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Magnifier: A Compositional Analysis Approach
for Autonomous Traffic Control
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Abstract—Autonomous traffic control systems are large-scale systems with critical goals. To satisfy expected properties, these
systems adapt themselves to changes in their environment while the adaptation may result in further changes propagated through the
systems. For each change and its consequent adaptation, assuring the satisfaction of the properties of a system at runtime is
important. A prominent approach to assure the correct behavior of these systems is verification at runtime, which has strict time and
memory limitations. To tackle these limitations, we propose Magnifier, an iterative, incremental, and compositional verification approach
that operates on a component-based model. The Magnifier idea is zooming on the component affected by a change and verifying the
correctness of properties of interest of the system after adapting the component to the change. The satisfaction of the properties
indicates that the change does not propagate further. Magnifier zooms out and traces the change if it propagates. In this case, all
components affected by the change are adapted and are composed to form a new component. Magnifier repeats the same process for
the new component. This iterative process terminates whenever the propagation of the change stops. In Magnifier, we use the
Coordinated Adaptive Actor model (CoodAA) of traffic control systems. We present a formal semantics for CoodAA as a network of
Timed Input-Output Automata (TIOAs). The change does not propagate if TIOAs of the adapted component and its environment do not
reach a deadlock state in their parallel product. We implement our approach in Ptolemy II. The results of our experiments indicate that
the proposed approach improves the verification time and the memory consumption compared to a non-compositional approach.

Index Terms—Self-adaptive Systems, Model@Runtime, Compositional Verification, Track-based Traffic Control Systems, Ptolemy II

F

1 INTRODUCTION

MANY activities of the modern society are entirely
managed by traffic control systems. These systems are

large-scale, time and safety-critical systems that consist of
numerous moving objects whose movements on a traveling
space are adjusted and coordinated by controllers. The
application domain of traffic control systems is not only
limited to air traffic control systems or rail traffic control
systems, but also includes more applications such as robotic
systems, maritime transportation, smart hubs, intelligent
factory lines, etc. The traffic in such systems can pass
through pre-specified tracks, that based on the minimum
safe distance between the moving objects, are partitioned
into a set of sub-tracks. A system with this structural design
is called a Track-based Traffic Control System (TTCS) [1].

Due to the dynamic nature of a TTCS and its sur-
rounding world, a TTCS is vulnerable to failures, threaten-
ing human lives or causing intolerable costs. Autonomous
response to context changes is a mechanism to prevent
a failure in self-adaptive systems that are able to adjust
their structures and behaviors in response to changes. The
controller in an autonomous TTCS uses the track-based
design to safely and efficiently manage the traffic whenever
an unpredicted change happens. For each change and its
consequent adaptation, verifying the safety and quality of
the system is necessary, which should be performed during
the execution of the system. For performing the analysis and
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verification at runtime, an abstract model of the system and
its environment, the so-called model@runtime [2], is gener-
ated, updated, and verified during the system execution.

In [3], we introduced the Coordinated Adaptive Ac-
tor model (CoodAA) for constructing and analyzing self-
adaptive track-based traffic control systems. CoodAA is an
actor-based [4], [5] approach augmented with coordination
policies. In CoodAA each sub-track is modeled as an actor,
the moving objects are considered as messages passed by
the actors, and the controller is modeled as a coordinator. A
TTCS is a large-scale system partitioned into a set of control
areas where each area has its own controller, so, a model of
a TTCS can be intrinsically built as a set of components and
is matched to CoodAA. The moving objects are sent and
received at specified times through specified routes.

The coordinated adaptive actor model is designed based
on the MAPE-K feedback loop [6] for self-adaptive systems.
This control loop consists of the Monitor, Analyze, Plan, and
Execute components. There is also a Knowledge base where
the model@runtime is kept. The Knowledge base is updated
by the Monitor component. The Analyze and Plan compo-
nents are responsible for doing the analysis and providing
adaptation plans when a change happens. The new plan is
sent to the system through the Execute component.

In this paper, our focus is on the analysis that is per-
formed for adaptation at runtime, and we propose the
Magnifier idea. Magnifier uses an iterative and incremen-
tal process on a component-based model. When a change
occurs Magnifier zooms-in on the affected component and
checks if properties of interest still hold. If not, it adapts
the component affected by the change by finding a new
plan. Then, Magnifier checks if, because of the new plan,
the change is propagated through the model to other com-
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ponents, and it will continue the same process iteratively
and incrementally. The idea is checking the effects of the
change on the affected area and then in the least number of
neighborhood components (and trying to contain it) instead
of analysing the whole system for each change. The gen-
eral idea of Magnifier is not specific for track-based traffic
control systems and can be applied for any autonomous
control system. But in our work, we focus on CoodAA and
TTCSs, provide formal semantics and necessary theorems
for compositional verification of TTCSs, and illustrate the
results by implementing the approach.

In Magnifier, we use a compositional approach, we focus
on the interface of each component, which in CoodAA
means the inputs and outputs of each component at a
specified time. If the adapted component, according to the
new plan, generates new outputs, or generates outputs
by making new assumptions on its inputs it means that
the effects of the change may propagate to the connected
components. So, the connected components (or the so-called
environment components) are adapted considering the new
interface of the component. Then, Magnifier zooms-out and
creates a new component by composing all components
adapted to the change. The propagation of the change stops
if the interface of the new (composite) component remains
unchanged.

In this paper, we first present a compositional formal
semantics for CoodAA as a network of Timed Input-Output
Automata (TIOAs) [7]. Each component is represented by
TIOAs of its constituent actors and its coordinator. We check
the propagation of a change by checking the compatibility of
TIOAs of the adapted component and TIOAs of its environ-
ment components. We call two (or more) TIOAs compatible
if they do not reach a deadlock state in their parallel product.

To prove our incremental compositional approach, we
adopt the compositional verification theorem of Clark et
al. [8]. In [8], each component of the model is supplied
with a correctness property. By composing a component
with an abstraction of its environment components and
verifying a property over the composition, the satisfaction
of the property over the whole system is proved. Similar to
[8], we use abstractions of the environment components. To
reduce the state space, instead of TIOAs of the environment
components, we only consider TIOAs of border actors that
directly communicate with the adapted component. In con-
trast to [8], we do not use any logical formula to express the
properties, since it is enough to check whether the adapted
component interacts with its environment as expected (i.e.
their compatibility).

Note that the verification of the propagation of a change
is checking whether the interface of a component remains
unchanged after adapting to a new plan. The verification is
performed on the model@runtime that is a static snapshot
of the system at the moment of the change.

To illustrate the applicability of our approach, we im-
plement it in Ptolemy II [9]. Ptolemy II is an actor-
oriented open-source modeling and simulation framework.
A Ptolemy model consists of actors that communicate via
message passing. The semantics of communications of the
actors in Ptolemy is defined by models of computation,
implemented in a set of predefined director components.
Here, to provide assertion-based verification in Ptolemy II,

we develop a Magnifier director. Our director generates the
state space of the affected component, automatically extends
its domain to include other components, and performs the
reachability analysis over this extended domain. The results
of our experiments for an example in the domain of air
traffic control systems indicate a significant improvement
in the verification time and the memory consumption.

Novelty and importance. Magnifier can be seen as a decen-
tralized adaptation mechanism. Adaptation in a decentral-
ized setting is a well-known challenge [10], [11]. It signifi-
cantly improves scalability and is a suitable option in hard
real-time settings, when the reaction to a change should be
performed in a negligible amount of time [11]. On the other
hand, preserving global goals in a decentralized setting is
difficult [11], as several components may need to reach a
consensus about an adaptation policy to satisfy a global
goal. Magnifier meets the global goals by first applying
local adaptation to the component affected by a change. If
it is not successful, it dynamically extends its adaptation
(verification) domain to consider more components. The
Magnifier approach relies upon the assumption that the
environment components of a component are recognisable
at the analysis time.

Contribution. CoodAA is introduced in [3] and its ap-
plicability in modeling TTCSs is shown by implementing
a case study. In [1], CoodAA is explained using activity
and sequence diagrams and the mapping between differ-
ent applications of TTCSs and CoodAA is illustrated. We
briefly presented the Magnifier idea as a future work in a
short work-in-progress paper [12]. In the current paper, we
present the formal foundation of CoodAA and Magnifier,
and support the idea of effectiveness of Magnifier by an
implementation of Magnifier in Ptolemy II and experimental
results. The Summary of contributions are as follows:

• Formal compositional semantics of coordinated
adaptive actor model as Timed Input-Output Au-
tomata (TIOAs)

• Compositional and incremental verification of
model@runtime in CoodAA using Magnifier, and
proof of correctness of the compositional approach

• Abstraction technique for environment components
in Magnifier for reducing the state space

• Implementation of Magnifier as a director in Ptolemy
II and supporting experimental results on an air
traffic control system as an example to show
the efficiency of Magnifier compared to a non-
compositional approach

The rest of the paper is organized as follows. We provide
a general overview of TTCSs in Section 2. We recall the
definitions of a TIOA and the parallel composition of several
TIOAs in Section 3. In Section 4, the formal compositional
semantics of CoodAA is described in terms of TIOAs. Sec-
tion 5 describes the details of the Magnifier approach. The
implementation of Magnifier in Ptolemy II and the results
of our experiments are shown in Section 6. We describe
the related work in Section 7, and conclude the paper in
Section 8.
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2 PROBLEM DEFINITION AND AN EXAMPLE

Track-based Traffic Control Systems (TTCSs), introduced in
[1], are safety-critical systems. A TTCS works based on the
track-based design of the traveling space; to reduce the risk
of collision between moving objects, they move on certain
tracks in the traveling space instead of moving around
freely. Based on the safe distance between two moving
objects, each track is divided into a set of sub-tracks. Each
sub-track is a critical section that accommodates only one
moving object in-transit. A large-scale TTCS is divided into
a set of areas, while the traffic of each area is controlled by
a centralized controller. The controller uses the track-based
infrastructure of the area to safely navigate the moving
objects considering congestion and environmental changes.
As explained in [1], the application domain of TTCSs ranges
from Air Traffic Control Systems (ATCs), rail traffic con-
trol systems, maritime transportation, to centralized robotic
systems and intelligent factory lines. For instance, ATC in
the North Atlantic follows a track-based structure that is
called an organized track system [13]. The North Atlantic
organized track system consists of a set of nearly parallel
tracks positioned in light of the prevailing winds to suit the
traffic between Europe and North America.

In the real-world applications of TTCSs, each moving
object has an initial traveling plan that is generated prior
to the departure of the moving object from its source. A
traveling plan consists of a route, time schedule decisions,
and depending on the application, fuel, etc. The route of
a moving object is a sequence of sub-tracks traveled by
the moving object from its source to its destination. The
time schedule decisions of a moving object consist of its
departure time from its source, assumed arrival time at
each sub-track in its route, and assumed arrival time at its
destination. TTCSs are sensitive to unforeseen changes in
their context. As a consequence of a dynamic environmental
change, the traveling plans of moving objects may require
to be modified. Therefore, following a change in the context,
a sequence of changes might happen. For instance in an
ATC, the aircraft flight plans are changed if a storm happens
in a part of their flight routes. While changing traveling
plans, several safety issues should be considered; i.e. loss
of the separation between two moving objects should be
avoided, and the remaining fuel should be checked. To
avoid conflicts, changing the traveling plan of a moving
object may result in changing the traveling plans of other
moving objects. These changes can be propagated to the
whole system. Besides the safety concerns, performance
metrics such as arrival times of the moving objects at their
destinations or sub-tracks in their routes are important. In a
TTCS, the controller is in charge of coordinating the moving
objects by rerouting/rescheduling them.

Example 1. An example of the change propagation is
described for a TTCS as follows. Assume Fig. 1(a) and
Fig. 1(b) show a TTCS with two control areas (C1, C2),
where each area has nine sub-tracks. The traffic flows from
the west to the east and vice versa. Each moving object
of the eastbound traffic is able to travel towards a sub-
track in the north, south, and east. The initial routes of the
moving objects are shown in Fig. 1(a). The moving object
with an unavailable sub-track in its route is rerouted and

Fig. 1: A TTCS with 18 sub-tracks. The effect of the change in
sub-track 8 is propagated to the component c2. To avoid the
collision in sub-track 11, the blue moving object is rerouted.

its new route is shown in Fig. 1(b). The red sub-track is
an unavailable sub-track through which no moving object
can travel. For instance, if a storm happens in a part of the
airspace in an ATC, the aircraft cannot cross over the sub-
tracks affected by the storm and are rerouted. Suppose that
the traveling times of the moving objects through each sub-
track are the same and are equal to one. The initial traveling
planes of the purple and blue moving objects in Fig. 1(a)
are {(0, 7), (1, 8), (2, 9), (3, 10), (4, 11), (5, 12), (6, 6)} and
{(5, 17), (6, 11), (7, 5), (8, 4), (9, 3)}, respectively. The first
entry of each tuple shows the arrival time of the moving
object at the sub-track mentioned in the second entry. For
instance, two subsequent tuples (0, 7), (1, 8) mean that the
purple moving object arrives at sub-track 7 at time zero and
arrives at sub-track 8 at time 1 (which is the same time that
it exits sub-track 7).

Suppose that a change happens to sub-track 8
and it becomes unavailable. As a consequence, the
traveling plan of the purple moving object is changed to
{(0, 7), (1, 1), (2, 2), (3, 3), (4, 9), (5, 10), (6, 11), (7, 12), (8, 6)
}, shown in Fig. 1(b). With the new plan, the purple moving
object enters into sub-track 10 (next area) at time 5 instead
of 3, and this way the change propagates from C1 to
C2. Now, the purple moving object arrives at sub-track
11 at time 6. At this time, the blue moving object has to
enter into sub-track 11 based on its initial traveling plan.
To prevent the collision between two moving objects,
the controller employs a rerouting algorithm (adaptation
policy) and changes the plan of the blue moving object
to {(5, 17), (6, 16), (7, 15), (8, 9), (9, 3)}. As can be seen,
by the occurrence of a change, e.g. a storm, a sequence of
changes happens, e.g. rerouting a set of moving objects.
This example also shows a situation in which the change
circulates between two areas. Based on the new traveling
plan obtained for the blue moving object, it enters into C1
at time 7 instead of 9, and this way the change propagates
back to C1.

