and ~cinit is an equivalent
starting entity for cinit, and the change-patterns caused by
~cinit are used as a reference for the CIA task of cinit. Then, we
need to compare the similarity of cinit and ~cinit. In general, we
can determine the similarity from the code semantic and syn-
tactic information. Code syntax can catch the program func-
tional information from a perspective of program logic,
while code semantics can intuitively catch the program func-
tional information from theword-choices of the source code.

Not all the words in the source code play a positive role
for the semantic similarity analysis, some noisy words have
no actual semantics and may weaken the original code
semantics. To eliminate these noisy words, three prepro-
cessing rules are applied on the original source code: 1) filter
out the function words in the source code, such as: ’and’,
’the’, ’an’, etc. 2) filter out the keywords of Java, such as:
’public’, ’void’, ’if’, ’import’, ’static’, etc. 3) filter out the letter
sequence which does not denote a word, such as: ’tttt’,
’hhhk’, ’kkkk’, etc. In addition, we split the camel-case words
into single words. Then, each entity corresponds to a text,
e.g., cinit and ~cinit corresponds to T ðcinitÞ and T ð~cinitÞ.

Inspired by Ye et al. [21], we use the asymmetric similar-
ity to measure the sematic similarity of T ðcinitÞ and T ð~cinitÞ.
In study [21], the similarity between a word w in T ðcinitÞ
and the text T ð~cinitÞ is defined as

Simðw; T ð~cinitÞÞ ¼ max
w2T ðcinitÞ

simðw;w0Þ; (4)

where w0 2 T ð~cinitÞ and we use WordNet4 to measure the
normalized similarity simðw;w0Þ between two words. Then,
the similarity between two text T ðcinitÞ and T ð~cinitÞ is

SimðT ðcinitÞ; T ð~cinitÞÞ ¼
P

w2T ðcinitÞ Simðw; T ð~cinitÞÞ � idfðwÞ
P

w2T ðcinitÞ idfðwÞ
:

(5)

Namely, an asymmetric similarity SimðT ðcinitÞ; T ð~cinitÞÞ
is then computed as a normalized, idf-weighted sum of sim-
ilarities between words in T ðcinitÞ.

To measure the syntactic similarity of cinit and ~cinit, we
use the syntax matching method proposed in our previous
study [22]. The syntax matching method first parses each

code line of a software entity into syntactic tokens via ana-
lyzing the abstract syntax tree, then the software entities
cinit and ~cinit corresponds to token sequences TokenList1 and
TokenList2, respectively. To measure the syntactic similarity
of two entities, the syntax matching method looks for the
longest matching subsequence from the two token sequen-
ces, as shown in Algorithm 1.

Algorithm 1. Syntactic Similarity Computing

Input: TokenList1: the token sequence of class 1;
TokenList2: the token sequence of class 2;

Output: SyntaxSimilarity
Begin
1: For i = 0 to TokenList1.size do:
2: For j = 0 to TokenList2.size do:
3: If (TokenList1.get(i) == TokenList2.get(j)) do:
4: M[i,j] = 1;
5: End If
6: End For
7: End For
8: ForeachM[n,m]do:
9: While (true) do:
10: If(M[n,m] == 1) do:
11: subseqt .add(M[n,m])
12: n = n + 1;
13: m = m + 1;
14: remove(M[n,m]);
15: Else:
16: break;
17: End If
18: End While
19: End Foreach
20: Foreach subseqt do:
21: While (true) do:
22: If gap(subseqt, subseqtþ1) < � do:
23: subseqt = link(subseqt, subseqtþ1);
24: t = t + 1;
25: remove(subseqtþ1);
26: Else:
27: break;
28: End If
29: End While
30: End Foreach
31: SyntaxSimilarity = max lengthfsubseq1;subseq2;...;subseqtg

max sizefTokenList1;TokenList2g
32: Return SyntaxSimilarity;
End

In Algorithm 1, we first compare every token in Token-
List1 (corresponding to token sequence 1) with every token
in TokenList2 (corresponding to token sequence 2). We use a
matrix to store the result, and every matrix cell M½i; j� stores
the result of the comparison between the relevant token i and
the relevant token j.M½i; j� ¼ 1means the relevant tokens are
matched (i.e., identical). Second, we look for the matched
cells from upper left corner of the matrix. From the first
matched cell, wewill further extend up to the first unmatched
cell on the main diagonal direction. The continuously
matched cells form a subsequence. We continue to find out
all the subsequences in the matrix. Third, we check the gap
between any two subsequences in the matrix. If the gap is
less than a specific number, we link these two subsequences
to form a longer one. In the same manner the gap checking is
repeated until we traverse all subsequences, then we can find4. https://wordnet.princeton.edu/

2380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

https://wordnet.princeton.edu/

a longest subsequences at last. Fourth, dividing the length of
the longest subsequences by the max length of token
sequence 1 and token sequence 2 is the syntactic similarity.

Since semantic (i.e., semanSimi) and syntactic similarities
(i.e., syntdeSimi) are equally important in determiningwhether
two entities are similar, we combine the semantic and syntac-
tic similarities by given them equal weights when calculating
the overall similarity (i.e., weightedSimi), i.e., weightedSimi ¼
1
2 ðsemanSimiþ syntdeSimiÞ. Then, we can retrieve a number
of functionality-similar starting entities from the change sets
for cinit, which is used to assist the CIA task of cinit.

4.3 Change-Patterns Identification

The change-patterns refer to the coupling dependencies
from the change starting entity to the impacted entities in a
change set. Since there can be various coupling dependen-
cies between the starting entity and impacted entities [23],
there are many types of change-patterns. According to the
study [23] as well as our observation from the object-ori-
ented programming paradigm in previous study [13], we
get 21 common instances of coupling dependencies from
the source code, and these coupling dependencies may exist
at the class level, method level, and variable level.

Coupling Dependency 1. For a change set S, a starting class
Ci 2 S, and an impacted class Cj 2 S. If Ci and Cj establish
coupling relationship at the class level, they satisfy the
Class-to-Class coupling dependency, denoted by

CR1 ¼ fCi) Cjj Ci 2 S;Cj 2 Sg; (6)

where ’)’ denotes the coupling relationship. In Java pro-
gram syntax, Inheritance(IH) and Implementing Interface(II)
[24] are the most common cases that satisfy CR1.

A class Ci includes a sets of variables Ai and methodsMi.
Namely, Ci = fAi;Mig, and Ai = fai1; ai2; . . . ; aitg, Mi =
fmi1;mi2; . . . ;mihg. Ai and Mi are the set of variables and
methods of Ci, respectively. Similarly, Cj = fAj;Mjg, and
Aj = faj1; aj2; . . . ; ajug, Mj = fmj1; mj2; . . . ;mjvg. Aj and Mj

are the set of variables and methods of Cj, respectively.
Coupling Dependency 2. A method mi� of Ci uses the class

Cj, but it is not intended to define a variable by Cj or call
the static variables and methods of Cj, the situation satisfies
the Method-to-Class coupling dependency

CR2 ¼ fCi �mi�) Cj j mi� 2 Mig: (7)

The instances of CR2 are: Type-Casting (TC), Instanceof (IO),
Return Type (RT), and Exception Throws (ET), etc.

However, in most cases finer-grained coupling depen-
dencies often exist at the method and variable levels. The
finer-grained CRfg is defined as

CRfg ¼ fCi � ei) Cj � ej j ei 2 ðAi [MiÞ ^ ej 2 ðAj [MjÞg;
(8)

where ei and ej are the variables or methods contained in Ci

and Cj, respectively. ei) ej denotes that ei and ej couple
together at the variable or method levels. According to the
definition, there are 4 possible instances of the finer granu-
larity CRfg, namely, Ci � ai�) Cj � aj�, Ci � ai�) Cj �mj�,
Ci �mi�) Cj � aj�, Ci �mi�) Cj �mj�.

In our investigation, the instances of Ci � ai�) Cj � aj�
and Ci � ai�) Cj �mj� barely occur in real encoding, while
Ci �mi�) Cj � aj� and Ci �mi�) Cj �mj� occur in most
cases. Thus, we only consider the latter two in the next.

Coupling Dependency 3. This dependency builds a cou-
pling relation between mi� of Ci and aj� of Cj, namely, a
Method-to-Variable dependency

CR3 ¼ fCi �mi�) Cj � aj� j mi� 2 Mi ^ aj� 2 Ajg: (9)

The most representative instance for CR3 is Static Variable
Invoking (SAI).

Coupling Dependency 4. This dependency builds a cou-
pling relation between mi� of Ci and mj� of Cj, namely, a
Method-to-Method dependency

CR4 ¼ fCi �mi�) Cj �mj� j mi� 2 Mi ^ mj� 2 Mjg: (10)

CR4 builds coupling relation at the method level. E.g., Static
Method Invoking (SMI); Construction Method Invoking (CMI).

In addition to the above mentioned instances for each
coupling dependencies, there is a most common instance in
real encoding [25]. This kind of instance uses Cj to define an
variable ai� contained in Ci, where ai� may be a Method
Member Variable or Class Member Variable or Function Parame-
ter. Generally, the defined variable ai� is usually used in a
method mi� of Ci, and there are three usages: �1 using ai�
directly in a certain method mi� of Ci. Because ai� is a vari-
able declared by Cj and ai� is used in a certain method mi�
of Ci, thus we can regard the coupling relation between Ci

and Cj as Method-to-Class. E.g., the instances MMAUA,
CMAUA and FPUA satisfy this case, and detailed descrip-
tion is shown in Table 1; �2 invoking the variable aj� of Cj

via ai� (because ai� is declared by Cj), and Ci and Cj builds
a Method-to-Variable coupling relation. As Table 1 shows,
the instances MMAIA, CMAIA and FPIA satisfy this case; �3
invoking the method mj� of Cj via ai�, and Ci and Cj builds
a Method-to-Method coupling relation. As Table 1 shows,
the instancesMMAIM, CMAIM and FPIM satisfy this case.

We have classified the coupling dependencies into 4
types at class, variable and method levels. Table 2 shows
the 4 coupling dependencies and their corresponding for-
malization expressions and 18 instances. To identify the
coupling dependencies that two classes satisfy, we get the
variable and method definitions and the variable and
method invocations in the two classes via analyzing their
abstract syntax trees by applying the JavaParser5 APIs.

TABLE 1
Common Instances of a Variable Usage

Instances Description Abbrev

Method Member Variable mi� invokes variable ai� MMAUA
mi� invokes variable aj� of Cj MMAIA
mi� invokes methodmj� of Cj MMAIM

Class Member Variable mi� invokes variable ai� CMAUA
mi� invokes variable aj� of Cj CMAIA
mi� invokes methodmj� of Cj CMAIM

Function Parameter mi� invokes parameter ai� FPUA
mi� invokes variable aj� of Cj FPIA
mi� invokes methodmj� of Cj FPIM

5. https://javaparser.org/

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2381

https://javaparser.org/

After getting the coupling dependencies between the
starting class Ci and an impacted class Cj, the change-pat-
tern between Ci and Cj can be represented by a vector
VcpðCi; CjÞwith 18 dimensions

VcpðCi; CjÞ ¼< IH; II; TC; IO; . . . ; CMAIM >: (11)

The value of each dimension in VcpðCi;CjÞ is the number
of a certain coupling dependency that the two classes satisfy.

4.4 Change-Patterns Mapping

For a starting entity cinit in the current CIA task, we can
retrieve t equivalent starting entities ~cinit from t historical
change sets. Then, the change-patterns between ~cinit and the
rest of the entities (i.e., ~cj) in a change set can be mapped to
the current CIA task to boost the rankings of the entities
that are truly impacted by cinit.

We employ Jaccard similarity [26] to measure the similar-
ity of change-patterns. Jaccard similarity is suitable to deal
with the case in this study, because the positive matching of
the coupling dependency on a certain dimension (a certain
dimension in two vectors have the same value) is more
meaningful than negative matching (a certain dimension in
two vectors have different values). In the similarity mea-
surement, the number of negative matching is considered to
be insignificant, and Jaccard similarity can ignore the influ-
ence of negative matching.

