
Engineering Impacts of Anonymous Author
Code Review: A Field Experiment

Emerson Murphy-Hill , Jillian Dicker, Margaret Morrow Hodges, Carolyn D. Egelman,

Ciera Jaspan , Lan Cheng, Elizabeth Kammer, Ben Holtz, Matthew A. Jorde,

Andrea Knight Dolan, and Collin Green

Abstract—Code review is a powerful technique to ensure high quality software and spread knowledge of best coding practices

between engineers. Unfortunately, code reviewers may have biases about authors of the code they are reviewing, which can

lead to inequitable experiences and outcomes. In principle, anonymous author code review can reduce the impact of such

biases by withholding an author’s identity from a reviewer. In this paper, to understand the engineering effects of using author

anonymous code review in a practical setting, we applied the technique to 5217 code reviews performed by 300 software

engineers at Google. Our results suggest that during anonymous author code review, reviewers can frequently guess authors’

identities; that focus is reduced on reviewer-author power dynamics; and that the practice poses a barrier to offline, high-

bandwidth conversations. Based on our findings, we recommend that those who choose to implement anonymous author code

review should reveal the time zone of the author by default, have a break-the-glass option for revealing author identity, and

reveal author identity directly after the review.

Index Terms—Code review, unbiasing

Ç

1 INTRODUCTION

WHILE developers believe that code changes are
accepted based on change quality and fitness [1], prior

research suggests that when women use profile pictures and
gender-identifiable names, the acceptance of their open
source code contributions drops, compared to peers with
gender-neutral profiles [2]. Previous research suggests that
such gender disparities are due to implicit gender bias and
have been replicated in a variety of work contexts [3], and
also extend beyond gender to race [4], age [5], and physical
attractiveness [6].

Outside of code review, implicit bias in professional deci-
sion making is increasingly handled through anonymiza-
tion, where irrelevant personal details are purposefully
hidden from the decision maker. For example, research on
performing orchestra auditions without seeing the person
who auditioned “fostered impartiality in hiring and
increased the proportion of women in symphony orches-
tras” [7]. Academic papers reviewed by scholars who are
aware of author identity gives “a significant advantage to
papers with famous authors and authors from high-prestige
institutions” compared to when author identity is not
revealed during review [8].

With a similar motivation, having engineers review code
changes without being explicitly informed of who made
those changes – anonymous author code review1 – can in prin-
ciple reduce the effect of bias in organizations. Indeed, in
response [10] to the GitHub study on gender bias [2],
Mozilla developed a browser extension that anonymizes
GitHub pull requests [13], yet the extension has not been
evaluated. In the social sciences, Kim and colleagues identi-
fied anonymous author code review as a step towards
reducing structural sexism [9], a problem tech companies
such as Google have been criticized for [14].

But we know essentially nothing about how anonymous
author code review would work in practice. After Facebook
reportedly replicated the GitHub study [15], news reports
indicate that Facebook’s VP of Engineering rejected the
practice saying “Hiding the identity of authors or reviewers
is counterproductive from an engineering perspective” [16].
But is it counterproductive in practice? Unfortunately, we
know of no empirical evidence.

So while in principle anonymous author code review
reduces the impact of biases, we don’t know what other
effects it might have on the engineering process. This paper
seeks to understand these effects by answering the follow-
ing research questions:

RQ1: How Often Can Reviewers Guess Author Identities?
When reviewers are aware of who the author is during

� The authors are with Core Systems, Google Inc., Mountain View, CA
94043 USA. E-mail: {emersonm, jdicker, hodgesm, cegelman, ciera,
lancheng, eakammer, benholtz, majorde, aknight, colling}@google.com.

Manuscript received 8 Mar. 2020; revised 28 Jan. 2021; accepted 5 Feb. 2021.
Date of publication 23 Feb. 2021; date of current version 18 July 2022.
(Corresponding author: Emerson Murphy-Hill.)
Recommended for acceptance by A. Sarma.
Digital Object Identifier no. 10.1109/TSE.2021.3061527

1. Others [9], [10] have called this technique ‘blind’ code review,
alluding to ‘blind reviewing’ of scientific articles. We avoid this term
purposefully because ‘single-blind reviewing’ of scientific papers
means that the author is not aware of reviewer’s identity, whereas here
we mean the reviewer is not aware of the author’s identity. Some have
also argued the metaphorical use of the word ‘blind’ in these contexts
is ableist [11], [12].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022 2495

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3921-9416
https://orcid.org/0000-0003-3921-9416
https://orcid.org/0000-0003-3921-9416
https://orcid.org/0000-0003-3921-9416
https://orcid.org/0000-0003-3921-9416
https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0003-1307-3869
https://orcid.org/0000-0003-1307-3869
https://orcid.org/0000-0003-1307-3869
https://orcid.org/0000-0003-1307-3869
https://orcid.org/0000-0003-1307-3869
mailto:emersonm@google.com
mailto:jdicker@google.com
mailto:hodgesm@google.com
mailto:cegelman@google.com
mailto:ciera@google.com
mailto:lancheng@google.com
mailto:eakammer@google.com
mailto:benholtz@google.com
mailto:majorde@google.com
mailto:aknight@google.com
mailto:colling@google.com

anonymous author review, this undermines the effective-
ness of anonymous author review. Analogously, prior
research suggests that during double-blind paper academic
paper review, reviewers can rarely guess author identi-
ties [17], [18]. We also investigate whether reviewers are
less able to guess authors during certain types of reviews,
making these types more amenable to anonymous author
code review.

RQ2: How Does Anonymous Author Code Review Change
Reviewers’ Velocity? Speed of code review is a significant
concern across companies and organizations that practice
it [19], yet anonymous author code review may slow down
the code review process, for example, when reviewers can’t
easily contact authors for high-bandwidth communications.

RQ3: How Does Anonymous Author Code Review Change
Review Quality? Prior research suggests that double-blind
research paper reviews are of equal [20], [21], [22], [23] or
higher quality [24], [25] as single-blind reviews because
reviewers are more critical when they are unaware of
author identity [26]. We may expect similar quality effects
for anonymous author code review.

RQ4: What Effect Does Anonymous Author Code Review
Have on Reviewers’ and Authors’ Perceptions of Fairness? Fair-
ness is both considered important by software engi-
neers [27] and a central goal of anonymous author code
review. While our field study is not well-suited to study
fairness objectively, we take the approach of prior
work [24], [28] to study it though the subjective percep-
tions of reviewers and authors.

RQ5: What do Engineers Perceive as the Biggest Advantages
and Disadvantages of Anonymous Author Code Review? We
next explore the tradeoffs involved in performing anony-
mous author code review, beyond the effects explored in
the prior questions.

RQ6: What Features are Important to an Implementation of
Anonymous Author Code Review?Understanding what fea-
tures of an anonymous author code review tool is designed
to help organizations decide how they might implement
anonymous author code review.

In answering these questions, this paper contributes the
first empirical study of anonymous author code review.
While the motivation for this work is reducing bias during
code review, in this paper we will not directly examine
whether bias is actually reduced, which would likely
require a larger-scale study than we performed here.

2 BACKGROUND: CODE REVIEW AT GOOGLE

Process. At Google, most of our code resides in one large
repository. When an engineer wants to make a change, they:

� Create a changelist (CL) that contains diffs of one or
more files, similar to pull requests on GitHub.

� Use the tool that facilitates this review process – Cri-
tique – that has the ability to display diffs, post and
reply to comments about a CL, and display analysis
results, such as code coverage and linter warnings.

� Choose one or more appropriate reviewers either
manually or by getting a recommendation from Cri-
tique. If the author is not an owner of the code
being changed, a reviewer must be an owner. The

majority of CLs are reviewed by someone on the
author’s team.

� Tell Critique to notify reviewers to begin their
review. Reviewers add comments about the change
and ask for further changes, if necessary.

� Make fixes and respond to comments about the
change. The process of asking for changes and mak-
ing changes may be repeated several times.

� Merge the changelist into the repository, once the
requisite positive signal – a “looks good to me” or
LGTM – is granted by reviewers.

More information about the review process at Google can be
found in prior work [19].

Readability. Google has instituted a mandatory coding
style and recommended best practices for each of the vari-
ous languages in wide use, such as Java, C/C++, and
Python. Additionally, for each language there is a process
by which an engineer can demonstrate their knowledge of
the best practices and agreement to enforce them. This pro-
cess is known as readability. If a changelist author modifies
a file in a language for which they do not have readability,
the changelist must be approved by a reviewer with read-
ability in that language. Linter tools catch most style viola-
tions automatically. Review for readability is primarily
intended to ensure best practices are being followed, for
example, in naming conventions, recommended APIs, mod-
ular design, and good testing practices.

Comparison to Other Code Review Processes. Sadowski
and colleagues have compared the code review process
with Critique at Google to code review processes else-
where [19] using Rigby and Bird’s convergent practices
framework, which compares code review across multiple
organizations [29]. Sadowski and colleagues conclude
that Critique at Google is similar to other code review
contexts insofar as it’s a lightweight and flexible code
review process, but the notion of explicit ownership and
readability is unique. We also note that Critique sup-
ports asynchronous review with email notifications like
other systems, but in contrast to systems like AMD’s
CodeCollaborator [30] and Microsoft’s CodeFlow [31],
Critique does not explicitly support live chatting
between the author and reviewers.

