
A Compositional Approach for Complex Event
Pattern Modeling and Transformation to Colored
Petri Nets with Black Sequencing Transitions

Valentı́n Valero , Gregorio Dı́az , Juan Boubeta-Puig , Hermenegilda Maci�a , and Enrique Braz�alez

Abstract—Prioritized Colored Petri Nets (PCPNs) are a well-known extension of plain Petri nets in which transitions can have priorities

and the tokens on the places carry data information. In this paper, we propose an extension of the PCPN model with black sequencing

transitions (BPCPN). This extension allows us to easily model the ordered firing of the same transition using an ordered set of tokens on

one of its precondition places. Black sequencing transitions are then presented as a shorthand notation in order to model the

processing of a flow of events, represented by one of their precondition places. We then show how black sequencing transitions can be

encoded into PCPNs, and their application to model Complex Event Processing (CEP), defining a compositional approach to translate

some of the most relevant event pattern operators. We have developed MEdit4CEP-BPCPN, an extension of the MEdit4CEP tool, to

provide tool support for this novel technique, thus allowing end users to easily define event patterns and obtain an automatic translation

into BPCPNs. This can, in turn, be transformed into a corresponding PCPN, and then be immediately used in CPN Tools. Finally, a

health case study concerning the monitoring of pregnant women is considered to illustrate how the event patterns are created and how

the BPCPN and PCPN models are obtained by using the MEdit4CEP-BPCPN tool.

Index Terms—Colored Petri nets, CEP, EPL, compositional modeling, model-driven development

Ç

1 INTRODUCTION

COMPLEX Event Proessing (CEP) technology [1], [2] is
used in many different fields to analyze large volumes

of information in the form of streams of events, using them
to take decisions or derive conclusions. Areas of application
include industry and business [3], sensors and IoT [4], air
quality control [5], etc. Event patterns are then defined to
detect the situations of interest, such as values read from a
set of sensors that exceed a certain threshold, unusual inputs
from system users, etc. Event patterns are usually written in
the so-called Event Processing Languages (EPLs), but domain
experts are not usually aware of these technologies and lan-
guages, which creates an obstacle for user acceptance of
EPLs [6]. Therefore, we developed MEdit4CEP [7], which is
a model-driven tool for real-time decision-making. MEdi-
t4CEP allows the user to easily define event patterns using a
graphical modeling editor. The patterns thus defined can

then be automatically transformed into a corresponding EPL
code, usingModel-Driven Development (MDD) techniques.

Using this approach,we can obtain EPL code,which is syn-
tactically correct, but domain experts still need to know
whether the patterns they define are semantically correct, i.e.,
whether the outputs obtained upon event pattern detection
are correct. We take as reference the Esper EPL implementa-
tion,1 but there is no formal semantics for this language, and
the event pattern operator semantics is only described textu-
ally in the reference manual. Thus, some formalization is
required to check whether the patterns created are correct or
not. For that purpose, in a previous paper [8] we presented a
first Prioritized Colored Petri Net (PCPN) transformation of
EPL patterns, with the goal of using CPN Tools [9] to check
the semantic behavior of the patterns defined in an unlimited
variety of situations. In this previous work, event patterns
such as basic event detection, every, followed-by and data
windows were considered, but the transformation was lim-
ited to certain specific constructions, so compositionality was
not possible. We also developed MEdit4CEP-CPN [10], an
extension of MEdit4CEP that allows the user to define event
patterns using the MEdit4CEP graphical editor, and then
automatically transform them into PCPNs, thus obtaining the
input files that can be immediately opened with CPN Tools.
MEdit4CEP-CPN was then used in [11] as a computational
intelligence model-driven tool for the quantitative analysis of
events of interest in the context of a specific application, the
Sick Building Syndrome.

In this paper, we present a different approach to obtain a
compositional PCPN model for event patterns defined using

� Valent�ın Valero, Gregorio D�ıaz, and Enrique Braz�alez are with the
Department of Computer Science, Albacete Research Institute of Informatics,
Universidad de Castilla-LaMancha, 02071 Albacete, Spain.
E-mail: {valentin.valero, gregorio.diaz, enrique.brazalez}@uclm.es.

� Juan Boubeta-Puig is with the Department of Computer Science and
Engineering, University of C�adiz, 11519 Puerto Real, C�adiz, Spain.
E-mail: juan.boubeta@uca.es.

� Hermenegilda Maci�a is with the Department of Mathematics and Albacete
Research Institute of Informatics, Universidad de Castilla-La Mancha,
02071 Albacete, Spain. E-mail: Hermenegilda.Macia@uclm.es.

Manuscript received 21 Oct. 2020; revised 5 Mar. 2021; accepted 7 Mar. 2021.
Date of publication 11 Mar. 2021; date of current version 18 July 2022.
(Corresponding author: Gregorio Diaz.)
Recommended for acceptance by M. Whalen.
Digital Object Identifier no. 10.1109/TSE.2021.3065584 1. http://esper.espertech.com

2584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3462-7656
https://orcid.org/0000-0003-3462-7656
https://orcid.org/0000-0003-3462-7656
https://orcid.org/0000-0003-3462-7656
https://orcid.org/0000-0003-3462-7656
https://orcid.org/0000-0002-9116-9535
https://orcid.org/0000-0002-9116-9535
https://orcid.org/0000-0002-9116-9535
https://orcid.org/0000-0002-9116-9535
https://orcid.org/0000-0002-9116-9535
https://orcid.org/0000-0002-8989-7509
https://orcid.org/0000-0002-8989-7509
https://orcid.org/0000-0002-8989-7509
https://orcid.org/0000-0002-8989-7509
https://orcid.org/0000-0002-8989-7509
https://orcid.org/0000-0003-1462-5274
https://orcid.org/0000-0003-1462-5274
https://orcid.org/0000-0003-1462-5274
https://orcid.org/0000-0003-1462-5274
https://orcid.org/0000-0003-1462-5274
https://orcid.org/0000-0001-6039-3051
https://orcid.org/0000-0001-6039-3051
https://orcid.org/0000-0001-6039-3051
https://orcid.org/0000-0001-6039-3051
https://orcid.org/0000-0001-6039-3051
mailto:valentin.valero@uclm.es
mailto:gregorio.diaz@uclm.es
mailto:enrique.brazalez@uclm.es
mailto:juan.boubeta@uca.es
mailto:Hermenegilda.Macia@uclm.es
http://esper.espertech.com

the MEdit4CEP-CPN graphical editor. This new approach is
based on an extension of PCPNswith black sequencing transi-
tions (BPCPNs). Black sequencing transitions are a new type
of transition thatwe introduce in PCPNswith the aim of proc-
essing an ordered sequence of events from a flow. These black
sequencing transitions can be encoded by using normal places
and transitions of PCPNs, which allow us to provide compact
models for the event pattern operators, simplifying the com-
plexity of themodels obtained.

The goal, therefore, is to finally produce automatically
the PCPNs corresponding to the specified event patterns,
and analyze them by using CPN Tools. Petri nets are a
graphical formalism, so with CPN Tools we can easily visu-
alize, edit, simulate and analyze the PCPNs obtained.

MEdit4CEP-CPNhas also beenmodified, to cover the com-
positional encoding of the patterns operators in a BPCPN
intermediate model, and the final enconding of this BPCPN
model into a PCPNmodel that can be used inCPNTools.

In particular, as illustrated in Fig. 1, our BPCPN approach
has the following phases: (1) Event pattern model definition: the
end user can graphically define the event patterns to be
detected in a particular application domain. (2) Event pattern
model syntactic validation: the editor can syntactically validate
the modeled pattern and show the errors to be fixed before
continuing. (3) Event pattern model automatic transformation to
BPCPNmodel: the event pattern models are then automatically
transformed into a BPCPN model. (4) BPCPN model edition &
syntactic validation: domain experts may edit the obtained
BPCPN model, for instance, modifying the initial marking to
check other application scenarios. Afterwards, the model is
syntactically validated, showing the errors to be fixed before
continuing. These errors refer to the structural composition of
the BPCPN elements such as places and transitions, specially
for the new black transitions introduced in this paper. (5)
BPCPNmodel automatic transformation to PCPN code: the gener-
ated BPCPN model is automatically transformed into execut-
able PCPN code. (6) Semantic validation & quantitative analysis:
at this point we can analyze the generated PCPN by feeding it
with initial markings (event streams) to checkwhether the out-
puts obtained are semantically correct or not. In addition, we
can perform a quantitative analysis by feeding the PCPNwith
random inputs and studying the obtained outputs. In the case
that a semantic error is detected, due to a wrong definition of
the pattern, we must return to phase 1. (7) Pattern model auto-
matic transformation to EPL code & deployment: the event pattern
model is automatically transformed into EPL code and
deployed in a CEP engine.

In this approach, therefore, end users start by defining
the event patterns they need to model and the final output
is the implementation code. Note that phases 3 to 6 are the
main contributions of this paper which can then be summa-
rized as follows:

� The extension of the PCPNmodel with black sequenc-
ing transitions, as a simple way to process an ordered
flow of events (tokens) by the consecutive firings of
these transitions.

� The transformation of BPCPN models into equiva-
lent PCPN models, which preserve the net system
information and its behavior.

� A BPCPN compositional semantic model for the fol-
lowing EPL operators: simple event search, every and
followed-by. These are the basic operators required to
detect certain situations of interest, such as tempera-
tures exceeding a certain value or levels of a certain
pollutant that exceed the normal values.

� An extension of the MEdit4CEP-CPN tool to provide
support for the creation, edition, syntax analysis and
automatic transformation of event pattern models
into a BPCPN model, and the automatic transforma-
tion of BPCPN models into PCPN models executable
in CPN Tools.

The extensions to PCPNs with black sequencing transi-
tions are novel, and have demonstrated utility, because they
allow a compositional semantics of EPL patterns. It is worth
noting the importance of the BPCPN compositional seman-
tics, since we can provide an automatic translation to every
pattern constructed using these EPL operators: simple event
search, every and followed-by. As we mention in the related
work section, there are other works on this subject that pro-
vide translations for some EPL operators, but none of them
was able to provide a compositional transformation, and
they were restricted to the applications of simple patterns
constructed using the operators.

The rest of the paper is structured as follows. Section 2
presents a summary of PCPNs and the MEdit4CEP-CPN
tool. Black transitions are formally introduced in Section 3.
The PCPN translations for the considered EPL operators
are thenpresented in Section 4. The tool support is described
in Section 5, together with the transformation validation
performed using a set of test cases. A use case is presen-
ted in Section 6. Important related works are detailed in
Section 7. Finally, Section 8 draws some conclusions and
futurework lines.

Fig. 1. Phases of the BPCPN approach.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2585

2 BACKGROUND

In this section, we present the background to both the PCPN
formalism and the MEdit4CEP-CPN tool.

2.1 Prioritized Colored Petri Nets

Petri Nets (PN) [12] are a graphical formalism for concurrent
system modeling. PNs are directed graphs with two types of
nodes: places and transitions. Places are drawn as circles with
a label, and a natural number (number of tokens) inside the
circle. This number is the so-calledmarking of the place. Places
are then used to represent system states, the number of pro-
cesses waiting in a queue, for instance, or whether a machine
is ready to operate, etc. Transitions are drawn as rectangles
with a label, representing events or actions that produce state
changes. Arcs can only connect places with transitions (pt-
arcs) or transitionswith places (tp-arcs), see Fig. 2.

