
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Defect Reduction Planning (using TimeLIME)
Kewen Peng, Tim Menzies, Fellow, IEEE

Abstract—Software comes in releases. An implausible change to software is something that has never been changed in prior releases. When planning
how to reduce defects, it is better to use plausible changes, i.e., changes with some precedence in the prior releases.
To demonstrate these points, this paper compares several defect reduction planning tools. LIME is a local sensitivity analysis tool that can report the
fewest changes needed to alter the classification of some code module (e.g., from “defective” to “non-defective”). TimeLIME is a new tool, introduced in
this paper, that improves LIME by restricting its plans to just those attributes which change the most within a project.
In this study, we compared the performance of LIME and TimeLIME and several other defect reduction planning algorithms. The generated plans were
assessed via (a) the similarity scores between the proposed code changes and the real code changes made by developers; and (b) the improvement
scores seen within projects that followed the plans. For nine project trails, we found that TimeLIME outperformed all other algorithms (in 8 out of 9 trials).
Hence, we strongly recommend using past releases as a source of knowledge for computing fixes for new releases (using TimeLIME).
Apart from these specific results, the other lesson from this paper is that our community might be more careful about using off-the-shelf AI tools, without
first applying SE knowledge (e.g. that past releases are a good source of knowledge for planning defect reductions). As shown here, once that SE
knowledge is applied, this can result in dramatically better reasoning.

Index Terms—Software analytics, Defect Prediction, Defect Reduction, Plausibility Analysis, Interpretable AI
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1 INTRODUCTION

“Don’t tell me where I am, tell me where to go.”
– a (very busy) developer

Machine learners generate models. People read models.
What learners generate the kind of models that people want
to read? If the reader is a busy software developer, then they
might not need, or be able to use, complex models. Rather,
such a busy developer might instead just want to know
the least they need to do to achieve the most benefits. For
example, suppose some AI model has classified a module
as “defective”. If a developer then asks “what can I do to
fix that?” then, ideally, we should, be able to reflect on the
model to learn a defect reduction plan; i.e., a small set of
actions that reduces the odds of that module being defective.

For many machine learning algorithms, it can be (very)
difficult to learn a succinct reduction plan by reflecting on
the arcane internal structure of, say, a neural net classifier.
To better support busy developers, explanation algorithms
like LIME [1] (first presented at KDD’16) can report what
attribute changes can alter a classification (e.g., from “defec-
tive” to “non-defective”). But classic LIME has a problem-
it generates surprising and unprecedented plans that had
never been seen before in the history of a project. As we
show, such unprecedented plans are sub-optimal.

To fix this problem, TimeLIME adds SE knowledge to
LIME. We note that software comes in releases and that
an implausible change to software is something that has
never been changed in prior releases. Hence, we propose
the following TimeLIME tactic:

When reasoning about changes to a project, it is best to
use changes seen in the historical record of that project.

To assess the value of this TimeLIME tactic, we ask:
• RQ1: Does TimeLIME provide succinct plans? Classic

LIME, proposes changes to dozens of attributes. Time-
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LIME, on the other hand, restricts itself to just the most
changed attributes. Hence, our plans are easier to apply.

• RQ2: Could developers apply the changes proposed by
TimeLIME? Given project information divided into oldest,
newer, and most recent data, this paper:
– Used the oldest data to determine what attributes were

often changed in a project,
– Used the newer data to build plans using LIME, Time-

LIME, and five other planning algorithms;
– Divided the most recent data into:
∗ Those projects that followed the plans;
∗ And those that did not. This study found a large

overlap (median=80%) between TimeLIME’s recom-
mendations and actual actions made by developers.

• RQ3: Is TimeLIME better at defect reduction? Time-
LIME’s plans perform best (compared to classic LIME and
four other algorithms).

The rest of this paper is structured as follows. §2 discusses
defect prediction, code refactoring, and challenges of using
human opinions in SE.§3 introduces some prior works in
the field of defect reduction and their methodologies. §4
presents the basic framework of LIME as well as Time-
LIME, the new method proposed in this paper. §5 shows
our method for ranking different planning methods. §6
describes experiment and the datasets, predictive model,
and planners evaluated in this work. §7 and §8 report and
discuss the result respectively. The credibility and reliabil-
ity of our conclusions is discussed by §9. Recent related
works are shown in §10, which also declares the major
difference that distinguishes the contribution of this paper.
Future work and directions are illustrated in §11. Finally, we
conclude this work in §12.

1.1 Reproduction Package

All our scripts and data are available on-line1.

1. https://github.com/ai-se/TimeLIME
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Metric Name Description
amc average method complexity Number of JAVA byte codes
avg cc average McCabe Average McCabe’s cyclomatic complexity seen in class
ca afferent couplings How many other classes use the specific class.

cam cohesion amongst classes Summation of number of different types of method parameters in every method divided by a multiplication
of number of different method parameter types in whole class and number of methods.

cbm coupling between methods Total number of new/redefined methods to which all the inherited methods are coupled
cbo coupling between objects Increased when the methods of one class access services of another.
ce efferent couplings How many other classes is used by the specific class.
dam data access Ratio of private (protected) attributes to total attributes
dit depth of inheritance tree It’s defined as the maximum length from the node to the root of the tree
ic inheritance coupling Number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)
lcom lack of cohesion in methods Number of pairs of methods that do not share a reference to an instance variable.

lcom3 another lack of cohesion measure
If m, a are the number of methods, attributes in a class number and µ(a) is the number
of methods accessing an attribute, then lcom3 = (( 1

a

∑a
j µ(aj)) −m)/(1 −m)

loc lines of code Total lines of code in this file or package.
max cc Maximum McCabe Maximum McCabe’s cyclomatic complexity seen in class
mfa functional abstraction Number of methods inherited by a class plus number of methods accessible by member methods of the class
moa aggregation Count of the number of data declarations (class fields) whose types are user defined classes
noc number of children Number of direct descendants (subclasses) for each class
npm number of public methods Npm metric simply counts all the methods in a class that are declared as public.
rfc response for a class Number of methods invoked in response to a message to the object.
wmc weighted methods per class A class with more member functions than its peers is considered to be more complex and more error prone.
defect defect Number of bugs which can be transformed into Boolean values for classification.

TABLE 1: The C-K OO metrics used in defect prediction. The last variable ”defect” is the dependent variable.

2 BACKGROUND

2.1 Challenges with Using Human Opinions

This paper is an algorithmic analysis of historical SE data
where we ran simulations over the historical record of eight
software projects. An alternate approach to this algorithmic
analysis of historical SE data is to use qualitative methods.
Qualitative methods rely on surveys of human subject mat-
ter experts (e.g., programmers). Much has been learned from
such studies of subject matter experts [2]. Nevertheless, in
the particular case of large scale defect prediction, we prefer
our algorithmic approach, for two reasons:
• Scalability: It is hard to scale qualitative investigations of

human beliefs to a large number of projects. We mention
this since while this paper studies just eight projects, our
long-term goal is to develop software analysis methods
that applies to hundreds to thousands of projects. While
some progress has been seen recently with scaling qualita-
tive methods [3], at the time of this writing, we assert that
it is far easier to scale an algorithmic analysis of historical
SE data.