3 METHOD

To answer our research questions, in early 2019, we built a
browser extension that automatically hides information
about the authors of changes from reviewers (Section 3.1),
deployed the extension to volunteering developers at Goo-
gle (Section 3.2), and collected (Section 3.3) and analyzed
(Section 3.4) qualitative and quantitative data on code
review experience and outcomes.

3.1 Implementation of Anonymous Author
Code Review

While changing Critique would be the most seamless way
to implement anonymous author code review at Google, a
browser extension allowed us to evaluate the idea of
author anonymous code reviews without any changes to
critical engineering infrastructure. The extension we built
removed authorship information from Critique, anywhere

2496 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

the author’s username appears; from our email client
(Gmail), in Critique emails where the author’s username or
profile images appear; and in CL Monitor, another browser
extension used by many engineers at Google that notifies
them of incoming and outgoing reviews. Our browser
extension also prompted participants for information about
each CL they reviewed, directly after they provided
LGTM. Fig. 1 shows a screenshot of how our extension
removes the author’s username from Critique. While the
reviewer experience in Critique changes, authors see Cri-
tique as normal, with all usernames included.

In taking the browser extension approach, we were
unable to remove author information from the following
sources:

� Emails and notifications from a users’ mobile device,
� Emails and notifications on non-Google-owned devi-

ces, and
� Bugs that link to the CL being reviewed.

Due to these limitations, we had to ask participants to create
an email filter where Critique emails would skip their inbox
and to refrain from looking at such emails on mobile and
non-corp devices. We also told participants that our exten-
sion would not be able to remove author information in all
contexts and to work around such issues. Participant
instructions can be found in the Supplemental Material Sec-
tions 1 through 3, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2021.3061527.

Finally, we anticipated that in some situations, partici-
pants would need to know an author’s identity, so the
extension had a button to deanonymize a CL in Critique.

3.2 Participants

We recruited participants (Table 1) by sampling engineers
across Google who met the following criteria:

� Employed by Google for at least 6 months, in an
attempt to avoid conflating the experience of anony-
mous author code review with overall novelty of
Google’s review process;

� Been on the same team for at least 3 months, in an
attempt avoid conflating the experience of anony-
mous author code review with the novelty of being
on a new team; and

� Reviewed at least 10 CLs in the two weeks before the
study, in an attempt to ensure that the participant

would perform enough reviews during the study
period to generate a sufficient volume of data.

Additionally, using stratified random sampling we
aimed to have a subsample of participants–25 percent–be
readability reviewers. When a readability review is
requested, the readability reviewer is assigned randomly
from a queue of already-certified developers, a queue that
contains hundreds of potential reviewers for popular lan-
guages like Java or C/C++. Thus, we hypothesize that for
such readability reviews, reviewers are unlikely to know
the identity of authors. If that hypothesis is true, readabil-
ity reviews are thus good candidates for anonymous
author code review. To recruit readability reviewers, for
this subsample we required engineers to have performed
at least 2 readability reviews per week in the two weeks
prior to the study.

One third of all volunteers were randomly assigned to a
control group (stratifying on readability), which enabled
us to compare data collected from engineers reviewing
with and without anonymous author code review. The
control group performed reviews in a standard, author-vis-
ible manner, but completed reports similar to those in the
treatment (that is, anonymous author) group. A post-hoc
analysis shows that the random assignment to control and
treatment groups yielded statistically similar levels of
seniority (median level 4, one level above entry-level,
p ¼ 0:59), though the control group had statistically signifi-
cantly longer tenure (median 3.67 years for control versus
3.63 years for control), using a Wilcoxon rank sum test
(p < :001). This motivates the use of covariate controls in
our analysis (Section 3.4).

The study complied with human Google ethics guide-
lines for conducting research with human participants and
underwent internal employee privacy review. Participants
could terminate their participation in the study at any time.

3.3 Data Collection

3.3.1 Quantitative Data

Quantitatively, we used metrics from several sources. First,
we logged when participants pressed the deanonymize but-
ton to answer RQ1, in part. Second, we used metrics derived
from tool logs to collect active reviewing time as a measure
of the reviewers’ velocity (RQ2). Active reviewing time is
the time a reviewer spends actively viewing, commenting,
or working on a changelist, which may include time outside

Fig. 1. What a reviewer (jdicker) using our extension sees at the top of
Critique when reviewing.

TABLE 1
Statistics About Who Participated and the Number of Reports

They Submitted

Engineers Invited 1,650 (350R)

Engineers Volunteered 439 (128R)

Treatment Control

Engineers Enrolled 330 (96R) 109 (32R)
Engineers Reporting on 1+ CLs 300 (90R) 95 (29R)
Submitted CL Reports 5,217 (1858R) 1,935 (682R)
Submitted Final Reports 282 (85R) 92 (29R)

Numbers in parentheses indicate readability. Example: 439 engineers volun-
teered, of which 128 had readability. Example: 5217 total CLs were reviewed
by the treatment group, of which 1858 were by readability reviewers.

MURPHY-HILL ET AL.: ENGINEERING IMPACTS OF ANONYMOUS AUTHOR CODE REVIEW: A FIELD EXPERIMENT 2497

http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3061527
http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3061527

of Critique in other tools, such as time spent looking up
APIs or documentation. Further information on the active
reviewing time metric can be found in our prior work [32].
Third, we use quantitative metrics to measure which
changelists were rolled back in the 10 months after the code
reviews took place. We posit that the higher the quality of
the code review (RQ3), the lower the likelihood of rollback.

3.3.2 Qualitative Data

Qualitative data was collected to through two report types
completed by participants:

� CL Reports. Our browser extension asked participat-
ing reviewers to fill out a report immediately after
every LGTM, asking the participating reviewer to
guess the author’s identity (RQ1, treatment group),
and what perceived effect the anonymization (or
identity, for the control group) had on review veloc-
ity (RQ2), quality (RQ3), and fairness (RQ4).

� Final Report. Sent by email at the end of study period, a
report asking participants about the reviewer experi-
ence during the study period, including review veloc-
ity (RQ2), quality (RQ3), and fairness (RQ4).2

Questions also asked participants about overall advan-
tages and disadvantages of anonymous author code
review (RQ5) and desired features of an anonymous
author code review system (RQ6).

Table 1 indicates how the number of reports participants filled
out. The texts of each question will be described with results
(Section 4), and blank reports are available in the Supplemen-
talMaterial, available online, Sections 4 through 9.

3.4 Data Analysis

Analyses varied from research question to research ques-
tion, but all statistical analyses were performed in R. R
scripts were code reviewed by both an experienced soft-
ware engineer and a quantitative analyst. Statistical tests
were run with an alpha value of .05 to determine signifi-
cant effects.

In every inferential statistical analyses in this paper, we
used one of two types of regressions: review-level regres-
sions (RLR) and participant-level regressions (PLR). Regres-
sions allowed us to isolate effects of interest by controlling
for covariates; for example, to estimate whether review time
was different between groups, we controlled for changelist
size and the seniority of the reviewer, among other variables
listed below. Both RLRs and PLRs included the following
fixed effects:

� Group: Whether the participant was in the control or
treatment group.

� Participating reviewer variables: tenure (years at Goo-
gle), seniority (level), role (individual contributor
versus tech lead, etc.), job code (software engineer
versus research engineer, site reliability engineer,
etc), region (US West versus Latin America, US
South, etc), and whether the participant was a

readability reviewer (binary). We controlled for ten-
ure, seniority, and readability because they mediate
code review pushback [33]; role and job code
because different types of developers have different
code review motivations and expectations [31];
and region because culture influences engineering
practice [34].

RLRs included a random effect (reviewer identity) to
account for individual variation from reviewer to reviewer.
RLRs included these additional fixed effects:

� Author variables: The same variables as the participat-
ing reviewer (above), but for the author of the
change (e.g., the tenure of the author).

� Changelist variables: the log of the number of
reviewers, the CL size,3 whether the reviewer was a
readability reviewer, and whether the CL changed
“code”. Here code means that at least one file is
changed that’s attributed to one of the known 40 cod-
ing languages at Google, including C++, Java, and
Go. Examples of non-coding changes are those that
exclusively change documentation, access control,
and build management. Additionally, we included a
binary “large-scale change” variable; these are rela-
tively low-risk changes to a broad swath of our
monolithic codebase (e.g., changing all uses of one
API method to another). Large-scale changes are typ-
ically split up into multiple smaller CLs, where each
CL is sent to appropriate code owners for review.
We controlled for number of reviewers, size, and
readability because they mediate code review push-
back [33]; controlled for code changes because pro-
gramming language correlates with pull request
acceptance [2]; and controlled for large-scale changes
because they are fundamentally different than other
types of changes.

� Relationship: We modeled past interactions between
reviewer and author as ‘insider’, ‘outsider’, or an
‘unclear’ relationship. An insider relationship means
that the reviewer has reviewed 10 or more CLs at Goo-
gle for the author prior to the CL in question; an out-
sider relationship means the reviewer has reviewed 2
or fewer CLs for this author previously; and unclear
otherwise.We included this control variable because a
similar notion of relationship in open source software
correlateswith pull request acceptance [2].