As a change in the context of a TTCS and its consequent
adaptations in the system happen at runtime, the satisfac-
tion of properties of interest should be checked at runtime.
The properties include: the moving objects have to arrive
at their destinations at the pre-specified times, the collision
of the moving objects should be avoided, the fuel of the
moving objects should not be less than a threshold, and
the system should be deadlock-free. These properties are
checked by verification.



4

3 BACKGROUND: TIMED INPUT-OUTPUT
AUTOMATA

In this section, we briefly recall the definitions of a TIOA,
and the parallel product of several TIOAs. We also recall
the definition of a deadlock state in a TIOA that is used to
define the compatibility of two TIOAs in Section 5.

A timed automaton with a set of input actions and a
set of output actions is called a TIOA. A TIOA with integer
variables [14] is defined as follows.

Definition 3.1. (TIOA) A Timed Input-Output Automaton is a
tuple TA = (Q, q0,Var ,Clk ,Actin ,Actout , T, I) where Q is a
finite set of locations, q0 ∈ Q is the initial location, Var is the
set of integer variables, Clk is a finite set of clocks, Actin is a
set of input actions, Actout is a set of output actions, T ∈ Q ×
(B(Clk)∪B(Var))×(Actin ∪Actout ∪{τ})×2Clk×2Ass×Q
is a set of edges, and I is an invariant-assignment function. Let
# ∈ {≤, <,=,≥, >} and c ∈ N. The sets of conjunctions of
constraints of the form x#c or x− y#c for x, y ∈ Clk , and v#c
or v − w#c for v, w ∈ Var are respectively denoted by B(Clk)
and B(Var). The set of all variable assignments is denoted by
Ass . The function I : Q → B(Clk) assigns invariants to
locations.

Based on the above definition, the edge e =
(q, ψ, a, r, u, q′) ∈ T , besides action a, is labeled with a
guard ψ, a sequence u of assignments, and a set r of clocks.
Let vC , v′C : Clk → R≥0 and vV , v

′
V : Var → Z be clock

and variable valuations, respectively. A state of the system
modeled by a TIOA is in the form of (q, vC , vV ). There is
a discrete transition (q, vC , vV )

a−→ (q′, v′C , v
′
V ) for an edge

e = (q, ψ, a, r, u, q′) such that vC and vV satisfy ψ, v′C is
reached by resetting the clocks in the set r to zero, and
v′V is obtained as a subset of variables are set to their new
values in the assignment set u. The clocks and variables not
mentioned in r and u remain unchanged. Furthermore, v′C
satisfies I(q′). The TIOA can stay in the location q as long
as the invariant I(q) is valid. Let for x ∈ Clk and d ∈ R≥0,
(vC + d)(x) = y + d iff vC(x) = y. For each delay d ∈ R≥0
there is a timed transition (q, vC , vV )

d−→ (q, vC +d, vV ) such
that vC + d satisfies I(q). A state of the system can be a
deadlock state that, based on [15], is a state from which
no outgoing discrete transition is enabled, even after letting
time progress.

Definition 3.2. (Deadlock State) A state s is a deadlock state if
there is no delay d ∈ R≥0 and action a ∈ (Actin ∪Actout ∪{τ})
such that s d−→ s′

a−→ s′′.

Consider the network N = {TAi |i = 1, · · · , n} of
TIOAs, where TIOAs run in parallel and communicate
through shared variables. Furthermore, TIOAs synchronize
over time and shared common actions. We assume that
when two edges (transitions) of two TIOAs synchronize
over an action, their variables are updated by first executing
the variable assignments of the output transition, and then
by executing the variable assignments of the input transi-
tion. We also assume that the input transitions do not update

the shared variables. Let shared(N ) =
n⋃

i,j=1j 6=i

(Actini
∩

Actoutj ) be the set of actions shared between two or more
TIOAs in the network N . In some cases, we use a! and

a? instead of a to label an output and an input transition,
respectively. For a set L = {l1, · · · , lm}, li < li+1, we define⊔
l∈L

ul as a sequence of variable assignments ul1 · · ·ulm .

Based on [14], the parallel product of TIOAs in the network
N is defined as follows.

Definition 3.3. (Parallel Product) Let TIOAs TAi , i =
1, · · · , n, do not have shared output actions or shared clocks. The
parallel product of TA1 , · · · ,TAn , denoted by TA1⊗· · ·⊗TAn ,
is TA = (Q, q0,Var ,Clk ,Actin ,Actout , T, I), where

Q = Q1 × · · · ×Qn, q0 = (q01 , · · · , q0n),

Var =
n⋃

i=1

Vari ,Clk =
n⋃

i=1

Clki ,

Actin =
n⋃

i=1

Actini
\ shared(N ),

Actout =
n⋃

i=1

Actouti \ shared(N ),

I((q1, · · · , qn)) =
n∧

i=1

Ii(qi),

and T is defined in the following way:

• ((q1, · · · , qn), ψ, a, r, u, (q′1, · · · , q′n)) ∈ T iff
there exists i ∈ {1, · · · , n} such that a ∈ Actini

∪
Actouti \ shared(N ), (qi, ψ, a, r, u, q

′
i) ∈ Ti, and for

all j ∈ {1, · · · , n} \ {i}, q′j = qj holds;

• ((q1, · · · , qn), ψ, τ, r, u, (q′1, · · · , q′n)) ∈ T iff
there exists a ∈ shared(N ) and i ∈ L for
L = {k|(qk, ψk, a, rk, uk, q

′
k) ∈ Tk} such that

(qi, ψi, a!, ri, ui, q
′
i) ∈ Ti and for all j ∈ L \ {i},

(qj , ψj , a?, rj , uj , q
′
j) ∈ Tj , and ψ =

∧
k∈L

ψk, r =⋃
k∈L

ri, u = ui
⊔

k∈L\{i}
uk, and for all k ∈ {1, · · · , n} \

L, q′j = qj holds.

Note that the state of the system modeled by a network
of TIOAs is obtained by clock values, values of all variables,
and the locations of all TIOAs in the network. In the rest
of the paper, we benefit from the syntax of the UPPAAL
modeling language [16] to use functions as macros for
expressions in guards and updates in TIOAs. Furthermore,
we use different colors such as purple, green, light blue,
and dark blue to respectively distinguish invariants, guards,
synchronization actions, and clock reset and variable assign-
ments in the figures related to TIOAs.

4 FORMAL COMPOSITIONAL SEMANTICS OF
COODAA
In this section, we first review the coordinated adaptive
actor model. We then provide a formal compositional se-
mantics for CoodAA in terms of TIOAs.

4.1 Background: Coordinated Adaptive Actor Model
We introduced the coordinated adaptive actor model in [3].
CoodAA consists of a set of coordination policies, which are
described in a coordinator, and a set of actors. Actors, as
units of computations, communicate via message passing,
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Analyze Plan

Monitor Execute

Coordinator

Actor

Component

Fig. 2: The mapping between a component and the MAPE-
K feedback loop. An actor-based model@runtime is kept in
the Knowledge base.

and can be categorized into a set of components. Each
component, shown in Fig. 2, besides actors has its own
coordinator that describes the coordination policies relevant
to the actors of the component. A component can be a
nested component, meaning that it can consist of several
components. The structure of each component (and as a con-
sequence CoodAA itself) conforms to the MAPE-K feedback
loop.

The managed system in a self-adaptive system is con-
trolled by a feedback control loop. A well-known approach
to realize a self-adaptive system is by means of the MAPE-
K feedback control loop [6]. This loop consists of Monitor,
Analyze, Plan, and Execute components together with the
Knowledge base. The model@runtime, as an abstraction of
the system and its environment, is kept in the Knowledge
base. The Monitor component monitors the system and its
environment, and updates the model@runtime. In the case
of detecting a change, the Analyze component analyzes the
model@runtime. The analysis results are given to the Plan
component, and the Plan component makes an adaptation
plan. The adaptation plan is applied to the model@runtime
and the model@runtime is again analyzed. If the require-
ments of the system are satisfied, the adaptation plan is sent
to the system through the Execute component. Otherwise,
the Plan component makes another adaptation plan.

As shown in Fig. 2, the actors of the component con-
struct the model@runtime and the coordinator consists of
the Analyze and Plan activities [3]. The coordinator dis-
patches messages among actors to execute the actor-based
model@runtime and analyze it by investigating the future
behavior of the system.

CoodAA is aligned with the structure of track-based
systems, each sub-track is modeled by an actor, the con-
troller is modeled by a coordinator, and the moving objects
are modeled as messages passing among the actors [1].
Each message carries information such as the identifier of
a moving object, its traveling plan (route and time schedule
decisions), speed, fuel, etc. The coordinator is able to adapt
the system by rerouting/rescheduling the moving objects
considering the congestion and environmental conditions.
Upon occurring a change, the model@runtime is updated
based on a snapshot taken from the system. Then, the
coordinator obtains new routing/scheduling plans. The co-
ordinator operates either in the regular phase or in the
adaptation phase. In the regular phase, the coordinator dis-

patches the messages, and the routes/schedules are given in
the messages passed to the actors. In the adaptation phase,
the coordinator makes decisions to adapt the system. After
the decision making, the new routes/schedules are passed
to the actors while the coordinator moves to the regular
phase. The messages are passed between the actors based
on the plans given to the actors.

In [1], the coordinator is augmented with different
rerouting/rescheduling algorithms. The coordinator is able
to predict the behavior of the system through executing the
model@runtime, measure several metrics using simulation,
and based on the calculated results, select the best algorithm
for rerouting/rescheduling purpose. The analysis in [1] is
based on simulation not verification.

CoodAA is initially inspired from an adaptive actor-
based framework proposed by Khakpour et al. in [17]. The
framework is called PobSAM (Policy-based Self-Adaptive
Model) and is an integration of algebraic formalisms and
actor-based Rebeca models. A hierarchical extension of Pob-
SAM is proposed by Khakpour et al. in [18]. The Reac-
tive Object Language, Rebeca [19], is an actor-based [4],
[5] modeling language. Rebeca is used for modeling and
formal verification of concurrent and distributed systems.
The model of computation in Rebeca is event-driven and the
communication is asynchronous. Timed Rebeca [20], [21] ex-
tends Rebeca to model the timing features. In PobSAM there
is no explicit notion of a coordinator, no timing constraint,
and no focus on verification at runtime.

4.2 Summary of Definitions
In this section, the basic elements of CoodAA, including
actors, components, coordinators, and channels are formally
described. The summary of definitions and notations are
provided in Table 1. An actor has a variable status that
shows the status of the actor being free, occupied or in an
adaptation phase. It also has a variable to keep the plan
(movingPlan); the plan specifies the direction and the time to
send out the message. An actor has several input and output
ports (modeling several directions that a moving object can
arrive at or depart from a sub-track). Input and output ports
are communication interfaces of the actor with other actors.
An actor has a set of message handlers and each message
handler corresponds to an input port of the actor. The actor
can be informed about an adaptation or an environmental
change by receiving a message over a special input port, the
change port.

Definition 4.1. (Actor) An actor, ai,
with the unique identifier i, is defined as
(statusi ,movingPlani ,Mtdsi, changei(args){body},PIi ,
POi

), where statusi having a value of
{Free,Occupied ,Error/Adapt} denotes the state of the
actor, movingPlani stores the traveling plan of the moving
object, PIi = {pIi,j |j = 1, · · · , directions} ∪ {changei}
and POi

= {pOi,j
|j = 1, · · · , directions} are respectively

the sets of input and output ports of the actor, Mtdsi =
{interacti,j (transP){body}|j = 1, · · · , directions} is the
set of message handlers of the actor with the sequence of input
arguments transP = (objectId, travelP lan), changei(args)
is a special message handler with the sequence of input arguments
args = (errorORadapt , adapted , error , errorOver ,
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• ai is an actor with the unique identifier i, defined as ai = (statusi ,movingPlani ,Mtds,Change,PIi , POi
)

– statusi with a value of {Free,Occupied ,Error/Adapt} denotes the state of the actor
– movingPlani stores the traveling plan given to the actor by a message
– Mtds = interacti,j (transP){body} is the set of message handlers of the actor ai, transP =

(objectId, travelP lan), body is a sequence of statements, and j = 1, · · · , directions
– Change = changei(args){body} is a special message handler where the sequence of its input arguments is

args = (errorORadapt , adapted , error , errorOver ,newPlan)
– PIi = {pIi,j |j = 1, · · · , directions} ∪ {changei} is the set of input ports of the actor ai
– POi

= {pOi,j
|j = 1, · · · , directions} is the set of output ports of the actor ai

• chi is a channel with the unique identifier i, defined as chi = (si, di)

– si is the source end of the channel chi

– di is the sink (destination) end of the channel chi

• Ci is a component with the unique identifier i, defined as Ci = (Ai,CHi ,Bi ,Fi)

– Ai =‖j∈ICi
aj is a set of actors {aj |j ∈ ICj

} concurrently executing, where ICi
is the set of identifiers of the

actors belonging to Ci

– CHi is the set of all channels of Ci

– Fi : Ai → Ai is the coordination function of Ci

– Bi : Pi ⇀ CHi is the binding function of Ci, where Pi =
⋃

aj∈Ai
(PIj ∪POj

) is a set of ports of all actors of Ci

• Ck = Ci ‖ Cj is a composite component with the unique identifier k, defined as Ck = (Ak,CHk ,Bk ,Fk )

– Ak = Ai ∪Aj is a set of actors concurrently executing
– CHk = CHi ∪ CHj ∪ NewCH is the set of channels of Ck, where NewCH is a set of channels to connect

boundary output ports of a component to boundary input ports of the other component. The sets of boundary
input and output ports of the component Ci are respectively defined as PICi

= {p|al ∈ Ai ∧ p ∈ PIl ∧ @ch ∈
CHi , (p, ch) ∈ Bi} and POCi

= {p|al ∈ Ai ∧ p ∈ POl
∧ @ch ∈ CHi , (p, ch) ∈ Bi}

– Fk : Ak → Ak is the coordination function of Ck

– Bk = Bi ∪ Bj ∪ NewB is the binding function of Ck, where NewB : Pk ⇀ NewCH and Pk is the set of all
boundary input and output ports of the components Ci and Cj .

• A coordinated adaptive actor model is a composite component, which is a component itself.

TABLE 1: Summary of definitions and notations for the coordinated adaptive actor model (CoodAA)

newPlan), and body = stm∗ as the body of a message handler
is a sequence of statements.