Definition 1 (Petri Net). A PN is a triple ðP; T; AÞ, where P
is the set of places, T the set of transitions, such that P \
T ¼ ;, and A is the set of arcs, A � ðP � T Þ [ðT � P Þ.
The set of nodes is X ¼ P [T . For any node x 2 X we
define the preconditions and postconditions of x, denoted by
�x and x� respectively, as follows: �x ¼ fy 2 X j ðy; xÞ 2 Ag,
x� ¼ fy 2 X j ðx; yÞ 2 Ag.
PNs have been extended inmany different ways. In partic-

ular, in Colored Petri Nets (CPNs) [13], [14] data information
attached to tokens is used to extend the simple model. The
places of a CPN have an associated color set, which is a data
type specifying the set of token colors allowed at this place.
Among the different tools providing support for CPNs, we
use CPN Tools [9], which allows us to easily create CPNmod-
els, using a graphical editor. We follow the same notation
used in CPN Tools to draw the CPNs, to denote markings,
guards, etc. The CPN models created with CPN Tools can be
modified, simulated and analyzed by using the simulator
engine of CPN Tools and the analysis features, which include
boundedness and liveness analysis and state space explora-
tion. The CPN models created with CPN Tools are saved in
native XML files, so the fileswe producewith our transforma-
tion are compliant with this format.

A place of a CPN can, for instance, have as its color set
the singleton color set ðUNIT Þ, which corresponds to the
classical tokens of ordinary PNs, without any attached
information, but can also have other color sets. For example,
the color set INT denotes the set of integer numbers, REAL

denotes the set of real numbers, STRING denotes the set of
strings, etc. Furthermore, new color sets can be defined as a
Cartesian product, a record2 or the union of existing color
sets. For instance, color set INT2 ¼ product INT � INT is
defined as the Cartesian product of two integers, whereas
RI2 ¼ record f1 : INT�f2 : STRING is a record with two
fields f1 and f2, and the color set UI2 ¼ union t1 :
INT þ t2 : INT2 is defined as the union of INT and INT2
with two possible fields, either t1 or t2. Thus, any token with
color setUI2must either be an integer or a pair of integers.

In the case of record and union color sets, field labels are
used to identify the specific field in which we are operating.
For instance, in the case of RI2, an element of this color set
could be ff1 ¼ 3; f2 ¼00 ST 00g. In the case of UI2, t1ð7Þ
denotes an integer token with value 7, while t2ð2; 4Þ denotes
an INT2 token with value (2,4).

In CPN Tools, place markings are drawn in green in the
right-hand side of the place circle, using the following syn-
tax: n0v denotes n instances of color v, and symbol ‘++’ is
used to represent the union of colors in CPN Tools.

Arcs usually have inscriptions, arc expressions, which
evaluate to a multiset of colors when we assign values to
the variables in the arc expression (binding). We say that a
binding of t 2 T is enabled if there are tokens on the precon-
dition places of t matching the expression evaluation. These
tokens are then removed when t is fired, and new tokens
are produced in t� according to the arc expressions of the
outgoing arcs.

There are two additional important features of CPNs,
transition guards and priorities. Guards are Boolean expres-
sions that must evaluate to true with the selected binding
for the transition to be fireable. Transitions can also have an
associated priority, so we use the term Marked Prioritized
Colored Petri Nets (MPCPN) to refer to the marked CPNs
with priorities associated with their transitions. In the event
of a conflict, the transition with the highest level of priority
is fired first. In this paper, we use the following priority lev-
els: P MAX, P HN , P NORMAL, P MIN , following this
decreasing order of priority.

Let us now present the PCPN structure and semantics
more rigorously, taking as reference the definitions and
CPN semantics described in [13] for the model without pri-
orities, and also the work by van der Aalst et al. [15], which
includes a description of the use of priorities in CPN Tools.

Definition 2 (Prioritized Colored Petri Nets). We define a
Prioritized Colored Petri Net (PCPN) as a tuple ðP; T;A; V;G;
E;pÞ, where

� P is a finite set of places, where each place p 2 P has
an associated color set Sp. Let S be the set of color sets
used inN : S ¼ [p2PSp.

� T is a finite set of transitions (P \ T ¼ ;).
� A � ðP � T Þ [ðT � P Þ is a set of directed arcs.
� V is a finite set of typed variables in S, i.e.,

TypeðvÞ 2 S, for all v 2 V . We can then construct
expressions using the multiset operators, constants,
variables and functions defined over the color sets in S.
We use EXPRV to denote the set of expressions.

Fig. 2. Graphical view of a marked PCPN.

2. These are similar to a product, but their fields are named.

2586 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

� G : T�!EXPRV is the guard function, which
assigns a Boolean expression to each transition, i.e.,
TypeðGðtÞÞ ¼ Bool, 8t 2 T .

� E : A�!EXPRV is the arc expression function,
which assigns an expression to each arc, constructed
using variables, constants, operators and functions.
Arc expressions must evaluate to the same color set of
the place they are attached to, i.e., for every arc ðp; tÞ 2
A, we must have TypeðEðp; tÞÞ ¼ Sp, and for every
arc ðt; pÞ 2 A, TypeðEðt; pÞÞ ¼ Sp.

� p : T�!N is the priority function, which assigns a
priority level to each transition, where low values cor-
respond to high priorities.

Definition 3 (Markings). Given a PCPN N ¼ ðP; T;A; V;
G;E;pÞ and a place p 2 P , a markingMðpÞ is defined as amulti-
set of colors in p (which can be empty), according to its associated
color set. A markingM ofN is then defined taking a marking for
all its places. The corresponding marked MPCPN is denoted by
ðN;MÞ.
We now address the notion of binding, then the enabling

condition and finally the firing rule for MPCPNs.

Definition 4 (Bindings). Let N ¼ ðP; T;A; V;G;E;pÞ be a
PCPN. A binding of a transition t 2 T at markingM is a func-
tion b that maps each variable v appearing in the inscriptions of
one or several precondition and postcondition arcs of t into a
value bðvÞ 2 TypeðvÞ. This corresponds to a token color or a
part of it that must be present in the precondition place of t cor-
responding to that arc, according to the indicated inscription.

For instance, for the transition Process in Fig. 2 and the inte-
ger variable n, a binding is an integer value that must correspond
to one token value on placeC and the first component of one token
value on placeP at the moment of firing transition Process.

BðtÞ will denote the set of all possible bindings for t 2 T .
For an expression e 2 EXPRV , ehbi will denote the evaluation
of e for binding b. A binding element is then defined as a pair
ðt; bÞ, where t 2 T and b 2 BðtÞ. The set of all binding ele-
ments is denoted by BE.

In the following definition we capture the conditions
under which ðt; bÞ 2 BE can be fired.

Definition 5 (Enabling Condition). Let ðN;MÞ, where N ¼
ðP; T;A; V;G;E;pÞ is a PCPN and M a marking of it. We say
that a binding element ðt; bÞ 2 BE is enabled if and only if the
following conditions are fulfilled:

1) GðtÞhbi ¼ true.
2) For all p 2 �t; Eðp; tÞhbi � MðpÞ.
3) There is no other binding element ðt0; b0Þ 2 BE fulfill-

ing the previous conditions such that pðt0Þ < pðtÞ.
Hence, the transition must be binding-enabled, its guard

must be true, and there is no other transition with greater
priority fulfilling these conditions.

Notice that we can have several bindings enabling the
same transition, so the firing of a transition is non-determin-
istic. The newmarking obtained after the firing of a transition
is computed as follows: for every place p 2 �t we remove the
selected tokens matching with Eðp; tÞ and we add new col-
ored tokens on the places p0 2 t�, according to the expression
Eðt; p0Þ and the binding selected.

Definition 6 (Firing Rule). Let ðN;MÞ be a MPCPN and an
enabled binding element ðt; bÞ 2 BE. With the firing of ðt; bÞ
we obtain a new marking M 0, defined as follows: 8p 2 P :
M 0ðpÞ ¼ MðpÞ �Eðp; tÞhbi þ Eðt; pÞhbi, where symbols ‘þ;�
respectively denote the union and subtraction of multisets.

Example 1. Let us consider the MPCPN depicted in Fig. 2.
Places C and S have INT as color set, P has INT2 ¼
product INT � INT as color set and M the singleton
color set UNIT . All of these places have their initial mark-
ings indicated in green in their right-hand sides. Both pla-
ces C and S initially have one integer token with value 0,
M has 20 singleton tokens and P has 5 tokens with values
fð1; 3Þ; ð2; 5Þ; ð3; 4Þ; ð4; 10Þ; ð5; 15Þg, which could corre-
spond, for instance, to a numbered sequence of integer
events, where the first number indicates the ordering and
the second the event value. Transitions are labeled with
their associated guard (empty when it is true) and prior-
ity information (empty if P_NORMAL), and arcs are
labeled with their corresponding expressions. All the var-
iables used in the expressions ðn;m; sÞ are integer.

This MPCPN goes through the event sequence in P
adding up all the event values divisible by 5. Place C acts
as a sequence counter so as to process the event tokens
on P in order. Place M in the figure restricts the number
of firings of incr, since it needs and then removes one
token fromM when it is fired.

The first transition to be fired is incr, because transi-
tion Process (which has greater priority than incr) can
only be fired when there is one token in P with a
sequence number coinciding with the counter on C, and
the value m of that event token in P is divisible by 5.
Thus, after the initial firing of incr, the new marking of C
is 101, and transition Process cannot be fired, since the
only possible binding at this marking is n ¼ 1; m ¼ 3,
which makes its guard be evaluated to false. Transition
incr is then fired again, leading us to the marking 102 in
C, which allows the firing of transition Process with the
binding n ¼ 2, m ¼ 5, and s ¼ 0. Due to its higher prior-
ity, transition Process must be fired, replacing the value
of the token on S with 5. Transition Process also updates
the counter in C, by increasing it by one, so that the fol-
lowing event can be processed immediately if the guard
condition is fulfilled. Otherwise, transition incr is fired
(possibly several times) until either reaching a sequence
number for which transition Process can be fired or M is
empty, in which case the MPCPN stops. The final mark-
ing obtained in S is therefore 1030 for the initial marking
indicated in the figure.

In general we will have to deal with large PCPNs, so we
split the models into separate pages, in which we draw dif-
ferent parts of the model. Each page contains a subset of the
whole model (places, transitions and arcs), and the glue of
these pages to conform the whole model are the so-called
fusion places. These fusion places appear in different pages,
but they represent the same place from a formal viewpoint.
In CPN Tools, all fusion places corresponding to the same
place will have the same fusion label, which is drawn in
blue at the left-hand side bottom corner of these places. Fur-
ther details about Coloured Petri Nets and CPN Tools can
be found in [16].

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2587

2.2 MEdit4CEP-CPN

MEdit4CEP-CPN [10] is ourmodel-driven PCPN extension of
the MEdit4CEP approach [7]. This extension allows domain
experts to model, simulate, analyze and both syntactically
and semantically validate CEP-based systems. Model-driven
techniques are used in MEdit4CEP-CPN to facilitate all these
tasks andmake them transparent to end users.

More specifically, our approach allows domain experts to
graphically model the situations of interest (event patterns)
to be detected for a specific application domain. It is in charge
of validating the pattern syntax, automatically transforming
the graphical pattern models into a PCPNmodel, generating
its corresponding PCPN code executable by CPN Tools, vali-
dating the pattern semantics, as well as generating the Esper
EPL code to be deployed in the Esper CEP engine, one of the
well-known open source engines [17]. This was addressed by
creating a new Domain-Specific Language (DSL) and a
graphical editor for PCPN that includes a set of model-to-
model and model-to-text transformations to be integrated
with the MEdit4CEP approach. Note that a DSL consists of
three parts: (1) the abstract syntax composed of both a meta-
model, i.e., a model describing language concepts and rela-
tionships between them, and validation rules that check
whether the model is well formed, i.e., whether it conforms
to its metamodel; (2) the concrete syntax, i.e., the set of graph-
ical symbols useful for creatingmodel diagrams; and (3) a set
of transformation rules for automatically transforming mod-
els into othermodels or implementation code.

A complete explanation of the MEdit4CEP-CPN tool is
outside the scope of this paper, but more information is avail-
able at http://dx.doi.org/10.17632/n4cf3x22jj.2, including
the tools, an air quality case study, and a screencast demon-
strating the use of the tool.

