
1

Automated Classification of Overfitting Patches
with Statically Extracted Code Features

He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus

Abstract—Automatic program repair (APR) aims to reduce the cost of manually fixing software defects. However, APR suffers from
generating a multitude of overfitting patches, those patches that fail to correctly repair the defect beyond making the tests pass. This
paper presents a novel overfitting patch detection system called ODS to assess the correctness of APR patches. ODS first statically
compares a patched program and a buggy program in order to extract code features at the abstract syntax tree (AST) level, for the
single programming language Java. Then, ODS uses supervised learning with the captured code features and patch correctness labels
to automatically learn a probabilistic model. The learned ODS model can then finally be applied to classify new and unseen program
repair patches. We conduct a large-scale experiment to evaluate the effectiveness of ODS on patch correctness classification based on
10,302 patches from Defects4J, Bugs.jar and Bears benchmarks. The empirical evaluation shows that ODS is able to correctly classify
71.9% of program repair patches from 26 projects, which improves the state-of-the-art. ODS is applicable in practice and can be
employed as a post-processing procedure to classify the patches generated by different APR systems.

Index Terms—Automatic program repair; Patch assessment; Overfitting patch; Code features

F

1 INTRODUCTION

P ROGRAM repair consists of automatically generating
patches for defects [38], [20]. In test-suite based repair,

a test suite acts as an executable specification to drive the
patch search. A significant challenge for test-suite based
repair is that it is possible to generate a patch that makes
the whole test suite pass, yet that is still incorrect: this is
known as the overfitting patch problem [48], [41], [28], [19].

The overfitting patch problem results in low value gen-
erated program repair patches, which significantly affect
the program repair applicability in practice. To overcome
this problem, research [60], [26], [69] employs automatic
test generation techniques to construct oracles, based on
the human-written patches. All those techniques need a
human-written patch to construct the oracles. They fit well
scientific evaluations of program repair, but such a ground
truth patch is usually not available in practice. Notably,
Xiong et al. [61]’s technique is the first one that does not
require a human-written patch as a ground truth. It works
by measuring the dynamic behavior changes before and
after patching the defect, based on the execution traces
of test cases. We refer to their technique as PatchSim in
our paper. The main shortcoming of PatchSim is that it
is time-consuming because it requires compilation, code
instrumentation and execution of several tests.

To solve this problem, recent works have proposed static
approaches for overfitting patch detection. Tian et al. [54]
leverage BERT [7] to automatically extract code features for

• He Ye, Jian Gu, Thomas Durieux, and Martin Monperrus are with
the KTH Royal Institute of Technology, Sweden. E-mails: heye@kth.se,
jiagu@kth.se, thomas@durieux.me, and martin.monperrus@csc.kth.se

• Matias Martinez is with Université Polytechnique Hauts-de-France,
France. E-mail: matias.martinez@uphf.fr

overfitting patch detection, and Wang et al. [56] employ
eight static features for classifying overfitting patches. This
shows that using code features with machine learning is a
promising technique for patch assessment and this is the
domain where our paper makes a novel contribution.

In this paper, we present ODS, a novel system to
statically classify overfitting patches. ODS is an acronym
for Overfitting Detection System. ODS is founded on the
hypothesis that overfitting patch detection can be made
across program repair systems and across software projects,
because there exist code features that capture universal
correctness properties for classifying overfitting patches.
ODS works as follows: it extracts 202 code features per
patch, that are statically extracted at the abstract syntax tree
(AST) level. ODS features include: 1) 150 code description
features representing characteristics of patch ingredients
(e.g., variables, operators, statements and AST operators,
etc) at different granularity in the modified source code and
code surrounding them. For example, we capture whether
a patch uses a local variable or a global variable (localVar or
globalVar); 2) 26 repair pattern features encoded with human
knowledge on repair strategies. For example, we capture
whether a patch moves existing code to a different location
(codeMove); 3) 26 contextual syntactic features that encode
the scope and similarity information in the source code.
For example, we capture a feature that encodes whether
there exists a variable of the same type in the surrounding
context (similarObjectType). Then, ODS employs an ensemble
learning model based on decision trees to produce the
probability of a patch being overfitting.

Our training set contains patches for the bugs from
Defects4J [23], Bugs.jar [43] and Bears [33], generated by
the work of Durieux et al. [11]. Since the correctness of
62,824 patches from [11] were unknown, we set up a sys-
tematic methodology to build a sound labeled training set
of patches: 1) sanity checks to discard duplicated patches

ar
X

iv
:1

91
0.

12
05

7v
2

 [
cs

.S
E

]
 6

 A
ug

 2
02

1

2

Fig. 1: Overall process of ODS to detect overfitting patches

(37,777) and non-plausible patches (9,190); 2) automatic
patch assessment with generated tests by Evosuite [15] to
obtain 8,299 overfitting patches; 3) a collection of 2,003
human-written patches. Overall, we obtain a total of 10,302
labeled patches, which enables us to perform a comprehen-
sive evaluation of patch assessment.

On this data, we show that ODS achieves a precision of
94.7% and a recall of 70.0% for overfitting patch detection.
Those experiments show that ODS outperforms PatchSim,
BERTFeature [46] and patch assessment technique based on
eight static code features [56]. Beyond effectiveness, ODS is
fast. Since ODS is static and does not require compilation
and execution, it is faster than the dynamic related work:
in our experiment, ODS is 138 times faster than PatchSim.
This is arguably an important factor for practitioners to use
overfitting patch detection technique in practice.

Our work is novel along the following lines: 1) Our code
feature set is novel: it contains hundreds of new features,
of a more diverse nature (202 features versus 35 features
in [30] and 8 in [56]); 2) Our paper is the first to analyze
the complementarity between dynamic patch assessment
and static patch assessment; 3) We are the first to measure
and report on the correct patch ratio with and without
overfitting detection over 19 repair tools, showing that ODS
would save developer time by avoiding presenting them
overfitting patches for 18/19 tools; 4) We present unique
and original results on project independence for overfitting
patch classification (the fact that the overfitting knowledge
gained on one project can be applied to another project);
5) Our dataset is novel: we provide a curated dataset of
10,302 labeled patches to the research community, which is
10 times larger than the dataset of Wang et al. [56] with 902
patches.

To sum up, our contributions are:

• A novel technique called ODS for identifying over-
fitting patches generated by program repair tools. ODS
is based on original code features that are statically
extracted from the AST of the buggy program and
the patched program. ODS defines and implements a
novel set of 202 code features that syntactically and
semantically represent a program repair patch.

• A large-scale experiment showing that: 1) ODS achieves
higher effectiveness than the state-of-the-art in terms of
accuracy; 2) Overfitting patch detection can be made

project independent: the overfitting knowledge learned
on one software project can be applied on another one.

• A dataset of 10,302 labeled correct and overfitting
patches from 62,824 unlabeled program repair patches
from [11]. We consider this dataset as a valuable asset
for future research on overfitting patch assessment.

• We fully implemented ODS as a publicly-available open
source tool for overfitting patch detection [13]. ODS
comprises a powerful engine for source code feature
extraction in Java programs, and an optimized machine
learning model that can be embedded in future pro-
gram repair tools.

2 THE ODS APPROACH FOR OVERFITTING DE-
TECTION

We present ODS, a novel automatic patch assessment tech-
nique for program repair systems.

2.1 Overview of ODS
Figure 1 gives the overall process of the ODS approach, it
consists of two phases: the training phase (shown in the
top half) and the prediction phase (shown in the bottom
half). In the training phase, ODS learns a probability model
from labeled training patches whose correctness is known.
In the prediction phase, the learned ODS model is used to
predict the correctness of new and unseen patches whose
correctness is unknown.

Training phase. ODS takes as inputs a set of buggy pro-
grams and their corresponding patched programs, each of
which has a correctness label: overfitting or correct. ODS
performs static analysis to extract the AST’s differences
between the buggy and patched programs, those differences
are encoded as feature vectors [45]. Feature vectors refer to
real numbers in an n-dimensional space, where each column
describes a particular aspect of the input (see the bottom
of Figure 2). For each pair of program source code, ODS
extracts three categories of code features to form feature
vectors (see subsection 2.2). Then, ODS performs supervised
learning on a training set of feature vectors with labels. ODS
learns a probability model that can be used to predict testing
patches with a confidence score.

Prediction phase. For a new and unseen patch, the code
features are first extracted in the same manner conducted

3

in the training patches. Then, the learned ODS model is fed
with the extracted code features. For each patch, the ODS
outputs a probability score that represents the likelihood of
its correctness.

2.2 Feature Extraction

Following Long and Richard [30], we model a program as
a set of feature vectors based on human knowledge. We
analyze the source code files that have changed between
the buggy and the patched version. The difference between
those programs is known as a patch. Given a pair of buggy
and patched source code files, we first compute the AST of
each source code file affected by the patch, then we execute
an AST differencing algorithm over those ASTs. This com-
putes a list of AST operations (aka edit-script) that captures
the transformations between one AST (which represents the
buggy file) into the other (which represents the patched file).
We call this list an ‘AST diff’.

Then, we transform the AST diff into fixed-length feature
vectors. For multiple AST diffs from a patch that affects two
or more files (which means the patch modifies different files
to repair a bug), we accumulate the occurrence per feature
vector from each AST diff. As a result, we obtain a set of
fixed-length feature vectors that represents a patch that fixes
a buggy program.

2.2.1 Feature Categories
We group the ODS features into three categories: code
description features, repair pattern features, and contextual
syntactic features.

Code Description Features. These features describe the
characteristics of code elements at different granularities. In
Table 1, we present our 50 code description features of four
categories: operators, variables, statements and AST opera-
tions. The first column gives the category, and the second
column indicates the type of each feature category. Here, all
code description features are binary features. We describe
them in the third column and show examples of feature
names in the fourth column. The last column summarizes
the total number of extracted features in each category. We
now describe code description features per category.

Operators: ODS extracts operator features in four differ-
ent types if they are used in a patch: binary arithmetic,
unary arithmetic, relational and bitwise operators. Variables:
ODS extracts the characteristics of variables involved in the
patch such as scope (e.g., local or global) and type (e.g.,
primitive). Statement: ODS captures the types of the state-
ments affected by a patch (e.g., control flow, assignment,
invocation, and return, etc). AST operations: ODS creates AST
operation features by combining: a) the type of operation
from the AST diff (4 AST-level operations: UPD, ADD,
DEL and MOV); and b) code elements affected by the AST-
level operation. For example, feature insertStmt indicates the
patched program inserts a new statement to fix the bug.

We also extract features from statements that surround
the patch. In particular, we consider features from: a) the
modified statements (we call them SRC features); b) at most
three statements in the same block before the modified state-
ments (FORMER features); and c) at most three statements
in the same block after the modified statements (LATTER

features). This means that ODS considers, for each patch,
150 code description features (i.e., 50 features from SRC +
50 features from FORMER + 50 features from LATTER).

Repair Pattern Features. To help ODS learn the semantic
information of a patch, we include repair patterns extracted
by human experts. We use the taxonomy of repair patterns
by Sobreira et al. [49], which defines a list of repair patterns
and actions, based on manual analysis of 395 Defects4J
human-written patches. Madeiral et al. [32] have shown that
those patterns can be automatically extracted, and we reuse
the corresponding tool. ODS integrates 26 repair patterns
from [32]. Table 2 presents the 26 repair patterns considered
by ODS. The first column contains the categories of the
repair patterns. The type of repair patterns is given in the
second column. All repair patterns are binary features. We
present the detailed repair patterns in the third column and
summarize the total number by category in the last column.