The status variable of the actor has the initial value
of Free, and the movingPlan variable is null. The main
computation of the actor is performed in its message han-
dlers. A statement in the body of a message handler can
be an assignment statement (assign), a conditional state-
ment (cond ), a send statement, or a delay statement, i.e.
stm ::= assign|cond |send(p,msg)|delay(t), where p is an
output port, msg is a sequence of values, and t is a time vari-
able. Definitions of assignment and conditional statements
are like in regular programming languages. The actor can
send a sequence of values as a message over an output port
using the send statement. The actor is also able to introduce
a delay during the execution of its message handlers. The
delay(t) statement models the passage of t units of time for
the actor, where t is derived from the plan of the actor.

Two actors are connected via a primitive medium that
is called a channel. A channel has a source and a sink
(destination) end. Each port of an actor can be connected
to an end of at most one channel.

Definition 4.2. (Channel) A channel, chi , with the unique

identifier i, is defined as (si, di), where si and di are respectively
the source and the sink of the channel.

The source of a channel is connected to at most one
output port and the sink of a channel is connected to at
most one input port. The bindings between channels and
ports of the actors are defined through the binding function
of the component. A component is defined as follows.

Definition 4.3. (Component) A component, Ci, with the unique
identifier i, is defined as Ci = (Ai,CHi ,Bi ,Fi , ), where Ai

is the set of internal actors of Ci, CHi is the set of channels
belonging to Ci, Fi : Ai → Ai is the coordination function of
Ci, and Bi : Pi ⇀ CHi is the binding function of Ci, where
Pi =

⋃
aj∈Ai

(PIj ∪POj
) is a set of ports of all actors of Ci.

The coordinator of a component is defined in the form
of a function. In the rest of the paper, we use the terms
coordinator and coordination function interchangeably. The
coordination function of Ci is able to adapt the behaviors
of actors by putting messages on the change ports of the
actors. The binding function of Ci defines the topology of
the component by connecting ports of actors to ends of
channels.

Each component has sets of boundary input and output
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ports through which the component communicates with
other components. These sets are defined based on the sets
of input and output ports of the constituent actors of the
component. The input port p ∈

⋃
al∈Ai

PIl is a boundary
input port of the component Ci if p is not bound to any
channels of the component Ci using the binding function
Bi. Similarly, the output port p ∈

⋃
al∈Ai

POl
is a bound-

ary output port of the component Ci if p is not bound
to any channels of the component Ci using the binding
function Bi. Therefore, the sets of boundary input and
output ports of the componentCi are respectively defined as
PICi

= {p|p ∈ PIl ∧ al ∈ Ai ∧ @ch ∈ CHi , (p, ch) ∈ Bi} and
POCi

= {p|p ∈ POl
∧ al ∈ Ai ∧ @ch ∈ CHi , (p, ch) ∈ Bi}.

The composition of two (or more) components forms a
composite component that is defined as follows.

Definition 4.4. (Composite Component) The composite com-
ponent Ck = (Ak,CHk ,Bk ,Fk ) is a component such that
there exist two components Ci = (Ai,CHi ,Bi ,Fi) and Cj =
(Aj ,CHj ,Bj ,Fj ) whose composition results in CK , where
Ak = Ai∪Aj , CHk = CHi ∪CHj ∪NewCH , Fk : Ak → Ak,
and Bk = Bi ∪ Bj ∪ NewB. The set NewCH is the set of
channels that connect boundary output ports of a component
to boundary input ports of the other component. The links be-
tween boundary ports and the new channels are defined using
NewB : Pk ⇀ NewCH , where Pk is the set of all boundary
ports of the components Ci and Cj . The composition of Ci and
Cj is denoted by Ci ‖ Cj .

Based on Definition. 4.4, each composite component is
itself a component. The coordinated adaptive actor model is
a component composed of all components of the model.

4.3 Compositional Semantics of CoodAA

In this section, we present the compositional semantics
of the coordinated adaptive actor model of a track-based
system. Each component is presented in the form of a
network of TIOAs of actors and a coordinator, which are
shown in Fig. 3. Each actor is specified by a separate TIOA.
There is no separate TIOA for a channel, since here we
have zero-capacity channels, where each channel connects
two ports and synchronises the communications of two
actors. Fig. 3(a) shows an abstract view of an actor where
changing the state between free, occupied and adaptation is
clear. In Fig. 3(b) we show a more detailed view with more
details on the interactions and transitions. We present an
abstract TIOA of the coordinator in Fig. 3(c) which shows
the operations of the coordinator on actors. We include
an abstract view of the coordinator to present a complete
formal semantics of CoodAA. This abstract view is enough
for our discussions in this paper because our focus in this
paper is on the verification of compatibility of compo-
nents. In Magnifier, the coordinator analyzes and adapts
the model@runtime, and the verification of compatibility of
components that is performed in each iteration is on the
model@runtime, which is a snapshot of the system and only
consists of the actors. The TIOA of the coordinator is not
needed for that verification.

The TIOA of an actor, modeling a sub-track, without any
details about the edges is shown in Fig. 3(a). This automaton
has three locations that correspond to the values of the

status variable of the actor. The Free location that is also
the initial location represents that the sub-track is empty.
The automaton moves from Free to Occupied whenever a
moving object arrives at the sub-track. We suppose that the
route of the moving object is updated over this transition.
The route of a moving object is a sequence of sub-tracks
traveled by the moving object. By passing a moving object
from a sub-track, the first entry in the route of the moving
object, referring to the current sub-track, is removed. The
clock clock represents the time elapsed since the arrival of
the moving object at the sub-track. The traveling time of the
moving object in Fig. 3(a) is denoted by d. The sub-track
remains occupied during the traveling time of the moving
object, formulated in the Occupied location. When a sub-
track is occupied another moving object can not enter into
it, because a sub-track is a critical section. The automaton
moves from Occupied to Free whenever the moving object
leaves the sub-track. A change can happen to a sub-track at
any time, while the sub-track is empty or occupied. If the
sub-track is empty and an adversarial event happens to the
sub-track, the automaton moves from Free to Error/Adapt.
The automaton moves back to the Free location the moment
this adversarial event is removed. The automaton moves
from Occupied to Error/Adapt if the sub-track is occupied and
an adversarial event happens to the sub-track. The other
case through which the automaton moves to Error/Adapt is
when the sub-track is occupied and the traveling plan of the
moving object should be adapted. The automaton moves
back to the Occupied location whenever an adaptation deci-
sion in the form of rerouting/rescheduling for the traveling
plan is made.

The TIOA of an actor aj of the component Ci is shown in
Fig. 3(b) with more details. This automaton has a movingPlan
variable that corresponds to the movingPlan variable of the
actor in Definition. 4.1. The automaton has a set of input
actions interactch , where ch is the channel bound to an
input port of the actor. These actions correspond to the
interact handlers of the actor. Similarly, for each channel
ch bound to an output port of the actor an output action
interactch is defined. Regarding the change port of the actor,
the automaton has a set of input actions errorORadaptj ,
adaptedj , errorj , errorOverj , where each action has the
same name as an input argument of the change handler.
This automaton has access to the global variable transP that
corresponds to the input argument of the interact handlers
and is used to transfer a value between TIOAs of two
actors. The global variable newPlan transfers a value from
TIOA of the coordinator to TIOA of the actor. This variable
corresponds to the newPlan argument of the change handler.
The TIOA of an actor is defined as follows.

Definition 4.5. (TIOA of an Actor) The TIOA
associated with an actor aj of Ci is TA =
({Free,Occupied ,Error/Adapt},Free,Var , {clock},Actin ,
Actout , T, I), where Var = {movingPlanj},
Actin = {interactch |ch ∈ inChS (j )} ∪
{errorj , errorOverj , errorORadaptj , adaptedj},
Actout = {interactch |ch ∈ outChS (j )}, I(Occupied) =
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(a) An abstract representation of TIOA
of an actor aj of the component Ci .
The arrival of the moving object into
the sub-track is modeled by the tran-
sition from Free to Occupied. The sub-
track remains occupied during the
traveling time of the moving object,
formulated in the Occupied location,
where clock shows the time elapsed
since the arrival of the moving object.
The departure of the moving object
from the sub-track is modeled by the
transition from Occupied to Free. An ac-
tor goes into its Error/Adapt state when
a change happens to the sub-track it-
self and/or the plan of the moving
object needs an adaptation.
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(b) The detailed model of TIOA of an actor that is shown in
Fig. 3(a). The automaton moves from Free to Occupied by syn-
chronizing with interactch?, where ch is an input channel of
the actor. The variable movingPlan is the variable of the actor.
The traveling plan in movingPlan is updated using the the
update function (the route of the moving object is updated by
removing the first entry from the route). The function travT
calculates the delay for the actor. The automaton moves
from Occupied to Free by synchronizing with interactch !. The
transP variable is used to transfer a message between TIOAs
of two actors. The functions inChS(j ) returns the set of
input channels of the actor. The function outCh returns the
output channel over which the message movingPlan is sent.
The automaton moves to Error/Adapt by synchronizing with
errorj or errorORadaptj , and moves back by synchronizing
with errorOverj or adaptedj of the coordination TIOA in
Fig. 3(c).
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(c) The abstract representation of
TIOA of the coordinator of the com-
ponent Ci, where ICi

is the set of
identifiers of actors of Ci. The au-
tomaton changes the locations of the
actors using a set of output actions,
which are defined for each actor of
the component Ci. The function adapt
develops a new traveling plan that is
sent to the actor aj using the global
variable newPlan.

Fig. 3: An abstract TIOA of an actor aj of component Ci is shown in (a) and a more detailed view is shown in (b). An
abstract representation of TIOA of the coordinator of the component Ci is shown in (c).

���� ��������

����������?
����������� = ������ ������ , ����� = 0

∀ �ℎ ∈ ���ℎ�(�)

����� ≤
�����(�����������)

����� = ����� �����������  

������������� �,����������� ! 

������ = �����������, ����������� = �

(a) The TIOA of an actor ai of the component Ci in the
model@runtime. This automaton is obtained from the automaton of
Fig. 3(b) by removing the adaptation mode of the actor. This is
because the model@runtime is analyzed after the coordinator applies
its adaptation decision to the actors.
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(b) The TIOA of an augmented environment actor aaj belonging to
Ci. The augmented environment actor aaj has a list ERS of messages
that have to be sent or received by the actor at the pre-specified times
and over the pre-specified channels. The actor stays at state q0 until
the time progresses up to a time at which aaj sends or receives a
message. The time required to be elapsed to send or receive a message
is calculated by the function timeProg. This automaton synchronizes
on the action interactexpCh(ERSj ) to receive or send a message over
an expected channel expCh(ERS). Functions in and out determine if
a message should be received or sent by aaj , respectively. The top
edge represents receiving, and it is only enabled if the message to be
received matches the message that aaj is expecting. This condition
is checked by the function hasMsg. On the lower, edge aaj sends a
message, and using the function expMes, the first message in the list
is added to transP which denotes passing the message by aaj to the
receiver actor. Finally, the function updateL removes the first entry from
the ERS list.

Fig. 4: The TIOAs of an actor and an augmented environment actor in the model@runtime are respectively shown in (a)
and (b). The automaton presented in (b) is described in Section. 5.
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clock ≤ travT (movingP lanj), and T is defined as follows.

∀ch ∈ inChS (j ) : (Free, true, interactch , {clock},
{movingPlanj =update(transP)},Occupied) (Receive)

(Occupied , clock = travT (movingP lanj),

interactoutCh(j ,movingPlanj ), ∅,
{transP = movingPlanj ,movingPlanj = ε},Free) (Send)

(Free, true, errorj , ∅, ∅,Error/Adapt) (Error)

(Error/Adapt , true, errorOverj , ∅, ∅,Free) (NoError)

(Occupied , true, errorORadaptj , ∅, ∅,
Error/Adapt) (Adapt)

(Error/Adapt , true, adaptedj , {clock},
{movingPlanj = newPlan},Occupied) (Adapted)

In the following, we describe edges of TIOA of the actor
aj . For the sake of convenience, we call the channel bound
to an input port of an actor an input channel of the actor.
Similarly, we call the channel bound to an output port of an
actor the output channel of the actor.

An actor is always waiting to receive a message over
an input port. If a message is present, the actor receives
the message and the message handler corresponding to that
input port is triggered. By triggering interactj ,l(transP) of
the actor aj on its input port pj,l, the actor receives the
message transP sent from another actor. When the message
is received, the status variable of the actor is set to Occupied.
The message transP includes the object id of the message
(objectId) and the travel plan (travelP lan); travelPlan in-
cludes the traveling route of the moving object, its schedule,
the amount of fuel, and its speed. This information is stored
in the movingPlan variable of the actor. The actor updates
the traveling plan (by removing the first entry in the route)
before storing it in movingPlan. These operations are speci-
fied through the Receive edge that is defined for every input
channel of the actor. The actor aj of Ci receives a message
from the port connected to the channel ch whenever TIOA
of the actor is synchronized with the input action interactch .
The auxiliary functions used over this edge are described
as follows. Let AId be the set of all actor identifiers, CH
be the set of all channels in the model, and Msg be the
set of all messages in the form of (objectId, travelPlan).
The function inChS (j ), where inChS : AId → 2CH , returns
the set of all input channels of the actor aj . The function
update : Msg → Msg receives a message and returns a new
message in which the traveling plan is updated.

The actor introduces a delay that is derived based on
the traveling plan included in the movingPlan variable. This
operation is formulated in the Occupied location of the au-
tomaton, where the function travT : Msg → R≥0 receives
a message and calculates the amount of the delay. After
passing the delay time, the actor sends out the message.

The output port of the actor over which the message is
sent is also determined using the traveling plan. After
sending the message, the status variable of the actor is set
to Free and movingPlan is set to null. These operations are
specified through the Send edge that is defined for every
output channel of the actor. The function outChS (j ), where
outChS : AId → 2CH , returns the set of all output channels
of the actor aj . The automaton of the actor is synchronized
with the output action interactoutCh(j ,movingPlanj ) over this
edge. The function outCh(j ,movingPlanj ), where outCh :
AId ×Msg → CH , returns the output channel of the actor
aj over which channel the message movingPlanj is sent.
The message is transferred between two actors whenever
their TIOAs are synchronized over an interact action. The
message is delivered to the receiver actor using the transP
variable.