3 COLORED PETRI NETS WITH BLACK

SEQUENCING TRANSITIONS

Black sequencing transitions are now introduced as a short-
hand notation for the ordered firing of a transition following
an ordered sequence of tokens on one of its precondition
places (flow F). A place init will then always be present for
these black transitions, being used to restrict the starting
sequence number for each firing of the transition.

Definition 7 (BPCPNs). A prioritized colored Petri net with
black sequencing transitions (BPCPN) is a PCPN N ¼ ðP; T;
A; V;G;E;pÞ in which we have two types of transitions: nor-
mal (Tn) and black (Tb), T ¼ Tn [Tb, Tn \ Tb ¼ ;, fulfilling
the following conditions:

� For every black sequencing transition t 2 Tb:
(a) There are two precondition places Initt; Ft 2 �t,

with a (product) color set in which the first field is an
integer (it may be the only field, in which case the color
set would be INT). We call this number the token
sequence number and there cannot be two tokens onFt

with the same sequence number. Thus, we will, in gen-
eral, have a collection of numbered tokens on Ft, starting
from 1. In addition, only one token can be taken from
these places when t is fired.

The other fields in these places, if present, will contain
data information related to the application of interest.

(b) The flow placeFt contains the tokens (events) to be
processed by t, and it is also a postcondition place of t:
Ft 2 t�, EðFt; tÞ � Eðt; FtÞ, i.e., the tokens consumed
from Ft are written back into Ft by its firing, but some
new tokens can be produced onFt.

� There is a place control, such that for all t 2 T we have
that ðcontrol; tÞ 2 A; ðt; controlÞ 2 A, Eðcontrol; tÞ
¼ 10ðÞ; Eðt; controlÞ ¼ 10ðÞ, i.e., all transitions (inclu-
ding the black ones) are loop-connected with the control
place. Place control initially contains a single UNIT
token.3In principle, we would not need this in a classical
occurrence sequence semantics of BPCPNs, since transi-
tions could only fire in a row, but we need this place in
the transformation from BPCPNs to PCPNs to avoid the
interference of other transitions when a black transition
is fired.

For the sake of brevity, hereon in we will refer to black
sequencing transitions simply as black transitions. They will
be drawn in black, and we will usually omit subindex t in pla-
ces Init and F when its associated transition is clear from the
context.

Definition 8 (Firing Rule for BPCPNs). Let N ¼ ðP; T;
A; V;G;E;pÞ be a BPCPN and M a marking of N . Bindings of
normal transitions are defined in exactly the same way as for
PCPNs, but bindings of black transitions must satisfy the fol-
lowing condition:

Let t 2 T a black transition and b a binding of t according
to Definition 4.

� Let r; n be respectively the integer values of the first
field of the tokens on both places Init and F derived
from binding b. Then, we must have r � n, and no
other token on F with a sequence number n0 can be
bound such that r � n0 < n.

When this condition holds, the binding element (t,b) is
enabled and transition t can be fired. The new marking is
obtained as indicated in Definition 6.

Fig. 3 shows a simple BPCPN example, with a black
transition t, which is used to process a sequence of tokens
on F , returning on place End those tokens for which the
second (integer) field is divisible by 5, adding 10 (the value
of the token on P) to this second field and increasing its
first field by 1.

Transformation 1. BPCPNs are encoded into PCPNs by
applying the transition substitution illustrated in Fig. 4 for
every t 2 Tb. Transition t is replaced by a new place S and
three new transitions: t1; t2 and next. Transitions t1 and
next have normal priority, and t2 has maximum priority. The
guard of t1 is defined as follows:Gðt1Þ ¼ GðtÞ andalso n � r,
where n is the variable used for the first field of the arc from F
to t and r is the variable used in the first field of the arc
from Init to t1. In the same way, the guard of t2 is defined as
follows: Gðt2Þ ¼ GðtÞ andalso n ¼ r. The following structural
connections are then established: �t1 ¼�t, t1� ¼ fSg [�t n
fcontrol; Initg, �t2 ¼ fSg[�t n fInit; controlg, t2� ¼ t�,
�next ¼ next� ¼ fSg.

3. Encoded as INT with value 0 in CPN Tools, due to a problemwith
the fusion of UNIT places in CPN Tools.

2588 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

http://dx.doi.org/10.17632/n4cf3x22jj.2

Notice that we do not require t to have an outgoing
edge to Init. In this case, we are restricting the firing of t
in the given BPCPN to just one instance per token on
Init, so if we only have one token on Init, t will fire at
most once. Thus, the arc from t2 to Init would not be
included in the translation, as defined by the previous
structural connections.

The arc inscriptions for the new arcs4 are defined as fol-
lows, where E1 refers to the arc expression function in the
BPCPN and E2 refers to the arc expression function of the
PCPN obtained as result of the transformation:

– 8p 2 �t : E2ðp; t1Þ ¼ E1ðp; tÞ.
– 8p 2 t1� n fSg : E2ðt1; pÞ ¼ E1ðp; tÞ

Transition t1 only checks that t can fire, so it keeps
the tokens on p.

– E2ðt1; SÞ ¼ E1ðInit; tÞ; E2ðS; nextÞ ¼ i (resp. E2ðS;
nextÞ ¼ ði; cÞ when the color set of Init is INT � C),
E2ðnext; SÞ ¼ 1þ i (resp. E2ðnext; SÞ ¼ ð1þ i; cÞÞ, E2

ðS; t2Þ ¼ E1ðInit; tÞ.
– 8p 2 �t n fInit; controlg : E2ðp; t2Þ ¼ E1ðp; tÞ.
– 8p 2 t2� : E2ðt2; pÞ ¼ E1ðt; pÞ.
The markings of the original places are maintained, and S

initially has no tokens. Transition t is now split into two transi-
tions, t1 and t2, and their guards are extended in order to
enforce the firing for the first sequence number fulfilling the
guard but greater than the starting number indicated in the
selected token on Init (see Fig. 4). Transition t1 has the guard
n � r andalso g, where g is the guard of t, while t2 has the
guard n ¼ r andalso g. Thus, transition t1 can only fire when
black transition t can fire in the given BPCPN, i.e., there is at
least one token in F fulfilling the condition indicated on the
guard of t with a sequence number greater than or equal to r.
Furthermore, the priority of t1 is exactly the same as for t, so it
competes with exactly the same transitions. Transition t1 is
then only used to check that transition t could be fired in the
BPCPN. Once t1 has been fired, transition next can be fired
zero or more times until reaching a sequence number that
allows the firing of t2, which is then fired, due to its maximum
priority.

The place control is required to avoid interference with
the other transitions in the model. All transitions in the orig-
inal model must be loop-connected with this control place,

and the translation of this specific connection for the black
transitions is as indicated in Fig. 4.

This transformation preserves the transition sequences
(traces) of the given BPCPN, where the black transitions in
the sequence are replaced by the firings of their correspond-
ing transitions t1, next (possibly several times) and t2, as
the following Proposition and Corollary demonstrate.

Proposition 1. Let ðN;M0Þ be a marked BPCPN and ðN 0;M 0
0Þ

its corresponding marked PCPN, as defined in Transformation
1. Let s1; s2 be two transition sequences in which there is no
black transition and t a black transition inN .

Then, s1:t:s2 is a transition occurrence sequence of ðN;M0Þ
if and only if s1:t1:next

n�r:t2:s2 is a transition occurrence
sequence of ðN 0;M 0

0Þ, where n is the sequence number of the
token used in F for the firing of t and r the value of the token
on Init that has been used for this firing.

Proof.) : s1 can be executed in the PCPN obtained, since
we have changed no other transition connections. Let M
be the marking obtained in the BPCPN when all transi-
tions in s1 have been fired. Transition t can be fired at this
marking, so there is at least one token on all its precondi-
tion places that make it possible to fire t. Specifically,
there is one token on Initwith a starting sequence number
lower than or equal to the sequence number of a token on
F . We have the same marking on these places on the cor-
responding PCPN, so t1 can be fired. In fact, its priority is
the same as for t in the given BPCPN. The firing of t1
removes the token on the place control, thus avoiding any
other transition firings of transitions in the given BPCPN.
The only possible behavior at this point is the firing of
either next or t2. Transition t2 has the maximum priority,
so it will be fired if enabled, which only occurs when the
current sequence number on S is exactly the same as a
token on F . Thus, transition nextwill keep firing until this
sequence number is reached, which must be the case
because the firing of t1 was only possible if such a token
existed on F . Finally, transition t2 returns the token to the
place control and writes the necessary tokens on the post-
condition places of t, so the marking reached on these

Fig. 3. A simple BPCPN.

Fig. 4. Black transition PCPN encoding.

4. Those not connected with UNIT places.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2589

places is that obtained with the firing of t in the given
BPCPN. From this marking, it is now trivial that the tran-
sition sequence s2 can be fired on both Petri nets.

(: For the converse, we have again that s1 can be
fired on both Petri nets, and now the firing of t1 on the
PCPN is only possible if we have tokens on all its precon-
dition places allowing its firing. Thus, there is at least one
token on F with a sequence number greater than or equal
to the value on one token on Init, so t can be fired on the
given BPCPN by using the token on Init and the token
on F fulfilling the black transition semantics (minimum
sequence number such that the guard on t is true). In
fact, after t1 is fired, transition next fires until reaching
that same sequence number on S, and then transition t2
can fire on the PCPN using the same token on F as t in
the given BPCPN. Thus, the resulting marking on its
postconditions is the same for both Petri nets. Finally, s2

can now be executed on both Petri nets again. tu
Corollary 1. Let ðN;M0Þ be a marked BPCPN and ðN 0;M 0

0Þ its
corresponding marked PCPN, as defined in Transformation 1.
We have that s is a transition occurrence sequence of ðN;M0Þ
if and only if s0 is a transition occurrence sequence of ðN 0;M 0

0Þ,
where s0 is obtained by replacing every black transition t in s

with its corresponding subsequence t1:nextn�r:t2.

Thus, with this transformation we obtain a PCPN whose
behavior is the same as that of the given BPCPN. We can
therefore analyze the obtained PCPN model using CPN
Tools, and the results can immediately be mapped into the
original BPCPN. The places of the original BPCPN are main-
tained in the PCPN, so the state exploration analysis or the
simulation results related to markings are mapped trivially.
The same occurs for white transitions. In the case of black
transitions, properties about them can be analyzed by check-
ing the firings of transitions t2 produced by the transforma-
tion, since the firing of a black transition t in a given BPCPN
can occur if and only if the corresponding t2 fires in the
obtained PCPN.

The computing complexity is not meaningfully affected by
this transformation. The only effect on the complexity would
be caused by the consecutive firings of next transition (see
Fig. 4). Nevertheless, these firings are limited to the tokens
(events) that follow to the sequence number indicated in Init
that do not fulfill the guard condition, until reaching the fol-
lowing sequence number that allows the firing of transition t2.

Black transitions can therefore be encoded into PCPN sub-
nets. At first sight, we might think of encoding them by using
substitution transitions, the other mechanism, together with
fusion places, which can be used in CPN Tools to construct
hierarchical models. With substitution transitions we can cre-
ate largemodels by usingmultiple layers of detail. Thus, start-
ing from a high-level model we can refine the model by
replacing some transitions with subnets that preserve their
inputs/outputs. However, black transitions do not have the
same behavior as normal transitions, so the substitution we
apply is not a simple refinement in which the behavior repre-
sented by some normal transitions is detailed by their associ-
ated subnets. In addition, at present, CPN Tools does not
allow the combined use of both fusion places and I/O places,
so even the use of the subpages capability is not possible, and
thus all the pageswe obtain are at the same level.