Wraps-with patterns include patterns that wrap or un-
wrap buggy statements with a conditional branch, try-catch
block, or loop. For example, wrapsIf indicates a potential
buggy statement is wrapped with a conditional logic using
an if expression. Expression patterns occur in patches that
modify existing logic or arithmetic expressions, return ex-
pressions or assignments of boolean variables. Conditional
Patterns include patterns that add or remove conditional
blocks. Null check patterns are related to the addition of
conditional expressions or expansion of existing ones with
null-checks, including positive null checks (check for nul-
lity) and negative null checks (check for non-nullity). Other
patterns include other useful patterns such as repeating the
same change in different locations (e.g., copyPaste); move the
existing code to different locations (e.g., codeMove); removal
or replacement of a single line (e.g., singleLine), etc.

Contextual Syntactic Features. The context of a patch
can be critical for correctly predicting patch correctness.
Inspired by [70], [45], we include contextual features to
describe the scope, parent and children’s similarities of
modified statements. In Table 3, we present 26 contextual
syntactic features considered in ODS. The first column lists
the feature categories, and the second column gives the
type of each feature, namely binary and string. The detailed
contextual features are presented in the third column and
the numbers are given in the last column. We now describe
the categories of such features.

Type-related features focus on the type of the modified
statements and the type of its surrounded code and parent
code. The type features are captured as a string. For exam-
ple, the type of a faulty statement (typeOfFaultyStatement)
could be an assignment and its parent statement type typeOf-
FaultyStatementParent could be a method or a class. Method
describes the context related to the method invocation,
whether the method call happens within a try-catch block.
Similarity describes whether there exists object or method
calls with the same type (e.g., object type or primitive type)
in the scope that is similar. Usage features focus on whether
there exists any field or variable never used or assigned in
the class.

2.2.2 Feature Vectors
In total, a patch is described by 202 ODS features: 150
code description features, 26 repair pattern features and 26

4

Feature Category Type Description Feature Examples # Total

Operators binary whether patch contains binary arithmetic opera-
tors, unary arithmetic operators, relational oper-
ators or bitwise operators

opAdd, opDiv, opEqual, opGreaterEqual, op-
LessThan,opMod,uopDec, uopInc, etc

14

Variables binary whether patch variables are local, global, ab-
stract, primitive, enumeration

localVar, globalVar, abstVar, primVar, enum 5

Statements binary whether patch occurs in assignment, condi-
tion, loop, try-catch, function invocation, return,
branch, constance,

assignConst, assignLhs, assignZero, callee,
callArgument, StmtCond, StmtCall, stmtLoop,
memberAccess, funcArgument, etc

21

AST operations binary whether AST actions are insertion/removals of
operators, variables or statements

insertStmt, replaceCond, replaceStmt,
removePartialIf, removeWholeBlock

10

Total 50

TABLE 1: ODS code description features

Fig. 2: An example of ODS feature extraction.

contextual syntactic features. We convert the binary features
to an integer to represent feature occurrence, where False is
converted to 0, and True is converted to 1. We leverage one-
hot encoding to transform string type features into binary
indicator features [9]: each string feature with m possible
values is encoded by a sparse matrix of m binary features,
with only one active (the active feature is 1, otherwise 0).
For multiple AST diffs from one patch, we aggregate the
corresponding values per feature from each AST diff.

2.2.3 Example
Figure 2 shows an example of how ODS extracts features
from a patch generated by Arja [72]. This patch adds an if-
conditional check to wrap an assignment of upper. We use
the Xand 5 to indicate the captured and non-captured bi-
nary features respectively, and the symbol S identifies string
features. ODS computes the AST-level changes between the
AST from the buggy program and the patched program. The

AST diff is presented in gray. From the AST nodes affected
by those changes, ODS starts extracting the features.

ODS extracts the aforementioned three categories of syn-
tactic and semantic features to represent those AST changes
(i.e., patch). For this patch, ODS extracts code description
features: for example, features opEqual (binary operator
’==’), uopDec (unary operator ’-’), localVar (local variable
tmp) are captured in the patch (i.e., their values receive a
X). On the contrary, other features (e.g., assingZero and
opAdd) are not captured (thus their values receive a 5).

Similarly, ODS also extracts the code description features
from the former and latter statements around the changed
AST (mapped with long-dotted lines). ODS identifies 2
out of 26 repair patterns for this example: wrapsIf and
condBlockOthersAdd. Note that other patterns could not be
captured in the patch. For example, condBlockRetAdd is not
present because, beyond adding an if condition, the patch
does not add a return statement.

5

Category Type Repair Patterns #Total

Wraps-with binary

wrapsIf

9

wrapsElse
wrapsLoop
wrapsTryCatch
unwrapTryCatch
wrapsIfElse
unwrapIfElse
wrapsMethod
unwrapMethod

Expression binary

expLogicExpand,

4expArithMod,
expLogicReduce,
expLogicMod

Conditional binary

condBlockOthersAdd

4condBlockRem,
condBlockExcAdd,
condBlockRetAdd

Null checks binary missNullCheckP 2missNullCheckN

Other patterns binary

codeMove

7

copyPaste
wrongVarRef
wrongMethodRef
singleLine
constChange
notClassified

Total 26

TABLE 2: ODS repair pattern features

Category Type Contextual Features #Total

Type string

typeOfFaultyStatementAfter1

9

typeOfFaultyStatementAfter2
typeOfFaultyStatementAfter3,
typeOfFaultyStatementBefore1
typeOfFaultyStatementBefore2
typeOfFaultyStatementBefore3,
typeOfFaultyStatement
typeOfFaultyStatementParent
faultyClassExceptionType

Method binary

methodCallWithNullGuard

7

methodCallWithTryCatch,
inSynchronizedMethod,
hasObjectiveMethodCall,
methodThrowsException,
methodCallWithNormalGuard,
hasInvocationsProneException

Similarity binary

similarObjectTypeWithNormalGuard

4similarObjectTypeWithNullGuard,
similarPrimitiveTypeWithNormalGuard
similarPrimitiveTypeWithNullGuard

Usage binary

fieldNotAssigned

6
fieldNotUsed,
localVarNotAssigned
localVarNotUsed,
objectUsedInAssignment
primitiveUsedInAssignment,

Total 26

TABLE 3: ODS contextual syntactic features

ODS captures contextual features, which types can be
a string or a binary. For example, the value of the feature
typeOfFaultyStatementParent for this patch is a method. Even-
tually, ODS converts all binary and string features to integer
vectors. As shown in the bottom of Figure 2. Notably, ODS
converts the string value feature typeOfFaultyStatementPar-
ent into a binary indicator feature typeOfFaultyStatementPar-
ent method.

2.3 Learning Algorithm
For the classifier, we consider the gradient boosting algo-
rithm [16]. Gradient boosting is a machine learning tech-
nique for regression and classification problems, which pro-
duces a prediction model in the form of an ensemble of
weak prediction models, typically decision trees [42]. We
choose gradient boosting for the following three reasons.
First, gradient boosting has been shown to give state-of-the-
art results on many standard classification benchmarks [29].
Second, gradient boosting as an ensemble method helps to
reduce variance and bias, and to build a more generalized
model. Third, the high degree of flexibility that is offered
by gradient boosting allowing optimization of different loss
functions that can be adjusted to classification models.

2.4 Implementation
We fully implemented our approach in the context of Java.
We implemented ODS feature extraction engine on the
top of two libraries: Coming [36], which extracts the code
description features and contextual syntactic features, and
ADD [32], which extracts repair pattern features. Both tools
internally use GumTree [14] to compute AST diffs. For
the ODS classifier, we use off-the-shelf ensemble learning
library XGBoost [3] which is based on decision trees.

3 EXPERIMENTAL PROTOCOL

In this section, we present our protocol to evaluate the
effectiveness of ODS for classifying overfitting patches. The
protocol is designed to answer the following research ques-
tions:

• RQ1 (Effectiveness): To what extent is ODS good at
predicting overfitting patches compared with the state-
of-the-art?

• RQ2 (Complementary analysis): To what extent is ODS
complementary to the dynamic patch assessment tech-
nique PatchSim?

• RQ3 (Project independence): To what extent can ODS
be used for overfitting detection on new projects?

• RQ4 (Feature analysis): Which features are contributing
the most to ODS accuracy?

3.1 Patch Datasets with Overfitting Labels
ODS uses supervised learning, which requires a corpus of
labeled data used for training the model. In this work, the
training and testing data consists of patches, each patch
with one particular label: correct or overfitting. We recall that
overfitting patches are those patches generated by automatic
program repair systems that pass the test suites provided by
developers but do not actually fix the bug.

6

tools #overfitting #correct #total

Arja 52 5 57

ACS 7 15 22

AVATAR 38 19 57

CapGen 41 25 66

Cardumen 10 2 12

DynaMoth 21 1 22

FixMiner 20 12 32

GenProg 45 5 50

Jaid 41 40 81

jMutRepair 17 5 22

Kali 82 6 88

kPAR 52 10 62

Nopol 30 1 31

RSRepair 39 2 41

SequenceR 56 17 73

SimFix 45 22 67

SketchFix 9 16 25

SOFix 2 21 23

TBar 47 24 71

Total 654 248 902

TABLE 4: Dataset of 902 patches from 19 repair tools from
Wang et al. [56]

In this work, we consider two datasets of patches: the
existing dataset from Wang et al. [56] with labeled patches,
and the largest ever dataset from the RepairThemAll exper-
iment [11] with unlabeled patches.

3.1.1 Wang et al.’s Dataset

Wang et al. [56] provide a curated dataset with 902 labeled
patches for Defects4J bugs generated by 19 repair tools.
Table 4 presents the details of this dataset, it contains 654
patches manually labeled as overfitting and 248 patches
manually labeled as correct by the authors of the corre-
sponding tools. We use this existing dataset to carry out a
fair comparison between our work and the state-of-the-art,
which has been used to evaluate [62], [56].

3.1.2 RepairThemAll Dataset

The existing datasets of manually labeled patches can be
considered too small for machine learning: Xiong et al.’s
dataset has 139 labeled patches [61] from 6 repair tools, Ye et
al.’s dataset [69] has 628 labeled patches from 14 repair tools,
and Wang et al.’s dataset [56] contains 902 labeled patches,
which is to know the largest to date in our knowledge. This
is because the scale of the labeled patch dataset was limited
by manual assessment.

To overcome the absence of a large-scale labeled patches
and the limitations of manual patch assessment at scale,
we follow the methodology of Ye et al. [69] to assess patch
correctness with randomly generated tests based on ground
truth patches (RGT). This approach leverages RGT tests
to differentiate program behavior between ground truth
patches and program repair patches. The rule to classify an
overfitting patch is: if a patched program makes any RGT test
fail, it is considered overfitting, otherwise likely-correct.

We first gather patches from the recent experiment Re-
pairThemAll by Durieux et al. [11], which executed 11 repair
systems on five bug benchmarks. In particular, we focus ex-
clusively on the three benchmarks which contain real-world
bugs from large and open-source projects: Defects4J [23],
Bugs.jar [43] and Bears [33]. However, RepairThemAll does
not provide labels for the generated patches. Therefore, to
obtain the labels of patches, we reuse the existing RGT
tests for Defects4J [23] generated by Evosuite [15], and we
generate additional Evosuite tests with 10 random seeds for
Bugs.jar and Bears bugs.

Table 5 presents the statistics of patches generated by
RepairThemAll for three benchmarks. By analyzing the
62,824 program repair patches (given in the second column),
we discard 1) 37,777 duplicated patches generated by dif-
ferent repair systems (third column); 2) 9,190 non-plausible
patches that fail to pass the developer provided test cases
(fourth column). We obtain 15,857 plausible patches, shown
in the fifth column, each of which succeeds in applying to
the buggy program and passes all developer provided test
cases. The plausible patches are further labeled as likely-
correct and overfitting according to the RGT test execution
results. Eventually, we obtain 7,558 labeled likely-correct
patches and 8,299 labeled overfitting patches.

