
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

DevOps Team Structures: Characterization and
Implications

Daniel López-Fernández, Jessica Dı́az, Javier Garcı́a, Jorge Pérez, and Ángel González-Prieto

Abstract—Context: DevOps can be defined as a cultural movement to improve and accelerate the delivery of business value by
making the collaboration between development and operations effective. Objective: This paper aims to help practitioners and
researchers to better understand the organizational structure and characteristics of teams adopting DevOps. Method: We conducted
an exploratory study by leveraging in depth, semi-structured interviews to relevant stakeholders of 31 multinational software-intensive
companies, together with industrial workshops and observations at organizations’ facilities that supported triangulation. We used
Grounded Theory as qualitative research method to explore the structure and characteristics of teams, and statistical analysis to
discover their implications in software delivery performance. Results: We describe a taxonomy of team structure patterns that shows
emerging, stable and consolidated product teams that are classified according to six variables, such as collaboration frequency,
product ownership sharing, autonomy, among others, as well as their implications on software delivery performance. These teams are
often supported by horizontal teams (DevOps platform teams, Centers of Excellence, and chapters) that provide them with platform
technical capability, mentoring and evangelization, and even temporarily facilitate human resources. Conclusion: This study aims to
strengthen evidence and support practitioners in making better informed about organizational team structures by analyzing their main
characteristics and implications in software delivery performance.

Index Terms—DevOps, Team Structures, Grounded Theory.

F

1 INTRODUCTION

D EVOPS is an organizational transformation that had
its origin at the 2008 Agile Conference in Toronto,

where P. Debois highlighted the need to resolve the conflict
between development and operations teams when they had
to collaborate to provide quick response time to customer
demands [1]. Later, at the O’Reilly Velocity Conference, two
Flickr employees delivered a seminal talk known as “10+
Deploys per Day: Dev and Ops Cooperation at Flickr”, which
can be considered the starting point to extend agility beyond
development [2].

To enlighten the problems and drivers that are currently
moving companies to adopt DevOps, we conducted an em-
pirical research [3] that shows the most important concerns
when adopting DevOps, such as the excessive time for
releasing, problems when releasing new versions, digital
transformation drivers (e.g., market trends, technological
obsolescence), and lack of standardization and automation.
Companies with these problems shift to DevOps due to the
associated benefits that DevOps claim, such as an increase
on software delivery performance, process productivity, and
team effectiveness, which results in faster time-to-market,
better software quality, and greater alignment of developers
and operators with business goals and customer focus [3].

Such has been the spread of DevOps worldwide that,
on many occasions, has been misinterpreted and referred
to as a set of tools for automating software process. Nev-
ertheless, beyond all that, DevOps is a cultural movement

• D. López-Fernández and J. Dı́az and J. Garcı́a and J. Pérez and A.
González-Prieto were with the Universidad Politécnica de Madrid (ETSI
de Sistemas Informáticos), 28031 Madrid, Spain.
E-mail: {daniel.lopez, yesica.diaz, jgarciam, jorge.perez, an-
gel.gonzalez.prieto}@upm.es

that aims for collaboration among all stakeholders involved
in the development, deployment and operation of software
to deliver a high-quality product or service in the shortest
possible time [4]. DevOps promotes a collaborative cul-
ture based on product teams that share business goals and
an end-to-end product vision. Thus, the DevOps culture
largely determines how business people, developers and
operators are organized, and vice-versa, how business peo-
ple, developers and operators are organized determines
how DevOps culture is adopted and widespread across
organizations. However, how to organize and structure
these teams is still a challenge. Companies need evidence
about successful—or not such successful but less intensive-
resource—organizational team structures that work on a
daily basis. While everyone agree that effective teams enable
organizations to continuously deliver business value, practi-
tioners and researchers [5], [6], [7] also agree on considering
the structure of teams and their interactions as main chal-
lenges that companies face during DevOps transformation
processes. Hence, the research questions we can extract are:

RQ1 How do real-world organizations structure themselves to
instilling a DevOps culture into their organization?
RQ2 What implications do team structure patterns have on
software delivery performance?

To address RQ1, we engaged in theory building based on
empirical data [8], [9], [10] to understand organizational team
structures, their communication and collaboration pathways,
as key drivers for adopting DevOps culture and practices.
To address RQ2, we statistically analyzed whether different
team structures could impact on well-known software de-
livery performance indicators, such as lead time, mean time
to recovery, and delivery frequency.

ar
X

iv
:2

10
1.

02
36

1v
1 

 [
cs

.S
E

] 
 7

 J
an

 2
02

1



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Methodologically, we applied Grounded Theory [11],
[12], a method well-suited for generating theories. We aim
to generate a theory in the form of a taxonomy of team
structure patterns in the context of 31 organizations that
have been adopting DevOps for at least two years (i.e.,
how teams are organized, how people collaborate and break
silos, how autonomous they are, etc.). In this regard, in two
prior conference papers [13], [14], we described the research
methodology of a global exploratory study on practicing
DevOps and a preliminary analysis of team structures based
on an initial set of companies. These preliminary results
were discussed with the research and industrial community,
and improved and refined later with more collected data
until we got saturation. Thus, the paper here presented
differs from this previous work in building a full theory on
DevOps team patterns by conducting a GT study and statis-
tical analysis to answer the research questions. Additionally,
we conducted a clustering analysis to prove whether the
taxonomy we obtained with qualitative analysis is similar to
the clusters that were obtained using a K-means algorithm.

The structure of the paper is as follows: Section 2
describes the research methodology. Section 3 reports the
emerging theory as a conceptual framework and Section 4
describes a taxonomy of DevOps team structure patterns
(RQ1). Section 5 describes patterns implications on software
delivery performance (RQ2) together clustering analysis to
assess RQ1. Section 6 assesses the validity and reliability of
these outcomes. Section 7 describes related work. Finally,
conclusions and further work are presented in Section 8.

2 RESEARCH METHODOLOGY

The research presented here is part of a larger investigation
on practicing DevOps we started in 2017 [3], [13], [14]. This
research is mainly based on the constructivism model as un-
derlying philosophy [15]. Constructivism or interpretivism
states that scientific knowledge cannot be separated from
its human context, and a phenomenon can be fully under-
stood by considering the perspectives and the context of
the involved participants [15]. Therefore, the most suitable
methods to support this approach are those collecting rich
qualitative data, from which theories (tied to the context
under study) may emerge.

According to this, we approached diverse qualitative
data through a multiple case study. “A case study is an
empirical inquiry that investigates a contemporary phenomenon
within its real-life context”, in which “the boundaries between
phenomenon and context may not be clearly evident”, and
“relies on multiple sources of evidence, with data needing to
converge in a triangulating fashion” [16]. In this regard, we
have been studying the context of DevOps adoption and
practice in +30 multinational software-intensive companies
from November 2017 to nowadays, mainly by leveraging in-
depth, semi-structured interviews with relevant stakehold-
ers of these companies, together with industrial workshops
and observations at organizations’ facilities that supported
triangulation and allowed us to complete data omissions
in the interviews when necessary. Interviews are a common
method used for collecting data in software field studies [17]
and, together observations, provided us with the necessary
data to answer the research questions of this study.

In a previous work [3] we addressed two research ques-
tions related to the problems that companies try to solve by
implementing DevOps and the results they try to achieve. In
that research, we used thematic analysis [18], and specifically
an integrated approach based on a deductive approach for
creating themes that we retrieved from literature, and an
inductive approach for creating codes. Using these two
approaches, some specific fragments of the interviews were
coded by two researchers in an iterative process until the
inter-coder agreement reached an acceptable level of relia-
bility and, finally, a theory was built through a synthesis
process.