• Lack of consensus: multiple studies report that human
beliefs in software quality may often be inconsistent and
even incorrect. Devanbu et al. have conducted a case
study among 564 Microsoft software developers to show
that human beliefs on software quality can be quite varied
and may not necessarily correspond with actual evidence
within current projects [4], [5]. Similar assertions are also
made in Passos’ paper, where the author reports that
conflicting beliefs can be held by different stakeholders
of the software development team. There also exist cases
that a belief is correct for past projects but not the current
work [6]). A more recent study by Shrikanth et al. also
reports such much variability of human beliefs about
defect prediction [7]. Shrikanth studies 10 beliefs held
by software developers about defect prediction, which
were initially summarized by Wan et al in 2018 [8]. By
measuring the actual support of these beliefs within the
project, Shrikanth found that:

◦ Among over 300,000 changes seen in different open-
source projects, only 24% of the projects support all 10
beliefs.
◦ What is believed the most by developers does not

necessarily have the strongest support within projects.
For example, a belief that is acknowledged by 35% of
the developers has the most support whereas a belief
held by 76% of the developers is only ranked 7th out of
10 beliefs.
◦ As a project grows to mature, the beliefs actually tend

to be weakened rather than strengthened.
Not only do practitioners have conflicting beliefs about
what causes defects, but we also can see that researchers
who have studied many projects also disagree on what
factors matter the most to defect reduction. For example,
as discussed later in the paper, Alves [9], Shatnawi [10],
and Oliveira [11] all offer different models about what
matters most for software quality.

In summary, many studies report a significant disconnect
between human beliefs and patterns supported by data.
Hence, we are nervous about using the opinion of experts’
opinions as the “ground truth” to evaluate (e.g., ) defect
reduction plans. Accordingly, we use an algorithm analysis
since that can use historical SE data to generate the ground
truth needed to evaluate a method.

2.2 Defect Prediction

The case study of this paper comes from defect prediction
and planning. This section discussed the value of that kind
of analysis.

During software development, testing often has some
resource limitations. For example, the effort associated with
coordinated human effort across a large code base can grow
exponentially with the scale of the project [13]. Hence, to
effectively manage resources, it is common to match the
quality assurance (QA) effort to the perceived criticality and
bugginess of the code. Since every decision is associated
with a human and resource cost to the developer team, it
is impractical and inefficient to distribute equal effort to
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every component in a software system [14]. Learning defect
prediction (using data miners) from static code attributes
(like those shown in Table 1) is one very cheap way to
“peek” at the code and decide where to spend more QA
effort.

Recent results show that software defect predictors are
also competitive widely-used automatic methods. Rahman
et al. [15] compared (a) static code analysis tools FindBugs,
Jlint, and PMD with (b) defect predictors (which they called
“statistical defect prediction”) built using logistic regres-
sion. No significant differences in cost-effectiveness were
observed. Given this equivalence, it is significant to note that
defect prediction can be quickly adapted to new languages
by building lightweight parsers to extract code metrics.
The same is not true for static code analyzers - these need
extensive modification before they can be used in new lan-
guages. Because of this ease of use, and its applicability to
many programming languages, defect prediction has been
extended many ways including:

1) Application of defect prediction methods to locating
code with security vulnerabilities [16].

2) Understanding the factors that lead to a greater likeli-
hood of defects such as defect prone software compo-
nents using code metrics (e.g., ratio comment to code,
cyclomatic complexity) [17], [18] or process metrics (e.g.,
recent activity).

3) Predicting the location of defects so that appropriate
resources may be allocated (e.g., [19])

4) Using predictors to proactively fix defects [20]
5) Studying defect prediction not only just release-level

[21] but also change-level or just-in-time [22].
6) Exploring “transfer learning” where predictors from one

project are applied to another [23], [24].
7) Assessing different learning methods for building pre-

dictors [25]. This has led to the development of hyper-
parameter optimization and better data harvesting tools
[26], [27].

This paper extends defect prediction and planning in yet
another way: exploring the trade-offs between explanation
and planning and the performance of defect prediction
models. But beyond the specific scope of this paper, there
is nothing in theory stopping the application of this paper
to all of the seven areas listed above (and this would be a
fruitful area for future research).

2.3 Code refactoring
Code refactoring is an important part of software mainte-
nance. The process is meant to improve the internal quality
of software by better structuring the existing code, without
changing the external behavior [28], [29]. Such restructuring
is assumed to positively affect the software quality by re-
ducing complexity, enhancing maintainability, etc. [30], [31].

Much research has studied the relation between the code
refactoring process and internal software static attributes
metric and external software quality attributes like main-
tainability, modifiability, and understandability [32]–[35].
Studies have shown a correlation between external quality
attributes and internal quality attributes (such as the OO
metrics used in this paper) [36]–[40].

That said, a missing piece of current research is what
we call the planning problem. Given that a developer can
change these metrics in many ways, what should she ac-
tually do? How do we bridge the gap between “what” to
refactor and “why” we need to refactor in the first place?
Table 2 shows the effect of various code refactoring methods
on our code base. In order to select “what” refactoring
method to apply, developers need some mapping from
those refactoring to some higher-level goal. The planning
algorithms of this paper provide that mapping to the higher-
level goal of “defect reduction in future releases”.

3 PRIOR WORK IN PLANNING DEFECT
REDUCTION

Over the years, several researchers have proposed various
ways to identify appropriate changes on code metrics. This
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1 inline methods dec? inc dec? inc? dec? dec dec
2 extract method inc? dec inc? dec? inc? inc inc
3 extract class dec dec inc? inc inc dec? dec? dec dec? dec? dec dec
4 inline class inc inc dec? dec dec inc? inc? inc inc? inc? inc inc
5 move method dec inc? dec dec? dec? dec? dec
6 hide delegate dec dec
7 consolidate cond dec dec dec inc inc dec dec? inc inc
8 polymorphism dec dec inc inc inc dec? inc
9 flatten cond dec dec dec dec?
10 hide method inc inc
11 simplify para dec dec dec
12 factory method inc inc inc inc? inc inc
13 push down method dec dec? dec dec dec
14 encapsulate field dec inc inc inc inc
15 extract subclass dec dec inc inc? inc dec? dec? dec dec? dec inc dec dec
16 inline subclass inc inc dec dec? dec inc? inc? inc inc? inc dec inc inc

TABLE 2: Code refactoring methods. Taken from [12]. In this table “dec“ and “inc” are short hand for decrease and
increase (respectively). These cell values were determined as follows. For each of the methods in column one, ten
times, we applied that refactoring method to some randomly selected portion of the code base used in this study.
The measurements listed in the columns headers were collected before and after that change. Empty cells indicate no
influence on the feature. Cells marked with ”?” means we observed that some examples have the change while others
do not.
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section will illustrate 4 methods that rely on either outlier
statistics or cluster deltas.

Outlier statistics: The general principle underlying outlier
statistics methods is that in the distribution of values for
each code metric, there are some extremely large/small
values that are associated with greater defect proneness.
Therefore, by changing those metrics to not have such
outlier values, the code base may be found fewer bugs. This
paper presents 3 outlier statistics methods and the major
distinction among them is their different ways to identify
the threshold for outlier values. In the following text, the
methods of Alves et al., Oliveira et al, Shatnawi are based
on outlier statistics.

Cluster deltas is a framework for learning conjunctions of
rules that need to be applied to the code metrics simulta-
neously. Unlike outlier statistics, which merely studies the
statistical distribution of code metrics, cluster deltas is a
supervised learner that take account of whether the code
base is defective. In the following text, Krishna’s XTREE
method uses cluster deltas to learn association rules con-
cerning about when and where to apply a code change.

These two approaches are discussed below. Before doing
that, we first digress to make the point that none of the
following methods can be effective unless:
1) It can be shown that programmers can apply the sugges-

tions made in these plans;
2) It can also be shown that when programmers apply the

suggestions, they do not inadvertently add other changes
that reduce (or remove) the effectiveness of these plans.

Later in this paper, we show evidence that these points 1,2
are actually achievable – see §8.