We first find t equivalent starting entities from t historical
change sets for a starting entity cinit according to the code
semantic and syntactic similarities. Then, for a change-pattern
< cinit �!cd ci >; we try to find its similar change-patterns

< ~cinit �!~cj
cd

> from the t change sets via the Jaccard

similarity

JSimiðVcpðcinit; ciÞ; Vcpð~cinit; ~cjÞÞ ¼ Vcpðcinit; ciÞ \ Vcpð~cinit; ~cjÞ
Vcpðcinit; ciÞ [Vcpð~cinit; ~cjÞ ;

(12)

where, i 2 1; . . . ; n; j 2 1; . . . ;m. When the value of JSimi

ðVcpðcinit; ciÞ; Vcpð~cinit; ~cjÞÞ is greater than h, we use the

change-pattern < ~cinit �!~cj
cd

> to boost the final confidence

of entity ci. Then, the Pscpðcinit; ciÞ in the formula (3) is

Pscpðcinit; ciÞ ¼
Xk

1

JSimiðVcpðcinit; ciÞ; Vcpð~cinit; ~cjÞÞ; (13)

where, k is the number of change-patterns that their
JSimiðVcpðcinit; ciÞ; Vcpð~cinit; ~cjÞÞ values are greater than h.
The final confidence for ci is

confðcinit; ciÞ ¼P ðcinit; ciÞ

þ
Xk

1

JSimiðVcp;kðcinit; ciÞ; Vcpð~cinit; ~cjÞÞ:

(14)

We will determine the values of t and h via the compari-
son experiments, and the optimal values of t and h are 20
and 0.8. More discussion regarding the t and h can be found
in Sections 8.1 and 8.2.

5 CASE STUDY DESIGN

To have a meaningful evaluation, we outline 3 change
impact analysis methods (namely, ImpactMiner, JRipples
and ROSE) after applying our boosting mechanism. Besides,
we empirically investigate how our approach performs by
comparing it with a random approach.

5.1 Datasets

To collect the historical change sets, we downloaded 182
projects from Github6 and SourceForge,7 the historical
change set is also known as commit in most studies [9], [27].
The projects are selected based on the following rules: First,
we require that all the selected projects are open source and
implemented in Java. Second, we selected projects that have
active updates in its evolution history. Third, we selected
projects belonging to different domains including graphics
editor, text editor, game, programming frame, middleware
system, etc. Combining all the above factors, we selected the
182 projects from different domains. Not all the commits are
useful due to the number of classes contained in the commits.
Since our approach tries to find the similar change-patterns
from the historical commits, we filter out the commits with
less than 2 classes files (including the commits containing
non-source code files). After applying the filter rule, there
are 94,778 commits in total. A local repository is built to save
these commits, andwe use themethod described in previous
sections to identify the starting class in each commit, and
generate the change-patterns for each commit.

We conduct change impact analysis for 7 Java open-
source projects in our evaluation. The selected projects are
commonly evaluated projects in most of the software engi-
neering related research [13], [14], [15], i.e., FreeCol [28],
HSQLDB [29], JAMWiki [30], jEdit [31], JHotDraw [32],
Makagiga [33], OmegaT [34]. Since these 7 projects have
more than ten years evolution history, they have a relatively
high number of commits. The detailed information of the
projects is shown in Table 3.

TABLE 2
Coupling Dependencies

Name Coupling Dependencies Formalization Instances

CR1 Class-to-Class Ci) Cj IH, II
CR2 Method-to-Class Ci �mi�) Cj TC, IO, RT, ET ,MMAUA, CMAUA, FPUA
CR3 Method-to-Variable Ci �mi�) Cj � aj� SAI, MMAIA, CMAIA, FPIA
CR4 Method-to-Method Ci �mi�) Cj �mj� SMI, CMI, FPIM,MMAIM, CMAIM

6. https://github.com/
7. https://sourceforge.net/

2382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

https://github.com/
https://sourceforge.net/

Note that the 7 datasets are included in the 182 projects,
because the change-patterns in previous commits of the
7 projects can be used to guide the current CIA tasks, just
like the traditional MSR based CIA methods, i.e., within-
project scenario.

5.2 Evaluation Methodology

We first employ ISC [12] to identify a starting class for
each commit in Table 3, then the other classes in the same
commit are regarded as the truly impacted ones by the
starting class (ground truth). After that, we use the 3 tra-
ditional methods (i.e., ImpactMiner, JRipples and ROSE)
to analyze the impact set in each project system for each
starting class, and generate a ranking list of the impacted
classes. The three CIA tools are selected owing to their
open-source availability. At last, we apply our boosting
mechanism, and try to improve the rankings of the truly
impacted classes in the list.

When employing ImpactMiner for the CIA tasks, we use
commit message as textual information to estimate an
impact set via IR technique, known as IRCR component in
ImpactMiner, then we use the second component (i.e.,
Histseed) of ImpactMiner to mine the past commits of the
starting class to estimate the impact set. To apply JRipples
to the CIA tasks, we download a complete code of the ver-
sion the commit locates in, then we can employ JRipples to
generate the class dependencies for this version. For the
starting class in a commit, the “next” classes given by JRip-
ples are regarded as impact set. JRipples is a plugin of
Eclipse, and we use the default setting of JRipples for CIA
tasks. Fig. 4 shows the operation interface of ImpactMiner
and JRipples. To run ROSE, we download all the commits
in the evolutionary histories of the 7 projects, then we utilize
ROSE to detect the impact set by analyzing the evolutionary

histories of the projects. We also use the default setting of
ROSE for CIA tasks.

Recall and Precision are widely used to evaluate the per-
formance of impact analysis methods [2], [20], [23], which
can evaluate the difference between the impact set esti-
mated by tools and the actual impact set. Given a starting
class cinit, Eimp represents the impact set estimated by tools,
and Rimp represents the actual impact set. Then, the recall
and precision are defined as

recall ¼ jEimp \Rimpj
jRimpj � 100% (15)

precision ¼ jEimp \Rimpj
jEimpj � 100%: (16)

In many cases, we will evaluate the performance of an
impact analysis approach under a given cut-off point [2]
(e.g., 5, 10, 20, 30, 40, etc.). That is, we rank the esti-
mated impacted classes in descending order, and a given
cut-off point will derive an estimated impact set (E.g., a
cut-off point of 5 indicates that the estimated impact set
with our approach contains 5 entities.), then we can eval-
uate the recall and precision of the impact analysis
approach under such an estimated impact set. f-measure
is the harmonic mean of precision and recall, which can
be also used to evaluate the performance of the CIA
tools

f �measure ¼ 2 � precision � recall
precisionþ recall

� 100%: (17)

6 RESULTS ANALYSIS

In this paper, we focus on the performance of applying our
boosting method to the traditional CIA methods, and we
investigate the likely benefits of our boosting method for
the CIA tasks. The cut-off points in this study are 5, 10, 20,
30 and 40, and the h is 0.8, and the value of t for Impact-
Miner, JRipples and ROSE is 20, and we will discuss the t
and h choice effect in Sections 8.1 and 8.2.

Table 4 presents the results for ImpactMiner as well as the
results after applying our boosting method, where “Delta
Improv” represents the delta improvement of the boosting
method versus the traditional CIA tool under a specific cut-

TABLE 3
Projects Used in the Case Study

Projects Version
Commits
Amount Projects Version

Commits
Amount

FreeCol 0.3-1.0 2,136 HSQLDB 1.80-2.33 1,137
JAMWiki 0.5-1.3 899 jEdit 4.0-4.5 1,665
JHotDraw 7.1-7.5 378 Makagiga 2.0-4.12 4,072
OmegaT 2.05-3.54 837

Fig. 4. Change impact analysis tools.

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2383

off point. We found that applying our boosting method on
ImpactMiner improves the performance over any dataset
comparing with the standalone ImpactMiner. The maxi-
mum improvement for recall is 9.12 percent when the
cut-off point is 5 on the dataset OmegaT, while the mini-
mum improvement for recall is 0.29 percent when the
cut-off point is 40 on the dataset JHotDraw. Meanwhile,
the maximum improvement for precision is 5.59 percent
when the cut-off point is 5 on the dataset HSQLDB, while
the minimum improvement for precision is 0.08 percent
when the cut-off point is 40 on the dataset JAMWiki. The
average improvements (i.e., Avg Improv, also called abso-
lute improvement) for recall and precision are 5.22 per-
cent and 4.41 percent at the cut-off point of 5, which
means that our method can improve the rankings of the
actual impacted classes. Table 4 also shows the relative
improvements of the recall or precision achieved by our
boosting method when comparing with those of Impact-
Miner, i.e., Rlt Improv. The maximum relative improve-
ments of recall and precision for ImpactMiner are 36.03
and 21.98 percent at the cut-off point of 5.

Table 5 presents the recall and precision after applying
the boosting method on JRipples. The results indicate a
positive improvement for the recall in most of datasets
with the cut-off point of 5 when applying the boosting
method. When setting the cut-off points as 10 and 20, the
recall also shows a positive improvement in most of the
datasets except for the datasets JHotDraw and OmegaT,
where the recall shows a slight descent (e.g., 0.44 percent
of decline on JHotDraw). When setting the cut-off point as
30, the recall shows a positive improvement. When setting
the cut-off point as 40, we can also observe some recalls

remain unchanged (e.g., in FreeCol, JAMWiki, JHotDraw,
Makagiga, OmegaT), this is because the number of
impacted entities estimated by JRipples is less than or
equal to 40, and our boosting method works on an initial
impact set estimated by JRipples, then our method cannot
be superior to JRipples when the total impacted entities
estimated by JRipples is less than the cut-off points, i.e., 40.
Table 5 also presents the precision for JRipples as well as
the precision after applying the boosting method. The
results show a positive improvement for the precision at
the cut-off points of 5, 10, 20. Table 5 also shows the rela-
tive improvements (i.e., Rlt Improv). The maximum rela-
tive improvements of recall and precision for JRipples are
6.48 and 6.52 percent at the cut-off point of 5.

At the same time, we can observe that the average boosting
improvements on ImpactMiner are more significant than
those on JRipples. This is because the initial impact set esti-
mated by ImpactMiner contains more truly impacted classes,
and then our method has more chance to boost the sorting
positions of the actual impact class forward in the ranking list.

Table 6 presents the recall and precision for ROSE before
and after applying the boosting method, and the maximum
relative improvements of recall and precision for ROSE are
12.39 and 11.81 percent at the cut-off point of 5. We can
observe that most of the recall and precision are improved
when we apply the boosting method to ROSE, while there
are some exceptions, such as the recall and precision after
applying the boosting method at the cut-off points of 5 and
10 on project FreeCol. In this case, the boosting method
shows a negative effect on the identification of the actual
impacted classes of ROSE. However, with the improvement
of the cut-off point, the boosting method shows a positive

TABLE 4
Accuracy Boosting for ImpactMiner on all Datasets Using Various Cut-Off Points

Datasets Approach
Recall(%) Precision(%)

5 10 20 30 40 5 10 20 30 40

FreeCol ImpactMiner 9.51 16.81 27.20 36.79 45.73 7.33 6.75 5.67 5.27 4.95
Boosting 15.27 22.76 33.32 41.15 48.27 12.38 9.55 7.07 5.91 5.23
Delta Improv +5.76 +5.95 +6.12 +4.36 +2.54 +5.05 +2.80 +1.40 +0.64 +0.28

HSQLDB ImpactMiner 9.49 16.13 24.66 29.82 34.60 10.90 9.45 7.41 6.15 5.48
Boosting 15.09 21.68 29.89 34.92 38.21 16.85 12.64 9.35 7.45 6.24
Delta Improv +5.60 +5.55 +5.23 +5.10 +3.61 +5.95 +3.19 +1.94 +1.3 +0.76

JAMWiki ImpactMiner 14.76 20.18 27.24 30.07 31.11 11.69 8.62 6.13 4.67 3.67
Boosting 16.26 22.65 28.55 30.54 31.50 13.81 9.88 6.59 4.85 3.75
Delta Improv +1.5 +2.47 +1.31 +0.47 +0.39 +2.21 +1.26 +0.46 +0.18 +0.08

jEdit ImpactMiner 14.71 23.26 30.82 34.70 37.71 11.44 10.22 7.13 5.56 4.58
Boosting 19.79 26.12 33.21 36.02 38.50 16.46 11.30 7.74 5.79 4.72
Delta Improv +5.08 +2.86 +2.39 +1.32 +0.79 +5.02 +1.08 +0.61 +0.23 +0.14