At the same time as we were interviewing more and
more organizations and knowing why companies are in-
stilling a DevOps culture in their organizations, we began
to glimpse that organizations talked about different struc-
tures of their teams to try to address the main principles
of DevOps culture, align business objectives with devel-
opment and operations teams, increase collaboration and
communication between these teams, and accelerate value
delivery to customers in a continuous improvement and
experimentation process. At that time (2018), little work had
empirically analyzed team structures in companies adopting
DevOps [19] or reported team topologies based on success
cases [20].

In this paper, we decided to use the grounded theory
(GT) method and started this study on DevOps team struc-
ture. GT is a technique for iteratively developing theory
from qualitative data [11] that encourages a deep immersion
in the data [10]. “In grounded theory, initial analysis of the
data begins without any preconceived categories. As interesting
patterns emerge, the researcher repeatedly compares these with
existing data, and collects more data to support or refute the
emerging theory” [15]. Salleh et al. [21] assert that GT can be
adopted as a wrapper around other empirical methods such
as case studies where GT analysis and theory formulation
procedures are applied to data collected from case studies,
as in [22], [23]. Thus, GT is adequate for our purposes.

GT is increasingly being used to study software engi-
neering research topics [8], such as to characterize scenarios
under a personal perspective of those engaged in a culture,
which is the topic here addressed. Most SE studies select
the classic or Glaserian GT variant [11], however, according
to our philosophical stance (epistemological and ontological
positions), we selected the Charmaz’s constructivist GT vari-
ant [12]. Constructivist GT emphasizes that understanding
and acknowledges data, interpretations, and resulting the-
ory depend on the researcher’s view [8]. As Stol et al. [8]
assert, in practice, such ontological and epistemological dif-
ferences are rarely apparent in generated theories, however,
the existence of an upfront research question, the role of the
literature, the terminology, and the order of practices differ
from one variant to another.

As GT literature states, our study involved simultaneous
data collection and analysis, i.e., coding and memoing [24],
constant comparison and cross-case analysis [25], and the-
ory development [9]. The following sections describe data
collection, data analysis, and validity procedures.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

2.1 Data collection
GT involves iteratively performing interleaved rounds of
qualitative data collection and analysis to lead to theory
(e.g., concepts, categories, patterns) [26]. The selection of
participants is also iterative and can be considered a com-
bination of theoretical sampling, in the sense that we chose
which data to collect based on the concepts or categories
that were relevant for the emerging theory, i.e., organiza-
tions that have been adopting DevOps for at least two
years; maximum variation sampling, in the sense that we tried
to choose highly diverse people and organizations in our
sample, strengthening the transferability of our theory; and
convenience sampling as we are restricted to organizations
and relevant stakeholders to which we had access. This
iterative process ended when theoretical saturation became
apparent, which means that processing new data did not
impacted the theory elaborated until that moment—the last
few participants provided more evidence and examples but
no new concepts or codes. In fact, we included some more
companies until we could be sure that new participants
would not add new knowledge.

Table 1 lists the organizations involved in the study, its
ID, scope (international or national), size1, business core
and organization age2. In many cases, more than one par-
ticipant participated in an interview. Indeed, a total of 46
people were enrolled in the interviews. Table 2 provides
anonymized information about the position and IT experi-
ence of the interviewees. We interviewed key stakeholders,
such as CEOs, CIOs, DevOps platform leaders, product
leaders, developers, and infrastructure managers (see Table
2). These interviewees had all the necessary information to
adequately answer the question posed.

The interview protocol and its script are described in
[3] and https://blogs.upm.es/devopsinpractice/. It is nec-
essary to highlight that we only focused on a set of specific
fragments of the collected data from interviews for this par-
ticular research, together with three software delivery per-
formance indicators [27]: lead time, deployment frequency
and mean time to recovery.

Additionally, we had the opportunity to attend working
sessions in the organizations’ facilities. In these sessions
we observed IT departments in their daily work. In this
way, we observed first-hand product poly-skilled and cross-
functional teams, development and infrastructure teams,
how they collaborated (e.g., they showed us some content
from Confluence, Jira, Slack) or how they did not collab-
orate. On other occasions, we organized industrial work-
shops with some participant organizations at the university
campus3. Therefore, we managed to involve the participants
in the study beyond the interviews. Finally, we can men-
tion that some participants showed us different snapshots

1. Spanish Law 5/2015 indicates that a micro enterprise is one that has
less than ten workers and an annual turnover of less than two million
euros or a total asset of less than two million euros; a small company is
one that has a maximum of 49 workers and a turnover or total assets of
less than ten million euros; medium-sized companies are those with less
than 250 workers and a turnover of less than fifty million euros or an
asset of less than 43 million euros; and large companies are those that
exceed these parameters.

2. Consulting firms denoted by * provided the data of one of their
clients.

3. http://bit.ly/2ky00LQ, last accessed January 2020.

TABLE 1
Subject description

Id Scope Size Business Creation
date

01 International Medium Retail 2000-2010
02 National Large Retail <2000
03 International Medium Software 2000-2010
04 National Large Telecom <2000
05 National Large Public Utility <2000
06 International Large *Banking <2000
07 National Large Educational <2000
08 National Large *N/A <2000
09 International Large FinTech 2000-2010
10 National Medium *Logistic <2000
11 International Medium Retail <2000
12 International Large Logistic <2000
13 International Large Retail <2000
14 International Large Telecom <2000
15 National Large *Telecom <2000
16 National Large *Banking <2000
17 International Large Telecom 2000-2010
18 International Large Real estate <2000
19 International Large *Banking < 2000
20 National Large Insurance <2000
21 National Large *Marketing 2000-2010
22 International Small *Retail >2010
23 International Large Telecom <2000
24 International Large *N/A <2000
25 International Large *Telecom <2000
26 National Large Banking < 2000
27 International Large *N/A <2000
28 International Large Marketplace 2000-2010
29 International Large Retail <2000
30 International Large *Banking 2010
31 International Large Energy <2000

TABLE 2
(Anonymized) Description of Interviewees

Position Number
Executive manager 11
Service manager 3
Infrastructure manager 8
Project manager 11
Consultant 5
Developer 8
Experience (years) Number
+20 17
16-20 12
11-15 11
5-10 6

of a DevOps maturity framework, from which we could
extract organizational changes over teams they addressed.
We obtained many observations of these visits (gathered in a
research diary) that we analyzed together with the interviews,
mainly to triangulate data and complete data omissions.

The outputs of this phase are the transcriptions of the
interviews and observations.

https://blogs.upm.es/devopsinpractice/
http://bit.ly/2ky00LQ


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

2.2 Data analysis
We used the guidelines about how to conduct a construc-
tivist GT reported by Stol et al. [8], which organize a GT
investigation in three phases:

Initial coding: This phase is mainly based on the princi-
ples of coding, constant comparison and cross-case analysis [25].
The inputs of this phase are the transcripts of the interviews.
These transcripts are coded, which means that parts of the
text can be given a code representing a certain construct, by
examining data word-by-word, line-by-line or incident-by-
incident to make sense of the text without injecting the re-
searcher’s assumptions, biases, or motivations [8]. One code
is usually assigned to many pieces of text, and one piece of
text can be assigned more than one code. Codes can form
categories, i.e., a hierarchy of codes and sub-codes. While
coders analyze the data, they write memos, i.e., notes about
ideas or concepts potentially relevant to the research. As
more interviews are analyzed, coders constantly compares
the data, memos and codes of the same interview and other
interviews (cross-case), which forces the researchers to go
back and forth.

