
SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Generating Unit Tests for Documentation
Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P. Robillard

Abstract—Software projects capture information in various kinds of artifacts, including source code, tests, and documentation. Such
artifacts routinely encode information that is redundant, i.e., when a specification encoded in the source code is also separately tested
and documented. Without supporting technology, such redundancy easily leads to inconsistencies and a degradation of documentation
quality. We designed a tool-supported technique, called DScribe, that leverages redundancy between tests and documentation to
generate consistent and checkable documentation and unit tests based on a single source of information. DScribe generates unit tests
and documentation fragments based on a novel template and artifact generation technology. By pairing tests and documentation
generation, DScribe provides a mechanism to automatically detect and replace outdated documentation. Our evaluation of the
Apache Commons IO library revealed that of 835 specifications about exception handling, 85% of them were not tested or correctly
documented, and DScribe could be used to automatically generate 97% of the tests and documentation.

Index Terms—Code documentation, Testing tools, Code generation, Maintainability, Specification management

F

1 Introduction

Mature software frameworks and libraries are usually
complemented by extensive test suites and reference

documentation. For example, the Apache Commons Math
project release 3.6 is supported by 4467 tests and 215 176
words of method reference documentation. Although unit
tests and reference documentation serve different purposes,
their creation involves expressing the same or similar infor-
mation in different software artifacts, which must then be
kept consistent. An example of a pervasive case is that of
a function that throws a specific type of exception when
supplied with an invalid argument. Normally, such behavior
should be described in the function’s documentation, and
tested by a unit test. Ideally, the test and the documentation
would be consistent.

As this simple scenario illustrates, current practices for
testing and documenting reusable software assets exhibit
three inter-related problems. First, manually-created tests
and documentation are often redundant. In turn, this redun-
dancy introduces the risk of inconsistencies between a docu-
mented specification and the exercise of the corresponding be-
havior in a test. Finally, in situations where many functions in
a library exhibit similar constraints (e.g., on input validation),
the redundancy between tests and documentation exacerbates
the repetitiveness of the testing and documentation effort.

The goal of our research is to leverage the redundancy and
repetitiveness of information in software artifacts to reduce
the amount of developer effort, as well as the threat of
inconsistencies. To advance towards this goal, we investigate a
solution that explores a new synergy between template-based
unit test and documentation generation.

Although, at an abstract level, generating unit tests may
seem relatively straightforward, realizing this idea in prac-
tice required addressing many new technical challenges with
original solutions. We explored this design space by fully

• The authors are with the School of Computer Science, McGill
University, Montréal, Canada.
E-mail: {mnassif, martin}@cs.mcgill.ca,
E-mail: {alexa.hernandez, ashvitha.sridharan}@mail.mcgill.ca

Manuscript received ...; revised ...

developing a prototype technique, called DScribe, that can
generate unit tests for Java systems.

DScribe is a tool-supported technique for transforming
facts about methods between different types of equivalent
representations. DScribe relies on a database of fact tem-
plates, and users invoke a template to instantiate a specific
fact about a method into a unit test and corresponding block
of documentation. To realize this functionality, the design of
DScribe incorporates, among others, a new template defini-
tion language and original algorithms for aggregating related
fragments of documentation into a cohesive unit.

As a research project focused on engineering design, our
assessment of DScribe focused on gaining an understanding of
the potential usefulness of the approach, its applicability, and
its limitations. A study revealed that 85% of the specifica-
tions about exceptions thrown by the methods of the Apache
Commons IO library are either untested, undocumented, or
both. In addition, the investigation revealed that DScribe
could have prevented 97% of these inconsistencies. In a wider
study of the applicability of DScribe, we found that 42%
of the tests in three additional Apache commons projects
captured at least one unit of specification, which means that
a significant amount of tests need to be kept consistent with
documentation.

The main contribution of this paper is the complete design
and implementation of a prototype technique for generating
unit tests for documentation. Although this technique only
represents one point in a wide design space, we also contribute
numerous insights about the rationale for important design
and implementation solutions that can inform future work in
that direction. We also contribute three empirical studies that
provide different insights on the general potential for generat-
ing unit tests for documentation. Although they leverage our
work on DScribe, the studies are not specific to the tool, and
thus the observations they generated can provide insights that
go much beyond the application of a given prototype.

This article is organized as follows. In Section 2 we provide
a general overview of DScribe, followed by sections that supply
the details on the two key aspects of the approach: templates
(Section 3) and generative technology (Section 4). Section 5 is

ar
X

iv
:2

00
5.

08
75

0v
2

 [
cs

.S
E

]
 2

0
M

ay
 2

02
0

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Template Invocations

Documentation
(Javadoc)

Unit Tests
(JUnit)

Invocation Files
(JSON)

Templates

Fig. 1. Information representations in DScribe. Rounded rectangles show
different representations of facts, and arrows indicate transformations
supported by DScribe. Dashed lines indicates a dependency to a set of
templates.

an overview of the empirical assessment of the work, followed
by the details of a usefulness study (Section 6), a validation
study (Section 7), and a qualitative empirical study of the
limitations of the approach (Section 8). Section 9 presents the
related work and Section 10 concludes the paper.

Research Artifacts
Our contributions are complemented by an on-line appendix,
which contains the source code of DScribe, details of the
evidence collected as part of the studies, as well as additional
details on the implementation of the technique.

https://github.com/prmr/DScribe-Research

2 DScribe Overview
At its core, DScribe is an approach to transform facts about
software elements between different types of equivalent rep-
resentations. In the current implementation of DScribe, facts
must relate to a single public Java method, called the focal
method.

For example, a fact could be that if the focal method
receives the value null as argument, it throws a NullPointer-
Exception. The method declaration encodes this fact by pro-
viding an implementation. However, the fact can also be
redundantly encoded in other representations, such as unit
tests or natural language documentation.

In addition to their redundant representations, some facts
can have a repetitive structure when minor variations of the
same fact apply to multiple methods. DScribe comprises a
database of fact templates, where each template captures one
common kind of facts. For example, one template captures
facts with the structure “method X throws an exception
of type Y when the argument is Z.” A template includes
placeholders that provide the flexibility to use the template
in different contexts.

Users invoke a template to instantiate a specific fact
about a method. A template invocation provides the values
for the placeholders of the template for a given focal method.
Template invocations serve as a common basis for all repre-
sentations of facts. Figure 1 summarizes the representations
supported by DScribe and the relations between them. In
practice, template invocations are employed to produce two
commonly-used representations of facts: header comments
used for documentation (Javadoc) and unit tests using the
JUnit framework.

TABLE 1
Technical and implementation challenges involved in the development
of DScribe. The last column indicates the section of this article that

discusses the challenge.

Component Challenge Sect.

Technical
Templates Capturing kinds of facts 3.1
Invocations Capturing minimal information 3.2
Invoc.→ Tests Ensuring compilability 4.1
Invoc.→ Doc. Reducing clutter 4.3

Implementation
Templates Serializing template information 3.1
JSON Designing a lossless readable format 3.2
Invoc.→ Tests Proper code style and 4.2

integration with existing tests
Invoc.→ Doc. Traceability and 4.4

integration with source code

This synergistic combination of automatically generated
tests and documentation mitigates the respective weaknesses
of both representations of information: The documentation is
made checkable and traceable to source code (via its connec-
tion to unit tests), and the latent documentation captured
by unit tests is made explicit and easily accessible (as docu-
mentation). A further benefit of DScribe’s approach is that,
once generated, the tests and documentation are well-formed
artifacts fully independent from the generation framework.