JHotDraw ImpactMiner 7.32 12.20 19.08 23.86 27.38 9.26 8.16 6.62 5.49 4.52
Boosting 9.53 14.26 20.80 24.27 27.67 11.47 9.41 7.24 5.59 4.61
Delta Improv +2.21 +2.06 +1.72 +0.41 +0.29 +2.21 +1.25 +0.62 +0.10 +0.09

Makagiga ImpactMiner 19.38 28.11 38.94 46.16 51.89 12.52 9.34 6.67 5.46 4.66
Boosting 26.66 34.57 44.19 50.28 54.69 17.59 11.89 7.78 6.02 4.99
Delta Improv +7.28 +6.46 +5.25 +4.12 +2.80 +5.07 +2.55 +1.11 +0.56 +0.33

OmegaT ImpactMiner 26.24 38.09 48.77 53.23 56.39 16.53 12.26 8.05 6.11 4.91
Boosting 35.36 43.71 51.00 54.91 57.93 21.98 14.21 8.48 6.30 5.06
Delta Improv +9.12 +5.62 +2.23 +1.68 +1.54 +5.45 +1.95 +0.43 +0.19 +0.15

Avg Improv (%) 5.22 4.42 3.46 1.07 1.71 4.41 2.01 0.94 0.46 0.26
Rlt Improv (%) 36.03 19.99 11.18 2.94 4.20 21.98 14.21 8.48 6.30 5.06

2384 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

TABLE 5
Accuracy Boosting for JRipples on all Datasets Using Various Cut-Off Points

Datasets Approach
Recall(%) Precision(%)

5 10 20 30 40 5 10 20 30 40

FreeCol JRipples 16.40 25.50 31.13 35.01 35.49 15.06 11.57 7.06 5.26 4.01
Boosting 17.38 26.18 31.77 35.08 35.49 14.98 11.66 7.19 5.28 4.01
Delta Improv +0.98 +0.68 +0.64 +0.07 +0.00 –0.07 +0.09 +0.13 +0.02 +0.00

HSQLDB JRipples 15.63 22.49 31.41 37.92 40.79 18.23 13.96 10.12 8.21 6.81
Boosting 16.84 24.96 32.99 38.18 40.89 19.71 15.46 10.60 8.28 6.77
Delta Improv +1.21 +2.47 +1.58 +0.26 +0.10 +1.48 +1.50 +0.48 +0.07 –0.04

JAMWiki JRipples 24.62 32.48 36.10 37.12 37.18 15.79 11.11 6.46 4.48 3.38
Boosting 29.63 33.65 36.24 37.12 37.18 20.58 12.05 6.52 4.48 3.38
Delta Improv +5.01 +1.17 +0.14 0.00 0.00 +4.79 +0.94 +0.06 0.00 0.00

jEdit JRipples 26.10 35.64 44.83 51.26 54.32 23.31 16.43 11.02 8.83 7.22
Boosting 28.26 37.60 46.09 51.85 54.56 24.48 17.40 11.37 8.93 7.23
Delta Improv +2.16 +1.96 +1.26 +0.59 +0.24 +1.17 +0.97 +0.35 +0.10 +0.01

JHotDraw JRipples 11.63 12.72 12.72 13.17 13.17 13.10 8.28 4.14 2.99 2.24
Boosting 11.63 12.28 12.72 12.72 13.17 13.10 7.59 4.14 2.76 2.24
Delta Improv 0.00 –0.44 0.00 –0.35 0.00 0.00 –0.69 0.00 –0.23 0.00

Makagiga JRipples 24.33 27.57 29.47 30.28 30.57 14.77 8.67 4.74 3.27 2.48
Boosting 25.05 27.90 29.49 30.39 30.57 15.40 8.87 4.75 3.29 2.48
Delta Improv +0.72 +0.33 + 0.02 +0.11 0.00 +0.63 +0.30 +0.01 +0.02 0.00

OmegaT JRipples 33.55 35.91 36.10 36.10 36.10 20.99 11.41 5.73 3.82 2.86
Boosting 33.35 35.91 36.10 36.10 36.10 20.92 11.41 5.73 3.82 2.86
Delta Improv –0.20 0.00 0.00 0.00 0.00 –0.07 0.00 0.00 0.00 0.00

Avg Improv (%) 1.41 0.88 0.52 0.08 0.05 1.13 0.43 0.15 0.00 0.00
Rlt Improv (%) 6.48 3.20 1.64 0.23 0.14 6.52 3.70 2.13 0.00 0.00

TABLE 6
Accuracy Boosting for ROSE on all Datasets Using Various Cut-Off Points

Datasets Approach
Recall(%) Precision(%)

5 10 20 30 40 5 10 20 30 40

FreeCol ROSE 22.09 33.04 44.19 50.26 54.00 17.39 13.33 9.11 7.02 5.75
Boosting 19.53 31.60 46.33 52.50 56.13 15.45 12.76 9.58 7.37 6.01
Delta Improv –2.56 –1.44 +2.14 +2.24 +2.13 –1.94 –0.57 +0.47 +0.35 +0.26

HSQLDB ROSE 16.12 23.14 30.69 36.15 40.07 16.23 12.56 8.93 7.22 6.15
Boosting 16.77 25.23 34.12 39.09 42.72 16.90 14.03 10.17 7.99 6.65
Delta Improv +0.65 +2.09 +3.43 +2.94 +2.65 +0.67 +1.47 +1.24 +0.77 +0.50

JAMWiki ROSE 34.29 45.19 55.01 61.57 65.26 28.73 19.46 12.06 9.19 7.35
Boosting 37.96 49.33 60.32 64.13 66.91 31.81 21.54 13.42 9.63 7.59
Delta Improv +3.67 +4.14 +5.31 +2.56 +1.65 +3.08 +2.08 +1.36 +0.44 +0.24

jEdit ROSE 26.62 39.52 50.98 57.95 61.74 22.11 16.76 11.22 8.69 7.03
Boosting 31.72 42.76 53.31 59.38 63.46 25.76 18.31 11.62 8.85 7.25
Delta Improv +5.1 +3.24 +2.33 +1.43 +1.72 +3.65 +1.55 +0.40 +0.16 +0.22

JHotDraw ROSE 27.64 37.52 45.48 50.87 53.67 23.56 16.53 10.30 7.83 6.22
Boosting 31.38 41.09 49.78 53.02 55.32 27.12 18.49 11.42 8.22 6.48
Delta Improv +3.74 +3.57 +4.30 +2.15 +1.65 +3.56 +1.96 +1.12 +0.39 +0.24

Makagiga ROSE 22.10 29.20 37.24 42.07 45.94 14.15 9.78 6.51 5.00 4.13
Boosting 27.51 34.07 40.83 44.56 48.00 18.03 11.61 7.23 5.35 4.34
Delta Improv +5.41 +4.87 +3.59 +2.49 +2.06 +3.88 +1.83 +0.72 +0.35 +0.21

OmegaT ROSE 31.91 40.74 48.76 51.75 54.26 21.90 14.44 9.02 6.49 5.08
Boosting 38.30 44.45 51.03 53.30 55.11 26.03 15.71 9.37 6.63 5.16
Delta Improv +6.39 +3.71 +2.27 +1.55 +0.85 +4.13 +1.27 +0.35 +0.14 +0.08

Avg Improv (%) 3.2 2.88 3.33 2.19 1.82 2.43 1.37 0.81 0.37 0.25
Rlt Improv (%) 12.39 8.13 7.48 4.38 3.39 11.81 9.32 8.44 5.03 4.2

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2385

effect on the CIA task of ROSE. Meanwhile, the average
recall and precision on all the datasets are improved.

Based on these results, we conclude that the combination
of traditional CIA methods and our boosting method is
shown to be superior to the standalone CIA methods in
most cases, and our boosting method does improve the
average accuracy of the traditional CIA methods in the task
of change impact analysis on multiple datasets.

7 QUALITATIVE ANALYSIS

In this section, we try to systematically analyze where do
our boosting method benefits come from. First, we illustrate
several examples regarding how the change-patterns affect
the positions of the impacted classes in the ranking list. Sec-
ond, we empirically analyze the frequency of similar
change-patterns in historical change sets and further pro-
vide an empirical evidence to support our boosting method.
Third, we empirically analyze how many similar change-
patterns coming from across-project and within-project
cases can be utilized by our boosting method.

7.1 Ranking Boosting Examples

We perform a qualitative analysis on the results in order to
better understand where our boosting method benefits come
from. Specifically, we analyze several cases with comparing
the initial ranking lists by the CIA tools (e.g., Impactminer)
and the reordered ranking lists by our boostingmethod.

Fig. 6 shows an example of applying our boosting method
on Impactminer. In Fig. 6a, the blue dotted circle is the

commit (#12780) from jEdit and the red dotted circle is the
commit (#1776) from Flyway (Flyway is included in the 182
projects). Class JEditTextArea is the change starting point,
and classes ChunkCache, DisplayManager and TextAr-

eaPainter are the actual impacted classes by JEditTex-

tArea. In Fig. 6b (left side), Impactminer gives an initial list
of the classes impacted by JEditTextArea. We can observe
that the ranks of the three actual impacted classes are 1, 4,
and 12. Then, we apply our boosting method to the initial
result given by Impactminer, and the boosting method rec-
ommends the change-pattern (i.e., < FPIM, CMAIM, CMI>)
between HdfsBlobContainer and HdfsBlobContainer

to the CIA task. Since this change-pattern is similar with the
ones between JEditTextArea and its actual impacted clas-
ses, our boostingmethod improves the ranks of the three clas-
ses in the list, as shows in In Fig. 6b (right side).

Fig. 7 shows an example (coming from jEdit, commit
#2684 (blue dotted circle) and OKhttp, commit #2132 (red

Fig. 6. A boosting case for Impactminer.

Fig. 5. t choice effects on the performance of ImpactMiner, JRipples, and ROSE.

2386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

dotted circle)) of applying our boostingmethod on ROSE. As
Fig. 7a shows, Buffer is the change starting point, and it
builds a change-pattern of <MMAUA, FPIM > with Tex-

tAreaPainter, and a change-pattern of <FPIM,MMAIM,
CMAIM> with OffsetManager, and a change-pattern of
< FPIM, MMAIM > with JeditTextArea. Our boosting
method recommends the change-patterns of commit #2132
from project OKhttp to the CIA task, and both the change-
patterns between Request and HttpResponseCache,
Request and HttpEngine, are similar with the change-
pattern between Buffer and TextAreaPainter. As a
result, TextAreaPainter is promoted to the first ranking
in the list, as Fig. 7b shows. Meanwhile, benefitting from the
change-pattern between Request and CacheStrategy,
the rank of OffsetManager is also improved.

Fig. 8 shows a bad example (coming from jEdit, commit
#2160 (blue dotted circle) and HSQLDB, commit #4931 (red
dotted circle)) of applying our boosting method on JRipples,
where the rank of the actual impacted class goes down
when applying the boosting method. As Fig. 8a shows,
TextAreaPainter is the actual impacted class by the
change starting point JeditTextArea, while View is not.
Due to the code similarity between JeditTextArea and
Expression, our boosting method recommends the
change-patterns of commit #4931 from project HSQLDB to
the CIA task. Then, the change-pattern between Expres-

sion and FunctionSQLInvoked is similar with the one
between JeditTextArea and View, and View is pro-
moted to the 3rd ranking, and TextAreaPainter is
demoted to the 4th ranking in the list. Then, the actual
impacted class is pulled down in the list. This would
explain why our boosting method has side effects on some
datasets such as JHotDraw in Table 5.

7.2 Similar Change-Patterns

We state that the proposed boosting method can use the his-
torical change-patterns in a cross-project scenario to boost
CIA tools. The premise of this claim is that there are a lot of
similar (or same) change-patterns across projects, and then
the proposed boosting method can utilize the similar
change-patterns coming from other projects.