To convey a sense of overall model fit, we report adjusted
R2 values for Ordinary Least Squares regressions and
adjusted McFadden’s pseudo R2 [35] for other regressions.

4 RESULTS

This section is structured as follows. In the next section, we
describe to what extent participants and the CLs they
reported on are representative of Google’s engineering pop-
ulation. Then, starting in Section 4.2, we report on the
answers to our research questions.

2. We additionally asked authors of CLs reviewed as part of the
study (both treatment and control) about their perceptions about fair-
ness of the review they received (RQ4).

3. The categories of code review sizes are: XS (0-9 lines changed),
S (10-49 lines changed), M (50-249 lines changed), L (250-999 lines
changed), XL (over 1,000 lines changed), and U (could not be
calculated).

2498 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

4.1 Participation and Representativeness

Invited engineers could decide to participate or not, and if
they participated, decide whether to report on an individual
changelist or not. This section reports on the extent to which
those engineers who participated and those changelists that
were reported on were representative.

4.1.1 Who Was Likely to Participate and Not Participate

To determine whether some invited engineers were more or
less likely to volunteer in our study, we created a logistic
PLR that predicts participation (adjusted McFadden
pseudo-R2 ¼ 0:18). We found:

� Engineers with readability were twice as likely to
participate as those without (Odds Ratio = 2.0,
p < :001).

� Engineers who have been at Google for 7 or more
years were less likely to participate than engineers
who have been at Google for less than a year (OR =
0.33, p < :001).

� Engineers in the US South were more likely to partic-
ipate than in the US West region, with 4 out of 6
invitees volunteering in the US South (OR = 6.8,
p ¼ :042).

No other predictors emerged as statistically significant.

4.1.2 Which Changelists Were Reported On

While we instructed participating engineers to report on
their experience reviewing every CL during the study
period, sometimes they did not. We ran a logistic RLR
that predicted whether a CL was reported on (adjusted
McFadden pseudo-R2 ¼ 0:09). While the raw median per-
centage of CLs reported on by control group participants
was 88 percent, and the median was 84 percent for treat-
ment group participants, this difference was not statisti-
cally significant (p ¼ 0:8), controlling for other covariates.
However, a variety of other covariates were associated
with an increase in the odds that a CL was reported on
(e.g., CLs from outsiders and readability reviews), while
other covariates were associated with a decrease in those
odds (e.g., more reviewers and large scale changes)
These findings underscore the importance of using RLR
regressions, which control for these covariates, in the
remainder of this paper.

Finally, during the study, we asked participants to what
extent the CLs they reviewed during the study were typical
of their personal experience. The response distribution
between the two groups was similar, but the treatment
group was slightly more likely to perceive the CLs they
reviewed as being typical. 71 percent of the control group
rated this as “Very typical”, versus 77 percent of the treat-
ment group. “Somewhat typical” was chosen by 25 percent
of the control group versus 22 percent of the treatment
group, and “Not at all typical” was chosen by 5 and 1 per-
cent, respectively.

4.1.3 Participating Reviewers Per Changelist

In the changelists that were part of this study, most were
reviewed by just one (55 percent of reviews) or two (29 per-
cent of reviews) reviewers. 0.5 percent of reviews had

multiple study participants as reviewers. 0.15 percent of
reviews had a treatment group and a control group
reviewer, so cross-contamination of results was a limited
risk.

4.2 RQ1: How Often Can Reviewers Guess
Author Identities?

Reviewers may know the identity of authors without being
explicitly informed. In this section, we investigate how often
reviewers with anonymous authors can guess author iden-
tity, by what means, and for what reasons.

4.2.1 Author Guessability Rates

To examine how often authors were guessable, we asked
treatment group participants to guess author usernames
after saying they were either “Very Certain”, “Somewhat
certain”, or “Uncertain” of author identity. If they chose
“Uncertain”, we did not ask them to provide a guess.
We performed two data cleaning steps: we manually
inspected and fixed incorrectly-spelled guesses, then
removed any remaining guesses that didn’t correspond
to any known Google engineer (e.g, blank responses).
We next took the remaining cases and categorized them
into correct guesses and incorrect guesses. Results are
displayed in Table 2. Let’s first examine readability
reviews, since we hypothesized that authors and
reviewers were unlikely to know each other during these
reviews because reviewers are assigned randomly. The
data confirms this – in 95 percent of anonymous author
readability reviews, the reviewer reported being uncer-
tain of the author’s identity. Of the cases where the read-
ability reviewer did know the author’s identity (n = 24),
the most common reasons were the author contacting
the reviewer outside of code review (n = 8, 33 percent)
and the part of the codebase being changed (n = 6,
25 percent). With non-readability reviews, in 77 percent
of cases reviewers guessed the author correctly. In 21 per-
cent of cases the reviewers were explicitly uncertain of
the author’s identity. In 2 percent of cases, the authors
were at least somewhat certain of the author’s identity,
but guessed incorrectly.

4.2.2 Author Guessability Mechanisms

We asked treatment group participants how they knew
author identities. These participants had a set of 11 pre-
defined options, but could also state their own reasons;
participants chose to do so in 660 cases. One author of
this paper coded respondents’ reasons and grouped
them into several reason categories. Because reviewers
could choose multiple reasons, the total number of

TABLE 2
How Often Participants Were Able to Correctly Guess the
Identity of the Authors of the Changelists They Reviewed

Normal reviews Readability
reviews

Correct Guess 76.6% (n=3239) 4.6% (n=24)
Uncertain 21.3% (n=903) 95.1% (n=500)
Incorrect Guess 2.1% (n=88) 0.4% (n=2)

MURPHY-HILL ET AL.: ENGINEERING IMPACTS OF ANONYMOUS AUTHOR CODE REVIEW: A FIELD EXPERIMENT 2499

reviews sums to more than the total number of reports
submitted.

The most common reason that reviewers with anony-
mous authors knew the identity of authors was for two con-
textual reasons (n = 2845, 53 percent). The first was that
authors could determine the author from the part of the
codebase that was being changed. The second was from the
nature of the change, such as the language or programming
style. As one participant stated, “The author has been doing
a large number of similar migration CLs”.

The second most common reason was because the author
and reviewer communicated (n=1294, 24 percent). This was
usually because the author contacted the reviewer. One par-
ticipant gave an example as “The author pinged our chat
about fixing a test”. This also occurred when the author and
reviewer collaborated prior to a change or could guess iden-
tity by virtue of being on the same team. For instance, one
participant noted “I know who is working on this specific
change from sprint planning/standup”.

The third most common reason was because of some lim-
itation of our implementation of anonymous author code
review (n = 579, 11 percent). This was usually because the
description of the change indicated – either explicitly or
implicitly – the author’s identity. For instance, the “design
doc linked in the CL description” revealed author identity.

The fourth most common reason was through deductive
means (n = 259, 5 percent), typically because a change did
or didn’t need approval from an owner of the code being
changed. This is because at Google, at least one reviewer
must be an owner if the author is not an owner. Thus, if Cri-
tique indicates that an owner’s review is not required, then
the author must be an owner, which narrows the set of
potential authors.

Other less common reasons include from the knowing
what tasks coworkers are performing prior to the review
(n = 161, 3 percent), because some part of our tool failed
(n = 147, 3 percent), because the reviewer decided to deano-
nymize the author (n = 43, 1 percent), and because the
reviewer was in close enough physical proximity to happen
to see the CL on the author’s screen (n = 7, <1 percent).

Some of the less frequent reasons for author deanonym-
ization during anonymous author code review can be allevi-
ated in a straightforward way (e.g., redacting bug assignee
when browsing a linked bug). However, the top two most
common reasons – the part of the codebase being changed
and the nature of the change – appear more challenging to
alleviate. The next most common set of reasons – author to
reviewer communication – may be alleviated in part by
building anonymous communication, such as through
anonymous messaging. If anonymous messaging between
an author and reviewers were retained alongside a CL, side
benefits might accrue, such as the retention of design ration-
ales contained in author-reviewer discussions.

4.2.3 Why Reviewers Need to Know Author Identities

When treatment group participants filled out a report on
their experience after a code review during the study, our
chrome extension inserted logs about whether the partici-
pant explicitly requested to deanonymize the CL. In total,
47 reports with logs indicated that the participant requested

deanonymization, compared to 5,112 reports with logs
where the participant did not.

To determine why this rare event occurred, we asked
participants “If you [deanonymized] the CL using the exten-
sion, why did you do so?” We qualitatively coded the 534

open ended responses into 10 types of reasons, with some
responses containing multiple reasons.

� A set of common deanonymization reasons were
about the context of the CL. For example, one partici-
pant stated, they were “curious about the reason of
the change.” In n = 10 (19 percent) cases, the
reviewer needed additional context to review the
change that wasn’t contained in the original CL. In
n = 5 (9 percent) cases, the reviewer may have
needed to supply additional context about the
change to the author, depending on the author’s
identity. In n = 8 (15 percent) cases, the author
needed to be made aware of other people relevant
to this change, and the reviewer did not know if
the author is one of these people. Similarly, in n = 3
(6 percent) cases, the reviewer needed to assess the
level of knowledge the author has about the context.