Our research into the development of DScribe required
solving a number of design challenges, but also experiment-
ing with alternative solutions to implementation challenges.
Table 1 summarizes these challenges.

Defining the structure of templates and invocations were
the two first challenges. The guiding principle behind their
design was to facilitate the generation of tests and documen-
tation while avoiding unnecessary or redundant information.
Because these two components were novel aspects of DScribe,
they also involved significant implementation challenges.

Invocations and their JSON representations are roughly
equivalent, so the bidirectional transition between them is
straightforward. Given a template invocation, the generation
of unit tests is, for the most part, an implementation rather
than a design challenge. Nevertheless, ensuring that the gen-
erated unit tests are compilable is not trivial, and requires the
definition of types for placeholders. Integrating the generated
tests and documentation with other artifacts of the system
is also challenging, especially with the constraint to minimize
repetitiveness of the generated documentation. The solution
to this latter challenge led to the design of a novel intermediate
representation for documentation.

Because implementation challenges are less relevant to
the research, we only mention them briefly for completeness.
Our publicly available implementation of DScribe provides a
fully developed prototype solution to these implementation
challenges.

A key design principle of DScribe was to avoid any pos-
sibility for imprecise inference. Past research has proposed
various inference techniques to extract and generate informa-
tion, often using one representation to generate another [1].
These techniques are useful to discover information initially
unavailable to developers. However, in the context of our
research goal, their limitation is that they require developers

https://github.com/prmr/DScribe-Research

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

/∗∗ $method$ throws an e x c e p t i o n o f type ex
∗ when $ s t a t e $.
∗/

@Template (" Example ")
@Types (ex=EXCEPTION, $ s t a t e $=EXPR, $ f a c t o r y $=METHOD)
@Test
pub l i c vo id t e s t$method$_$s ta te$ () {

$ c l a s s $ i n s t a n c e = $ f a c t o r y $ () ;
t r y {

i n s t a n c e . $method$ () ;
f a i l () ;

} catch (ex e) {}
}

Fig. 2. Example of a template.

to validate the outcome of the inference process. In contrast,
DScribe’s aim is to effectively leverage information that has
already been specified by developers precisely and unambigu-
ously.

3 Templates and Invocations
Templates and their invocations are the main innovations of
DScribe. They are a new form of documentation for software
systems better suited to represent common facts without
repetitiveness and unnecessary information. To achieve this
objective, templates encapsulate as much as possible the in-
formation that would otherwise be repeated between methods
and their associated artifacts (documentation and test), and
template invocations encapsulate the remaining information
that is method-specific.

3.1 Template Definition Language
DScribe’s templates are, literally, templates for tests and
documentation: a DScribe template contains a partial ab-
stract syntax tree (AST) of a unit test and a partial natural
language description. These two elements are only partial
because they contain placeholders, each identified by a unique
name. Thus, a template is exactly the aggregation of a list of
placeholders, an AST rooted at a method declaration, and a
natural language description.

Figure 2 shows an example of a template. The Java
code defines the template AST and the header comment is
the template description, with placeholders identified by a
surrounding pair of dollar signs ($). The template expresses
the fact that a method throws an exception when its implicit
argument is in a specific state. The specific method, exception
type, and state are all placeholders of the template, as well as
the declaring type of the method and the name of a factory
method.

The value of a template (i.e., the information that it
captures) is more than the sum of its parts (partial AST and
description). A template explicitly associates two representa-
tions of a specific kind of facts: how to describe the fact in
documentation, and how to test it. It is this association that
allows DScribe to transform different representations of the
same information, without relying on inference techniques.

For a template to be effective, its AST and description
must be self-contained, but also flexible. A developer should
be able to understand the purpose of the template by reading
the description and the AST, but also to apply this template
to various contexts, or methods. A catalog of templates can

thus serve not only to generate tests and documentation, but
also as a knowledge base for the development community.

An important design principle for templates was to avoid
any reliance on a prescribed coding style, except for the
requirement that each unit test focuses on a single test case
about a single method. For example, with our design, tem-
plates can enfore any convention for unit test names.

Implementation Decisions

Templates are collected in a catalog that consists of a set of
parsable Java files. Each method declared in these files and
identified with the @Template annotation corresponds to a
template, as in Figure 2. The AST of the method declaration
becomes the AST of the template, and the header comment
of the method becomes its description. Each placeholder is a
legal Java identifier that begins and ends with a dollar sign
($).1 The @Types annotation declares the list of placeholders,2
except for a few predefined placeholders that refer to the
properties of the focal method, such as $method$ (its name)
and $class$ (its declaring type). Template authors attribute
the template’s name as the only argument of the @Template
annotation (e.g., Example in Figure 2).

The motivation for expressing templates using legal Java
code was for the template format to be familiar to Java devel-
opers. This makes templates more readable, and consequently
the knowledge they capture more accessible. The format also
allows template authors to leverage their usual tools to create
and edit templates. Finally, this format facilitates the creation
of new templates from existing tests and documentation: a
developer only needs to clone the existing test and documen-
tation, and replace specific values with placeholders.

3.2 Template Invocations

A template invocation records the application of a template to
a focal method. Invocations require an invocation context that
consists of the signature of the focal method and values for
placeholders. The method signature is required to correctly
link the generated assets (tests and documentation). It also
provides the values of the few predefined placeholders (e.g.,
$method$), and a default package and Java type from which
other placeholder values can be resolved.

The remainder of the invocation context is the set of
values to assign to the template’s placeholders. Following
the principle that the generation of tests and documentation
should be as transparent for the user as possible, DScribe
replaces placeholders with the user-provided values with as
little transformation as possible to make the test compile or
the documentation sensible. Thus, the values supplied to the
template invocation are not expressions to be evaluated by the
generation engine, but expressions to be substituted verbatim
for the placeholders.

1. Although it is a legal character for identifiers, the Java Language
Specification discourage the use of dollar signs in usual code [2, §3.8],
thus reducing the probability of collisions between templates and
actual code.

2. It also assigns a type to each placeholder. Placeholder types
are designed mostly for unit test generation, so we discuss them in
Section 4.1.

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

For each invocation

Invocation Validated
Invocation

Validation
Artifact

Generation

Template

Javadoc /
Test Suite

Integration

Fig. 3. High-level overview of tests and documentation generation

Implementation Decisions
We made the arbitrary decision to format invocation files
using JSON. This format allows users to directly read, write,
and edit invocation files with any text editor. Users can
also use many existing tools to manipulate JSON objects
more effectively. Finally, many JSON libraries support the
implementation of a straightforward serialization and dese-
rialization of invocations.

To keep invocation files as concise as possible, they contain
only the necessary information. Hence, in contrast to template
files, which are mostly self-contained, invocation files are not.
They depend on the definition of the relevant templates to
generate useful information. Future versions of DScribe could
include tools to make invocation files easier to create, read,
and edit, but this implementation challenge is left for future
work.

4 Unit Test and Documentation Generation
The ultimate goal of DScribe is to manage external fact
representations: unit tests and Javadoc documentation. The
generation of both kings of artifacts follows a similar three-
step process summarized in Figure 3.

For each individual invocation, the first step is to identify
the template being invoked and validate the values of the
invocation. The validation step ensures that the invocation
refers to a valid template, that its focal method exists, and
that each placeholder value can be correctly substituted.
Validating placeholder values is especially important, and
challenging, for the generation of compilable unit tests. This
challenge motivated the design of a small type system for
placeholders that can guide developers in properly invoking
templates (see Section 4.1).