We count the frequency of the change-patterns across
different projects. Specifically, for the commits coming from
the 182 projects (i.e., the dataset), we extract the change-pat-
terns between the starting class and the rest of classes in a
commit, and then we cluster the same change-pattern in the
commits of the 182 projects. In total, we find 233,348
change-patterns in these projects, in which 213,554 change-
patterns can find at least one identical change-pattern, up to
91.5 percent. Table 7 shows the top 10 most frequent
change-patterns, and the number of change-patterns and
the number of projects involving in the change-patterns can
also be found in the table.

We can observe that many frequent change-patterns are
across many different projects. E.g., the change-pattern 1
(i.e., Implementing Interface, II) is across 173 projects. This sta-
tistical result provides a solid foundation for us using the
similar change-patterns coming from other projects to boost
change impact analysis methods.

7.3 The Percentage of Valid Change-Patterns

We allow the boosting method to find the similar change-
patterns from 20 commits in the experiment. If the change-
patterns in the 20 commits can directly affect the rankings of
the classes in the original impact set, we regard it as a valid
one. Then, the valid change-patterns may come from the his-
torical commits of the current project, i.e., within-project
case, or coming from other projects, i.e., cross-project case.

We count the number of the valid change-patterns com-
ing from the two cases, respectively. We can observe from
Table 8 that about one third of the valid change-patterns are

TABLE 7
The Top 10 Change-Patterns Across Projects

No. Change-patterns (18 dimens) Amount
of Projects
Crossed

1 < 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0> 18,555 173
2 < 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0> 15,049 159
3 < 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0> 7,061 156
4 < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0> 5,531 154
5 < 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0> 3,494 145
6 < 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0> 3,415 143
7 < 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0> 3,385 143
8 < 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0> 1,930 129
9 < 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0> 1,915 113
10 < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1> 1,879 130

TABLE 8
The Percentage of Valid Change-Patterns Coming From

Cross-Project and Within-Project Cases

Datasets ImpactMiner JRipples ROSE

within cross within cross within cross

FreeCol 14,579 7,115 1,853 924 13,762 6,375
HSQLDB 7,997 858 7,557 666 5,936 707
JAMWiki 972 478 1,052 423 1,399 704
jEdit 6,402 4,663 6,416 4,599 4,819 3,874
JHotDraw 416 998 55 175 326 513
Makagiga 10,086 4,836 7,283 3,195 6,839 3,377
OmegaT 1,200 2,124 871 1,378 766 1,349
Percentage 66.2% 33.8% 68.8% 31.2% 66.7% 33.3%

Fig. 7. A boosting case for ROSE.

Fig. 8. A bad case for JRipples.

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2387

from cross-project case, i.e., 33.8, 31.2 and 33.3 percent for
ImpactMiner, JRipples and ROSE, respectively. Therefore,
this result confirms that the proposed method can utilize
the change-patterns coming from other projects to boosting
the CIA tasks. In addition, it demonstrates that the historical
change-patterns applying to CIA tasks can be generalized to
a cross-project scenario by our boosting method.

7.4 Within- and Cross-Project
Change-Patterns Effect

Section 7.3 shows that about 1/3 of the valid change-pat-
terns come from cross-projects, and we want to evaluate the
performance of the proposed boosting method when only
the cross-projects information is available. If our boosting
method works with only the cross-projects information, our
method can be generalized to many more application sce-
narios, such as starting a new project without within-project
information. Meanwhile, we also want to evaluate the per-
formance of the proposed boosting method when only the
within-projects information is available. If our boosting
method works well, it demonstrates that within-project
change-patterns are also useful to improve the performance
of the traditional CIA tools.

Tables 9, 10 and 11 show the accuracy boosting for
ImpactMiner, JRipples and ROSE when only using cross-
project or within-project change-patterns. We can observe
the average improvements in term of Avg Improv and Rlt
Improv in Tables 9 and 11. Such improvements indicate
that the proposed boosting method can improve the

performance of the traditional CIA method even if only the
cross-projects (or within-project) information is available. It
is worth noting that a slight drop in recall is observed on
some projects when cut-off point is 5 in Table 10 when only
using the cross-projects information. For example, the recall
of JRipples on project HSQLDB is 15.63, while the recall is
15.59. Meanwhile, the precision of JRipples on project
HSQLDB is improved from 18.23 to 18.73 when cut-off point
is 5. In general, the F-measure (i.e., a weighted harmonic
mean of precision and recall) of JRipples has no significant
difference when cut-off point is 5. When the cut-off points
go up, we can see the average improvements in term of Avg
Improv(cross) and Rlt Improv(cross) in Table 10.

In summary, the recall and precision improvements can
be observed on most of the projects when we only utilize
the cross-project information, and the proposed boosting
method is applicable to new project without within-project
information.

7.5 Practical Significance of the Improvements

Tables 4, 5, and 6 show the average improvements in both
precision and recall. Since the average improvements of pre-
cision and recall may not directly illustrate the effectiveness
of our approach for CIA tasks in practice, we demonstrate
the effectiveness of our approach from another perspective.
More precisely, we count the average improved positions of
the truly impacted classes in the CIA tasks when applying
our boosting method in each project. For example, when we
apply our boosting method to ImpactMiner on the project of

TABLE 9
Accuracy Boosting for ImpactMiner When Applying Cross- and Within-Project Change-Patterns

Datasets Approach
Recall Precision

5 10 20 30 40 5 10 20 30 40

FreeCol ImpactMiner 9.51 16.81 27.2 36.79 45.73 7.33 6.75 5.67 5.27 4.95
cross 12.88 20.04 30.8 39.44 47.13 10.17 8.26 6.46 5.64 5.10
within 14.15 21.91 32.26 40.96 47.92 11.59 9.22 6.79 5.86 5.17

HSQLDB ImpactMiner 9.49 16.13 24.66 29.82 34.60 10.90 9.45 7.41 6.15 5.48
cross 11.51 18.22 26.85 31.63 35.75 13.35 10.64 8.12 6.58 5.75
within 14.44 21.25 28.88 34.09 37.97 15.61 12.23 8.97 7.19 6.15

JAMWiki ImpactMiner 14.76 20.18 27.24 30.07 31.11 11.69 8.62 6.13 4.67 3.67
cross 15.26 22.15 27.88 30.22 31.33 12.78 9.48 6.33 4.74 3.74
within 16.41 22.15 28.31 30.28 31.34 13.70 9.57 6.45 4.76 3.75

Jedit ImpactMiner 14.71 23.26 30.82 34.7 37.71 11.44 10.22 7.13 5.56 4.58
cross 16.73 24.83 32.35 35.54 38.1 13.58 10.81 7.51 5.69 4.66
within 19.32 25.93 32.84 35.99 38.72 15.78 11.24 7.65 5.79 4.73

JhotDraw ImpactMiner 7.32 12.2 19.08 23.86 27.38 9.26 8.16 6.62 5.49 4.52
cross 8.27 14.02 20.62 24.61 27.33 10.00 8.75 7.06 5.51 4.56
within 9.60 14.69 21.93 24.45 27.10 10.59 8.75 7.13 5.61 4.52

Makagiga ImpactMiner 19.38 28.11 38.94 46.16 51.89 12.52 9.34 6.67 5.46 4.66
cross 24.90 32.38 41.68 48.71 53.89 16.22 10.84 7.23 5.77 4.86
within 25.66 33.95 43.57 49.78 54.74 16.71 11.42 7.57 5.92 4.95

OmegaT ImpactMiner 26.24 38.09 48.77 53.23 56.39 16.53 12.26 8.05 6.11 4.91
cross 33.24 42.58 50.94 54.54 57.55 20.74 13.78 8.42 6.22 5.02
within 34.90 43.96 50.52 54.31 57.50 21.55 14.12 8.36 6.22 5.02

Avg Improv (cross) 3.05 2.78 2.06 1.44 0.90 2.45 1.11 0.49 0.21 0.13
Rlt Improv (cross) 20.28 12.94 7.00 3.90 1.98 21.75 12.34 7.39 3.67 2.72
Avg Improv (within) 4.72 4.15 3.09 2.18 1.50 3.69 1.68 0.75 0.38 0.22
Rlt Improv (within) 34.29 19.99 10.94 6.06 3.48 33.52 18.81 11.20 6.65 4.37

2388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

TABLE 11
Accuracy Boosting for ROSEWhen Applying Cross- and Within-Project Change-Patterns

Datasets Approach
Recall Precision

5 10 20 30 40 5 10 20 30 40

FreeCol ROSE 22.09 33.04 44.19 50.26 54.00 17.39 13.33 9.11 7.02 5.75
cross 19.74 32.00 44.69 51.52 55.48 15.7 12.79 9.23 7.19 5.90
within 18.78 30.68 45.24 51.84 56.09 14.98 12.33 9.32 7.26 5.98

HSQLDB ROSE 16.12 23.14 30.69 36.15 40.07 16.23 12.56 8.93 7.22 6.15
cross 16.65 25.18 32.22 37.54 40.8 16.8 13.72 9.46 7.57 6.28
within 16.44 24.51 33.64 38.55 42.07 16.74 13.39 9.97 7.78 6.47

JAMWiki ROSE 34.29 45.19 55.01 61.57 65.26 28.73 19.46 12.05 9.19 7.35
cross 35.88 47.57 59.43 63.36 66.53 29.96 20.81 13.19 9.47 7.53
within 37.93 48.67 59.83 63.73 67.13 31.27 21.16 13.26 9.56 7.60

Jedit ROSE 23.93 37.87 49.41 56.56 60.54 19.93 16.15 11.1 8.67 7.06
cross 26.30 37.79 50.00 57.24 61.51 21.68 16.37 11.15 8.71 7.16
within 28.25 38.93 50.21 57.25 61.75 22.84 16.78 11.00 8.67 7.17

JhotDraw ROSE 5.57 12.07 13.85 15.20 15.20 6.41 6.79 4.49 3.33 2.50
cross 8.34 13.14 14.49 15.2 15.33 10.51 7.56 4.55 3.33 2.53
within 8.32 13.32 14.98 15.88 16.72 11.03 8.08 4.68 3.46 2.76

Makagiga ROSE 22.10 29.20 37.24 42.07 45.94 14.15 9.78 6.51 5.00 4.13
cross 24.93 32.06 39.51 44.01 47.33 15.84 10.72 6.99 5.23 4.26
within 26.21 32.80 40.00 44.21 47.60 16.88 11.16 7.07 5.29 4.30

OmegaT ROSE 31.91 40.74 48.76 51.75 54.26 21.90 14.55 9.02 6.49 5.08
cross 37.19 44.29 50.81 52.9 55.05 25.19 15.66 9.31 6.60 5.15
within 38.24 44.56 50.45 53.22 55.05 25.82 15.77 9.29 6.60 5.15

Avg Improv (cross) 1.86 1.54 1.71 1.17 0.97 1.56 0.72 0.38 0.17 0.11
Rlt Improv (cross) 12.32 5.44 4.32 2.47 1.92 13.97 6.01 4.16 2.44 2.04
Avg Improv (within) 2.59 1.75 2.17 1.59 1.59 2.12 0.86 0.48 0.24 0.20
Rlt Improv (within) 14.78 5.91 5.92 3.84 4.11 17.43 7.61 5.56 3.80 4.29

TABLE 10
Accuracy Boosting for JRipples When Applying Cross- and Within-Project Change-Patterns

Datasets Approach
Recall Precision

5 10 20 30 40 5 10 20 30 40

FreeCol Jripples 16.4 25.5 31.13 35.01 35.49 15.06 11.57 7.06 5.26 4.01
cross 17.31 26.13 31.36 35.08 35.49 14.81 11.62 7.13 5.28 4.01
within 17.50 25.76 31.80 34.80 35.49 14.98 11.53 7.19 5.25 4.01

HSQLDB Jripples 15.63 22.49 31.41 37.92 40.79 18.23 13.96 10.12 8.21 6.81
cross 15.59 24.1 32.49 38.4 40.74 18.73 14.76 10.48 8.34 6.78
within 16.22 24.68 32.91 38.42 40.88 18.85 14.95 10.49 8.30 6.78