However, we do not consider the labeled likely-correct
patches as the correct samples to train the learning model of
ODS because their correctness is not guaranteed due to the
incompleteness test cases [69], [26]. That is, for example, a
generated test may not include an input that exposes the
overfitting patch. Instead, we employ the human-written
patches from three benchmarks as the correct samples,
which are given in the eighth column called correct (human-
written) patches.

The last three columns of Table 5 describe the training set
of ODS, including the overfitting patches, correct patches
and total patches. Our dataset contains 8,299 overfitting
samples from 11 repair systems generated by [11]: Arja [72],
Cardumen [35], Dynamoth [12], GenProg by Arja [72],
jGenProg [34], jKali [34], jMutRepair [6], Kali by Arja [72],
Nopol [65], NPEFix [10], RSRepair by Arja [72]. Also, this
dataset includes 2,003 correct patches: 798, 986 and 219
human-written patches from Defects4J, Bugs.jar and Bears.
In total, we have collected 10,302 labeled patches.

3.2 Dataset Cleaning

As mentioned in Section 2.2, we extract features from the
AST diff computed between the buggy program and the
patched program. We observe that those AST diff from
patches have some noise, i.e., changes that are not related
to repair the bug.

They could be: 1) redundant code, e.g., Arja and jGen-
Prog generate patches by adding redundant existing code;
2) code optimizations added together with a bug fix in the
human-written patches, which has been reported in [69];
3) multiple-file modifications for fixing a single bug. We
observe that a program repair patch can modify up to eight
files while the bug only exists in one file and the ground
truth patch (i.e., human-written patch) actually modifies
only that buggy file.

7

benchmark # original # duplicated # non-plausible # plausible # likely-correct # overfitting # correct
(human-written) #total

Defects4J 37224 19019 8491 9714 4221 5493 798 6291

Bugs.jar 12419 8570 362 3487 1212 2275 986 3,261

Bears 13181 10188 337 2656 2125 531 219 750

Total 62,824 37,777 9,190 15,857 7,558 8,299 2,003 10,302

TABLE 5: Dataset of 10362 labelled patches from RepairThemAll [11] per our automated labelling technique. This dataset is
significantly larger than that of Table 4.

These unrelated changes can lead to meaningless code
feature extraction and affect the performance of classifi-
cations [44], [51]. To prune noisy data, we use the Tukey
method [24] to detect outliers. We detect outliers from the
features of the numerical value. We consider outliers as rows
that have at least a specific number of outlied numerical
values. In our study, we consider outliers as rows that have
at least 15 outlied numerical values.

3.3 Imbalanced Data Handling

Imbalanced data occurs in all the three bugs benchmarks
we considered, as shown in Table 5. Overall, there are 2,003
correct patches and 8,299 overfitting patches. The correct
patches are around 20% of the overfitting patches. The im-
balanced data can lead to poor prediction performance [52].
To overcome this problem, we perform the synthetic mi-
nority over-sampling technique SMOTE [2], which has been
widely used on the imbalanced source code learning tasks
(e.g., [51], [52]). Specifically, we consider the minority strat-
egy of SMOTE which only resamples the correct patches to
the same amount of overfitting patches.

3.4 Terminology and Evaluation Metrics

Now, we determine the core evaluation terminology and
evaluation metrics.

• True Positive (TP): The prediction for a patch is true
positive if an overfitting patch is rightly classified as
overfitting.

• True Negative (TN): The prediction for a patch is true
negative if a correct patch is rightly classified as correct.

• False Positive (FP): The prediction for a patch is false
positive if a correct patch is wrongly classified as over-
fitting.

• False Negative (FN): The prediction for a patch is false
negative if an overfitting patch is wrongly classified as
correct.

Evaluation Metric we consider precision (Equation 1),
recall (Equation 2), and accuracy (Equation 3) to measure
the effectiveness of ODS. These metrics have been widely
adopted to evaluate classification models [51], [63].

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision evaluates the proportion of detected overfitting
patches that are truly overfitting. A higher precision is
demanded by program repair research as we do not want
to discard correct patches. In our work, the higher precision
shows higher reliability of the ODS model in discarding
overfitting patches. However, comparing the overfitting
patch prediction model by using only precision may be
incomplete. For example, one can only classify patches with
higher confidence values as overfitting to achieve a higher
precision score, which could result in a low recall score.

Recall evaluates the effectiveness of a model to classify
overfitting patches. Higher recall is also critical for develop-
ers who do not want to waste their efforts on analyzing a
large number of overfitting patches. The higher recall rate
of the classification model, will bring a higher quality of
patches delivered to developers and researchers. Comparing
only the recall is also incomplete, as a model can predict all
patches as overfitting to achieve 100% of recall score.

To overcome the above issues, we also consider the ac-
curacy to measure the performance of the patch correctness
prediction, which is the comprehensive evaluation of all TP,
FP, TN, and FN.

Moreover, we introduce CPR (an acronym for correct
patch ratio) to analyze the ratio of correct patches before and
after applying the automatic patch assessment technique
(e.g., ODS) for a given repair tool. Before applying ODS, we
compute the CPRorig (Equation 4) as the original correct
patch ratio, i.e., the number of correct patches (#C) over the
total number of generated patches (#Patches). After apply-
ing automatic patch assessment techniques, we compute the
CPR (Equation 5) as the number of truly correct patches
(TN) over all correct patches considered by the patch as-
sessment model, i.e., the sum of TN and FN. Increasing the
CPR metric is beneficial, because it shows to what extent
the automatic patch assessment technique mitigates the low
precision problem in program repair, and it would mean
saving developers’ time by avoiding presenting them with
overfitting patches.

CPRorig =
#C

#Patches
(4)

CPR =
TN

TN + FN
(5)

8

3.5 Experimental Methodology
3.5.1 Protocol of RQ1
In RQ1, we perform an experiment to compare the effec-
tiveness of ODS with the state-of-the-art patch assessment
techniques from Xiong et al. [61], Wang et al. [56], and
Long and Rinard [30]. Xiong et al. [61] proposed a dynamic
patch assessment technique based on the similarity of test
executions before and after applying a patch, we refer
to their technique as PatchSim in our paper. Wang et al.
[56] proposed overfitting patch detection based on 8 static
code features, we refer to their technique as SimFeatures
in our paper since their features focus on the similarity
between the buggy context and the patch code. Long and
Rinard [30] proposed an overfitting patch ranking technique
called Prophet which learns from correct human-written
patches. We note that transforming a ranking technique into
a classification technique requires an arbitrary threshold,
and studying the impact of the threshold is out of the scope
of our paper. Thus, for a fair and meaningful comparison,
we consider the Prophet features which are referred to as
ProphetFeatures in our paper, and we put them in the
same prediction algorithm as the others. Please note that
Prophet was originally designed for the C language and our
experiment is based on patches generated for Java, thus we
have re-implemented a Java version of Prophet.

Per the best practices, all approaches are evaluated on
the same dataset, that one presented and described in
Section 3.1.1, composed of 902 patches. Since the feature
extraction technique of SimFeatures is not publicly avail-
able, we compare our experimental results with the numer-
ical results reported in their paper [56], which evaluated
that approach on the same dataset (i.e., we have not re-
executed SimFeatures). We both train and test these ODS
and ProphetFeatures with the same setup, per the setup of
SimFeatures: 1) We use 10-fold cross-validation; 2) We use
the same classifier (random forest). To handle the imbalance
of training samples, we apply SMOTE in each fold cross-
validation. With this protocol, we aim at only measuring
the effect of the set of features, and not that of the un-
derlying machine learning algorithm. Finally, we compute
the metrics discussed in Section 3.4 for the four techniques:
precision, recall, accuracy and CPR.

Next, we investigate how ODS affects each repair tool
individually. We break up the 902 patches by 19 repair tools.
For each tool, we use the patches from the other 18 repair
tools as training data and the ones from the considered
repair tool as testing. This can be considered as cross-
validation over tools. We compute and report on CPRorig

and CPRODS to show how ODS improves the performance
of each tool. Recall that the CPR Equation 5 indicates the
truly correct patch ratio over all patches generated by a
tool. A higher CPR shows a higher precision of the patches
provided to the developers. This means saving developers
time in analyzing the overfitting patches and building trust
for automatic program repair.

3.5.2 Protocol of RQ2
In this RQ, we qualitatively compare the results from ODS
and PatchSim in order to understand: 1)The complementary

expressed as the number of overfitting patches that ODS
and PatchSim can detect; 2)The differences in execution time
between a static approach (ODS) and a dynamic approach
(PatchSim). Since the qualitative analysis of these two tools
is time-consuming, we evaluate the complementary of ODS
against PatchSim on the same 139 patches used by Xiong et
al. [61]. Those patches form the testing set.

In this experiment, we use the combination patches from
three benchmarks presented in Section 3.1.2 (i.e., Defects4J,
Bugs.jar and Bears) as a training set to build the ODS model.
To handle the imbalance of training samples, we apply
SMOTE in the minority class. However, as the training set
contains patches of the same projects from the testing set
(i.e., Lang, Chart, Math and Time), we need to discard all
patches of those projects from the training set to ensure all
testing samples are unseen by the ODS model. For example,
Defects4J and Bugs.jar both contain correct and overfitting
patches generated for the Math project, then we discard
all patches of Math from the training set. The reason we
do this is to ensure all testing samples are unseen by the
ODS model, because the patches from the same project may
contain similar context. For instance, the human-written
patches of Closure-62 and Closure-63 from Defects4J are ac-
tually identical. Specifically in this experiment, for the four
considered projects of Defects4J, we create corresponding
four pairs of training and testing. For instance, we test all
patches from project P , where all patches from the testing
project P are discarded in the training set. We record the
number of the training set and testing set, and the results of
precision, recall, and accuracy.

Moreover, we compare the runtime performance of ODS
and PatchSim. Specifically, we measure and compare the
execution time used by these two techniques. We execute
ODS and PatchSim in the same environment1 to classify
the 139 patches from Xiong et al.’s dataset. We record the
total prediction time and average prediction time per patch.
Specifically for ODS, we also collect the feature extraction
time and the total training time.

3.5.3 Protocol of RQ3

In this RQ, we evaluate ODS on more projects to improve
the external validity of our evaluation. We consider patches
from the RepairThemAll experiment (Section 3.1.2), group-
ing them by projects. We recall that this dataset contains: a)
Automatic program repair patches classified as overfitting;
b) The human-written patches are considered as correct.
Those patches collected are from 95 projects: 17 projects

from Defects4J, 6 projects from Bugs.jar and 72 projects from
Bears. Due to the space limitation, we only consider the
projects with at least five patches. This results in 26 projects
for evaluation, including 8 projects with both correct and
overfitting patches and 18 with only correct patches, i.e., no
overfitting patch is able to be found in those projects. We
create training and testing sets per project as follows. We
test all patches from project P , where all patches from the
testing project P are discarded in the training set to ensure
the testing patches are new and unseen as we do in RQ2.

1. Intel(R) Core(TM) i5-6260U with 4 CPUs on the Ubuntu 16.04
operating system.

9

Tools TP FP TN FN Precision Recall Accuracy CPR

PatchSim 249 51 186 392 83.00% 38.85% 49.54% 32.18%

SimFeatures 583 87 161 71 87.01% 89.14% 82.48% 69.40%

ProphetFeatures 585 73 175 69 88.90% 89.45% 84.25% 71.72%

ODS 620 66 182 34 90.38% 94.80% 88.91% 84.26%

TABLE 6: Comparison of the effectiveness of ODS with the state-of-the-art.