If the invocation passes the validation step, the second step
is to generate the artifact (i.e., unit tests or documentation
fragment) by substituting each placeholder with the value
that the invocation provides.

After generating all artifacts individually, the third and
final step is to combine them and integrate them with the rest
of the system. Generated unit tests are integrated within the
existing test suite, and generated documentation is integrated
directly in the source code as header comments for documen-
tation. In addition to inserting the generated artifacts into the
project without disrupting the rest of the system, the integra-
tion step is also responsible for removing outdated generated
artifacts, and aggregating similar generated artifacts to reduce
repetitiveness. This aggregation is especially important for
documentation, because unnecessary clutter will have a nega-
tive impact on readability. To solve this aggregation challenge,
we designed a novel, easily interpretable structured format

$type$ x = $expr$;
Object y = x . $method$ ($ e x p r l i s t $) ;
System . out . p r i n t l n (y . $ f i e l d $) ;
throw new $e x c ep t i on$ () ;

Fig. 4. Example of a partial AST template with placeholders of different
types

to express facts, which also allows for a trivial yet effective
aggregation of similar facts.

4.1 Placeholder Types
During the generation of tests, the value that each placeholder
replaces is subject to different syntactic rules, depending on
the location in which the placeholder appears in the template.
For example, in the assignmentObject x = $p1$($p2$), the first
placeholder, $p1$, can never be replaced by an integer literal.
Placeholder types can help avoid such errors. Each different
type defines a specific set of rules that apply to a placeholder
based on its location in the template.

The placeholder types DScribe supports are TYPE, EX-
CEPTION,METHOD, FIELD, EXPR, and EXPR_LIST. Figure 4
shows usage examples of a placeholder of each type.

Placeholder values of type TYPE and EXCEPTIONmust be
the qualified name of an existing Java type in the build path
of the system. Additionally, EXCEPTION placeholders must
inherit from the Throwable class. A qualified name is necessary
to resolve the Java type, but also to insert it in the template
without an associated import statement. However, to reduce
unnecessary effort, if the Java type is declared in the same
package as that of the focal method, only the simple name is
required. Placeholders of type METHOD and FIELD replace a
method or field name, respectively. Placeholder values of type
EXPR must be syntactically legal Java expressions. Similarly,
the EXPR_LIST type can be used for placeholders that replace
a variable number of expressions, usually for the arguments
of a method invocation in the template (see the placeholder
$exprlist$ in Figure 4).

For the types METHOD, FIELD, EXPR, and EXPR_LIST,
DScribe does not resolve the identifiers used in the placeholder
values, and so it does not verify that the method or field exists,
or that the expressions refer to existing variables. Therefore,
it is possible that DScribe will generate unit tests with compi-
lation errors due to unresolved symbols or incompatible types
(e.g., if the value of $expr$ is incompatible with the Java type
$type$ in Figure 4). This limitation is a necessary condition
to allow developers to create templates reusable in various
contexts, and it is mitigated by the fact that the compiler of
the test suite will detect these errors.

The context of the invocation provides a few predefined
placeholders, including $method$, $class$, and $package$ for
the focal method (or constructor) and its declaring type and
package, respectively. These placeholders do not require an
explicit value from the user, as the value is derived from the
context. Therefore, they do not have a placeholder type.

4.2 Integration of Unit Tests with Existing Test Suite
Integrating the generated unit tests with an existing test suite
is mostly an implementation challenge. Each template defines,
using placeholders, the name of the class and package where
to place the generated test. Thus, DScribe groups together all

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

condition

consequence

Description Statement

Subject

Relation

Object

Fig. 5. UML description of the structure of documentation fragments

tests that go in the same file, and writes one file for each such
test class. Because each unit test is independent, and because
a large number of similar tests are not an issue for test suites
(they are meant to be read by the testing framework), there is
no further aggregation to perform.

To avoid corrupting the manually written testing code, but
also remove outdated tests generated by previous executions,
DScribe places all generated tests in a separate folder, defined
by the user. Therefore, manually and automatically generated
test code can coexist in separate folders, and template invoca-
tions can leverage scaffolding, such as stub objects and helper
methods, from the main test suite. When a user executes
DScribe again, old test classes (in DScribe’s folder) are simply
overwritten by the new ones, thus removing any outdated test.

4.3 Information Aggregation

Some methods can have multiple similar facts that need to be
tested and documented. For example, Java’s Math.log(double)
method returns the natural logarithm of its argument. How-
ever, the natural logarithm, as a real-valued function, is only
mathematically defined for positive numbers, so the method
needs to define special behaviors for other values. In particu-
lar,Math.log returns NaN for negative numbers and NaN itself.
Thus, a DScribe user would create two separate invocations
for these two special cases, and DScribe would then generate
two similar documentation fragments, e.g., “If a is NaN, the
result is NaN” and “If a is negative, the result is NaN”.

Because DScribe inserts the documentation fragments di-
rectly into the header comment (Javadoc) of the focal method,
such repetitive fragments are undesirable. Instead, it is prefer-
able to use a single sentence to express both cases, as currently
found in the documentation: “If the argument is NaN or less than
zero, then the result is NaN” [3].

To support the aggregation of similar fragments, we de-
signed a structure to express facts about method behavior.
Figure 5 summarizes this structure. Each documentation
fragment is divided into two statements, a condition and a
consequence, with the interpretation that if the condition is
true, then the consequence must also be true. For example,
for Math.log, the condition “a is negative” is associated with the
consequence “the result is NaN”. Furthermore, each statement
is itself composed of three parts, a subject, a relation, and an
object, similarly to Resource Description Framework (RDF)
triples [4], with the interpretation that the relation applies
from the subject to the object. Thus, the condition of the
previous example would have “a” as subject, “is” as relation,
and “negative” as object.

Altogether, this structure requires template authors to
divide the natural language description associated with the
template into six parts (i.e., the subject, relation, and object
for both the condition and consequence) which map naturally

to most specifications. Each part can be any text (with place-
holders), to allow as much flexibility as possible. Using this
structure, DScribe can aggregate similar fragments without
the need for natural language processing techniques. If two or
more fragments share the same condition (resp. consequence),
DScribe aggregates the consequences (resp. condition) of
those fragments. When aggregating statements, DScribe can
also avoid the repetition of a common subject, relation, and/or
object.

In our example, DScribe would initially generate two
fragments, “If a is NaN, then the result is NaN” and “If a is negative,
then the result is NaN”. These two fragments have the same
consequence (“the result is NaN”), so DScribe will aggregate
the conditions. Both conditions share the same subject (“a”)
and relation (“is”), so the aggregated condition will become
“a is NaN or negative”. Thus, both fragments become the single
fragment “If a is NaN or negative, then the result is NaN”.

Although the six-part structure naturally maps to most
method behaviors, to account for cases that are impossible to
express with this structure, either or both statements can be
replaced with free form text, or the complete fragment can
be free-formed. Using these special provisions, however, limits
the ability of DScribe to aggregate similar fragments.

4.4 Integration of Documentation with Code
DScribe inserts the generated documentation fragments into
the Javadoc header comment of the focal method, creating
the header comment if necessary. Thus, the documentation is
explicitly linked to the code element (i.e., method) it applies
to. This is made possible by the explicit link between a
template (which captures the documented information) and
its focal method.

DScribe uses the custom @dscribe Javadoc tag to mark gen-
erated fragments from those previously written by developers.
Each (aggregated) fragment is prefixed by its own tag to avoid
a single, large paragraph that is hard to read.