4 BPCPN MODELS FOR CEP

In this section, we present the BPCPN compositional mod-
els for the following Esper EPL event operators: simple
event search, every and followed-by, with the restriction that
an every operator cannot be applied to an inner every
operator. These operators are used to deal with the detec-
tion of single events, repetitions of events, and streams of
events that fulfill certain conditions. In addition, we can
create several separate event patterns, so that the complex
events produced by some patterns can be used as input
for subsequent patterns. The restriction introduced regard-
ing the use of the every operator has few consequences,
because the use of a nested every is uncommon in EPL pat-
terns, and if it were really required we could obtain the
same effect with two separate event patterns, where the
second pattern takes the events produced by the first one
as input.

Each pattern operator is translated in separate BPCPN
pages, which are similar to the CPN Tools pages. We also
use fusion places to join the pages, with the same interpreta-
tion as in CPN Tools.

4.1 Input Event Flow

The event input flow will be modeled by the tokens on a
place Input, whose color set is defined taking the following
fields in a product color set:

– Event sequence number,
– Event type, numerically encoded, according to the

event types used in the patterns,
– Event timestamp: instant at which the event occurred,
– Union of all possible color sets for the event types

used in the patterns. The property names and data
types for each event type color set are obtained from
either the schemas that define these specific event
types or in the case of complex events these are
defined by the select clauses that establish their
structure.

In fact, all (complex) event flows follow this same struc-
ture: INT � INT � INT � C, where the first three integer
fields represent, respectively, the sequence number, event
type and timestamp.

Timestamps will always be positive, i.e., no event comes
at time 0. C is the color set of the associated event type, or a
union of them. We assume that event sequence numbers are
consecutive as the events enter into a flow and they are con-
sistent with time elapsing, i.e., and for all pairs of events
ei ¼ ði; ti; xi; ciÞ; ej ¼ ðj; tj; xj; cjÞ, we have i < j) xi � xj.
It is worth noting that all the events that have the same time-
stamp have occurred simultaneously, so they could have
entered in the flow in any order. Then, we consider equiva-
lent all the possible ways for them to enter into the flow.
However, once the events are in the input event flow with
their associated sequence numbers, they will be processed
according to these numbers.

Example 2. Let us consider the following EPL schemas:
create schema A(tm integer, ma integer);

create schema B(tm integer, mb integer);

2590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

The corresponding declarations in CPN Tools for these
input event types would be:
colset CA=record tm:INT*ma:INT;

colset CB=record tm:INT*mb:INT;

colset C=union pA:CA+pB:CB;

colset CF=product INT*INT*INT*C;

The event timestamp is then a field in the place color set,
instead of using the timed capabilities of PCPNs (timed
color sets), since the use of timed tokens entangles the trans-
lations unnecessarily. This is because the clock of the CPN
Tools simulator engine does not move steadily, but only
moves its value forward when no transition can be fired at
the current time. It then jumps forward to the nearest value
for which at least one transition becomes enabled. An addi-
tional problem we found when using timed PCPNs is that
the transition guards are not immediately reevaluated
when time moves forward; a transition must fire for transi-
tion guards to be reevaluated, which produced deadlocks in
the models. The solution required a tick transition to control
time elapsing, so we finally preferred an untimed model
and so have direct control of the model time.

Events are then represented by tokens on their corre-
sponding places, and new event tokens come into the input
event flow as time elapses, so we have a potentially infinite
stream of events. Events from the Input event flow place
must then be processed in order, so a black transition is first
used to feed the flow place F , as shown in Fig. 5. This
BPCPN is then encoded in a separate page, and places Con-
trol, F and Seq_Input are fusion places, which will be used in
the pattern operator BPCPN pages.5 Place F acts therefore
as the event stream used in EPL for the processing of events,
so we only insert new events on it when all the events that
were previously on it have already been processed. The
lowest priority level P_MIN is then used in transition enter
to allow the following event to enter only when no other
processing can be done, and the global clock value (integer
token on place Clock) is updated to the timestamp of this
last entered token.

4.2 Pattern Operators

A pattern is defined by the composition of a set of pattern
operators and a select clause to choose the information to be

provided to the user from the events that have been proc-
essed. For each pattern operator, a corresponding BPCPN
page is defined, so the BPCN for a pattern is obtained in a
compositional way, and the link between these BPCPN
pages are the fusion places. However, there is a final step in
which the BPCPN obtained is modified in order to apply
the select clause and include the events produced by the
pattern in the flow place F . These newly produced events
are inserted in F to allow its further use by other patterns
that could be applied later.

The BPCPNs for the pattern operators have the following
structure (Fig. 6):

� They process the events coming into the event flow
place F , with color set CF ¼ INT � INT � INT �
CF , where CF is the union of all the event types used
by the patterns.

� There is an Init place, with a color set of the form
INT or INT � C, for a certain flow color set C ¼
INT � INT � INT � C0. We will use the color sets of
the form INT � C in the case of the followed-by opera-
tor, specifically in the righ-hand side argument,
where the C-type events gathered by the left-hand
side argument are passed to the second argument.

� There is a place Exit, with the same color set as
Init, which only receives one token when the pat-
tern operator has terminated (if it terminates). The
first integer field contains the position at which
we should continue processing the event flow in
the case of either an everyor followed_by external
operator acting on the result of this operator. The
second field, if present, contains exactly the same
value of the second field of the token used to start
the BPCPN on place Init.

� The events produced by the pattern operator are
written in an output event flow place F 0, but when
Init has a color set INT � C, these events are
concatenated with the color field of the second com-
ponent of the token used from Init. Thus, the color
set of F 0 is CF 0 ¼ INT � INT � INT � CF 0 , where
CF 0 ¼ C0 � C0 (resp. INT � INT � INT � C0, when
Init has color set INT), where C0 is the color set of
the events produced.

� There is a place End, with color set CEnd ¼ INT
�CF 0, which receives the tokens written in F 0. The
first field of these tokens on place End is a sequence
number that indicates the current position on F plus
one for the event produced. This sequence number is
exactly the same as that written in Exitwhen the pat-
tern terminates, but notice that Exit is not always

Fig. 6. Event pattern BPCPN structure.

Fig. 5. BPCPN Encoding for Input Event Flow.

5. We omit the fusion labels in BPCPN models, since they are the
same as the place names.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2591

reachable, since some operators do not terminate
(every). Place End is used by the followed-byoperator
to store the events produced by the left-hand
argument.

We denote the patterns by the following abstract syntax:

ððpattern op; Init; F; F 0; Exit; EndÞ; selÞ;
where function sel represents the select clause in the
Esper EPL syntax, which is only applied at the end of the
transformation, taking some fields of its argument events.
Pattern_op represents the event pattern operator, with the
following syntax:

pattern op ::¼ Event TypeðcondÞ j
everyðpattern opÞ j

pattern op ! pattern op

where cond is a predicate constructed by using the event
type properties. Event_type denotes an event type (sche-
mas declared or complex event types), so we are search-
ing for the first event of that type fulfilling the indicated
condition, after which the pattern operator terminates.
The every operator repeats the pattern operation indi-
cated as argument, with the restriction that an every
operator cannot be applied over another inner every
operator, i.e., patterns such as the following are not per-
mitted:

everyðeveryðAðcondÞÞ
everyðAðcondÞ ! ðBðcond1Þ ! everyðCðcond2ÞÞÞÞ

In consequence, an every operator never terminates. With
the followed-by operator (!) for every event produced by
the left-hand side operator we search for all the subsequent
events that match with the right-hand side operator. This
operator only terminates when both arguments have
terminated.

The translation of a pattern ððpattern op; Init; F; F 0; Exit;
EndÞ; selÞ is done compositionally. We first obtain the
BPCPN for the input event flow (Fig. 5), and then we obtain
the BPCPN for ðpattern op; Init; F; F 0; Exit; EndÞ, after
which the sel function is applied by modifying the arc
inscriptions leading to the final place F 0, as well as its color
set. In this final step, we also insert the newly produced
events in F , so that they can be used in further patterns.

Recall that place F is a fusion place, being the same place as
in Fig. 5, and the same occurs with places Control and
Seq_Input, the latter is used to insert the newly produced
complex events in F in the correct order.

4.2.1 Event Detection

Our base case is Event TypeðcondÞ, which searches for the
first event of the indicated type that fulfills a certain con-
dition on event flow place F . Fig. 7 shows the BPCPN for
this search, where we are looking for the first event of
type A (type 1) that fulfills the predicate condition cond
and produces as result an event ðs; t0; x; ðc1; cÞÞ, where s is
the sequence number, obtained from place SeqOut, t0 is
the type of event produced, x is the time of the event
processed and ðc1; cÞ is the concatenation of the event
coming from Init (if Init has the color set INT � C, other-
wise we would write ðs; t0; x; cÞ).

Black transition tA will fire for the first event on F
that has type 1 (A) and fulfills the indicated condition.
The position on F after finding such an event would be
1þ n, so this is the value on the first fields of both Exit
and End.

Example 3. Let us consider again the EPL schemas:
create schema A(tm integer, ma integer);

create schema B(tm integer, mb integer);

We can have both event types (A, B) in the input
event flow, but we only want property ma of the first
A event such that ma%5 ¼ 0. We then write the follow-
ing EPL code:

@Name(‘FirstA‘)

insert into C

select a1.ma as mc

from pattern [a1= A(ma % 5 = 0)];

The output event is encoded with event type 3. It is
produced at the time of the first detected event fulfilling
this condition and will be the first event in the output
flow. The color set CF now includes this new complex
event type:
colset CA=record tm:INT*ma:INT;

colset CB=record tm:INT*mb:INT;

colset CC=record mc:INT;

colset C=union pA:CA+pB:CB+pC:CC;

colset CF=product INT*INT*INT*C;

Fig. 8 shows the CPN page that encodes this
BPCPN, in which we have also applied the select clause
to the tokens produced to F 0, thus changing its type
and color set to CF . We have also included the events
(tokens) produced by the pattern in F since, as men-
tioned above, all tokens produced by a pattern must be
included in the flow. This only requires including these
tokens in the arcs returning to F from the final transi-
tions that produce such tokens. The sequence numbers
for these tokens are obtained from fusion place SeqIn-
put (Fig. 5).

In this CPN, for the following initial marking on the
place Input (Fig. 5):

Fig. 7. BPCPN for event detection.

2592 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

M0 ¼ 10ð1; 2; 1; pBftm ¼ 1;mb ¼ 10gÞ þ þ
10ð2; 1; 1; pAftm ¼ 1;ma ¼ 20gÞ þ þ
10ð3; 2; 2; pBftm ¼ 2;mb ¼ 30gÞ þ þ

10ð4; 1; 3; pAftm ¼ 3;ma ¼ 0gÞ

we would obtain 10ð1; 3; 1; pCfmc ¼ 20gÞ as the output
token on F 0. Evidently, this is also the output that we
would obtain by using Esper EPL Online tool for this
same pattern and input events.

Regarding the correctness of this translation, notice that
the obtained BPCPN fulfills the structural properties indi-
cated at the beginning of this section. The token produced
in place End has as first field the following position in F to
start a new search 1þ n, and the second field is the event
produced by the operator. In the same way, the first field of
place Exit is also 1þ n, and the second field is the second
field of the token consumed from Init. Place Exit is marked
as this operator terminates when tA is fired.

4.2.2 Every operator

Fig. 9 illustrates the BPCPN translation of the every pattern
operator: ðeveryðpÞ; Initevery; F; F 0

every; Exitevery; EndeveryÞ. We

first compositionally construct the BPCPN for ðp; Initp;
F; F 0

p; Exitp; EndpÞ, with Initp ¼ Initevery; Endp ¼ Endevery,
F 0
p ¼ F 0

every, where no every operator can appear in p. Place
Exitp must then have at least one precondition transition
(black or normal). Thus, we can include new arcs from these
transitions (tout in the figure) to Initp, with the same inscrip-
tion as those from these transitions to Exitp. Thus, the new
index in Initp would be the one written in the first field of
the token in Exitp, and the every operator follows the proc-
essing from that position in the flow. Notice that Exitevery is
unreachable (an every operator cannot terminate), but it
must be produced as an isolated place for the sake of
compositionality.