JAMWiki Jripples 24.62 32.48 36.1 37.12 37.18 15.79 11.11 6.46 4.48 3.38
cross 26.11 32.27 36.15 37.12 37.18 18.01 11.35 6.49 4.48 3.38
within 28.92 32.73 36.14 37.12 37.18 19.65 11.58 6.49 4.48 3.38

Jedit Jripples 26.10 35.64 44.83 51.26 54.32 23.31 16.43 11.02 8.83 7.22
cross 24.23 35.79 45.76 51.55 54.38 21.55 16.38 11.31 8.91 7.21
within 27.12 37.14 45.54 51.41 54.38 23.86 17.13 11.20 8.83 7.20

JhotDraw Jripples 11.63 12.72 12.72 13.17 13.17 13.10 8.28 4.14 2.99 2.24
cross 10.69 12.28 12.72 12.72 13.17 13.10 7.59 4.14 2.76 2.24
within 11.43 12.28 12.72 12.72 13.17 12.41 7.59 4.14 2.76 2.24

Makagiga Jripples 24.33 27.57 29.47 30.28 30.57 14.77 8.67 4.74 3.27 2.48
cross 23.96 27.62 29.61 30.34 30.56 14.54 8.74 4.76 3.28 2.48
within 23.34 26.52 28.15 28.71 28.91 13.67 8.02 4.34 2.96 2.23

OmegaT Jripples 33.55 35.91 36.10 36.10 36.10 20.99 11.41 5.73 3.82 2.86
cross 32.38 35.78 36.10 36.10 36.10 20.46 11.37 5.73 3.82 2.86
within 33.72 36.02 36.10 36.10 36.10 21.22 11.41 5.73 3.82 2.86

Avg Improv (cross) –0.19 0.39 0.55 0.30 0.24 0.13 0.15 0.17 0.05 0.03
Rlt Improv (cross) –0.87 1.38 1.69 0.66 0.81 1.47 1.25 2.55 0.86 1.45
Avg Improv (within) 0.95 0.55 0.43 0.01 0.02 0.62 0.21 0.10 –0.02 –0.01
Rlt Improv (within) 4.18 1.79 1.27 –0.30 0.05 3.49 1.04 1.15 –0.97 –0.17

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2389

FreeCol, the average improved positions of the truly
impacted classes is 5.6, which is practical significance for the
developers when they do CIA tasks in practice. Imagine that
ImpactMiner recommends a list of classes to a developer,
and the truly impacted classes rank at 7 and 8. If a developer
needs 1 minute (on average) to determine whether a recom-
mended class is a truly impacted one. Then, before applying
our boosting method, the developer needs at least 8 minutes
to determine the two truly impacted classes. After applying
our boosting method, the truly impacted classes rank at 2
and 3, and thus the developer only needs 2 minutes to deter-
mine the two truly impacted classes. That is, our boosting
method can improve the efficiency of developers doing CIA
tasks. Table 12 shows the average improved positions of the
truly impacted classes for each project when we apply the
boostingmethod to traditional CIAmethods.

8 DISCUSSION AND THREATS TO VALIDITY

In this section, we analyze the parameters that may affect
the experimental results. It is worth noting that the parame-
ters calibration is performed before we conduct the experi-
ments in Section 6. Meanwhile, the historical change-
patterns coming from a cross- and within-project scenarios
are also discussed in this section.

8.1 t Choice Effect

t is the number of commits that allows our boosting method
to find the similar change-patterns from them. To evaluate
the t choice effect on the performance of our boosting
method, we compare the performance of ImpactMiner,
JRipples and ROSE on three randomly selected datasets
(i.e., HSQLDB, FreeCol, jEdit) across the values of t with 5,
10, 15, 20, 25 and 30.

Fig. 5 shows the average improvement of the f-measure
when applying different values of t to ImpactMiner, JRip-
ples and ROSE on the projects of HSQLDB, FreeCol and
jEdit across the cut-off points of 5, 10, 20, 30 and 40. In gen-
eral, we can observe that the average improvements of the
f-measure achieved by ImpactMiner keep growing when
the value of t is less than 20, and ImpactMiner achieves best
improvement when t equals 20 on the projects of HSQLDB
and FreeCol, as shows in Figs. 5a and 5b. Similarly, JRipples
and Rose also achieve the best improvement of the f-mea-
sure when t equals 20 on the projects of HSQLDB and Free-
Col (Figs. 5d and 5e, 5g and 5h). Meanwhile, we can
observe that the performance of the three CIA tools show
little difference when the value of t is greater than 15 on the

project jEdit, as shown in Figs. 5c, 5f and 5i. Since the three
projects are randomly selected and the three CIA tools
show best performance when t equals 20 on the projects in
most of the cases, we set the value of t as 20 when we
employ ImpactMiner, JRipples and Rose to conduct the CIA
tasks in the experiment.

8.2 h Choice Effect

To evaluate the h choice effect on the performance of our
boosting method, we compare the performance of Impact-
Miner, JRipples and ROSE on the three randomly selected
datasets (i.e., HSQLDB, FreeCol, jEdit) across the values of h
with 0.5, 0.6, 0.7, 0.8 and 0.9. Tables 13, 14, 15, 16, 17, and 18
show the recall and precision when applying different val-
ues of h to ImpactMiner, JRipples and ROSE on the projects
of HSQLDB, FreeCol and jEdit across the cut-off points of 5,
10, 20, 30 and 40.

We can observe that ROSE achieves the best average (i.e.,
AVG in Tables 13 and 14) recall and precision when h is 0.9
on dataset FreeCol, and h is 0.6 on dataset HSQLDB, and h

is 0.8 on dataset JEdit. It seems that there is no fixed value
for h that can make ROSE always achieve the best results.
However, there is a pattern on the h choice effect to the per-
formance of JRipples, i.e., when h is 0.8, JRipples achieves
the best average recall and precision on the three datasets
(i.e., AVG in Tables 15 and 16). Similarly, ImpactMiner per-
forms better when h is 0.8 (i.e., AVG in Tables 17 and 18)
half of the time (e.g., average recall on jEdit, average preci-
sion on HSQLDB and jEdit). Therefore, we use 0.8 as the
default value of h in the experiment.

8.3 Equivalent Class Choice Effect

In the process of seeking an equivalent class ~cinit for the
starting class cinit, we regard the starting class identified by
ISC in each historical commit as the equivalent class, known
as the boosting strategy. To have a meaningful comparison,
we also randomly select a class from each historical commit
as the equivalent class, and mapping the change-pattern
between the randomly selected class and the rest of classes

TABLE 13
Recall Comparison for ROSE

Datasets h
Recall

AVG
5 10 20 30 40

FreeCol 0.5 17.6 29.06 44.31 52.09 56.38 39.89
0.6 18.65 29.12 45.16 52.49 56.43 40.37
0.7 19.08 30.01 46.16 52.60 56.41 40.85
0.8 19.53 31.60 46.33 52.50 56.13 41.22
0.9 21.41 33.61 46.16 52.17 55.66 41.80

HSQLDB 0.5 16.71 25.36 34.82 38.97 42.52 31.68
0.6 17.30 25.45 34.5 39.28 42.96 31.89
0.7 16.98 25.28 34.34 39.17 42.49 31.65
0.8 16.77 25.23 34.12 39.09 42.72 31.59
0.9 17.31 24.75 32.96 37.71 41.56 30.86

JEdit 0.5 27.93 39.51 50.27 57.15 62.03 47.38
0.6 28.54 40.04 50.39 57.39 62.21 47.71
0.7 28.37 39.94 50.48 57.51 62.31 47.72
0.8 29.09 39.69 50.34 57.58 62.22 47.78
0.9 28.37 39.94 50.48 57.51 62.31 47.72

TABLE 12
The Average Improved Positions of the Truly Impacted Classes

Projects
Boosting

ImpactMiner JRipples ROSE

FreeCol 5.60 0.15 3.31
HSQLDB 6.13 0.71 3.87
JAMWiki 1.73 1.02 2.71
JEdit 2.85 0.79 1.62
JhotDraw 2.68 0.00 3.34
Makagiga 3.94 0.21 4.07
OmegaT 2.55 0.00 1.89

2390 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

in the commit to the current CIA task (known as the random
strategy). We apply the original CIA tools (i.e., Impact-
Miner, JRipples and ROSE), the CIA tools with boosting
strategy, and the CIA tools with random strategy to the ran-
domly selected dataset of jEdit for CIA tasks, and we evalu-
ate the average precision and recall of these methods across
5, 10, 20, 30 and 40 cut-off points, with h equal to 0.8.

Fig. 9 shows the accuracy comparison between the
boosting method and random method for ImpactMiner,
JRipples and ROSE, respectively. Figs. 9a and 9b show
ImpactMiner with the boosting strategy achieves the best
precision and recall, and the ImpactMiner with the ran-
dom strategy achieves the second best precision and
recall. Similar results can be observed in Figs. 9c, 9d, 9e,
and 9f, i.e., JRipples and ROSE with the boosting strat-
egy achieve the best results, while original JRipples and
ROSE achieve worst results.

We can observe from Fig. 9 that the CIA tools with the
random strategy outperform the original ones in most
cases, especially for those whose cut-off point is less than
30. The benefit of the CIA tools with the random strategy
comes from the following two cases. First, if the randomly
selected class from a commit is exactly the starting class,
then CIA tools with the random strategy is equivalent to
the boosting strategy proposed in this paper. Second, if
the randomly selected class from a commit is not a start-
ing class, then the change-pattern between the randomly
selected class and the rest of classes in the commit is
mapped to the current CIA task. Noting that we require
the similarity between change-patterns (i.e., h) should be
greater than 0.8 in any case. We would use the recom-
mended change-patterns to boost the final confidence of
an impacted class. Therefore, even though we randomly
select the equivalent class, the recommended change-

TABLE 14
Precision Comparison for ROSE

Datasets h
Precision

AVG
5 10 20 30 40

FreeCol 0.5 14.26 11.69 9.09 7.31 6.04 9.68
0.6 14.80 11.79 9.31 7.37 6.05 9.86
0.7 15.07 12.09 9.52 7.39 6.06 10.03
0.8 15.45 12.76 9.58 7.37 6.01 10.23
0.9 16.87 13.51 9.55 7.34 5.97 10.65

HSQLDB 0.5 16.85 13.51 10.26 7.92 6.58 11.02
0.6 17.26 13.67 10.26 8.02 6.65 11.17
0.7 17.11 13.62 10.13 7.93 6.57 11.07
0.8 16.9 14.03 10.17 7.99 6.65 11.15
0.9 17.47 13.8 9.72 7.61 6.41 11.00

jEdit 0.5 22.77 16.88 10.96 8.60 7.17 13.28
0.6 23.08 17.2 10.98 8.62 7.2 13.42
0.7 23.18 17.26 11.09 8.68 7.23 13.49
0.8 23.66 17.21 11.07 8.71 7.26 13.58
0.9 23.18 17.26 11.09 8.68 7.23 13.49

TABLE 15
Recall Comparison for JRipples

Datasets h
Recall

AVG
5 10 20 30 40

FreeCol 0.5 16.59 25.97 31.58 35.08 35.49 28.94
0.6 17.04 25.90 31.66 35.08 35.49 29.03
0.7 16.60 26.63 31.56 35.08 35.49 29.07
0.8 17.38 26.18 31.77 35.08 35.49 29.18
0.9 17.12 25.43 31.71 35.08 35.49 28.97

HSQLDB 0.5 15.74 24.38 33.81 38.11 40.86 30.58
0.6 15.71 24.7 33.73 38.14 40.79 30.61
0.7 16.33 24.46 33.53 38.16 40.80 30.65
0.8 16.84 24.96 32.99 38.18 40.89 30.77
0.9 17.15 24.63 33.00 38.13 40.77 30.74

jEdit 0.5 25.19 36.07 46.13 51.74 54.00 42.63
0.6 26.61 36.29 46.32 51.58 54.18 42.99
0.7 27.22 36.72 46.16 51.74 54.28 43.22
0.8 28.26 37.60 46.09 51.85 54.56 43.67
0.9 26.59 37.00 45.56 51.62 54.34 43.02