The custom @dscribe tags not only clearly indicate to
the user which statements are automatically generated, and
backed by unit tests, it also allows DScribe to keep the doc-
umentation up-to-date: when the user modifies the template
invocations, DScribe can remove all previous @dscribe tags and
regenerate them with the new information. This process does
not impact the manually written documentation at all, unless
users manually modify the content of generated tags.

5 Overview of the Empirical Assessment
Leveraging our implementation of DScribe, we conducted a
multi-pronged empirical investigation of key aspects relating
to the generation of unit tests for documentation. The inves-
tigation sought to answer the following research questions.

RQ1 To what extent is information in source code, unit
tests, and documentation inconsistent?

RQ2 To what extend can we leverage DScribe templates to
automatically test and document behaviors of focal
methods?

In this investigation, we followed a three-stage process,
with each stage constituting a cohesive study of its own:

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 2
Overview of the empirical assessment of unit test generation for documentation

Study Sect. Subject Scope Purpose RQs

Usefulness 6 Commons IO (root package) Exceptions Assess DScribe’s ability to prevent inconsistencies 1, 2
Validation 7 Commons Math, Lang, Config. Tested specifications Validate the results of the usefulness study 1
Limitations 8 5 open source projects All Understand DScribe’s limitations 2

1) Usefulness Study:We conducted an in-depth study
of the usefulness of DScribe in a narrow context
(Section 6);

2) Validation Study:We conducted amulti-case study
to validate the findings of the first study in a broader
context (Section 7);

3) Limitations Study: It is customary to discuss the
limitations of proposed software engineering tech-
niques. In our case we also conducted an empirical
study to better understand the limitations of DScribe
in diverse scenarios (Section 8).

Table 2 provides an overview of the empirical work de-
scribed in this article. For all three studies, the complete and
detailed results are publicly available in our on-line appendix.

6 Usefulness Study
We investigated the usefulness of DScribe to prevent incon-
sistencies. The objective of the investigation was twofold.
First, it aimed at understanding the nature of the prob-
lem of information repetitiveness and redundancy. Second, it
aimed at assessing the potential of DScribe to avoid future
inconsistencies by automating the generation of repetitive and
redundant information.

6.1 Usefulness Study Design
To study information inconsistency and redundancy, it was
necessary to define what constitues a cohesive unit of infor-
mation about a method. The information relevant to methods
typically includes units of specification regarding, among oth-
ers, exceptions, parameter types, edge cases, and return types.
We chose as our unit of analysis such a unit of specification.

In the general case it requires a significant amout of
manual effort to isolate and fully understand even just a
few units of specifications in unfamiliar code. To make this
case study tractable, we narrowed the scope to a particular
type of unit of specification that is well-defined: units of
specification about exceptions, which are relevant in almost all
systems. For a single method, its source code, associated unit
tests, and documentation should present the same information
about thrown exceptions. Thus, an exception specification
unit (ESU) is inconsistent if there is any divergence in its
expression in its associated artifacts (code, documentation,
or tests). This definition includes the cases where an artifact
omits the ESU.

As the subject of the case study, we chose the Apache
Commons IO library (version 2.6, commit 11f0abe). This
library consists of utility functions and classes, each mostly
independent of the others, with well-defined ESUs. It is also
extensively documented and tested. Because the library con-
tains a total of 152 top-level Java types, an amount which pre-
cludes an in-depth analysis of each method, we focused only

TABLE 3
Number of methods, exception specification units (ESUs), and
instantiated DScribe templates per class under investigation

Class Methods ESUs Instances

ByteOrderMark 8 6 6
ByteOrderParser 1 1 1
Charsets 4 2 2
EndianUtils 30 67 67
FileCleaningTracker 7 8 8
FileDeleteStrategy 5 4 4
FileUtils 95 403 386
FilenameUtils 33 30 28
HexDump 2 5 5
IOUtils 101 315 295
LineIterator 7 8 8

Total 293 849 810

on the public types in the root package org.apache.commons.io.
We also excluded deprecated, abstract, and exception types,
which resulted in eleven remaining classes and a total of 293
public, non-deprecated methods. Table 3 presents an overview
of these classes, including the number of ESUs and templates
identified for each class.

For each method declared in the classes under study, bar-
ring deprecated and private ones, one of the authors identified
all ESUs present in at least one of the documentation, test
suite, and source code. The identified ESUs include not only
exceptions directly thrown by the method under investigation,
but also those thrown by nested calls, which explains the
large effort involved in eliciting the ESUs. For each ESU, the
investigator noted the type of exception thrown, the state
that triggers the exception, which of the source code, test
suite, and/or documentation captured the ESU, and which
DScribe template could be used to generate a unit test and
documentation for this exception, creating the template if
necessary. For the latter, if no template could capture the
ESU, the investigator recorded the reason instead. Of the 849
ESUs identified, the investigator was not able to verify the
correctness of 14 with respect to the source code. These 14
cases are included in Table 3, but we omitted them from the
rest of the study.

6.2 Results and Discussion
To answer RQ1, Table 4 summarizes the degree to which
identified ESUs are consistent across the artifacts of Commons
IO, by comparing the number of ESUs described in the
documentation (In Doc.) and tested by the test suite (In
Test). The results highlight the pervasiveness of information
inconsistencies in Commons IO: 85% of the identified ESUs
are missing in at least one of the documentation, test suite,
or source code. An even more concerning observation is that

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

TABLE 4
Presence of exception specification units (ESUs) in documentation and
unit tests. For each value, the number after the “+” sign indicates the

number of ESUs that are not present in the source code.

In Doc. Not in Doc. Total

In Test 122+1 29+0 152
Not in Test 458+9 216+0 683

Total 590 245 835

TABLE 5
Number of times that each DScribe template was instantiated

Invocations Not Invoked
Template Count Reason Count

Static 237 (28%) Inaccurate Doc. 10 (1%)
NotStatic 2 (0%) Unable to Test 15 (2%)
MessageStatic 547 (66%)
MessageNotStatic 19 (2%)
MessageConstructor 5 (1%)

Total 810 (97%) Total 25 (3%)

the overwhelming majority (82%) of ESUs are untested, which
increases the risk of documentation becoming silently inaccu-
rate. This risk of documentation becoming silently inaccurate
is already exemplified from the 10 cases where ESUs in
documentation are not traceable to the source code. In this
case, use of DScribe would also remediate the 19% of tested
ESUs that are absent from the documentation, presumably by
accident.

In some cases, an ESU was only partially or vaguely
described in the documentation. Of the 590 ESUs present in
documentation, 22 (4%) did not include the type of exception
thrown, and 115 (19%) only described the input state that
triggers the exception in broad terms, or aggregated multiple
invalid states. A recurring example of such broad documenta-
tion in the FileUtils class is “IOException - if source [file] is invalid”.
Here, an API user is left wondering about the various specific
invalid input states that may trigger the exception, such as a
file that does not exist or that is a directory. Such cases, which
decrease the usefulness of documentation, would be avoided
by DScribe.

To answer RQ2, the investigator created the necessary
templates and invocations to capture as many ESUs as pos-
sible. Table 5 shows the resulting templates, and the number
of invocations for each of them, as well as the reason why we
could not invoke any template for some ESUs. The fact that
97% of the identified ESUs could be captured by a template
invocation confirms DScribe’s potential to avoid future infor-
mation inconsistencies. Each such invocation would lead to
a unit test and a documentation fragment. Failing unit tests
would instantly flag invocations inconsistent with the source
code, thereby alleviating the burden of having to maintain
ESUs in multiple artifacts manually.