The execution of an interact handler of the actor cannot
be preempted by other interact handlers (the sub-track is
a critical section), but the change handler has the highest
priority for execution and can preempt interact handlers. By
triggering the change handler, the message (errorORadapt,
adapted, error, errorOver, newPlan) sent from the coordinator
is received. The status variable of the actor is set to Er-
ror/Adapt under the following conditions. First, error is true
and status is Free, second, errorORadapt is true and status
is Occupied. The value of status changes from Error/Adapt
to Free if errorOver is true. Furthermore, the value of status
changes from Error/Adapt to Occupied if adapted is true. If the
latter case holds, movingPlan variable of the actor is set to the
new plan stored in newPlan of the message. These operations
are specified through the Error, NoError, Adapt, and Adapted
edges. The automaton respectively is synchronized with
the input actions errorj and errorOverj over the Error and
NoError edges. Furthermore, the automaton respectively
is synchronized with the input actions errorOradaptj and
adaptedj over the Adapt and Adapted edges.

An abstract TIOA for the coordinator is presented in
Fig. 3(c). As can be seen, this automaton is synchronized
with the automaton of an actor over the actions errorj ,
errorOverj , errorOradaptj , and adaptedj . This shows the
role of the coordinator to update the state and/or the
traveling plan of an actor.

TIOA of an Actor in the Model@runtime. The adapta-
tion mechanism of coordinator obtains new plans for the
actors. In Magnifier, the model@runtime is verified after
an adaptation decision is applied to the model. An ac-
tor with movingPlan=null and status=Error/Adapt (an empty
sub-track with an adversarial environmental condition)
does not contribute in communications. Therefore, the Er-
ror/Adapt location is not needed in TIOA of an actor in the
model@runtime. As shown in Fig. 4(a), we simplify TIOA
of the actor aj of the component Ci. Compared to Defini-
tion. 4.5, this simple TIOA does not contain the Error/Adapt
location of the actor.

5 VERIFICATION OF MODEL@RUNTIME USING
MAGNIFIER

In this section, we develop a compositional approach to
verify the system in the case of a change occurring and
applying adaptation to components. We first provide insight
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into the Magnifier approach. We then present the definitions
used to describe the approach. Finally, we formally explain
the Magnifier approach and prove its correctness.

5.1 Overview

In this section, we present an overview of the Magnifier
approach. We first informally explain the approach on track-
based systems. When a track-based system is designed,
initial traveling plans of the moving objects are selected in
a way that no conflict happens between the moving objects,
and the moving objects arrive at their destinations at the
pre-specified times. In fact, the initial traveling plan of a
moving object imposes constraints on the arrival of the
moving object at each area of its route. When a change
happens to an area, the moving objects traveling across the
area are rerouted if there is an unavailable sub-track in their
routes. This way the plan for the area is adapted. Note that
the presence of a change (or its effect) in an area may last
for a while, so any change in the plan must consider the
possible future effects. Under the following conditions, the
correctness properties of the system are satisfied and the
change does not propagate:

1) The moving objects traveling across the area depart
from it based on their initial traveling plans.

2) The moving objects intending to enter into the area at
a future time, arrive at the area based on their initial
traveling plans.

3) The moving objects entering into the area at a future
time, depart from the area based on their initial travel-
ing plans.

In the case of violating one of the above conditions, the
change is propagated to the adjacent areas.

There is a set of properties for track-based systems that
has to be satisfied. Collision of moving objects is avoided
by design, a sub-track can only contain one moving object
at one moment in time. Moving objects must arrive at
their destinations at the pre-specified times. This property
is checked by Magnifier. We also check that the system is
deadlock-free. A deadlock in a track-based system happens
whenever moving objects are stuck in a traffic blockage and
cannot find an available route towards their destinations.
If a moving object is stuck in some area of the traveling
space, then it does not depart from the area. This causes
propagation of the change through the whole system, and
the object does not arrive at its destination on time. Dead-
lock can be caught by Magnifier. We also check if the fuel
of moving objects go under a certain threshold. We use
separate functions to detect a deadlock or running out of
fuel and to stop the analysis.

The adaptation for an adjacent area is triggered when-
ever the change propagates into the area. This means that
the traveling plans of the moving objects entering into the
area or traveling across the area may need to be adapted.
Therefore, in the case of propagating the change, all areas
affected by the change are composed to form a new area.
The traveling plans of the moving objects traveling across
the new area are adapted. If the moving objects arrive at the
new area and depart from it based on their initial traveling
plans, the change propagation stops.

As explained informally for track-based systems, the
Magnifier approach uses an iterative algorithm to assure
the correctness of the system by involving the least number
of the components in the analysis. The environment of a
component is abstracted to the external messages that are
sent to the component at the pre-specified times. When
a change occurs, Magnifier zooms-in on the component
affected by the change. The model@runtime corresponding
to the component is updated based on the snapshot taken
from the system at the change point. The model@runtime
is adapted based on an adaptation policy defined in the
coordinator. The adaptation contains the change if the
adapted component can work with its environment by
satisfying the constraints on their interactions. In fact, the
propagation of the change stops if the adapted component
is able to receive messages of its environment at the pre-
specified times and over pre-specified ports, and guarantees
to deliver messages to its environment at the pre-specified
times and over pre-specified ports. Otherwise, the change
is propagated to the environment. In this case, Magnifier
zooms-out and concentrates on a new component resulted
from composing all components affected by the change. The
new component is adapted. The same procedure is repeated
for the new component. In other words, the propagation of
the change stops if the new component can work with its
environment. Otherwise, Magnifier zooms-out and extends
its verifying domain by composing the components affected
by the change propagation and the previous ones.

One can argue that in a compositional approach we
can check the change in one component and then check
its propagation to the neighborhood components one by
one. But a change may propagate back to the component
which was the source of the change and develop a circular
dependency. This situation is shown in the example of
Section 2. In Magnifier, by composing the components and
forming a new component, all changes circulating between
two components happen inside of the new component and
their effects are considered.

5.2 Preliminary Definitions for Magnifier
In this section, we present the definitions on which the
Magnifier approach relies. The notations and the sum-
mary of definitions are given in Table. 2. Let CM =
(AM,CHM,BM,FM), composed of a set of components,
be the coordinated adaptive actor model of a track-based
system, where AM is the set of actors, CHM is the set
of channels, BM is the binding function, and FM is the
coordination function of CM. The component Ci of CM
models an area of the system, and interacts with a set
of components called environment components of Ci. Let
PCi = {p|al ∈ Ai∧p ∈ (PIl∨POl

)∧@ch ∈ CHi ·(p, ch) ∈ Bi}
be the set of boundary ports of the component Ci. An
environment component is defined as follows.

Definition 5.1. (Environment Component) The component Cj

is called an environment component of the component Ci if
there exists a channel ch connecting a boundary port pi of the
component Ci to a boundary port pj of the component Cj , i.e.
ch ∈ CHM, pi ∈ PCi , pj ∈ PCj , {(pi, ch), (pj , ch)} ⊆ BM.
The set of all environment components of Ci is denoted by
Env(Ci).
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• Cj is an environment component ofCi,Cj ∈ Env(Ci), if ∃ch ∈ CHM·pi ∈ PCi
, pj ∈ PCj

, {(pi, ch), (pj , ch)} ⊆ BM,
where Ci and Cj are components of CM = (AM,CHM,BM,FM) and PCi

= {p|al ∈ Ai ∧ p ∈ (PIl ∨ POl
)∧ @ch ∈

CHi · (p, ch) ∈ Bi} is the set of boundary ports of the component Ci. The set of all environment components of Ci

is denoted by Env(Ci)
• ak of Cj is an environment actor of Ci, ak ∈ Cj |Ci

, iff Cj ∈ Env(Ci) ∧ ∃ch ∈ CHM, pj ∈ (PIj ∨ POj
), pi ∈

PCi
· {(pi, ch), (pj , ch)} ⊆ BM. The set of actors of Cj that are environment actors of Ci is denoted by Cj |Ci

• aak is the augmented environment actor, corresponding to the environment actor ak ∈ Cj |Ci
, defined as

(ERSk , initk (){body},Mtdsk , PIk , POk
)

– ERSk is an ordered list. Each entry of ERSk is defined as (transP , t , ch), where transP =
(objectId, travelP lan) is a message, t is a delay value, and ch is a channel identifier

– initk (){body} is an initialisation method where body is a sequence of statements
– Mtdsk = interactk ,l(transP){body} is the set of message handlers of aak where l = 1, · · · ,Num and Num is

the number of input ports of ak through which ak interacts with Ci

– PIk is the set of input ports of aak. Each port is an input port of ak through which ak communicates with Ci

– POk
is the set of output ports of aak. Each port is an output port of ak through which ak communicates with

Ci

• Cj ↓Ci is the set of augmented environment actors of Ci where each actor of this set corresponds to an actor of
Cj |Ci

• NCi denotes the network of TIOAs of the component Ci

• NCa,i denotes the network of TIOAs of the adapted component Ci

• N1 ./ · · · ./ Nn denotes that the networks N1, · · · ,Nn are compatible, where the parallel product of their TIOAs
does not reach a deadlock state

TABLE 2: Summary of definitions and notations for the Magnifier approach
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Fig. 5: A model consisting of 5 components is shown in
(a). The connections between actors are shown with dashed
arrows. The red actors are environment actors of the com-
ponent C1. The interface components of C1, i.e. Cj ↓C1

,
j = 1, 2, 3, are shown in (b). The augmented environment
actors of C1 along with their ports are shown in blue.

Example 2. A model with five components C1, C2, C3, C4,
and C5 is shown in Fig. 5(a). The connections between the
actors are denoted by arrows. The components C2, C3, and
C4 are environment components of C1.

Using Definition 5.1, we define an environment actor. An
environment actor of a component is an actor whose input
and output ports are bound to the input and output ports
of the component by a set of channels (and hence directly
sends or receives messages to/from the component).

Definition 5.2. (Environment Actor) Let Cj ∈ Env(Ci) be
an environment component of Ci. The actor aj of Cj is an
environment actor of Ci iff ∃ch ∈ CHM, pj ∈ (PIj ∨POj

), pi ∈
PCi
· {(pi, ch), (pj , ch)} ⊆ BM.

We use Cj |Ci to denote the set of actors of Cj that are

environment actors of Ci.

Example 3. The red actors shown in Fig. 5(a) are envi-
ronment actors of C1. For the environment component C2,
C2|C1

= {a1, a2}.
Suppose that ak ∈ Aj is an environment actor of the

component Ci. We use PIk,Ci
and POk,Ci

to respectively
denote the sets of input and output ports of the actor ak over
which it communicates with the component Ci, i.e. PIk,Ci

=
{p ∈ PIk |∃pi ∈ PCi

, ch ∈ CHM · {(p, ch), (pi, ch)} ⊆
BM}, POk,Ci

= {p ∈ POk
|∃pi ∈ PCi

, ch ∈ CHM ·
{(p, ch), (pi, ch)} ⊆ BM}.

Abstraction of the environment. In order to abstract the
environment of a component in Magnifier, corresponding to
each environment actor an augmented environment actor
is defined for the component. We augment all the sig-
nificant information of an environment component to the
augmented environment actor. An augmented environment
actor has a list of expected receives and sends, called ERS,
where each entry of the list contains a message, a delay
value, and the identifier of a channel. Besides, this actor
has a set of input ports, a set of output ports, an init
method, and a set of message handlers, where each handler
corresponds to an input port of the actor. The augmented
environment actor corresponding to the environment actor
ak has PIk,Ci

and POk,Ci
as the sets of its input and output

ports, respectively.

Definition 5.3. (Augmented Environment Actor) An augmented
environment actor, aak, corresponding to the environment ac-
tor ak, is defined as (ERSk , initk (){body},Mtdsk , PIk , POk

),
where ERSk is an ordered list, initk is a method, Mtdsk =
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{interactk ,l(transP){body}|l = 1, · · · ,Num} is the set of
message handlers of the actor with the sequence of input argu-
ments transP = (objectId, travelP lan), and PIk = PIk,Ci

and POk
= POk,Ci

are the sets of input and output ports of the
actor, respectively. The number of input ports is denoted by Num .
Each entry of ERSk is defined as (transP , t , ch), where t is a
delay value and ch is a channel identifier.

We use Cj ↓Ci to denote the set of augmented environ-
ment actors of Ci where each actor of this set corresponds
to an actor of Cj |Ci .

Example 4. The augmented environment actors of C1 along
with their ports are shown in blue in Fig. 5(b), i.e. C2 ↓C1

=
{aa1 , aa2} where aa1 and aa2 correspond to the actors a1
and a2 in Fig. 5(a), respectively.

We now define an interface component of a component.
The interface components of a component (or visible parts
of its environment) are sets of its augmented environment
actors.

Definition 5.4. (Interface Component) For each Cj ∈ Env(Ci),
Cj ↓Ci

is called an interface component of the component Ci.

The definition of the interface component is inspired
from the approach of [8], where it defines interface pro-
cesses. For two processes P1 and P2, P1 ↓ ΣP2

is an
interface process of P2, where ΣP2

is the set of symbols
(i.e. atomic propositions) associated with P2. The interface
process P1 ↓ ΣP2

is the process P1 in which all symbols that
do not belong to ΣP2

are hidden.
Finally, we define compatible TIOAs. In the Magnifier

approach, two components can interact if their TIOAs are
compatible.

Definition 5.5. (Compatible TIOAs) Two or more TIOAs are
compatible if the parallel product of them does not reach a deadlock
state.

Our definition of compatibility is inspired from the
approach of [22], in which two components (timed inter-
faces) are compatible if there is an environment to avoid
the parallel product of the components from reaching an
error state (the environment makes the components work
together). In our approach, for checking the compatibility
we do not consider any helpful environment. Note that a
deadlock state in the product of two TIOAs is different from
a deadlock in a track-based system. We use Definition. 5.5
to define the compatibility between networks of TIOAs. We
call the networks N1 and N2 compatible if all TIOAs in N1

and N2 are compatible. Similarly, the networks N1, · · · ,Nn

of TIOAs are compatible, denoted by N1 ./ · · · ./ Nn, if the
networks are pairwise compatible.