3.5.4 Protocol of RQ4
In this RQ, we analyze the importance of all ODS features.
For this, we train ODS with the whole 10,302 labeled patches
presented in Section 3.1.2 with the goal of: 1) Performing
a feature selection study and 2) Analyzing the most im-
portant ODS features. In the feature selection experiment,
we conduct 10-fold cross validation to record the accuracy
of ODS with different subsets of features. Specifically, we
evaluate ODS with three individual groups of features,
per their nature: ODS with 150 code description features,
ODS with 26 repair pattern features and ODS with 26
contextual features (see Section 2.2.1). Next, we select the
top-K most important features based on the state-of-the-art
feature selection approach F-score [1], [8], which reveals the
discriminative power of each feature independently from
others. We study accuracy with K ∈ 50, 100, 150. Lastly, we
analyze the top 10 important features of ODS and measure
how each code feature is negatively or positively correlated
with the accuracy of ODS: the negatively correlated features
are those with the lower value among overfitting patches;
the positively correlated features are those with the higher
value among the overfitting patches.

3.6 Experimental Parameter Settings
In this study, we apply the same parameters to all experi-
ments. Since our purpose is not to find the best training or
test set, we do not spend too much effort on well tuning the
parameters of ODS. We consider outliers as rows that have
at least 15 outlied numerical values, which results in 833
(i.e., 8%) training samples are discarded if we consider the
whole 10,302 training samples together. We use the default
parameters of XGBoost (i.e., learning rate sets to 0.3 and
max depth sets to 6), turning the gamma to 0.5. To reproduce
our experiment, we control the random state seed as 42 to
all configurations where randomness is required.

4 EXPERIMENTAL RESULTS

4.1 RQ1: Effectiveness
We compare the effectiveness of ODS with the state-of-the-
art patch assessment technique PatchSim [61], SimFeatures
[56] and ProphetFeatures [30] on 902 patches presented
in Table 4. Table 6 gives the detailed results. We present
the prediction results in the second to the ninth columns,
including the number of true positives, false positives, true
negatives and false negatives, as well as the evaluation

metrics of precision, recall, accuracy and correct patch ratio
(CPR). The best evaluation metrics in these four techniques
are shown in bold. Please note that PatchSim has a slightly
fewer total number of patches, because PatchSim does not
terminate for some patches due to lack of heap space when
a large number of tests cover the patched method [18], [56].

Table 6 yields two main findings. First, ODS outperforms
PatchSim, SimFeatures and ProphetFeatures in identifying
overfitting patches in all evaluation metrics: the precision,
recall, accuracy, and CPR are better. ODS is able to identify
620 out of 654 overfitting patches, and also correctly clas-
sifies 182 out of 284 correct patches. This leads to 90.38%,
94.80% and 88.91% in precision, recall and accuracy, respec-
tively. Second, the biggest improvement made by ODS is
on the correct patch ratio (CPR). Per this evaluation metric,
PatchSim, SimFeatures and ProphetFeatures has a respec-
tive performance of 32.18%, 69.40% and 71.72%, and ODS
bumps it to 84.26%. This means that more correct patches are
presented to developers, and that ODS is considered the best
technique to mitigate the low precision patch generation
problem in program repair.

Comparison between ODS and PatchSim. Per accu-
racy, ODS outperforms PatchSim by 39.37% (88.91% versus
49.54%). This is because ODS is able to identify 94.80% of
overfitting patches, i.e., has a high recall, while PatchSim
only detects 38.85% of overfitting patches. Per false pos-
itives, PatchSim generates fewer false positive cases than
ODS: it has 51 false positive cases, where ODS yields 66
false positive cases, because it was carefully designed and
optimized for minimizing the number of false positives.
However, PatchSim fails to identify 392 overfitting patches
(i.e., false negative cases). This results in a lower correct
patch precision, where 32.18% of patches are truly correct.
On the contrary, ODS only yields 34 false negative cases,
which leads to 84.26% in CPR. In summary, despite a higher
false positive rate, ODS is able to identify more overfitting
patches than PatchSim, and achieves a significantly higher
CPR. This is important for practitioners who could have
more confidence in the patches labeled as correct.

Comparison between ODS, SimFeatures and Prophet-
Features. Recall that ODS, SimFeatures and ProphetFeatures
are three different types of static code features. For accuracy,
ODS outperforms SimFeatures (88.91% versus 82.48%) and
ProphetFeatures (88.91% versus 84.25%). For false positives,
ODS outperforms SimFeatures by having 21 fewer false
positive cases (66 by ODS and 87 by SimFeatures), and

10

Tools #O #C CPRorig TP FP TN FN Precision Recall Accuracy CPRODS

Arja 52 5 8.77% 50 3 2 2 94.34% 96.15% 91.23% 50.00%

ACS 7 15 68.18% 4 6 9 3 40.00% 57.14% 59.09% 75.00%

AVATAR 38 19 33.33% 37 5 14 1 88.10% 97.37% 89.47% 93.33%

CapGen 41 25 37.88% 34 4 21 7 89.47% 82.93% 83.33% 75.00%

Cardumen 10 2 16.67% 10 0 2 0 100.00% 100.00% 100.00% 100.00%

DynaMoth 21 1 4.55% 21 1 0 0 95.45% 100.00% 95.45% 0.00%

FixMiner 20 12 37.5% 18 1 11 2 94.74% 90.00% 90.63% 84.62%

GenProg 45 5 10.00% 41 3 2 4 93.18% 91.11% 86.00% 33.33%

Jaid 41 40 49.38% 35 19 21 6 64.81% 85.37% 69.14% 77.78%

jMutRepair 17 5 22.73% 13 0 5 4 100.00% 76.47% 81.82% 55.56%

Kali 82 6 6.82% 70 4 2 12 94.59% 85.36% 81.82% 14.29%

kPAR 52 10 16.13% 48 1 9 4 97.96% 92.31% 91.94% 69.23%

Nopol 30 1 3.22% 17 0 1 13 100.00% 56.67% 58.06% 7.14%

RSRepair 39 2 4.88% 38 1 1 1 97.44% 97.44% 95.12% 50.00%

SequenceR 56 17 23.29% 18 0 17 38 100.00% 32.14% 47.95% 30.91%

SimFix 45 22 32.84% 18 3 19 27 85.71% 40.00% 55.22% 41.30%

SketchFix 9 16 64.00% 6 3 14 3 75.00% 66.67% 80.00% 82.35%

SOFix 2 21 91.30% 2 4 17 0 33.33% 100.00% 82.61% 100.00%

TBar 47 24 33.33% 40 2 22 7 95.24% 85.11% 87.32% 75.86%

AVG - - 29.73% - - - - 86.28% 80.64% 80.33% 58.72%

TABLE 7: The effectiveness of ODS to detect overfitting patches and to improve the correct patch ratio per tool.

ODS outperforms ProphetFeatures by having 7 fewer false
positive cases less (66 by ODS and 73 by ProphetFeatures).
Moreover, ODS detects less than half false negative cases
than the other two techniques: ODS produces 37 fewer
cases than SimFeatures (34 versus 71) and 35 fewer cases
than ProphetFeatures (34 versus 69). This allows ODS to
achieve a higher CPR: 84.26% for ODS while SimFeatures
and ProphetFeatures achieve 69.40% and 71.72%, respec-
tively. This experiment clearly shows that ODS’ feature set
improves over the state-of-the-art features of SimFeatures
[56] and ProphetFeatures [30]. This is explained by both
the number and the types of features. First, ODS considers
more features: 202 features versus 8 features in SimFea-
tures, 35 atomic features and 5 modification features in
ProphetFeatures (the original Prophet features before cross-
ing them together). Second, ODS has more diverse features,
it considers syntactic features (code description features),
semantic features (repair pattern features), and contextual
features. On the contrary, in SimFeatures, Wang et al. [56]
mostly focus on code similarity features, which is a subset
of ODS’s contextual features. In ProphetFeatures, Long and
Rinard [30] consider atomic code features and modification
features, which also have been considered and extended in
ODS’s code description features. For example, ProphetFea-

tures does not consider code removal in their modification
features, while ODS detailed code removal features, e.g.,
removePartialIf and removeWholeBlock.

Effectiveness of ODS per repair tool. Table 7 shows
the effectiveness of ODS to classify overfitting patches for
the 19 individual repair tools on 902 patches. The row
are sorted by alphabetic order of name of the repair tools.
The last row gives the average evaluation metrics from 19
repair tools. For example, per Table 7, CapGen generates 41
overfitting patches and 25 correct patches for Defects4J. On
those patches, ODS rightly detects 34/41 overfitting patches,
21/25 correct patches, and has only 4 false positives and 7
false negatives. This results in 89.47%, 82.93%, 83.33% and
75.00% in precision, recall, accuracy and CPR.

Over the 19 repair tools, ODS achieves an average of
86.28%, 80.64% and 80.33% in precision, recall and accu-
racy, respectively (bottom line). Per precision, ODS achieves
100.00% precision for 4/19 repair tools, i.e., it does not
misclassify a single correct patch, which is arguably helpful
for developers. ODS achieves more than 90% precision in
8/19 repair tools, i.e., the false positive rate is less than 10%.
ODS achieves more than 80% precision in 3/19 repair tools,
while ODS achieves less than 80% precision in 4/19 repair
tools. Per recall, ODS achieves more than 50% recall in 17/19

11

repair tools, this shows ODS is able to help the majority of
repair tools to filter out more than half of the overfitting
patches.

Correct patch ratio. ODS enables repair tools to increase
the precision of generated patches, i.e., to present more
correct patches to developers. Individually, we observe that
ODS positively increases the CPR for 18 of 19 repair tools,
ranging from 7.14% to 100.00%. For example, without ODS,
Cardumen original produces a correct patch ratio of 16.67%,
yet the correct patch ratio grows to 100.00% after ODS is
employed as post-filter. There is one case that ODS decreases
the original correct patch ratio for the repair tool DynaMoth.
This is because DynaMoth only produces one correct patch
and ODS misclassifies it as overfitting, thus the CPR with
ODS for DynaMoth is 0.00%, which can be considered as
an artefact of the measurement. Overall, ODS helps 18/19
repair tools to increase the ratio of correct patches presented
to developers: this would potentially improve the practical
usage of program repair: save developers’ time in analyzing
overfitting patches and increase trust in automated program
repair.

Answer to RQ1: On the testing set of 902 patches gen-
erated by 19 repair tools, ODS outperforms the state-of-
the-art patch assessment technique PatchSim [61], Sim-
Features [56], and ProphetFeatures [30]. ODS produces
fewer false positives, and is able to increase the correct
patch ratio for 18/19 repair tools.

4.2 RQ2: Complementarity with PatchSim
Now, we make a detailed analysis of static patch assessment
(ODS) versus dynamic patch assessment (PatchSim). Table 8
presents the number of classified patches by ODS and
PatchSim. The first three columns give the information of
the training set and the fourth to sixth columns present the
testing set statistics. In the first column, All - P indicates
all training patches from Table 5 minus the patches from P,
where P is the project in the testing set. The number of over-
fitting and correct patches are respectively denoted as #O
and #C. Those are the original training number of patches
before applying SMOTE. Then, we present the PatchSim
prediction results in the seventh to the tenth columns. We
give the same prediction results by ODS in the last four
columns. For example, the second row indicates that, by
using 7,267 overfitting patches and 1,940 correct patches
from all collected patches minus the Lang patches as the
training set, ODS rightly detects 10 of 11 overfitting patches,
4 of 4 correct patches, with 0 false positive and 1 false
negative (it fails to identify 1 overfitting patch). Now we
analyze the complementary between ODS and PatchSim, as
well as the runtime performance of these two techniques.

