LogAssist: Assisting Log Analysis Through Log
Summarization

Steven Locke

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Applied Science (Software Engineering) at
Concordia University

Montréal, Québec, Canada

August 2021

© Steven Locke, 2021

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Steven Locke

Entitled: LogAssist: Assisting Log Analysis Through Log Summarization
and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Juergen Rilling

Examiner
Dr. Juergen Rilling

Examiner
Dr. Nikolaos Tsantalis

Supervisor

Dr. Tse-Hsun Chen

Approved by

Dr. Leila Kosseim, Graduate Program Director
Department of Computer Science and Software Engineering

August 9, 2021

Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

LogAssist: Assisting Log Analysis Through Log Summarization

Steven Locke

Logs contain valuable information about the runtime behaviors of software systems. Thus,
practitioners rely on logs for various tasks such as debugging, system comprehension, and anomaly
detection. However, logs are difficult to analyze due to their unstructured nature and large size. In
this thesis, we propose a novel approach called LogAssist that assists practitioners with log anal-
ysis. LogAssist provides an organized and concise view of logs by first grouping logs into event
sequences (1.e., workflows), which better illustrate the system runtime execution paths. Then, Lo-
gAssist compresses the log events in workflows by hiding consecutive events and applying n-gram
modeling to identify common event sequences. We evaluated LogAssist on logs generated by one
enterprise and two open source systems. We find that LogAssist can reduce the number of log events
that practitioners need to investigate by up to 99%. Through a user study with 19 participants, we
find that LogAssist can assist practitioners by reducing the time required for log analysis tasks by
an average of 40%. The participants also rated LogAssist an average of 4.53 out of 5 for improving
their experiences of performing log analysis. Finally, we document our experiences and lessons
learned from developing and adopting LogAssist in practice. We believe that LogAssist and our

reported experiences may lay the basis for future analysis and interactive exploration on logs.

Acknowledgments

First, and foremost, [would like to take this opportunity to express my sincere gratitude towards
my supervisor Dr. Tse-Hsun (Peter) Chen for his guidance, encouragement, and contributions dur-
ing my research journey. I feel fortunate to have had him as my supervisor and appreciate everything
he has taught me. I would also like to extend my gratitude to Dr. Weiyi Shang, Dr. Heng Li, Dr.
Jingiu Yang, Dr. Nikos Tsantalis and Dr. Bram Adams for their insight, guidance, and collaboration
throughout my master’s degree.

I would also like to extend my thanks to my undergraduate professors Dr. Leila Kosseim, Dr.
Constantinos Constantinides and Dr. Aiman Hanna. Each of these individuals have had a profound
impact on me and provided me with guidance, mentorship, and support, while challenging me to
be the best that I can be. If not for their passion and enthusiasm, I might not have even chosen to
pursue graduate studies.

From the very beginning, my fellow lab members from the SPEAR lab, and neighbouring
SENSE lab have been there to support me and set high standards for effort and quality. I am very
happy to have had them share this journey with me and make lasting memories with them.

I would like to dedicate my work to my parents and thank them for their continuous support

throughout my life. Without them, this thesis would not have been possible.

v

Related Publications

This thesis is related to the following publication:

= Steven Locke, Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang and Wei Liu. LogAssist: As-
sisting Log Analysis Through Log Summarization. This work was accepted for publication
in IEEE Transactions on Software Engineening 2021.

My contribution: Drafting the research plan, conceiving approach, collecting and analyzing
the data, implementing tool, designing user study, collecting and analyzing results, writing

and polishing the paper drafts.

Contents

List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Research Statement 0 it i e e e 3

1.2 Thesis Contributions 00t it it e e e e 4

1.3 Orgamzationofthe Thesis 5

2 Motivating Examples 6
2.1 Situation one: Anomaly detection after loadtesting.]

2.2 Situation two: Recovering common user behaviors. 7

2.3 Situation three: Identifying the root causes of system runtime issues. 7
2.4 Challenges observed during the above-mentioned situations. 8

3 The Design of LogAssist 9
31 LogAbstracton @ .t i it e e e e e e e e e e 0

32 Workflow Creation0 it i e e e e e e 11
321 Grouplogeventsby groupingID 12

322 Separateby Time Gap 12

33 Workflow Reduction e 13
3.3.1 Collapse consecutive events. it b i i e e 13

332 Collapse withn-grammodeling. 13

vl

34 LogRecomstruction @ @it it ittt e e e e
35 LogAssistisLossless. 0 e e e e e e e e

3.6 AnExemplar Usage Scenarioof LogAssist

4 Evaluation
4.1 RQI: How well can logs be compressed into re-occurring event sequences?
4.2 RQ2: How much can LogAssist reduce the volume of logs needed to be examined
imloganalysistasks? o oo o

4.3 RQ3: How much can LogAssist help improve users’ log analysis experiences? . . .
5 Lessons Learned

6 Threats to Validity
6.1 Extermalvalidity.

6.2 Constructvalidity. e

7 Related Work
7.1 Loganalysis. 0 i i i e e e e
7.2 Understanding systemworkflows.

73 Logcompression. ittt ittt et e e e
8 Conclusion

Bibliography

Vi

17
18

23

32

36
36
37
38

39

List of Figures

Figure 3.1 The overall flow of our approach LogAssist with a running example demon-

SIrAting MS SLEPS. o . i i i e e e e e e e e e e

Figure 4.1 User provided rating for the usefulness of Logdssist.

viil

List of Tables

Table 4.1 A summary of the studied logdatasets. 18
Table 4.2 The results of applying LogAssist to compress the HDFS, Zookeeper, and En-
terprise System datasets. Before and After show the reduction result after applying
both consecutive reduction and n-gram (i.e., Consec.+n-gram). 20
Table 4.3 The number of workflows for which the log events are compressed. The
numbers in the parentheses show the percentage. 21
Table 44 Reduction % based on size of workflow compared to the median workflow size. 22
Table 4.5 A comparison between LogAssist and current state-of-the-art approach by Shang
et al. (2013) for reduction % in unique workflow types (with and without permuta-
tions), and reduction % intotal loglimes. 23
Table 4.6 Keywords for certain log analysis tasks for each studied system. 24
Table 4.7 Number of log lines to be examined using different representation of logs
(Scenario 1: examining only the searchedloglimes). 26
Table 4.8 Number of log lines to be examined using different representation of logs
(Scenario 2: examining the entire workflows that contain the searched log lines). . 26
Table 4.9 The number of workflows and workflow types in which the search keys appear. 27
Table 4.10 The average time with, and without LogAssist and the % reduction. The time
values are represented in minutes for each individual task, as well as the total for all

taskscombined. e e e e e e e e e e e e e e e e e e 20

Chapter 1

Introduction

Software systems generate logs during field operations or in-house testing. Such logs con-
tain rich information about the runtime behaviors of software systems (Barik, DeLine, Drucker, &
Fisher, 2016; Fu et al., 2014; Li, Shang, Adams, Sayagh, & Hassan, 2020). Therefore, logs are
widely leveraged by practitioners in software development, operation, and maintenance tasks, such
as failure diagnosis (Automated Root Cause Analysis for Spark Application Failures - O Reilly Me-
dia, 2017; Fu et al., 2013; Yuan et al., 2010), anomaly detection (Fu, Lou, Wang, & Li, 2009; S. He
et al., 2018; Jiang, Hassan, Hamann, & Flora, 2008b; Lou, Fu, Yang, Xu, & Li, 2010; Xu, Hoang,
Fox, Patterson, & Jordan, 2009a, 2009b), performance analysis (Chow, Meisner, Flinn, Peek, &
Wenisch, 2014; Ding et al., 2015; Nagaraj, Killian, & Neville, 2012; Yao, de Padua, et al., 2020),
and system comprehension (Fu et al., 2013; Shang et al., 2013).

Despite their importance, the enormous sizes (e.g., tens or hundreds of gigabytes) of logs (A. J. Oliner
& Stearley, 2007; Schroeder & Gibson, 2007) have become a major obstacle for logs analysis (Barik
et al., 2016; Cito, Leitner, Fritz, & Gall, 2015; Li et al., 2020; A. Oliner, Ganapathi, & Xu, 2012;
Yuan et al., 2010). In particular, analyzing large-scale log data usually faces the following chal-

lenges:

= Unstructured logs. Logs are unstructured data that consist of some natural language text
and a few dynamic values (P. He, Chen, He, & Lyu, 2018; Yao, Li, Shang, & Hassan, 2020).

Thus, it is challenging to automatically parse and analyze logs.

= Intermixed event sequences. Different event sequences (e.g., the sequence of events associ-
ated with a user login) are intermixed with each other, making it difficult for practitioners to
understand the system runtime behaviors or identify the event sequences that may lead to a

runtime issue (Yuan et al., 2010).

= Rapidly growing log size. Large-scale systems (e.g., cloud platforms) generate tens of giga-
bytes to terabytes of logs daily (Cito et al., 2015; Li et al., 2020; Reiss, Wilkes, & Hellerstein,

2011), making it challenging to manage and analyze such large-scale logs.

Prior work proposes approaches to address these challenges to a certain extent. To address
the challenge related to the unstructured nature of logs, prior work proposes approaches for auto-
matically parsing raw logs into structured forms (P. He, Zhu, Zheng, & Lyu, 2017; Jiang, Hassan,
Hamann, & Flora, 2008a). However, prior work rarely explores the challenges related to intermixed
event sequences. To address the challenge related to the large size of logs, prior work proposes
approaches for compressing logs (Liu et al., 2019; Yao, Li, et al., 2020). However, such log com-
pression approaches only aim to save storage space while not being able to provide assistance when
logs are analyzed in practice. Commercial log analytic platforms like Splunk (Splunk, 2017) and
ELK (Elastic, n.d.) also allow practitioners to efficiently manage and analyze large-scale logs (e.g.,
search for keywords) by leveraging distributed storage. However, such log analytic platforms are
unable to provide detailed insights into the specific event sequences associated with such keywords.

In this work, we propose LogAssist, a novel approach for assisting practitioners with log analy-
sis, which aims to address all the three above-mentioned challenges. First, LogA ssist parses the raw
logs into abstracted log events (i.e., addressing the challenge related to unstructured logs). Then,
LogAssist untangles the raw logs into meamingful event sequences (i.e., workflows) using certain
grouping IDs commonly available in logs, to address the challenge related to intermixed event se-
quences. Finally, LogAssist leverages n-gram models to identify common event sequences, and
further uses the identified sequences to compress the logs into a much more concise representa-
tion (i.e., addressing the challenge related to the large size of logs). In addition, LogAssist allows
practitioners to expand and explore the compressed form on demand, providing practitioners the

flexibility to access the complete information in the logs. We evaluate LogA ssist on logs from one

enterprise and two open source systems. We study the effectiveness of LogAssist both quantitatively

and qualitatively, by answering three research questions (RQs):

RQ 1: How well can logs be compressed into re-occurring event sequences? We quantitatively ex-

amine how effectively LogAssist can compress raw logs into concise representations.

RQ 2: How much can LogAssist reduce the volume of logs needed to be examined in log analysis
tasks? We quantitatively examine how effectively LogAssist can reduce the number of log

lines that need to be examined by practitioners when performing log analysis tasks.

RQ 3: How much can LogAssist help improve users' log analysis experiences? We conduct a user
study to understand how well LogAssist can improve users’ experiences when performing log

analysis tasks over using raw logs alone.