5.3 Magnifier Approach
In this section, we use NCi

to denote the network of TIOAs
of the component Ci such that all TIOAs in NCi

are com-
patible. We also use NCa,i

to denote the network of TIOAs
of the adapted component Ca,i such that all TIOAs in NCa,i

are compatible. We first describe the Magnifier approach for
two components. Consider a system whose model consists
of only two interacting components C1 and C2. To ensure
that correctness properties of the system are satisfied, it

is checked whether NC1
and NC2

are compatible in the
absence of a change. None of the correctness properties
are violated and there is a safe execution for the model if
NC1

./ NC2
. By detecting a change, the component affected

by the change is adapted. Consequently, a new network
for the adapted component is obtained. Suppose that a
change in C1 is detected. If NCa,1

./ NC2
, the provided

adaptation in C1 does not result in a change propagation to
its environment component (C2) and no more adaptation
is required. Otherwise, the change is propagated to C2.
This case shows that the provided adaptation changes the
observable behavior of C1, and C2 has to be adapted to
consider the new behavior of C1.

Although the proposed approach works effectively for
the small systems, checking the compatibility in a system
with several components is an expensive process since the
product of TIOAs of the adapted component and TIOAs
of its environment components may result in a large state
space. To reduce the state space in our analysis, we propose
that instead of an environment component, its observable
part to the component, which is the set of environment
actors, is considered in the product.

As previously mentioned, the initial traveling plan of
a moving object imposes constraints on the arrival of the
moving object at each area of its route. The moving object
arrives at each area of its route at a pre-specified time and
from a pre-specified direction. Regarding the arrivals of
the moving objects at a component, the environment actors
send messages at the pre-specified times to the component,
and regarding the departures of the moving objects from
the component, the environment actors receive messages at
the pre-specified times from the component. Therefore, the
environment actors should abstract the environment of the
component to the messages that are sent and received at
the pre-specified times. To this end, in Magnifier an envi-
ronment actor is replaced with an augmented environment
actor that has the ERS list. An entry of ERS either specifies
that the augmented environment actor expects to receive
a message over an input port after an amount of time,
or specifies that the actor intends to send a message over
an output port after an amount of time. As the sub-track
corresponding to an (augmented) environment actor is a
critical section, ERS is an ordered list, where the first entry
contains the message which should be sent or received by
the actor first. Suppose that the augmented environment
actor has received or sent the message of the first entry of
ERS at time t. It will send or receive the message of the
second entry at time t+ t′ where t′ is kept as a delay value
in the second entry of ERS. The same argument is valid for
the rest of the entries. As ERS in a model of a track-based
system is calculated from the initial traveling plans of the
moving objects, the schedules of the moving objects in ERS
do not lead to any conflicts between the moving objects.

In the following, we define TIOA of an augmented
environment actor aaj that is used in the model@runtime.
As shown in Fig. 4(b), this automaton has an ERS variable
that corresponds to the ERS list of the actor. The automaton
has a set of input actions interactch , where ch is a channel
bound to an input port of the actor. Similarly, for each
channel ch bound to an output port of the actor an output
action interactch is defined. This automaton has access to
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the global variable transP that corresponds to the input
argument of the interact handlers and is used to transfer
a value between TIOAs of an actor of CoodAA and the
augmented environment actor.

Definition 5.6. (TIOA of an Augmented Environment Actor)
The TIOA associated with an augmented environment actor aaj

is TA = ({q0}, q0 ,Var , {clock},Actin ,Actout , T, I), where
Var = {ERS j}, Actin = {interactch |ch ∈ inChS (j )},
Actout = {interactch |ch ∈ outChS (j )}, I(q0 ) = clock ≤
timeProg(ERSj ), and T is defined as follows.

(q0, clock = timeProg(ERSj ) ∧ out(j ,ERSj ),

interactexpCh(ERSj ), ∅, {transP = expMes(ERSj ),

ERSj = updateL(ERSj )}, q0) (Send)

(q0, clock = timeProg(ERSj ) ∧ in(j ,ERSj )∧
hasMes(ERSj ), interactexpCh(ERSj ), {clock}, {ERSj =

updateL(ERSj )}, q0) (Receive)

In the following, we describe edges of TIOA of aaj . If a
message is present for aaj over an input port, aaj receives
the message, and the interact handler corresponding to that
input port is triggered. In this case, the input arguments
of the handler are not null. Besides the init method of the
actor, an interact handler can trigger an interact handler by
passing null values as input arguments. The init method
of aaj is executed whenever the actor is initialized. This
method triggers an interact handler of aaj . Let e=(msg, t, ch)
be the first entry of the ERS list of the actor. By triggering
an interact handler, the actor introduces a delay with the
value of t if the input arguments of the handler are null. This
operation of the actor is formulated in the q0 location of the
automaton shown in Fig. 4(b). The location q0 ensures that
the time progresses up to t at which the message msg is sent
or received. Let En be the set of all entries of all ERS lists in
the model. The function timeProg(ERS ), where timeProg :
2En → R≥0, returns t. After the time is progressed by t time
units, the message msg should be sent or received.

If ch is bound to an input port of the actor, the actor
expects to receive the message msg. In this case, the interact
handler terminates and the actor waits to receive a message.
If ch is bound to an output port of the actor the message msg
should be sent over that port. After sending the message,
e is removed from the ERS list, and the actor invokes
the current executing interact handler with null values as
arguments. This way, the same process for the first entry
of ERS repeats. As shown in Fig. 4(b), the Send edge is
enabled if out(j,ERS j), where out : AId × 2En → bool ,
returns true. The function out(j,ERS j) determines if ch
is bound to an output port of aaj . The automaton of aaj

synchronizes over the action interactexpCh(ERSj ) to send
the message expMes(ERSj ) over the channel expCh(ERSj ).
The function expMes(ERSj ), where expMes : 2En → Msg ,
returns the message msg. The function expCh(ERSj ), where
expCh : 2En → CH , returns the channel ch. This edge uses
updateL(ERSj ), where updateL : 2En → 2En , to remove e
from the ERS list and returns the rest of the list.

By triggering an interact handler, if the input arguments

of the handler are not null, the actor checks whether it
has received the message msg over the input port bound
to ch. An error is thrown if this condition does not hold.
Otherwise, e is removed from ERS, and the actor invokes
the current executing interact handler. This way, the same
operation for the first entry of ERS repeats. As shown in
Fig. 4(b), the Receive edge is enabled if the functions in
and hasMsg return true. The function in(j,ERS j), where
in : AId × 2En → bool , returns true if ch is bound to
an input port of the actor. The function hasMes(ERSj ),
where hasMes : 2En → bool , returns true if the message
to be received is equal to msg. The automaton synchronizes
on interactexpCh(ERSj ) to receive msg over the channel ch,
which is determined by expCh(ERSj ). In the case of an
error is thrown, TIOAs of aaj and the sender actor reach
a deadlock state.

In Magnifier, an interface component is described by a
network of TIOAs where each TIOA models an augmented
environment actor. Suppose that a change happens to a
component, and the component is adapted to the change.
If the network of TIOAs of the adapted component and
the networks of TIOAs of its interface components are com-
patible, the change does not propagate to the environment
components. Otherwise, the change is propagated to the
environment components. Since each component has a well-
defined interface, we are able to focus on a component and
define an interface component for each one of its environ-
ment components. This way, we are able to find the direction
where the change is propagated and to find the components
affected by the change propagation. The change propagates
from the component Ci to the component Cj ∈ Env(Ci)
if there is an actor of Cj ↓Ci such that no transition is
performed in the location q0 of its TIOA (Definition. 5.6)
even after letting time progress. This shows a deadlock
in the product of TIOAs of the component Ci and the
interface componentCj ↓Ci , and means that this augmented
environment actor is not able to either send a message over
a pre-determined port at a pre-specified time, or receive
an expected message from a pre-determined port at a pre-
specified time. In our approach, by propagating the change,
all components affected by the change are composed to
create a new component that is adapted (please note that
an actor follows the semantics defined in Fig. 4(b) whenever
it belongs to an interface component, but all actors have the
semantics shown in Fig. 4(a) whenever two components are
composed to make a new component). It is then checked
whether the network of TIOAs of the new component and
networks of TIOAs of its interface components are compat-
ible.

Example 5. For a better understanding of the approach,
consider the following example. Suppose that a change in
the component C1 of Fig. 5(a) is detected and this compo-
nent (its model@runtime) is adapted. If NCa,1 ./ NC2↓C1

./
NC3↓C1

./ NC4↓C1
does not hold, the change propagates

into some of the environment components. Let the change
propagates to the components C2 and C3. It means that
C1 with its current adaptation is not able to either receive
messages from Ci, i = 2, 3, or send messages to Ci at the
pre-specified times. Consequently, the adaptation forC2 and
C3 is triggered. The components C1, C2, and C3 are adapted
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and are composed to provide the new component C1,2,3. If
NC5↓C3

./ NC4↓C1
./ NC1,2,3

holds, the change propagation
stops, and the change is not propagated further than C1, C2,
and C3.

5.4 Correctness of the Proposed Approach

In the previous section, we defined interface components of
an adapted component, where each interface component is
an abstraction of an environment component. In the absence
of a change, the correctness properties of the system are
preserved as each component of the system preserves a set
of local correctness properties, i.e. each component receives
and sends messages at the pre-specified times and over the
pre-specified ports. In the presence of a change, the cor-
rectness properties are satisfied if the adapted component
can work with its environment, i.e. the adapted component
and its environment satisfy their input and output assump-
tions. This is where the networks of TIOAs of the adapted
component and its interface components are compatible. In
this section, the correctness of the proposed approach is
proved in Theorem. 5.1. This theorem explains that reducing
the environment components to the interface components is
correct.

Theorem 5.1. The networks of TIOAs of the adapted component
and its interface components are compatible if and only if the
networks of TIOAs of the adapted component and its environment
components are compatible.

Proof. ”if”: By contradiction. Suppose that the networks of
TIOAs of the adapted component Ci and its environment
components are compatible, but NCi

./ NCj1↓Ci
./ · · · ./

NCjn↓Ci
, where Cjk ∈ Env(Ci) and k = 1, · · · , |Env(Ci)|,

does not hold. It means that there exists an interface com-
ponent Cjl ↓Ci , Cjl ∈ Env(Ci), and an augmented environ-
ment actor aaj ∈ Cjl ↓Ci such that this actor is not able to
either receive an expected message from an expected port at
a pre-specified time or send a message over a pre-specified
port at a pre-specified time. Let aaj corresponds to the
environment actor aj . However, the actor aj belongs to Cjl ,
e.g. aj ∈ Ajl . This means that NCi ./ NCj1

./ · · · ./ NCjn

does not hold, which contradicts the assumption.
”only if”: By contradiction. Let the networks of TIOAs

of the adapted component Ci and its interface components
be compatible, but NCi

./ NCj1
./ · · · ./ NCjn

, where
Cjk ∈ Env(Ci) and k = 1, · · · , |Env(Ci)|, does not hold.
We assumed that the adaptation results in a new network
of compatible TIOAs for the component Ci. Furthermore,
as each component Cj ∈ Env(Ci) is not yet affected by a
change, all TIOAs in NCj

are compatible. Therefore, there
exists Cj ∈ Env(Ci) and an environment actor aj ∈ Aj

such that this actor is not able to either receive an expected
message from an expected port at a pre-specified time or
send a message over a pre-specified port at a pre-specified
time. However, this actor corresponds to an actor of Cj ↓Ci

.
This means that NCi

./ NCj1
↓Ci

./ · · · ./ NCjn↓Ci
does not

hold, which contradicts the assumption.

6 IMPLEMENTING AND EVALUATING MAGNIFIER
USING PTOLEMY II

In this section, we briefly describe the implementation of
Magnifier for an ATC case study with several control areas
in Ptolemy II [9] as a proof of concept for effectiveness and
efficiency of the work. The main reason for using Ptolemy II
instead of UPPAAL is that Ptolemy enables us to automate
the iterative and incremental process of Magnifier using
its so called director. The change propagated through the
system can be automatically traced, and the verification
scope can be extended to bring more components into the
analysis. Here, we first give a background on Ptolemy II.
We then describe our implementation and compare the
time consumption and the memory consumption between
the compositional and non-compositional approaches. The
Ptolemy model and implementations of the provided algo-
rithms in this section are available online1.

6.1 Background: Ptolemy Framework

Ptolemy II [9] is an actor-based modeling and simulation
framework that provides different models of computation
with fully deterministic semantics. A model of computa-
tion defines the semantics of interactions of actors, and is
implemented in a Ptolemy director. In [1], we developed a
Ptolemy template based on the coordinated adaptive actor
model to model and analyze self-adaptive TTCSs. In this
template, each sub-track is modeled by a Ptolemy actor,
and the moving objects are considered as messages passing
among the actors. The pathways between the sub-tracks
are modeled by interconnections between the actors. The
Ptolemy actors are connected through channels. An actor
can read a message form an input channel and send a mes-
sage over an output channel. Furthermore, the controller
(coordinator) is modeled by a Ptolemy director. In [1], we
developed a director by extending the Discrete Event (DE)
director. DE is one of the most commonly used models of
computation in Ptolemy.

The DE director has a buffer of events. Each message
communicated in the model is packaged in an event. An
event besides a message has a time tag and a reference to
the receiver actor in the communication. In fact, instead of
direct message passing among the actors, upon sending a
message, an event is created and is placed into the internal
buffer of the director. The director keeps the model time and
stamps the event with the model time at which the message
has been sent. An actor can execute the fireAt instruction to
ask the director to trigger the actor at a future time. In this
case, an event with an empty message is generated for the
director. The director labels the event with the requested
future time. All the events tagged with the value of the
current model time are enabled events. The director takes
an enabled event from its buffer, triggers the actor referred
to by the event, and delivers the message to the actor. To
choose between a set of enabled events, a deterministic
policy (the so-called topological sort) is used. If there is no
enabled event, the model time progresses to reach the time
of the event with the smallest time tag.

1. http://www.ce.sharif.ir/∼mbagheri/MagImp.zip

http://www.ce.sharif.ir/~mbagheri/MagImp.zip
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6.2 Ptolemy Implementation of Magnifier

In [1], we implemented CoodAA and its MAPE-K archi-
tecture by extending the DE director in Ptolemy II. We
modeled ATC and railroad examples, and we checked dif-
ferent rerouting plans in different situations. The difference
between the examples is in the number of ports of actors
and the topology of their bindings. Our analysis in [1] was
based on the simulation engine provided by Ptolemy II.
In this paper, we use the Ptolemy II template proposed in
[1], and extend the DE director to develop the Magnifier
director that supports formal verification. In each iteration,
after replanning, Magnifier builds the state space to check
the compatibility of components.