Complementary between ODS and PatchSim. Fig-
ure 3 shows the intersection of correctly detected over-
fitting patches (i.e., the true positive cases) between ODS
and PatchSim in four projects. The blue and red circles
represent ODS and PatchSim, respectively. For example, for
Chart project (top left diagram), ODS and PatchSim detect 7
overfitting patches in common and they individually detect
7 different overfitting patches. Considering four projects
together, our experiment shows that PatchSim and ODS to-
gether identified 92 patches, and 40 of them can be identified

Training Testing PatchSim ODS

Proj. #O #C Proj. #O #C TP FP TN FN TP FP TN FN

All - Chart 6977 1978 Chart 23 3 14 0 3 9 14 0 3 9

All - Lang 7267 1940 Lang 11 4 6 0 4 5 10 0 4 1

All - Math 3625 1783 Math 63 20 33 0 20 30 35 4 16 28

All - Time 8299 1974 Time 13 2 9 0 2 4 11 1 1 2

TABLE 8: Comparison between ODS and PatchSim on Xiong
et al.’s dataset of 139 patches (All - P = all training patches

minus patches from project P, O=Overfitting patches,
C=Correct patches).

7 77

ODS PatchSim

Chart

4 06

ODS
PatchSim

Lang

13 1122

ODS PatchSim

Math

6 45

ODS PatchSim

Time

Fig. 3: Intersection of the detected overfitting patches (true
positives) by ODS and PatchSim.

by both techniques. The remaining 52 patches can only be
identified by either ODS or PatchSim.

Notably, ODS and PatchSim do not discard the same
overfitting patches. They complement each other in three
projects (Chart, Math and Time) and overlap in one project
(Lang). This is because these two techniques are based on
different strategies. PatchSim is a dynamic patch assessment
technique that analyzes execution traces between passing
tests and failing tests. ODS, on the contrary, is a static tech-
nique that builds a probability model to predict the patch’s
correctness by considering code features. Since they use
strategies of different natures, they have different results.

Case study of a true positive case. In Listing 1, we
give an example of an overfitting patch generated for bug
Chart-17, which is detected as overfitting by ODS but not
PatchSim. Listing 1a shows the overfitting patch by Nopol
for this bug2, and Listing 1b gives the human-written patch.
The program repair patch and the human-written patch
are different to a large degree yet PatchSim considers it
as correct based on the test execution comparison: the
passing tests perform similarly and the failing tests perform

2. which is identified as Patch90 in our dataset

12

differently after patching the bug. ODS well considers it as
overfitting because of code features related to two global
variables (this.data and this.range) that are used in condi-
tional expressions. For the ODS learned model, the local
variables are more likely to be used in a correct patch, rather
than global variables, particularly when local variables are
around the patched code (e.g., variables end and start).
Consequently, ODS identifies it as an overfitting patch.

(a) An overfitting patch for Chart-17 from Patch90 by Nopol
if (end < start) {

+ if (this.data.size() == this.range.length()){
throw new IllegalArgumentException("..");}

+ }

(b) A human-written patch for Chart-17
public Object clone() {
- Object clone = createCopy(0, getItemCount()-1);
+ TimeSeries clone = (TimeSeries) super.clone();
+ clone.data = ObjectUtil.deepClone(this.data);

Listing 1: An overfitting patch only detected by ODS and the
corresponding human-written patch.

Case study of a false positive case. We manually in-
vestigate the causes of those false positive cases. Listing 2
presents three patches3 generated for two bugs Math-70
and Math-73 bugs that are identical to the human-written
patches, yet wrongly classified as overfitting by ODS. We
note that the three patches use the same repair pattern: they
fix the bug by replacing a method call by its overridden
version. However, ODS does not have a feature to capture
the overridden method replacement. This shows that ODS is
interpretable and traceable: one can understand the reasons
behind a wrong classification and add the missing features
that could potentially mitigate the problem.

Runtime Performance. Table 9 summarizes our obser-
vations about the runtime performance. The first column
presents the two patch assessment techniques, and the
second column gives the total time spent on the feature
extraction and training process. Since PatchSim does not
require such a process, we put a ’-’ in the corresponding cell.
The third column presents the total prediction time spent in
classifying the correctness of 139 patches of RQ1. The fourth
column gives the average prediction time per patch.

ODS spent approximately 10 hours for feature extraction
and training. Most of the time is spent on the feature extract
phase and the training time takes less than 10 minutes.
Please note that this feature extraction phase only needs to
be done once for a given training dataset and the learned
model can be reused. PatchSim takes approximately 70
hours to classify all 139 patches, while ODS takes less than
30 minutes for predicting the correctness of all patches. On a
per-patch basis, PatchSim takes on average 30 minutes and
ODS takes on average 13 seconds for classifying a single
patch. Therefore, ODS is 138 times faster than PatchSim in
identifying overfitting patches. Yet, this comes to the cost
of 10 hours to extract code features and train the model.
The total time of the experiment is 10.5 hours for ODS (10
hours for features extraction and training + 30 minutes for

3. Two patches generated for Math-70 by HDRepair and jGenProg
are identical

(a) Patch by HDRepair and jGenProg for Math-70
- return solve(min, max);
+ return solve(f, min, max);

(b) Patch by jGenProg for Math-73
- return solve(f, min, yMin, max, yMax,

initial, yInitial);
+ return solve(f, min, max);

Listing 2: False positive cases of Math-70 and Math-73

Approach Feature Total Prediction
+ Training Prediction Time/Patch

PatchSim - ≈ 70 hours ≈ 30 mins
ODS ≈ 10 hours <30 mins 13 secs

TABLE 9: Comparison of runtime performance of PatchSim
and ODS.

prediction), which is also significantly faster than PatchSim
(70 hours).

Answer to RQ2: Our in-depth analysis shows that ODS
and dynamic patch assessment technique PatchSim do
not detect the same overfitting patches, and thus they
can be considered complementary. On the runtime side,
ODS is 138 times faster than PatchSim for classifying a
single patch as overfitting or not (13 seconds versus
30 minutes). The main reason is that ODS is a purely
static approach, which saves compilation, instrumen-
tation, and execution time. For the practitioners who
use program repair tools, it is significant: they get
an overfitting diagnostic almost as soon a patch is
generated.

4.3 RQ3: Project Independence

We look at whether the overfitting knowledge gained from
one project is useful for classifying patches generated from
other projects. Table 10 presents the ODS effectiveness in
classifying 10,024 considered patches from 26 projects that
have more than five patches in our dataset. The projects are
sorted by the total number of testing patches in descending
order. The first column gives the name of the project. The
second to fourth columns present the number of overfitting
patches, correct patches, and the total number of samples
in the training set. Please note that those are the original
training patch numbers before running SMOTE. The fifth
and seventh columns show the testing patches from the
evaluated projects. We present the results of TP, FP, TN, FN,
precision, recall, and accuracy in the last seven columns.
The first eight projects contain both overfitting and correct
patches while the latter 18 projects contain only correct
patches. Note that per the literature, we know that some
projects in the latter category have overfitting patches (e.g.,
Closure), yet per the labeling technique used in our paper,
no test can be generated to show that they are actually
overfitting, hence #O = 0 for column in testing.

This results in TP, FN, precision and recall cannot be
computed for a single class sample (i.e., projects only with
correct patches), thus we put a ’-’ in the corresponding cells.

13

Project P
Training (discarded from P) Testing on P Results

O # C # Sum # O # C # Sum TP FP TN FN Precision Recall Accuracy

Math 3625 1783 5408 4674 220 4894 3056 48 172 1618 98.5% 65.4% 66.0%

Chart 6977 1978 8955 1322 25 1347 1026 7 18 296 99.3% 77.6% 77.5%

Lang 7267 1940 9207 1032 63 1095 767 24 39 265 97.0% 74.3% 73.6%

Jackrabbit 7950 1761 9711 349 242 591 248 44 198 101 84.9% 71.1% 75.5%

Flink 7949 1937 9886 350 66 416 244 13 53 106 94.9% 69.7% 71.4%

Accumulo 8022 1922 9944 277 81 358 225 12 69 52 94.9% 81.2% 82.1%

Traccar 8132 1962 10094 167 41 208 120 2 39 47 98.4% 71.9% 76.4%

Libra 8171 2002 10173 128 1 129 122 0 1 6 100% 95.3% 95.3%

Wicket 8299 1758 10057 0 245 245 - 35 210 - - - 85.7%

Closure 8299 1831 10130 0 172 172 - 57 115 - - - 66.9%

Camel 8299 1879 10178 0 124 124 - 19 105 - - - 84.7%

Jsoup 8299 1915 10214 0 88 88 - 20 68 - - - 77.3%

Log4J 8299 1931 10230 0 72 72 - 6 66 - - - 91.7%

Spoon 8299 1953 10252 0 50 50 - 1 49 - - - 98.0%

Maven 8299 1961 10260 0 42 42 - 3 39 - - - 92.9%

Mockito 8299 1968 10267 0 35 35 - 8 27 - - - 77.1%

Time 8299 1974 10273 0 29 29 - 8 21 - - - 72.4%

Cli 8299 1975 10274 0 28 28 - 8 20 - - - 71.4%

JacksonXml 8299 1985 10284 0 18 18 - 2 16 - - - 88.9%

Spring 8299 1986 10285 0 17 17 - 0 17 - - - 100%

Codec 8299 1986 10285 0 17 17 - 2 15 - - - 88.2%

Csv 8299 1986 10285 0 17 17 - 3 14 - - - 82.4%

Gson 8299 1988 10287 0 15 15 - 3 12 - - - 80.0%

Incubator 8299 1996 10295 0 7 7 - 1 6 - - - 85.7%

Fresco 8299 1998 10297 0 5 5 - 0 5 - - - 100%

Molgenis 8299 1998 10297 0 5 5 - 1 4 - - - 80.0%

Total 26 projects 8299 1725 10024 5808 327 1398 2491 94.7% 70.0% 71.9%

TABLE 10: Accuracy of ODS in a cross-project setting (O=Overfitting patches, C=Correct patches).

We present the results by considering a total of all 26 projects
in the last row.

For example, the first row indicates when ODS is evalu-
ated for testing all patches for the Math project, trained on
3,625 overfitting patches and 1,783 correct patches from all
projects except those from Math (note that this training set is
the same as the one for testing Math patches in RQ1, see the
third row of Table 8) and tested on 4,674 overfitting patches
and 220 correct patches from Math. ODS rightly detects
3,056/4,674 overfitting patches, 172/220 correct patches,
it fails to identify 1,618 overfitting patches and with 48
false positives. This means that for the Math project, ODS
achieves 98.5%, 65.4% and 66.0% in precision, recall and
accuracy, respectively.

Considering a total of 10,024 patches from 26 projects,
ODS rightly detects 5,808 of 8,299 overfitting patches, 1,398
of 1,725 correct patches, it fails to identify 2,491 overfitting
patches and with 327 false positive cases. Overall, ODS
achieves the scores of 94.7%, 70.0% and 71.9% in precision,
recall and accuracy, respectively.

Those results are consistent with those presented in
RQ1, where ODS produces respective precision, recall and
accuracy of 93.3%, 63.6% and 67.6% in the evaluation of 139
patches from 4 projects. Since this experiment is made on a
dataset two orders of magnitude bigger (10,024 versus 139),
the external validity of the performance evaluation of ODS
is significantly improved.

We note that ODS is generally effective on all projects

14

and its effectiveness is not tied on specific projects. Con-
sidering overfitting patches only, ODS classifies more true
positive cases than false negative cases in all 26 projects.
In total, 5,808 overfitting patches are rightly classified and
2,491 overfitting patches are wrongly classified. Considering
correct patches only, ODS classifies more true negative cases
than false positive cases in all 26 projects. In total, 1,398 true
negatives and 327 false positives are produced.