Owr results show that LogAssist can compress the raw logs into a much more concise represen-
tation, while allowing practitioners to access the complete information of logs only when necessary.
LogAssist significantly simplifies log analysis tasks and improves practitioners’ log analysis ex-
periences. We document our experiences and lessons learned from developing and adopting our
approach in practice, which can provide insights for researchers and practitioners who wish to de-
velop similar tools to assist with log analysis tasks. LogAssist can be leveraged as a basis and

starting point to further advance interactive log analysis techniques.

1.1 Research Statement

Prior research studies techniques to process, compress, and store logs, while existing tools aim
to help efficiently manage and analyze logs. However, prior work and tools rarely explore or address
the challenges related to intermixed event sequences contained within logs. In this thesis, we study
the effectiveness of applying natural language processing techniques to logs, to assist practitioners

by providing detailed insights into the specific event sequences contained within logs.

Natural language processing technigues, such as n-gram modeling, can be used to effectively sum-
marize logs by extracting reoccuring sequences, reduce the volume of logs needed to be examined,

and improve users’ experiences during log analysis.

1.2 Thesis Contributions

In this thesis, we propose a novel approach called LogA ssist, which transforms logs, and presents
them to practitioners in a more organized and practical view, for the purpose of facilitating log
analysis tasks. The novel contributions of LogAssist are found primarily in the workflow creation,
workflow reduction, and log reconstruction steps of our approach.

Like LogAssist, many existing approaches leverage log abstraction as an initial step to parse and
process logs into a practical form which can be used in further steps. For the log abstraction step,
we apply an existing state-of-the-art log abstraction approach to parse, abstract, and categorize log
lines.

In the workflow creation step, we start by following existing work to group log lines together
into workflows using grouping IDs often provided in logs. Then, we expand on prior work by
proposing to separate workflows further, to account for the possible re-using of such grouping IDs.
We propose the use of a popular signal processing algorithm to achieve this separation.

In the workflow reduction step, we start by following existing work to reduce workflows through
the collapsing of consecutive duplicate events. Then, we expand on prior work by applying statis-
tical techniques, namely n-gram modeling, in conjunction with existing techniques of collapsing
consecutive duplicate events. In this way, LogAssist is able to identify and reduce re-occurring
sequences of events, including those that contain multiple different event types, which existing ap-
proaches are unable to do. Furthermore, by applying these techniques iteratively in conjunction,
LogAssist is capable of reducing entire repeating event sequences, achieving a much more concise
reduced representation than the current state-of-the-art. By categorizing workflows based on their
shared reduced representation, LogAssist is able to achieve significantly higher levels for grouping
of common workflows, by identifying variances in unique workflow types that existing state-of-the-
art approaches are unable to detect.

While prior works share common steps of log abstraction, workflow creation, and workflow
reduction, these approaches aim to solve very different challenges than LogAssist. Prior studies
often focus on anomaly detection, or identifying deployment problems through the comparison of

workflow types between testing and production environments. Due to the differences in goals, such

approaches do not include a log reconstruction step to rebuild logs. As the goal of LogAssist is
to transform logs into a representation that can facilitate log analysis tasks, the final step of our
approach is log reconstruction. In this step, logs are reconstructed into an organized, flexible, and
dynamic representation, with additional insights and statistics provided for the workflows. Com-
mercial log analytics platforms can provide insights into individual events, or keywords, but are
unable to provide details regarding entire sequences of events. With LogAssist, the reconstructed
logs provide practitioners with insights into such sequences of events.

We propose LogAssist as a starting point to further advance interactive log analysis techniques
and tools, to assist practitioners with log analysis. While static logs of intermixed events limit the
usefulness and application of logs, such interactive log analysis techniques and tools can transform
logs into flexible forms that can be tailored to suit various log analysis tasks at the discretion of the

user, and provide additional information to assist with tasks.

1.3 Organization of the Thesis

Chapter 2 provides motivating examples. Chapter 3 describes the design and implementation
of our approach. Chapter 4 presents the evaluation results. Chapter 5 discusses the lessons that we
learned from developing and adopting our approach. Chapter 6 outlines the possible threats to the

validity of our findings. Chapter 7 discusses related work. Chapter 8 concludes this thesis.

Chapter 2

Motivating Examples

To illustrate the challenges that practitioners face during log analysis, we present motivating
examples of using logs in three hypothetical, yet realistic situations on a large-scale enterprise sys-
tem. The system is composed of several large components. Each component can be distributed in

different environments and serve different purposes.

2.1 Situation one: Anomaly detection after load testing.

Dave is a load testing specialist. Dave’s main day-to-day job is to test the behavior of the sys-
tem under load before the system is released to the customers. Dave designs a 48-hour test that
simulates real-world user usages. After running the test, Dave needs to confirm whether there exist
any anomalous behaviors that occurred during the test. Such a task is typically done by analyzing
the logs that are generated during the test. However, due to the scale of the system and the lengthy
nature of the test, the generated logs are of tremendous size. As it is impossible for Dave to man-
ually analyze gigabytes or even terabytes of logs, Dave uses simple keyword search (e.g., error or
exception) to find problematic log lines (T.-H. Chen et al., 2017; Jiang & Hassan, 2015; Shang et al.,
2013). Unfortunately, the search results still return thousands of problematic log lines. Dave needs
to manually investigate not only these log lines but also the related log events to uncover the system
execution that led to the problem (A. Chen, Chen, & Wang, 2021; A. R. Chen, Chen, & Wang, 2021;

LaToza & Myers, 2010; Yuan et al., 2010). As the resulting logs contain intermixed information

from both normal and abnormal system behaviour, Dave encounters challenges when analyzing an
enormous amount of unstructured logs. It is challenging and difficult for Dave to manually identify
which events correspond to specific execution sequences to understand the system behaviour and

diagnose possible anomalous event sequences.

2.2 Situation two: Recovering common user hbehaviors.

From time to time, Dave also needs to update the design of the load test to reflect changes in
user behaviors and system functionality. Hence, Dave needs to recover the common user behaviors
by analyzing the logs generated by end users in the deployed system. Such recovered common user
behaviors can later be integrated into the design of the updated load tests. Similarly, Dave relies
on using keywords (e.g., log in or checkour) that are related to the key functionality to search for
common user behaviors. However, due to the complexity of the system, such keyword searches
may return inaccurate estimation on the executed loads. For example, one user action may result in
multiple log lines containing the same keyword, or some keywords may be removed from the logs
as the system evolves. Dave faces the challenge of manually summarizing the logs and identifying
the corresponding user actions. These logs are large in scale, and may be interwoven and contain

many repetitions, which makes the analysis even more difficult.

2.3 Situation three: Identifying the root causes of system runtime is-

sues.

Alice is a senior developer in the team. Alice’s main duty is to develop new features and main-
tain the quality of the code. When a system runtime issue occurs, Alice needs to investigate the
issue and find the root cause in the code. In particular, Alice needs to examine the logs that may
provide clues for the system runtime activities (i.e., event sequences that represent the system exe-
cution path) that led to the runtime issue. However, leveraging the raw logs to identify such clues
is challenging (A. R. Chen et al., 2021; Yuan et al., 2010). As many execution workflows intermix

with others in the logs, it is difficult to manually examine the logs and find the corresponding events

that lead to a runtime issue.

2.4 Challenges observed during the above-mentioned situations.

Logs in their nature are unstructured and disorganized. Although often written in the form of
human-readable text, manually exploring logs in practice is counter-productive and often impossible
due to the massive size of logs. Therefore, for the practitioners who depend on logs on a daily
basis, there is an urgent need for automated techniques that can summarize logs for further manual
exploration, while preserving the valuable information contained within the logs. In order to assist
our industrial partner in addressing such challenges, we design an approach that can automatically

summarize a large number of logs and assist practitioners with various log analysis tasks.

Chapter 3

The Design of LogAssist

In this chapter, we describe our approach, LogAssist, which transforms raw logs into a concise
form that is more convenient for practitioners to browse and analyze.

Figure 3.1 illustrates the overall process of our approach with a running example. First, LogAs-
sist parses the raw logs into structured logs (ie., log events). Then, the log events are grouped by
grouping IDs (e.g., thread IDs) to form workflows. Next, LogAssist compresses the log events in
each workflow into a more concise representation using n-grams. Finally, LogAssist can reconstruct
the original logs from the compressed form. We implement LogAssist as a prototype which helps

practitioners with log analysis. We explain the detailed steps of LogAssist below.

3.1 Log Abstraction

Raw logs are unstructured text that contain both static and dynamic information. Such un-
structured logs first need to be converted into a structured form to perform subsequent analysis (T.-
H. Chenetal., 2017; Xuet al., 2009a; Zhu et al., 2019). Log abstraction is widely used to categorize
raw log lines (T.-H. Chen et al., 2017; Du, Li, Zheng, & Srikumar, 2017; Shang et al., 2013; Syer et
al., 2013, 2014) which involves parsing log files by separating the static and dynamic components
of each log line, and assigning a common event ID to lines which share a common template for the
remaining static components. This process allows for categorizing log lines by representing a line

by the resulting event ID of the log abstraction tool results. By categorizing and representing log

Lo Line
time=1, Tusk=Loggmg in, TaskID=T1
time=2, Task=Logging out, TaskID=T1
time=3, Task=Logamg in, TaskID=T2
time=d, Task=Browse item, TasklD=TZ2

7

1

z

3

1)
3 tirme=rs, Task=L g in, lasklD=T3

& time=h, Task=Browse item, TasklD=12

¥

[

]

time=7, Task=Browse sbem, TaskID=T3

time=3, Task=Add item bo cart, TaskID=T2

{
|
|
|
|
|
|
|
|
|
|
i 17 | Hime=T1, Task=Broawse item, TaskIT=T3
|
|
|
|
|
|
|
|
Y

Firme=y, T.J:ik:Lu].';!.'j.nH T, TaskiDO= T4 Event Event Trrnplrlh:' i Lime #
T | Time=T0, Task=Browse ftem, TaskIT= T3 El Bmne=<"2, Task=Logging in, TaskiD=<7> 135916
Logs 17 fime=<"=, Task=Logging ouf, TasklD=<"=> TILTEIRE
T2 | Hme=12, Task=Logaing out, TaskID=T3 |] fime=<*=, Task=Browse item, Ta=kll= < 40,0101 117
13 | time=13, Task=LUheck out, TasklD= 12 B+ tume=< =, Task=Add Thern o cart, TaskID=<"= | 818
T4 | time=14, Task=Logaing out, Taskl=T2] ES fime==" =, lask=t_heck oul, TasklD= = = |ERE]
15 | time=15, Task=Logeing out, TaskID=T4
[6 | time=l6, Task=Logging in, TasklD=T1 | Structured logs
Ir tirme=17, Task=Brovwse ibem, TaskIT=T]
T8 | time=T15, Task=Add itern to cart, TaskID=T1
% Time=1%, Tosk=Chick oul, TaskID=T1
0 time=20, Task=Logeing ouf, TaskID=T1
___ -
——— -
{ !
i _ !
{ [TaskID [{Event, Time) Sequenice Separate by | TookiD [Workllow AT R T !
I TET1JAE2 2], (E116] [E51 71 E4 180, B 19 2 20y | Time Gap T T |
i [TN T A e A e T e 10 LTI WI (ELTALES T71 EL TSLIES 19, (EL 20} i
i [T S ELA BB i W3 TEL 3L ER AL AL ELSAES 13 ELTd] | |
I E'H' Wmﬁﬂ"lﬁ— T3 Wi ELELE BT |
I e T3 Wh (ETFLES IO ELTS) |
' !
! !
I’ 3. Workflow Reduction i
| Workflow | Event Sequence !
i ELEZ |
W2 E1E5 E4,ERE2 |
S : YE ELESESELESED i
. 1 [T FLESELED i
{ 4. Log Reconstruction R ELEED Update Workflows :
H il Workflows .
| [F [Workfow | Gerkilow Topw | Lo Lo H . |
j O T e Tl g T TakT=TT 1! Workflow | Event Sequence | Workflow Type i
1 B o s =2 Tk Lo oor, T b= TT | il i ETES WTT |
= [T] I ek H 3 T |
] ':i- :::' ::IE ; Tk |-'hL||:1-T| I ! Coum :::E E:%?Ei 1::]"5 I
= W WTE k=L hech, i, Tk IT=T1 | | Consecutive e Ly i H
| e WTE =], Tokals i Tkl i W3 ETE3EZ WT3 !
L IR s i
e - s } Workflows i
| [TE :E:-:|.1.'n,:-s.l‘.'ufT.r..'r;Tll;-T:. — ! i [Workilow | Event Sequence |
| BHw—wre et Tt THT | | W ET.ES !
T WY TS sy, Tk =Firwess lTem, T: = ! T .
! T | W L'.}. : |-¢f||r|-rr-q.'|ll.1||.'|'4-¢||?- I il I'.'.z ELERF4T5.E2 Collapse with n-gram I
| [rwe WY L L] E1,E3.E4,E5 EZ Modeling i
| i 1 [F1.F3.F2 i
| e WS il [AE ELEREZ i
\ J Workflows :
e e 4 e e o o e 2 o o 5 o e e e 4 e = e o et e 1§ 8 8 e e e e £ e 3 1 I

Figure 3.1: The overall flow of our approach LogAssist with a running example demonstrating its
steps.