3.1 Alves. 2010

Alves et al. [9] offers an unsupervised approach that learns
from the statistical distribution and scale of OO metrics. At
the beginning, Alves’ method will weight each metric value
according to the lines of code (LOC in Table 1) of its code
class. The weighted metric values will then be normalized
by the total sum of weights and sorted in an ascending
order. Note that the sorted result is just equivalent to a
cumulative probability function where x-axis stands for the
weight percentage from 0 to 100% and y-axis the metric
scale.

After that, a threshold percentage will be customized
(Alves et al. recommends 70%) to identify normal metric
values against abnormal metric values. For example, a
threshold of 70% will identify the value for each metric
where 70% of the classes fall below. The intuition behind
this is straightforward: they believe that a code class with
outlier metric values that exceed 70% of its peers is more
likely to be found bugs.

When we implemented the Alves’ method in our exper-
iment, we augmented the original implementation by also
studying the correlation between the code metrics and the
defect state of the class. By fitting each dependent variable
and the independent variable with a univariate logistic
regression classifier:
• we were able to reject metrics that are poor indicators of

defects (here we define ”poor” as a logistic regression with
p-value > 0.05).

• For those metrics that survived from the rejection, the
planner will identify the normal range according to the
threshold, i.e., [0, 70%] for each metric.

• Finally, during the planning process, any ”survived” met-
ric exceeding the threshold value will be proposed to
reduce its value to the normal range.

3.2 Shatnawi, 2010

Shatnawi [10] in 2010 provided an alternative to Alves’
method by using VARL (Value of Acceptable Risk Level)
to compute the outlier threshold. Initially proposed by Ben-
der [41] in 1999 in his epidemiological studies, the VARL
function is a supervised learner that uses the interpretation
of the univariate logistic regression model to derive the
threshold for an acceptable risk level given by a probability
p0 (i.e., p0 = 0.05). That is to say, the VARL believes that
the probability p0 of an event is less than 0.05 of the value
of the dependent variable is smaller than VARL. The VARL
function is as follow:

V ARL = 1
β (log( p0

1−p0 )− α)

Here,α is the intercept of the logistic regression, β is the
coefficient of the logistic regression, and p0 is the acceptable
risk probability as described above.

Similar to our procedure of implementing Alves’
method, we ruled out metrics with p-value > 0.05, and
computed the VARL for the remaining metrics. We define
the proposed plan for each metric as [0, V ARL], which
means a metric value exceeding VARL will be recommended
a reduction by the planner.

3.3 Oliveira, 2014

Oliveira et al. [11] approach an totally different threshold
definition than the previous 2 methods. Instead of deriving
an absolute threshold like Alves et al. and Shatnawi did,
Oliveira et al. choose to use the relative threshold, which
indicates the percentage of classes the the upper bound
(threshold) shall be applied to. The general format of their
defect reduction rules is as follow:

p% of the classes must have M ≤ K
Here, M is the code metric; K is the threshold value for
the corresponding metric; p% is the minimum percentage
of code classed that are required to follow the restriction
specified above.

In order to compute the pair of values (p,K) for each
metric M , Oliveira defines 3 functions: Compliance(p, k),
Penalty1(p, k), and Panelty2(p, k). The Compliance method
reports the percentage of classes that follow the rule defined
by each pair of values (p,K). The Penalty1 penalizes the
model if the compliance rate is lower than a constant per-
centage (i.e., 90%). Penalty2 computes the distance between
k and the median of the preset Tail-th percentile for each
metric (Oliveira et al. suggest 90-th percentile). Summing
up the 2 penalty values to obtain the total penalty, the
method chooses the pair of values (p,K) with the lowest
total penalty where a tie will be broken by choosing the
highest p and the lowest k.
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Fig. 1: XTREE plan generation. From Krishna et al. [42]. An
example has fallen down to the current branch where the
probability of defects is 1.00. The nearby desired branch
predicts a 0.00 probability of defects. XTREE’s plans are
the delta ∆ between the branches.

3.4 XTREE, 2020

Earlier in 2020, Krishna [42] proposed XTREE, a novel defect
reduction planning method that does not rely on outlier
statistics. The XTREE planner uses frequent pattern mining,
decision trees, and a walk traversal algorithm.

With the pattern mining, XTREE attempts to find what
code metrics usually change together by applying an asso-
ciation rule learner on historical data. Since metrics in Table
1 are continuous, XTREE will first discretize the values into
intervals using Fayyad-Irani. Then a FP-growth algorithm
[43] is used to mine frequent itemsets (in our experimenta-
tion XTREE uses minSupport = 5%× total size ).

The returned maximal frequent itemsets are used to
construct a decision tree. After that, in the third part, the
plans will be generated by traversing the decision tree to
seek for the closest branch with highest improvement in
the probability of the non-defective label. An example of
the traversal procedure is illustrated in the Figure 1. Once
the current branch is found, the plan will be the ∆ from
the current branch to a nearby desired branch with lower
probability of defects.

Fig. 2: An example of output generated by Table 3 when
applied to the data sets of the form of Table 1. The y-axis
shows the feature name and the confidence interval during
which the explanation stays effective. The x-axis indicates
the importance weight of each attribute. The prediction
label of this instance is 1 (defective), and the weights
show how each feature contributes to the prediction. A
positive weight means the feature encourages the classifier
to predict the instance as a positive label (defective), and
vice versa for the negative weight. Larger weights indicate
greater feature importance in terms of the prediction value
based on that feature weighted by a similarity kernel.

4 NEW METHODS FOR PLANNING DEFECT
REDUCTION (LIME AND TIMELIME)

4.1 LIME

One of the starting points of this research was the realization
that the LIME algorithm, first published at KDD’16 [1]
could be applied to defect reduction planning. The internal
framework of LIME is depicted in Table 3. In summary,
given an instance I of class X , LIME conducts a sensitivity
analysis in the neighborhood around I to determine what
could change the class from X to Y . Using the synthetic
data generated around I , LIME can get the classification/re-
gression result from any black-box learner, which will then
be used to fit a linear model describes the local region. The
parameters of the fitted linear model are then reported as
a way to understand how changes in values can adjust the
classification; e.g., see Figure 2.

This paper utilizes LIME and its capability in interpreta-
tion to generate defect reduction plans. If a black-box model
can predict defects accurately, then it might be ”knowl-
edgeable” enough to provide more informative plans than
a subject matter experts can provide. The key question is,

• LIME is designed to be an add-on to other AI systems (e.g.,
neural network, support vector machine, and so on). Hence,
it treats those AI tools as a “black box” that is queried within
its processing.

• Within LIME, some sample generator is used to generate syn-
thetic data which later gets passed to the black box and a
similarity kernel, along with the original training data.

• The similarity kernel is an instrument used to weight the
prediction results of training data returned by the black box
by how similar they are to the instance T.

• The K-Lasso is the procedure that learns the importance
weights from the K features selected with Lasso using a class
of linear models.

TABLE 3: Inside LIME. From [1]. The feature importance weights are passed to Algorithm 1 and 2, as later elaborated
in §6.3. For a sample of the output feature importance weights, see Figure 2.
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therefore, how could we access the knowledge owned by
a black-box model. In this paper, we imported LIME as the
core component of our defect reduction algorithm as we also
leverage other software domain knowledge to help LIME
restrict the proposed plans in an effective fashion.

Sometimes, we are asked why we are basing our ap-
proach on LIME and not other other tools that explain how
to change attributes in order the change the classification of
an instance. To say the least, there are very many alternate
algorithms. A recent survey by Mueller et al. summarized
various kinds of change-explanation generation tools. [44].
Mentioned in their study, Mueller et.al report that this litera-
ture is truly vast. Consequently, there are many alternatives
to LIME including the abductive framework of Menzies
et al. [45] or ANCHORS [46] (which is another change-
explanation algorithm generated by the same team that
created LIME).