Example 4. Let us consider the previously defined schemas
A and B, and the following Esper EPL pattern to obtain the
ma values for all A-events for whichma is divisible by 5:
@Name(‘EveryA‘)

insert into C

select a1.ma as mc

from pattern [every(a1= A(ma % 5 = 0))];

Fig. 10 shows one of the CPN Tools pages produced for
pattern EveryA, which corresponds to the modifications
performed in page A to include the arc from tA2 to Init.
The select clause has also been applied, and thus the arc
from tA2 to F has been modified in order to insert the
obtained events (tokens) in F , using fusion place SeqInput
(Fig. 5) to assign the correct sequence numbers to them. In
this figure, we can see the output obtained in F 0 for the
same initial marking of Example 3, where we can see both
events fulfilling the condition. These events have also been
included in flow F , with sequence numbers 3 and 6.

Regarding the correctness of this translation, observe that
place Exitevery is unreachable and place Endevery is the same
as Endp, so the tokens on it have the contents obtained
by the BPCPN of p. On each execution of a transition tout,
a token is produced on place Initevery, which has as first field
the new position in F to start a new search, as required by
the every pattern.

Fig. 9. BPCPN for pattern every.

Fig. 10. CPN page for pattern everyA.Fig. 8. CPN page of FirstA pattern.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2593

4.2.3 Followed_by Pattern

Let us now consider the pattern ðp1 ! p2; Init; F; F
0; Exit;

EndÞ. We first obtain the BPCPNs for ðp1; Init; F; F 0
1; Exit1;

End1Þ and ðp2; End1; F; F 0; Exit2; EndÞ. We take Init2 ¼ End1
in order to connect both BPCPNs and enforce BPCPN2 to
start processing flow F at the following position at which
BPCPN1 returns each detected event. Thus, for each event
coming from p1 we will obtain the events matching with
p2 that follow it. Fig. 11 illustrates the connection between
both BPCPNs, where we can see that a transition Exit with
priority P_HN has been included for termination. This
transition can only be executed if both argument BPCPNs
have terminated. Thus, when one of the arguments does
not terminate (it contains an every operator), the followed-
by operator does not terminate either. Transition Exit has
priority P_HN, the second level of priority after P_MAX,6

with the goal of terminating the inner followed-by pattern
operators as soon as they finish and process the events
produced in the Exiti places (i ¼ 1; 2) in the order they are
produced.

Regarding correctness, as place End for the followed-by
operator is the same as End2, the contents in this place are
obtained as result of the execution ofBPCPN2, and are struc-
turally correct by compositionality. In addition, for each token
produced onEnd1, we can executeBPCPN2 using that token,
since End1 ¼ Init2. Thus, BPCPN2 starts the search from the
position indicated in the first field of that token, which corre-
sponds to the semantics of the followed-by operator. With
respect to place Exit, it can only be reached when both
BPCPNs have terminated, and the token produced on Exit is
the same as that produced by BPCPN2 upon termination. As
regards F 0, this place is F 0

2, so the same events (tokens) pro-
duced by BPCPN2 are the events (tokens) produced by the
followed-by operator. Recall, however, that from the basic
event detection the second field of the tokens consumed from
Init2 is concatenated with the events produced by BPCPN2,
so the final output produced in F 0 contains the outputs from
bothBPCPN1 andBPCPN2.

Observe that the events produced by pattern p1 in F 0
1 are

stored in End1 ¼ Init2 (second field), so they can be used in
BPCPN2. Specifically, we can use their fields to check some
conditions in p2, which is also allowed in Esper EPL, as the
following example demonstrates.

Example 5. Taking again the two previously defined sche-
mas, we can consider the following EPL pattern, which
obtains the first A-type event and then looks for a B such that
mb > 1, but only if the A-event found fulfillsma%5 ¼ 0.
@Name(‘AtoB‘)

insert into AtoB

select a.ma as ma, b.mb as mb

from pattern [a=A -> b = B (ma % 5 = 0 and mb > 1)];

Fig. 12 shows the final BPCPN for this pattern, once
the select function has been applied and the newly pro-
duced tokens have been inserted in F . We can see that
place End1 is the Init2 place for the BPCPN correspond-
ing to B. In the same way, End2 is the End place of the
full pattern. Hence, value 1þ n in the first field of the

inscription of the arc from tA to End1 is the index used in
Init2 ¼ End1 to start the search for one B-type event ful-
filling the indicating condition. The second field of this
arc expression is the event produced ðs; 3; x; ðtm;maÞÞ. In
the guard condition of tB, we use the field ma of the A-
type event previously found, so this pattern will not ter-
minate if the found A event does not satisfy this condi-
tion, even if there are B events with mb > 1. The event
produced by the B-type event detection operator is
ðs; 4; xb; ððtma; maÞ; ðtmb;mbÞÞÞ, which is then modified
by the select function as follows: ðs; 4; xb; ðma;mbÞÞ.

The corresponding PCPN can now be automatically
obtained by applying the black transition encoding.

An interesting observation regarding the general use of the
followed_by pattern is that each time a new event enters into
F (input event flow) the followed-by pattern may produce
none, one or several events as a result of its application, due to
compositionality. For instance, we can have several previous
tokens on End1, which would precede a new matching event
on the second argument, thus producing some new events.

In the examples presented we have shown the BPCPNs
for the pattern operators, which are then transformed
into PCPNs using the encoding presented in Section 3. In
Section 5.3 we illustrate the complete methodological pro-
cess by using a set of test cases, and a real-world use case is
presented in Section 6.

Regarding the scalability, we have two issues to consider,
the model scalability and the state space scalability. With
regards to themodel scalability,wewill have in general a small
number of event operators in the pattern definitions, and we
typically have patterns that combine one or two followed-by
operators with some every operators. The transformation will
produce separate PCPNpages for each operator, and theMEd-
it4CEP-BPCPN tool does not have a limitation in this aspect,
and to our knowledge, CPN Tools has no limitation in the
number of pages, either. Regarding the state space scalability,
the analysis of PCPNs is usually done by simulations, because
of the state space explosion. In our case, let us observe that the
state space explosion appears due to the events that occur at
the same time and thus can be processed in different order. As
a consequence, in the state space exploration we obtain many
different branches that lead to differentmarkings in the output
event flow, which would correspond to the different ways in
which these events could have been processed. In practice,
however, a CEP engine would only provide us with a single
output, obtained for a specific ordering of events, so with a

Fig. 11. BPCPN for pattern Followed_by.

6. P_MAX is only used to encode black transitions.

2594 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

single simulation of the BPCPNmodelwe can quickly and eas-
ily obtain the same result.

4.3 Composing Patterns

We now consider the case of a pattern chain in which the
complex events produced by previous patterns can be used
by a subsequent pattern in addition to the events from the
initial input stream.

For that purpose, as previously mentioned, the events pro-
duced by a pattern are inserted into flow place F . Let us
remember that new events from the place Input can only enter
F when all other processings have finished.7 Thus, the newly
inserted events on F keep the consistency between sequence
numbers and time, since we use the same place SeqInput to
assign the sequence numbers for these complex events.

The BPCPNs of these patterns are obtained separately, but
use the same input flow place F , so events are separately

processed from this flow for each pattern. However, the
important thing is that events produced by one pattern can be
used by further subsequent patterns.

Example 6. Let us consider the EveryA pattern presented in
Example 4, which produces complex events of type C,
which contain a single property mc, and consider now the
EveryC pattern, defined as follows:
@Name(‘EveryC‘)

insert into D

select c1.mc as md

from pattern [every(c1= C(mc > 10))];

This pattern takes the C-events for which mc is greater
than 10, so it is applied over the results produced by the
everyA pattern.

Fig. 13 illustrates this pattern composition, showing in
dotted boxes the BPCPN pages produced for the A and
C event detections in both patterns. In the left-hand side

Fig. 13. Pattern composition: EveryC applied on the results of EveryA.

Fig. 12. BPCPN for pattern AtoB.

7. Due to the minimum priority of transition enter in Fig. 5.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2595

of this figure we have highlighted in red the C-events
produced by pattern EveryA that are inserted in the flow
F . These events are then processed by pattern EveryC
(right-hand side), which produces D-events, which are
also inserted in F .

More information about this example can be found in
the Pattern Composition folder of the Mendeley dataset:
http://dx.doi.org/10.17632/scrjyndpv6.1. A Screenshots
folder is also provided, which contains a pdf file with the
BPCPN obtained.

5 MEDIT4CEP-BPCPN

In this section we present the MEdit4CEP-BPCPN tool, which
has been developed as an extension of MEdit4CEP-CPN (see
Section 2.2) to provide support for the creation, edition, syntax
analysis and automatic transformation of event pattern mod-
els into a BPCPN model and the transformation of the
obtained BPCPN model into the corresponding XML code to
be executed in CPN Tools, i.e., in a PCPN model that we can
analyze and simulate in CPNTools.

The technology used in this development is Eclipse Epsi-
lon [18], which consists of a family of languages and tools for
model-to-model transformation (Epsilon Transformation
Language, ETL), model validation (Epsilon Validation Lan-
guage, EVL), template-based code generation (Epsilon Gener-
ation Language, EGL) and graphical modeling editor creation
(EuGENia). EuGENia is a front-end for Graphical Modeling
Framework (GMF) that automatically generates the models
needed to develop a GMF editor from an annotated Ecore
EclipseModeling Framework (EMF)metamodel.

Fig. 14 illustrates both the specified graphical models
and the transformation process now available in the
MEdit4CEP-BPCPN approach. In the right-hand side of
the figure we can observe the new contributions with
respect to MEdit4CEP-CPN. The transformation process
consists of two steps: (1) a CEP domain and several event
pattern models conforming to the ModeL4CEP metamo-
del [19] are transformed into a BPCPN model conforming
to our BPCPN metamodel by applying a set of ETL
model-to-model transformation rules (M2M), and (2) the
obtained BPCPN model is transformed into a CPN Tools
XML document by applying a set of EGL model-to-text
transformation rules (M2T). This document can then be
executed by the CPN Tools software.

5.1 BPCPN Metamodel and Validation Rules

In this subsection, we propose our BPCPN metamodel,
which is an extension of our previous PCPN metamodel
presented in [10]. As illustrated in Fig. 15, the Transition
metaclass has been specialized by the BlackTransition meta-
class, which defines the new type of black transition in the
model (see Section 3).

Moreover, the Placemetaclass has been specialized by the
metaclasses Init, Exit, F, Control, End and Seq, which corre-
spond to the places with the same names and interpretation
as in the BPCPN formalism (see Section 3).

Furthermore, we have implemented the following new
validation rules in EVL in order to syntactically validate
BPCPN graphical models, which conform to the BPCPN
metamodel. For every BlackTransition t:

� Transition tmust have at least one Init and one F pre-
condition place. In the event of having further con-
nections with other Init and F places, they would
have a normal role from a semantic point of view, so
the primary Init and F places are those used from a
semantic point of view.

� The same F place acting as primary precondition
place must also be a postcondition place of t.

� The inscription of the arc connecting t with F con-
tains the inscription of the arc connecting F with t.

� t is loop-connected with the Control element, which
is unique.

As an illustration, Listing 1 shows an EVL rule that vali-
dates if a given black transition has at least one Init and one
F precondition places.

5.2 M2M and M2T Transformations

The M2M transformation implemented in ETL includes two
different sets of rules. The first set of rules is used to trans-
form a graphical CEP Domain model into a set of declara-
tions. These declarations include the color sets associated
with the domain model and all the variables required in the
BPCPNs, as defined in Section 4.2 for the pattern operator
transformations.

As an illustration, Listing 2 shows an excerpt of a rule to
transform a given event into a color set. On the left-hand
side of Fig. 16 we show the schema used in Example 2,
while the right-hand side shows the variables obtained for
Event A by the application of this rule.

Fig. 14. MEdit4CEP-BPCPN model transformations.
Fig. 15. New entities added to our PCPN metamodel.