The results also show that DScribe’s ESU templates are
highly reusable. Almost all ESUs (94%) were supported by
only two templates, Static andMessageStatic. Thus, the overall
relative cost of template creation is low. In our case, 810 ESUs
(97%) were instantiated using only five templates. The five

templates vary depending on the different types of focal meth-
ods (static, non-static, and constructor), and whether to verify
the message of the exception. The templates NotStatic and
MessageNotStatic, designated for non-static focal methods,
were used less often as most methods under investigation were
static. Similarly, the MessageConstructor template was not
widely used because few ESUs were identified for constructors.

In addition to these results, we observed the use of
three alternative patterns to test exceptions. Namely, using
a try-catch block with JUnit’s fail method, using JUnit’s
assertThrows method, and using helper methods to verify
the type and message of an exception. It is thus evident
that developers leverage recurrent templates naturally, but
inconsistently. This inconsistency hinders readability and,
consequently, maintainability. DScribe helps standardize the
consistent use of recurrent templates, thus enhancing the
quality of test suites.

We were not able to instantiate ESUs in only 25 cases
(3%), due to two main reasons. The first one was the presence
of inaccurate ESUs in the documentation, i.e., statements in
the documentation that did not reflect the actual behavior of
the method. While it is possible to instantiate these ESUs, it
would lead to failing unit tests and outdated documentation.
We did not instantiate the other ESUs because we could not
produce input states that would trigger the target exception.
For example, it is not possible to ensure that an InputStream
instantiated inside a method, rather than passed as an input
parameter, produces an IOException when it is read. The
majority of these cases were also not tested in the test suite.

6.3 Threats to Validity
Two of the authors performed all annotations. It is possible
that the investigators may have missed some ESUs, or mis-
interpreted the purpose of a test or behavior of a method,
as they are not part of the development team for the library
under test. We mitigated this threat by selecting a library
that requires little specialized knowledge. Additionally, the
methods of utility libraries are usually self-contained and
can be understood without knowledge of the system as a
whole. Nevertheless, the annotations may still reflect the
investigators’ experience. To ensure verifiability, we include
the complete results of our study in our on-line appendix.

A threat to external validity stems from our decision to
focus on exception handling. We do not expect that this
context would generalize to all types of units of specification.
Moreover, we only investigate eleven classes from Commons
IO. The results may not generalize to the library as a whole,
let alone other systems. Similarly, our results are dependent on
our selection of templates. Different templates may not be as
reusable. Nevertheless, the study demonstrates the usefulness
of DScribe in at least one realistic software development
context, as we applied it to the popular Commons IO library,
from which we can analytically generate to similar software
components.

7 Validation Study
The results presented in Section 6 clearly indicate that infor-
mation inconsistency across source code, documentation, and
unit tests is a clear issue for exception handling in the Com-
mons IO project. To refine the answer to RQ1, we performed

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE 6
Number of unit tests capturing at least one specification (documented

or not). Percentages are computed with respect to each project.

Project Information Present No Info. Total
Doc. Partial Not doc.

Config. 9 (9%) 3 (3%) 16 (15%) 76 (73%) 104
Lang 55 (39%) 10 (7%) 20 (14%) 57 (40%) 142
Math 17 (14%) 3 (2%) 24 (19%) 80 (65%) 124

Total 81 (22%) 16 (4%) 60 (16%) 213 (58%) 370

a multi-case study to validate and expand the findings of the
initial case study.

7.1 Validation Study Design
Because identifying all units of specifications from the source
code of a method is both effort-intensive and subjective (due to
the ambiguity of what constitutes a single “unit”), this second
study focused on the units of specifications found in unit
tests. This design restricts the scope of the validation study
to testable (and tested) specifications, but it is necessary to
make the findings reliable.

As the subjects of the validation study, we selected the
three Apache Commons projects with the most unit tests:
Math (version 3.5, commit d7d4e4d, 3757 tests), Lang (ver-
sion 3.8.1, commit 2ebc17b, 3086 tests), and Configuration
(version 2.4, commit 61732d3, 2554 tests). We chose to again
study Apache Commons projects for the same reasons out-
lined in Section 6. We randomly sampled tests uniformly from
the total population of 9397 tests. For each sampled test, one
author manually identified the focal unit of the test, using the
test’s name, the Last Call Before Assert [5], and comments.
Because we were focusing on specifications about methods
in the production code, we rejected tests whose focal unit
was not a single method (e.g., multiple methods, or a class
or field), or if the focus was ambiguous. We also rejected
degenerate cases (e.g., empty, deprecated, or auto-generated
tests). We continued the sampling until we gathered a set
of 370 viable tests, rejecting a total of 93 unsuitable tests.
This sample size is sufficient to support a generalization of
proportions of tests computed on the sample to the whole
population within a 5% confidence interval at the 0.95 level.

For each test in the sample, one author noted if the
test captured at least one unit of specification about the
focal method (some complex tests actually tested multiple
inputs), writing it down to ensure it was well-defined. Each
specification was expressed as If X, then calling the method
will do Y, to avoid considering all information (including, e.g.,
usage examples) as a specification. For each identified unit
of specification, the investigator then noted whether it was
described in the documentation, and if so, if the description
was only partial and broad, or complete and explicit.

7.2 Results and Discussion
Table 6 presents, for each project, the number of tests that
captured self-contained information about a specification of
its focal method (Information Present), or not (No Info.),
and whether the information was completely included in the

documentation (Doc.), partially or broadly (Partial), or not
mentioned at all (Not doc.).

Overall, 42% of tests captured at least one unit of speci-
fication, which means that a significant amount of tests need
to be kept consistent with documentation. This proportion
is even higher (60%) for Lang. For Configuration and Math,
undocumented specifications amount to over half of the tested
specifications, a situation that the use of DScribe prevents.
In the case of Lang, although the lack of consistency is less
significant, the use of DScribe would reduce the effort required
to produce and maintain the more extensive documentation.

Multiple factors can explain the absence of unit of specifi-
cation in the remaining 58% of tests. In many cases, a test was
simply verifying that under “usual” inputs, a method behave
as it should. For example, the test KendallsCorrelationTest.test-
SimpleReversed() in Math simply validates that the correlation
computed in a specific (normal) scenario is correct. Other
cases, however, were more ambiguous: some tests captured
at least a partial unit of specification, but the complete
information was obscured by external references or ambigu-
ous names. For example, TestDataConfiguration.testGetByte-
Array() in Configuration follows some recognizable patterns,
but depends on values from configuration files referred to as
byte.list1, byte.list2, etc. In such cases, the investigator used
a conservative strategy and marked the test as capturing no
specification. Nevertheless, refactoring the tests, or generating
them with DScribe, could make them more self-contained,
thus improving their quality. Numbers reported in Table 6
should thus be regarded as lower bounds of the effective
values.

The investigation of the sampled tests also revealed inter-
esting use cases for DScribe outside the scope of this study.
For example, the documentation of StrBuilder.asTokenizer(),
from the Lang project, contains a usage example that is very
similar to the test StrBuilderTest.testAsTokenizer(). In such
situation, developers could also use DScribe to generate usage
examples for which the correctness is guaranteed by passing
unit tests. This study also revealed the presence of incorrect
documentation, such as that of the method Dfp.reciprocal().
Its unit tests, however, capture the correct behavior. By
generating unit tests and documentation together, DScribe
reduces the amount of brittle documentation that silently
becomes inaccurate.

7.3 Threats to Validity

As for the usefulness study, an author performed all an-
notations, which leads to the same threats outlined in the
Section 6.3. However, as it is common in case studies, this
procedure was necessary to obtain detailed insights that re-
quire a degree of interpretation. For verifiability, we include
the complete results in our on-line appendix.