TABLE 16
Precision Comparison for JRipples

Datasets h
Precision

AVG
5 10 20 30 40

FreeCol 0.5 14.13 11.57 7.15 5.28 4.01 8.43
0.6 14.72 11.62 7.17 5.28 4.01 8.56
0.7 14.55 11.87 7.17 5.28 4.01 8.58
0.8 14.98 11.66 7.19 5.28 4.01 8.62
0.9 14.89 11.53 7.19 5.28 4.01 8.58

HSQLDB 0.5 18.11 14.87 10.69 8.25 6.82 11.75
0.6 18.32 15.03 10.74 8.28 6.80 11.83
0.7 18.89 14.97 10.66 8.27 6.78 11.91
0.8 19.71 15.46 10.60 8.28 6.77 12.16
0.9 19.75 15.01 10.67 8.27 6.75 12.09

jEdit 0.5 21.61 16.49 11.38 8.89 7.16 13.10
0.6 22.91 16.65 11.38 8.87 7.16 13.39
0.7 23.71 17.03 11.38 8.89 7.21 13.64
0.8 24.48 17.40 11.37 8.93 7.23 13.88
0.9 23.80 17.08 11.24 8.92 7.20 13.65

TABLE 17
Recall Comparison for ImpactMiner

Datasets h
Recall

AVG
5 10 20 30 40

FreeCol 0.5 13.62 22.18 33.88 43.08 49.36 32.42
0.6 14.54 23.11 34.61 43.22 49.82 33.06
0.7 15.28 22.78 33.99 42.51 49.25 32.76
0.8 15.31 22.80 33.34 41.18 48.28 32.18
0.9 14.26 21.08 31.76 39.91 47.36 30.87

HSQLDB 0.5 16.15 24.13 31.94 35.95 39.17 29.47
0.6 17.18 24.42 32.12 36.15 38.87 29.75
0.7 17.27 24.49 31.73 35.90 38.65 29.61
0.8 17.92 24.35 31.88 35.58 38.38 29.62
0.9 17.15 23.06 30.65 34.79 37.83 28.69

jEdit 0.5 17.53 25.59 33.51 36.25 39.16 30.41
0.6 18.64 26.00 33.41 36.46 38.81 30.66
0.7 18.96 26.42 33.13 36.30 38.71 30.70
0.8 19.79 26.12 33.21 36.02 38.50 30.73
0.9 19.18 24.84 32.30 36.63 38.23 30.24

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2391

patterns is always similar to the one in the current CIA
task. As a result, the recommended change-patterns will
boost the accuracy of the CIA task.

In summary, we can conclude that the CIA tools with the
boosting strategy outperform the ones with the random
strategy in the CIA tasks on dataset jEdit, while the
CIA tools with the random strategy outperform the
original ones.

8.4 Runtime Discussion

To estimate the average runtime, we divide the process of
running the boosting method into two steps, i.e., similar
starting entity identification (step 1) and change-pattern
matching (step 2), and we count the average runtime of
each step. Table 19 shows the results, and we can observe
that the average runtime of identifying the similar starting
entity on the three CIA tools is about 13 seconds, and the

average runtime of matching the change-pattern ranges
from 62.8 seconds to 73.3 seconds on the three CIA tools.
The total runtime of the boosting method is about 80 sec-
onds. The evaluation was conducted on a PC with a com-
mon configuration (i.e., Intel Core i5, 3.5 GHz, 32G RAM).
In a real development environment, the efficiency of the
boosting method can be further increased with better
computational resources.

8.5 Scalability Discussion

The proposed boosting method is extensible, then we can
take other dependency such as inversion of control (i.e.,
IoC) [35] into consideration. To detect the IoC change-
pattern from the source code, we first find the spring.

xml file from the root path of the project (if any), and
then analyze the mapping relationship between class
names and their alias in the spring.xml, e.g., class B may
be with an alias of B

0
in the spring.xml. After that, we

go back to the source code of a commit to determine
whether there is code line of “applicationContext.
getBean(B

0
)” in class A. If so, we will check to deter-

mine if the current commit contains both classes A and
B. If all the above conditions are met, IOC dependence
between A and B is found in this commit. To add the
dependencies of IoC to the change-patterns, the vector
dimensions of coupling dependencies (i.e., VcpðCi; CjÞ) is
changed from 18 to19, and the extra dimension is used
to indicate the dependency of IoC between two classes.
The effort cost on constructing a new change-patterns
mapping repository is low, because we only need to

TABLE 18
Precision Comparison for ImpactMiner

Datasets h
Precision

AVG
5 10 20 30 40

FreeCol 0.5 10.83 9.20 7.11 6.14 5.33 7.72
0.6 11.87 9.69 7.31 6.18 5.40 8.09
0.7 12.39 9.61 7.21 6.07 5.33 8.12
0.8 12.41 9.57 7.07 5.92 5.23 8.04
0.9 11.47 8.83 6.74 5.76 5.15 7.59

HSQLDB 0.5 14.60 11.79 8.42 6.51 5.44 9.35
0.6 15.63 11.91 8.47 6.54 5.40 9.59
0.7 15.84 11.94 8.35 6.49 5.36 9.59
0.8 16.61 11.83 8.38 6.45 5.33 9.72
0.9 15.68 11.22 8.01 6.23 5.21 9.27

jEdit 0.5 13.93 11.18 7.90 5.87 4.84 8.74
0.6 15.01 11.34 7.84 5.87 4.79 8.97
0.7 15.38 11.51 7.73 5.82 4.76 9.04
0.8 16.46 11.30 7.74 5.79 4.72 9.20
0.9 15.87 10.87 7.51 5.70 4.67 8.92

Fig. 9. Boosting strategy versus random strategy.

TABLE 19
The Average Runtime of the Boosting Method

ImpactMiner JRipples ROSE

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2

Average Time (Sec) 13.1 62.8 13 73.3 12.8 69.4

2392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

re-detect the IoC dependency for each commit, and the
original 18 dimensions of the vector can be reused and
keep unchanged.

Applying the IoC detection method to dataset of the
182 projects, we find IoC dependency from the commits of
5 projects, and they are Spring-Security, Springframework,
Kablink, Hazelcast and CAS, as shown in Table 20. Spring-
Security and Springframework provide the IoC feature, and
the rest of the 3 projects is built based on the Spring
framework.

8.6 Dataset Quality Effect

The dataset used in the experiment includes 182 projects.
Inevitably, some projects have good-quality code, while
some have bad-quality code. We want to study whether
there is any relation between using projects datasets with
good-quality code and bad-quality code. To achieve this
goal, we conduct a new experiment. We employ two
famous code smell detection tools (i.e., JDeodorant [36] and
PMD [37]) to detect the code smell in the source code of the
182 subject projects, and then we evaluate the quality of the
projects according to the number of the code smell detected
from the source code of these projects. Code smells are code
fragments that suggest the possibility of refactoring, which
can degrade quality aspects of the software system [38].
Therefore, the number of code smells in a project can reflect
the quality of the code.

JDeodorant is an open-source Eclipse plugin for Java that
detects five code smells: God Method, Duplicated Code,
God Class, Feature Envy, and Type Checking. PMD is an
open-source tool for Java and an Eclipse plugin that detects
many problems in Java code, including: God Method,
Duplicated Code, God Class, Data Class and Long Parame-
ter List. We can see from Table 21 that some code smells can
be detected by both tools, while some code smells can be
detected by one of them. Then, we chose both tools to detect

code smells at the same time, so that they can detect as
many code smells in the code as possible.

To detect the code smell from the code of each projects,
we need to collect the complete source code of the projects,
because the dataset used in the previous experiments only
contain the commits of each project. Since a project may
have multiple versions of source code, we download the
version of source code that can cover the latest commit in
our dataset.

After collecting the source code of each project, we use
JDeodorant and PMD to detect the code smells. In particular,
we move the source code of each project to the workspace of
Eclipse because JDeodorant and PMD are both Eclipse
plugin. Since a code smell may be detected by two tools, if
that happens, we only count once. The two tools found that
118 projects have code smells, and the number of the code
smells ranges from 1 to 832, while the two tools found no
code smell in the rest of the projects. Fig. 2 shows the number
of code smells containing in each project. Fig. 10 shows the
number of code smells containing in each project.

To determine whether the code quality can affect the per-
formance of our boosting method, we need two datasets:
one containing code smells, i.e., we call it dataset 1, and
another one containing no code smell, i.e., we call it dataset
2. Since it is difficult to judge whether the quality of a proj-
ect is poor if it contains 1 or 2 code smells, we select the proj-
ects containing most code smells for analysis. We found 16
projects that contain more than 100 code smells and thus we
chose these projects for analysis. These 16 projects contain
8,283 commits in total. For a fair comparison, we randomly
select several projects from dataset 2 that they have the simi-
lar number of commits as the 16 projects. Specifically, we
randomly select 22 projects which contain 8,251 commits
from dataset 2.

Because it is easy to determine which projects the valid
change-patterns come from, a simple and effective evalua-
tion way is to analyze the existing experimental results to
find out how many valid change-patterns come from the 16
projects containing most code smells, and how many valid
change-patterns come from the 22 projects containing no
code smell. Since the valid change-patterns is an equitable
mechanism that can be used to indicate the contribution of
the commits of a project to the boosting method, the valid
change-patterns can be used to evaluate whether there is
any relation between using projects datasets with good-
quality code and bad-quality code.

For any commit, the boosting method first finds 20
most similar commits for it, and then we count the valid

TABLE 20
IoC Commits Detected by the Boosting Method

No. Projects # IoC Commits

1 Spring-Security 1
2 Springframework 2
3 Kablink 3
4 Hazelcast 11
5 CAS 96

TABLE 21
The Code Smells Covered by Jdeodorant and PMD

Code Smells Jdeodorant PMD

GodMethod @ @
Duplicated Code @ @
God Class @ @
Future Envy @ X
Type Checking @ X
Data Class X @
Long Parameter List X @

Fig. 10. The number of code smells containing in each project

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2393

change-patterns in the 20 similar commits and how many
valid change-patterns come from the 16 projects contain-
ing most code smells (i.e., we call it case 1) and the
22 projects containing no code smell (i.e., we call it case
2), respectively. At last, we calculate the proportion of the
valid change-patterns coming from case 1 and case 2 for a
commit. For other commits, we repeat the calculation,
and we calculate an average proportion of the valid
change-patterns coming from case 1 and case 2 for all
commits. The results in Table 22 shows that the valid
change-patterns coming from case 1 is 6.63 percent,
and the valid change-patterns coming from case 2 is
6.61 percent. There is no significant difference between
these two cases. In summary, we can conclude that there
is no relation between using projects datasets with good-
quality code and bad-quality code.

8.7 A Simpler Boosting Method

We found that most of the valid change-patterns come
from with-projects, then we want to know whether a sim-
pler approach based on logical coupling would help to
boost the performances of the CIA methods that are not
based on logical coupling. In the experiment, we evaluate
the performance of our boosting method on three CIA
tool, i.e., ImpactMiner, JRipples, ROSE. ImpactMiner and
ROSE are the CIA methods based on (or partially based
on) logical coupling of the past commits in the evolution-
ary history of a project, while JRipples is not. Then, we
can make comparison for the performance of JRipples
under a simpler logical coupling boosting method and
our boosting method. For a simpler boosting method,
JRipples can only use the logical coupling (i.e., change-
patterns) come from the evolutionary history of the same
project, i.e., within-project. In contrast, our boosting
method can use the logical coupling (i.e., change-patterns)
come from the same project and other projects (i.e.,
within-project + cross-projects) to boost the performance
of JRipples. As a result, the contrast experiment turns
into a comparison between applying the “within-project”
and “within-project + cross-projects” change-patterns to
boost the performance of JRipples.

We evaluate the performance of the JRipples when
applying the “within-project” and “within-project +
cross-projects” change-patterns. Table 23 shows the accu-
racy boosting for JRipples. We can observe the average
improvements in term of Avg Improv and Rlt Improv of
our boosting method are higher than those of the simpler
boosting method. This result indicates that the change-
patterns come from other projects are useful to improve
the performance of the traditional CIA method. In sum-
mary, a simpler boosting method that only using the
within-project change-patterns does improve the perfor-
mance of the CIA tool, but it is even better if we take
the change-patterns coming from other projects into
consideration.