� In n = 7 (13 percent) cases, the reviewer needed to
know whether the author had implicit permission to
make a change, including changes to access control
lists (ACLs) and TODOs. As one participant stated,
“CL author added themselves to OWNERS file. Diff
showed addition as ”redacted.” I needed to know
who is being added to the OWNERS file.”

� In n = 6 (11 percent) cases, the reviewer mentioned
deanonymization because they needed to contact the
author.

� In n = 5 (9 percent) cases, our extension inadvertently
redacted a relevant URL in Critique, so deanonym-
ization was required to click through the URL.

� In n = 2 (4 percent) cases, the reviewer deanony-
mized to determine who made the change so that
they could thank the author.

� In n=2 (4 percent) cases, the reviewer indicated sim-
ply being curious about the author’s identity.

� In n=13 (25 percent) cases, it was unclear from the
reports why the reviewer needed to deanonymize
the CL.

As the list above suggests, out-of-Critique communication
between reviewers and authors occurs for some CLs. In the
post-LGTM report, we asked respondents, “If you contacted
the author or the author contacted you outside of Critique,
why?” We received 1,009 responses to this question.

Authors were about four times more likely to contact
reviewers than reviewers contacting authors. Although it
was sometimes difficult to tell who initiated contact, based

4. The six-report discrepancy between the 47 logs indicating deano-
nymization and 53 open ended answers indicating deanonymization
could be due to either our extension failing to log events correctly or to
participants misinterpreting the question. Manual inspection of the
open ended responses suggests a likely combination of these two. Simi-
larly, the discrepancy between the 47 logs indicating deanonymization
and the 43 reports where participants said they knew authors’ identity
because they pressed the deanonymize button, may be explained by
four engineers either forgetting that they deanonymized the review or
forgetting author identity after they deanonymized.

2500 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

on our reading of the responses, in 59 percent percent of
cases authors contacted reviewers; in 14 percent of cases
reviewers contacted authors, and in 27 percent of cases it
was unclear.

It was clear that a substantial number of responses were
largely about how the reviewer knew the author’s identity,
rather than about the reason behind the contact. Including
only answers to the latter (n = 691), several themes emerged:

� The most common theme (n = 211, 31 percent) was
that the author contacted the reviewer at the start of
the review to introduce the CL, request a review,
offer some up-front context, or ask for a swift review
due to the urgency of the CL. For example, one par-
ticipant noted, “The author promised me to deliver a
fix for a tool. Later I saw a fix for the said tool.
Inferred the author’s identity.”

� The secondmost common theme (n = 185, 27 percent)
was making contact to discuss a CL or address/
clarify a comment made during the review. For
instance, one participant commented, “To ask follow-
up questions on the comments I’ve left in Critique.”

� The third most common theme (n = 107, 15 percent)
was to ask the author or reviewer a question related
to the review. As one participant noted, “He asked
me questions about. . .the tests he was going to
change, as he wasn’t sure of how they worked.”

� Other reasons include the author or reviewer men-
tioning their preference for a conversation outside
of Critique due to the relative speed or ease as com-
pared to going back and forth in comments (n = 45,
7 percent); the author contacting the reviewer to
remind them about the CL awaiting review (n=35,
5 percent); contact made convenient by close phy-
sical proximity of author and reviewers (n=33,
5 percent); expediting a CL rollback (n=15, 2 per-
cent); mentioning the change fixing something that’s
broken or breaking something (n = 11, 2 percent);
asking for clarification around the readability pro-
cess (n=10, 1 percent); and needing permission to
access a shared resource (n=6, 1 percent).

4.3 RQ2: How Does Anonymous Author Code
Review Change Reviewers’ Velocity?

We measured the effect on review velocity through both
qualitative and quantitative measures.

During the course of the study, we asked the following
after a participant LGTM’d a CL:

� Treatment participants were asked “what effect
did the [anonymous author] code review process
had on reviewing velocity, compared to [non-
anonymous] code review?” For 89 percent of CLs,
participants said anonymous author code review
did not change velocity; for 6 percent anonymous
author review had a negative impact on velocity;
for 2 percent a positive impact; and the rest were
not known.

� Conversely, we asked control participants to esti-
mate the effect of knowing the identity of the
author compared to not knowing their identity in

terms of review velocity. Here, for 69 percent of
CLs the reviewers said knowing the identity had
no effect; for 3 percent knowing identity decreased
velocity; for 26 percent knowing identity increased
velocity.

After the study, we asked treatment participants “what
[effect on velocity] did the [anonymous author] code
review process have, compared to [non-anonymous] code
review?” 59 percent said anonymous author code review
had no effect on velocity; 5 percent said a positive effect on
velocity, 36 percent said a negative effect, and the remain-
der did not know.

We also wanted to know the impact of anonymous
author code review on velocity more broadly, so we asked
all participants, “If [anonymous author] code review was
regularly practiced at Google, I expect that my engineering
velocity would be...”, followed by a rating. As shown in
Fig. 2, most (55 percent) treatment group participants
thought that anonymous author code review would have a
negative effect on review velocity, with most of the remain-
der of participants (37 percent) expecting no effect.

Overall, this data suggests that participants perceived that
anonymous author code review generally has a negative or neutral
effect on code review velocity.

Although perceived review time is important, we can also
measure active reviewing time as an objective measure of
velocity. Todo so,we comparednot only the control and treat-
ment groups during the study, but also those groups against
their own reviewvelocities pre- andpost-study. Thus, we sep-
arated reviews into those performed in the approximately two
weeks during the study, in the two-week period before the
study began, and in the two-week period after the study
ended. We defined study beginning and ending on a per-par-
ticipant basis, since participants may have begun using our
chrome extension or filled in the final report at any point after
we invited them to do so. We defined the study beginning for
a participant as the time when the participant made the first
comment on a CL that they filed a report for. We defined the
study ending for a participant as the time when the partici-
pant submitted their last report.

Fig. 3 illustrates raw reviewing time differences between
the control group and treatment group, and in the pre-study
(ncontrol ¼ 2351 and ntreatment ¼ 7612 changelists), during-
study (ncontrol ¼ 2169 and ntreatment ¼ 6308 changelists), and
post-study (ncontrol ¼ 1702 and ntreatment ¼ 6149 changelists)
periods. In the figure, we show boxplots that summarize
reviewing time distributions, overlaid with individual code
review times as circles. We do not display any code reviews
that took more than about 30 minutes, but these are
accounted for by the boxplots.

Fig. 2. Treatment participants’ expectations about what effect anony-
mous author code review would have on review velocity if practiced reg-
ularly at Google. An additional 2 percent of participants responded “I
don’t know”.

MURPHY-HILL ET AL.: ENGINEERING IMPACTS OF ANONYMOUS AUTHOR CODE REVIEW: A FIELD EXPERIMENT 2501

This raw data suggests that reviewing time increased
during the study period for both control and treatment
groups – from 3.5 to 4.4 minutes for the treatment group,
and from 4.1 to 4.5 for the control group. So was review
time lengthened by anonymous author review? To examine
this, we created a linear RLR predicting log review time
(adjusted McFadden pseudo-R2 ¼ 0:07). We use log review
time since review time is highly skewed (most reviews take
less than 5 minutes, but some reviews can take 30 minutes
or more). In addition to the existing linear RLR covariates,
we add a three-level fixed-effect for time period (before,
during, and after the study).

This RLR indicates that, indeed, changelist review time
was longer during the study than before the study (by
10 percent, p < :001) and after the study (by 6 percent,
p < :001). However, this RLR also indicates that the time
taken to review in the treatment (anonymous author) group
was not statistically significantly different than the time
taken in the control group (p ¼ :346).

Why might both the control and treatment group show
an increase in reviewing time during the study? Potential
explanations include both groups of participants being
influenced by modulating behavior simply by being aware
of identity-issues and both groups changing their behavior
due to being part of a study [36].5

In sum, because both control and treatment groups
reviewed more slowly during the study to a statistically
similar extent, our results suggest that anonymous author
code review did not substantially change objective reviewing
velocity during the study, compared to non-anonymous review, in
our study setting.

This conclusion applies to anonymous author code review
in practice at companies likeGoogle, that is, when author iden-
tities can often be guessed (Section 4.2). Other contexts may
exist where guessability is lower, such as open source projects
that accept pull requests from a wide variety of external con-
tributors; in these contexts, would we expect different review-
ing velocities? We answer this question by comparing normal
treatment group reviews where the reviewer knew the author
identity to thosewhere the author’s identitywas not known. A
detailed description of this analysis is in the Supplemental
Material Section 12, available online; in short, we find that
there exists fundamental differences in code reviews when the
author is guessable compared to non-guessable. Therefore,
comparing guessable to non-guessable author code reviews
on metrics like velocity or quality is not a reasonable compari-
son, so we make no further attempt to do so in the remainder
of the paper.

4.4 RQ3: How Does Anonymous Author Code
Review Change Review Quality?

Given the effect of code review on software quality [37],
[38], [39], [40], we asked how participants perceived their
review quality during and after the study.

After participants LGTM’d a CL:

� We asked treatment participants to rate what effect
the anonymous author code review process had on
code quality, compared to non-anonymous code
review. For 92 percent of CLs, participants said
anonymous author code review had no impact on
quality; for 1 percent anonymous author review had
a negative impact on quality; for 4 percent a positive
impact; and the rest were not known.