Focused coding: In this phase, the researchers take the
codes resulting from the initial coding and select categories
from the most frequent or important codes, i.e. variables,
and use them to categorize the data [8]. Memos elaborate
categories, describe properties and relationships between
categories, and identify gaps [12]. The researchers attempt
to move beyond superficial categories to develop a cohesive
theory of the studied phenomenon [8].

Theoretical coding: In this phase, the researchers are
involved in a continuous process of oscillating between the
memos, categories, and the emerging theory to specify the
relationship between categories to integrate them into a co-
hesive theory [8]. When no new categories or relationships
between them emerge, theoretical saturation is reached, i.e.,
new data is no longer generating reinterpretations of the
theory.

These three phases were iteratively carried out as new
data (interviews and observations) were collected. The
outputs of these phases are the coding, the memos, the
categories, and the resulting theory, all of them managed
through the tool Atlas.ti v8 [28]. To support our findings,
we included excerpts from these interviews in our chain of
evidence.

2.3 Validity procedure
Criteria for judging the quality of research designs are key
to establish the validity, i.e., the accuracy of the findings,
and the reliability, i.e. the consistency of procedures and
researcher’s approach, of most empirical research [16], [29].
There are different ways to classify threats to validity and
reliability in the literature [30]. Glaser [11], Strauss and
Corbin [31] and Charmaz [12] describe inconsistent quality
criteria for GT. We considered the quality criteria defined
by Charmaz together the quality criteria defined by Lincoln
and Guba’s [32] for interpretative qualitative research in
general, which have been incorporated in the ACM SIG-
SOFT Empirical standards [26].

Taking all these references as a basis, quality criteria can
be described as follows: credibility, i.e., the extent to which

conclusions are supported by rich, multivocal evidence;
resonance, i.e., the extent to which a study’s conclusions
make sense to (i.e., resonate with) participants; usefulness,
i.e., the extent to which a study provides actionable rec-
ommendations to researchers, practitioners or educators
and the degree to which results extend our cumulative
knowledge; transferability, which shows whether the find-
ings could plausibly apply to other situations; dependability,
which shows that the research process is systematic and
well documented and can be traced; and conformability,
which assesses whether the findings emerge from the data
collected from cases and not from preconceptions.

To satisfy most of these criteria, we followed the strate-
gies pointed out by Creswell [29] to improve the validity of
qualitative research, as follows.
1. Triangulation. As said by N. Denzin [33], “the greater the
triangulation, the greater the confidence in the observed findings”.
In this study we established to conduct data triangulation,
i.e., data collected for different times, locations, populations,
etc., and method triangulation, i.e., using data collected by
different methods.
2. Member checking enables to determine the accuracy of the
findings [29]. We established a milestone to show our ongo-
ing work and receive feedback from a subset of participants
to determine whether they feel that preliminary results are
accurate.
3. Rich description enables to convey the findings [29]. We
described the context of the involved organizations and
teams as much as confidentiality issues allow.
4. Clarify bias enables to reflect how researchers interpreta-
tion of the findings is shaped by their background [29]. We
tried to avoid bias and negative impacts on some partici-
pants or stakeholders visible (i.e., reflexivity [26]) through
double-checks of transcriptions and coding.
5. Report discrepant information so that all the results are
presented and analyzed, regardless of their implications for
our initial interests. Prolonged contact with participants, the
duration of the interviews, and the subsequent commu-
nication with them, allowed us to fully understand their
perspectives to mitigate some information that contradicts
the general perspective of the theory.
6. Spend prolonged time in the field. The researchers developed
an in-depth understanding of the phenomenon under study
to convey details about the site and the people that lends
credibility to the narrative account.
7. Use an external auditor to review the project provides an
objective assessment of the project throughout the research
process and study conclusions [29]. We established a mile-
stone to publish our ongoing work and receive feedback
from researchers and practitioners in an international con-
ference in the middle of the study.

Section 6 describes the threats to validity of this study
and how the abovementioned strategies were conducted to
try to mitigate them.

3 A THEORY ON DEVOPS TEAM STRUCTURES

This section describes the conduction of the GT study ac-
cording to the procedures abovementioned. Data collection
(i.e., selection of participants, interviews, and transcriptions)
and data analysis (i.e., initial coding, focused coding, and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

theoretical coding) were simultaneously performed. As the
study progressed, categories from codes and memos were
built through constant comparison and cross-case analysis;
then, key variables from these categories were selected;
finally, a cohesive theory on DevOps team structures was
built. The following subsections describe these three it-
erative phases together with raw data quotations of the
interviews (see boxes below and the ID of the participant)
to make explicit the chain of evidence.

3.1 Categories and Concepts

Here we detail our understanding of the core category,
which we refer to as DevOps organizational team struc-
tures, and subcategories: product teams, horizontal (cross)
teams, silos, culture values, and best practices. Subcate-
gories and codes are highlighted throughout the text using
italics along with excerpts of the interviews to make explicit
the chain of evidence.

Product team category emerges as a result of a set of
codes that characterize these teams: collaboration, product
ownership sharing, end-to-end product vision, cross-functionality
(sometimes used as synonym of multidisciplinary or poly-
skilled teams), self-organization and autonomy. Product teams
are usually small (Amazon’s two pizza rule) and are composed
by high-qualified engineers and T-shape people. These teams
promote skills over roles, leadership from management, and
more frequently single management (referred to as product
manager, product leader, technical leader, etc.) versus multi-
ple management. Product teams may involve those skills re-
lated to analysis, architecting and design, development, test-
ing, operation (system administration, monitoring), security,
etc. or collaborate with other teams/departments that own
some of these skills. The data show that some participating
organizations like ID02 differentiate first-level operations from
second-level operations. The first one is a 24x7 operation that
mainly offers monitoring, alerting, and supporting of the
software into production; the second one works closely with
developers from the beginning of product development
by establishing non-functional requirements (NFR shared
responsibility), configuration files, deployment scripts, and
other activities related to operations.

ID02 “Operations is divided: a 24x7 operating room called
first-level of operations, and a second-level of operations that
are common and cross to product teams. The first level handles
systems into production while the second level handles every-
thing from development to production. Engineers of the second-
level are a very valuable resources and have a high cost, much
more than the first level technicians. So when we implement
new features in production we look for up to 80% of operations
to be performed by the first-level —if they were not previously
automated—, and the remaining 20% are performed by the
second-level operations.”

While using these codes we realized that self-organization
and autonomy are subjective constructs that depend on the
background of the interviewees. We wrote some memos
to clarify how SE literature defines these constructs and
compared all codings to check if this meaning fit with the
narrative of the interviews. The memo is as follows:

MEMO: Self-organizing teams are composed of “individuals
[that] manage their own workload, shift work among them-
selves based on need and best fit, and participate in team
decision making” (Highsmith 2004), and exhibit autonomy
(Takeuchi and Nonaka 1986), i.e. decision making authority is
brought to the level of operational problems (Moe and Dingsoyr
2008). [Hoda, 2013]

Some participating organizations highlighted that prod-
uct teams have external dependencies with other teams,
mainly architecture, quality assurance, system administra-
tion, database administration, security, and first-level oper-
ations dependencies. These dependencies usually generate
organizational barriers due to poor communication and lack
of collaboration. Some other organizations, although they
tried to face with these organizational barriers, still show
cultural barriers mainly between developers and operators
(sometimes due to previous organizational silos that remain
as vestigial cultural silos). Both organizational and cultural
barriers are related to silos, which are instantiated as: op-
eration silos, system administration silos, security silos, quality
assurance silos, architecture silos, and so on.