2596 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

http://dx.doi.org/10.17632/scrjyndpv6.1

The second set of rules is used to transform the event pat-
tern graphical models into the corresponding BPCPNmodel
pages, as indicated in Section 4.2. In this set of rules, we
essentially have a transformation rule for each of the consid-
ered pattern operators. In addition, some auxiliary functions
have been required to explore the different models and cre-
ate the different elements of the corresponding BPCPN
model. The translation rules are applied using a bottom-up
approach. For instance, to produce the BPCPN model for a
followed-by pattern operator we first obtain the BPCPN
models of both arguments, which are then connected and
modified in order to construct the resulting BPCPN. Listing
3 shows the excerpt for this pattern operator. Lines 10 and
12 of this code obtain the BPCPNmodels of the arguments.
From line 13 to the end these twomodels are updated using
auxiliary fuctions, such as getEventList, draggedE-
vents, updateChildren and substituteFP. In this
rule, the draggedEvents function explores the model to
obtain the list of precedent events when several followed-by
pattern operators are concatenated.

In the next step, the BPCPN model obtained is trans-
formed into a PCPN model suitable for execution in CPN
Tools. A M2T transformation has been implemented for this
purpose. In this case the technology used is EGL, which
allows us to generate an XML document conforming the
DTD provided by CPN Tools. Using this language, each
BPCPN element is then transformed into its corresponding
XML element as stated in the DTD. The black transitions are
transformed into their corresponding PCPN counterparts,
as stated in Section 3. Listing 4 shows an excerpt of the oper-
ations applied for this transformation. Notice that this trans-
formation also provides us with the capability to use a 2D
matrix for the positioning of the graphical elements.

In Section 5.3, we provide a set of test cases that have
been used to validate the correctness of these transforma-
tion rules.

It is worth highlighting that, for simplicity in the trans-
formation, all places Init, End, Exit and Fp (F 0) for the pat-
tern operator pages have color set CEnd, which is defined as
INT � List CFs where List_CFs is a list of CF elements.
With this implementation, when a place INIT has the color
set INT we only need to write an empty list in the second

Fig. 16. CEP Domain graphical model for events A and B, and the
BPCPN declarations obtained for event A.

Listing 1. The HasPreconditionPlaces EVL rule.

Listing 2. The Event2ProductColor ETL rule.

Listing 3. The FollowedBy2Page ETL rule.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2597

field. In the general case of a concatenation of elements
obtained by previous followed-by operators, these would
appear in the list in the order in which they were obtained.

5.3 Validation

As mentioned in the Introduction section, there is no official
formal semantics for the Esper EPL event pattern operators.
Thus, the validation of the transformation was performed
using a set of test cases, checking the outputs obtained with
the PCPN models and the outputs from the Esper EPL on-
line tool. The results obtained for all of these test cases were
the same.

Listing 5 contains the set of test cases that have been
used to test the MEdit4CEP-BPCPN framework. These
test cases cover the three operators that have been con-
sidered and serve to illustrate the compositionality of
the transformation presented. In these cases, condA refers
to a Boolean expression that depends on attributes of
event type A, while condAB refers to a Boolean expres-
sion using attributes from both A and B.

The test cases are written in the listing using the abstract
syntax defined in Section 4.2. However, for the proof, we
have created the patterns using the graphical editor of our
tool, MEdit4CEP-BPCPN. All of these test cases can be
found at this URL,8 where the reader can find the graphical
models created with MEdit4CEP-BPCPN, and the BPCPNs
and PCPNs obtained for them with the test scenarios. As an
illustration, we describe Test cases 1, 2 and 11, with the
input events shown in Table 1. These correspond to the ini-
tial marking of place Input in the input event flow CPN
Tools page shown in Fig. 17.

Fig. 18 shows the graphical model created for the FirstA
pattern (Example 3), which corresponds to Test case 1.
Notice complex event Case1, which takes (select clause) the
first field (ma) from the first A-type event fulfilling the con-
dition ma%5 ¼ 0. Its corresponding BPCPN can be
obtained by clicking on the BPCPN transformation button.
This BPCPN consists of two pages: the input event flow
page and the A page. Fig. 19 shows BPCPN page A in MEdi-
t4CEP-BPCPN tool for the FirstA operator. This page

corresponds to the implementation of the transformation
shown in Fig. 7, the application of the select clause and the
insertion of the events in F .

TABLE 1
Input Events for the Test Cases

Time Simple Events

1s A ¼ fma ¼ 23; tm ¼ 1g, A ¼ fma ¼ 55; tm ¼ 1g; C ¼
fmc ¼ 0; tm ¼ 1g

2s B ¼ fmb ¼ 25; tm ¼ 2g; A ¼ fma ¼ 50; tm ¼ 2g
3s C ¼ fmc ¼ 5; tm ¼ 3g; B ¼ fmb ¼ 12; tm ¼ 3g
4s C ¼ fmc ¼ 10; tm ¼ 4g; A ¼ fma ¼ 0; tm ¼ 4g
5s B ¼ fmb ¼ 1; tm ¼ 5g
6s B ¼ fmb ¼ 5; tm ¼ 6g
7s A ¼ fma ¼ 15; tm ¼ 7g; C ¼ fmc ¼ 8; tm ¼ 7g

Listing 4. The substituteBT EGL operation.

Listing 5. Test cases.

Fig. 17. CPN Tools page for input event flow with the initial marking.8. http://dx.doi.org/10.17632/scrjyndpv6.1

2598 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

http://dx.doi.org/10.17632/scrjyndpv6.1

As seen from the transition guard in the figure, the num-
ber automatically assigned for A-type events is 15. Hence,
once the BPCPN is obtained for an event pattern, we can
obtain the corresponding PCPN, by clicking on the PCPN
transformation button. Fig. 20 shows the A page taken from
CPN Tools for this operator. The final marking in place Fp
indicates that, as a result, the FirstA pattern has obtained
the pCase1 event with ma ¼ 55. Observe that this complex
event is also inserted into flow F (third line in the marking),
which would allow further patterns to use it.

Test case 2 consists of three pages, the input event flow,
the A page and the every page. Fig. 21 shows the PCPN
page obtained for the every operator, once applied the
select clause and the insertion of the new events in F . This
PCPN page only contains the fusion places that conform
the operator. In the A page an arc from t2 to Init has been
included with respect to Fig. 20 (inner A-type event detec-
tion operator).

Fig. 22 shows the graphical model created in MEdi-
t4CEP-BPCPN for Test case 11. In this case, complex event
Case11 consists of three fields, ma, mb and mc, which are
taken from the A, B and C events detected by the pattern,
with condA ¼ ma > 10, condB ¼ mb > 2 and condC ¼
mc > 0. We only show the C page of the BPCPN obtained
(Fig. 23), which corresponds to searching for the C-type
events after the inner followed-by operator. Notice the
inscription produced for the arc from place Init to transition
BT, in which the second field contains a list with the two
previous A and B events obtained. Finally, Fig. 24 shows
the CPN Tools page that implements the external followed-
by operator in Test case 11. Recall that the followed-by oper-
ator is essentially obtained by merging the BPCPNs
obtained for the arguments (see Fig. 11). This CPN Tools

Fig. 18. Test Case 1: graphical model.

Fig. 19. Test Case 1: BPCPN page A in MEdit4CEP-BPCPN.

Fig. 20. Test Case 1: page A in CPN Tools.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2599

page contains the Init, F, End, Exit, Control and Fp places
required in every pattern operator, most of which are, in
this case, fusion places. Notice the token in place Exit1,
which means that the first argument has finished, while
place Exit2 remains empty, because an every operator never
terminates, and thus, the whole (followed-by) operator
never terminates either. The marking in place Fp contains
the three Case11 events found matching the pattern.

NOTE: all the test cases indicated in Listing 5 have been
proved and checked with EsperTech EPL On-line. The out-
puts provided by the PCPNs in CPN Tools are the same
as those obtained in Esper EPL On-line (https://www.
esperonline.net/).

6 USE CASE

Let us consider the health case study concerning the moni-
toring of uterine contractions of pregnant women in a hospi-
tal presented in [8]. In this case, we consider the events
produced prior to the process of childbirth considering
only the duration —beginning to end of one contraction
(seconds)— and the frequency —beginning of one contrac-
tion to beginning of the next (minutes). For each patient we
have the following event information: patient name, the
duration of each uterine contraction and timestamp. This
domain is depicted in Fig. 25, which contains the Patient
event type along with its event properties: ts (event time-
stamp, in minutes), name (patient name) and contrDuration
(contraction duration in seconds):

create schema Patient(ts int, name string,

contrDuration int);

We have defined two event patterns for this case study.
First, we consider the complex event Duration depicted in
Fig. 26, which searches for patients who have had at least two
contractions with a duration of more than 35 seconds within
a period of 5 minutes. This situation is an indication of a
“she-is-in-labor” situation in maternity units in hospitals.
This event pattern corresponds to Test case 5 in Listing 5. The
EPL code produced by the MEdit4CEP-BPCPN tool for this
event pattern is as follows:

@Name(‘Duration‘)

insert into Duration

select a1.name as patientId,

a2.ts-a1.ts as last_delay

from pattern[(every

a1=Patient(a1.contrDuration >35))->
a2=Patient(a2.name=a1.name and

a2.contrDuration>35 and a2.ts-a1.ts <=5)];

As regards the second event pattern, we have defined an
event pattern to record the time elapsed for patients having
contractions with a duration of more than 5 seconds before
two contractions fulfilling the conditions of the pattern
Duration. This pattern, called TimeOnLabor, is depicted in
Fig. 27, and the EPL code obtained with the MEdit4CEP-
BPCPN tool is as follows:

@Name(‘TimeOnLabor‘)

insert into TimeOnLabor

select a1.name as patientId,

a3.ts-a1.ts as before_delay

from pattern[

every a1=Patient(a1.contrDuration >5)->
(every a2=Patient(a2.contrDuration >35 and

a2.name=a1.name)->
a3=Patient(a3.name=a1.name

and a3.contrDuration>35 and

a3.ts-a2.ts <=5))];

In order to analyze both patterns, we have considered a
scenario with two patients A and B. The initial marking con-
sidered (events) is that shown in Column 1 of Table 2.

The PCPN obtained consists of 75 declarations, including
14 types and 54 variables, and 12 pageswith 88 places, 21 tran-
sitions and 121 arcs. Notice that these figures grow propor-
tionally to the number of patterns modeled. Simulation took
224 steps (transition firings). The outputs obtained for both

Fig. 21. Test Case 2: CPN Tools page for the every operator.

Fig. 22. Test Case 11: graphical model.

2600 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

https://www.esperonline.net/
https://www.esperonline.net/

patterns are shown inColumns 2 and 3 of Table 2.Other simu-
lations led to the same results, but changing the order in
which the eventswere produced at the same instant.

7 RELATED WORK

Petri nets are a powerful graphical modeling tool to repre-
sent and analyze the behavior of concurrent systems. PNs
have been extended in many different ways to facilitate the
modeling of specific application areas. For instance, Hafidi
et al. [20] use Reconfigurable Timed Net Condition/Event
Systems (R-TNCESs) to perform a formal verification of

reconfigurable discrete event control systems (RDECSs).
Rodidoux et al. [21] present a procedure similar to our work
using CPNs. In this case, a formal model to specify reliability
block diagrams (DRBD) for computer-based systems is used

Fig. 24. Test Case 11: CPN Tools page for external followed-by operator.

Fig. 25. Patient domain: graphical model.

Fig. 23. Test Case 11: BPCPN page C in MEdit4CEP-BPCPN.

Fig. 26. Duration pattern: graphical model.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2601

to verify it dynamically. In this compositional approach pro-
posed by Rodidoux et al., a DRBD model written in RML
(ReliabilityMarkupLanguage) is converted into aCPNmodel
used to analyze the behavioral properties of the DRBDmodel.