� Conversely, we asked control participants to esti-
mate the effect of knowing the identity of the author
compared to not knowing their identity in terms of
review quality. Here, for 79 percent of CLs the
reviewers said knowing the identity had no effect;
for 7 percent knowing identity decreased quality; for
12 percent knowing identity increased quality.

After the study, we asked treatment participants “what
[effect on quality] did the [anonymous author] code review
process have, compared to [non-anonymous] code review?”
75 percent said anonymous author code review had no effect
on quality; 18 percent said a positive effect on quality, 7 per-
cent said a negative effect, and the remainder did not know.

We examined the impact of anonymous author code
review on quality more broadly, so we asked all partici-
pants, “If anonymous author code review was regularly
practiced at Google, I expect that...” As Fig. 4 shows, most

Fig. 3. The time participants spent actively reviewing each changelist in
minutes, comparing treatment and control groups in terms of review
time before (left), during (center), and after the study (right).

Fig. 4. Treatment participants’ expectations about what effect anonymous
author code review would have on review quality if practiced regularly at
Google. An additional 1 percent of participants responded “I don’t know”.

5. The increase is not due to filling out the post-LGTM report, as
review time does not include the time to fill out this form.

2502 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

(57 percent) treatment group participants thought that
anonymous author code review would be neutral toward
review quality, with most of the remainder of the treatment
group participants (24 percent) expecting positive impact
on quality.

Finally, we ran a logistic RLR to predict whether the
changelists reviewed by treatment participants were more
or less likely to be rolled back in the roughly 17 month
period after the experiment took place, one measure of
review quality (adjusted McFadden pseudo-R2 ¼ 0:0008).
We found no statistically significant difference in the odds
of rollbacks, comparing the treatment CLs reviewed during
the study period compared to the CLs in the two week
period before the study (p ¼ :71) and the two week period
after the study (p ¼ :46). However, surprisingly, control
group participants’ changelists saw a slight but statistically
significant rise in the odds of a rollback for CLs reviewed
during the study period compared to the pre-period (Odds
Ratio 1.02, p < :001) and post-period (OR 1.01, p < :001).
This evidence suggests that review quality is at least as
good during anonymous author code review as during non-
anonymous review.

Overall, this data suggests that anonymous author code
review generally has a neutral effect on code review quality.

4.5 RQ4: What Effect Does Anonymous Author
Code Review Have on Reviewers’ and Authors’
Perceptions of Fairness?

At its core, the purpose of anonymous author code review is
to allow engineers to review code without being burdened
by any biases they might have about the author. Thus, we
examined whether code reviewers (Section 4.5.1) and
authors (Section 4.5.2) were able to perceive any differences
in how reviewers treated authors during anonymous author
code reviews, specifically from a fairness perspective.

4.5.1 Reviewer Fairness Perceptions

We first asked reviewers whether they perceived any differ-
ences in their own fairness while performing anonymous
author code reviews. After participants LGTM’d a CL:

� We asked treatment participants to rate what effect
the anonymous author code review process had on
reviewing fairness, compared to non-anonymous
code review. For 93 percent of CLs, participants said
anonymous author code review did not change fair-
ness; for 4 percent anonymous author review made
the review more fair; for < 1 percent, less fair; and
the rest were not known.

� Conversely, we asked control participants to esti-
mate the effect of knowing the identity of the author
compared to not knowing their identity in terms of
review fairness. Here, for 89 percent of CLs the
reviewers said knowing the identity had no effect;
for 3 percent knowing identity decreased fairness;
for 2 percent knowing identity increased fairness;
and the rest were not known.

After the study, we asked treatment reviewers “what
[effect on fairness] did the anonymous author code review
process have, compared to [non-anonymous] code review?”

66 percent said anonymous author code review had no
effect on fairness; 31 percent said a positive effect on fair-
ness, 1 percent said a negative effect, and the remainder did
not know.

Overall, this data suggests that most reviewers perceived
that anonymous author code review has a neutral or positive effect
on code review fairness.

4.5.2 Author Fairness Perceptions

We also asked code review authors if they perceived any
fairness differences. Note that we don’t necessarily expect
an increase or decrease in perceived fairness. On one hand,
if authors perceived previous non-anonymous reviews as
unfair, then they may perceive anonymous author review
as more fair than they expected. On the other hand, authors
who previously had been treated with undue deference
might perceive anonymous author reviews as less fair than
they expected.

After reviews were completed by study participants, we
asked authors of those CLs “During code review for this
changelist, did you experience being treated as fairly as you
expected?” We asked authors about the following CLs:

� All control group CLs. These represent CLs when the
reviewer is aware of author identity.

� Treatment group CLs where the reviewer indicated
that they were “Uncertain” of the author’s identity.
These represent CLs where the reviewer did not
have knowledge of the author’s identity.

We also surveyed authors once, and only once, to reduce
survey fatigue. We did not indicate in this author survey
that the reviewers were participating in an experiment, nor
whether they were reviewing with anonymous authors
(treatment group) or non-anonymously (control group).
Moreover, study participants were discouraged from dis-
cussing the study with other Google engineers, so as to
avoid biasing authors.

We separately analyze reviews where the study partici-
pant was the readability reviewer. Table 3 shows authors’
fairness ratings.

The ‘Normal reviews’ columns shows that for most
reviews in both control and treatment groups, authors did
not feel treated more or less fairly than they expected
(93 percent of control group authors, 94 percent of treatment
group authors). The control and treatment group were not
significantly different (p ¼ :97), according to a linear RLR
(adjusted McFadden pseudo-R2 ¼ �2:6) that predicts per-
ceived fairness, where ”less fair” is coded as -1, ”more fair”
is coded as 1, and otherwise as 0.

The ‘Readability reviews’ columns tell a curious story; con-
trol group participants’ readability reviews were perceived as
more fair than those from the treatment group. The interaction
between control/treatment group and readability is statisti-
cally significant (p ¼ :002), according to the sameRLR.

Since we were surprised by this finding, we evaluated the
hypothesis that the control group participants gave inordi-
nately fair reviews.6We asked authorswho received readabil-
ity reviews from reviewers not invited to be part of the study

6. Our analyses do not support three alternate hypotheses; see Sup-
plementary Material, Section 13, available online.

MURPHY-HILL ET AL.: ENGINEERING IMPACTS OF ANONYMOUS AUTHOR CODE REVIEW: A FIELD EXPERIMENT 2503

to report the fairness of the reviews that they received. Results
are shown in the ‘Post Study’ column in Table 3.

These readability CLs reviewed by non-participants
show levels of author-perceived fairness slightly closer to
the treatment group than the control group. An Ordinary
Least Squares regression with the same fixed effects as an
RLR predicting perceived fairness (adjusted R2 ¼ :16) pro-
vides more definitive evidence of this: non-participant CLs
are significantly different than control group CLs (p < :001)
but not significantly different from treatment group CLs
(p ¼ :38), in terms of author-perceived fairness.7 In other
words, control group CLs appear to be the outliers here.
The hypothesis that the control group gave fairer reviews
than the treatment group – rather than the treatment group
giving particularly unfair ones – is supported.

Overall, this data suggests that authors who unknowingly
received anonymous author reviews did not perceive a significant
difference in fairness, compared to authors who received non-
anonymous reviews.

4.6 RQ5: What do Engineers Perceive as the
Biggest Advantages and Disadvantages of
Anonymous Author Code Review?

4.6.1 Observed Benefits

We asked treatment group participants “What was the main
benefit you experienced during this study while performing
[anonymous author] code review?” One author qualita-
tively coded each of the 198 responses into 10 emergent
categories.

The definitions of these categories are:

� No personal benefits / not sure. The most commonly
mentioned benefit was none that was perceptible to
the participant (n = 71, 36 percent). To quote one par-
ticipant, “It is hard for me to find a clear benefit as I
nearly always knew who I was reviewing (due to the
change being made).”

� More thorough review without reliance on author iden-
tity. The second most commonly mentioned benefit
was that reviews were more thorough (n=65, 33 per-
cent), because the reviewer could not rely on a high

level of author expertise and consequently con-
ducted their reviews in a more neutral way, indepen-
dent of the authority of the author, the relationship
between the reviewer and the author, or trust based
on prior experiences with the author. Many com-
ments mentioned the necessity of taking a closer
look without being able to assume the author pos-
sessed certain knowledge, as well as feeling more
empowered to leave feedback without regard to
whether it was appropriate given the author’s status.
To quote one participant, “When I didn’t know for
sure that an author was a subject matter expert on a
CL, it made me pay more attention to the content
than I would have otherwise.”

� Reduce bias. Another commonly mentioned benefit
was a reduction in bias towards the author (n = 45,
23 percent). A specifically mentioned category of
reducing bias was reducing level/tenure bias (n = 8,
4 percent). Note that there was a high overlap
between the benefits of “reduce bias” and “more
thorough review without reliance on author identi-
ty,” and the latter benefit can be considered a form
of reduced bias. During analysis, only comments
that explicitly mentioned the terms bias and fair-
ness or the concept of treating all CLs equally
were tagged with the theme “reduce bias”. To
quote one respondent, “I think that I (and I would
daresay most reviewers) probably apply some bias
to CLs based on various attributes we attach to the
author (tech level, tenure at Google, readability,
role, past interactions or discussions with the
authors, etc.). In some these cases, the biases serve
as a bit of a short-circuit and I’m more willing to
give an LGTM to someone that I ”trust” more...
even if I don’t fully understand the content of the
change.”