Our implementation is faithful to the TIOA semantics of
Section 4. As described in Section 6.1, the Ptolemy director
keeps a buffer of events and therefore it can adapt the
network by manipulating the messages encapsulated in the
events. The Magnifier director mimics the non-deterministic
selection of actors for being executed. From a set of en-
abled events, the Magnifier director takes one of them non-
deterministically. Finally, if there is no enabled event (i.e.
with the time tag equal to the current model time), the
model time progresses. This non-determinism is shown in
Fig. 4(a) since from a set of enabled edges in a network
of TIOAs (i.e. multiple actors), an edge is selected non-
deterministically.

In our implementation, each actor (sub-track) is modeled
by a Ptolemy actor. An actor is first triggered to receive
the message corresponding to a moving object. Then, the
actor executes the fireAt instruction and asks the director
to trigger it again at a future time to send its message out.
This way the traveling time of the moving object through
the sub-track is modeled. In the proposed semantics in
Section 4, there is no centralized buffer as messages are
directly delivered to the actors at the same model time.
In our implementation, like in our semantics, the events
created per sending a message are processed at the same
model time at which the message has been sent. The global
model time in Ptolemy mimics the synchronous progress of
time of clocks in a network of TIOAs.

The magnifier director provides the assertion-based ver-
ification. It generates the state space of a given compo-
nent, and performs the reachability analysis. For the sake
of simplicity, we assume that all the coordinators of all
components (the ATC controllers of all areas) have the
same adaptation policy (rerouting algorithm). This way, we
have only one coordinator (instead of a nested model and
multiple coordinators). The Magnifier director generates the
state space of the model of an ATC example with several
components, where the components are composed to create
a new component. The rerouting algorithm and the algo-
rithm given in the following section are implemented in the
director. It is notable that designing the rerouting algorithm
is not the concern of this paper.

6.2.1 Generating the State Space

Here, we explain the algorithm to generate the state space.
We also present the pseudocode of this algorithm.

Algorithm. The algorithm to generate the state space
of a component is shown in Algorithm. 1. Let the initial

state of the component be a timed state. We call a state a
timed state if a time transition is enabled at the state. The
algorithm uses a queue to store the timed states (line 3). It
dequeues a timed state (line 5), and after progressing the
time (line 6), uses Depth-First Search (DFS) to generate all
the traces starting with that state and ending with the new
timed states (line 8). The algorithm terminates whenever
no new timed state is generated (lines 9-12). Otherwise, the
generated timed states are added to the end of the queue
(line 13). The function timeProg progresses the time to the
smallest time of the events stored in the buffer of the director
in state s, and the function deQueue removes and returns the
first state of the queue.

The main computation of the algorithm is performed by
the function depthFS, presented in Algorithm. 2. Let buffer(s)
denotes the buffer of the events kept in the director in
state s. The function depthFS takes an event (line 11), and
using the function trigger, triggers the actor referred to by
the event to generate the next state (line 12). Compared to
state s, the buffer of the director in the next state stores
the events that are possibly created by triggering the actor.
Furthermore, the taken event is removed from the buffer in
the next state. The state s has several outgoing transitions
(resp. several next states) if several actors can be triggered
at the state. The next state is returned if it is a timed state
(lines 7-10). Otherwise, the actors which can be triggered
in the next state are triggered. The algorithm to generate
the state space terminates whenever one of the following
conditions is fulfilled: all the moving objects supposed to
travel through the component depart from it (reach their
destinations), a disaster happens (i.e. the fuel of a moving
object is zero), and the analysis time passes a threshold.
These conditions are checked using the terminate function
over a state (lines 3-6).

We use this algorithm to also generate the state space of
a set of components in the non-compositional approach. It
is notable that the state space of the system does not have a
Zeno behavior, since the travel of every moving object across
a sub-track takes time. The minimum progress of the time
in our model is assumed to be one unit.

Algorithm 1: Algorithm to generate the state space
Input: s0 as the initial state of the component
Output: stateSpace that is the state space

1 begin
2 stateSpace ← {s0}
3 queue ← {s0}
4 while queue 6= ∅ do
5 s← deQueue(queue)
6 s′ ← timeProg(s)
7 stateSpace ← stateSpace ∪ {s′}
8 states ← depthFS (s ′)
9 if states = ∅ then

1111 return stateSpace
12 end
13 queue ← 〈queue|depthFS (s ′)〉
14 end
1616 return stateSpace
17 end
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Algorithm 2: depthFS
Input: s as a state
Output: timedStates as a set of timed states

1 begin
2 timedStates ← ∅
3 if terminate(s) then
55 return ∅
6 end
7 if timeStat(s) then
99 return {s}

10 end
11 foreach e ∈ buffer(s) do
12 s1 ← trigger(s, e)
13 stateSpace ← stateSpace ∪ {s1}
14 if depthFS(s1) = ∅ then
1616 return ∅
17 end
18 timedStates ← timedStates ∪ depthFS (s1 )
19 end
2121 return timeStates
22 end

Composition. Assume that a storm happens at time
t, and the component C1 is affected by the storm. Also,
assume that flight plans of the aircraft are not necessarily
the initial flight plans and have been adjusted based on
the data monitored from the system. We use flight plans
of the aircraft to extract the state of the system, describing
positions of the aircraft in the traffic network at time t. We
then set the initial state of C1 to the state of the system.
Similarly, we use flight plans of the aircraft to obtain states of
environment actors of C1 by identifying the aircraft entering
into C1 in the future. These environment actors will directly
send messages to C1 at times t′, t′ ≥ t, and expect to receive
messages from C1 at times t′, t′ ≥ t. To generate the state
space, we first compose C1 with its environment actors to
create a new component. We then use the above algorithm
to generate the state space of the new component. If the
composition of the state spaces of C1 and the environment
actors does not reach a deadlock state, the state space of
the new component is successfully generated. Suppose the
case in which the composition reaches a deadlock state.
In this case, assume that an environment actor belonging
to the environment component C2 is not able to send its
message at the pre-specified time t′′, t′′ ≥ t, to C1. This
means that the change is propagated from C1 to C2 at time
t′′. We repeat the same procedure as C1 to set the state
of C2 to the state of the real system at time t′′. We also
set states of those environment actors that send messages
to C2 at the times greater than t′′. Therefore, from t′′ on,
we have a component, composed of C1, C2, and several
environment actors, whose state space is generated. This
procedure terminates whenever the algorithm reaches a
state in which all moving objects supposed to travel across
the new component depart from it at their pre-specified
times. In other words, the model has a trace during which
all messages are received from the new component at the
pre-specified times.

6.3 Experimental Setting

To compare the compositional and non-compositional ap-
proaches, we focused on an ATC example with a n × n
mesh map, where the location of each sub-track is shown by
the pair (x , y) in the mesh. We also considered 2 × (n − 1 )
source airports (each one is connected to a sub-track
whose location is the pair (0 , i) or (i , 0 ), 0 ≤ i < n ), and
2 × (n − 1 ) destination airports (each one is connected to a
sub-track whose location is the pair (n − 1 , i) or (i ,n − 1 )).
We developed an algorithm to generate the initial flight
plans of m aircraft, and an algorithm (an adaptation pol-
icy) to reroute the aircraft as follows. The pseudo-codes of
algorithms are given in the appendix.

ALG1: Generating the initial plans. This algorithm ran-
domly generates the source (xs , ys), the destination (xd , yd),
and a departure time from the source airport for each air-
craft. The departure times follow an exponential distribution
with the parameter λ. The time difference between two
subsequent departures from a source airport should not be
less than the flight time FD , which shows the traveling time
of an aircraft across a sub-track. The aircraft A can travel
through the sub-track with the location (x, y) if A has no
time conflict with the aircraft B, which is also supposed
to travel across (x, y). Similar to the XY routing algorithm
[23], ALG1 attempts to find a route from (xs , ys) to (xd , yd)
by first traversing the X dimension and then traversing the
Y dimension of the mesh. ALG1 switches its traversing
direction from X to Y whenever the aircraft has a time
conflict with another aircraft along the X dimension. If from
the location (x , y) the aircraft has a time conflict along both
dimensions, ALG1 backtracks to a location before (x , y) on
the route, where it can switch its traversing direction to Y
to travel through a new location. This procedure continues
until a route is discovered. ALG1 does not guarantee to find
the most efficient (e.g. shortest) route.

ALG2: Rerouting algorithm. This algorithm attempts
to find a route with the same length as the initial
route of the aircraft. Assume that the aircraft is going
to leave the location (x0 , y0 ) and the rest of its route is
[(x1 , y1 ), (x2 , y2 ), · · · , (xn , yn)]. Also, assume that the sub-
track T with the location (x1 , y1 ) is unavailable, and the
moving object is not able to travel through it. In the ATC
example, a sub-track is unavailable if it is stormy or is
occupied by another aircraft. The algorithm finds a neighbor
of (x0, y0), e.g. the sub-track T ′, that is available. It then tries
to find a route with the length 2 from T ′ to (x2 , y2 ). If there
is no such route, it attempts to find a route with the length
3 from T ′ to (x3 , y3 ), and so on. The algorithm uses the
same procedure as ALG1 to find a route. It first traverses
the X dimension and then traverses the Y dimension of
the mesh. If a route from T ′ to (xi , yi), 2 ≤ i ≤ n, is
found, the route is concatenated with the rest of the route of
the aircraft from (xi+1 , yi+1 ) to (xn , yn), and the resulting
route is returned. It is possible that there is no available
sub-track T ′, or using the above approach, a route with
the same length as the initial route is not found. Then, the
algorithm selects a neighbor of (x0, y0) even if it is occupied,
and returns a route from it to (xn, yn). The aircraft will
stay one more unit of time in (x0, y0), and will fly based
on its new route. If using the both above approaches no
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route is found, the moving object will stay one more unit of
time in (x0, y0), and then will fly based on its initial route
if T becomes available. Otherwise, the procedure of ALG2
repeats. Although ALG2 uses the same procedure as ALG1
to find a route, it avoids the stormy track, but it does not
check the time conflict with other aircraft in the future. If
a potential conflict is detected, we will take care of it by
rerouting the aircraft upon detecting the conflict.

Scenarios. Different parameters such as the rerouting
algorithm, the time of the storm, the place of the storm, the
network traffic volume, the amount of concurrency arisen
from flight plans of the aircraft, and the network dimen-
sion change the results of experiments. Because the traffic
network of the ATC domain has a cascaded architecture,
the place of the storm can be typically approximated as
the middle of the traffic network. Therefore, we select the
middlemost sub-track of the network as the place of the
storm. We perform three sets of experiments; (ES1) that is
to compare the time and memory consumptions between
the compositional and non-compositional approaches, (ES2)
that is to depict the variation of the time consumption in a
set of experiments for each approach, and (ES3) that is to
compare the scalability of the approaches. The scenarios are
described in the following. In our experiments, we assume
that FD as the traveling time of an aircraft across a sub-track
is one. We also assume that the aircraft consumes one unit
of fuel per one unit of the traveling time. Furthermore, the
fuel of each aircraft is more than the length of the longest
path in the traveling network.
(ES1). We consider a 15 × 15 mesh structure, divided into
9 regions of 5 × 5, as the traffic networks in (ES1). The
fuel of each aircraft is set to 325. We use ALG1 to generate
150 batches of flight plans per each λ in {0.5, 0.25, 0.125},
where λ is the parameter of the exponential distribution to
generate departure times of the aircraft from source airports.
By increasing the value of λ, the mean interval time between
two departures decreases. As a result, the network traffic
volume and subsequently the concurrency contained in the
model might increase. We expect that the compositional
approach performs better than the non-compositional ap-
proach even in a low concurrency model. Each generated
batch contains flight plans of 2000 aircraft. Per each batch
Pi, 1 ≤ i ≤ 150, we generate 4 batches Pij , 1 ≤ j ≤ 4,
such that Pi1 contains the first 500 flight plans of Pi, Pi2

contains the first 1000 flight plans of Pi, and so on. We use
both approaches to analyze each batch Pij per each time of
the storm in {100, 200, 400, 600, 800}. Obviously, whenever
the storm occurs late, the most of the moving objects have
arrived at their destinations. We remove the batch Pi from
the experiments of both approaches if for a batch Pij and a
time of the storm, the model in one of the approaches is not
deadlock-free, or its verification time passes the threshold
(the results of experiments in which the models are not
deadlock-free are investigated in (ES2)). Table. 3 shows the
number of experiments in which both approaches do not
face a deadlock and both approaches analyze the model
in less than a threshold (No Deadlock or TimeOver), the
number of experiments in which both approaches face a
deadlock (With Deadlock), and the number of experiments
in which the verification time in both approaches passes a
threshold (TimeOver). The threshold of the analysis time is

TABLE 3: The number of experiments in which the model
in both approaches faces a deadlock (With Deadlock), in
which the model does not face a deadlock and its analysis
time is less than a threshold (No Deadlock), in which the
verification time passes the threshold (TimeOver). The traf-
fic network has a n×n mesh structure. λ is the parameter of
the exponential distribution to generate the departure times
of the aircraft.

n λ
With
Deadlock

No Deadlock
or TimeOver TimeOver

15 0.5 27 120 3
15 0.25 37 110 3
15 0.125 56 94 0

set to an hour. In our experiments, per each j, we calculate
the averages of the analysis time and the number of states
of the batches Pij .
(ES2). The traffic network in (ES2) has the same config-
uration as the traffic network in (ES1). In (ES2), we use
the batches of flight plans generated in (ES1) for λ = 0.5.
The reason for considering λ = 0.5 is that the network
might have the highest traffic volume for λ = 0.5 compared
to λ ∈ {0.25, 0.125}. We use both approaches to analyze
each batch Pi, containing the flight plans of 2000 aircraft.
Since the possibility of propagating the change increases
when the storm happens early, we suppose that the storm
happens at time 100. As shown in Table. 3, the model in 120
experiments is deadlock-free and is analyzed in less than the
predefined threshold. Compared to (ES1) that calculates the
average of the analysis time for this set of experiments, (ES2)
illustrates the variation of the analysis time in this set for
each approach. Furthermore, (ES2) depicts the variation of
the time consumption to detect a deadlock in 27 experiments
that are not deadlock-free.
(ES3). As the aim in (ES3) is to compare the scalability of
the approaches, we consider a larger traffic network that
is a 18 × 18 mesh structure with 9 regions of 6 × 6 in
our experiments. The fuel of each aircraft is set to 425.
We assume that the change happens at time 100. We use
ALG1 to generate a batch P of 5500 flight planes with
λ = 0.5. In (ES3), we start with the first 100 flight plans
of P , and gradually increase the number of flight plans to
compare the scalability of two approaches. The scalability of
the approaches is measured by the number of the aircraft.
To this end, We define a threshold for the verification time
and set this threshold to 45 minutes. The approach that can
analyze a model with more number of the aircraft in less
than the defined threshold is more scalable.