10

lines with an event ID, we are able to use event [Ds as the items in our n-gram models in which we
compute conditional probabilities.

In this step, LogAssist leverages an existing log abstraction tool, Drain (P. He et al., 2017),
to parse each raw log line into a structured form, i.e., an event template and a list of variables
values. We choose to employ Drain as it is considered state-of-the-art for log abstraction (Zhu et
al., 2019). The default implementation of Drain requires one to configure a set of header identifiers
(e.g., imestamp and thread ID), which are used by the tool to extract such header information from
the execution logs. Accordingly, LogAssist also requires one to define the headers for each log
dataset. Drain parses each raw log line into an event template and a list of variable values (P. He et
al., 2017). As demonstrated in Figure 3.1, the event template contains the static information, with a
wildcard (i.e., a <*> symbol) in place of all dynamic variables, and a unique event ID for each event
type. The list of variable values indicate the dynamic components of the log line. In the running
example (Figure 3.1), 20 log lines are abstracted to five types of log events (i.e., El through E5).
The abstracted log events (i.e., the templates) are used as the basic form for compressing logs in the
next steps. Lines 1, 3, 5, 9, and 16 are considered as instances of the same event as they contain
a common abstracted template with only differences in the dynamic values (e.g., Timestamp and
TaskID). We apply log abstraction to all the logs and assign a unique event ID to every abstracted

template.

3.2 Workflow Creation

A sequence of log lines may be related, and together, they may record the process of performing
a certain task (T.-H. Chen et al., 2017; Fu et al., 2009; Jiang & Hassan, 2015; Jiang et al., 2008b),
e.g., the process of placing an order that includes the sequence of logging in, adding products to
the cart, and checking out. Such log sequences (i.e., workflows) provide essential information for

practitioners to debug various problems and comprehend the executed user requests (T.-H. Chen
et al., 2017; Du et al., 2017; Tan, Pan, Kavulya, Gandhi, & Narasimhan, 2008; Yuan et al., 2010).

Hence, in this step, LogAssist creates workflows from the parsed log events.

11

3.2.1 Group log events by grouping ID

As the input logs consist of intermixed events from different workflows, we follow prior work
by first grouping the log events by the grouping ID (T.-H. Chenet al., 2017; Fuet al., 2009; Jiang &
Hassan, 2015; Jiang et al., 2008b). An example of intermixing events can be seen in Figure 3.1 in
the Raw Logs (shown in the first table in Step 1. Log Abstraction) where events of a workflow with
TaskID=T2 appearing on lines 3, 4, 6, 8, 13, and 14. Intermixed within these lines are the events of
other workflows where TaskID=T3 and TaskID=T4, appearing on lines 5, 7, 11, and 12, and lines 9
and 10, respectively. In practice, this may occur on a much larger scale and two sequential events in
a workflow may be separated by tens or possibly hundreds of intermixing log lines. In the running

example (Figure 3.1), the grouping ID is “TaskID".

3.2.2 Separate by Time Gap

However, the log events with the same grouping IDs may not necessarily belong to the same
workflow, as grouping IDs may be reused by different workflows (e.g., each thread in a thread pool
might be reused, so the same thread ID will appear multiple times) (Nageswaran, 1999). Therefore,
we further separate the log events with the same grouping ID into separate workflows, based on the
time difference between the log events. Our intuition is that log events within the same workflow
have smaller time differences while log events from different workflows that reuse the same group-
ing ID will lead to larger time differences. We use a find_peaks algorithm from the signal processing
domain (Virtanen et al., 2020) to detect time gaps that separate different workflows. The find_peaks
algorithm takes an array of data points and finds all local maxima by comparing each data point with
its neighbouring points. Specifically, each log line within the group is assigned a time-diff based
on the difference between the timestamp of the log line and the timestamp of the previous log line.
Then, we use the find_peaks algorithm to detect the peak points in the time differences. The
detected peak points are then used to separate the log lines in a group into smaller workflows.
In the running example (Figure 3.1), five workflows (i.e., W1, W2, W3, W4 and W5) are created.

Two T1 are created since there is a large time gap between their occurrences (line 2 and 16).

12

3.3 Workflow Reduction

The log events in a workflow may contain redundant information, e.g., repetitive log events and
sequences of log events that always appear together (Fu et al., 2013, 2009; Jiang et al., 2008b).
Such repetitive log events may mask real problems in the logs or introduce additional challenges in
log analysis (J. Chen, Shang, Hassan, Wang, & Lin, 2019; Lin, Zhang, Lou, Zhang, & Chen, 2016;
Shang et al., 2013; Xuet al., 2009a). Therefore, LogAssist eliminates the redundancies to reduce the
workflows into a more concise representation. LogAssist performs two steps to reduce the amount

of log lines within a workflow: collapsing consecutive events and collapsing with n-gram modeling.

3.3.1 Collapse consecutive events.

LogAssist first reduces the consecutive occurrences of the same event into a single occurrence.
Such consecutive occurrences of the same event may be events contained in a loop, or a contin-
uous notification of a process waiting for a resource to become available, which usually indicates
repetitive and redundant information (Shang et al., 2013). In the running example (Figure 3.1),
both workflows W3 and W4 contain two consecutive occurrences of event E3 as seen in the event
sequences El, E3,E3,F4,E5,E2 and EI,E3,E3,E2. The consecutive occurrences of E3 are reduced to
a single occurrence, resulting in event sequences EILE3,E4,E5,E2 and E1,E3, E2 for workflows W3
and W4, respectively.

3.3.2 Collapse with n-gram modeling.

After collapsing consecutive occurrences of the same events, LogAssist further reduces the re-
occurring patterns of event sequences into a more concise representation. In addition to collapsing
consecutive events as done by Shang et al. (2013), we apply n-gram modeling to further reduce
the logs where possible. As we collapse with n-grams with a certainty of 100%, we are able to
effectively reduce workflows and subsequently group them into common workflow types while
maintaining a high precision of workflow grouping (i.e., ensuring that the workflows in the same
group indeed have the same workflow type). For example, if event EJI is always followed by E2

and the event sequence EI,E2 is always followed by E3, then the certainty of the event sequence

13

EILE2 E3 is 100% given the event EI. Thus, we can use EJ to represent the entire event sequence.
Utilizing n-gram to collapse the events allows LogAssist to reduce all instances of these workflow
types to the same common workflow type representation and group them together. Our intuition is
that, if some events always appear in a fixed event sequence, then such an event sequence can be

reduced into one event. Specifically, we calculate the conditional probability of a n-gram as:

count(e;...e;)

plenler...en1) = (1)

count(eq...en_1%)

where (€;...e,) indicates an event sequence of length n, and * is a wildcard that represents any
event. We reduce a n-gram sequence into a single event if the conditional probabilities of the second
event through the nth event are all 100% (i.e., pleglel..e, 1) = 1, pleg_1|el...ep_a) = 1, ..,
pleale1) = 1. Such a reduction guarantees that all the events can be unambiguously represented in
the compressed form. We consider 2-grams and 3-grams only, as a prior study by P. He et al. (2018)
finds that the repetitiveness of an n-gram in logs starts to become stable when n < 3. In the running
example, the event sequence E4, E5 E2 always appears together (i.e., the conditional probabilities
p(E2|E4, E5) and p(E5|E4) both equal to 1), thus it is reduced into a single event E4 (i.e., the
first event in the sequence) in W2 and W3. This results in the event sequence of EI E3,E4, E5 E2
in workflows W2 and W3 being reduced to EI,E3 E4. Following the collapsing of n-grams, the
workflow reduction step once again collapses any consecutive sequences of identical events and
applies the n-gram modelling reduction again. This combination of consecutive event and n-gram

collapsing repeats as an iterative step until the no further collapsing can be done.

3.4 Log Reconstruction

Finally, the compressed form of logs may need to be reconstructed into the original form to
assist with log analysis tasks that need the complete information in the logs. Therefore, LogA ssist
supports log reconstruction that rebuilds the original logs from the compressed form. In particu-
lar, our reconstructed logs keep the holistic workflows (i.e., avoiding intermixed log lines across

different workflows).

14

3.5 LogAssist is Lossless.

LogAssist provides the ability to view a given workflow in multiple forms at different verbosity
levels. While each of these forms is represented by a varying amount of log lines, our approach is
lossless as each of these forms can be viewed by expanding and collapsing the workflows where
applicable. LogAssist contains the complete information of the original log lines (i.e., the corre-
sponding line number in the original form) and allows practitioners to expand the workflows to their
original log lines without losing any information. Internally within LogAssisz, all log lines from the
initial raw logs that were passed into the log abstraction step have their line numbers mapped to the
resulting reduced workflows. Therefore, LogA ssist supports reconstructing the original logs based
on such line number mappings. No single event is ever permanently lost during log reduction, but
rather the events that are hidden in the compressed forms can be accessed by expanding the work-
flow. In the most reduced form, we represent a workflow as a single log line where the workflow
ID label can be used to obtain information on this workflow type. In the most expanded form, we
represent the workflow in its entirety showing every single line. In between these forms, there may
be a number of other varying representations where inner workflows can be collapsed or expanded,
allowing users to choose their desired level of verbosity to suit their own needs, preferences, and

tasks.

3.6 An Exemplar Usage Scenario of LogAssist

We implemented a web-based graphical user interface as shown in Figure 3.2. The Workflow
Tyvpe Details Panel to the left shows the statistics of a unique workflow type (e.g., the number of
workflows that belong to this unique workflow type, the number of events in the unique workflow
type, the size of the workflow after compression, and the common log event sequence). The Work-
flow Log Report Panel to the right shows the compressed log lines grouped by their corresponding
workflow. By default, we represent each workflow instance as a single line showing the first event
in the workflow, its workflow instance 1D, and the assigned workflow type ID.