The target systems are a collection of mostly independent
utility methods and classes, with extensive test suites, from
the same organization as the usefulness study. We do not
expect that this context would generalize to all systems.
We are aware of this limitation, and we scope our claims
accordingly. Nevertheless, the evaluation shows evidence of
a considerable amount of information inconsistencies in a
realistic and significant software development context.

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 7
Five open source subjects of the limitation study

System Prod. Files Test Files Inspected Files

Freemind 379 26 18
Eclipse 3933 1669 49
Weka 1614 253 20
Tomcat 1402 475 16
Hibernate 3845 5647 12

8 Limitations Study

The usefulness study showed evidence of the potential ef-
fectiveness of DScribe in one particular context, in which
97% of the identified exception specification units could be
captured by template invocations. However, to better answer
RQ2 in a general context, we performed a qualitative multi-
case study specifically to elicit the strengths and limitations
of a template-based approach for generating unit tests and
documentation.

8.1 Limitations Study Design

To ensure a variety of contexts, we selected five open source
projects that are at least 15 years old and that vary in
their development style, target audience, and application
domain: Freemind (version 1.1.0, commit 643c55c), Eclipse
Platform UI (version 4.9.0, commit d6d8a6a), Weka (version
3.9.3, commit r14866), Apache Tomcat (version 9.0.11, com-
mit r183513), and Hibernate ORM (version 5.3.2, commit
35806c9).

One author annotated a subset of the test suite of each
project. For each test, the investigator answered the question
What are the technical factors that would enable or prevent
the generation of similar unit tests from templates? To help
answer this question, the investigator noted the unit under
test, purpose, format, and recurrent patterns for each test, in
addition to the enabling and hindering factors.

To achieve maximal purposive sampling, instead of anno-
tating a fixed subset of each project, the investigator itera-
tively included more unit tests to the sample until reaching
saturation, which we defined as when three consecutive iter-
ations generated no new noted observations. Each iteration
consisted of selecting a package with at least three classes
at random from the test suite of a project, then selecting
three random classes (or more if the classes or package are
small enough) from that package, and annotating all tests
from these classes. The investigator analyzed one project at
a time, moving to the next once saturation was reached for
one. For Freemind, which only contains two test packages, the
investigator annotated all unit tests from the root package
of the test suite. Table 7 shows the number of production
and tests Java files for each project, in the order they were
annotated, as well as the number of inspected test files.

The investigator initially used an open coding process [6]
to annotate each test. After completing the open coding,
and after a preliminary analysis of the initial codes, the
investigator systematically re-coded each test using a closed
code catalog.

8.2 Results and Discussion

We identified eight technical factors that can impact the abil-
ity to generate unit tests from templates or the qualities of the
generated tests. We discuss these factors at a high level in this
section, but the interested reader can find multiple concrete
examples of each factor in our on-line appendix. Although
these factors outlined several limitations for using DScribe in
different contexts, they also revealed simple strategies to work
around these limitations, which can improve the quality of the
generated tests. Furthermore, these limitations can provide
insights about new features to add to DScribe in future work.

Generic Variable Names: A template-based approach re-
quires the use of recurrent, generic names for local variables
in unit tests (e.g., input and expected), as opposed to names
specific to the test context (e.g., baseString, encodedString).
Although only a minority of the studied tests used such
generic identifiers, we believe generic names can have a
beneficial impact on the readability of the test suite, as it
allows unfamiliar readers to understand new tests quickly by
identifying recurrent important aspects. Thus, despite being
a limitation of template-based approach, this factor can be
beneficial in the long term.

Structured Test Names: An important strength of a
template-based approach is the ability to standardize and
facilitate the use of conventions. In particular, although the
name of unit tests does not impact its behavior, it is consid-
ered good practice to use meaningful names, usually following
a fixed convention. As an extreme example of a highly-
structured name, all test names in Tomcat’s class CheckOut-
ThreadTest match the pattern test(DBCP|Pool)Threads(10|20)-
Connections(10|20)(Validate)?(Fair)?.

Recurrent Complex Operations: A common limitation of
template-based approaches is the diverging implementations
of similar operations. For example, many tests verify that the
content of a generated object matches that of the expected
result, but the implementation of this verification depends
on the structure of the objects. Thus, although the tests
follow the same high-level patterns, they cannot be generated
from the same template. However, we observed that some
tests encapsulated such recurrent complex operations into
helper methods with generic but meaningful names, such
as assertContentEqual. The use of such helper methods can
mitigate this limitation, and increase the readability of test
suites. Nevertheless, relying excessively on helper methods can
be detrimental. As an extreme, but not unique, example, Tom-
cat’s helper method TestELParser.doTestParser encapsulates all
operations of multiple tests. This leads to a very complex logic
that is harder to write and read than if the different tests were
decoupled, and this helper method can only be used for testing
a single class.

Complex Assertions: Some tests require complex asser-
tion structures. For example, testing methods that rely on
inversion of control may need to nest assertions inside mock
objects, and to call seemingly unrelated methods to trigger the
assertions. Such structures can severely limit the applicability
of templates, and thus the usefulness of a template-based
approach. Thus, these complex cases remain mostly outside
the scope of DScribe, or similar approaches. However, if the

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

same pattern of complex assertion is often needed, a template-
based approach can encourage developers to create the neces-
sary scaffolding and have a more systematic approach to test
complex behaviors.

Testing Preconditions: Several tests include assertions to
verify the input state of tested objects before the method
under test is performed.3 Although there is no reason a
template could not include these early assertions, in many
cases, the assertions are specific to the tested objects and
relevant to only some test case, so they are not well suited
for template-based generation. A simple workaround this
limitation, however, is the use of factory methods to create the
tested objects in the right input state, and move any necessary
early assertion to these methods.

Constrained Resources: Tests that rely on constrained
resources, such as connections to external servers, multiple
threads, or even read and write operations to the file system,
may need to perform additional setup and cleanup opera-
tions to avoid corrupting the resources, as well as special
precautions to control errors originating from the constrained
resources themselves (e.g., trying a second time to connect
to a server if the first time fails). These operations often
create deviations from recurrent templates, thus multiplying
the number of required patterns to account for each possible
deviation. Different mitigation strategies can limit the neg-
ative impact of these operations, such as an efficient use of
“setup” and “teardown” methods (using JUnit’s @Before and
@After annotations), but the right choice depend on the nature
of the constrained resource.

Different Units Under Test: In the sampled set of tests,
the unit under test was not always a single method. Some
tests focused on a whole class, whereas others focused on
validating a single field. For example, Freemind’s test Html-
ConversionsTest.testEndContentMatcher validates the expected
behavior of a regular expression encoded in a constant field.
Currently, DScribe assumes that the focus of each generated
test is a method, so the generation of these other tests would
be outside its scope. However, this is only a design decision for
the prototype, and extensions of DScribe could include other
types of units under test.

Variety of Test Purpose: Tests in a test suite serve various
purposes. Some simply test the usual behavior of a unit
with specific examples, whereas others focus on exceptional
behaviors or corner cases. Although it is important to test the
former cases, it is likely that only the latter cases will need
to be documented. Thus, a template-based approach should
be able to generate documentation for only some templates
to avoid clutter. More importantly, some tests verify the
integration of various components in more complex scenarios
(i.e., integration tests, which are not technically unit tests,
but can still be found in the same test suites), and others
are specifically tailored to a specific bug or case of regression.
These kinds of tests are clearly outside the scope of template-
based approaches, as they each require the execution of a
specialized sequence of actions.