We based our work on LIME, for several reasons. Firstly,
LIME scales to large problems. Much recent work has results
in methods to scale data mining to very large data sets. Since
LIME is based on data mining, then LIME can use those
scalability results in order to generate explanations for very
large problems.

Secondly, and this is more of a low-level systems reason,
alternatives to LIME such as ANCHORS assume categorical
or discrete features. Our data has continuous classes which
could be binarized into two discrete classes– but only at
the cost of losing the information about local gradients.
Hence, at least for now, we explore LIME (and will explore
ANCHORS in future work).

Lastly, LIME is a widely-cited algorithm. At the time of
this writing, LIME has received over 3,000 citations since
it was published in 2016. Hence, methods used to improve
LIME could also be useful for a wide range of other research
tasks. This paper proposes precedence plausibility as a way
to improve LIME.

Fig. 3: TimeLIME: overview of the algorithm, plus the K-
test evaluation rig. Note that for evaluating other bench-
mark algorithms, the area bounded by the dotted line will
be replaced by the corresponding algorithm. For further
details on TimeLIME, see Algorithm 2.

4.2 TimeLIME
TimeLIME extends LIME by restricting the generated rec-
ommendations to the attributes which were seen to be fre-
quently modified within the history of a software projects.
Figure 3 offers a graphical overview of this system.

TimeLIME evolved out of comments we heard at work-
shop on ”Actionable Analytics” at ASE’15 [47]. There, busi-
ness users complained about analytic models saying that
rather applying a black-box data mining algorithm, they
preferred an approach with a seemingly intuitive appeal.
Since software engineers are the target audience of analytics
in SE, it is crucial to ensure the proposed recommendations
are valued by them. Chen et al. say the term ”actionable”
can be defined as a combination of ”comprehensible” and
”operational” [21]. But how to assess ”operational”?

In this paper we make the following assumption about
“operational”: a proposed change to the code is plausible if
it has occurred before. That is, in this work, we claim a plan
is the most operational when it has the most precedence in
the history log of the project.

Using this assumption, we can generate operational an-
alytics by:
• Looking at two releases of a project and report the at-

tributes that have changed between them;
• Next, when generating plans, we only used those at-

tributes that have the most changes.
After conducting a survey on 92 controlled experiments
published in 12 major software engineering journals, Kam-
penes et al. [48] argues that in SE, size change can be
measured via Hedge’s g value [49]:

g = (M1 −M2)/(Spooled) (1)

Here, M1 and M2 are the means of an attribute in two
consecutive releases and Spooled comes from 2. This ex-
pression is the pooled and weighted standard deviation (n
and s denote the sample size and the standard deviation
respectively).

Spooled =
√

((n1 − 1)s21 + (n2 − 1)s22)/(n1 + n2 − 2) (2)

For the details on how Equation 2 was applied, see §6.3.
Furthermore, in order to ensure the precedence of plans

generated by TimeLIME, we will only allow changes that
have actually been ”seen” in the record before. When a
plan is generated given a certain set of actionable features
(we denote such set as the candidate pool), we look it up
in the historical records of the project. If there exist such
records where the exact changes proposed by TimeLIME
had once been made by developers, we will return the
plan. Otherwise, the algorithm will go back to the previous
step and start generating a different plan using the same
candidate pool. The plan generating process is a greedy
attempt: Only if all the combinations of M candidates fail,
we will try to make a plan using (M − 1) candidates. In the-
ory, TimeLIME might generate conflicting plans (but in our
logs, this occurs very rarely). Nevertheless, to handle that
situation, we recommend that if two plans are conflicting,
users should adopt the plan with greatest support (i.e. most
frequent in the historical log).

The reason why TimeLIME uses association rule mining
to ensure the precedence of plans is that TimeLIME is
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designed to provide not optimal solutions, but achievable
and maintainable solutions. Different development teams
have different capacity of reducing defects. If a planner is
learning from the historical activities of developers (which
contains examples of good defect reductions) to generate
plans, then better plans could be generated by learning
from better development teams. Thus, it is impossible to
generate an optimal plan since no one can assert whether
the current plan is optimal. Alternatively, it is viable to
generate a maintainable plan: if the current team has been
working on reducing defects in a satisfactory (may not be
best) level, TimeLIME would help to maintain the defect
reduction quality that has been achieved so far.

5 ASSESSING PLANNERS: THE K-TEST

This paper claims that plans from TimeLIME planner (that
focus on attributes with a history of most change) outper-
form those generated from LIME, XTREE, Alves, Shatnaw,
and Oliveira. To defend that claim, we need some way to
assess different planning methods.

There’s an expression in Latin, post hoc ergo propter hoc,
which means ”after this, then because of this”. This expres-
sion refers to the logical fallacy that ”if event B follows
event A, then event A must be the cause of event B”. The
assertion is obviously flawed since other events could be
the true trigger of event B. This is why, in this study, we
need to carefully evaluate the effectiveness of plans to see if
knowledge learned from past code change records actually
helps make plans on future code changes.

To address this concern, we use Krishna’s K-test [42].
The K-test uses historical data from multiple software
releases to compare the effectiveness of different plans
P1, P2, ..... The test is a kind of simulation study that as-
sumes developers were told about a plan at some prior time.
Given project information divided into oldest, newer, and
most recent, we will use the oldest data to determine what
attributes where often changed in a project. Then, using
the newer data, we will build plans using LIME, TimeLIME,
XTREE, Alves, Shatnaw, and Oliveira. Finally, we will divide
the changes between the newer and the most recent into the
changes that overlap with the plans, and those that do not.

More precisely, we use consecutive releases x, y, z of
some software system. These releases are required to contain
named regions of code C1, C2, etc. that can be found in
releases x, y, z. For example, Ci could be an object-oriented
class or a function or a file that is found in all releases.
The K-test then assumes that there exists a quality measure
Q that reports the value of the regions of named code in
different releases. In this study, we will use NDPV (Number
of Defects in Previous Version) as the quality measure, which
is described later in §6.4. Some method is then applied that
uses Q to reflect on the releases x, y in order to infer a plan
Pi for improving release z2.

Given the above, the K-test collects following quantities
to address our claims made in introduction:

• RQ1: Smaller: To measure the succinctness of plans, we
collect the number of changes within the plan proposed
for each code Ci in release y.

2. Note the connection here to temporal validation in machine learning [50]. In
the K-test, no knowledge of the final release z is used to generate the plans.

• RQ2: Ready to apply: To measure how likely a plan can
be realized by developers, we compute Jy,z = ∆y,z∩Pi:
the overlap between the proposed plan and the code
changes.

• RQ3: Better: To measure which planner is better at
reducing defects, we collect Qz − Qy : i.e., the change
in the number of bugs of the named code Ci between
releases y, z. Then, we weight the change Qz − Qy by
Jy,z . The intuition is that the planner cannot get credit
in a bug-reducing code file if its plan shares little or none
similarity with the actual actions done by developers.

The K-test defines better plans as follows:
DEFINITION: Plan Pi is “better” that plan Pj if, in
release z, Pi is associated with most quality improve-
ments.

That is, increasing the size of the overlap of the proposed
plan is associated with increasing quality in release z; i.e.,

(Qz −Qy) ∝ |Jy,z|

For our purposes, the K-test procedure in this paper con-
sists of three steps:
• Train a defect reduction planner on version x.
• Use trained planner to generate plans with the aim of

fixing bugs reported in version y. In this step, classical
LIME planner and TimeLIME planner will utilize the ex-
planations from the explainer and TimeLIME, in addition,
will use the historical data analysis to generate plans.