As we were characterizing product teams, we realized of
some initial structures according to their maturity:
Emerging product teams resulting from the eventual inter-
departmental collaboration between dev & ops and showing
organizational silos.

ID01 “There is an organizational structure of departments
so that development and operation still belong to different
departments. We are halfway there.”

Stable product teams resulting from the creation of teams
in which developers and operators daily collaborate, but
there exist a transfer of work between them, showing some
cultural barriers.

ID14 “High degree of collaboration although there are always
silos, such as security, or others that have more to do with
people, culture, the management of infrastructure, or human
resources.”

Consolidated product teams, which have dealt both orga-
nizational and cultural silos by aligning dev & ops goals
with business goals and show cross-functional teams with
shared product ownership, end-to-end product vision and
high-levels of self-organization and autonomy.

ID23 “I would say that there are not many silos. We work as a
global project, we all know our tasks and how they are related
to each other.”

We also realized that these product teams are supported
by horizontal (cross) teams, which may provide:
- Platform servicing (e.g., CI/CD and realising tools) and
infrastructure (e.g., cloud infrastructure, virtualization or
containerization, etc.) to implement best practices, such
as continuous integration, continuous testing, continuous
delivery and deployment, infrastructure as code, and con-
tinuous monitoring.
- Evangelization and mentoring on DevOps practices for pro-
moting culture values, such as communication, transparency,
and knowledge sharing.
- Rotary human resources, i.e., horizontal teams may facilitate
and provide product teams with human resources when



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

these teams lack of specific skills to undertake and accom-
plish their work and implement best practices.

ID2 (horizontal team) “We adopted a DevOps strategy imple-
mented through a DevOps cross team of approximately 15-25
people (may vary over time) that supports 4 development areas
(.es, Marketplace, Food and Tickets) in which there are almost
100 development people (approx. 20-30 people per area). The
engineers of the cross team are assigned within the squads
of the development areas as needed for a period of time. For
example, at a given time an .es team needs two developers, then
it needs two more system engineers, and so on. These engineers
help squads to implement DevOps best practices. [...]. The cross
team is not large enough to permanently assign these resources
to the development areas.”

While using these codes we also realized that there were
different kind of horizontal teams such as DevOps Center of
Excellence (DevOps CoE), DevOps chapter and Platform team.
Despite there are some differences among these teams, all of
them refer to the same construct, i.e., teams that provides
platform, infrastructure, IT operation, and/or mentoring
among others, as a service. This gives autonomy to product
teams. We wrote some memos to clarify this meaning as
follows:

MEMO: Horizontal (cross) DevOps teams, either DevOps
CoE, DevOps chapter, or Platform team, aim to provide a
DevOps platform, IT operation, or mentoring, for autonomous
product teams. They own DevOps skills & culture, platform,
tools, and infrastructure to provide product teams with (i)
servicing of CI/CD platform and environments for dev, test,
or even pre-production, (ii) mentoring and evangelizing, and
sometimes (iii) engineers who get involved in product teams
with exclusive dedication but limited in time until these teams
are capable of the “you build it, you run it”.

Figures 1-3 shows different occurrences of these hori-
zontal teams. Hence, Figure 1 shows a cross team composed
of high qualified engineers on DevOps culture, specifically
5 senior developers, 10 testers and quality assurance engi-
neers, and 10 IT operators, who get involved in product
teams. These engineers are involved in product teams with
exclusive dedication but limited in time, until product teams
are capable of doing all their responsibilities, from planing,
analysis, development, testing, deployment, to operation.
This means that these horizontal teams are composed of
engineers that move through the product teams according
to their needs. The reason why these engineers are not part
of the product teams is that these organizations (like ID2) do
not have human resources enough to involve the necessary
engineers in all the product teams.

Figure 2 shows an example in which the operations
department assumes the DevOps culture, provides to devel-
opers (Scrum teams) with platform and infrastructure, and
enables scrum teams to be autonomous. This means, the
operations department assumes the functions of a DevOps
platform team. This example differs from the previous one
in the fact that there is no immersion of engineers from the
horizontal team to the product teams.

Fig. 1. Organizational team structure by ID2

MEMO: When talking about platform, interviewees mainly
refer to platforms that implement CI & CD mechanisms and
enable product teams to be autonomous and reach the principle
“you build it, you run it”.

Fig. 2. Organizational team structure by ID11

Figure 3 shows another approach in which a horizontal
team (i) develops, in collaboration with the rest of de-
partments, a DevOps platform for internal use, and (ii)
evangelizes DevOps practices. This example differs from the
previous ones in the fact that the horizontal team behaves
as a product team (the product is the DevOps platform)
while provides service to both product teams and classical
operations (either cloud or on-premise).

[ID17] “The DevOps department is composed of two squads.
The first one automates processes and develops a DevOps
platform for internal use (by dev, ops, arch, qa, sec), and the
second one is a chapter that works closely with other depart-
ments [development, cloud operations, on-premise operations,
security, architecture], evangelizing both DevOps practices and
the use of the internal platform.”

Finally, the following excerpts show more evidence of
the existence of horizontal DevOps teams in the participat-
ing organizations and its importance to make product teams
autonomous.

[ID23] “a highly qualified senior team prepares and provides a
DevOps platform that is consumed by the development teams.”



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 3. Organizational team structure by ID17

[ID28] “A cross team provides service to five product teams
so that they are able to deploy on their own, although if
they occasionally need support, the cross team gets involved.
For example, for certain very specific cases in which more
support or expertise in databases, elastic search, or any other
infrastructure service was needed, my team [the cross team] got
involved.”

[ID29] “ID29 has evolved into a value streams model, where
products are organized around business Product Owners. Plat-
form/enabling teams were created organized around technical
capabilities that collaborate with the different value streams
with the goal of making them independent and maturing their
DevOps capabilities.”

3.2 Category selection: key variables

We found in the raw data that certain categories were espe-
cially important when starting to sketch organizational team
structures, which we refer to as variables. These variables
are as follows:

3.2.1 Product ownership sharing

We observed that there exist a relationship between how
product teams share the product ownership and how these
teams are structured. For example, ID29 shows a high-
level of sharing of the product ownership within product
teams, which are cohesive, small (less than 12 people) and
multidisciplinary. On the contrary, the interviewee of ID02
admits that there is room for improvement due to the strong
separation of tasks within the teams and the existence of
post-mortem meetings to seeking blames. In this way, we
were able to establish three levels on the shared ownership
variable: crawl, walk and run. The following excerpts show
some evidence:

[ID29] “We were responsible for the ownership of all the digital
asset, so much that the platform was down on July 4Th and
many people from different ”areas” left their barbecues [they
were in United States celebrating the national holiday] to fix
the problem. I detected the issue and immediately a Slack call
with 11 people started. Everyone was clear that it was not a
Front problem, a Back problem or an Ops problem, but it was
a problem of the team and everyone was committed to solving
it.”

[ID02] “We increasingly share the responsibility of delivering
new features and functionality, but we still have a long way to
go, because we come from a culture that is so siloed that it is
very difficult for us to share that responsibility.”