8.8 Threats to Validity

In this section, we focus on the threats that could affect the
results of our case studies.

Threats to External Validity. One of the threats to external
validity is the potential data leakage from the dataset of 182
collected projects to the 7 evaluated projects. To avoid the
data leakage, given a commit, we only use the commits
(both for current projects and other projects) before the cur-
rent commits as reference to find available change-patterns
from them, whereas the commits after the current commit
are not used for current CIA task. This can avoid using the
change-patterns contained in the future commits to boosting
the CIA task.

Another threat to external validity relates to the forks or
duplicated code/commits from the 7 evaluated projects.
Due to the rise of the pull-request development model, the
dataset may contain forks from the evaluated 7 projects.
Although we manually checked that none of the 175 projects
were forked from any of the 7 projects, it is possible that
some of the projects were significantly modified to remove
the “fork traces”. There might be some duplicated commits
in the datasets that were used to boost the CIA tasks. In the
future, further investigation by analyzing the forked proj-
ects is needed to mitigate this threat.

The third threat to external validity relates to the usabil-
ity of the boosting method. It is possible to use the same
projects (i.e., 182 collected projects) to do the CIA task for
other users. For example, the user can first employ the a tra-
ditional CIA tool (e.g., ImpactMiner) to determine an initial
impacted set according to the starting entity the user pro-
vided, and then use the boosting method to find the similar
change sets from the evolutionary histories of many projects
according to the similarity between starting entities. After
that, the change-patterns that have been extracted from the

TABLE 22
The Valid Change-Patterns From Case 1 and Case 2

Types # Projects # Commits Valid Change-patterns

Case 1 16 8,283 6.63%
Case 2 22 8,251 6.61%

TABLE 23
Accuracy Improvements for JRipples When Applying Simpler Boosting and Our Boosting Methods

Recall Precision

5 10 20 30 40 5 10 20 30 40

Avg Improv (simpler boosting) 0.95 0.55 0.43 0.01 0.02 0.62 0.21 0.10 –0.02 –0.01
Rlt Improv (simpler boosting) 4.18 1.79 1.27 –0.30 0.05 3.49 1.04 1.15 –0.97 –0.17
Avg Improv (our boosting) 1.41 0.88 0.52 0.08 0.05 1.13 0.43 0.15 0.00 0.00
Rlt Improv (our boosting) 6.48 3.20 1.64 0.23 0.14 6.52 3.70 2.13 0.00 0.00

2394 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

change sets can be used to boosting the rankings of the truly
impacted entities in the initial impacted set. In the whole
process, our boosting method only needs to analyze the cou-
pling dependencies between the starting entities and the
ones in the initial impacted set, which is a completely auto-
matic process. On the other hand, the change-patterns from
other projects have been pre-extracted and stored by our
method. Therefore, any users can use the boosting method
and the collected change-patterns for their CIA tasks.

The four threat to external validity relates to language-
dependency and project-size dependency. The boosting
method mainly aims at Java language, while it can be gener-
alized to other object-oriented programming languages. In
the paper, we used four types of coupling dependencies
which are observed from the object-oriented programming
paradigm. Although the same instance implemented by dif-
ferent object-oriented languages (e.g., C++ and Java) may
have difference, it can be covered by our defined coupling
dependencies, because these four coupling dependencies
are defined at a high level, including Class-to-Class,
Method-to-Class, Method-to-Variable and Method-to-
Method. These four coupling dependencies can cover most
coupling relationships in the object-oriented programming
paradigm. In addition, the proposed boosting method has
no dependency with the project size, which can be used
both for small- and large-scale projects.

Threats to Internal Validity. One of the threats to internal
validity relates to a commit containing more than one start-
ing entities. By applying ISC method, we employ random
forest to predict the probability of a class being a starting
one. By default, the class with the highest probability in a
commit is the starting one. In the meantime, if the probabili-
ties of more than one classes are greater than 0.5 in a com-
mit, ISC regards all these classes as salient ones [12], [16].
Then, our method will extract the change-patterns between
each salient class and the rest of the classes in the commit,
and apply the change-patterns to the rank boosting step.
We found in previous study [39] that if a commit contains 2
starting entities, it contains unrelated changes. Then, one
starting entity builds change-patterns between parts of the
classes in the commit, while another starting entity builds
change-patterns between the other parts of the classes in the
commit. As a result, the change-patterns in this commit can
be equivalent to the change-patterns coming from two com-
mits. Because we only care the change-patterns rather than
where they come from, if a change-pattern comes from a
commit containing two starting entities, it can be also used
by our boosting method. Thus, we believe there is little
threat to a commit containing more than one starting
entities.

9 RELATED WORK

According to the impact analysis process, the CIA can be
divided into two steps [40], i.e., identifying the starting
impact set and identifying the candidate impact set.

9.1 Identifying the Starting Impact Set

The first step of the impact analysis process concerns the
identification of the starting impact set that requires the anal-
ysis of the change request specification and both the source

code and the software documentation [40]. However, map-
ping the concepts (or features) defined in a change request
specification to the source code components is not an easy
thing. Existing studies rely on different types of analysis
(such as: textual, historical, static and dynamic) for the iden-
tification of concepts in the source code [41], [42].

Textual analysis tries to reveal the mappings between the
concepts and the domain knowledge already encoded in
the form of comments and identifier-names in the source
code. To achieve this goal, many analysis techniques such
as Natural Language Processing (NLP), Information
Retrieval (IR) are the employed in textual analysis [43], [44],
[45]. With historical analysis, researchers found the software
entities related to a concept by mining the evolutionary his-
tory from the version control system such as SVN and Git
[46]. The philosophy behind the historical analysis is that if
a software entity is known to be in a concept, entities that
tend to change in the same commits as that entity might
also be likely candidate locations for that concept [47], [48],
[49], [50].

Static analysis allows developers to identify the relevant
software entities by the data or control flow dependencies
between them [46]. For example, if one software entity is
known to be part of the concept and it is the only caller of
another entity, then it is considered likely that this latter
entity is also part of the concept [51], [52]. Dynamic analysis
refers to the invocation and observation of concept at execu-
tion time: execution traces are analyzed to identify code that
is always executed when the concept is exercised in the sys-
tem, and code that is not executed when the concept is not,
thus identifying code that is (exclusively) associated with
the concept [53], [54].

9.2 Identifying the Candidate Impact Set

In the second step of the impact analysis process concerns
the identification of the candidate impact set based on the
starting impact set identified in the first step. In general,
dynamic analysis [3], [4], [55], [56], [57] and static analysis
[5], [10], [58], [59], [60] can be used to identify the candidate
impact set. Dynamic impact analysis obtains the interaction
and dependency between software entities via the informa-
tion collected from the running time of a program, and then
estimates the impact set for a changed entity. Static analysis
gets the dependencies between software entities by analyz-
ing the static information of the source code. The accuracy
of dynamic change impact analysis is relatively higher.
However, dynamic change impact analysis needs to collect
the dynamic information of the running time of a program,
then its running cost is high, while the running cost of static
change impact analysis is low.

According to different technologies used, the identifica-
tion of the candidate impact set can be divided into two
types: one based on logical dependency analysis [6], [7], [8],
[19], [61], [62] and the other based on software repository
mining (MSR) [9], [10], [11]. The dependency analysis based
impact analysis estimates the impact set through the depen-
dency relationships (such as invocation relationships, con-
trol relationships.) of software entities in a single version.
The software repository mining based impact analysis gets
the dependency relationships between software entities by

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2395

mining the update information of software entities in the
software evolution.

Ying et al. [23] state that mining software repositories can
uncover important historical dependencies between soft-
ware entities, which may not be captured by the methods
that based on logical dependency analysis. However, most
of the impact analysis methods mine the software reposi-
tory in a scenario of within-project, which limits the capabil-
ities of current MSR based methods. To break this
limitation, we generalize the MSR based method to a cross-
project scenario, i.e., the change-patterns we referenced
come not only from the current project, but also from other
projects.

In addition, some researchers propose other type of tech-
niques to identify the candidate impact set. For example,
Ceccarelli et al. [63] employ a vector regression model to
model the relationship between code changes, and further
predict the co-changed entities. Canfora et al. [64] use the
text similarity to retrieve similar change requests from the
code repository to obtain the impact set of code change.
Gethers et al. [65] use the relational topic model to model
the dependencies among software entities and utilize the
topic dependencies among the entities to conduct the
change impact analysis.

10 CONCLUSION AND FUTURE WORK

Change impact analysis plays an important role in code
change comprehension and software maintenance. This
paper proposes a novel method to boost the performance
of traditional CIA tasks. To improve the rankings of actual
impacted classes, we retrieve equivalent classes from the
historical change sets for a starting class, and map the
change-patterns of the equivalent classes to the starting
class. Then, the rankings of the classes with similar
change-patterns in current CIA tasks will be improved in
the list. Experimental results demonstrated the feasibility
and effectiveness of our approach. In the future, we will
further consider to apply our boosting approach to more
CIA tools.

ACKNOWLEDGMENTS

This work was supported by the Key Area Research and
Development Program of Guang dong Province under Grant
2020B010164002, the National Natural Science Foundation of
China under Grants 61902441 and 61722214, Guangdong
Basic and Applied Basic Research Foundation under Grant
2020A1515010973, China Postdoctoral Sc ience Foundation
(2018M640855), Hong Kong RGC Project No. 152239/18E,
the Fundamental Research Funds for the Central Universities
under Grant 20wkpy06, 20lgpy129, the National Natural
Science Foundation of China under Grant 61725201, and the
Beijing Outstanding Young Scientist Program under Grant
BJJWZYJH01201910001004.

REFERENCES

[1] M. Petrenko and V. Rajlich, “Variable granularity for improving
precision of impact analysis,” in Proc. IEEE 17th Int. Conf. Program
Comprehension, 2009, pp. 10–19.

[2] H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating
conceptual and logical couplings for change impact analysis
in software,” Empir. Softw. Eng., vol. 18, pp. 933–969, Oct.
2013.

[3] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and
precise dynamic impact analysis using execute-after sequences,”
in Proc. 27th Int. Conf. Softw. Eng., 2005, pp. 432–441.

[4] J. Law and G. Rothermel, “Whole program path-based
dynamic impact analysis,” in Proc. 25th Int. Conf. Softw. Eng.,
2003, pp. 308–318.

[5] S. Park and D. H. Bae, “An approach to analyzing the software
process change impact using process slicing and simulation,”
J. Syst. Softw., vol. 84, no. 4, pp. 528–543, 2011.

[6] L. C. Briand, Y. Labiche, and G. Soccar, “Automating impact anal-
ysis and regression test selection based on UML designs,” in Proc.
Int. Conf. Softw. Maintenance, 2002, pp. 252–261.

[7] J. D�ıaz, J. P�erez, J. Garbajosa, and A. L. Wolf, “Change impact
analysis in product-line architectures,” in Proc. 5th Eur. Conf.
Softw. Archit., 2011, pp. 114–129.

[8] T. Rolfsnes, S. D. Alesio, R. Behjati, L. Moonen, and D. W. Binkley,
“Generalizing the analysis of evolutionary coupling for software
change impact analysis,” in Proc. IEEE 23rd Int. Conf. Softw. Anal.
Evol. Reeng., 2016, vol. 1, pp. 201–212.

[9] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Trans. Softw.
Eng., vol. 31, no. 6, pp. 429–445, Jun. 2005.

[10] G. Canfora and L. Cerulo, “Fine grained indexing of software
repositories to support impact analysis,” in Proc. Int. Workshop
Mining Softw. Repositories, 2006, pp. 105–111.

[11] M. Torchiano and F. Ricca, “Impact analysis by means of
unstructured knowledge in the context of bug repositories,”
in Proc. ACM/IEEE Int. Symp. Empir. Softw. Eng. Meas., 2010,
pp. 47:1–47:4.

[12] Y. Huang, N. Jia, X. Chen, K. Hong, and Z. Zheng, “Salient-class
location: Help developers understand code change in code
review,” in Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 2018, pp. 770–774.

[13] Y. Huang, X. Chen, Z. Liu, X. Luo, and Z. Zheng, “Using discrimi-
native feature in software entities for relevance identification of
code changes,” J. Softw., Evol. Process, vol. 35, pp. 1258–1277, 2020.