� Other benefits. Several participants mentioned
experiencing other benefits, including the review
process being quicker or simpler when they didn’t
have to consider additional context related to the
author’s identity (n = 20, 10 percent); special value
for readability reviews where reviewers and authors
have little relationship (n = 17, 9 percent); enjoying
and reflecting on a different kind of review process
(n = 12, 6 percent); needing to provide better docu-
mentation and context in a CL (n = 9, 5 percent);

TABLE 3
How Authors of Changelists Perceived Fairness of Normal and Readability Reviews From Developers in the

Control Group, the Treatment Group, and a Set of Non-Participants After the Study

Normal reviews Readability reviews

Treatment Control Treatment Control Post Study

More fairly 5.6% 6.6% 6.5% 17.1% 9.5%
than expected (n=23) (n=29) (n=17) (n=24) (n=33)

About the same / 93.6% 92.7% 92.0% 82.9% 89.7%
don’t know / n/a (n=383) (n=406) (n=242) (n=116) (n=312)

Less fairly 0.7% 0.7% 1.5% 0% 0.9%
than expected (n=3) (n=3) (n=4) (n=0) (n=3)

7. A caveat of this model is requires the omission of the reviewer
random effect, because all non-participant CLs were reviewed by dif-
ferent reviewers. Use of a fixed-effect model here requires us to relax
the assumption of independence.

2504 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

encouraging promptness (n = 4, 2 percent); and
removing CL notifications from email (n=3,
2 percent).8

4.6.2 Observed Drawbacks

As with benefits, we also asked treatment group partici-
pants to state the main drawback they observed during the
study of anonymous author code review. In the 233
responses, the most commonly observed themes were:

� Lack of context to aid in decisions.This refers to additional
information that can be gleaned from knowing an
author’s identity, which reviewers stated would have
aided in a swifter or more tailored review (n = 111,
48 percent). Examples of such contextual information
include the background and motivation behind the
CL, the time zone of the author, the author’s familiarity
with the part of the codebase being modified, and the
CL’s level of urgency. One participant said, “Often,
CLs come in with context that was chatted about off-
line or over other channels (bugs, emails) and knowing
who authored the CL helps trigger the context of
the CL.”

� Barriers to offline communication. Similarly, this cate-
gory refers to the need for reviewers and authors to
communicate outside of a CL to quickly convey
information (n = 48, 21 percent). One participant
said, “At times, it is useful to have an in person con-
versation to clarify a point or to make a design deci-
sion more quickly than trading back and forth over
critique. [Anonymous author code review] made
that process a little bit harder.”

� Minimal or no impact/often knew author. This category
describes minor or no effects of anonymous author
code review, often because the reviewer could guess
the author (n = 45, 19 percent). One participant said,
“I’m able to identify the author for most of the CLs
anyway, making this experience less efficient to me.”

� Reduced velocity. Some participants reported that
their reviews took longer when reviewing with
anonymous authors (n=35, 15 percent). As one par-
ticipant said, “Because of the increased fairness and
quality, reviews took longer.”

� Inconvenience/performance issues with extension or
reports. This theme refers to the limitations of the
study that were drawbacks (n = 30, 13 percent), such
as the extension redacting many usernames in error
or slowing down Gmail inordinately. One partici-
pant said, “Not really a drawback of the process, per
se, but the aggressiveness with which the Chrome
extension redacted names sometimes made it hard
to get additional information”. A similar theme was
lack of email notifications, which was a limitation
required by our chrome extension (n = 13, 6 percent).

� Other drawbacks. Participants reported other draw-
backs, including reviewers being unable to tailor

feedback to the background of the author, such as giv-
ing detailed explanations to new employees (n = 21,
9 percent); not being able to distinguish core contri-
butors from external contributors (n = 18, 8 percent);
not being sure or stating non-drawbacks (n = 12,
5 percent); reducing personal interactions with peers
(n = 12, 5 percent); being less knowledgeable about
colleagues’ work (n = 11, 5 percent); challenges in
looking back over old CLs without seeing author
names (n = 8, 3 percent); awkwardness around the
code review process (n = 7, 3 percent); and difficulty
in prioritizing important CLs over less important
ones (n = 6, 3 percent).

4.7 RQ6: What Features are Important to an
Implementation of Anonymous Author
Code Review?

At the end of the study, we asked participants about a set of
features that anonymous author code review might have, if
implemented at Google. The top of Fig. 5 shows a variety of
features that we asked participants to rate the importance
of. Of these features, participants were most strongly posi-
tive about the ability to deanonymize author the author dur-
ing review, with 52 percent of participants noting the
feature as essential. Most respondents rated the following
features as at least worthwhile: the ability of the author to
request anonymous author review, making the reviewer
anonymous to author identity when no specific reviewer is
required (e.g., when using a reviewer queue), showing
which reviewers are reviewing with anonymous authors,
and deanonymizing the author after granting LGTM. Show-
ing which reviewers deanonymized a CL was rated posi-
tively by some respondents (27 percent), but also was rated
as unwise by 19 percent of participants.

We also asked about what information should be revealed
about the author, if the author’s identity were anonymized, as
shown in the middle of Fig. 5. This figure indicates a variety
of opinions, overall it indicates that most participants support
revealing author time zones, whether the author is on the
reviewer’s team, and whether the author has readability.
Author tenure and level were the two types of information
that participants weremore likely to believe would be unwise
to show thanworthwhile or essential.

We also asked “Suppose [an anonymous author] review
system is opt-in, where those who opt-in perform [anony-
mous author] review by default, but reviewers can [deano-
nymize] as they see fit. How important is it to allow opt-in
to be chosen by each of the following?” Results at the bot-
tom of Fig. 5. The results indicate participants were positive
about having individual reviewers and teams opt-in, mixed
about whether product areas (PAs) opt-in, and somewhat
negative about having the entire company opt-in.

5 LIMITATIONS

Readers should consider several limitations of this study
while interpreting its results.

� Results obtained from a similar study, run in another
organization or an open source software project, may
differ.

8. “Removed CLs from the inbox” was a requirement of the study
that participants should have Critique emails bypass their inbox. This
would not be a constraint in a full implementation of anonymous
author code review.

MURPHY-HILL ET AL.: ENGINEERING IMPACTS OF ANONYMOUS AUTHOR CODE REVIEW: A FIELD EXPERIMENT 2505

� Although we randomly selected participants, those
who opted to participate likely do not represent the
full population of developers, both within Google
and beyond.

� Participants used anonymous author code review
over a relatively short period of time. As we describe
in Section 6, the effect of anonymous author code
review may differ if practiced over a longer period.

� Participants’ self-reports are likely influenced by
cognitive biases and by question wording. For
instance, one question asked authors to rate fairness
relative to their expectations as a baseline and
another asked reviewers to rate fairness relative to a
hypothetical counterfactual baseline. Both baselines
makes interpreting the answer challenging.

� While we reported the number of times various
themes from our qualitative data were mentioned,
these numbers may not capture the frequency or
severity. Rather, they likely capture how salient or
memorable the theme was for participants.

� Given the number of open-ended responses and the
amount of work required, we opted to have just one
coder categorize the open-ended themes. More
robust themes may have emerged with more coders.

� While this paper examined the effects of anonymous
author code review in several dimensions, the prac-
tice may yet have other effects not fully explored in
this study, effects such as relationship building and
knowledge sharing.

6 DISCUSSION

We found that for about 77 percent of non-readability
reviews, developers performing anonymous author review
correctly guessed the author’s identity. Rather than con-
cluding that blind code review doesn’t work or is impossi-
ble in practice, we instead argue that guessability is simply
the unavoidable reality of contemporary code review.
Nonetheless, our results suggest that “low context” changes
are less guessable than other changes, and thus may be par-
ticularly effective places for implementing anonymous
author review; such low context changes include readability
reviews, large scale changes, and small changes. But even
for reviews where authors are guessable, there may yet be
benefits to anonymous author code review. First, as
McKinley argues of double blind paper review, “the very
act of omitting author details on the paper...reminds
reviewers that they should judge the paper on its merits

Fig. 5. How participants rated the importance of various potential features of an anonymous author code review system.

2506 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

rather than based on whomever they guess the authors
might be” [41]. Second, we hypothesize that if author infor-
mation is regularly hidden during code review, it may
become less prominent in reviewers’ minds (this was not
the case in this study, since we frequently prompted devel-
opers to guess author identity). Third, we hypothesize that
even if reviewers are 95 percent certain of author identity,
the remaining 5 percent of doubt will be enough to change
one’s behavior. These hypotheses could be evaluated in
future studies.