In this paper we have defined an extension of PCPNs
with black sequencing transitions, in order to model the
ordered firing of these transitions with respect to the tokens
consumed from an input flow place. The use of black transi-
tions in PNs is not new. Valero et al. [22] used black transi-
tions in a timed extension of Petri nets to denote a class of
transitions that must fire when the time interval at which
they can fire expires, Niek Tax et al. [23] used black transi-
tions to denote invisible actions in the system, while Lorbeer
and Padberg [24] used black transitions to denote the
enabled transitions in the context of reconfigurable Petri
nets. In their paper, Lorbeer and Padberg proposed a hierar-
chical structure for reconfigurable Petri nets using substitu-
tion transitions and a set of rules to reconfigure the global
net and the subnets. Substitution transitions are a mecha-
nism to refine the models, as they represent subnets that
preserve the transition connections (input and output pla-
ces). In reconfigurable Petri nets the system structure can
therefore change during its execution. Kahloul et al. [25]
applied reconfigurable object nets (RONs) for the modeling,

simulation and analysis of reconfigurable manufacturing
systems (RMS). Graph transformation techniques were
used in this case for the reconfiguration process.

Thus, the black transitions presented in the present paper
have some similaritieswith substitution transitions, since they
represent a PCPN structure that essentially replaces the black
transition. However, black transitions do not have the same
behavior as normal transitions, so this substitution is not a
simple refinement in which the behavior represented by some
normal transitions is detailed by their associated subnets.

Regarding the use of formal methods and Petri nets in
the field of the CEP technology, Offel et al. [26] showed the
need for a comprehensive formalization integrating event
streams, event queries and evaluation architectures. For
instance, Colored Petri Nets with Priorities and Time
(PTCPNs) were used by Weidlich et al. [27] to define a
model of event processing networks (EPNs). They justified
the use of PTCPNs due to their capability of expressing con-
currency and support for typing events. A general transfor-
mation of EPNs to PTCPNs was then presented by the
authors, and a specific application to the fast flower delivery
case. Weidlich et al.’s work was based on a timed model of
CPNs, in contrast to our work, in which we use untimed
PCPNs to define a compositional model for the most rele-
vant operators of Esper EPL. We have also used M2M tech-
niques to implement a tool supporting this translation.

Carle et al. [28] used untimed CPNs to detect critical sit-
uations of interest in the aerospace field. They defined the
chronicles language, which is a situation description lan-
guage with operators to capture the detection of simple
events, sequence, disjunction, conjunction and absence of a
chronicle. A translation of the chronicles language was pro-
vided in terms of untimed CPNs with inhibitor arcs and
fusion places. Despite the use of untimed CPNs, there are
significant differences with our work. Carle et al. only pre-
sented the situations described by the chronicles language,
while we present a compositional semantics in a quite dif-
ferent way by using the newly presented black transitions
and not using inhibitor arcs.

A different class of Petri nets is used in thework byAhmad
et al. [29], in which the authors presented a methodology to
model CEP using Timed Net Condition Event System
(TNCES) [30]. TNCES is a timed extension of NCES (Net Con-
dition Event Systems) [31], which is a formalism that allows
the modular design of discrete event systems. The timed
extension considered in TNCES is based on timed-arc Petri
nets [32], [33], in which pt-arcs have a time interval to restrict

Fig. 27. TimeOnLabor pattern: graphical model.

TABLE 2
Initial Marking and Outputs Obtained for Duration and Time-On-Labor Patterns

2602 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

the age of the tokens to be consumed. In addition to the class
of Petri nets used, themain differences with our work are that
we define a new type of transition, the black transition, which
allows us to simplify the definition of a compositional seman-
tics for themost relevant Esper EPL operators.

Thus, it is important to note that in contrast to these
works using different variants and extensions of Petri nets
for the modeling of CEP systems, we have been able to
define a compositional BPCPN semantics, which means that
we can deal with complex pattern definitions, and the trans-
lations can be automatically produced using the tool that
has been implemented using model-to-model techniques.

A number of works have used different formalisms.
Al Bassit et al. [34] defined LEAD, a pattern algebra that
extends the common set of operators in CEP. These authors
defined a set of pattern operators, a rule grammar and a logi-
cal execution plan, which is based on a combination of timed
colored Petri nets with aging tokens and prioritized Petri nets.
Hinze andVoisard [35] presented a parameterized event alge-
bra (EVA) to support adaptable event composition. Cugola
and Margara [36] defined the TESLA language, which is a
highly expressive and flexible language offering content and
temporal filters, negations, timers, aggregates, and fully cus-
tomizable policies for event selection and consumption.
Agrawal et al. [37] defined a timed automata formalization of
complex event systems, and the Sase+ pattern language was
defined by Gyllstrom et al [38]. They defined a precise seman-
tics in terms of timed automata with similar results to the
work described in TESLA. Ericsson et al. [39] presented
another formalization based on timed automata, in which
theyuse the REX tool [40] to analyze the events and rules spec-
ified for CEP applications.

Some papers integrated CEP with Business Process
Model (BPM) technologies and provide a mapping to PN as
implementation semantics. Mandal et al. [41] proposed a
model for event handling in business processes that is based
on explicit subscriptions and event buffering. A formal exe-
cution semantics for this model is provided as a BPMN
extension and a mapping to CPNs, justifying the use of
CPNs as they are particularly suited to capturing the inter-
actions of a process with its environment.

A large number of Petri net metamodels have been pro-
posed. Gomez et al. [42] defined a metamodel for modeling
Petri nets applied to biological data processing. Models con-
forming to Gomez et al.’s metamodel can be automatically
transformed into the XML code executable by CPN Tools.
However, Petri net modeling is close to CPN Tools concepts
such as color and position of the graphical elements and is
conducted through a tree model editor (not a graphical one
with nodes and links). Moreover, a CPN model can contain
only one page.

Westergaard et al. [43] developed Access/CPN, a frame-
work that provides CPN Tools with two interfaces. One inter-
face for analysis methods is implemented in Standard
Markup Language, while the another Java one supports the
object-oriented representation of CPN models. Since their
metamodel is implemented with Eclipse Modeling Frame-
work (EMF), Petri net modeling is conducted by making use
of a treemodel editor.

Kindler proposed ePNK (http://www.imm.dtu.dk/
	ekki/projects/ePNK/index.shtml), a platform that allows

us to define Petri nets by using both a tree editor and a GMF
editor. However, the graphical editor does not support CEP
domain and event pattern modeling nor does it support
their automatic transformation into Petri nets.

Even though some works use CPNs to model CEP-based
languages and other existing ones propose model-driven
approaches for modeling Petri nets, to the best of our
knowledge, none of them provides domain experts with a
compositional approach for complex event pattern model-
ing and transformation to CPNs with black transitions. This
MEdit4CEP-BPCPN model-driven approach proposed in
the presented paper is supported by an all-in-one graphical
tool with facilities for (1) modeling CEP domains and event
patterns in a user-friendly way by dragging and dropping
elements on a canvas, (2) validating the pattern syntax, (3)
automatically transforming the graphical patterns into a
compositional BPCPN model, (4) automatically transform-
ing the BPCPN model to the XML code executable by CPN
Tools and validating the pattern semantics, and (5) automat-
ically generating the Esper EPL code and deploying it in a
CEP engine.

8 CONCLUSION

This paper presented an extension of PCPNs, called BPCPNs,
in which we included a new type of transitions, the so-called
black sequencing transition, which allow us to fire these transi-
tions following an order. An encoding of BPCPNs into PCPNs
was also presented. We used BPCPNs to provide a composi-
tional semantics of the most relevant operators of Esper EPL,
namely the basic event detection, the every operator and the
followed-by operator. These operators allow us to detect the
main situations of interest, such as the first event fulfilling a
certain condition, all events fulfilling a condition and streams
of events. In addition, the use of separate event patterns
enriches the model, as the complex events produced by some
patterns can be used as inputs in subsequent event patterns.
Thus, our contribution is to provide a rigorous semantics to
EPL, since most information about the EPL operator behavior
is only provided textually.

This transformation was then implemented in the MEdi-
t4CEP-BPCPN tool by using model-to-model and model-to-
text techniques based on the Eclipse Epsilon platform. This
choice has some advantages that are further enhanced by our
tool, since the BPCPN editor provided not only allows users
to modify the obtained models but also to create their own
models. Another important advantage is the possibility of
extending the model and the transformation with new addi-
tions. This has been proven since our MEdit4CEP-BPCPN is
an extension of our previousworkMEdit4CEP-CPN.

Thus, with this tool a domain expert can easily create
event patterns graphically, which can, in turn, be trans-
formed either into EPL code or into a BPCPN model. This
BPCPN model can also be transformed into a PCPN model
executable in CPN Tools, which allows us to simulate and
analyze the pattern behavior, and make predictions about
scenarios of interest.

As future work, our plans include the modeling of more
complex real-world scenarios and performing a usability
analysis of the whole framework, so as to obtain the quanti-
tative and qualitative feedback from the users.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2603

http://www.imm.dtu.dk/~ekki/projects/ePNK/index.shtml
http://www.imm.dtu.dk/~ekki/projects/ePNK/index.shtml

We also plan to extend the event pattern operators sup-
ported in our framework, including other EPL operators,
such as the every-distinct, repeat, repeat-until, conjunction
and disjunction, as well as data windows. Thus, with these
new event pattern operators, we will be able to apply the
MEdit4CEP-BPCPN to other application domains such as
e-health and distributed environments [44], [45]. For inst-
ance, the techniques presented in this work can be adapted
to detect deviations between a process model and their run-
ning instances, using the event logs following the path
established by Wang et al. in [46].

Finally, we plan to apply the techniques used in [47] to
feed the input event flow in real time with the events pro-
duced by a set of sensors. This feature requires utilizing the
CPN Tools capabilities to use HTTP sockets to feed input
streams. With this additional feature we can conduct a real
time analysis of the events produced from sensor stations.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of Science,
Innovation and Universities and the European Union FEDER
funds under Grants RTI2018-093608-B-C32 and RTI2018-
093608-B-C33, the JCCM project cofinanced with European
Union FEDER funds, ref. SBPLY/17/180501/000276, and the
UCLM group research grant with reference 2020-GRIN-
28708.Data availability: The data obtained supporting the find-
ings of this research can be found in the Mendeley repository
(http://dx.doi.org/10.17632/scrjyndpv6.1). In this repository
the reader can find all the files that are necessary to replicate
the results obtained for the test cases and the use case.

REFERENCES

[1] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Boston, MA,
USA: Addison-Wesley, 2001.

[2] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, and
M. N. Garofalakis, “Complex event recognition in the big data
era: A survey,” VLDB J., vol. 29, no. 1, pp. 313–352, 2020.

[3] D. Luckham, Event Processing for Business: Organizing the Real-Time
Enterprise. Hoboken, New Jersey, USA: Wiley, 2012.

[4] K. Bok, D. Kim, and J. Yoo, “Complex event processing for sensor
stream data,” Sensors, vol. 18, no. 9, Sep. 2018, Art. no. 3084.
[Online]. Available: http://dx.doi.org/10.3390/s18093084

[5] G. D�ıaz, H. Maci�a, V. Valero, J. Boubeta-Puig, and F. Cuartero,
“An intelligent transportation system to control air pollution and
road traffic in cities integrating CEP and colored Petri nets,” Neu-
ral Comput. Appl., vol. 32, no. 2, pp. 405–426, 2020.

[6] C. Czepa and U. Zdun, “On the understandability of temporal
properties formalized in linear temporal logic, property specifica-
tion patterns and event processing language,” IEEE Trans. Softw.
Eng., vol. 46, no. 1, pp. 100–112, Jan. 2020.

[7] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “MEdit4CEP: A
model-driven solution for real-time decision making in SOA 2.0,”
Knowl.-Based Syst., vol. 89, pp. 97–112, Nov. 2015.