Considering all patches together, ODS achieves an ac-
curacy higher than 70% in 24/26 projects. Recall that we
make sure that the training dataset does not contain any
patch from the project considered for testing, this shows that
the knowledge captured on one project can be applied to a
new and unseen project. To our knowledge, this transfer
effect has only been studied once by Long and Rinard
[30]. Since their paper focuses on patch ranking (and not
patch classification), we are the first to measure and report
on project independence for overfitting patch classification,
and to show that the overfitting knowledge gained on one
project can be applied to another project. Also, there are
22 (except for the 4 projects evaluated in RQ1) new projects
that have never been evaluated in the literature. This trans-
fer effect is important for ODS to be generally applicable
in practice, because when practitioners start new projects,
they do not have a history of program repair patches. To
sum up, practitioners can directly reuse ODS to do patch
classification when they deploy automatic program repair.

The performance variation of overfitting detection over
projects is small but noticeable. There are two projects that
achieve accuracy of 100%, four projects achieve accuracy
above 90%, nine projects achieve accuracy between 80% and
90%, nine projects achieve accuracy between 70% and 80%,
and two projects achieve accuracy between 60% and 70%.
This is because different projects have different characteris-
tics in terms of coding style and complexity of the human-
written patch considered in the testing dataset. For example,
we note the lowest accuracy of projects with only correct
patches is 66.9% for project Closure which is still arguably
high. Our manual analysis shows that the human-written
patches for Closure are complex because they consist of more
than 10 lines of changed code, which is typically more than
the training correct samples.

Answer to RQ3: Over a novel dataset of 10,024 patches
specifically designed for overfitting research, ODS
reaches an overall accuracy of 71.9% (min accuracy
66.0%, median accuracy 81.1% and maximum accuracy
100% from 26 projects). Per our original methodology
ensuring that training patches come from different
projects, this clearly shows that ODS can be used
for overfitting detection on new projects. Also this
experiment made on a novel dataset: 1) confirms the
performance of ODS per the experiments of RQ1; 2)
improves its external validity since the dataset is an
order of magnitude bigger. This result is important
for practitioners, it means they can directly use ODS
to do patch classification on their projects with good
performance, without any new data collection or new
patch labeling for this particular project.

4.4 RQ4: Feature Analysis

Features TP FP TN FN Accuracy

ODS@CodeDescription 7296 466 1537 1003 85.74%

ODS@RepairPattern 5535 595 1408 2764 67.34%

ODS@Contextual 7681 480 1523 618 89.34%

ODS@50Best 7185 566 1437 1114 83.69%

ODS@100Best 7972 567 1436 327 91.32%

ODS@150Best 8047 527 1476 252 92.44%

ODS@All 8098 452 1551 201 93.66%

TABLE 11: The impact of subsets of ODS features on
performance.

Table 11 presents the results of our feature selection
study with different set of features to classify 10,302 labeled
patches of dataset RepairThemAll (see Section 3.1.2). The
first three rows give the prediction results for the considered
subsets of ODS features, i.e., 150 code description features,
26 repair pattern features, and 26 contextual features. The
fourth to sixth rows give the prediction results with the K
best features, where K is defined as 50, 100, and 150.

Those results allow us to deepen our understanding
of ODS features as follows. 1) ODS with all features out-
performs ODS with any subset of features: ODS achieves
93.66% of accuracy, which is significantly higher the accu-
racy with only code description features (85.74%), repair
pattern features (67.34%) and contextual features (89.34%).
This result suggests that the three groups of ODS features
complement each other and capture separated characteris-
tics of overfitting; 2) The relation between the number of se-
lected features and the effectiveness of ODS is monotonous:
more ODS features contribute to higher accuracy. For exam-
ple, the accuracy of the best 150 features is 92.44%, which
outperforms the accuracy with the best 100 features (91.32%)
and the best 50 features (83.69%). This confirms that the
ODS features are not redundant, and all ODS features are
positively contributed to the ODS effectiveness in identify-
ing overfitting patches; 3) With only a half number of ODS
features, e.g. 100 features, ODS still can be considered effec-
tive. This means that in practice, when resources are limited
to extract all features, practitioners could still achieve good
accuracy by only considering the top-K subset of features.

Now we look at the important feature analysis. Figure 4
presents the top-10 important ODS features that contribute
to the accuracy of ODS. The X-axis gives the name of the
features while the Y-axis shows the important values by
their F-score, where F-score indicates the number of times
a feature is used to split the data across all trees [8]. The
larger the F-score is, the more important the feature is. For
example, feature codeMove is shown as the most important
ODS features. Futhermore, to analyze how these features
positively and negatively correlated to ODS accuracy, we
present them in Figure 5. In Figure 5, the blue and red bars

15

Fig. 4: The top-10 important ODS features.

show the mean values of the feature in the set of correct
and overfitting patches, respectively. The caps indicate the
95% confidence interval of the mean based on boosting. The
5 features presented in the top of the figure are negatively
correlated: the lower the value, the more likely it is to be an
overfitting patch. The 5 features presented in the bottom of
the figure are positively correlated: the higher the value, the
more likely it is to be an overfitting patch.

Negatively correlated features. The half top of Figure 5
presents five ODS features that are negatively correlated to
the overfitting patches: codeMove, singleLine, wrongMethod-
Ref, expLogicMod, and srcModifiedSimilar. These can be in-
terpreted as follows: 1) Correct patches tend to be lower
granularity fix: feature singleLine and expLogicMod indicate
the correct patches are more likely in a single line modifi-
cation than overfitting patches and modifications are more
likely to be made at the expression level. 2) Correct patches
tend to be similar to existing code: feature codeMove, wrong-
MethodRef and srcModifiedSimilar all mean modifications of
existing code. Feature codeMove indicates a move of existing
code to a different location, wrongMethodRef means the fix
requires an invocation of another existing method, and
srcModifiedSimilar indicates that the fix is similar to the
existing code in the buggy program. Notably, the significant
difference of wrongMethodRef between correct patches and
overfitting patches suggests a limitation of program repair
tools: they should consider more the strategy of replacing
the wrong method invocations with existing methods. This
also confirms the finding of [39] that automated repair
techniques are less capable of fixing defects that require
new function calls. Also, the similarity of the modified code
on overfitting patches is significantly lower than for correct
patches (srcModifiedSimilar). This suggests that the program
repair researchers can consider more the similarity of patch
code to improve the effectiveness of program repair tools,
as done in [37], [58].

Positively correlated features. The half bottom of Figure 5
presents five ODS features that are positively correlated

to the overfitting patches: srcGlobalVariables, constChange,
srcStmtControl, laterStmtCall and srcRemoveWholeIfBlock. This
can be interpreted as follows: 1) Overfitting patches tend
to use more global variables (srcGlobalVariables) and con-
stant values (constChange) than correct patches for a patch
generation. 2) Overfitting patches are generated at a higher
granularity: adding a control statement (srcStmtControl) and
removing a whole branch block (srcRemoveWholeIfBlock) are
high granularity transformations. This is consistent with the
aforementioned finding that correct patches tend to be lower
granularity fix based on negative correlation. This high
proportion of high granularity transformations come from
program repair systems based on genetic programming
(e.g., Arja and jGenProg): they often insert, update or delete
the whole AST nodes corresponding to a faulty statement or
block (e.g., the whole branch block) rather than focusing on
expression level changes.

Beyond the features not discussed above, we also note
that there are many other contextual features that are impor-
tant according to correlation: feature laterStmtCall (shown
in the fourth of the second row in Figure 5) shows that
overfitting patches tend to have a method invocation after
the patched location and feature typeofFaultyStatementParent
states that the type of the parent of faulty statement is im-
portant because it gives the scope information of a patched
code (e.g., a parent type can be a class, method or block).

Contextual features provide important information and
are even more valuable when considered in combination
with the modification code features. For example, if the
features of the patch transformations are similar to the
features from the surrounded block, the patch tends to be
overfitting. This similarity means that the patch code may
duplicate its surrounding code, which is less likely to be
correct. This confirms one of the core intuitions of ODS: the
context is important, the correctness of a patch is not only
related to the patched code but also to the code surrounding
it. By considering the patched code and the context code
together, ODS achieves a high accuracy for overfitting patch
detection.

Answer to RQ4: Our original feature analysis shows
that all ODS features are useful, and contribute to the fi-
nal effectiveness. A major advantage of ODS is that the
features are explainable: one can look at features with
high positive (or negative correlation) with overfitting
and understand the overfitting diagnostic of ODS.

5 DISCUSSION

5.1 Threats to Validity

We now discuss the threats to the validity of our results.
Threats to internal validity. Bugs in the implementation

of ODS could be a threat to the validity of our results. To
mitigate that threat, we have written unit tests to guarantee
the correct behavior of the ODS tool. We also manually
inspected the results from ODS. For some patches, we
have manually compared the extracted code features and
the source code to make sure they are consistent. Another
internal threat relates to the re-implementation of Prophet in
Java may contain potential defects. To reduce those threats,

16

Fig. 5: Most important ODS features according to positive and negative correlation. The height of rectangles shows the mean
value of features in a patch group and the cap of the bar shows the 95% confidence interval. The blue and red bars indicate the

correct and overfitting patches, respectively.

40 20 0 20 40

60

40

20

0

20

40

60

Correct
Overfitting

Fig. 6: t-SNE projection of a random sample of 1000 correct
(blue) and 1000 overfitting (red) patches.

we make all the source code and results publicly available
for future researchers to check our code [13].

Threats to external validity. A threat to external validity
relates to whether the performance of ODS generalizes to
arbitrary Java projects. To mitigate this threat, we took
a special in performing a large experiment: 1) on 10,302
patches written in Java; 2) from three Java bug benchmarks
(Defects4J, Bugs.jar and Bears); 3) covering 95 open-source
projects. To our knowledge, this is the largest number of
projects ever reported in this research field and this is
arguably good for external validity.

Threats to construct validity. The parameters involved in
this study (shown in subsection 3.6) may impact the re-
ported results. To mitigate this, we make publicly available
the values of the hyperparameters we used (in particular,
those we used on the XGBoost framework). Per our exper-
iments, there is no evidence that the performance would
dramatically change with other values of hyperparameters.

5.2 False Positives

Recall that our RQ1 result reports that over 248 correct
patches, 182 patches are rightly classified as correct and 66
patches are wrongly classified as overfitting (false positive).
And our RQ3 reports that over 1,725 correct patches, 1,398
patches are rightly classified as correct and 327 patches are
wrongly classified as overfitting.

Now we investigate the reasons for which ODS yields
false positives. First, we visualize the ODS features distri-
bution. Figure 6 presents the distribution of correct and
overfitting patches onto a two-dimensional map of ODS
features with t-SNE clustering [55]. The figure contains 2000
randomly selected patches, 1000 correct patches and 1000
overfitting patches, from the three considered benchmarks
presented. The blue points represent the correct patches
while the red points represent the overfitting patches. As
seen in Figure 6, the majority of correct and overfitting
patches form two distinct clusters: the overfitting patches
cluster in the top while the correct patches cluster at the
bottom. This shows that ODS indeed uses the code features
to distinguish these two categories of patches. Nevertheless,
there exists a small overlap of overfitting patches and correct
patches in the cluster of overfitting patches (top area). This
indicates that indeed some correct patches with similar code
features as overfitting patches are wrongly classified as
overfitting, and this is the cause of false positives. We manu-
ally investigate a sample of those false positive cases and we
could identify two main reasons why that misclassification
happens. First, some correct patches are complex and spread
over different fixing locations and different buggy files (e.g.,
Chart-18 from Defects4J): this leads to noisy features and
confuses the ODS classifier. Second, some patches are not
perfectly described by the ODS features (as discussed in Sec-
tion 4.1 and shown in the patch of Listing 2). Finally, we note
that there is no a single overfitting patch presents in the blue
cluster of correct patches at the bottom: this suggests that
in the most conservative configuration, ODS can achieve an
accuracy of 100%, i.e., ODS can deliver only correct program
repair patches to developers and practitioners.