• On the same set of files that are reported buggy in version
y, we measure Jy,z , the overlap score of each plan and
the changes in the version z, using the Jaccard similarity
function. We also record Qz − Qy , the change in the
number of bugs between the version y and version z.

For each instance, we compare the extent of overlap between
the recommended plan Pi generated by the planner and the
actual developer action in the next release as ∆y,z using the
Jaccard similarity coefficient.

Jy,z(Pi,∆y,z) = (Pi ∩∆y,z)/(Pi ∪∆y,z) (3)

Then we convert the coefficient into percentage as our
overlap score. As an example shown in Table 4, the overlap
score is

2/4× 100% = 50%

AMC LOC LCOM CBO
Current release y 0.2 0.1 0.9 0.5
Pi for release z no change [0, 0.1] [0, 0.9] no change

Next release z 0.2 0.3 0.3 0.2
Match? y n y n

Map to Table 10 TN FP TP FN

TABLE 4: A contrived example: computing similarity score
using the Jaccard function from Equation (3). Plans that
match the developer actions are marked gray.

Formally speaking, the K-test is not a deterministic
statement that some plan will necessarily improve quality in
some future release of a project. Such deterministic causality
is a precisely defined concept with the property that a single
counterexample can refute the causal claim [51]. The K-test
does not make such statements.

Instead, the K-test is a statement of historical observa-
tion. Plans that are “better” (as defined above) are those



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

which, in the historical log, have been associated with
increased values on some quality measure. Hence, they have
some likelihood (but no certainty) that they will do so for
future projects.

6 EXPERIMENTAL METHODS

The experiment reports the performance of TimeLIME and
other state-of-the-art works by comparing the quality of
plans recommended by each method.

Firstly, we use an over-sampling tool called SMOTE [52]
to transform the imbalanced datasets in which defective
instances may only take a small ratio of the population. This
was needed since, in many of the prior papers that explored
our data, researchers warn that small target classes made it
harder to build predictors [53].

Secondly, as discussed above, we train the predictor P
and explainer E on data of version x. Then in version y
we use the explainer to generate explanations only on those
data that are reported as buggy. We also use the predictor P
to determine whether we should provide recommendation
plans to the instance.

Then we measure the overlap score of our recommended
plan and the actual change on the same file in version z. To
do this, only select instances that are defective and whose
file name has appeared in all releases of data to be instances
in need of plans.

The above steps are applied for each benchmark method
as well as the TimeLIME planner proposed by this paper.
The visualization of the experimental rig is shown in Figure
3. In the classical LIME planner, we use the simple strategy
which is to change as many features as it can in order to
reduce the number of bugs. On the other hand, for Time-
LIME, we first input historical data from the older release
to compute the variance of each feature. Then we selected
the top-M features with the largest variance as precedented
features, meaning any recommendation on other features
will be rebutted. After getting recommended plans from
both planners, we assess the performance of two planners
using the overlap score as described in §6.4.

Note that the parameter M can be user-specified and
the features may vary with respect to different projects and
the releases used as historical data. Here we set the default
value of M to be 5, which means only 25% of all twenty
features can be mutated. Our results from experiments
suggest that M = 5 is a useful default setting. Future work
shall explore and compare other values of M .

6.1 Data

To empirically evaluate classical LIME vs TimeLIME, we
use the standard datasets and measures widely used in
defect prediction. In this paper, we selected 8 datasets from
the publicly available SEACRAFT project [54] collected by
Jureczko et al. for open-source JAVA systems (http://tiny.
cc/defects). These datasets keep the logs of past defects
as shown in Table 5 and summarize software components
using the CK code metrics as shown in Table 1. Note that all
the metrics are numerical and can be automatically collected
for different systems [55]. The definition and nature of each
attribute in the metrics is elaborated by prior researchers
Jureczko and Madeyski [56], [57]. Another reason this paper
selects these 8 datasets is that they all contain at least 3
consecutive releases, which is required by the evaluation
measure described in §5. Since Camel dataset contains 4
consecutive releases, the experiment has 9 trials in total.

6.2 Learner

While other benchmark algorithms don’t need the predic-
tive learn within their model, LIME does require the user
to pass in the customized learner, which can be used to
generate explanations. Since the goal of this paper is to
examine the performance of the defect reduction tools rather
than the predictive model, this paper takes one classifier to
apply the explanation algorithm on.

Our choice of classifier is guided by the Ghotra et al. [58]
study that explored 30 classification techniques for defect
prediction. They found that all the classifiers they explored
fell into four groups and that Random Forest classifiers were
to be found in their top-ranked group.

A Random Forest classifier is an ensemble learner that
fits a number of decision tree classifiers on different sub-
samples of the dataset and generates predictions via aver-
age voting from all the classifiers [59]. It is impossible to
visualize a fitted Random Forest classifier as a finite set of
rules and conditions due to the voting process. Therefore,
Random Forest classifier is considered a non-interpretable
model. Hence, it is a suitable choice for this study.

6.3 Planners

This section discusses the internals of our planners, includ-
ing a RandomWalk planner (which we use to compare our
results against a baseline random guesser).

Using LIME, we generate plans to reduce classifications.
We use the default parameter setting of LIME, which is
5000 samples around the instance neighborhood, and the

Training Testing Validation No. of No. of No. of bugs No. of bugs No. of
Dataset (oldest) (newer) (most recent) files matched files in testing set in validation set bugs reduced
Jedit 4.0 4.1 4.2 367 78 216 74 142
Camel1 1.0 1.2 1.4 872 210 508 247 261
Camel2 1.2 1.4 1.6 965 144 334 316 18
log4j 1.0 1.1 1.2 205 35 83 120 -37
Xalan 2.5 2.6 2.7 885 385 529 381 148
Ant 1.5 1.6 1.7 745 91 183 163 20
Velocity 1.4 1.5 1.6 229 138 321 144 177
Poi 1.5 2.5 3.0 442 247 495 366 129
Synapse 1.0 1.1 1.2 256 58 97 65 32

TABLE 5: Defect datasets used in this paper. Each columns represent a different dataset. The last row shows the total
number of bugs reduced among the same files between the testing release and the validation release. Note that a
negative value in this column indicates that the validation release contains more bugs than the previous one.

http://tiny.cc/defects
http://tiny.cc/defects
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Algorithm 1: ClassicalPlanner (LIME)
Data: explanation e // the explanation from Table 3
Result: A tuple consisting of intervals of values v′

begin
w, v ← e // split weights w and value intervals v

from e
i← 0
while i ≤ sizeof (w) do

if w[i] ≥ 0 then
v′[i]← flip(v[i])

else
v′[i]← v[i] // do not propose a change on

this feature
i← i+ 1

return v′

Algorithm 2: TimeLIME Planner
Data: explanation e from Table 3, precedence parameter

M , previous release x, current release y
Result: A tuple consisting of intervals of values v′

begin
w, v ← e // split weights w and value intervals v

from e
M ← 5 // the default parameter M is 5 meaning at

most 5 features can be changed in the resulting
plan

g ← hedge(x, y) // defined in §4.2
precedented← sorted(g)[0 : M ]
i← 0
pool← v
while i ≤ sizeof (w) do

if w[i] ≥ 0 and i ∈ precedented then
pool[i]← flip(v[i])

else
continue // do not propose a change

i← i+ 1

v′ ← findSupport(pool, precedented, x, y)
// as described in Algorithm 3
return v′

entropy-based discretizer. The explanation object return by
a LIME explainer is a tuple in which each element contains
the feature name and the corresponding feature importance.
It also provides a discretized interval indicating the range of
values during which the feature will maintain the same ef-
fect to the prediction result. As described in Algorithm 1, the
simple planner based on the classical LIME will recommend
changes on all features that contribute to the defective pre-
diction. Algorithm 2 shows the TimeLIME planner, which
utilizes Algorithm 3 to ensure that the proposed plan must
be precedented in he historical records. Each planner uses
feature ranges generated by flipping the discretized interval
relative to the feature value range [0, 1].