3. This practice is debated among developers, with some arguing
that preconditions should be the object of separate tests. However,
without taking a stance in this debate, given that at least some
developers may want this feature, we consider its importance.

8.3 Threats to Validity
The case study relied on the identification of testing patterns,
a subjective concept relative to the experience of every de-
veloper. Hence, the conclusions may reflect the personal ex-
perience of the investigator. This experimental design choice
was necessary because the data analysis required a very high
initial effort investment to study the systems, and a consistent
point of view from one system to the other. Thus, the coding
procedure could not be packaged into multiple sets of data to
be labeled by independent coders. Furthermore, hypothetical
external coders would have to be extensively trained to have
the in-depth knowledge of the template-based approach re-
quired for the task, which would re-introduce the risk of bias.
To mitigate this risk, the on-line appendix contains several
concrete examples supporting each of our conclusions.

9 Related Work
The difficulty of maintaining high-quality documentation [7],
[8], [9], [10] led to a vast exploration of automated doc-
umentation generation approaches. Techniques proposed
in prior work involve static [11] and dynamic [12] analysis
of the body of methods, as well as their context [13], and
different techniques are tuned to document either classes [14],
methods [15], [16], or method parameters [11]. Techniques also
differ in the kind of documentation they generate, such as
specifications [17], [18], [19], program invariants [20], test sum-
maries [21], [22], and usage scenarios and examples [23], [24].
However, a common limitation of such fully-automated tech-
niques is that the correctness and usefulness of the generated
documentation is limited by the underlying heuristics and
the information these heuristics rely on. Furthermore, some
manual selection is ultimately required as the unconstrained
generation of large amounts of information can end up diluting
important insights within more trivial information. Being
semi-automated, DScribe leverages developer effort, rather
than replacing it, keeping developers in control of what in-
formation is added to the system.

A vast number of techniques have also been proposed to
automatically generate tests. Notable early work includes
CUTE [25] and DART [26], which introduced the concept
of concolic testing. Concolic testing couples a symbolic and
concrete execution of a program to explore the space of
inputs that will trigger different responses from the program.
Thummalapenta et al. [27] generate test cases by extracting
sequence of method calls to create relevant input states.
Pacheco et al. [28] proposed Randoop, a technique to generate
test cases by randomly creating sequences of execution, with
a feedback loop to inform the next generations. Fraser and
Zeller [29] follow a more systematic random generation ap-
proach by leveraging mutation operators, and using genetic
algorithms to optimize the test suite. Taneja and Xie [30]
leverage the version history of a project to create test cases.
Other techniques focus only on the generation of test cases
that can crash a system [31], that apply to multi-threaded
code [32], or that map to the system’s UML diagrams [33].
However, automated test generation techniques suffer from a
similar problem as documentation generation techniques: In
order to completely remove developers from the generation
process, the techniques are susceptible to false positives, which
in turn require human effort to filter out. In contrast, DScribe

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

involves developers in the generation process so that no single
person is required to sift through a large output after the
generation.

The value proposition of DScribe, however, extends be-
yond the generation of tests and documentation. An impor-
tant benefit is the automated traceability links of the gen-
erated artifacts to the method they complement. Documenta-
tion traceability is a challenging problem [34], [35], but it is a
prerequisite to validate the correctness of the documentation,
another challenging problem [36], [37]. DScribe offers a way to
solve both problems by linking documentation not only to its
focal method, but also to a unit test, such that if a change in
the behavior of the method happens, the failing unit test will
also flag the specific fragment of documentation as incorrect.
This solution is similar to that of behavior-driven development
(BDD) [38], a methodology derived from test-driven develop-
ment [39]. BDD recognizes the documentation potential of
testing code, and BDD frameworks such as JBehave [40] offer
a way to integrate documentation fragments directly into unit
tests, so that documentation is again backed by passing tests.
However, developers are still responsible for writing both the
testing code and documentation fragments, a repetitive and
redundant effort.

Finally, our research is related to that of code pattern
mining, which parses large corpora of source code to identify
regularities in the usage of various type of code elements (e.g.,
functions). The objective of these techniques is to identify
specifications [23], [41], [42], and in particular violations of
these implicit specifications, or design patterns [43], [44].
Future work can leverage a similar approach to automatically
generate DScribe templates, to further reduce the initial
burden of developers.

10 Conclusion
Motivated by the observation that documentation and testing
code often capture redundant and repetitive information, we
designed a technique, called DScribe, to allow developers
to decouple aspects of unit testing and documentation that
relate to repetitive specifications from the aspects specific to
each instance. This technique can partially relieve develop-
ers of the burden of maintaining a consistent and extensive
documentation and test suite, while also encouraging the use
of collectively agreed upon templates to reduce unnecessary
variability in these artifacts.

A three-phase investigation of the inconsistencies in se-
lected mature software projects revealed their pervasiveness
in testing code and method documentation, with 85% of the
specifications about exceptions thrown by the Apache Com-
mons IO methods either untested, undocumented, or both.
In addition, the investigation revealed that DScribe could
have prevented 97% of these inconsistencies in a favorable
context. Finally, our empirical assessment of DScribe includes
rich descriptions of the technical characteristics of software
projects that facilitate or hinder the application of DScribe,
thus providing insights on the potential costs and benefits of
introducing the technique in different contexts.

Acknowledgments
This work was funded by NSERC.

References
[1] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and

T. Ratchford, “Automated API property inference techniques,”
IEEE Transactions on Software Engineering, vol. 39, no. 5, pp.
613–637, 2013.

[2] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, D. Smith,
and G. Bierman. (2020) The Java language specification.
[Online]. Available: https://docs.oracle.com/javase/specs/jls/
se14/html/index.html

[3] Oracle. (2018) Math (Java SE 11 & JDK 11).
[Online]. Available: https://docs.oracle.com/en/java/javase/
11/docs/api/java.base/java/lang/Math.html

[4] O. Lassila and R. R. Swick, “Resource description
framework (RDF) model and syntax specification,”
W3C, W3C Recommendation, 1999. [Online]. Available:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[5] B. Van Rompaey and S. Demeyer, “Establishing Traceability
Links between Unit Test Cases and Units under Test,” in
13th IEEE European Conference on Software Maintenance and
Reengineering, 2009, pp. 209–218.

[6] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative data
analysis. Sage, 2013.

[7] T. C. Lethbridge, J. Singer, and A. Forward, “How Software
Engineers Use Documentation: The State of the Practice,” IEEE
Software, vol. 20, no. 6, pp. 35–39, 2003.

[8] B. Fluri, M. Würsch, and H. C. Gall, “Do code and comments
co-evolve? On the relation between source code and comment
changes,” in Proceedings of the Working Conference on Reverse
Engineering, 2007, pp. 70–79.

[9] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/*iComment: Bugs
or Bad Comments?*/,” in Proceedings of the ACM Symposium
on Operating Systems Principles, 2007, pp. 145–158.

[10] I. K. Ratol and M. P. Robillard, “Detecting Fragile Comments,”
in Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, 2017, pp. 112–122.

[11] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating
parameter comments and integrating with method summaries,”
in Proceedings of the IEEE International Conference on Program
Comprehension, 2011, pp. 71–80.

[12] M. Sulír and J. Porubän, “Generating Method Documentation
Using Concrete Values from Executions,” in Symposium on
Languages, Applications and Technologies, 2017, pp. 3:1–3:13.