3.2.2 Leadership from management

We realized that shared ownership is highly related to lead-
ership from management, which is an interesting variable
to be examined due to its impact on organizational team
structures. Hence, non-shared leadership usually leads to
non-shared ownership because, if there are multiple man-
agers within the same team (typically one development
manager and one operation manager), then it is difficult for
all members to feel the product as a whole. This means,
each member tends to take only a part of the responsibility
(developers give priority to develop new features whereas
operators give priority to service stability). Organizations
like ID16 face the problems arising from this situation, while
many others like ID08 and ID21 take for granted the need for
product teams to have only one leader from management,
even if there are major development and operations areas at
organizational level. In this way, we established two levels
on the leadership from management variable: single and
multiple. The following excerpts show some evidence:

[ID02] “In most cases the development and operations staff
involved in a product have different managers. However, in
new developments related to mobile applications we are trying
to avoid this, reduce dependencies and improve collaboration.”

[ID08] “Although structurally within the company the devel-
opment and operations staff depends on different areas, in each
product team there is a single leader whose responsibility is to
bring that team together.”

[ID21] “There is no such distinction between development and
operations staff. In our team we all have the same leader and
only report to him/her.”

3.2.3 Organizational silos & Cultural silos

We also found that the existence of strong hierarchical
organization charts and departmental structure impact the
structure of teams because both organizational and cultural
silos undermined the adoption of DevOps practices and
culture. The structure of some organizations like ID01 leads
to the creation of silos and find themselves with serious
problems to adopt DevOps. In other cases like ID27 the or-
ganizational silos were broken, but the cultural ones remain
(at least for a while) hindering the DevOps adoption. Many
organizations like ID29 have managed to transform their
structure, eliminated all the silos and achieved a complete
adoption of DevOps. Recently founded organizations like
ID09 usually do not face silo problems because they were
born with a structure that favors DevOps. By observing the
big picture, we established two levels on the organizational
silo variable: yes, no; and three levels on the cultural silo
variable: yes, no, vestigial (previous silos remain as vestigial
cultural silos). The following excerpts show some evidence:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

[ID01] “Today there is an organizational structure of de-
partments so that development and operation still belong to
different departments. There is a wall between both areas that
prevent DevOps adoption. So, until now, there are organiza-
tional silos, and therefore, cultural silos too.”

[ID27] “I was sure that the adoption would only be viable at
the moment we managed to either break the silos or float above
them. So we created mixed and autonomous teams with people
from different departments. However, we still talk about the
product team, the operation team, the architecture team, the
QA team,...”

[ID29] “Currently the whole IT department works according
to the DevOps culture. The continuous growth has led ID29 to
a deep organizational transformation.”

[ID09] “We only have product teams with end-to-end responsi-
bility of an integrated product. Since we were formed in 2010,
we did not have the traditional culture of IT departments so it
was not so complicated to apply DevOps.”

3.2.4 Collaboration
We also noticed that collaboration frequency is highly re-
lated to the team structures and is a critical variable for
DevOps adoption. Indeed collaboration is one of the key
values of DevOps culture. Hence, the members of product
teams may work together regularly on a daily basis to
undertake all the product life-cycle, as it happens in orga-
nizations like ID23. This implies a daily collaboration be-
tween team members and usually a daily meeting, without
detriment of other less frequent meetings with other related
teams. However, the members of product teams in other
organizations have more differentiated roles (dev versus
ops) so that they work together but in different tasks. This
means, there is not a real collaboration, but a transfer of
responsibilities, as it happens in organizations like ID05. In
these cases the collaboration frequency is on a weekly basis
or even more. In this way we established three levels on
the collaboration frequency variable: daily, frequent and
eventual. The following excerpts show some evidence:

[ID23] “There are daily meetings within each product team
and everyone collaborates with their colleagues in their day to
day. In addition there are other meetings typically performed in
Scrum or SAFE with other teams to have absolute transparency
with the entire project.”

[ID05] “Collaboration between development and operations
is done through a ticketing application, although we share
physical work space and sometimes work together.”

3.2.5 Autonomy
Last but not least, we found that autonomy might reveal
the organizational team structure of a company. We under-
stand that a DevOps product team is entirely autonomous
when it does not have external dependencies to fulfill its
responsibilities, this implies having an end-to-end vision

and taking complete charge of a product from its conception
and implementation to its deployment and monitoring. This
is hard to achieve and we only found a few organizations
like ID03 whose product teams implement the practice con-
tinuous deployment and continuous feedback, and thus, being
completely autonomous. The most common practice is that
product teams implement continuous delivery so that they
can deploy in a pre-production environment, but they need
external approval to go into production. These approvals
may come directly from business or from technical areas
such as quality or security. This was very usual in most orga-
nizations like ID08, even if their DevOps maturity was high.
However, in some organizations, product teams still have
many dependencies and they do not manage continuous
delivery, much less continuous deployment. For example,
we found organizations like ID01 where product teams do
not yet have the ability to create their own environments
and still depend on an operations department. In the case of
these organizations there is still a long way to go in adopting
DevOps. In this way, we established three levels on the
autonomy variable: high (no dependencies), medium (de-
ployment dependencies) and low (many dependencies, i.e.
dependencies beyond deployment). The following excerpts
show some evidence:

[ID03] “There are no external dependencies to deploy in pro-
duction. If the Product Owner and the team as a whole consider
that a feature is correct, then it is deployed in production.”

[ID08] “Yes, of course, there are dependencies to make de-
ployments in production as it requires the approval of the
service manager and the customer. However, we work free of
dependencies with a pre-production environment very similar
to a production environment and when authorized we quickly
deploy in production.”

[ID01] “Before, Dev did not even have visibility of the deploy-
ment process and when an environment for a new application
was requested, the task was done behind the wall. When Ops
created or configured the environment, it might not fit with
what Dev needed and a lot of time was lost in this process. As
now the collaboration is higher and people from Dev and Ops
meet every 2 days, the requests of environments are more agile
and effective.”

Finally, Table 3 summarizes the six key variables that
allow us to characterize and categorize team structures and
lay the foundation to build a cohesive theory.

3.3 Building a Theory

We followed the guidelines for describing a theory stated
by Sjøberg et al. [9], according to which a theory description
should be divided into four parts: constructs (what are the
basic elements) i.e., categories and variables; propositions
(how do the constructs interact), i.e., relationships between
constructs and variables; explanations (why are the propo-
sitions as specified); and scope (what is the universe of
discourse in which the theory is applicable, which was al-
ready described in Section 2). Hence, we built relationships
between the above mentioned categories and variables, and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 3
Variables used for the focused coding

Variable Meaning Value range
Leadership
from
management

Both Dev and Ops are under
the same management in a
product team

Single
Multiple

Product
ownership
sharing

Dev and Ops share responsi-
bility for delivering value

Crawl
Walk
Run

Collaboration
frequency

Dev and Ops work and meet
together regularly

Eventually
Frequent
Daily

Organizational
silos

The structure of the organiza-
tion causes silos

Yes
No

Cultural silos Prior work habits and pro-
cesses causes silos between
people

Yes
No
Vestigial

Autonomy Product teams have no exter-
nal dependencies to perform
all its responsibilities

Low
Medium
High

integrate them into a conceptual framework. The memos
previously taken were essential in this process, in which
it was necessary to keep in mind all the information from
the analyzed interviews. Thus, we started to build a first
approach of the conceptual framework as follows.