A user may start by looking at the Workflow Type Details Panel until they find a workflow type

of interest, because the particular workflow is critical to the system behaviour or may be suspected

15

‘Wericow Typs Datuls Pansl Workfow Log Raport Pane
Workfiow Log Report
P MG R B e - e e e i
il wanace s
e =l
F——— 1 S 50 e P 3 Pl e
. a wwears
[—— : m =
P — e = —
: . Comman Worifiow Trps Rspressmsdon
o s I g
Eamenan b e T
_m Ful Warkfiow atancs Repressctstion
OEm - —=
S—
= [e

Figure 3.2: An exemplar web-based user interface of LogAssist.

of relating to system issues. Then, the user would navigate to the instances of this type and expand
the workflow instances in order to gain more details. In the Workflow Type Details Panel, users
would find various details on the workflows that share this common workflow type, including the
abstracted common event sequence and an example workflow instance. The Workflow Instances list
details all workflow instance IDs of this type, which allows the user to navigate to the workflow
instances conveniently. By clicking the “+” button of an instance, as seen in the upper box labeled
Common Workflow Type Representation in Figure 3.2, the user will expand the workflow instance
into the common representation of the workflow type as seen in the Common Sequence Abstracted
log lines shown in the Workflow Type Details Panel. By clicking the inner “+” buttons, users will be
able to expand the Common Workflow Type Representation further into the Full Workflow Instance
Representation as seen in the lower box in the Workflow Log Report Panel of Figure 3.2. This will
reveal log lines of the workflow instance that were abstracted away in the Common Workflow Type

Representation form, providing the complete details of the workflow to assist the user.

16

Chapter 4

Evaluation

In this chapter, we evaluate our approach. We select three log datasets to demonstrate the
effectiveness of our approach in reducing logs, including two log datasets generated by two open
source systems, HDFS and ZooKeeper, and one log dataset generated by one enterprise system (i.e.,
the Enterprise System, ES). The HDFS and Zookeeper datasets are obtained from a log parsing
benchmark (Zhu et al., 2019), while the ES dataset is obtained from our industrial collaborator
(Ericsson). We use the thread ID as the grouping ID for the open source systems. Note that, in some
distributed systems, logs may contain correlation IDs to correlate logs across nodes/components
that are related to the same requests. In such cases, developers may use the correlation ID as the
grouping 1D when using our approach.

Table 4.1 summarizes our selected log datasets. Due to the non-disclosure agreement, we cannot
reveal the detailed information of the logs from ES; however, the logs are large in size, and are
generated by a large-scale enterprise system that is used by millions of people around the world on
a daily basis. The evaluation of our approach consists of answering three research questions (RQs),
which involve a combination of automated analysis and a user study. For each research question,

we discuss the motivation, approach, and results.

17

Table 4.1: A summary of the studied log datasets.

Logging System Log size Duration | Grouping ID
HDF5 11M lines | 36.68 hours Thread ID
ZooKeeper 74K lines | 62.29 hours Thread ID
Enterprise System | Very Large | Very Long Thread ID

4.1 RQI1: How well can logs be compressed into re-occurring event

sequences?

Motivation. During the execution, a system often needs to process a large number of re-occurring
events (Fu et al., 2009; Jiang et al., 2008b; Xu et al., 2009a). For example, in an e-commerce system,
thousands of users may be logging in and logging out on a daily basis. The triggering of such re-
occurring events may repeatedly generate the same log event sequences, which may cause wasted
efforts and mask important problems captured in logs (Fu et al., 2014; Li et al., 2020). Therefore,
we propose LogAssist which leverages such re-occurring information to compress raw logs into a
conciser form. LogAssist first groups the raw logs into workflows, then applies reduction techniques
to collapse consecutive events, and finally collapses the events with n-gram modeling. In this RQ,
we want to examine how many log lines can be compressed by our approach. If we can compress
most of the repeated log event sequences, we may significantly reduce the effort that practitioners
need to spend on analyzing the logs.

Approach. We use the following metrics to evaluate the effectiveness of LogAssist in compressing
the raw logs. For each evaluation metric, we measure its value before and after applying LogA ssist

to compress the raw logs.

= Number of log lines: The total number of log lines in the raw logs or in the compressed form.

= Number of unique workflows: The number of distinct workflow types that are identified in
the raw logs (i.e., before performing workflow reduction) or the number of distinct workflow
types remaining in the compressed form (i.e., after performing workflow reduction). The
workflows with the same sequence of events in their reduced form are considered to share the

same unique workflow type.

18

» Workflow size mean: The average number of log events in a workflow before or after work-

flow reduction.

* Workflow size median: The median number of log events in a workflow before or after

workflow reduction.

» Workflow size st. dev: The standard deviation of the number of log events in a workflow
before or after workflow reduction. A higher standard deviation indicates a high variance of

workflow sizes that may cause extra effort in log analysis.

Comparison with prior work. To assist practitioners in identifying deployment problems, Shang
et al. (2013) proposed an approach to compare the workflow types between testing and production
environments. Although the usage and motivation of the approach is different from LogAssist,
Shang et al. (2013) also applied workflow reduction. Therefore, we use Shang et al. (2013) as a
baseline and compare it with LogAssist. Both LogAssist and Shang et al. (2013) leverage a dynamic
value (e.g., ThreadlD or TaskID) to group related events. However, LogA ssist also applies additional
logic for determining event sequences (workflows) where we use the time gap between the events to
separate the workflows (i.e., accounting for the reusing of the dynamic values such as ThreadIDs),
as explained in Chapter 3.2. Additionally, while LogAssist and Shang et al. (2013) both summarize
event sequences (workflows) by collapsing consecutive repeating events, Shang et al. (2013) apply
this step only once per event sequence (workflow). On the other hand, LogAssist applies this step
recursively and uses n-gram modeling to further reduce the workflow. This process that combines
collapsing consecutive events and collapsing based on n-gram modeling continues iteratively on
each workflow until no further reduction can be done.

Shang et al. (2013) group permutations of an event sequence into the same workflow type to
reduce the number of unique workflows types. For example, the sequence EI,E2,E3,E4 and its per-
mutation EJ,E3,E2, E4 are grouped to the same workflow type. As our goal is to assist practitioners
with log analysis instead of identifying workflow differences in different deployments, we want to
preserve the event orders and do not apply the permutation grouping in our final approach. However,
to better compare Shang et al. (2013) with LogAssist, we consider with and without permutations

for each approach, reporting the reductions in unique workflow types and total log lines.

19

Table 4.2: The results of applying LogAssist to compress the HDES, Zookeeper, and Enterprise Sys-
tem datasets. Before and After show the reduction result after applying both consecutive reduction
and n-gram (i.e., Consec.+n-gram).

Lookeeper Enterprise System

Beafione Affter Consec. Consec. | Before After Consec. Consec. Consec. Consec.

Reduction +n-gram Reduction +n-gram | Reduction +n-gram

MNumber of Log Lines 1175579 1612315 523% Bie% | 74380 4543 4% 01.0% 220% T5.1%
MNumber of Unigue Workfiow s T2 426 1amn 43.4% B0.E% 39 93 420% TOU2% 1% %
Workfiow Size Mean 21.2 kR 513% Bi6W 260 L6 4% 031.0% 22 5% T5.2%
Workflow Size St Dev 1,019.1 615 BO1% O38% | 5347 088 24% QB0 226% T5.4%
Workflow Size Median 3 2 L] 33.3% 3 2 33.3% 33.3% 0% 50.0%

Evaluating the effect of n-gram modeling. Prior work (Shang et al., 2013) collapses con-
secutive repeating events during workflow creation but does not use n-gram modeling. In order to
understand the effect of applying n-gram modeling for further reducing the log lines, we compare
LogAssist with its simplified version that does not apply the “collapse with n-gram modeling” step.
Specifically, the simplified version does a single pass of "collapse consecutive events” instead of
applying the combined “collapse consecutive events” and “collapse with n-gram modeling” steps in
an iterative manner (as done in LogAssist).

Results. LogAssist compresses the raw logs into a concise representation that is 75.2% to
93.9% smaller. Table 4.2 shows the results of measuring the evaluation metrics on the raw logs
(i.e., before applying LogAssist) and on the compressed representation (i.e., after applying LogAs-
sist). Our results show that LogA ssist can compress a significant amount of log lines in the studied
systems: 83.6%, 93.9%, and 75.2% for HDFS, Zookeeper, and Enterprise System, respectively. Our
results indicate that there are many re-occurring log events or event sequences that practitioners may
be able to skip during log analysis.

LogAssist reduces the unique workflow types by up to 89.8%. The unique workflow types indi-
cate the complexity of the system behavior recorded in the logs. The larger the number of unique
workflow types, the more diverse the system behavior, thus more effort may be needed to analyze
the system behavior. As shown in Table 4.2, the unique workflow types are reduced by 70.2% to
89.8% for the open source systems. The results show that a unique workflow type may have differ-
ent variances that can be identified by LogAssist. In other words, LogAssist may help practitioners
reduce the needed effort to navigate and study the sequences of log events and the dynamic exe-
cution paths using the compressed workflows (see our user study in RQ3). The unique workflow

types are only reduced by 3.1% for ES. Although we cannot disclose the details for ES, we find that

20

Table 4.3: The number of workflows for which the log events are compressed. The numbers in the
parentheses show the percentage.

Total workflows Num. of workflows compressed
HDFS 527326 334,752 (63.5%)
Zookeeper 2,857 2,787 (97.6%)
Enterprise System - — (88.1%)

the smaller reduction in the number of unique workflow types is due to the nature of the analyzed
workflows i.e., each workflow type of ES has fairly fixed event sequences (i.e., with less variance).
However, our approach can still compress most of the re-occurring log lines in ES.

LogAssist reduces the average size of a workflow by 75.2% to 93.9%. Table 4.3 shows the num-
ber of workflows where the logs are compressed. We find that most workflows can be compressed:
63.5%, 97.6%, and 88.1% of the workflows are compressed in HDFS, Zookeeper, and ES, respec-
tively. Table 4.2 also shows the statistics of the number of log lines in each workflow. On average,
LogAssist reduces the size of each workflow by 75.2% to 93.9%. Taking the HDFS logs for example,
the average number of log events in each workflow is reduced from 21 to less than 3. In addition, the
standard deviation of the number of log events in a workflow is also significantly reduced (75.4%
to 99.8%), meaning that the workflow sizes become more consistent after applying LogAssist. Our
findings show that there is a high-level of repetition of log events within a workflow. The reduction
in the median workflow size is smaller, which is due to the fact that most of the workflows are small
in size (e.g., the median workflow size is three log events for the two studied open source systems
even before compression). Additionally, for each system we perform a Wilcoxon signed-rank test
to compare the sizes of the original workflows and the reduced workflows. Our results indicate that
LogAssist can provide a statistically significant reduction in the size of workflows in logs with a
value of p</0.001 across all three systems.

LogAssist is more effective in reducing the log events for larger workflows which are more
likely to contain repetitive information. Table 4.4 shows the percentage reduction for workflows
with a size less than, equal to, and greater than the median workflow size. In all three systems, work-
flows with sizes greater than the median show a significantly higher reduction percentage (65.90%
to 85.18%) than those that are less than or equal to the median size (14.83% to 41.07%). The re-

sults show that larger workflows are more likely to be reduced compared to smaller ones. Larger

21

Table 4.4: Reduction % based on size of workflow compared to the median workflow size.

HDFS Zookeeper Enterprise System
<Median | 14.83 46.43 N/A
Median | 19.01 371.37 41.07
>Median | 65.90 85.18 69.82

workflows may contain more repetition, which results in higher reduction rates. Additionally, when
using a threshold of 100% probability for the n-gram collapsing, the opportunity to reduce these
logs is highly dependent on the nature of the workflows. If the events do not follow any specific
ordered sequence, the n-gram probabilities may not meet the required threshold and subsequently
n-gram reduction will not be possible.