[13] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,”
in Proceedings of the 22nd International Conference on Program
Comprehension, 2014, pp. 279–290.

[14] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language
summaries for java classes,” in Proceedings of the 21st Interna-
tional Conference on Program Comprehension, 2013, pp. 23–32.

[15] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary com-
ments for java methods,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering,
2010, pp. 43–52.

[16] N. J. Abid, N. Dragan, M. L. Collard, and J. I. Maletic, “Using
stereotypes in the automatic generation of natural language
summaries for c++ methods,” in IEEE International Confer-
ence on SoftwareMaintenance and Evolution, 2015, pp. 561–565.

[17] G. Ammons, R. Bodík, and J. R. Larus, “Mining specifications,”
in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2002, pp. 4–16.

[18] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia, “Static Spec-
ification Mining Using Automata-Based Abstractions,” IEEE
Transactions on Software Engineering, vol. 34, no. 5, pp. 651–
666, 2008.

[19] C. Le Goues and W. Weimer, “Specification mining with few
false positives,” in International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 2009, pp.
292–306.

[20] M. D. Ernst, W. G. Griswold, Y. Kataoka, and D. Notkin,
“Dynamically discovering pointer-based program invariants,” in
Proceedings of the International Conference on Software Engi-
neering, vol. 373, 1999.

[21] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C.
Gall, “The impact of test case summaries on bug fixing perfor-
mance: An empirical investigation,” in Proceedings of the 38th

https://docs.oracle.com/javase/specs/jls/se14/html/index.html
https://docs.oracle.com/javase/specs/jls/se14/html/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

International Conference on Software Engineering, 2016, pp.
547–558.

[22] B. Zhang, E. Hill, and J. Clause, “Towards automatically gener-
ating descriptive names for unit tests,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 625–636.

[23] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API Patterns
As Partial Orders from Source Code: From Usage Scenarios to
Specifications,” in Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering,
2007, pp. 25–34.

[24] R. P. Buse and W. Weimer, “Synthesizing API usage examples,”
in Proceedings of the 34th International Conference on Software
Engineering, 2012, pp. 782–792.

[25] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit test-
ing engine for c,” in Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing, 2005, p. 263–272.

[26] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed au-
tomated random testing,” in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2005, p. 213–223.

[27] S. Thummalapenta, T. Xie, N. Tillmann, J. De Halleux, and
W. Schulte, “Mseqgen: Object-oriented unit-test generation via
mining source code,” in Proceedings of the the 7th joint meet-
ing of the European Software Engineering Conference and the
ACM SIGSOFT symposium on The Foundations of Software
Engineering, 2009, pp. 193–202.

[28] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in Proceedings of the 29th
International Conference on Software Engineering, 2007, pp.
75–84.

[29] G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” IEEE Transactions on Software Engineering,
vol. 38, no. 2, pp. 278–292, 2012.

[30] K. Taneja and T. Xie, “Diffgen: Automated regression unit-test
generation,” in Proceedings of the 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2008, pp.
407–410.

[31] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic ro-
bustness tester for java,” Software: Practice and Experience,
vol. 34, no. 11, pp. 1025–1050, 2004.

[32] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov,
“Ballerina: Automatic generation and clustering of efficient ran-
dom unit tests for multithreaded code,” in Proceedings of the
34th International Conference on Software Engineering, 2012,
pp. 727–737.

[33] J. Offutt and A. Abdurazik, “Generating Tests from UML Spec-
ifications,” in UML’99 – The Unified Modeling Language, 1999,
pp. 416–429.

[34] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,”
in Proceedings of the 25th International Conference on Software
Engineering, 2003, pp. 125–135.

[35] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documenta-
tion,” IEEE Transactions on Software Engineering, vol. 28,
no. 10, pp. 970–983, 2002.

[36] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing APIs Documentation and Code to Detect Directive
Defects,” in IEEE/ACM International Conference on Software
Engineering, 2017, pp. 27–37.

[37] E. Ben Charrada, A. Koziolek, and M. Glinz, “Identifying out-
dated requirements based on source code changes,” in IEEE
International Requirements Engineering Conference, 2012, pp.
61–70.

[38] M. Soeken, R.Wille, and R. Drechsler, “Assisted behavior driven
development using natural language processing,” in Proceedings
of the International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, 2012, pp. 269–287.

[39] K. Beck, Test-driven development: by example. Addison-
Wesley, 2003.

[40] JBehave.org. (2017) What is JBehave? [Online]. Available:
https://jbehave.org/

[41] M. Allamanis and C. Sutton, “Mining idioms from source code,”
in Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2014, pp. 472–
483.

[42] Z. Li and Y. Zhou, “PR-Miner: automatically extracting implicit
programming rules and detecting violations in large software
code,” in Proceedings of the Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, 2005, pp.
306–315.

[43] J. Dong, Y. Zhao, and T. Peng, “A Review of Design Pattern
Mining Techniques,” International Journal of Software Engi-
neering and Knowledge Engineering, vol. 19, no. 06, pp. 823–855,
2009.

[44] A. Pandel, M. Gupta, and A. Tripathi, “DNIT – A new approach
for design pattern detection,” in Proceedings of the International
Conference on Computer and Communication Technology, 2010,
pp. 545–550.

Mathieu Nassif is a Ph.D. student in Computer
Science at McGill University, under the supervi-
sion of Martin Robillard. His research focuses on
the extract, representation, and manipulation of
knowledge in software systems to optimize the
contribution of developers to the system. Math-
ieu received his M.Sc. in Computer Science from
McGill University and his B.Sc. in Mathematics
from Université de Montréal.

Alexa Hernandez is an incoming M.Sc. student
in Computer Science at McGill University. Her
research interests include software design, main-
tenance, and evolution. Alexa received a B.A.
in Computer Science at McGill University, where
she worked under the supervision of Martin P.
Robillard.

Ashvitha Sridharan is a software engineer opti-
mizing the edge network at Shopify. Her research
interests include software design, maintenance,
and evolution. Sridharan received a B.Sc. Com-
puter Science at McGill University, Montreal,
where she worked under the supervision of Mar-
tin P. Robillard.

Martin P. Robillard is a Professor of Computer
Science at McGill University. His research inves-
tigate how to facilitate the discovery and acquisi-
tion of technical, design, and domain knowledge
to support the development of software systems.
He served as the Program Co-Chair for the 20th
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE 2012)
and the 39th ACM/IEEE International Confer-
ence on Software Engineering (ICSE 2017). He
received his Ph.D. and M.Sc. in Computer Sci-

ence from the University of British Columbia and a B.Eng. from École
Polytechnique de Montréal.

https://jbehave.org/

	1 Introduction
	2 DScribe Overview
	3 Templates and Invocations
	3.1 Template Definition Language
	3.2 Template Invocations

	4 Unit Test and Documentation Generation
	4.1 Placeholder Types
	4.2 Integration of Unit Tests with Existing Test Suite
	4.3 Information Aggregation
	4.4 Integration of Documentation with Code

	5 Overview of the Empirical Assessment
	6 Usefulness Study
	6.1 Usefulness Study Design
	6.2 Results and Discussion
	6.3 Threats to Validity

	7 Validation Study
	7.1 Validation Study Design
	7.2 Results and Discussion
	7.3 Threats to Validity

	8 Limitations Study
	8.1 Limitations Study Design
	8.2 Results and Discussion
	8.3 Threats to Validity

	9 Related Work
	10 Conclusion
	References
	Biographies
	Mathieu Nassif
	Alexa Hernandez
	Ashvitha Sridharan
	Martin P. Robillard