Also, just to compare, we use a planner named Ran-
domWalk as a “straw-man” baseline algorithm. This plan-
ner, as shown in Algorithm 4, assigns random recommen-
dations to each variable stochastically.

One final note: to make the comparisons fair, in our ex-
periment setting, we set the number of changed features as
the same as the TimeLIME planner for comparison purpose.

Algorithm 3: findSupport
Data: candidates changes on each single feature pool,

precedented features precedented, previous
release x, current release y

Result: The proposed plan for the instance
begin

max← 0 // initialize the max support
itemsets← (x, y) // get records of actual changes
M ← 5 // number of changes allowed
while M > 0 do

plans← generateP lans(pool,M, precedented)
plan,max← findMax(plans, itemsets) //

return the plan with max support in the
historical records

if max > 0 then
break

else
M = M − 1 // try to propose fewer changes

return plan

Algorithm 4: RandomWalk
Data: standardized code instance to be explained

c,number of features to be mutated n
Result: A tuple consisting of intervals of values v
begin

pool← random.sample(20, n) // randomly choose
n out to 20 features

i← 0
while i ≤ sizeof (c) do

if pin pool then
(a, b)← sorted(rand(1),rand(1)) // generate

a random interval within the range [0, 1].
v[i]← (a, b) // apply the random interval.

else
v[i]← c[i]

i← i+ 1
return v

6.4 Performance Criteria

The two performance criteria in this experiment, as de-
scribed in the §5, are the overlap score of individual plans
and the number of bugs reduced/added in the next release
of the project. The function used for computing the overlap
score is the Jaccard similarity function in Eq. 3, and the other
criterion is measured by the metric NDPV (Number of Defects
in Previous Version), which returns the number of bugs fixed
(or added) in a given file during the development of the
previous release. The nature of NDPV and similar metrics
have been evaluated by plentiful researchers [60]–[63].

To further evaluate the second criterion, we chose to use
a weighted sum function to compute the net gain of each
planner. The weighted sum function in Eq. (4) weights the
NDPV by the overlap score of the plan.

S =
∑

si ∗ ni (4)

In the experiment, each plan pi from the all N plans returns
an overlap score si and a NDPV number ni (positive num-
ber indicates bugs reduced, negative number indicates bugs
added). Then we multiply the NDPV ni by si to compute
the weighted improvement score S. Note that the larger si
indicate the greater overlap. Fig. 4 shows the tendency of the
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Fig. 4: Visualized tendency of the Eq. 4. The x-axis shows
the NDPV ni and the y-axis shows the similarity score si.

weighted improvement score S with respect to si and ni.
Generally speaking, we will reward plans who are similar
to a bug-reducing change and penalize those plans who
are similar to a bug-introducing change. In the case where
the plan is very dissimilar to a change (whether it is bug-
reducing or not), we assign a trivial score to the plan since
it shares little overlap with the actual change, which makes
it impossible for us to simulate the potential consequence of
applying such plan.

Additionally, given that the total number of bugs varies
from each project as shown in Table 5, a project with more
bugs reduced in the validation dataset will expect the plan-
ner to score more than the planner whose validation dataset
has fewer bugs reduced so that their performance can be
considered proportionally similar. For example, project A
has NDPV = 100 in release y and another project B has
NDPV = 10 in its next release y. Assume one would like to
observe similar performance of a planner on these 2 projects,
it won’t make any sense if the planner gains the same score
in both projects. From this perspective, we scale the final
score S in Eq. 4 by the sum of NDPV within the project to
get the scaled score Sscaled.

Sscaled =

∑N
i si ∗ ni∑N
i ni

(5)

7 RESULTS

7.1 RQ1: Does TimeLIME provide succinct plans?
Figure 5 reports the mean size of plans across all instances
in release z. We note that:
• RandomWalk method’s plans are so large since this plan-

ner does not use information from the domain to con-
straint its results.

• TimeLIME generates much smaller plans compared to
many other planners including classical LIME.

• The only planner that consistently produces smaller plans
in the Shatnawi method but, as seen in the R

¯
Q3 results

(below), the Shatnawi obtains performance that is far
worse than TimeLIME.

Fig. 5: RQ1 results: The mean size of TimeLIME’s plans
(across all instances in release z) is often much smaller
than LIME. Y-axis shows the number of features changed
by recommended plans.

Note that since TimeLIME in the experiment restricts plans
to the top 5 features with highest Hedge’s g scores, the size
of an TimeLIME plan will never be more than 5. However,
as shown in the figure, the average size of TimeLIME plans
is always smaller than 5. This implies that the original code
refactoring plans, proposed by the classical LIME planner,
do contain unprecedented changes which then get rejected
by the TimeLIME planner. In summary, for RQ1, we say:

Answer 1: Several planners, including LIME, gen-
erate plans that are far larger than those found by
TimeLIME. And the only planner that always gener-
ates smaller plans has much worse performance.

7.2 RQ2: Could developers apply the changes pro-
posed by TimeLIME?

We answer this question in two ways. Firstly, we assess “can
developers map our plans onto known refactoring actions?”
(and for our definition of “refactoring actions”, please see
Table 2). Table 6 shows those mappings. While things get
somewhat complicated in two cases (Log4j and Velocity)
it is encouraging to note that in 9

11 cases, the number
of refactoring actions is less than the number of changes
recommended in TimeLIME’s plans. Concrete examples of
how to apply these mapped plans can be found on our
homepage. 3.

For a second way to answer this question, we use our
historical data. We posit the scenario that developers were
told of our plans in the current release, and then we check
the later release to see if the plans we proposed were actually
recommended. As shown in the rest of this section, we
say our plans are feasible since there is evidence indicating
developers could actually apply those changes.

3. https://github.com/ai-se/TimeLIME/blob/master/README.md#examples
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Jedit Camel1 Camel2 Log4j Xalan Ant Velocity Poi Synapse
TimeLIME Plans - lcom3 - lcom3 + lcom3 - moa - max cc - cbo - loc - rfc - cbm + rfc + avg cc

- moa + dam + moa - ce - avg cc + loc + cam - ce - mfa + amc - cbm
- avg cc + cam - ce - lcom3 -wmc + amc + cbo - npm - amc - dam - mfa
- max cc - ic + rfc - rfc - npm - cam + ce -wmc + loc - cam
+ cam

Refactoring Methods 2 , 3 , 15 3 , 15 4 , 16 3 , 5 , 15 3 , 5 , 8 , 9 4 , 7 3 1 , 5 , 13 1 , 7 , 8 , 9 4 , 12 , 16 4 , 13
11 , 13 , 15 11 , 13 , 15

TABLE 6: Using Table 2, developers can map TimeLIME’s plans onto some simple refactoring methods to achieve the
desired changes in code metrics. The ”+” and ”-” indicate increase and decrease respectively. Note that while various
plans are provided within each project, in this table we only show the most frequent plan(s).

Table 7 and Table 8 comments on how often developers
are willing to perform the plans suggested by different
planners. Both tables are generated using the K-test pro-
cedure described above. Each cell in Table 7 shows the
median value of the Jy,z overlap score measured from Eq.
3 in §5 for all instances within the projects. In addition, in
order to explore the robustness of our approach, we added
2 variants of TimeLIME planners, each embedded with a
different predictor. While the original TimeLIME planner
uses a random forest classifier internally, the 2 variants use
multi-layer perceptron (MLP) and support vector machine
(SVM) respectively.