One finding from the study was that code reviews took
longer, for both the treatment group and the control group.
While we interpret this to mean that anonymous author
code review per se did not cause the increase in reviewing
time, it is still possible that anonymous author code review
could nonetheless increase reviewing time in a non-experi-
mental field deployment. If the time increase is due to a
novelty effect [42], we would expect active review time to
come back down after the novelty wears off. On the other
hand, anonymous author code reviewers might take more
time to review because the nature of their feedback changes,
for example by being more explicit, which may in turn yield
higher quality reviews. Which of these possibilities will
materialize in practice requires further study in a larger
scale but less experimental (e.g., no reports) study.

We found that fairness was, for most reviews, not per-
ceptibly different from reviewers’ and authors’ expecta-
tions. We do not interpret this to mean that anonymous
author code review cannot make reviews more fair, but
rather that any changes in fairness were not perceptible to
the group of respondents as a whole. We instead argue that
anonymous author code review is more fair by construction,
because irrelevant personal details are excluded, to the
extent possible, from the decision making process.

For organizations that choose to implement anonymous
author code review, we have several recommendations
based on our results. The first is that the downsides appear
minor for implementing author-anonymous review on low-
context changes, where the reviewer has limited contextual
information about the change prior to review. In open
source, for instance, pull requests from newcomers might
be a low-risk place to start implementing anonymous
author code review. In terms of which features to imple-
ment for anonymous author code review, we recommend:

� Implement a break-the-glass option for revealing
author identity, which participants were strongly in
favor of. The downsides to this option are minimal;
our results suggest the feature is rarely used, and
when it is, it’s used largely for important reasons
such as understanding who’s making access control
changes.

� Implement displaying author time zone information,
which participants were also strongly in favor of.
This allows developers to make informed decisions
about when to review.

� Reveal author information by default after LGTM is
granted. This would allow developers to maintain
familiarity with their colleagues’ work, which was a
downside of anonymous author code review as
implemented in this study.

7 RELATED WORK

Studies on the impact of code review have become increas-
ingly popular. Microsoft [31] found that developers report
using code review not only for finding bugs, but also for
knowledge transfer. Developers reported that they pro-
vided more useful and detailed feedback when they were
also experts in the code being reviewed, as they had rele-
vant context for the review. Sadowski and colleagues also
found that at Google, there were similar practices around
using code review for knowledge transfer, and that
reviewers with context provided valuable feedback to the
author [19]. A later study at Microsoft confirmed that a
reviewer provided more useful comments when they had
prior experience with the code being reviewed, though
there was no difference based on whether the reviewer and
author were on the same team [43]. This is particularly
important for the effectiveness of anonymous author code
review: reviewers provide more useful comments if they
are familiar with the code, but our study suggests that
reviewers who are familiar with the code may be more
likely to successfully guess the author’s identity.

Prior work has shown that in open-source code reviews,
female authors are less likely to get their patch accepted
when their gender is known [2]. Additionally, German and
colleagues have found that fairness is a concern in open-
source code reviews [27]. German and colleagues describe
four types of fairness relevant to code review: distributive
fairness, procedural fairness, interaction fairness, and infor-
mation fairness. Anonymous author code review addresses
distributive fairness by improving the equity and equality
in how authors are treated in code review. Anonymous
author code review also adds procedural fairness as it is a
form of bias suppression.

While there is little prior work on anonymous author
code reviews, there is significant prior work in anonymiza-
tion in the peer-reviewed research papers. Prior work has
found that anonymizing the author and affiliations from the
peer reviewers increases representation of female
authors [44] and also increases the representation of less-
famous authors and authors from lower-prestige institu-
tions [8]. These results have also famously held in areas out-
side of peer reviewed publications, such as in orchestral
auditions [7] and in hiring [45].

There has been some prior work in non-technical factors
that impact the outcome of code reviews. Baysal and col-
leagues examined several such factors, including the
author’s prior experience [46]. They found that prior experi-
ence improved the likelihood that a patch is accepted, and
reduced the time spent in code review. However, it is not
known whether this is a direct result of the author’s prior
experience or an artifact of bias on the part of the reviewer.
Kononenko and colleagues also examined the impact of an
author’s prior experience on the quality of the review and
found that it does not affect review quality [47].

8 CONCLUSION

While in principle anonymization reduces bias during code
review by removing decision-irrelevant information (e.g.,
when an engineer has gender biases, removing identity
removes the most salient gender signal), the principle is

MURPHY-HILL ET AL.: ENGINEERING IMPACTS OF ANONYMOUS AUTHOR CODE REVIEW: A FIELD EXPERIMENT 2507

threatened by practical considerations, such as the ability of
reviewers to guess author identity. In this paper we
described a field study of anonymous author code review,
building an understanding of its benefits and drawbacks.
Building on this increased understanding, we encourage
researchers to investigate whether anonymous author code
review reduces disparities in code review outcomes, such
as the gender gap in pull request acceptance rate [2].

ACKNOWLEDGMENTS

The authors would like to thank all engineers who volun-
teered, without whom this study would not have been pos-
sible. They would also like to thanks Danny Berlin, Ash
Kumar, Ambar Murillo, and Rachel Potvin.

REFERENCES

[1] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen,
“Work practices and challenges in pull-based development: The
integrator’s perspective,” in Proc. 37th Int. Conf. Softw. Eng., 2015,
vol. 1, pp. 358–368. [Online]. Available: /pub/pullreqs-integra-
tors.pdf

[2] J. Terrell et al., “Gender differences and bias in open source: Pull
request acceptance of women versus men,” PeerJ Comput. Sci.,
vol. 3, 2017, Art. no. e111.

[3] H. K. Davison and M. J. Burke, “Sex discrimination in simulated
employment contexts: A meta-analytic investigation,” J. Vocational
Behav., vol. 56, no. 2, pp. 225–248, 2000.

[4] J. H. Greenhaus, S. Parasuraman, and W. M. Wormley, “Effects of
race on organizational experiences, job performance evaluations,
and career outcomes,” Acad. Manage. J., vol. 33, no. 1, pp. 64–86,
1990.

[5] R. A. Gordon and R. D. Arvey, “Age bias in laboratory and field
settings: A meta-analytic investigation 1,” J. Appl. Soc. Psychol.,
vol. 34, no. 3, pp. 468–492, 2004.

[6] M. Hosoda, E. F. Stone-Romero, and G. Coats, “The effects of
physical attractiveness on job-related outcomes: A meta-analysis
of experimental studies,” Personnel Psychol., vol. 56, no. 2, pp. 431–
462, 2003.

[7] C. Goldin and C. Rouse, “Orchestrating impartiality: The impact
of ”blind” auditions on female musicians,” Amer. Econ. Rev., vol.
90, no. 4, pp. 715–741, Sep. 2000. [Online]. Available: http://
www.aeaweb.org/articles?id=10.1257/aer.90.4.715

[8] A. Tomkins, M. Zhang, and W. D. Heavlin, “Reviewer bias in sin-
gle-versus double-blind peer review,” Proc. Nat. Acad. Sci. USA,
vol. 114, no. 48, pp. 12 708–12 713, 2017.

[9] J. Y. Kim, G. M. Fitzsimons, and A. C. Kay, “Lean in messages
increase attributions of women’s responsibility for gender
inequality,” J. Pers. Soc. Psychol., vol. 115, no. 6, 2018, Art. no. 974.

[10] D. Marti, “Blind code reviews experiment,” 2017. [Online]. Avail-
able: https://blog.zgp.org/blind-code-reviews-experiment/

[11] S. Schalk, “Metaphorically speaking: Ableist metaphors in femi-
nist writing,”Disability Stud. Quart., vol. 33, no. 4, 2013.

[12] E. A. Largent and R. T. Snodgrass, “Blind peer review by aca-
demic journals,” in Blinding as a Solution to Bias: Strengthening Bio-
medical Science, Forensic Science, and Law, Cambridge, MA, USA:
Academic Press, 2016, pp. 75–95.

[13] E. Humphries, “Web extension for debiasing code reviews in
splinter experiment,” 2017. [Online]. Available: https://bugzilla.
mozilla.org/show_bug.cgi?id=1366429

[14] A. Nelson, “Google and the structural sexism of the american
workplace,” 2018. [Online]. Available: https://www.forbes.com/
sites/amynelson1/2018/10/30/google-and-the-structural-
sexism-of-the-american-workplace

[15] D. Seetharaman, “Facebook’s female engineers claim gender
bias,” 2017. [Online]. Available: https://www.wsj.com/articles/
facebooks-female-engineers-claim-gender-bias-1493737116

[16] J. C. Wong, “Facebook: Leaking info about gender bias damages
our ’recruiting brand’,” 2017. [Online]. Available: https://www.
theguardian.com/technology/2017/may/02/facebook-gender-
bias-female-engineers-code

[17] S. J. Ceci and D. Peters, “How blind is blind review?,” Amer. Psy-
chol., vol. 39, no. 12, 1984, Art. no. 1491.

[18] C. L. Goues, Y. Brun, S. Apel, E. Berger, S. Khurshid, and
Y. Smaragdakis, “Effectiveness of anonymization in double-blind
review,” Commun. ACM, vol. 61, no. 6, pp. 30–33, 2018.

[19] C. Sadowski, E. S€oderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at Google,” in Proc. 40th Int.
Conf. Softw. Eng.: Softw. Eng. Pract., 2018, pp. 181–190.