Application of n-gram modeling in LogAssist is significantly more effective than applying con-
secutive collapsing of duplicate events alone. As shown in Table 4.2, applying both n-gram col-
lapsing and consecutive collapsing of duplicate events shows significantly higher reductions com-
pared to applying only consecutive collapsing. By applying n-gram, we see 33.3% to 69.7% ad-
ditional reduction in the number of log lines in all studied systems, and 27.3% to 46.5% in the
number of unique workflows in HDES and Zookeeper. The mean, median, and standard deviation
of workflow sizes show additional reductions of 33.3% to 69.7%, 4.7% to 97.4%, and 33.3% to
50%, respectively, across all three systems.

LogAssist outperforms current state-of-the-art in grouping common events and reducing to-
tal log lines. Table 4.5 shows that both LogAssist and its variation with permutation grouping
outperform Shang et al. (2013). As previously stated, due to differing goals between LogAssist
and Shang et al. (2013), we do not apply permutation grouping in our final approach as we aim
to keep the distinction between different orders of the event sequences in the workflows. LogAs-
sist can be extended to include this functionality if required. However, to ease the comparison
between the two approaches, we also included grouping by permutation in LogAssist. Table 4.5
shows the comparison results. The findings indicate that in all cases, LogAssist outperforms Shang
et al. (2013) for both the percentage reduction in unique workflow types and log lines. Comparing
both approaches without grouping by permutations shows an additional 27.35% to 46.4% reduction
in unique workflow types for HDFS and Zookeeper when using LogAssist. Comparing both ap-

proaches with grouping by permutations shows an additional 8.35% to 26.14% reduction in unique

22

Table 4.5: A comparison between LogAssist and current state-of-the-art approach by Shang et al.
(2013) for reduction % in unique workflow types (with and without permutations), and reduction %
in total log lines.

Reduction % in Unique Workflow Types Reduction % in Log Lines
w/ permutations w/o permutations
LogAssist Shang et al., | LogAssist Shang et al., | LogAssist | Shang et al.,
ICSE2013 ICSE2013 ICSE2013
HDFS 05.03 86.68 89.80 43.40 85.60 5230
Zookeeper 72.64 46.50 70.20 42.85 03.90 24.20
Enterprise System 3.10 3.10 3.10 3.10 75.20 22.90

workflow types for HDFS and Zookeeper when using LogAssist. Finally, comparing Shang et al.
(2013) with permutation grouping to the default form of LogAssist without permutation grouping,
LogAssist still shows an additional 3.12% to 23.7% percent reduction in unique workflow types.
Both approaches have the same reduction (3.1%) in the unique workflow types in the Enterprise
system. However, the results show that LogA ssist achieves an additional 33.3% to 69.7% reduction
in total log lines over Shang et al. (2013). The reason is that Shang et al. (2013) only reduce indi-
vidual workflows by collapsing consecutive duplicate events. On the other hand, LogAssist applies
an iterative approach which includes collapsing consecutive duplicate events in combination with

collapsing using n-gram modeling.

4.2 RQ2: How much can LogAssist reduce the volume of logs needed

to be examined in log analysis tasks?

Motivation. Due to the sheer size of logs, practitioners often search for keywords such as “error”
or “exception” to first locate potential problems that occurred during in-house tests or regular user
usage (T.-H. Chen et al.,, 2017; Jiang & Hassan, 2015; Shang et al., 2013). After locating the
problematic log lines containing the keywords, practitioners then need to analyze the potential root
cause by manually studying the related log lines. For example, practitioners need to manually
identify which log event sequences led to the exception (LaToza & Myers, 2010; Nagappan, Wu, &
Vouk, 2009; Tan et al., 2008). This log analysis process can be very time-consuming, since there
may be thousands of log lines that contain the keywords. LogAssist groups logs into workflows

and compresses the logs by identifying common log event sequences. The unique workflows that

23

Table 4.6: Keywords for certain log analysis tasks for each studied system.

Keywords Rationale
Kl-Mormal | served block The keywords are relaied to data block being written to
or ead. The keywords can be used to estimate the load
HDFs of the system.
K2-Issue unexpected emmor trying to delete | The Ike:,rmrds are related to a reported bug in HDFS on
block disk.
K3-Issue redundant addStored-Block re- | The keywords correspond to a waming that may indicate
quest received for data loss?
Kl-Mormal | accepted socket connection from | The keywords are related to connection being established
with the Zookeeper server. The keywords are used to
Zookeeper estimate system behaviours under load, such as how long
a connection lasts.
K2-Issue unexpected exception causing | The keywords indicate a common exception thal may
shutdown happen during data transmission issues
K3-Issue caught end of stream exception The keywords indicate a common exception in
Zookeeper rtelated to data storage and snapshot
management!

" Ko The entine phrases ame med 2 keywords o ssanch.
https:/fissoas. apacha.orgs Jira/browss/ BDFS-4544
It tps:// naws. yoombinator. com/ 1bam?ld=34 76515
3 hktps: //mapr. con/ support s/ articlaf Zookea par-Unax pactad-axoapt 1on-causing-shutdown-whila-sock-st111-opan- java-1o- [0Ex capk 1on
-Unraascnabla- langth? languaga=an s
4hktps: /f stackoverflow. cony quast lons, 33687377/ zockeape r-kaaps-gatt ing-andof st reamax capt Lon- causing-a-crash

LogAssist identifies may help reduce the amount of logs that practitioners need to go through when
searching and debugging for problematic log lines. Therefore, in this RQ, we study how many log
lines may need to be examined given various keywords before and after applying LogA ssist.
Approach. We follow prior work (Shang et al., 2013) to study how effectively LogAssist can reduce
the volume of logs to be examined in log analysis tasks. We perform several typical log analysis
tasks on the raw logs and on the compressed representations. We then determine the number of
log lines that would need to be examined before and after applying LogAssist, respectively. On
each log dataset, we search for a keyword in the logs and examine the searched logs, which is
commonly done in log analysis practices (ElasticSearch, n.d.; A. Oliner et al., 2012; Splunk, 2017).
We consider three tasks: one task for searching and analyzing a normal message, and two tasks for
searching and analyzing certain system runtime issues (e.g., warnings, errors, or exceptions). To
identify the keywords, we manually examine the logs and uncover the log events that are related to
normal messages and system runtime issues. Then, we choose the keywords in the most frequently
appearing log event for each of the three categories, since those events are the ones that practitioners
may need to spend the most time examining (Shang et al., 2013). We list and explain the keywords
that we use to search for log lines in each of the studied systems in Table 4.6.

For each task, we evaluate the number of examined log lines based on two scenarios:

24

https://issues.apache.org/jira/browse/HDFS-4544
https://news.ycombinator.com/item?id=9476515
https://mapr.com/support/s/article/Zookeeper-Unexpected-exception-causing-shutdown-while-sock-still-open-java-io-IOException-Unreasonable-length?language=en_US
https://mapr.com/support/s/article/Zookeeper-Unexpected-exception-causing-shutdown-while-sock-still-open-java-io-IOException-Unreasonable-length?language=en_US
https://stackoverflow.com/questions/38887977/zookeeper-keeps-getting-endofstreamexception-causing-a-crash

= Scenario 1: Examining only the searched log lines. For some searched log lines, the log
line itself may contain all required information. In this scenario, we assume that practitioners

only examine the log lines that match with the keywords.

= Scenario 2: Examining the entire workflow that contains the searched log lines. How-
ever, for some searched log lines, other log lines related to the searched ones may also need to
be examined (e.g., logs in the same execution sequence) (LaToza & Myers, 2010; Tan et al.,
2008; Yuan et al., 2010). Therefore, in this scenario, we assume that practitioners examine
all the log lines related to the searched log lines (i.e., all log lines in the workflows containing

the searched keywords).

Under each scenario, we evaluate the number of examined log lines using two representations of the

logs:

= Original logs. Examining the searched log lines (and related log lines in the case of scenario

2) in the original raw logs.

= Compressed form (unigue workflows). Examining the searched log lines (and related log
lines in the case of scenario 2) in the compressed form, considering only each unique work-
flow type once. In the compressed form, we consider only a single instance of each distinct

workflow type, since workflows of the same distinct type share a common compressed form.

Results. LogAssist reduces the number of searched log lines that need to be examined by
practitioners by 75% to 99%. Table 4.7 compares the number of log lines to be examined using
different representations of the logs (i.e., the original and the compressed forms), assuming that
practitioners only examine the searched log lines. We find that without LogAssist, keyword search
returns up to 428K log lines for the normal message, which is impossible to manually inspect. Even
when searching for log lines that indicate system runtime issues, keyword search returns several
hundreds or thousands of log lines. After applying LogAssist, the log lines to examine are greatly
reduced, with the log lines containing the searched keyword only appearing in a small subset of the
workflows. Compared to using the original logs, using LogAssist can reduce the number of log lines

that need to be inspected by up to 99%.

25

Table 4.7: Number of log lines to be examined using different representation of logs (Scenario 1:
examining only the searched log lines).

HFDS Zookeeper Enterprise System

Search key Driglinal Compressed Reduction | Original Compressed Reduction Reduction
0gs form logs form

K1-Normal | 428,726 803 99.81%| 2,020 32 97.43% 75.00%

K2-Issue 5,545 25 99.55% 590 4 99.32% 80.00%

K3-Issue 975 96 90.15% | 1,670 45 9731% 75.00%

Table 4.8: Number of log lines to be examined using different representation of logs (Scenario 2:
examining the entire workflows that contain the searched log lines).

HFDS Zookeeper Enterprise System

Search key Original Compressed Reduction | Original Compressed Reduction Reduction
logs form logs form

K1-Normal | 861,998 10,153 98.82%| 80,37 907 8BT71% 75.00%

K2-Issue | 1,375,884 2964 9978%| 1,190 T 99.41% T1.78%

K3-Issue | 3,257,875 284926 90.15%| 8477 803 90.53% 75.00%

LogAssist dramatically compresses the searched-line-related workflows that need to be exam-
ined by practitioners (i.e., by up to 99% reduction). Table 4.8 compares the number of log lines
to be examined using different representations of the logs, assuming that practitioners need to ex-
amine the entire workflows containing the searched log lines (which is a common practice in log
analysis and debugging (LaToza & Myers, 2010; Tan et al., 2008; Yuan et al., 2010)). We find
that the number of lines that need to be examined in the raw logs increased significantly to up to
millions. After using LogAssist to compress the log lines, we can reduce the number of log lines
that need to be examined by 75% to 99%. Although the reduction is large, we find that sometimes
practitioners may still need to investigate several thousands of log lines. After some investigation,
we find that it is because many of the log events that contain the search keywords are generated by
different log event sequences (i.e., different workflows). Namely, there may be different causes that
lead to a normal message or an issue-indicating message. In addition, some workflows may contain
hundreds of log events, which increases the number of log lines that need to be examined. However,
our results can still help practitioners identify the unique workflows that need to be examined and
assist them in examining the event sequences in the workflows.

Table 4.9 shows the number/percentage of workflows and workflow types in which the key-

words appear. We exclude the raw numbers for ES due to the NDA. The percentage of workflows

26

Table 4.9: The number of workflows and workflow types in which the search keys appear.