Table 8 shows the interquartile range (IQR) of all overlap
scores quantile among all plans generated by planners. With
similar median scores, a smaller IQR means the planner is
more stable and robust. It is noteworthy that the Random
Planner always obtains very small IQRs in all project. This
is because plans generated by Algorithm 4 are equivalently
bad as indicated from the median scores. On contrary,
TimeLIME has similarly small IQRs while maintaining the
highest median scores in all project, which means it pre-
vails other planners in terms of providing plans that better
resemble developers’ choices. In summary:

• Unsurprisingly, Random Planner has the lowest similar-
ity scores in all projects.

• The 4 prior works (XTREE, Alves, Shatnawi, and
Oliveira) are equivalently good.

• Different projects have very different baselines for the
similarity evaluation. For example, within Xalan, every
planner except Random obtains a relatively high scores
whereas they perform equally poorly in the Ant project.

• All TimeLIME planners have obtained the highest score
in every project with a relatively low IQR scores. This
means the performance of TimeLIME, regardless of the
type of the embedded classifier, is good and robust in
terms of similarity to actual actions.

• The classical LIME planner has a volatile performance:
It is either performs best or worst. In other words,
compared to TimeLIME, we cannot recommend that
procedure for practical purposes.

In summary, we answer RQ2 as follows:

Answer 2: We find a large overlap between Time-
LIME’s recommendations and the possible actions
(Table 6) and observed actions (Table 7, Table 8) of
developers.

Hence we say developers would be able to apply Time-
LIME’s recommendations.
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Jedit 30 35 35 30 40 35 90 85 90
Camel1 55 63 65 60 67.5 85 95 95 95
Camel2 45 55 55 50 50 40 95 95 95

Log4j 45 50 45 40 50 35 75 80 75
Xalan 70 85 90 80 75 85 100 100 100

Ant 30 35 35 35 35 70 85 85 85
Velocity 60 75 75 55 65 50 100 95 100

Poi 35 40 35 40 45 45 75 75 75
Synapse 35 43 45 40 50 73 75 75 75

TABLE 7: RQ2 results: Median overlap scores in percent-
age: larger scores are better, marked in darker color.

R
an

do
m

O
liv

ei
ra

Sh
at

na
w

i

A
lv

es

X
TR

EE

LI
M

E

Ti
m

eL
IM

E

Ti
m

eL
IM

E
M

LP

Ti
m

eL
IM

E
SV

M

Jedit 30 20 20 15 15 50 15 19 15
Camel1 45 50 55 45 40 20 15 20 15
Camel2 40 50 46 45 50 26 10 25 10

Log4j 28 40 50 38 35 22 25 10 25
Xalan 30 45 35 30 20 25 10 23 5

Ant 18 20 20 15 23 50 22 22 20
Velocity 34 50 45 35 39 20 10 10 10

Poi 18 20 20 20 20 15 20 20 20
Synapse 25 35 44 39 34 39 30 35 34

TABLE 8: RQ2 results: IQR overlap scores: for the same
median scores, smaller IQRs are better, marked in darker
color.

7.3 RQ3: Is TimeLIME better at defect reduction?

As discussed earlier, better plans in defect reduction field
are believed to be those that are (a) easier to apply while
(b) maintaining the effectiveness in reducing bugs. The first
criterion has already been met. As seen there, the plans
made by TimeLIME are much smaller, hence easier to apply,
than the other methods studied here. Also, as seen above,
the plans from TimeLIME correspond well to the known
actions of developers.

The visualized result in Table 9 shows that 3 variants of
TimeLIME planners have obtained highest average Sscaled
scores in most of the projects (8 out of 9).

The overall result is very clear:

Answer 3: The changes proposed by TimeLIME are
associated with a much larger reduction in defects
than classic LIME and other benchmark algorithms.
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Jedit 33 34 19 31 40 43 86 84 86
Camel1 45 55 16 50 62 77 84 85 86
Camel2 35 42 13 38 35 63 65 74 65

Log4j 33 44 23 39 42 43 78 77 75
Xalan 60 81 60 74 67 85 96 95 95

Ant 49 58 18 47 62 99 94 97 92
Velocity 50 58 18 47 52 48 91 91 91

Poi 38 50 0 50 54 43 75 77 74
Synapse 37 41 1 36 41 60 71 65 66

TABLE 9: RQ3 results: Improvement percentage per
project: the higher the better. Best and worst planner in
each project are marked in dark and light respectively.

Actual: change Actual: no / different change
TimeLIME: change TP FP
TimeLIME: don’t change FN TN

TABLE 10: Each change/no-change proposed in a plan will
be categorized into one of the 4 kinds according to the
actual value in the most recent release. Example can be
found in Table. 4

8 DISCUSSION

A potential major objection to all the above could be that the
planning process, as we described so far, may be inefficient
due to:
• Developers may not be able to implement our plans;
• Even if developers could implement the plans, they might

inadvertently make other changes that negate the im-
provements suggested in the plans.

In this section, we will discuss the practicality of our
approach concerning these 2 issues, followed by another
section of other, less pressing, threats to validity. To that
end, we extended our measurement of similarity between
the proposed plans and the actual actions. We further label
each change in a single plan into one of the following 4
categories:
• True Positive: suggests same change as seen later;
• True Negative: suggests no change, and no change later;
• False Positive: suggests a change which is not seen later;
• False Negative: suggests no change, but some other

change is found later.
We also calculate the precision and recall as defined in
Table 10:
• Precision = TP/(TP+FP): Among all changes proposed

by a planner, how many of them are found in the next
release?

• Recall = TP/(TP+FN): For changes found in the next
release, how many are the same as the planner’s?

Unanticipated changes that are not recommended by a
planner are marked as FN. Plans proposed by TimeLIME
but not happened in the next release are marked as FP.
A higher precision means more of TimeLIME’s plans are
undertaken, and a higher recall means there are fewer
unanticipated changes in the next release. If it is TimeLIME
rather than unanticipated changes that should be credited
for the reduced defects, then ideally the defect-reducing
plans should be associated with a high precision, and among
those plans, most of them should also have a high recall.

Xtree Shat Oliv Alves Random TimeLIME LIME
Jedit 38 0 7 5 7 65 58
Camel1 80 0 8 7 7 90 73
Camel2 22 0 3 6 5 83 66
Log4j 23 1 10 8 12 81 70
Xalan 34 1 1 2 1 81 82
Ant 21 0 10 8 1 50 49
Velocity 19 0 2 3 13 88 85
Poi 45 1 4 18 4 61 76
Synapse 39 0 18 18 4 70 66
AVG 35.67 0.33 7.00 8.33 6.00 74.33 69.44
STD 17.99 0.47 5.01 5.52 4.03 12.79 10.69
Rank 2 4 3 3 3 1 1

TABLE 11: The precision rate (in percentage) of a plan
measures how many changes proposed by the plan are
found in the subsequent release. The rank is generated
using the Scott-Knot test. A higher rank is better.

Xtree Shat Oliv Alves Random TimeLIME LIME
Jedit 23 0 3 5 2 59 64
Camel1 29 0 2 3 3 59 52
Camel2 18 0 1 1 2 62 64
Log4j 5 1 8 6 6 58 72
Xalan 61 0 1 2 1 85 81
Ant 11 0 2 6 5 33 31
Velocity 27 0 1 3 2 73 77
Poi 30 0 0 6 2 60 56
Synapse 23 0 2 2 1 46 52
AVG 25.22 0.11 2.22 3.78 2.67 59.44 61.00
STD 14.88 0.31 2.20 1.87 1.63 13.85 14.46
Rank 2 4 3 3 3 1 1

TABLE 12: The recall rate (in percentage) of a plan
measures out of all actual changes how many of them
get proposed by the plan.