[20] M. Alam et al., “Blinded vs. unblinded peer review of manuscripts
submitted to a dermatology journal: A randomized multi-rater
study,” Brit. J. Dermatol., vol. 165, no. 3, pp. 563–567, 2011.

[21] M. Fisher, S. B. Friedman, and B. Strauss, “The effects of blinding
on acceptance of research papers by peer review,” Jama, vol. 272,
no. 2, pp. 143–146, 1994.

[22] A. C. Justice et al., “Does masking author identity improve peer
review quality?: A randomized controlled trial,” Jama, vol. 280,
no. 3, pp. 240–242, 1998.

[23] S. van Rooyen, F. Godlee, S. Evans, R. Smith, and N. Black, “Effect
of blinding and unmasking on the quality of peer review: A ran-
domized trial,” Jama, vol. 280, no. 3, pp. 234–237, 1998.

[24] R. A. McNutt, A. T. Evans, R. H. Fletcher, and S. W. Fletcher, “The
effects of blinding on the quality of peer review: A randomized
trial,” Jama, vol. 263, no. 10, pp. 1371–1376, 1990.

[25] K. Okike, K. T. Hug, M. S. Kocher, and S. S. Leopold, “Single-blind
vs double-blind peer review in the setting of author prestige,”
Jama, vol. 316, no. 12, pp. 1315–1316, 2016.

[26] R. M. Blank, “The effects of double-blind versus single-blind
reviewing: Experimental evidence from the american economic
review,” The Amer. Econ. Rev., vol. 81, pp. 1041–1067, 1991.

[27] D. German, G. Robles, G. Poo-Caama ~no, X. Yang, H. Iida, and
K. Inoue, “”Was my contribution fairly reviewed?” A framework
to study the perception of fairness in modern code reviews,” in
Proc. IEEE/ACM 40th Int. Conf. Softw. Eng., 2018, pp. 523–534.

[28] M. Ware, “Peer review in scholarly journals: Perspective of the
scholarly community–results from an international study,” Inf.
Serv. Use, vol. 28, no. 2, pp. 109–112, 2008.

[29] P. C. Rigby and C. Bird, “Convergent software peer review
practices,” in Proc. 9th Joint Meeting Found. Softw. Eng., 2013,
pp. 202–212.

[30] J. Ratcliffe, “Moving software quality upstream: The positive
impact of lightweight peer code review,” in Proc. Pacific Northwest
Softw. Qual. Conf., 2009, pp. 171–180.

[31] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proc. 35th Int. Conf. Softw. Eng., 2013,
pp. 712–721.

[32] C. Jaspan et al., “Enabling the study of software development
behavior with cross-tool logs,” IEEE Softw., vol. 37, no. 6, pp. 44–51,
Nov./Dec. 2020.

[33] C. Egelman et al., “Predicting developers’ negative feelings about
code review,” in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng., 2020,
pp. 174–185.

[34] H. Shah, N. J. Nersessian, M. J. Harrold, and W. Newstetter,
“Studying the influence of culture in global software engineering:
Thinking in terms of cultural models,” in Proc. 4th Int. Conf. Inter-
cultural Collaboration, 2012, pp. 77–86.

[35] D. McFadden, Conditional Logit Analysis of Qualitative Choice Behav-
ior, P. Zarembka, Ed. Cambridge, MA, USA: Academic Press,
1974.

[36] J. G. Adair, “The hawthorne effect: A reconsideration of the
methodological artifact,” J. Appl. Psychol., vol. 69, no. 2, 1984,
Art. no. 334.

[37] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empiri-
cal study of the impact of modern code review practices on soft-
ware quality,” Empir. Softw. Eng., vol. 21, no. 5, pp. 2146–2189,
2016.

[38] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida,
“Revisiting code ownership and its relationship with software
quality in the scope of modern code review,” in Proc. IEEE/ACM
38th Int. Conf. Softw. Eng., 2016, pp. 1039–1050.

[39] G. Bavota and B. Russo, “Four eyes are better than two: On the
impact of code reviews on software quality,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2015, pp. 81–90.

[40] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida,
“Investigating code review practices in defective files: An empiri-
cal study of the QT system,” in Proc. IEEE/ACM 12th Work. Conf.
Mining Softw. Repositories, 2015, pp. 168–179.

[41] K. S. McKinley, “Improving publication quality by reducing bias
with double-blind reviewing and author response,” ACM SIG-
PLAN Notices, vol. 43, no. 8, pp. 5–9, 2008.

2508 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

http://www.aeaweb.org/articles?id=10.1257/aer.90.4.715
http://www.aeaweb.org/articles?id=10.1257/aer.90.4.715
https://blog.zgp.org/blind-code-reviews-experiment/
https://bugzilla.mozilla.org/show_bug.cgi?id=1366429
https://bugzilla.mozilla.org/show_bug.cgi?id=1366429
https://www.forbes.com/sites/amynelson1/2018/10/30/google-and-the-structural-sexism-of-the-american-workplace
https://www.forbes.com/sites/amynelson1/2018/10/30/google-and-the-structural-sexism-of-the-american-workplace
https://www.forbes.com/sites/amynelson1/2018/10/30/google-and-the-structural-sexism-of-the-american-workplace
https://www.wsj.com/articles/facebooks-female-engineers-claim-gender-bias-1493737116
https://www.wsj.com/articles/facebooks-female-engineers-claim-gender-bias-1493737116
https://www.theguardian.com/technology/2017/may/02/facebook-gender-bias-female-engineers-code
https://www.theguardian.com/technology/2017/may/02/facebook-gender-bias-female-engineers-code
https://www.theguardian.com/technology/2017/may/02/facebook-gender-bias-female-engineers-code

[42] J. D. Wells, D. E. Campbell, J. S. Valacich, and M. Featherman,
“The effect of perceived novelty on the adoption of information
technology innovations: A risk/reward perspective,” Decis. Sci.,
vol. 41, no. 4, pp. 813–843, 2010.

[43] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in Proc. 12th Work.
Conf. Mining Softw. Repositories, 2015, pp. 146–156.

[44] A. E. Budden, T. Tregenza, L. W. Aarssen, J. Koricheva, R. Leimu,
and C. J. Lortie, “Double-blind review favours increased represen-
tation of female authors,” Trends Ecol. Evol., vol. 23, no. 1, pp. 4–6,
2008.

[45] O. A
�
slund and O. N. Skans, “Do anonymous job application

procedures level the playing field?,” ILR Rev., vol. 65, no. 1,
pp. 82–107, 2012.

[46] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The
influence of non-technical factors on code review,” in Proc. 20th
Work. Conf. Reverse Eng., 2013, pp. 122–131.

[47] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, andM. W. Godfrey,
“Investigating code review quality: Do people and participation
matter?,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2015,
pp. 111–120.

Emerson Murphy-Hill received the PhD degree
in computer science from Portland State Univer-
sity, Portland, Oregon. He is a research scientist
at Google in Developer Intelligence, Mountain
View, California.

Jillian Dicker received the BSc degree in mathe-
matics and computer science from the University
of British Columbia, Canada, and the MSc degree
in computer science from Simon Fraser Univer-
sity, Canada. She is currently a software engi-
neer at Google in Developer Intelligence,
Mountain View, California.

Margaret Morrow Hodges received the master’s
degree of public health from the University of
California, Berkeley, Berkeley, California. She is
currently a user experience researcher at Google in
Developer Intelligence, Mountain View, California.

Carolyn D. Egelman received the PhD degree
from Carnegie Mellon University, Pittsburgh,
Pennsylvania in engineering & public policy. She
is a quantitative user experience researcher at
Google in Developer Intelligence, Mountain View,
California.

Ciera Jaspan received the PhD degree in soft-
ware engineering from Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania. She is currently a
software engineer at Google with Developer Intel-
ligence, Mountain View, California.

Lan Cheng received the PhD degree in econom-
ics from the University of California, Davis, Davis,
California. She is a quantitative user experience
researcher at Google in Developer Intelligence,
Mountain View, California.

Elizabeth Kammer received the master’s degree
in computer science from the University of Ala-
bama, Tuscaloosa, Alabama. She is a software
engineer at Google, Mountain View, California.

Ben Holtz received the master’s degree in com-
puter science from Stanford University, Stanford,
California. He is currently a software engineer at
Google in Developer Intelligence, Mountain View,
California.

Matthew A. Jorde received the master’s degree
in computer science from the University of
Nebraska-Lincoln, Lincoln, Nebraska. He is cur-
rently a software engineer at Google in Developer
Intelligence, Mountain View, California.

Andrea Knight Dalon received the degree in
information systems and human-computer inter-
action at Carnegie Mellon University, Pittsburgh,
Pennsylvania. She is currently a user experience
researcher at Google, Mountain View, California.

Collin Green received the BSc degree in psychol-
ogy from the University of Oregon, Eugene, Ore-
gon, and the PhD degree in psychology from
the University of California, Los Angeles, Los
Angeles, California. He is a currently user experi-
ence researcher andmanager at Google in Devel-
oper Intelligence, Mountain View, California.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

MURPHY-HILL ET AL.: ENGINEERING IMPACTS OF ANONYMOUS AUTHOR CODE REVIEW: A FIELD EXPERIMENT 2509

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