Search key HFD& Zookeepar Enterprise System

WS T 5 | Workfiows () Workilow Types () | Workilows (Jo) Workiow Types (%)
Kl-Nomal | 126,873 (24.06%) 475 (6.44%) 129 {4.52%) 18 (18.37%) — (14.29%%) — (9.68%)
K2-Izme 29 (0.0054% %) 23 (0.3119%) 590 (20.65%) 1 {L.02%) — (4.67T%) — (d.67T%)
K3-Izsme 100 (0018 5%) 93 (L262%) 161 (5.64%) 17 {17.35%) — (6.45%) — (6.A5%)

that contain the keywords range from 0.00549% to 24.06%, 4.52% to 20.54% and 4.67% to 14.29%
for HDFS, Zookeeper, and ES, respectively. The percentage of workflow types that contain the key-
words range from 0.3119% to 6.44%, 1.02% to 18.37%, and 4.67% to 9.68% for HDFS, Zookeeper,
and ES, respectively. The results show no significant correlation between the reduction percentages
shown in Table 4.7 and Table 4.8, and the number of workflows and workflow types that contain

these keywords.

4.3 RQ3: How much can LogAssist help improve users’ log analysis
experiences?

Motivation. Our first two research questions seek to quantitatively study the effectiveness of Lo-
gAssist for compressing logs and assisting with log analysis. In this research question, we aim to
qualitatively evaluate how well LogAssist can assist practitioners in performing log analysis tasks
and reduce the needed efforts. Therefore, we perform a user study in which we invite practitioners
and researchers to perform typical log analysis tasks using LogAssist. We compare the user study
results with and without using the tool.

Approach. We performed a user study with 19 participants, among whom 7 are software engineer-
ing practitioners and the other 12 are software engineering researchers (e.g., graduate students). We
asked the participants to perform six log analysis tasks on the Zookeeper and HDFS datasets. The
tasks and the datasets are publicly available online'. LogAssist uses a concise log representation to
assist users in log analysis while still providing users the flexibility to access the entire information
in the logs. Therefore, we design tasks that require users to obtain information from both the concise
representation of the logs and the logs that are hidden from the concise representation.

For the purpose of the user study, we provide a subset of the each of the log datasets for the

"https: i github.com/SteveLocke/LogAssist-A rtifacts. git

27

HDFS and Zookeeper systems. As we ask participants to record the time taken to complete tasks,
we intentionally provide a relatively smaller sample of the datasets to ensure that participants and
their varying device specifications can all support the log sizes with similar performance. The HDES
dataset sample is 3,095KB in size and consists of 37,002 log lines, while the Zookeeper dataset
sample is 3,244KB in size and consists of 25,000 log lines. While these samples are significantly
smaller than the complete datasets, each sample still contains a large number of log lines, sufficiently
reflecting the challenge related to large log size, as manually analysis on such sizes remains quite
difficult.

As even the most complex tasks are composed of smaller tasks, we chose to select a set of
smaller tasks in the user study and provide specific instruction in order to ensure that participants of
varying backgrounds could complete the tasks within a reasonable amount of time. Our designed
tasks covered a variety of typical log analysis tasks including analyzing the event sequence that
leads to an error, counting the occurrences of certain event sequences (i.e., workflows), counting
the occurrences of certain operations that encounter errors, and summarizing key information (e.g.,
the opened channels) in the logs. For example, one user study task involves determining the count
of an ordered pair of events which occur together as part of the same event sequence. Participants
are given instructions on how to use LogAssist, a starting point in the logs, and description of the
event pairs to be found. In practice, this task will likely be part of a more complex task requiring
additional analysis on the workflow.

Each participant was required to use LogAssist in three tasks and avoid using the tool (ie.,
using only the raw logs) in the other three tasks. Each participant was given a randomized and
evenly distributed assignment for which three tasks that they have access to LogAssist. For each
task performed, we asked the participant to record the time spent on the task, and their results
of performing the task. We also asked the participants to evaluate whether LogAssist improves
their experience of performing the tasks over using only the raw logs, using a scale of 1 (strongly
disagree) to 3 (strongly agree). Users were given the option of including additional qualitative
feedback in the form of unstructured comments. Every task is designed to be able to be completed
with or without using LogAssist. In practice, sometimes the required information may not be readily

available in a workflow’s compressed form. Thus, we design three out of the six tasks (i.e., T1, T2,

28

Table 4.10: The average time with, and without LogAssist and the % reduction. The time values are
represented in minutes for each individual task, as well as the total for all tasks combined.

Avg. time w/o. Avg. time w. Time Improvement

LogAssist (min) LogAssist (min) (%)
T1 13.65 335 75.46
T2 8.26 532 35.59
T3 3.99 4.59 -15.04
T4 6.565 3.98 39.38
T5 2.85 5.31 -86.32
T6 5.56 0.95 82.91
Total 40.88 23.51 42.49

and T3) to require expanding workflows from their compressed forms when using LogA ssist.
Results. On average, LogAssist reduces the amount of time needed for the participants to
perform the log analysis tasks by 42%. Table 4.10 compares, for each task, the average time
needed for the participants to perform the task with and without LogAssist. In four out of the six
tasks, the time required to perform the task was reduced by 35.59% to 82.91% with LogAssist. Our
results also show that the tasks that require expanding the workflows do not affect the effectiveness
of LogAssist, as LogAssist can still reduce the time needed for performing tasks that require such
expansion (e.g., T1 and T2). However, in two of the six tasks, the required time was increased by
15.04% to 86.32% with LogAssist. These two tasks are the simplest tasks (i.e., the participants took
the shortest time to perform these two tasks without using LogAssist), for which LogA ssist could not
further simplify. While LogAssist is able to reduce the amount of time needed for log analysis tasks,
there is also an inherent learning curve that the participants experience when using a new tool for
the first time. In simpler and shorter tasks, this overhead may become more apparent and possibly
increase the overall task time. Nevertheless, using LogAssist helped the users to significantly reduce
the total needed time to perform all the assigned tasks by 42.49%.

For each task, we also perform a Wilcoxon rank-sum test to compare the time taken by the par-
ticipants to complete the task with and without the assistance of LogAssist. Due to the small sample
size, only two of the six tasks (T1 and T6) show a statistically significant reduction in completion
time when using LogAssist. However, the result shows a statistically significant reduction in the

overall completion time of the tasks when using LogAssist (p<0.01).

29

o 11 (57.9%
o
B -—
[
[14] w -
g 7 (36.8%)
€ o4
o
g Y
=
N7 1(5.3%
o 0 (0%) 0 (0%) y—(—L\
&
O\f’{b @{,‘b "'bﬁ\ h‘\? (&:&?
Q@*‘s an q%o
J'\!k‘-‘?‘:’.‘&:’ hk

Figure 4.1: User provided rating for the usefulness of LogA ssist.

LogAssist improves the users’ experience of performing the log analysis tasks. As shown in
Figure 4.1, 18 out of 19 (94.7%) participants agreed or strongly agreed that LogAssist effectively
improves their log analysis experience, while only one participant had a neutral opinion on the
helpfulness of the tool. On average, participants assigned LogAssist a rating of 4.53 out of 5. After
speaking with the participant who had neutral opinion, the participant indicated that she rated the
tool as such due to experiencing some frustration while performing one task. She assumed that
the task should be simple, but instead found the task challenging even with the tool, leading her
to assume that she may not have been using the tool in an optimal fashion. Overall, as LogAssist
extracts meaningful workflows from the raw logs and abstracts the workflows into a concise set of
common event sequences (i.e., unique workflow types), LogAssist can effectively simplify users’
log analysis tasks.

Generally, the participants found LogAssist to be helpful and provide benefits over using simply
the raw logs. Many expressed their appreciation of the tool and its capabilities including antomated
workflow extraction, insights, visualizations, and the ability to perform some tasks much more

quickly. Some comments by participants seemed to indicate that they felt that developers needed

30

to be familiar with the concept of a workflow and be familiar with how to use the tool in order to
get the most from LogAssist. Similarly, one participant felt it would be helpful to further highlight
the underlying logic behind LogAssist to help users better understand how to operate it. While we
did provide participants with documentation outlining explanations of workflows and instructions
on how to utilize LogAssist, we recognize that there is a learning curve not only with LogAssist, but
with log analysis in general. As our study included participants from varying levels of experience in
log analysis, we expect a similar variation in the learning curve experienced. We expect that future
practitioners who adopt LogA ssist will experience a relatively small learning curve based on their
domain knowledge.

Despite positive feedback outlining the benefits of LogAssist, some participants did suggest
some additional features and improvements that they felt could benefit LogAssist. These suggested
features and improvements included additional filtering and sorting options, and bi-directional quick
navigation from statistics to workflows. These suggestions did not highlight an inability to perform
specific tasks, but rather, possible ways to further improve the speed of performing tasks when using

LogAssist, and options to allow users to customize their interface and experience.

31

Chapter 5

Lessons Learned

Logs are very repetitive, while most of the log information can be compressed without impact-
ing the usefulness of logs. Prior research (Hassan, Martin, Flora, Mansfield, & Dietz, 2008; Liu
et al., 2019; Yao, Li, et al., 2020) studies approaches for compressing log data. However, such log
compression approaches usually compress logs into a form that cannot be analyzed directly (ie.,
in a encoded format). In this work, we propose an approach that compresses logs into a concise
form that enables practitioners to conduct log analysis effectively. Besides, practitioners can ex-
pand detailed log information when needed, which ensures that practitioners can always find the
information that they are interested in, in a more efficient manner.

Re-organizing logs into meaningful workflows can improve practitioners’ experience of log
analysis. Logs are typically recorded in log files based on when they are generated during the
execution of systems. While log files keep the time-based order of the log lines, it is difficult for
practitioners to examine the logs, as the log lines of one workflow (e.g., the transaction of checking
out a product) are usually intermixed with the lines of other workflows (e.g., ordering supplies
or browsing). Our approach leverages the grouping ID information, which is usually available in
system logs, to separate the log lines of different workflows. Hence, practitioners can focus on a
particular workflow that they are interested in when conducting log analysis (e.g., when diagnosing
the cause of an error).

N-gram models can effectively capture the re-occurring patterns in the workflows. Software

logs are repetitive, not only in the repetition of the same events, but also in the repetition of the

32

log sequences (Jiang et al., 2008b; Shang et al., 2013; Xu et al., 2009a). Prior work uses n-gram
models to measure the repetitiveness of log data (Yao, Li, et al., 2020) or to identify the static
parts of a log line (Dai, Li, Shang, Chen, & Chen, 2020). In this work, we find that using n-
gram models (after grouping workflows) can effectively capture such repetition of log sequences
and allow us to leverage the captured repetition to further compress the logs into a concise form
for log analysis. While our study consisted of only reducing an n-gram sequence into a single
event if the conditional probabilities of the second event through the nth event are all 100% (ie.,
plen|el...en_1) = 1, this probability is a hyper-parameter that can be explored in future work. The
effects of a threshold analysis which relaxes this probability value would likely open the possibility
for further grouping between similar workflow types, but with the added risk of grouping workflows
that may be perceived as distinctly different workflow types.

Better tools and support (e.g., a log IDE) are important for practitioners to improve their
experience and effectiveness of log analysis. Existing log analysis tools (e.g., Splunk or Elastic)
usually support effective log search using keywords. However, such tools do not help practitioners
analyze the searched log lines in a more organized fashion (e.g., workflow or recurring log patterns).
In this work, we propose a log IDE, to allow practitioners to search all the information they need
while only presenting a concise form of information for practitioners to analyze. As indicated by
our user study, such an IDE can significantly improve practitioners” experience of performing log
analysis tasks. Future research on log analysis should aim to assist practitioners using similar tools.
Providing a concise representation of logs while still providing practitioners the flexibility to
access the complete information in the logs. LogAssist compresses the logs into a concise form
that may simplify practitioners’ log analysis tasks. However, practitioners may need to access some
detailed log information that is hidden from the concise form. Therefore, LogAssist also enables
practitioners to search and expand all the information in the original logs. By providing the ability
to view a given workflow in multiple forms and at different verbosity levels, LogAssist provides
a lossless reduction that is flexible. A practitioner may expand or collapse any given workflow to
suit their own needs, preferences, and tasks as they see fit, without losing any information from
the original logs. Our user study demonstrates that such a combination can effectively improve

practitioners’ log analysis experiences.