First, to evaluate if developers are capable of imple-
menting changes proposed by our plans, we measure the
precision rates of plans from different algorithms. The result
from Table 11 shows that both LIME and TimeLIME planner
obtain the highest scores. This is a supportive evidence
indicating that developers, as seen in the subsequent re-
lease, were capable of implementing most of the changes
proposed by our plans.

Secondly, to answer the question that whether or not
developers may inadvertently make other changes while
following plans proposed by planners, we measure the
recall rates of plans. A low recall means that there exist more
unanticipated changes. Therefore, it is more questionable
that whether the plan or the unforeseen changes should
take credit for the effect of defect reduction. As seen in
Table. 12, TimeLIME and LIME still have the highest recall
rates among all algorithms, which makes the performance
of the planners more convincing since it is revealed here that
when developers are making changes proposed by LIME or
TimeLIME, they are less likely to deploy other changes that
are not mentioned.

In summary, by mining the historical releases, the evalu-
ational analysis here shows sufficient evidence that Time-
LIME is of greater practicality compared to other algo-
rithms. Furthermore, We also believe that more studies
could be done to explore and expand the value of current
evaluation process.

9 THREATS TO VALIDITY

Due to the complexity of the experiment designed in this
case study, there are many factors that can threaten the
validity of these results.
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9.1 Learner Bias

This paper selects Random Forest classifier as the black-box
classifier because prior research has shown that Random
Forest classifier is ranked as one of the top models among
all 32 classifiers used in defect prediction [58]. However,
the preeminent predictive power of Random Forest classi-
fier does not ensure that explanations derived from it are
preeminent code refactoring plans as well. Other methods
from the top rank may be more suitable in the problem of
explanation generation while we haven’t explored more.

9.2 Instrument Bias

Various approaches are proposed for explainable AI. Al-
though LIME is one of the widely cited and well-known
tools, it other tools might be suitable for solving SE prob-
lems, which can make solutions from LIME sub-optimal.
Hence, to verify if adding in SE knowledge can always
improve AI tools, we need to make a comprehensive explo-
ration that includes more explanation generation methods.

9.3 Hyper-parameter Tuning

Past researches have shown how hyper-parameter opti-
mization can boost the performance of a classifier used in
defect prediction. Since in this paper we concentrate on the
modification of the explainer instead of the learner, we used
a simple grid search to find the optimal parameter setting.
It can be possible that the current setting is sub-optimal
and by using the actually optimal settings we might receive
different experiment result.

10 RELATED WORK

Much research urges that interpretability should become an
important factor in assessing analytical models in software
engineering because software developers expect the model
to provide understandable suggestions that can be actually
achieved in real-world practice [64]–[66].

Recently at TSE’20, Jiarpakdee et al. modified LIME us-
ing hyper parameter optimization techniques, and assessed
its performance in defect prediction via output stability [67].
The result has shown that explanations generated from their
method are not only more stable among re-generations,
but also understandable to software developers. The major
difference is that:

• Jiarpakdee et al. assess the viability of applying model-
agnostic techniques (such as LIME) in defect prediction
whereas this paper assesses the practical effectiveness of
LIME in re-organizing a project

• Jiarpakdee et al. explore possible means to improve the
explanation generation procedure where as this paper
explores methods to refine LIME’s results into more
actionable and effective plans for defect reduction.

11 FUTURE WORK

For future work, we need to take action to retire the above
threats to validity.

11.1 More Learners
More black-box learners should be used in the experiment
to construct a more comprehensive comparison. Although
the limited sample amount of defect prediction datasets
has ruled out many deep learning models such as Neural
Network due to the overhead, there are still many other
models, including but not limited to Random Subspace
Sampling and Sequential Minimal Optimization, applicable
for this experiment.

11.2 More Explainers
As described above, LIME is a representative member in the
family of local surrogate interpretation models. Other local
explanation generation methods that apply tree-structure
extraction or association rule mining or so on should also
be introduced in the discussion.

11.3 More Data
We would like to collect not only more SE projects of
defection prediction data but also more releases of a single
project. This can facilitate the further exploration on the
accountability of our historical data analysis. According to
the K-test, we validate plans on the more current release
of the 3 releases. Because of that, we would prefer the files
in the validation release is more similar to the proposed
plans, no matter they have more or fewer bugs, so that our
evaluation on the plans can be more accountable. Sometimes
when the file in the validation release is not similar to the
proposed plan, we wonder what would the file be like if
there is another release with a more similar file. Could it
be possible that more releases can provide us more accurate
and robust evaluation conclusions?

11.4 Better Data
Our current data collection methods use all available train-
ing data. This means our model is learning from the track
records of all developers. One potential issue with that
approach is that the defect reduction performed by the
development teams may not be the best. For example, say
that in release 2, one team removed 5 defects with respect
to release 1. Potentially, another team with more experience
could have removed ten defects instead. Yet the above study
learns from both teams even though one may be more
effective than the other.

This is a fruitful area for useful future work. For exam-
ple, in future work we could mine GitHub repositories look-
ing for “tourists”; i.e. people that usually work in classes
A,B,C,.., but then (occasionally) make changes to sections of
the code that they are not so familiar with (class D,E, etc).
Potentially, if we remove the “tourist” data and only learn
from activities of more experienced developers, we might
be able to build better plans using the better-refined training
data.

11.5 More Measurements: Multi-objective Optimization
In this paper, we introduced K-test as a framework to con-
duction quality evaluation on changes proposed by different
planners. However, although the current framework does



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

provide us with insightful findings, we still believe that
more measurements need to be brought in to construct a
more comprehensive evaluation process. As shown in §8,
planners make changes of different sizes, which makes it
harder to examine their effectiveness since they are from
different levels of precision: suppose 2 planners both made
a change that overlaps with a defect-reducing action, the
planner with a more precise/smaller change interval should
probably be considered better than the other one. To address
this problem, the future work could import another fitness
score function that relates the precision to the effectiveness
of the plan. That is to say, the task of planning defect
reduction could be regarded as a multi-objective optimiza-
tion problem, where a planner might have several goals
(effectiveness, precision, feasibility, etc.) to chase after at the
same time.

12 CONCLUSION

This paper has assessed the following TimeLIME tactic for
generating defect reduction plans:

When reasoning about changes to a project, it is best to
use changes seen in the historical record of that project.

Using this tactic, we find plans that:
• Are succinct: In terms of the average size of recommended

plans. The TimeLIME generally generates smaller plans
than the classical LIME and RandomWalk in every project.
The plans are also equivalently succinct compared to
other benchmark methods in this paper. Smaller plans are
preferred to larger plan since the latter can be faster to
apply.

• Better resemble developers’ actions: In terms of the overlap
between the proposed plans and the developer actions
in the upcoming release, plans proposed by TimeLIME
better match what developers actually do.

• Are better at reducing defects: In terms of the scaled
weighted scores Sscaled that indicate the overall net gain
received per project. TimeLIME gets the highest score
among all planners in 8 out of 9 trials. (while the classical
LIME wins in only 1 project).

Our results are a cautionary tale to the SE community. SE
researchers need to be more careful about using off-the-
shelf AI tools, without first tuning them with SE knowledge.
Specifically:

It is unwise to throw standard AI tools at SE problems
without first considering how those tools might be
customized for SE applications.

We say that since, as shown here, (a) such customization is
not a complex thing to do and (b) the customized system
can have dramatically better performance.
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