Constructs
C1. Product teams: emerging teams, stable teams, and

consolidated teams.
C2. Horizontal DevOps teams: centers of excellence,

chapters, and platform teams.
C3. Best practices: continuous everything (testing, inte-

gration, delivery, deployment, monitoring and feed-
back) and infrastructure as code.

C4. Cultural values: sharing, transparency, and commu-
nication.

C5. Key variables: leadership, product ownership, col-
laboration, silos, and autonomy.

Propositions
P1.1 Product teams are often composed of high qualified

and T-shape engineers in small teams, and are often
characterized by an end-to-end product vision, mul-
tidisciplinarity, self-organization.

P1.2 Product teams may be characterized, according to
their maturity (emerging, stable, and consolidated),
with different levels of shared product ownership
and autonomy.

P1.3 Product teams put skills ahead of roles and, accord-
ing to their maturity (emerging, stable, and consoli-
dated teams) prioritize single leadership over multi-
ple management.

P2.1 Horizontal DevOps teams are instantiated in com-
panies through centers of excellence, chapters, and
platform teams. CoE and platform teams are external
teams, whereas DevOps chapters designate people
having DevOps skills and working within the same
general competency area across different product
teams.

P2.2 Horizontal DevOps teams may provide product
teams with platform servicing to support them with
the appropriate technologies and tools to automate
the release to production.

P2.3 CoE evangelize and mentor product teams in a con-
tinuous improvement process and DevOps maturity
through cultural values and best practices.

P2.4 CoE may provide rotary human resources to product
teams to boost teams with the appropriate skills to
release to production.

P3. Product teams can implement the best practices due
to the support of horizontal DevOps teams.

P4. Product teams can introduce, settle and/or enhance
the cultural values due to the support of horizontal
DevOps teams.

P5. Different configurations of the key variable values
result in different DevOps maturity levels: emerging,
stable, and consolidated.

Explanations
E1.1 Emerging product teams are characterized by even-

tual interdepartmental collaboration between dev &
ops which is hampered by organizational silos.

E1.2 Stable product teams are characterized by dev & ops
daily work but there exist transfer of work between
them due to cultural barriers that persist.

E1.3 Consolidated product teams are characterized by
having a shared product ownership, an end-to-end
product vision, multidisciplinarity, and all the skills
to do their work resulting in high levels of self-
organization and autonomy.

Figure 4 graphically shows the conceptual framework.
Notice we used ovals for categories and variables, and
rectangles for values of variables. Notice that we used the
symbols - + and * to denote the values for emerging, stable
and consolidated product teams respectively.

4 A TAXONOMY OF DEVOPS TEAM STRUCTURE
PATTERNS (RQ1)

The conceptual framework resulting from the previous sec-
tion provides the basis to create a taxonomy of DevOps team
structure patterns. Section 4.1 describes these patterns focus-
ing on the resulting product teams; Section 4.2 describes the
role of horizontal cross teams; finally Section 4.3 depicts a
global vision of this taxonomy.

4.1 Patterns description

The taxonomy of team structure patterns is the result of (i)
analyzing the six variables of the conceptual framework (see
Table 3), and (ii) assigning a value for each organization.
This means, from qualitative data (the interview transcrip-
tions) we made an effort of interpretation and quantified
these variables. Table 4 shows this relation, i.e., organization
ID, variable, and value. Later, the analysis of the common
factor of the variables values allowed us to identify four
patterns of team structures (see Table 5), which show similar
characteristics regarding how they work, communication
pathways, and team performance (i.e., collaboration, auton-
omy, product ownership sharing, leadership, and organi-
zational or cultural silos). These patterns are described as
follows.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 4. Conceptual framework for DevOps organizational team structures

TABLE 4
Organizations characteristics analysis

ID Leadership
from
management

Shared owner-
ship

Collaboration
frequency

Organizational
silos

Cultural silos Autonomy

ID1 Multiple Crawl Frequent Yes Yes Low
ID2 Single Walk Daily No Vestigial Medium
ID3 Single Run Daily No No High
ID4 Multiple Walk Frequent Yes Yes Low
ID5 Multiple Crawl Eventual Yes Yes Low
ID6 Single Crawl Frequent No Yes Low
ID7 Single Crawl Frequent No Yes Medium
ID8 Single Run Daily No Yes Medium
ID9 Single Run Daily No No High
ID10 Single Run Daily No No Medium
ID11 Single Run Daily No Vestigial Medium
ID12 Multiple Crawl Eventual Yes Yes Low
ID13 Single Run Daily No No High
ID14 Single Walk Frequent No Yes Low
ID15 Single Run Daily No No Medium
ID16 Multiple Crawl Frequent Yes Yes Low
ID17 Single Run Daily No Vestigial Medium
ID18 Single Run Daily No Yes Medium
ID19 Single Walk Frequent No Yes Medium
ID20 Multiple Crawl Eventual Yes Yes Low
ID21 Single Walk/Run Daily No No Medium
ID22 Single Run Daily No No Medium
ID23 Single Run Daily No No Medium
ID24 Single Walk/Run Daily No Vestigial Medium
ID25 Multiple Crawl Frequent Yes Yes Low
ID26 Single Walk/Run Daily No No Medium
ID27 Single Walk Frequent No Yes Medium
ID28 Single Run Daily No No Medium
ID29 Single Run Daily No No Medium
ID30 Single Run Daily No No Medium
ID31 Single Run Daily No No Medium

4.1.1 Pattern A: Interdepartmental Dev & Ops collaboration

According to this pattern, people from dev and ops who
belong to different departments collaborate sporadically in
a specific project, but they do not form a stable team.
As dev and ops belong to different departments and the
collaboration is not stable, they have different managers, the
product ownership is not actually shared, and the silos are

a major barrier. Developers and operators only collaborate
occasionally (on a monthly or at most weekly basis), each
one works on their tasks. This means, there exist a transfer
of tasks, no collaboration. Furthermore, the team has no
autonomy as responsibilities are delegated and there are
dependencies with other teams. In short, the characteristics
of this organizational team pattern are as follows:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 5
Taxonomy of DevOps Team Structure Patterns: Organizations’ classification

Name Organizations Leadership
from man-
agement

Shared
ownership

Collaboration
frequency

Organizational
silos

Cultural si-
los

Autonomy

Interdepartmental
Dev & Ops
collaboration

ID1, ID4, ID5, ID12,
ID16, ID20, ID25

Multiple Crawl Eventual/
Frequent

Yes Yes Low

Interdepartmental
Dev-Ops team

ID6, ID7, ID14,
ID19, ID27

Single/
Multiple

Crawl/Walk Frequent No Yes Low/Medium

Boosted (cross-
functional)
DevOps team

ID2, ID11, ID13,
ID17, ID24, ID30

Single Walk/Run Daily No No/Vestigial Medium/High

Full (cross-
functional)
DevOps team

ID3, ID8, ID9, ID10,
ID15, ID18, ID21,
ID22, ID23, ID26,
ID28, ID29, ID31

Single Run Daily No No Medium/High

– Leadership from management: Multiple
– Shared product ownership: Crawl
– Collaboration frequency: Eventual to Frequent
– Organizational silos: Yes
– Cultural silos: Yes
– Autonomy: Low

4.1.2 Pattern B: Interdepartmental Dev-Ops team
According to this pattern, people from dev and ops form a
stable product team, but they may still belong to different
departments. Consequently, they may have one product
manager, but often a department manager with different
goals. Dev & ops tasks are clearly separated, and although
organization silos have been addressed, cultural silos still
remain. However, they frequently collaborate beyond a
transfer of tasks, start to share the product ownership,
and begin to gain autonomy as a team. The team begins
to adopt DevOps practices and principles, although in a
very incipient phase. In summary, the characteristics of this
organizational team pattern are as follows:

– Leadership from management: Single (product man-
ager) but multiple (department managers)

– Shared product ownership: Crawl to Walk
– Collaboration frequency: Frequent
– Organizational silos: No
– Cultural silos: Yes
– Autonomy: Low to Medium

4.1.3 Pattern C: Boosted cross-functional DevOps team
According to this pattern, traditional dev teams are boosted
by DevOps experts who are highly involved in these teams
until they reach the ”you build it, you run it” capability,
thus becoming full DevOps teams. This kind of teams have
a single manager and share the ownership of the prod-
uct/service they are delivering. They work side by side on
a daily basis and they have a medium-level of autonomy or
even higher. Normally there are no cultural silos, although
on some occasions there are vestigial silos derived from
those that have existed previously for many years. If these
teams are willing to learn from the DevOps experts who
get involved with them, they will achieve the ”you build it,

you run it” capability thus becoming a full DevOps team. In
short, the characteristics of this organizational team pattern
are as follows:

– Leadership from management: Single
– Shared product ownership: Walk to Run
– Collaboration frequency: Daily
– Organizational silos: No
– Cultural silos: No or Vestigial
– Autonomy: Medium to High

4.1.4 Pattern D: Full cross-functional DevOps team
According to this pattern, product teams are poly-skilled,
being able to face an end-to-end product development,
i.e., ”you build it, you run it”. These teams have a single
manager and share the ownership of the product/service
they are delivering. They also work side by side on a
daily basis with a medium-to-high level of autonomy. It is
complicated to achieve total autonomy in certain types of
businesses (e.g., banking, telecommunications, retail, etc.),
even for this kind of poly-skilled teams. The reason behind
is that, sometimes, the deployment requires external valida-
tions such as those related to security. However, some full
DevOps teams have security abilities becoming DevSecOps
teams. In summary, the characteristics of this organizational
team pattern are as follows:

– Leadership from management: Single
– Shared product ownership: Run
– Collaboration frequency: Daily
– Organizational silos: No
– Cultural silos: No
– Autonomy: Medium to High

4.2 The role of horizontal teams

Something common to all these product teams represented
in the patterns is the existence of a horizontal (cross)
DevOps team. Nevertheless, the forms in which these hor-
izontal teams support product teams vary. How several
horizontal teams come into play is described as follows.

Pattern A and Pattern B are usually supported by plat-
form teams. These horizontal teams are typically formed by



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 5. Patterns: a) Interdepartmental Dev & Ops collaboration, b) Interdepartmental Dev-Ops team, c) Boosted (cross-functional) DevOps team, d)
Full (cross-functional) DevOps team

people from Ops who are experts in DevOps technologies,
who provide product teams the required CI/CD and mon-
itoring platforms and infrastructure to automate DevOps
practices. It can also occur that the platform is provided by
a DevOps chapter, who is made up by DevOps experts of
each product team. In both cases, the support to product
teams is often limited to providing a platform.

On the other hand, Pattern C are supported by DevOps
experts from an immersive DevOps Center of Excellence.
These experts provide product teams with the required
platforms, as DevOps platform teams do, but they go be-
yond that. Moreover, the immersive DevOps CoE staff are
highly involved (i.e., rotary human resource assignment)
with product teams until they get the ”you build it, you
run it” capability and become a full DevOps team. Finally,
Pattern D are usually supported by a DevOps Center of
Excellence, which is devoted, in addition to the provision
of the DevOps platform, to the evangelization & mentoring
of the entire company in the DevOps culture and practices.

4.3 The four patterns in a nutshell
Figure 5 graphically shows the four patterns. We could say
that patterns A and B are less mature than patterns C and
D as product teams are not autonomous, do not share the
product ownership and business objectives, and show silos.
On the contrary, patterns C and D are more mature than the
previous ones as product teams are autonomous, share the
product ownership and business objectives, they broke silos
and are able to manage the entire product-life cycle.

5 STATISTICAL ANALYSIS

This section analyzes the implications of team patterns on
three well-known software delivery performance indicators
(RQ2) and assesses these patterns using a quantitative anal-
ysis, which may confirm the patterns taxonomy that we

previously built through qualitative analysis based on the
six key variables.

5.1 Implications of patterns on software delivery per-
formance (RQ2)

This question was previously addressed by Pais & Skelton
[20], who talk about a model for team-based software de-
livery performance, i.e., they agree on the fact that orga-
nizations are constrained to deliver software that reflects
their team patterns and communication paths. The DevOps
Research & Assessment association (DORA) report [27] also
identified a set of software delivery performance profiles
(elite, high, medium and low performance) and related
DevOps practices to these profiles.

As the DORA report did, we gathered three software
delivery performance indicators during the interviews: Lead
Time (LT), i.e., the time from a change in the code is
successfully running in production; Mean Time To Recovery
(MTTR), i.e., elapsed time to restore a service when an in-
cident causes its unavailability; and Deployment Frequency
(DF), i.e., the number of deploys to production of an applica-
tion per unit of time. Table 6 presents the software delivery
performance indicators for each organization together with
the pattern assigned to each organization according to the
taxonomy described in Section 4.

From these data, we performed an in-depth statistical
analysis to examine the implications of each of the patterns.
First, we present the sample statistical descriptions of each
indicator for each of the four patterns. Second, we study if
we can assert a correlation between the pattern and the three
delivery performance indicators (LT, MTTR and DF). Finally,
we compare the mean of the three indicators for each of the
four patterns to test significant differences between patterns.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 6
Pattern & software delivery performance indicators

ID Pattern LT (min) MTTR
(min)

DF (deploys
per day)

ID01 A 45 60 1
ID02 C 480 60 0.1
ID03 D 30 60 7.5
ID04 A 480 120 0.1
ID05 A 480 120 0.1
ID06 B 480 60 0.15
ID07 B 60 240 0.05
ID08 D 30 30 4.5
ID09 D 30 45 0.5
ID10 D 180 120 0.2
ID11 C 30 45 0.2
ID12 A 120 60 1
ID13 C 30 90 5
ID14 B 240 240 1
ID15 D 120 30 0.2
ID16 A 720 240 0.1
ID17 C 240 240 0.2
ID18 D 240 240 0.05
ID19 B 720 240 0.05
ID20 A 240 60 0.1
ID21 D 960 960 0.05
ID22 D 30 20 0.1
ID23 D 240 240 0.2
ID24 C 120 60 2
ID25 A 60 30 0.2
ID26 D 60 60 0.2
ID27 B 60 240 1
ID28 D 25 20 5
ID29 D 10 10 6
ID30 C 10 45 4
ID31 D 10 30 4

5.1.1 Sample statistical description
Table 7 shows the statistical descriptions of the three perfor-
mance indicators for each of the four patterns. To confirm
whether the sample matched the normal population, the
Shapiro-Wilk tests were carried out. Based on these results,
the Wilcoxon non-parametric test was used to compare the
means of different samples, and the Spearman Rho test to
analyze correlations. Notice that organization ID21 is not
included in the statistical analysis, due to the ambiguities
of some of the answers in the interview and numerical data
that were clearly atypical. Finally, we have 30 samples.

TABLE 7
Statistical description of delivery performance indicators per pattern

Indicator Pattern N Mean Std. Dev.