33

Chapter 6

Threats to Validity

In this chapter, we discuss the threats to validity of our study.

6.1 External validity.

We conducted our experiment on logs from one enterprise and two open source systems. Al-
though the log datasets that we use are from large-scale systems in different domains and are widely
used in prior studies (Zhu et al., 2019), our results may not be generalized to other systems. Future

studies are needed to verify the effectiveness of our approach on other systems.

6.2 Construct validity.

We evaluate our approach by following a prior study (Shang et al., 2013). Namely, we identify
keywords that are related to the most common errors, exceptions, and normal messages. We then
use the keywords to evaluate how much effort we can reduce when inspecting the search results.
However, the results may not truly represent how much effort is reduced. To mitigate the threat, we
conduct a user study in RQ3 to further evaluate the effectiveness of LogAssist. In our user study,
we use time to measure the effectiveness of LogAssist in assisting practitioners with log analysis.
There may be other metrics that may be used such as the success rate of finishing the task correctly.
Nevertheless, we find that LogAssist can also help users finish the log analysis tasks with a much

higher success rate (i.e., 60% higher than without LogA ssist).

34

In our user study, rather than providing participants with long and complex tasks, we designed
the study to include several smaller tasks in order to ensure that participants of varying backgrounds
could complete the tasks within a relatively short time-frame. Other possible reasons for the rela-
tively short completion time may include participants guessing, giving up, or believing they have
completed a task prematurely. With respect to the complexity of the tasks, even the most complex
of tasks are composed of smaller tasks. Furthermore, a non-complex task may contain many repet-
itive simple tasks that collectively become a time-consuming task. As the logs used in this thesis
are real-world logs, we consider the associated tasks to be real-world tasks, and do not consider the
time requirement of the tasks to directly correlate with the complexity.

In our workload creation step (Chapter 3.2), we leverage a popular algorithm in the signal pro-
cessing field to identify gaps between workflows. Although through our manual investigation and
the user study, we did not find workflows that are incorrectly identified, future studies are encour-

aged to compare different algorithms for identifying gaps between workflows.

35

Chapter 7

Related Work

In this chapter, we discuss related work in three areas: log analysis, understanding system work-

flows, and log compression.

7.1 Log analysis.

Many prior studies focus on using logs to assist in debugging and understanding system exe-
cution. A common log analysis approach is to group the log lines using grouping IDs, and then
apply machine learning techniques to detect anomalies (T.-H. Chen et al., 2017; Du et al., 2017;
Jiang et al., 2008b; Syer et al., 2013, 2014; Xu et al., 2009a). Such anomalies may be an indication
of the problem that happened during system execution. For example, Xu et al. (2009a) propose an
approach to first group log lines using grouping 1D and then apply principal component analysis to
detect anomalies. Jiang et al. (2008b) group log lines using grouping ID and apply z-stat to detect
anomalies. Syer et al. (2013, 2014) use hierarchical clustering to identify anomalies in execution
logs. Du et al. (2017) leverage deep leamning models (ie., LSTM) to detect anomalies in log se-
quences. T.-H. Chen et al. (2017) discuss a decade of experience on applying machine learning
techniques to analyze logs to assist load test analysis. In this work, we also use grouping IDs to
separate log lines into workflows. However, our goal is not only to detect anomalies, but also to

help practitioners understand and navigate system execution information.

36

7.2 Understanding system workflows.

Many prior studies try to assist practitioners in understanding system workflows (e.g., event
sequences) to assist in debugging and test design. Yuan et al. (2010) analyze log lines to uncover
system execution paths in the source code. Tan et al. (2008) analyze log lines by using state machines
to model system execution. T.-H. Chen, Shang, Hassan, Nasser, and Flora (2016) leverage log lines
to analyze system workflows and recommend where to place caches. J. Chen et al. (2019) propose
approaches to extract representative workflows from production logs to assist with load test design
at different levels of granularity. Lin et al. (2016) use clustering to identify similar workflows in
logs to assist with workflow comprehension. Workflow understanding is also very popular in the
software industry. Commercial tools such as Elastic (n.d.) allow practitioners to search log lines
using keywords, and provide different charts (i.e., dashboard) to visualize the matched log lines.
Different from prior studies, LogAssist aims to provide a more structured representation for log
lines. LogAssist helps reduce the amount of information that practitioners need to investigate, and
can assist in log analysis tasks.

The closest work to ours is by Shang et al. (2013). While Shang et al. (2013) seek to solve the
issue of finding deployment bugs in big data applications, LogAssist seeks to summarize logs into
workflows to facilitate log analysis tasks. The difference in the goals leads to different techniques
(as described in Chapter 4.2) and their provided benefits. As discussed in Chapter 4.2, LogAssist
provides a more concise form of logs than Shang et al. (2013). Furthermore, LogAssist allows for
transforming the logs into a more readable and comprehensible format where intermixed logs are
grouped into relevant workflows. The transformed logs also provide various representations by
expanding/collapsing portions of the workflow that allow for even fewer lines to scroll through.
LogAssist also provides statistics on workflows and workflow types (such as their frequency, work-
flows sharing the same common workflow type, and the information about the static and dynamic

components of the log events in the workflows).

37

7.3 Log compression.

Prior work (Balakrishnan & Sahoo, 2006; Christensen & Li, 2013; Feng, Wu, & Li, 2016;
Hitinen, Boulicaut, Klemettinen, Miettinen, & Masson, 2003; Liu et al., 2019; Mell & Harang,
2014; Otten, 2008; Skibinski & Swacha, 2007) proposes approaches for compressing log files.
These approaches usually compress logs through log transformation or text replacement. Some
research considers transforming existing log lines in a way to improve the size of the compressed
logs. This line of research leverages two main approaches for such a transformation, namely log
clustering (Christensen & Li, 2013; Feng et al., 2016) and log transposing (Mell & Harang, 2014).
Prior work also compresses logs by replacing long and repetitive text in log files with shorter rep-
resentations (Balakrnishnan & Sahoo, 2006; Hatonen et al., 2003; Liu et al., 2019; Otten, 2008;
Skibinski & Swacha, 2007). For example, Otten (2008) transforms all timestamps and IP addresses
in a log file to binary representations, then replace the static tokens in log files (i.e., static words
and phrases) with shorter representations. Recently, Liu et al. (2019) propose a log preprocessing
approach (i.e., Logzip) that extracts log templates from log data and replaces each template with a
shorter representation (e.g., a unique ID). Yao, Li, et al. (2020) evaluate the performance of various
general compression algorithms on log compression. They find that logs are highly repetitive and
highlight the difference between compressing logs and natural language text These approaches
transform logs into a compressed form that does not allow directly performing log analysis with-
out decompression. In this work, we propose an approach to compress logs into a concise form
while allowing practitioners to access the complete information in the logs on demand, without a

decompression process.

38

Chapter 8

Conclusion

In this thesis, we present LogAssist, a novel approach for assisting practitioners with log analy-
sis. LogAssist successfully identifies common workflow types by condensing extracted workflows
using consecutive event sequences and n-gram models. In particular, by evaluating LogAssist on
one enterprise and two open source systems, we find that LogAssist is able to significantly reduce
the amount of log lines that need to be examined in typical log analysis tasks and the associated

effort. In particular, this thesis makes the following contributions:

= We propose a novel approach that can effectively compress raw logs into concise forms which

can simplify and facilitate practitioners’ log analysis tasks.

* We demonstrate the importance of untangling the intermixing events contained in raw logs
into meaningful event sequences (i.e, workflows) and apply statistical techniques (e.g., n-

gram models) to identify such re-occurring patterns of event sequences.

= We share the lessons that we have learned while developing and adopting our approach, which
can provide valuable insights for researchers and practitioners wishing to develop or adopt

similar tools to assist with log analysis tasks.

39

References

Automated root cause analysis for spark application failures - o'reilly media. (2017). ((Last ac-
cessed August 13, 2019))

Balakrishnan, R., & Sahoo, R. K. (2006). Lossless compression for large scale cluster logs. In
Proceedings 20th IEEE International Parallel & Distributed Processing Symposium (p. T).
doi: 10.1109/IPDPS.2006.1639692

Barik, T., DeLine, R., Drucker, 8. M., & Fisher, D. (2016). The bones of the system: a case study
of logging and telemetry at microsoft. In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, may 14-22, 2016 - companion volume (pp. 92-101).
doi: 10.1145/2880160.2889231

Chen, A., Chen, T., & Wang, 5. (2021). Pathidea: Improving information retrieval-based bug
localization by re-constructing execution paths using logs. [EEE Transactions on Software
Engineering, 1-1. doi: 10.1109%/TSE.2021.3071473

Chen, A. K., Chen, T. P, & Wang, S. (2021). Demystifying the challenges and benefits of analyzing
user-reported logs in bug reports. Empirical Software Engineering, 26, 8. doi: 10.1007/
s10664-020-09893-w

Chen, J., Shang, W., Hassan, A. E., Wang, Y., & Lin, J. (2019). An experience report of gener-
ating load tests using log-recovered workloads at varying granularities of user behaviour. In
Proceedings af the 34th IEEE/ACM International Conference on Automated Software Engi-
neering (pp. 669-681). doi: 10.1109/ASE.2019.00068

Chen, T.-H., Shang, W., Hassan, A. E., Nasser, M., & Flora, P. (2016). Cacheoptimizer: Helping
developers configure caching frameworks for hibernate-based database-centric web applica-
tions. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (pp. 666-677). doi: 10.1145/2950290.2950303

Chen, T.-H., Syer, M. D., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. (2017).
Analytics-driven load testing: An industrial experience report on load testing of large-scale
systems. In Proceedings of the 39th International Conference on Software Engineering: Soft-
ware Engineering in Practice track (pp. 243-252). doi: 10.1109/ICSE-SEIP.2017.26

Chow, M., Meisner, D., Flinn, J., Peek, D., & Wenisch, T. E. (2014). The mystery machine: End-
to-end performance analysis of large-scale internet services. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI "14, october 6-8, 2014. (pp. 217-231).
doi: 10.5555/2685048.2685066

Christensen, R., & Li, E (2013). Adaptive log compression for massive log data. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data (pp. 1283-1284).
doi: 10.1145/2463676.2465341

Cito, I., Leitner, P., Fritz, T., & Gall, H. C. (2015). The making of cloud applications: an empirical
study on software development for the cloud. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, august 30 - september 4, 2015
(pp. 393-403). doi: 10.1145/2786805.2786826

Dai, H., Li, H., Shang, W., Chen, T.-H., & Chen, C.-5. (2020). Logram: Efficient log parsing
using n-gram dictionaries. IEEE Transactions on Software Engineering, 1-1. doi: 10.1109/
TSE.2020.3007554

Ding, R., Zhou, H., Lou, J., Zhang, H., Lin, Q., Fu, Q., ... Xie, T (2015). Log2: A cost-
aware logging mechanism for performance diagnosis. In 2015 USENIX Annual Technical
Conference, USENIX ATC '15, july 8-10 (pp. 139-150). doi: 10.5555/2813767.2813778

Du, M., Li, E, Zheng, G., & Srikumar, V. (2017). Deeplog: Anomaly detection and diagnosis from
system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (pp. 1285-1298). doi: 10.1145/3133956.3134015

Elastic. (n.d.). Elastic. https://www.elastic. co/. (Last accessed May 16, 2020.)