[14] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. H. Kagdi, “A data-
set from change history to support evaluation of software mainte-
nance tasks,” in Proc. 10th Work. Conf. Mining Softw. Repositories,
2013, pp. 131–134.

[15] J. Zhang et al., “Search-based inference of polynomial metamor-
phic relations, ” in Proc. 29th ACM/IEEE Int. Conf. Autom. Softw.
Eng., 2014, pp. 701–712.

[16] Y. Huang, N. Jia, X. Chen, K. Hong, and Z. Zheng, “Code review
knowledge perception: Fusing multi-features for salient-class
location,” IEEE Trans. Softw. Eng., early access, Sep. 2020,
doi: 10.1109/TSE.2020.3021902.

[17] B. Dit et al., “ImpactMiner: A tool for change impact analysis,”
in Companion Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 540–543.

[18] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “JRipples: A tool
for program comprehension during incremental change,” in Proc.
13th Int. Workshop Program Comprehension, 2005, pp. 149–152.

[19] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard,
“Blending conceptual and evolutionary couplings to support
change impact analysis in source code,” in Proc. 17th Work. Conf.
Reverse Eng., 2010, pp. 119–128.

[20] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated
impact analysis for managing software changes,” in Proc. 34th Int.
Conf. Softw. Eng., 2012, pp. 430–440.

[21] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word
embeddings to document similarities for improved information
retrieval in software engineering,” in Proc. 38th Int. Conf. Softw.
Eng., 2016, pp. 404–415.

[22] Y. Huang, Q. Zheng, X. Chen, Y. Xiong, Z. Liu, and X. Luo,
“Mining version control system for automatically generating com-
mit comment,” in Proc. ACM/IEEE Int. Symp. Empir. Softw. Eng.
Meas., 2017, pp. 414–423.

[23] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Trans. Softw. Eng., vol. 30, no. 9, pp. 574–586, Sep. 2004.

[24] E. Nasseri, S. Counsell, and M. Shepperd, “An empirical study of
evolution of inheritance in Java oss,” in Proc. 19th Australian Conf.
Softw. Eng., 2008, pp. 269–278.

2396 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

http://dx.doi.org/10.1109/TSE.2020.3021902

[25] Y. Huang, X. Hu, N. Jia, X. Chen, Y. Xiong, and Z. Zheng,
“Learning code context information to predict comment
locations,” IEEE Trans. Rel., vol. 69, no. 1, pp. 88–105, Mar.
2020.

[26] P. Jaccard, “The distribution of the flora in the alpine zone,” New
Phytologist, vol. 11, no. 2, pp. 37–50, 2010.

[27] M. Barnett, C. Bird, J. A. Brunet, and S. K. Lahiri, “Helping
developers help themselves: Automatic decomposition of code
review changesets,” in Proc. 37th Int. Conf. Softw. Eng., 2015,
pp. 134–144.

[28] Freecol. 2002. [Online]. Available: http://www.freecol.org
[29] Hsqldb. 2001. [Online]. Available: http://hsqldb.org/
[30] Jamwiki. 2006. [Online]. Available: http://www.jamwiki.org/
[31] jedit. 1999. [Online]. Available: http://www.jedit.org
[32] Jhotdraw. 2000. [Online]. Available: http://www.jhotdraw.org
[33] Makagiga. 2005. [Online]. Available: https://makagiga.sourceforge.

io/
[34] Omegat. 2002. [Online]. Available: https://omegat.org/
[35] M. Fowler, “Inversion of control containers and the dependency

injection pattern,” 2004. [Online]. Available: http://www.
martinfowler.com/articles/injection.html

[36] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant:
Identification and removal of type-checking bad smells,” in Proc.
12th Eur. Conf. Softw. Maintenance Reeng., 2008, pp. 329–331.

[37] Pmd. 2017. [Online]. Available: https://pmd.github.io/
[38] A. Yamashita and S. Counsell, “Code smells as system-level indi-

cators of maintainability: An empirical study,” J. Syst. Softw.,
vol. 86, no. 10, pp. 2639–2653, 2013.

[39] Y. Huang, X. Chen, Z. Liu, X. Luo, and Z. Zheng, “Using discrimi-
native feature in software entities for relevance identification of
code changes,” J. Softw.: Evol. Process, vol. 29, no. 7, 2017, Art. no.
e1859.

[40] A. De Lucia, F. Fasano, and R. Oliveto, “Traceability management
for impact analysis,” in Proc. Front. Softw. Maintenance, 2008,
pp. 21–30.

[41] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds,
“A comparison of methods for locating features in legacy
software,” J. Syst. Softw., vol. 65, pp. 105–114, 2003.

[42] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature loca-
tion in source code: A taxonomy and survey,” J. Softw.: Evol. Pro-
cess, vol. 25, pp. 53–95, 2013.

[43] D. Binkley, D. Lawrie, C. Uehlinger, and D. Heinz, “Enabling
improved IR-based feature location,” J. Syst. Softw., vol. 101,
pp. 30–42, 2015.

[44] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature loca-
tion via information retrieval based filtering of a single scenario
execution trace,” in Proc. 22nd IEEE/ACM Int. Conf. Autom. Softw.
Eng., 2007, pp. 234–243.

[45] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization using
information retrieval: An empirical study on linux kernel,”
in Proc. 18th Work. Conf. Reverse Eng., 2011, pp. 92–96.

[46] A. Razzaq, A. L. Gear, C. Exton, and J. Buckley, “An empirical
assessment of baseline feature location techniques,” Empir. Softw.
Eng., vol. 25, no. 5, pp. 266–321, 2020.

[47] M. Chochlov, M. English, and J. Buckley, “A historical, textual
analysis approach to feature location,” Inf. Softw. Technol., vol. 88,
pp. 110–126, 2017.

[48] S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proc.
22nd Int. Conf. Program Comprehension, 2014, pp. 53–63.

[49] X. Ye, R. Bunescu, and C. Liu, “Mapping bug reports to relevant
files: A ranking model, a fine-grained benchmark, and feature
evaluation,” IEEE Trans. Softw. Eng., vol. 42, no. 4, pp. 379–402,
Apr. 2016.

[50] T. Zhang, H. Jiang, X. Luo, and A. Chan, “A literature review
of research in bug resolution: Tasks, challenges and future
directions,” Comput. J., vol. 59, no. 5, pp. 741–773, 2016.

[51] B. Bassett and N. A. Kraft, “Structural information based term
weighting in text retrieval for feature location,” in Proc. 21st Int.
Conf. Program Comprehension, 2013, pp. 133–141.

[52] G. Scanniello, A. Marcus, and D. Pascale, “Link analysis algo-
rithms for static concept location: An empirical assessment,”
Empir. Softw. Eng., vol. 20, pp. 1666–1720, Dec. 2015.

[53] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of
methods based on execution scenarios and information
retrieval,” IEEE Trans. Softw. Eng., vol. 33, no. 6, pp. 420–432,
Jun. 2007.

[54] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature loca-
tion via information retrieval based filtering of a single scenario
execution trace,” in Proc. 22nd IEEE/ACM Int. Conf. Autom. Softw.
Eng., 2007, pp. 234–243.

[55] L. Huang and Y.-T. Song, “Precise dynamic impact analysis
with dependency analysis for object-oriented programs,” in
Proc. 5th ACIS Int. Conf. Softw. Eng. Res. Manage. Appl., 2007,
pp. 374–384.

[56] H. Cai and R. Santelices, “Diver: Precise dynamic impact analysis
using dependence-based trace pruning,” in Proc. 29th ACM/IEEE
Int. Conf. Autom. Softw. Eng., 2014, pp. 343–348.

[57] H. Cai and D. Thain, “DistiA: A cost-effective dynamic impact
analysis for distributed programs,” in Proc. 31st IEEE/ACM Int.
Conf. Autom. Softw. Eng., 2016, pp. 344–355.

[58] M. Acharya and B. Robinson, “Practical change impact analysis
based on static program slicing for industrial software systems,”
in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., 2012,
pp. 13:1–13:2.

[59] H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating
conceptual and logical couplings for change impact analysis
in software,” Empir. Softw. Eng., vol. 18, pp. 933–969, Oct.
2013.

[60] H. Abdeen, K. Bali, H. Sahraoui, and B. Dufour, “Learning depen-
dency-based change impact predictors using independent change
histories,” Inf. Softw. Technol., vol. 67, pp. 220–235, 2015.

[61] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyim�othy, “Using
information retrieval based coupling measures for impact analy-
sis,” Empir. Softw. Eng., vol. 14, pp. 5–32, Feb. 2009.

[62] L. C. Briand, J. Wuest, and H. Lounis, “Using coupling measure-
ment for impact analysis in object-oriented systems,” in Proc.
IEEE Int. Conf. Softw. Maintenance, 1999, pp. 475–482.

[63] M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Penta, “An eclectic
approach for change impact analysis,” in Proc. 32nd ACM/IEEE
Int. Conf. Softw. Eng., 2010, pp. 163–166.

[64] G. Canfora and L. Cerulo, “Impact analysis by mining software
and change request repositories,” in Proc. 11th IEEE Int. Softw.
Metrics Symp., 2005, pp. 9 pp.-29.

[65] M. Gethers and D. Poshyvanyk, “Using relational topic models
to capture coupling among classes in object-oriented software
systems,” in Proc. IEEE Int. Conf. Softw. Maintenance, 2010,
pp. 1–10.

Yuan Huang received the PhD degree in com-
puter science from Sun Yat-sen University,
China, in 2017. He is currently a research fellow
with the School of Software Engineering, Sun
Yat-sen University, China. He is particularly inter-
ested in software evolution and maintenance,
code analysis and comprehension, and mining
software repositories.

Jinyu Jiang is currently working toward the
undergraduate degree with the Sun Yat-sen
University, China. His research interest
includes software engineering, code analysis
and comprehension, and mining software
repositories.

HUANG ET AL.: CHANGE-PATTERNS MAPPING: A BOOSTINGWAY FOR CHANGE IMPACT ANALYSIS 2397

http://www.freecol.org
http://hsqldb.org/
http://www.jamwiki.org/
http://www.jedit.org
http://www.jhotdraw.org
https://makagiga.sourceforge.io/
https://makagiga.sourceforge.io/
https://omegat.org/
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
https://pmd.github.io/

Xiapu Luo received the PhD degree in computer
science from The Hong Kong Polytechnic Univer-
sity, China, and was a postdoctoral research fel-
low with the Georgia Institute of Technology,
Atlanta, Georgia. He is currently an associate
professor with the Department of Computing,
The Hong Kong Polytechnic University, China.
His current research focuses on mobile/IoT secu-
rity and privacy, blockchain/smart contracts, soft-
ware engineering, network security and privacy,
and Internet measurement. His work appeared in

top security, software engineering and networking conferences and jour-
nals, and he received several best paper awards (e.g., INFOCOM’18,
ISPEC’17, ATIS’17, ISSRE’16, etc.).

Xiangping Chen (Member, IEEE) received the
PhD degree from Peking University, China, in
2010. She is currently an associate professor
with the Sun Yat-sen University, China. Her
research interest includes software engineering
and mining software repositories.

Zibin Zheng (Senior Member, IEEE) received
the PhD degree from the Chinese University of
Hong Kong, China, in 2011. He is currently a pro-
fessor with Sun Yat-sen University, China. He
published more than 120 international journal
and conference papers, including three ESI high-
lycited papers. His research interests include
blockchain, services computing, software engi-
neering, and financial big data. He was a recipient
of several awards, including the Top 50 Influential
Papers in Blockchain of 2018, the ACM SIG-

SOFT Distinguished Paper Award at ICSE2010, the Best Student Paper
Award at ICWS2010.

Nan Jia received the PhD degree in computer
science from Sun Yat-sen University, China, in
2017. She is currently an associate professor
with the School of Information Engineering, Hebei
GEO University, China. She is particularly inter-
ested in data mining and software engineering.

Gang Huang (Senior Member, IEEE) is currently
a full professor with the Institute of Software,
Peking University, China. His research interests
include in the area of middleware of cloud com-
puting and mobile computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2398 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