17

6 RELATED WORK

6.1 Overfitting Assessment without Additional Oracles

Researchers have proposed techniques for detecting over-
fitting patches without the use of additional oracles, for
example, the human-written patches. We now summarize
the most important works on this line.

Long and Richard propose Prophet [30] for ranking
program repair patches in the C language. ODS and Prophet
share the same hypothesis that cross-project code features
capture universal correctness properties for prioritizing
APR patches. Beyond considering different programming
languages, ODS and Prophet differ in their features and
learning strategies. W.r.t. features, Prophet proposes 30
atomic features and 5 modification features. The features
of ODS are more comprehensive than Prophet’s: they com-
prise repair patterns and contextual code features. W.r.t.
learning strategies, ODS is trained with both overfitting and
correct real-world patches generated by different APR sys-
tems, while Prophet only considers as input correct human-
written patches. Along the same line, the overfitting training
labels are not guaranteed in the Prophet experiment, while
we found the ODS training dataset on a strict check on the
plausibility of patches.

Tan et al. [53] propose Anti-patterns to identify whether
code transformations in the patch fall into the category
of pre-defined overfitting patterns. Anti-patterns and ODS
are both static patch assessment techniques that encode
human knowledge for overfitting patch detection. On the
evaluation of the 139 patches from the dataset of Xiong et
al. [61], Anti-patterns succeed in classifying 27 overfitting
patches with one misclassification of a correct patch, while
ODS identifies 70 overfitting patches. Beyond the higher ef-
fectiveness of ODS, we note that ODS and Anti-patterns are
different in their strategies: Anti-patterns only analyze the
transformations involved in a patch, while ODS considers
the transformation structure, but in conjunction with other
sources of information: the characteristics of fixing ingredi-
ents and the context information (i.e., the code around the
transformations).

Opad [67] and Fix2Fit [17] are two patch assessment
techniques based on the creation of implicit oracles to detect
overfitting patches that introduce crashes or memory-safety
problems. We find the following difference between the
ODS and these two techniques. First, Opad and Fix2Fit are
dynamic patch assessment techniques, while ODS is a static
technique. Second, Opad and Fix2Fit target specific types
of overfitting patches, those that introduce crashes (e.g.,
runtime exception), while ODS makes no assumption on the
type of overfitting patches.

Tian et al. [54] employ BERT to automatically extract
code features. ODS is significantly different from their work
in terms of interpretability. Tian et al. and Csuvik et al.
extract the code features with the BERT framework and con-
sequently, those features black box and hard to interpret. On
the contrary, the overfitting diagnostic of ODS are manual-
crafted features and are interpretable.

Wang et al. [56] leverage on eight static code features
from three existing techniques (S3 [27], SSFix [59] and
CapGen [58]) for overfitting patch assessment. As shown
in our experiment, the ODS features results in both higher

precision and recall compared to the eight code features
considered in their work.

6.2 Overfitting Assessment with Additional Oracles
There is research on employing techniques to generate or-
acles based on the human-written patch considered as the
ground truth.

Xin and Reiss [60] propose DiffTGen to identify over-
fitting patches with tests generated by Evosuite [15] and
oracles generated on human-written patches. Those tests
aim to detect behavioral differences between the program
repair patch and the human-written patch.

Le et al. [28], [26] evaluate the overfitting problem in
semantics-based techniques with automated test case gen-
eration techniques and ground truth patches. They further
investigate the reliability of automatic patch correctness as-
sessments with DiffTGen and random-based test generation
technique Randoop [40] by comparing them with manual
assessments done by 35 professional developers [26]. They
found that it is not enough to only use these techniques
(e.g., manual assessment and additional tests) to evaluate
the effectiveness of program repair approaches.

Yu et al. [71] and Ye et al. [68] employ Evosuite [15]
to automatically generate additional test cases based on
the human-written patches on two benchmarks: Defects4J
and QuixBugs, respectively. Ye et al. [69] present a large-
scale experiment on using Evosuite [15] and Randoop [40]
to automatically generate test cases. They use those gen-
erated tests for validating the patch assessment manually
done previously by researchers. By doing so, they detected
12 mislabeled patches (i.e., overfitting patches classified
as correct) from previous experiments, which shows the
complexity and error-proneness of manual assessment.

Yang and Yang [66] use the invariants generation to
analyze the behavior of generated patches. Their study
shows that the majority of plausible patches (92/96) expose
different runtime invariants. Yet, the effectiveness of invari-
ants for overfitting detection is not proven, the recent work
of Wang et al. [56] shows that this technique suffers from
false positives to a large degree.

Wang et al. [56] conduct an empirical study of oracle
based patch assessment experiment to compare the effec-
tiveness of existing dynamic techniques: DiffTGen, test gen-
eration based assessment, and invariant based patch assess-
ment. Their work shows that patch assessment techniques
with additional oracles achieve significantly higher preci-
sion than patch assessment techniques without additional
oracles.

As mentioned, all those approaches need a ground truth
patch to construct oracles which determine the correctness
of patches. On the contrary, ODS is able, as shown in
this paper, to predict the correctness of patches without
requiring a ground truth patch.

6.3 Analyzing Programs with Features
Different works have used features extracted from source
code in the field of fault localization, program synthesis and
automated program repair.

In the field of fault localization, works by [64], [25], [50]
have used dynamic and/or static features. For instance, Kim

18

et al. [25] present a learn-to-rank fault localization technique
named PRINCE. It first creates, based on 55 dynamic and
static features, a ranking model for fault localization using
genetic programming. As a difference, beyond the different
purposes, ODS is based exclusively on a larger different
set of static features (202 features versus 55 features) Sim-
ilarly to PRINCE, Dam et al. [5] define an approach that
automatically learns both semantic and syntactic features of
code using the Long-Short-Term-Memory model with the
goal of predicting vulnerabilities. Their evaluation showed
it slightly outperforms PRINCE.

Yu et al. [70] define a conditional random field that
captures how certain repair transforms are applied to certain
AST nodes, and then uses the learned model to predict
transforms to be applied on buggy code. The focus is
different, their work focuses on the synthesis of a patch
transformation, while ODS focuses on overfitting patch
detection.

Other works have focused on defect prediction based
on code features. Their goal is to determine if a piece
of code is buggy or clean. For instance, Wang et al. [57]
propose an approach that learns semantic features for de-
fect prediction. The approach takes tokens from the source
code as input and generates semantic features from them,
which are then used to build and evaluate the models for
predicting defects. Similarly, Shippey et al. [47] propose a
defect prediction technique based on learning features from
N-grams extracted from AST, and Hoang et al. [21] leverage
the convolutional neural network (CNN) to automatically
encode the commit code and message for Just-In-Time (JIT)
defect prediction. Our approach, on the contrary to those,
uses carefully designed manual-crafty features that aim at
capturing the syntactic and semantic of patch transforma-
tion.

7 CONCLUSION

We have presented ODS, a novel overfitting patch detection
system that utilizes static code features. To our knowledge,
the considered set of features has ever been studied before
in the context of overfitting patch assessment. In our exper-
iments, we have trained ODS to detect overfitting patches
from 10,302 program repair patches from three bug bench-
marks (Defects4J, Bugs.jar and Bears), which makes it one of
the largest learning-based experiments in this research field.
The results of our evaluation show that ODS achieves an
accuracy of 71.9% in detecting overfitting patches from 26
projects, and outperforms the state-of-the-art. ODS is appli-
cable in practice and can be employed as a post-processing
procedure to classify the patches generated by different APR
systems (e.g., [31], [4]). Notably, our experiment has evalu-
ated whether patch assessment can be made in a project
independent manner, which overfitting knowledge learned
on one project and applied on another one.

Our future work will focus on dynamic features: we plan
to extract features from execution such as test diagnostics to
understand the root cause of a bug [22], and to combine
them with the ODS static features for better overfitting
patch classification. Also, we are planning to adapt the
ODS features to other tasks, such as patch ranking and bug
clustering.

ACKNOWLEDGMENTS

This work was partially supported by the Wallenberg Arti-
ficial Intelligence, Autonomous Systems and Software Pro-
gram (WASP) funded by Knut and Alice Wallenberg Foun-
dation, by the Swedish Foundation for Strategic Research
(SSF). Some experiments were performed on resources pro-
vided by the Swedish National Infrastructure for Comput-
ing.

REFERENCES

[1] Avrim L. Blum and Pat Langley. Selection of relevant features
and examples in machine learning. Artificial Intelligence, 97(1):245
– 271, 1997.

[2] Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and
W. Kegelmeyer. Smote: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. (JAIR), 16, 2002.

[3] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boost-
ing system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, New
York, NY, USA, 2016. Association for Computing Machinery.

[4] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël
Pouchet, Denys Poshyvanyk, and Martin Monperrus. Sequencer:
Sequence-to-sequence learning for end-to-end program repair.
IEEE Transactions on Software Engineering, 2019.

[5] H. K. Dam, T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy, and
A. Ghose. Automatic feature learning for predicting vulnerable
software components. IEEE Transactions on Software Engineering,
pages 1–1, 2018.

[6] V. Debroy and W. E. Wong. Using mutation to automatically
suggest fixes for faulty programs. In 2010 Third International
Conference on Software Testing, Verification and Validation, 2010.

[7] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. In NAACL-HLT, 2019.

[8] S. Ding. Feature selection based f-score and aco algorithm in
support vector machine. In 2009 Second International Symposium on
Knowledge Acquisition and Modeling, volume 1, pages 19–23, 2009.

[9] N. R. Draper and H. Smith. ’dummy’ variables. Wiley, 1998.
[10] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin

Monperrus. Dynamic Patch Generation for Null Pointer Excep-
tions Using Metaprogramming. In IEEE International Conference on
Software Analysis, Evolution and Reengineering, 2017.

[11] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui
Abreu. Empirical review of java program repair tools: A large-
scale experiment on 2,141 bugs and 23,551 repair attempts. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, pages 302–313, New York, NY, USA,
2019. ACM.

[12] Thomas Durieux and Martin Monperrus. DynaMoth: Dynamic
Code Synthesis for Automatic Program Repair. In 11th Interna-
tional Workshop in Automation of Software Test (AST 2016), 2016.

[13] GitHub Experiment. ODS’s repository that contains the models
and the data used in this study. https://anonymous.4open.
science/r/e64248dd-821c-4a19-9046-894e88503ce7, 2020.

[14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Mar-
tinez, and Martin Monperrus. Fine-grained and accurate source
code differencing. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 313–
324, New York, NY, USA, 2014. ACM.

[15] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In ESEC/FSE ’11 Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, 2011.

[16] Jerome Friedman. Greedy function approximation: A gradient
boosting machine. The Annals of Statistics, 29, 11 2000.

[17] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. Crash-
avoiding program repair. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2019, 2019.

[18] Ali Ghanbari. Validation of automatically generated patches: An
appetizer, 2020.

https://anonymous.4open.science/r/e64248dd-821c-4a19-9046-894e88503ce7
https://anonymous.4open.science/r/e64248dd-821c-4a19-9046-894e88503ce7

19

[19] Ali Ghanbari, Samuel Benton, and Lingming Zhang. Practical
program repair via bytecode mutation. ISSTA 2019. Association
for Computing Machinery, 2019.

[20] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Au-
tomated program repair. Commun. ACM, 2019.

[21] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo,
and Naoyasu Ubayashi. Deepjit: An end-to-end deep learning
framework for just-in-time defect prediction. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR),
pages 34–45, 2019.

[22] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. Causal
testing: Understanding defects’ root causes. In Proceedings of the
42nd International Conference on Software Engineering (ICSE), Seoul,
Republic of Korea, May 2020.

[23] Rene Just, Darioush Jalali, and Michael D Ernst. Defects4j: A
database of existing faults to enable controlled testing studies for
java programs. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, pages 437–440. ACM, 2014.