[8] H. Maci�a, V. Valero, G. D�ıaz, J. Boubeta-Puig, and G. Ortiz,
“Complex event processing modeling by prioritized colored Petri
nets,” IEEE Access, vol. 4, pp. 7425–7439, 2016.

[9] CPN-Group, “CPN tools homepage,” Accessed: Feb. 22, 2021.
[Online]. Available: http://www.cpntools.org/

[10] J. Boubeta-Puig, G. D�ıaz, H. Maci�a, V. Valero, and G. Ortiz,
“MEdit4CEP-CPN: An approach for complex event processing
modeling by prioritized colored Petri nets,” Inf. Syst., vol. 81,
pp. 267–289, 2019.

[11] G. D�ıaz, H. Maci�a, V. Valero, J. Boubeta-Puig, and G. Ortiz,
“Facilitating the quantitative analysis of complex events through
a computational intelligence model-driven tool,” Sci. Program.,
vol. 2019, pp. 1–17, 2019.

[12] J. Peterson, Petri Net Theory and the Modeling of Systems. Engle-
wood Cliffs, NJ, USA: Prentice-Hall, 1981.

[13] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. London, U.K.: Springer, 1995.

[14] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling
and Validation of Concurrent Systems, 1st ed. Berlin, Germany:
Springer, 2009.

[15] W. M. P. van der Aalst, C. Stahl, and M. Westergaard, “Strategies
for modeling complex processes using colored Petri nets,” in
Transactions on Petri Nets and Other Models of Concurrency VII.
Berlin, Germany: Springer, 2013, pp. 6–55.

[16] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri nets and
CPN tools for modelling and validation of concurrent systems,” Int.
J. Softw. Tools Technol. Transf., vol. 9, no. 3–4, pp. 213–254, 2007.

[17] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “A model-driven
approach for facilitating user-friendly design of complex event
patterns,” Expert Syst. Appl., vol. 41, no. 2, pp. 445–456, Feb. 2014.

[18] Eclipse Foundation, “Epsilon,” 2021. [Online]. Available: https://
www.eclipse.org/epsilon/

[19] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “ModeL4CEP:
Graphical domain-specific modeling languages for CEP domains
and event patterns,” Expert Syst. Appl., vol. 42, no. 21, pp. 8095–
8110, Nov. 2015.

[20] Y. Hafidi, L. Kahloul, M. Khalgui, Z. Li, K. Alnowibet, and T. Qu,
“On methodology for the verification of reconfigurable timed net
condition/event systems,” IEEE Trans. Syst., Man, Cybern. Syst.,
vol. 50, no. 10, pp. 3577–3591, Oct. 2020.

[21] R. Robidoux, H. Xu, L. Xing, and M. Zhou, “Automated modeling
of dynamic reliability block diagrams using colored Petri nets,”
IEEE Trans. Syst., Man, Cybern. A: Syst. Hum., vol. 40, no. 2,
pp. 337–351, Mar. 2010.

[22] V. Valero, M. Emilia Cambronero, G. D�ıaz, and H. Maci�a, “A Petri
net approach for the design and analysis of web services chor-
eographies,” J. Logic Algebraic Program., vol. 78, no. 5, pp. 359–380,
May 2009.

[23] N. Tax, N. Sidorova, R. Haakma, and W. M. van der Aalst,
“Mining local process models,” J. Innov. Digit. Ecosyst., vol. 3,
no. 2, pp. 183–196, Dec. 2016.

[24] J. U. Lorbeer and J. Padberg, “Hierarchical, reconfigurable Petri nets,”
in Proc. CEUR Workshop Proc., vol. 2060, pp. 167–186, 2018. [Online].
Available: http://ceur-ws.org/Vol-2060/pemod1.pdf

[25] L. Kahloul, S. Bourekkache, and K. Djouani, “Designing reconfig-
urable manufacturing systems using reconfigurable object Petri
nets,” Int. J. Comput. Integr. Manuf., vol. 29, no. 8, pp. 889–906,
2016.

[26] M. Offel, H. van der Aa, and M. Weidlich, “Towards net-based
formal methods for complex event processing,” in Proc. Conf.
”Lernen, Wissen, Daten, Analysen”. 2018, pp. 281–284.

[27] M.Weidlich, J. Mendling, and A. Gal, “Net-based analysis of event
processing networks – The fast flower delivery case,” in Proc. 34th
Int. Conf. Appl. Theory Petri Nets Concurrency, 2013, pp. 270–290.

[28] P. Carle, C. Choppy, R. Kervarc, and A. Piel, “A formal coloured
Petri net model for hazard detection in large event flows,” in Proc.
20th Asia-Pacific Softw. Eng. Conf., 2013, pp. 323–330.

[29] W. Ahmad, A. Lobov, and J. L. M. Lastra, “Formal modelling of
complex event processing: A generic algorithm and its application
to a manufacturing line,” in Proc. IEEE 10th Int. Conf. Ind. Inform,
2012, pp. 380–385.

[30] M. Rausch and H. M. Hanisch, “Net condition/event systems
with multiple condition outputs,” in Proc. INRIA/IEEE Symp.
Emerg. Technol. Factory Autom., 1995, pp. 592–600

[31] H. Hanisch, J. Thieme, A. Luder, and O. Wienhold, “Modeling of
PLC behavior by means of timed net condition/event systems,”
in Proc. IEEE 6th Int. Conf. Emerg. Technol. Factory Autom., 1997,
pp. 391–396.

[32] H. M. Hanisch, “Analysis of place/transition nets with timed-arcs
and its application to batch process control,” Appl. Theory Petri
Nets, vol. 691, pp. 282–299, 1993.

[33] V. Valero, D. de Frutos, and F. Cuartero, “On non-decidability of
reachability for timed-arc Petri nets,” in Proc. 8th Int. Workshop
Petri Nets Perform. Models, 1999, pp. 188–197.

[34] A. A. Bassit, S. Skhiri, and H. Ammar, “LEAD: A formal specifica-
tion for event processing,” in Proc. 13th ACM Int. Conf. Distrib.
Event-Based Syst., 2019, pp. 91–102.

[35] A. Hinze and A. Voisard, “EVA: An event algebra support-
ing complex event specification,” Inf. Syst., vol. 48, pp. 1–25,
2015.

2604 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

http://dx.doi.org/10.17632/scrjyndpv6.1
http://dx.doi.org/10.3390/s18093084
http://www.cpntools.org/
https://www.eclipse.org/epsilon/
https://www.eclipse.org/epsilon/
http://ceur-ws.org/Vol-2060/pemod1.pdf

[36] G. Cugola and A. Margara, “TESLA: A formally defined event
specification language,” in Proc. 4th ACM Int. Conf. Distrib. Event-
Based Syst., 2010, pp. 50–61.

[37] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient
pattern matching over event streams,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2008, pp. 147–160.

[38] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman, “On sup-
porting kleene closure over event streams,” in Proc. 24th Int. Conf.
Data Eng., 2008, pp. 1391–1393.

[39] A. Ericsson, P. Pettersson, M. Berndtsson, and M. Seiri€o, “Seamless
formal verification of complex event processing applications,” in
Proc. Int. Conf. Distrib. Event-Based Syst., 2007, pp. 50–61.

[40] A. Ericsson andM. Berndtsson, “REX, theRule andEvent eXplorer,”
inProc. Int. Conf. Distrib. Event-Based Syst., 2007, pp. 71–74.

[41] S. Mandal, M. Weidlich, and M. Weske, “Events in business pro-
cess implementation: Early subscription and event buffering,” in
Proc. Int. Conf. Business Process Manage., 2017, pp. 141–159

[42] A. Gomez, A. Boronat, J. A. Carsi, I. Ramos, C. Taubner,
and S. Eckstein, “Biological data processing using model driven
engineering,” IEEE Latin Amer. Trans., vol. 6, no. 4, pp. 324–331,
Aug. 2008.

[43] M. Westergaard and L. M. Kristensen, “The access/CPN frame-
work: A tool for interacting with the CPN tools simulator,” in
Proc. Int. Conf. Appl. Theory Petri Nets, 2009, pp. 313–322.

[44] I. Calvo, M. G. Merayo, and M. N�u~nez, “A methodology to ana-
lyze heart data using fuzzy automata,” J. Intell. Fuzzy Syst.,
vol. 37, no. 6, pp. 7389–7399, 2019

[45] R. M. Hierons, M. G. Merayo, and M. N�u~nez, “Bounded reorder-
ing in the distributed test architecture,” IEEE Trans. Rel., vol. 67,
no. 2, pp. 522–537, Jun. 2018.

[46] L. Wang, Y. Du, and L. Qi, “Efficient deviation detection between
a process model and event logs,” IEEE/CAA J. Automatica Sinica,
vol. 6, no. 6, pp. 1352–1364, Nov. 2019.

[47] G. D�ıaz, E. Braz�alez, H. Maci�a, J. Boubeta-Puig, and V. Valero,
“An intelligent system integrating CEP and colored Petri nets for
helping in decision making about pollution scenarios,” in Proc.
15th Int. Work-Conf. Artif. Neural Netw., 2019, pp. 729–740.

Valent�ın Valero received the degree in mathemat-
ics from the Complutense University of Madrid, in
1987, and the PhD degree inmathematics from the
Department of Computer Science, Complutense
University of Madrid, in 1993. Since 1987, he has
been a member of the Computer Science Depart-
ment, University of Castilla-La Mancha, Spain,
where he is a full professor of distributed systems
and operating systems with the Computer Science
School of Albacete. His current research interests
include concurrency, specifically in formal models
for analysis and design of concurrent systems, and
real-time systems.

Gregorio D�ıaz is an associated professor with
the University of Castilla-La Mancha within the
ReTiCS research group with tenure distinction
(2011), published more than 18 journal papers,
from which 16 are indexed by the JCR index, par-
ticipated in 38 international and national confer-
ences, main researcher of three FEDER projects.
His research goals are aimed to make software
more reliable, secure, and easier to design. He
has supervised more than 27 master theses,
including four in research areas and two PhD the-

sis. He has taught in undergraduate and postgraduate studies awarded
with the quality award Euro-Inf Bachelor by EQANIE.

Juan Boubeta-Puig received the PhD degree in
computer science from the University of C�adiz, in
2014. He is a tenured associate professor with the
Department of Computer Science and Engineering
with the University of C�adiz (UCA), Spain. He was
honored with the Extraordinary PhD Award from
UCA and the Best PhD Thesis Award from the
Spanish Society of Software Engineering and Soft-
ware Development Technologies (SISTEDES). His
research interests include real-time big data analyt-
ics through Complex event processing (CEP),

Event-driven service-oriented architecture (SOA 2.0), Internet of Things
(IoT) and Model-driven development (MDD) of advanced user interfaces,
and their application to e-health, smart city, industry 4.0, and cybersecurity.

Hermenegilda Maci�a received the degree in
mathematics from the University of Valencia, and
the PhD degree in computer science from the
University of Castilla-La Mancha, in 2003. She is
an associated professor with the Department of
Mathematics, University of Castilla-La Mancha
within the ReTiCS research group. She has pub-
lished research articles in reputed journals of
Mathematics and Computer Science. In the last
years, her main research interests are focused
on applying formal method in different areas

such as in SSME (Service science, management and engineering), spe-
cifically considering CEP (Complex event processing) or to modeling bio-
logical systems, including metabolic pathways.

Enrique Braz�alez received the master’s deg-
ree in computer science, in 2018–2019. He is
currently working toward the PhD degree in
advanced information technologies at the Univer-
sity of Castilla-La Mancha within the Retics
research group. He has participated in some
national conferences and he works in a FEDER
project called “Analysis and Development of Mod-
els for Air Quality Control, Effects on Vegetation
and Cloud Environments”. His field of research is
Complex Event Processing and its application in
Industry 4.0 environments such as renewable
energies and the study of air quality.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

VALERO ETAL.: COMPOSITIONAL APPROACH FOR COMPLEX EVENT PATTERN MODELING AND TRANSFORMATION TO COLORED PETRI... 2605

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