41

https://www.elastic.co/

ElasticSearch. (n.d.). Open-source log storage. https://www.elastic.co/products/
elasticsearch. (Last accessed May 16, 2020.)

Feng, B., Wu, C,, & Li, J. (2016). MLC: an efficient multi-level log compression method for
cloud backup systems. In 2016 IEEE TrustCom/BigDataSE/ASPA, august 23-26, 2016 (pp.
1358-1365). doi: 10.1109/TrustCom.2016.0215

Fu, Q., Lou, 1.-G., Lin, Q., Ding, R., Zhang, D., & Xie, T. (2013). Contextual analysis of program
logs for understanding system behaviors. In Proceedings of the 10th Working Conference on
Mining Softiware Repositories (pp. 397-400). doi: 10.1109/MSR.2013.6624054

Fu, Q., Lou, J.-G., Wang, Y., & Li, I. (2009). Execution anomaly detection in distributed systems
through unstructured log analysis. In Proceedings of the 9th IEEE International Conference
on Data Mining (pp. 149-158). doi: 10.1109/ICDM.2009.60

Fu, Q., Zhu, 1., Hu, W,, Lou, 1.-G., Ding, E., Lin, Q., ... Xie, T. (2014). Where do developers
log? an empirical study on logging practices in industry. In Companion Proceedings of the
36th International Conference on Software Engineering (pp. 24-33). doi: 10.1145/2591062
2591175

Hassan, A. E., Martin, D. 1., Flora, P, Mansfield, P, & Dietz, D. (2008). An industrial case
study of customizing operational profiles using log compression. In Proceedings of the 30th
International Conference on Software Engineering (pp. 713-723). doi: 10.1145/1368088
1379445

Hiténen, K., Boulicaut, J. E,, Klemettinen, M., Miettinen, M., & Masson, C. (2003). Comprehensive
log compression with frequent patterns. In International Conference on Data Warehousing
and Knowledge Discovery (pp. 360-370). doi: 10.1007/978-3-540-45228-7_36

He, P, Chen, Z., He, 5., & Lyu, M. R. (2018). Characterizing the natural language descriptions in
software logging statements. In Proceedings of the 33rd ACMAEEE International Conference
on Automated Software Engineering (pp. 178-189). doi: 10.1145/3238147.3238193

He, P, Zhu, J., Zheng, Z., & Lyu, M. R. (2017). Drain: An online log parsing approach with fixed
depth tree. In 2017 IEEE International Conference on Web Services (ICWS) (pp. 33-40). dot:
10.1109/ICW5.2017.13

42

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch

He, 5., Lin, Q., Lou, J.-G., Zhang, H., Lyu, M. R., & Zhang, D. (2018). Identifying impactful service
system problems via log analysis. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (pp. 60-70). doi: 10.1145/3236024.3236083

Jiang, Z. M., & Hassan, A. E. (2015). A survey on load testing of large-scale software systems.
IEEE Transactions on Sofiware Engineering, 1091-1118. doi: 10.1109/TSE.2015.2445340

Jiang, Z. M., Hassan, A. E., Hamann, G., & Flora, P. (2008a). An automated approach for abstract-
ing execution logs to execution events. Journal of Software Maintenance, 249-267. doi:
10.5555/1400155.1400158

Jiang, Z. M., Hassan, A. E., Hamann, G., & Flora, P. (2008b). Automatic identification of load
testing problems. In Proceedings of the 2008 IEEE International Conference on Software
Maintenance (pp. 307-316). doi: 10.1109/ICSM.2008.4658079

LaToza, T. D., & Myers, B. A. (2010). Developers ask reachability questions. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering (pp. 185-194). doi:
10.1145/1806799.1806829

Li, H., Shang, W., Adams, B., Sayagh, M., & Hassan, A. E. (2020). A gualitative study of the
benefits and costs of logging from developers’ perspectives. IEEE Transactions on Software
Engineering, 1-1. doi: 10.1109/TSE.2020.2970422

Li, Y., liang, Z. M., Li, H., Hassan, A. E., He, C., Hoang, R., ... Chen, P. (2020). Predicting node
failures in an ultra-large-scale cloud computing platform: an aiops solution. ACM Transac-
tions on Software Engineering and Methodology. doi: 10.1145/3385187

Lin, Q., Zhang, H., Lou, 1.-G., Zhang, Y., & Chen, X. (2016). Log clustering based problem
identification for online service systems. In Proceedings of the 38th International Conference
on Software Engineering Companion (p. 102-111). doi: 10.1145/2889160.2889232

Liu, 1., Zhu, J., He, S., He, P, Zheng, Z., & Lyu, M. R. (2019). Logzip: Extracting hidden structures
via iterative clustering for execution log compression. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (pp. 863—873). doi: 10.110%
ASE.2019.00085

43

Lou, 1., Fu, Q., Yang, 5., Xu, Y., & Li, J. (2010). Mining invariants from console logs for system
problem detection. In 2010 USENIX Annual Technical Conference, june 23-25, 2010 (p. 24).
doi: 10.5555/1855840.1855864

Mell, P, & Harang, R. E. (2014). Lightweight packing of log files for improved compression in
mobile tactical networks. In Military Communications Conference (MILCOM), 2014 IEEE
(pp. 192-197). doi: 10.1109/MILCOM.2014.37

Nagappan, M., Wu, K., & Vouk, M. A. (2009). Efficiently extracting operational profiles from
execution logs using suffix arrays. In Proceedings of the 20th IEEE International Conference
on Software Reliability Engineering (pp. 41-50). doi: 10.1109/ISSRE.2009.23

Nagaraj, K., Killian, C. E., & Neville, J. (2012). Structured comparative analysis of systems logs to
diagnose performance problems. In Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, april 25-27, 2012 (pp. 353-366).

Nageswaran, P. (1999, November 23). Method, apparatus and compwter program product for
dynamically managing a thread pool of reusable threads in a computer system. (US Patent
5,991,792)

Oliner, A., Ganapathi, A., & Xu, W. (2012). Advances and challenges in log analysis. Communi-
cations of the ACM, 55-61. doi: 10.1145/2076450.2076466

Oliner, A. 1., & Stearley, J. (2007). What supercomputers say: A study of five system logs. In
The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2007, 25-28 june 2007, proceedings (pp. 575-584). doi: 10.1109/DSN.2007.103

Otten, F. I. (2008). Using semantic knowledge to improve compression on log files (Unpublished
doctoral dissertation). Rhodes University.

Reiss, C., Wilkes, I., & Hellerstein, J. L. (2011). Google cluster-usage traces: format + schema
(Technical Report). Mountain View, CA, USA: Google Inc. (Revised 2014-11-17 for version
2.1. Posted at https: //github. com/google/cluster—-data)

Schroeder, B., & Gibson, G. A. (2007). Disk failures in the real world: What does an MTTF of 1,
000, 000 hours mean to you? In 5th USENIX Conference on File and Storage Technologies,

FAST 2007, february 13-16, 2007 (pp. 1-16). doi: 10.5555/1267903.1267904

https://github.com/google/cluster-data

Shang, W., liang, Z. M., Hemmati, H., Adams, B., Hassan, A. E., & Martin, P (2013). Assisting
developers of big data analytics applications when deploying on hadoop clouds. In 2013
35th International Conference on Software Engineering (ICSE) (pp. 402—411). doi: 10.110%
ICSE.2013.6606586

Skibinski, P., & Swacha, J. (2007). Fast and efficient log file compression. In CEUR Workshop Pro-
ceedings of the 11th East-European Conference on Advances in Databases and Information
Systems (pp. 330-342).

Splunk. (2017). Turn machine data into answers. https://www. splunk. com. (Last accessed
May 16, 2020.)

Syer, M. D., Jiang, Z. M., Nagappan, M., Hassan, A. E., Nasser, M., & Flora, P. (2013). Leveraging
performance counters and execution logs to diagnose memory-related performance issues.
In Proceedings of the 2013 IEEE International Conference on Software Maintenance (pp.
110-119). doi: 10.1109%/1CSM.2013.22

Syer, M. D., Jiang, Z. M., Nagappan, M., Hassan, A. E., Nasser, M., & Flora, P. (2014). Continuous
validation of load test suites. In Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering (pp. 259-270). doi: 10.1145/2568088.2568101

Tan,]., Pan, X., Kavulya, 5., Gandhi, R., & Narasimhan, P. (2008). Salsa: analyzing logs as state
machines. In Proceedings of the 1st USENIX Conference on Analysis of System Logs (pp.
6-6). doi: 10.5555/1855886.1855802

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... Contrib-
utors, S. .. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17, 261-272. doi: https://doi.org/10.1038/541592-019-0686-2

Xu, W., Huang, L., Fox, A., Patterson, D., & Jordan, M. L. (2009a). Detecting large-scale system
problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (pp. 117-132). doi: 10.1145/1629575.1629587

Xu, W., Huang, L., Fox, A., Patterson, D. A., & Jordan, M. 1. (2009b). Online system problem
detection by mining patterns of console logs. In ICDM 2009, Ninth IEEE International Con-

ference on Data Mining, 6-9 december 2009 (pp. 588-597). doi: 10.1109/ICDM.2009.19

45

https://www.splunk.com

Yao, K., de Padua, G. B., Shang, W., Sporea, C., Toma, A., & Sajedi, 5. (2020). Logdperf:
suggesting and updating logging locations for web-based systems’ performance monitoring.
Empirical Software Engineering, 488-531. doi: 10.1007/510664-019-00748-z

Yao, K., Li, H., Shang, W., & Hassan, A. E. (2020). A study of the performance of general
compressors on log files. Empirical Software Engineering, 1-1. doi: 10.1007/s10664-020
-09822-x

Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., & Pasupathy, 5. (2010). Sherlog: Error diagnosis
by connecting clues from run-time logs. In Proceedings of the Fifteenth International Con-
ference on Architectural Support for Programming Languages and Operating Systems (pp.
143-154). doi: 10.1145/1736020.1736038

Zhu, J., He, S., Liu, J., He, P, Xie, Q., Zheng, Z., & Lyu, M. R. (2019). Tools and benchmarks
for automated log parsing. In Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice (pp. 121-130). doi: 10.1109%/ICSE-SEIP
.2019.00021

	List of Figures
	List of Tables
	Introduction
	Research Statement
	Thesis Contributions
	Organization of the Thesis

	Motivating Examples
	Situation one: Anomaly detection after load testing.
	Situation two: Recovering common user behaviors.
	Situation three: Identifying the root causes of system runtime issues.
	Challenges observed during the above-mentioned situations.

	The Design of LogAssist
	Log Abstraction
	Workflow Creation
	Group log events by grouping ID
	Separate by Time Gap

	Workflow Reduction
	Collapse consecutive events.
	Collapse with n-gram modeling.

	Log Reconstruction
	LogAssist is Lossless.
	An Exemplar Usage Scenario of LogAssist

	Evaluation
	RQ1: How well can logs be compressed into re-occurring event sequences?
	RQ2: How much can LogAssist reduce the volume of logs needed to be examined in log analysis tasks?
	RQ3: How much can LogAssist help improve users' log analysis experiences?

	Lessons Learned
	Threats to Validity
	External validity.
	Construct validity.

	Related Work
	Log analysis.
	Understanding system workflows.
	Log compression.

	Conclusion
	Bibliography