[24] Tukey J.W. Exploratory data analysis. Addison-Wesley, 1977.
[25] Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moonzoo Kim.

Precise learn-to-rank fault localization using dynamic and static
features of target programs. ACM Trans. Softw. Eng. Methodol.,
28(4):23:1–23:34, October 2019.

[26] Xuan-Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, and Shanping
Li. On reliability of patch correctness assessment. In Proceedings of
the 41st ACM/IEEE International Conference on Software Engineering,
2019.

[27] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and
Willem Visser. S3: Syntax- and semantic-guided repair synthesis
via programming by examples. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
2017.

[28] Xuan-Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues.
Overfitting in semantics-based automated program repair. In Pro-
ceedings of the 40th International Conference on Software Engineering,
ICSE ’18, pages 163–163, New York, NY, USA, 2018. ACM.

[29] Ping Li. Robust logitboost and adaptive base class (abc) logitboost.
In Proceedings of the 26th Conference on Uncertainty in Artificial
Intelligence, UAI 2010, 2010.

[30] Fan Long and Martin Rinard. Automatic patch generation by
learning correct code. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’16, 2016.

[31] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li,
Moshi Wei, and Lin Tan. Coconut: Combining context-aware
neural translation models using ensemble for program repair. In
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020.

[32] Fernanda Madeiral, Thomas Durieux, Victor Sobreira, and
Marcelo Maia. Towards an automated approach for bug fix pattern
detection. In Proceedings of the VI Workshop on Software Visualization,
Evolution and Maintenance (VEM ’18), 2018.

[33] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Mon-
perrus. Bears: An Extensible Java Bug Benchmark for Automatic
Program Repair Studies. In Proceedings of the 26th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER ’19), pages 468–478, Hangzhou, China, 2019. IEEE.

[34] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng
Xuan, and Martin Monperrus. Automatic Repair of Real Bugs in
Java: A Large-Scale Experiment on the Defects4J Dataset. Springer
Empirical Software Engineering, 2016.

[35] Matias Martinez and Martin Monperrus. Ultra-large repair search
space with automatically mined templates: the cardumen mode of
astor. In SSBSE 2018 - 10th International Symposium on Search-Based
Software Engineering, volume 11036, pages 65–86, 2018.

[36] Matias Martinez and Martin Monperrus. Coming: a tool for min-
ing change pattern instances from git commits. In Proceedings of
the 41st International Conference on Software Engineering: Companion
Proceedings, pages 79–82. IEEE Press, 2019.

[37] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars
Grunske, and Abhik Roychoudhury. Semantic program repair
using a reference implementation. In Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18, 2018.

[38] Martin Monperrus. Automatic software repair: a bibliography.
ACM Computing Surveys, 51:1–24, 2017.

[39] Manish Motwani, Sandhya Sankaranarayanan, René Just, and

Yuriy Brun. Do automated program repair techniques repair hard
and important bugs? Empirical Software Engineering, 2018.

[40] Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-
directed random testing for java. In Companion to the 22Nd ACM
SIGPLAN Conference on Object-oriented Programming Systems and
Applications Companion, OOPSLA ’07, pages 815–816, 2007.

[41] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis
of patch plausibility and correctness for generate-and-validate
patch generation systems. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, pages 24–
36, 2015.

[42] John Ross Quinlan. C4.5: Programs for machine learning. In
Morgan Kaufmann Publishers Inc., 1993.

[43] R. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. Prasad. Bugs.jar:
A large-scale, diverse dataset of real-world java bugs. In 2018
IEEE/ACM 15th International Conference on Mining Software Reposi-
tories (MSR), pages 10–13, 2018.

[44] Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley
Weimer, and Ranjit Jhala. Type error feedback via analytic pro-
gram repair. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2020, 2020.

[45] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley
Weimer, and Ranjit Jhala. Learning to blame: Localizing novice
type errors with data-driven diagnosis. Proc. ACM Program. Lang.,
1(OOPSLA), 2017.

[46] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser,
Phil McMinn, and Andrea Arcuri. Do automatically generated
unit tests find real faults? an empirical study of effectiveness
and challenges. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015.

[47] Thomas Shippey, David Bowes, and Tracy Hall. Automatically
identifying code features for software defect prediction: Using ast
n-grams. Information and Software Technology, 106:142 – 160, 2019.

[48] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. Is
the cure worse than the disease? overfitting in automated program
repair. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, 2015.

[49] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin
Monperrus, and Marcelo A. Maia. Dissection of a bug dataset:
Anatomy of 395 patches from defects4j. In Proceedings of SANER,
2018.

[50] Jeongju Sohn and Shin Yoo. Fluccs: Using code and change metrics
to improve fault localization. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2017, pages 273–283, New York, NY, USA, 2017. ACM.

[51] Wang Song, Liu Taiyue, Nam Jaechang, and Tan Lin. Deep
semantic feature learning for software defect prediction. IEEE
Transactions on Software Engineering, 2018.

[52] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online
defect prediction for imbalanced data. In Proceedings of the 37th
International Conference on Software Engineering - Volume 2, ICSE
’15. IEEE Press, 2015.

[53] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik
Roychoudhury. Anti-patterns in search-based program repair. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 727–738,
2016.

[54] Haoye Tian, Kui Liu, Abdoul Kader Kaboreé, Anil Koyuncu, Li Li,
Jacques Klein, and Tegawendé F. Bissyandé. Evaluating represen-
tation learning of code changes for predicting patch correctness in
program repair. In Proceedings of the 35th ACM/IEEE International
Conference on Automated Software Engineering, 2020.

[55] Laurens van der Maaten and Geoffrey Hinton. Visualizing data
using t-sne. Journal of machine learning research, 9(Nov):2579–2605,
2008.

[56] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin,
Deqing Zou, Xiaoguang Mao, and Hai Jin. Automated patch
correctness assessment: How far are we? In Proceedings of the 35th
International Conference on Automated Software Engineering (ASE).
ACM, 2020.

[57] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning
semantic features for defect prediction. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), 2016.

[58] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi
Cheung. Context-aware patch generation for better automated
program repair. In Proceedings of the 40th International Conference
on Software Engineering, ICSE ’18, 2018.

20

[59] Q. Xin and S. P. Reiss. Leveraging syntax-related code for au-
tomated program repair. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2017.

[60] Qi Xin and Steven P. Reiss. Identifying test-suite-overfitted patches
through test case generation. In ISSTA, 2017.

[61] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang
Huang. Identifying patch correctness in test-based program re-
pair. In Proceedings of the 40th International Conference on Software
Engineering, pages 789–799. ACM, 2018.

[62] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang
Huang, and Lu Zhang. Precise condition synthesis for program
repair. In Proceedings of the 39th International Conference on Software
Engineering, 2017.

[63] Xiangzhe Xu, Weifeng Zhang, Lin Tan, and Xiangyu Zhang.
Cpc: Automatically classifying and propagating natural language
comments via program analysis. In IEEE/ACM 42th International
Conference on Software Engineering (ICSE), 2020.

[64] J. Xuan and M. Monperrus. Learning to combine multiple ranking
metrics for fault localization. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 191–200, Sep. 2014.

[65] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément,
Sebastian Lamelas, Thomas Durieux, Daniel Le Berre, and Martin
Monperrus. Nopol: Automatic repair of conditional statement
bugs in java programs. IEEE Transactions on Software Engineering,
2016.

[66] Bo Yang and Jinqiu Yang. Exploring the Differences between
Plausible and Correct Patches at Fine-Grained Level. In 2020 IEEE
2nd International Workshop on Intelligent Bug Fixing (IBF), pages 1–8,
2020.

[67] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better
test cases for better automated program repair. In In Proceedings
of 2017 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Paderborn, Germany, September 4–8, 2017
(ESEC/FSE’17), 11 pages, 2017.

[68] He Ye, Matias Martinez, Thomas Durieux, and Martin Monper-
rus. A comprehensive study of automatic program repair on the
quixbugs benchmark. Journal of Systems and Software, 171:110825,
2021.

[69] He Ye, Matias Martinez, and Martin Monperrus. Automated
patch assessment for program repair at scale. Empirical Software
Engineering, 26, 2021.

[70] Zhongxing Yu, Matias Martinez, Tegawend Bissyand, and Martin
Monperrus. Learning the relation between code features and code
transforms with structured prediction. CoRR, abs/1907.09282,
2019.

[71] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas
Durieux, and Martin Monperrus. Alleviating patch overfitting
with automatic test generation: a study of feasibility and effective-
ness for the nopol repair system. Empirical Software Engineering,
2018.

[72] Yuan Yuan and Wolfgang Banzhaf. Arja: Automated repair of
java programs via multi-objective genetic programming. In IEEE
Transactions on Software Engineering, 2018.

He Ye is a PhD student in the department of
theoretical computer science at KTH Royal In-
stitute of Technology in Sweden. She received
her BSc degree in software engineering from
Sichuan University and MSc degree in computer
science from University of Tampere. Her primary
research interest lies in automatic program re-
pair and software testing.

Jian Gu is a Ph.D. student at the Software Evo-
lution and Architecture Lab, University of Zurich.
He obtained his BSc degree in computer science
at Shandong University and MSc degree in ma-
chine learning at KTH Royal Institute of Technol-
ogy. Jian is interested in machine learning solu-
tions under the topic of software engineering.

Matias Martinez is an associate professor in
the Université Polytechnique Hauts-de-France
(France), and member of the LAMIH laboratory
(UMR CNRS 8201). He got his PhD degree
from University of Lille (France) and a Computer
Science degree from UNICEN (Argentina). His
research focuses on automated software engi-
neering, software testing and programming lan-
guages.

Thomas Durieux is a Post-Doc at KTH Royal
Institute of Technology. He obtained his PhD at
University of Lille, France on automatic patch
generation in production. His research interests
are software debloating and automatic patch
generation, bugs identification, developer inter-
action with bots.

Martin Monperrus is Professor of Software
Technology at KTH Royal Institute of Technol-
ogy. He was previously associate professor at
the University of Lille and adjunct researcher
at Inria. He received a Ph.D. from the Univer-
sity of Rennes, and a Master’s degree from
the Compiègne University of Technology. His re-
search lies in the field of software engineering
with a current focus on automatic program repair,
program hardening and chaos engineering.

	1 Introduction
	2 The ODS Approach for Overfitting Detection
	2.1 Overview of ODS
	2.2 Feature Extraction
	2.2.1 Feature Categories
	2.2.2 Feature Vectors
	2.2.3 Example

	2.3 Learning Algorithm
	2.4 Implementation

	3 Experimental Protocol
	3.1 Patch Datasets with Overfitting Labels
	3.1.1 Wang et al.'s Dataset
	3.1.2 RepairThemAll Dataset

	3.2 Dataset Cleaning
	3.3 Imbalanced Data Handling
	3.4 Terminology and Evaluation Metrics
	3.5 Experimental Methodology
	3.5.1 Protocol of RQ1
	3.5.2 Protocol of RQ2
	3.5.3 Protocol of RQ3
	3.5.4 Protocol of RQ4

	3.6 Experimental Parameter Settings

	4 Experimental Results
	4.1 RQ1: Effectiveness
	4.2 RQ2: Complementarity with PatchSim
	4.3 RQ3: Project Independence
	4.4 RQ4: Feature Analysis

	5 Discussion
	5.1 Threats to Validity
	5.2 False Positives

	6 Related work
	6.1 Overfitting Assessment without Additional Oracles
	6.2 Overfitting Assessment with Additional Oracles
	6.3 Analyzing Programs with Features

	7 Conclusion
	References
	Biographies
	He Ye
	Jian Gu
	Matias Martinez
	Thomas Durieux
	Martin Monperrus