6.4 Comparison of the Magnifier approach and the
Non-compositional Approach
We run our experiments on an ubuntu 18.04 LTS amd64
machine with 67G memory and Intel (R) Xeon (R) CPU
E5-2690 v2 @ 3.00GHZ. A part of our experimental re-
sults are shown in Figures 6, 7, 8 and 9. In these
figures, ”C” and ”NC” refer to the compositional and non-
compositional approaches, respectively. The legend entry
C − i , i ∈ {100, 200, 400, 600, 800} depicts the experimental
results of the compositional approach for the time i at
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Fig. 6: The number of states in (ES1) for each value of λ in {0.5, 0.25, 0.125}, where λ is the parameter of the exponential
distribution to generate the departure times of the aircraft. The notations C and NC refer to the compositional and non-
compositional approaches, respectively. The time at which the storm happens varies in the set {100, 200, 400, 600, 800}. As
an instance, C − 100 depicts the results of the compsitional approach when a storm occurs at time 100.
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Fig. 7: The verification time in (ES1) for λ = 0.5. The left side depicts the verification time in the compositional (C) and
non-compositional (NC) approaches when a storm occurs at a time in {100, 200}. The right side depicts the verification
time of each approach when a storm occurs at a time in {400, 600, 800}. The right and the left side figures show the
verification time with different scales.

which the storm happens. The legend entry NC − i depicts
the results for the non-compositional approach. As shown
in Fig. 6 and Fig. 7, using the compositional approach
results in decreasing the verification time and the number
of states. As expected, by increasing the number of aircraft,
the number of states and accordingly, the verification time
increase. The same results are valid for the smaller value
of the time at which the storm occurs, since fewer aircraft
have arrived at their destinations when the storm happens.
By increasing the time at which the storm occurs, the
differences between the results of the compositional and
non-compositional approaches decrease. It is because most
of the aircraft have arrived at their destinations when the
storm happens late. To have a better representation of the
verification time difference between the compositional and
non-compositional approaches, we depict the results of the
verification time for λ = 0.5 in two diagrams with two
different time scales, shown in Fig. 7. As can be seen, the
compositional approach is able to verify a model with 2000
aircraft in a few seconds for the smallest value of the time
at which the storm happens. By increasing the time interval
between two departures from a source airport, the number
of aircraft entering into the traffic network after the storm
happens increases. Therefore, as shown in Fig. 6, the number
of states in the compositional approach increases whenever
the value of λ decreases.

The results of our experiments in (ES2) are shown in
Fig. 8. The variation of the verification time in a set of exper-
iments with no deadlock when the compositional approach
is used is shown in Fig. 8(a). The results of the same set
of experiments for the case in which the non-compositional
approach is used are depicted in Fig. 8(b). We also depict
the variation of the time needed to detect a deadlock in
a set of experiments using the compositional and non-
compositional approaches in Fig. 8(c). As shown in Fig. 8(a),
excluding the outliers, the model in our experiments is
analyzed in less than 22 seconds using the compositional
approach, while this time is around 2190 seconds in the
non-compositional approach. Also, in our experiments, the
average time for detecting a deadlock in the compositional
approach is around 11 minutes, while this value in non-
compositional approach is around 20 minutes.

We can define the latency of an adaptation policy by
defining a threshold over the analysis time. The latency
in our approach is defined as the time needed to adapt
the model and to check it for correctness properties. We
suppose that a human is involved in adapting the system
if the threshold is passed. As an instance, consider that
the latency of the adaptation policy in our approach is 3
minutes. From 150 experiments, only 21 experiments (the
verification time of 3 experiments pass the threshold, the
outlier experiment in Fig. 8(a), and 17 experiments of 27 ex-
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Fig. 8: The verification time in (ES2) for λ = 0.5. The storm occurs at time 100. The variations of the time needed to verify
the experiments with no deadlock using the compositional (C) and non-compositional approaches (NC) are depicted in
parts (a) and (b), respectively. The variations of the time needed to detect a deadlock using both approaches are depicted
in part (c).
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Fig. 9: The scalability of compositional (C) and non-compositional (NC) approaches in (ES3). Both approaches are run for
the same scenario with λ = 0.5. The storm occurs at time 100. The scalability is measured in the number of aircraft, while
the verification time is set to a threshold. The non-compositional approach is not able to verify a model with more than
2800 aircraft in a time less than the defined threshold.

periments that face a deadlock) need human intervention in
the compositional approach. This is while all experiments in
the non-compositional approach need more than 3 minutes
analysis time.

The results of our experiment in (ES3) are shown in
Fig. 9. To compare the scalabililty of both approaches, we
run both approaches for the same scenario. Furthermore,
we define a threshold for the verification time and set
this threshold to 45 minutes. As can be seen, the non-
compositional approach is not scaled for more than 2800
aircraft. The results of the compositional approach in Fig. 9
have fluctuations appeared between 4600 to 5000 aircraft. By
adding new aircraft to the traffic network, some areas are
congested, and consequently the concurrency of the model
increases. This event results in some fluctuations and the
fast growth of the ”C” plot between 4600 to 5000 aircraft.
Except for this range, this plot has a normal growth, since
by adding the new aircraft, the behaviors of the congested
areas has not sensibly changed.

7 RELATED WORK

In this section, we concentrate on four classes of most related
studies. The first class is concerned with the theory of
interfaces. The second class is about modeling and verifying
traffic control systems. The third class describes the most
closely related work that use compositional methods for the
verification purpose, and the fourth class is about formal
analysis of self-adaptive systems at runtime.

Interface Theory. The theory of interfaces is a widely
studied topic. This theory describes the main features that
each component-based design should obey, such as refine-
ment, structural composition, and conjunction. The same
as ours, the focus of [22] is on the structural composition.
The work of [22] presents a theory of timed interfaces to
explain the timing constraints on inputs and outputs of the
components. A timed interface is encoded as a two-player
timed game in which the environment as the input player
provides inputs for the component and the component as
the output player creates outputs. This work proposes an
optimistic approach of composition that is two components
can work together if there is a helpful environment to make
them work together. In other words, two components are
compatible if the environment has a winning strategy to
avoid immediate and time error states in parallel product
of two components. An immediate error state is reachable
if a component sends an output that is not acceptable by
the other component. A component blocks the progress of
the time in a time error state. Similar to the approach of
[22], [24] proposes an optimistic approach for the structural
composition of two interfaces specified by Timed Input
Output Transition Systems (TIOTSs). In contrast to [22],
[24] assumes that the system is input-enabled. The input-
enabled assumption is also considered when interfaces are
specified by TIOAs [25]. The approach of composition in [25]
is pessimistic. It means that two components should work
together in all environments. Optimistic treatment of the
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composition is also considered in [26], where an interface
theory for Modal Input Output Automata is proposed. The
approach of composition in [27] is also pessimistic. In [27],
two components are compatible if they do not reach an
error state in their parallel product. The interfaces in [27]
are specified by Modal Input Output transition systems in
which the timing constraints are not specified.

Compared to the related work, we follow a pessimistic
approach that is two components can work together if
parallel product of their TIOAs does not reach a deadlock
state. Also the same as [22], we are able to express the
input assumptions and there is no need to the input-enabled
assumption. Since in our approach the components do not
block the progress of the time, we do not need to define time
error states.

Modeling and Verifying Traffic Control Systems
(TCSs). TCSs such as ATC and train control systems, due to
the tight interconnection of the physical plant and the con-
troller software, are mostly categorized as hybrid systems.
There is a vast literature on verifying dynamic models of
TCSs to detect the future conflicts among the moving objects
[28], [29], [30], to resolve the potential conflicts through
the trajectory planning [31], [32], and to evaluate the cor-
rectness of the communication protocols among different
entities of the system [33], [34], [35]. These approaches use
the Lagrangian models in which the moving objects, e.g.
aircraft or trains, along with their operational details are the
concern of modeling [36], [37]. As an instance of this kind of
modeling, the model of a train control system is created by
composing a set of hybrid automata, where each automaton
is the model of a train. Modeling the dynamic behaviors
of each moving object in these approaches needs a set of
differential equations, which due to the large number of the
moving objects, makes the analysis of TCSs difficult [36].
Furthermore, this approach of modeling is only necessary
when we need to have a microscopic view of the traffic for
our analysis purposes.

In contrast to the Lagrangian-based approaches, our
approach is based on Eulerian models in which the regions
of the traveling space, e.g. the sub-tracks in track-based sys-
tems, are the concern of modeling [36], [37]. Although this
kind of modeling may lose some operational details of the
moving objects, it is more appropriate for modeling rerout-
ing/rescheduling of the moving objects [37]. In other words,
the adaptation of the system in a macroscopic view is con-
cerned with aggregate behaviors of the moving objects, and
affects the whole traffic network by rerouting/rescheduling
the moving objects [37]. Therefore, by modeling each sub-
track as an actor, we develop a one-dimensional model of
the traveling space instead of a complex multi-dimensional
model of the moving objects. The properties of our interest
such as preventing a moving object from running out of
the fuel, and the arrival of a moving object at its desti-
nation at a pre-specified time are handled by adding a
few features to the message corresponding to the moving
object. For instance, each message carries information about
the remaining fuel of the moving object for the rest of its
travel, or carries the designated time for the arrival of the
moving object at each sub-track in its route. This approach
of modeling not only provides an acceptable fidelity for the
problem [1], but also relieves the analysis difficulties. It is

notable that a few of the mentioned approaches such as [28]
verify the system at runtime. However, the approach of [28]
is not compositional.

Based on the related work, there is an increased interest
towards the scheduling and path planning of moving ob-
jects in TCSs. A scheduling problem [38], [39] is the problem
of efficiently assigning resources to a set of tasks such that
some constraints are met, e.g. two tasks do not simultane-
ously use the same resource. Although the scheduling and
path planning are not concerns of this paper, we briefly
study the modeling approach of several work by putting
the hybrid and dynamic modeling of TCSs aside.

In [38], the same as a sub-track, a resource is in the idle
state or in the use state. The resource maintains its use state
until a clock reaches a usage time. In [38], [39], Priced Timed
Automata (PTA) is used for the scheduling and planning
problem. [39] uses PTA for the aircraft landing problem
where a landing time and a runway should be assigned
to each aircraft. A minimum delay between two aircraft
landing on the same runway should be preserved.

In [40], a grid-shaped workspace with static obstacles is
shared between a set of robots, where tasks of the system to
be performed by the robots are created dynamically. The
aim of the paper is to compute an optimal collision-free
motion plan for a robot whenever a new task is created.
To program these applications, the authors use the P pro-
gramming language. The robots and also the plan generator
are processes of the P language. The concern of this paper
is not reducing the model checking time, but decreasing the
motion generation time. A multi-robot system is modeled
by a network of timed automata in [41]. The approach of
[41] obtains all possible trajectories that move robots on a
grid-shaped workspace from their initial locations to their
destination locations. To this end, each obstacle, each robot,
and each controller associated with a robot is modeled by
a separate timed automaton. The trajectories are checked
against Computational Tree Logic properties in UPPAAL. In
[42], a timed automaton for a robot and its environment
is created, where each edge shows the movement of the
robot and locations are partitions of the space. A property
of interest specified in Metric Interval Temporal Logic is
transformed into another automaton. The product of the
robot automaton and the property automaton is given to
UPPAAL. Any execution that starts from an initial state and
reaches a final accepting state is an accepting trajectory.

Compared to the related work, we model sub-tracks
instead of moving objects. This approach seems to be ef-
ficient and scalable when an enormous number of moving
objects pass through a fixed workspace. Furthermore, we
assume that plans are given or calculated using a planning
algorithm, and obstacles are dynamically generated at run-
time. However, obtaining optimal plans regarding the harsh
timing constraints is a difficult task.

Compositional Methods. In [43], an Assume-Guarantee
based approach for verifying self-adaptive systems at de-
sign time is proposed. In [43], the changed component
is adapted. Then, a backward reasoning starts and re-
generates a new assumption for the adapted component.
If the new assumption is weaker than the previous assump-
tion of the component, the adaptation is correct. Otherwise,
the reasoning continues on the context of the changed
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component. If it reaches a null assumption on the context
of the system, the adaptation is incorrect. The paper focuses
on safety properties of the system, and does not consider the
change propagation. The work in [44] defines a refinement
relation and a weakening operator to check the satisfaction
of a property over a real-time system. Each property is
divided into a set of subspecifications for which an assump-
tion and a guarantee are defined. The subspecifications,
assumptions, and guarantees are defined by TIOAs. The
assumption and guarantee are combined into a contract
using the weakening operator. The property is satisfied if
subspecifications refine their corresponding contracts and
vise versa. This approach is not proposed for verifying self-
adaptive systems at runtime and consequently does not
consider the change and its effects on the system.

Magnifying-Lens Abstraction (MLA), presented in [45],
copes with the state space explosion in obtaining the max-
imal probabilities over a Markov Decision Process (MDP).
It partitions the state space into regions, and calculates the
upper and lower bounds for the maximal reachability or
safety properties on the regions. It magnifies on a region
at a time and obtains the values of mentioned parameters
by calculating their values for each concrete state. Unlike
MLA, the bounds of sub-properties in our approach are
given through the interface components. Furthermore, the
change propagation is not a concern in [45]. The mechatronic
UML (mUML) approach, proposed in [46], uses the refined
UML model component and refined state charts to formally
define components of a system, their interactions, and their
timing and hybrid behaviors. Besides separately checking
the safety of each component, mUML checks whether inter-
faces of components are well-defined and components refine
their interfaces. In contrast to our approach, this approach is
able to model hybrid behaviors, but change propagation is
not considered in [46]. Furthermore, as explicitly mentioned
in the paper, verification at runtime is not a concern in [46].

The ACPS language to design and verify self-adaptive
CPSs is proposed in [47]. The components of the system
are categorized in different groups such that each group
affects on satisfaction of one requirement. An adaptation
is encoded for each group such that the requirement is
preserved. Finally, the ACPS definition of each group is
translated to a verification tool and is separately verified.
This work assumes that grouping the relevant components
to a requirement is possible. In contrast to [47], instead
of considering a fixed number of components per each
requirement, we increase the verification domain whenever
it is needed. Furthermore, [47] does not consider the change
propagation phenomenon.

Formal Analysis of Self-adaptive Systems at Runtime.
Incremental runtime verification of MDPs, described in
the PRISM language, is proposed in [48], where runtime
changes are limited to vary parameters of the PRISM model.
An MDP is constructed incrementally by inferring a set
of states needed to be rebuilt. The constructed MDP is
then verified using an incremental verification technique.
Runtime verification of parametric Discrete Time Markov
Chains (DTMCs) is accomplished in [49]. In this method,
probabilities of transitions are given as variables. Then, the
model is analyzed and a set of symbolic expressions is
reported as the result. By substituting real values of the

variables at runtime, verification is reduced to calculating
the values of the symbolic expressions.

In [50], a self-adaptive software is designed as a dynamic
software product line (DSPL). Then, an instance of DSPL is
chosen at runtime considering the environmental changes.
This approach uses parametric DTMCs to model common
behaviors of the products and each variation point sepa-
rately. Therefore, there is no need to verify each configura-
tion separately. RINGA, introduced in [51], uses Finite State
Machines (FSM) to develop a design-time model of a sys-
tem, and abstracts the model for using at runtime. Each state
of the model implements a module, while a transition trig-
gers an adaptation. Each transition is assigned an equation
that is parameterized by environmental variables. The value
of the equation is calculated at runtime. Lotus@runtime
[52] uses Probabilistic Labeled Transition Systems (PLTS)
to develop a model@runtime. It monitors execution traces
of the system and updates the probabilities in PLTS. The
desirable properties in [52] are explained through a source
state, a target state, a condition to be satisfied, and the
probability of satisfying the condition.

In comparison to [48], [49], [50], [51], [52] which use
state-based models, an actor model is in a higher level of ab-
straction. Our actor-based approach besides decreasing the
semantic gap between the model@runtime and applications,
facilitates the modular analysis of the system.

The failure propagation is studied in [53] that checks
whether the structural adaptation of the system is fast
enough to prevent a hazard. After an adaptation, it is
checked whether the remaining failures in the system lead to
a hazard. Our approach, besides detecting a hazard, assures
the satisfaction of the timing properties of the system. Based
on the circumstances existing at the time the change occurs,
different thresholds over the analysis time can be imposed.
It is assumed that humans are involved if the adaptation
cannot be handled during the expected time. The latency-
aware adaptation is studied in [54], where a probabilistic
model checker proactively selects an adaptation strategy to
maximize the utility of the system. Unlike [54], our focus is
on effectively verifying the system behavior.

The work of [55] investigates which state of the sys-
tem is a safe state to update the implementation of the
system whenever an environment assumption is changed.
Furthermore, based on the old controller, a new controller
is automatically synthesized for the software system. The
approach of [55] is applied on a RailCab system where an
accident should be avoided before the RailCabs enter into
a crossing. An infrastructure to deploy and execute new
controllers on embedded devices is proposed in [56]. [55]
does not verify the system after adapting it to a change.

8 DISCUSSION AND FUTURE WORK

We proposed Magnifier, a compositional approach that iter-
atively detects the propagation of a change and incremen-
tally involves the components affected by a change into the
analysis. An adaptation policy may contain the change and
prevent the change to be propagated. In the worse case,
the change propagates to the whole system and Magni-
fier needs to compose all components of the model. We
compared the compositional approach of Magnifier and the
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non-compositional approach in Section 6. The comparisons
between our model, CoodAA, and other similar models on
self-adaptive systems are presented in [1], [3]. In Section 7,
we included a comparison of Magnifier with other analysis
approaches for TTCS, and other compositional methods.

Here we include an observation regarding a comparison
between the non-compositional approach and the worst case
for Magnifier when the change propagates all the way to
include the whole system. We argue that even in the worst
case Magnifier performs better than the non-compositional
approach. Our experiments testify this observation. Looking
more carefully into this comparison and building a formal
proof is a part of our future work. This observation can
be justified as follows. Suppose that a change happens at
time t. The non-compositional approach involves all actors
of the model that have a message at time t into the analysis,
and starts to generate the state space. In contrast, Magnifier
focuses on the component affected by the change, and starts
to generate the state space by involving those actors of the
component having a message at time t. Let the branching
factor for a state be the number of outgoing transitions of
the state or the number of actors that can be triggered at
the state. At the beginning, Magnifier has a lower branching
factor on all states of the state space compared to the non-
compositional approach. At some point in future, e.g. at
time t’, when all components are affected by the change,
both approaches involve the same number of actors into the
analysis, and both approaches generates the same number of
states and transitions. However, between t and t’, the graph
of the state space in Magnifier is smaller than the graph of
the state space in the non-compositional approach. There-
fore, even in the worst case, Magnifier performs better than
the non-compositional approach in terms of the verification
time and the memory consumption.

Our Ptolemy II implementation of Magnifier is spe-
cialised for ATC. In [37], Lee and Sirjani show how CoodAA
can capture TTCS applications in general. Here we consider
a constant number of four for the ports of all actors, and the
topology formed by connecting the ports through channels
is a mesh. The extension to a dynamic number of ports and
further than to dynamic bindings, seem like natural future
work. The general idea of Magnifier is not limited to TTCSs.
It can be generalised for any control system with a modular
design. We need to extend our model to include more
general actors with different behaviors, and also different
number of ports, and different bindings among the ports
(channels that form the topology). To investigate the details
of such extension is another future direction. The possibility
of analyzing actors in a compositional way is a consequence
of their isolation discussed in [57] by Sirjani, Khamespanah
and Ghassemi. Hence, we believe that CoodAA and Mag-
nifier can be further extended and used in different areas
and applications based on the foundations provided in this
paper.
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APPENDIX

In this section, the pseudo-codes for ALG1 and ALG2 are
given. We only present the details that are necessary for
understanding the idea of ALG1 and ALG2.



24

Pseudo-code for ALG1. Algorithm 3 generates the initial
flight plans of m aircraft. It calls Algorithm 4 to generate a
route. The inputs, outputs, variables, and the functions used
in Algorithm 3 are described as follows.

• m is the number of moving objects.
• λ is the parameter of the exponential distribution.
• FD is the traveling time across a sub-track.
• flightPlans is the list of initial flight plans of m

aircraft.
• genSource() randomly generates the source of an air-

craft.
• genDes() randomly generates the destination of an

aircraft.
• genDepartureTime(xs , ys , λ) randomly generates

the departure time of an aircraft from the source
airport connected to the given sub-track, where the
departure time follows an exponential distribution
with the parameter λ.

• add(flightPlans, j , xs , ys , xd , yd , dTime, route) adds
the flight plan of a given aircraft with its source,
destination, route, and departure time to the list of
initial flight plans and returns the resulting list.

• generateRoute(xs , ys , dTime, xd , yd , [ ]) generates
the initial route of an aircraft. The pseudo-code of
this function is given in Algorithm 4.

Algorithm 3: ALG1
Input: m, λ, and FD
Output: flightPlans

1 begin
2 flightPlans ← [ ]
3 j ← 0
4 while j < m do
5 (xs, ys)← genSource()
6 (xd, yd)← genDes()
7 dTime ← genDepartureTime(xs , ys , λ)
8 route ←

generateRoute(xs , ys , dTime, xd , yd , [ ])
9 if route 6= [ ] then

10 j ← j + 1
11 flightPlans ←

add(flightPlans, j , xs , ys , xd , yd , dTime, route)

12 end
13 end
1515 return flightPlans
16 end

The inputs, outputs, variables, and the functions used in
Algorithm 4 are described as follows.

• (xs, ys) is the first sub-track (connected to the source
airport) in the route of the aircraft.

• arrivalTime is the arrival time of the aircraft at the first
sub-track, which is equal to the departure time of the
aircraft from the source airport.

• (xd, yd) is the last sub-track (connected to the desti-
nation airport) in the route of the aircraft.

• flightPlans is the list of flight plans of aircraft (does
not contain the flight plans of all m aircraft when it
is given as the input to the algorithm).

• route is a route that is an empty list at first. To create
the route, Algorithm 4 is recursively executed and
sub-tracks are gradually added to the list.

• hasTimeConflict(xs , ys , arrivalTime,flightPlans)
returns true if there exists an aircraft that
either arrives at the sub-track (xs, ys) at time
arrivalTime or departs from the sub-track at time
arrivalTime + FD .

• add(route, (xs , ys)) adds the sub-track (xs, ys) to the
end of route and returns route .

• increaseX has a value of {0, 1}. Let (x, y) denotes
the current position on a route. If increaseX is 1
then x should be changed to x + 1 (traversing the
X dimension). Otherwise, x does not change.

• doIncreaseX (xs , xd) returns 1 if xs < xd. Otherwise,
it returns 0.

• increaseY has a value of {0, 1,−1}. Let (x, y) de-
notes the current position on a route. If increaseY is
1 then y should be changed to y+1 and if increaseY
is -1 then y should be changed to y − 1 (both for
traversing the Y dimension) . Otherwise, y does not
change.

• doIncreaseY (ys , yd) returns 1 if ys < yd and -1 if
ys > yd. Otherwise, it returns 0.

• removeLastElement(route) removes the last element
from route and returns the rest of it.

Pseudo-code for ALG2. Assume that the aircraft is going
to leave the location (x0 , y0 ) and the rest of its route is
[(x1 , y1 ), (x2 , y2 ), · · · , (xn , yn)]. Also, assume that the sub-
track with the location (x1, y1) is unavailable, and the air-
craft is not able to travel through it. Algorithm 5 generates a
new route (a new flight plan) for the aircraft. The initial
route in this algorithm is [(x1 , y1 ), (x2 , y2 ), · · · , (xn , yn)].
The inputs, outputs, variables, and the functions used in
Algorithm 5 are described as follows.

• initialFlightPlan is the initial flight plan of the air-
craft.

• initialRoute is the initial route of the aircraft.
• (x0, y0) is the sub-track accommodating the aircraft.

The aircraft is going to leave this sub-track.
• (x1, y1) is the next sub-track in the route of the

aircraft. This sub-track is unavailable.
• flightPlan is a new flight plan for the aircraft.
• findAvaNeighbors(x0 , y0 , x1 , y1 ) returns available

sub-tracks adjacent to (x0, y0).
• findNStormyNeighbors(x0 , y0 , x1 , y1 ) returns sub-

tracks adjacent to (x0, y0) except for (x1, y1), where
these sub-tracks are not stormy.

• routeSelected returns true if a route has been found.
• needDelay returns true if the aircraft needs to stay

one more unit of time in (x0, y0).
• take() takes an element from a given list, removes

the element from the list, and returns the element.
• length returns the length of a given list.
• concat(route, initialRoute, i) concatenates route with

the rest of the route of the aircraft from (xi+1, yi+1)
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Algorithm 4: generateRoute

Input: (xs, ys), arrivalTime , (xd, yd), flightPlans , route
Output: route

1 begin
2 if hasTimeConflict(xs , ys , arrivalTime,flightPlans) then
44 return [ ]
5 end
6 route ← add(route, (xs , ys))
7 if xs = xd and ys = yd then
99 return route

10 end
11 increaseX ← doIncreaseX (xs , xd), increaseY ← doIncreaseY (ys, yd)
12 if increaseX = 1 then
13 if generateRoute(xs + 1 , ys , arrivalTime + FD , xd , yd , route) = [ ] then
14 if increaseY = 1 then
15 if generateRoute(xs , ys + 1 , arrivalTime + FD , xd , yd , route) = [ ] then
16 route← removeLastElement(route)
1818 return [ ]
19 end
20 end
21 if increaseY = −1 then
22 if generateRoute(xs , ys − 1 , arrivalTime + FD , xd , yd , route) = [ ] then
23 route← removeLastElement(route)
2525 return [ ]
26 end
27 end
28 if increaseY = 0 then
29 route← removeLastElement(route)
3131 return [ ]
32 end
33 end
34 else
35 if increaseY = 1 then
36 if generateRoute(xs , ys + 1 , arrivalTime + FD , xd , yd , route) = [ ] then
37 route← removeLastElement(route)
3939 return [ ]
40 end
41 else
42 if increaseY = −1 then
43 if generateRoute(xs , ys − 1 , arrivalTime + FD , xd , yd , route) = [ ] then
44 route← removeLastElement(route)
4646 return [ ]
47 end
48 else
49 if increaseY = 0 then
50 route← removeLastElement(route)
5252 return [ ]
53 end
54 end
55 end
56 end
5858 return route
59 end
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to (xn, yn) in initialRoute and returns the resulting
route.

• generateRoute uses an algorithm simpler than Algo-
rithm 4 to create a route based on the XY routing
algorithm. It avoids the stormy track, but it does
not check the time conflict with other aircraft in the
future.

• createF lightP lan creates a new flight plan based on
the initial flight plan of the aircraft and the calculated
route. The last input of this function is true if the air-
craft needs to stay one more unit of time in (x0, y0).
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Algorithm 5: ALG2

Input: initialFlightPlan , initialRoute , (x0, y0), and (x1, y1)
Output: flightPlan

1 begin
2 avaNeighbors ← findAvaNeighbors(x0 , y0 , x1 , y1 )
3 neighbors ← findNStormyNeighbors(x0 , y0 , x1 , y1 )
4 routeSelected ← False
5 needDelay ← False
6 i← 1
7 route ← [ ]
8 while avaNeighbors 6= ∅ do
9 (xs, ys)← take(avaNeighbors)

10 while i < length(initialRoute) do
11 (xd, yd)← initialRoute[i ]
12 route ← generateRoute(xs , ys , xd , yd)
13 if route 6= [ ] and length(route) = (i + 1 ) then
14 route ← concat(route, initialRoute, i)
15 routeSelected ← True
16 break
17 end
18 end
19 if routeSelected = True then
20 break
21 end
22 end
23 if routeSelected = False then
24 while neighbors 6= ∅ do
25 (xs, ys)← take(neighbors)
26 (xd, yd)← initialRoute[length(initialRoute)− 1 ]
27 route ← generateRoute(xs , ys , xd , yd)
28 if route 6= [ ] then
29 routeSelected ← True
30 needDelay ← True
31 break
32 end
33 end
34 end
35 if routeSelected = True then
36 flightPlan ← createFlightPlan(initialFlightPlan, route,needDelay)
37 else
38 flightPlan ← createFlightPlan(initialFlightPlan, initialRoute,True)
39 end
4141 return flightPlan
42 end
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