LT
(Lead Time)

A 7 306.43 258.049
B 5 312 285.867
C 6 151.67 182.364
D 12 83.75 88.347

MTTR
(Mean Time to Recovery)

A 7 98.57 70.812
B 5 204 80.498
C 6 90 75.299
D 12 75.42 82.116

DF
(Deployment Frequency)

A 7 0.371 0.4309
B 5 0.45 0.5037
C 6 1.917 2.1470
D 12 2.371 2.8038

5.1.2 Correlation between patterns and performance
We ran an exploratory analysis to detect the main cor-
relations between the pattern (as variable) and the three

software delivery performance indicators. Table 8 displays
the results of the Rho Spearman coefficient. Notice that
the pattern has a negative correlation with the indicator
LT (Coef. = −0.505; p-value = 0.004), which means that
the more mature a pattern is, the lower (i.e., better) lead
time is achieved. This correlation is highly significant, even
at level 0.01. Milder significant negative correlation was
also obtained with the indicator MTTR (Coef. = −0.382;
p-value = 0.037), fulfilled at level 0.05. However, results
do not show a significant correlation between the pattern
and the indicator DF (p-value = 0.058). Although the most
mature patterns tend to have higher deployment frequency,
it is also true that on some occasions deployment windows
are fixed regardless of the adopted pattern (typically, one
per sprint), so the difference observed in this indicator is
not so noticeable as in the others.

TABLE 8
Spearman correlation for Pattern and performance indicators

LT MTTR DF

Coef. -0.505 -0.382 0.35
p-value 0.004 0.037 0.058
N 30 30 30

5.1.3 Performance comparison

The software delivery performance that each pattern shows
was compared to analyze the significant differences between
them. The Wilcoxon signed-rank test was run to compare
the patterns in pairs, obtaining significant differences be-
tween patterns A and D for the indicator LT (Z = 2.385;
p-value = 0.017). Significant differences were also obtained
between patterns B and D for LT (Z = −2.133; p-value =
0.033) and MTTR (Z = −2.384; p-value = 0.017). This
indicates that the companies that followed Pattern D (i.e.,
Full cross-functional DevOps team) perform better than less
mature patterns such as patterns A and B. On the contrary,
for the indicator DF we could not reject the null hypothesis
(equality of means), since the p-value exceeds 0.05. In this
regard, the frequency of deployment has little to do with
the pattern as explained before, since companies with less
mature patterns usually deploy once per sprint as many
companies with more mature patterns do.

In order to deepen this issue, two groups of organiza-
tions were made: i) a group, termed A-B, was created bring-
ing together the organizations that followed the patterns
A and B; ii) a group, termed C-D, was created bringing
together the organizations that followed the patterns C
and D. The software delivery performance obtained by
each group was compared and the significant differences
between them were analyzed. Table 9 displays the average
range, together with the samples included in each group.
Statistically significant differences were found in overall
performance indicators, as shown in Table 10. In all the
cases the null hypothesis (equality) is rejected at confidence
level 0.05. Therefore, we conclude that companies that
implement the most mature team patterns (i.e., Patterns
C and D) achieve better software delivery performance
indicators.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 9
Ranges for two groups of organizations

Group of patterns N Avg. range

LT
A-B 12 20.92
C-D 18 11.89

MTTR
A-B 12 19.83
C-D 18 12.61

DF
A-B 12 11.33
C-D 18 18.28

TABLE 10
Test statistics for two groups of organizations

LT MTTR DF

U of Mann-Whitney 43 56 58
W of Wilcoxon 214 227 136
Z -2.778 -2.249 -2.142
p-value 0.005 0.025 0.032

5.2 Quantitative assessment of the taxonomy

This section assess whether the taxonomy we built through
qualitative analysis (see Table 5) is confirmed from a quanti-
tative perspective. To that end, a K-means clustering analy-
sis focused on the key variables shown in Table 3 (i.e., lead-
ership from management, shared ownership, collaboration
frequency, organizational and cultural silos, and autonomy)
was carried out. Then, we compared the groups obtained
from the clustering with the patterns we identified in Table 5
and we analyzed their profile according to the final centers.

First, a K-means analysis with two clusters (see Table 11)
reveals two groups of organizations that are practically
the same as the patterns previously termed as A-B and
C-D. Cluster 1 includes 11 organizations and Cluster 2
consists of 19. The specific companies that make up each
cluster are shown in Table 13(a), together with the pattern
previously assigned (pattern from A to D). Table 11 shows
the final centroids of every variable, so that the profile of
every cluster is drawn. The comparison of software delivery
performance between the resulting clusters also revealed
similar results to those obtained by patterns A-B and C-D. In
particular, the Wilcoxon test test conducted on the compa-
nies automatically grouped into the two clusters evidences
significant differences in the indicators LT (Z = −2.911;
p-value = 0.004) and DF (Z = −2.396; p-value = 0.017).
No significant differences were obtained for the variable
MTTR (p-value = 0.077).

TABLE 11
Final centroids for two clusters

Clusters
N = 11 N = 19

Leadership Multiple Single
Shared Ownership Crawl Run
Collaboration Frequency Weekly Daily
Organizational Silos Yes No
Cultural Silos Yes No
Autonomy Low Medium

Second, a K-means analysis with four clusters (see Ta-

ble 12) reveals four groups that are very similar to the four
team structure patterns obtained through the qualitative
analysis (i.e. Patterns A, B, C, and D). The specific com-
panies that make up each of the four clusters are shown in
Table 13(b), together with the pattern previously assigned.
The centroid values of the key variables in each group are
shown in Table 12. These results are practically the same
as the values assigned to the variables for each pattern and
the organizations also coincide to a great extent. The match
is not exact because i) in the organizational patterns we
allowed the variables to adopt two close values, but that
is not possible in a K-means analysis; ii) some companies
seemed to be transitioning between different patterns; iii)
the line separating certain related patterns when a company
is transitioning is not very thick (e.g., pattern C and D).

TABLE 12
Final centroids for four clusters

Clusters

N = 5 N = 3 N = 10 N = 12

Leadership Single Single Multiple Single
Shared Ownership Run Walk Crawl Run
Collaboration Frequency Daily Weekly Weekly Daily
Organizational Silos No No Yes No
Cultural Silos Vestigial Vestigial Yes No
Autonomy Medium Medium Low Medium

The comparison of software delivery performance be-
tween the resulting clusters revealed similar results to those
obtained by patterns A, B, C, and D. Really, we can assert
that differences increase with respect to the differences
between patterns. The most significant differences were ob-
tained between Cluster 3 (which mainly represents pattern
A) and Cluster 4 (which mainly represents pattern D). In
particular, Wilcoxon test provided significant differences in
the three indicators: LT (Z = −3.023 and p-value = 0.003),
MTTR (Z = −2.110 and p-value = 0.036), and FD
(Z = −2.405 and p-value = 0.016). Moreover, significant
differences were obtained for variable LT between Cluster 2
(which mainly represents pattern B) and Cluster 4 (pattern
D), with Z = −2.122 and p-value = 0.034.

In summary, this analysis shows that clusters reported
by the K-means are very similar to the taxonomy we
described in Section 4 and confirms that the most mature
team patterns (i.e., Patterns C and D) obtain the best
software delivery performance indicators.

6 THREATS TO VALIDITY AND RELIABILITY AND
LIMITATIONS

This section describes how we aimed for quality crite-
ria, both validity and reliability of qualitative studies [29].
Specifically we aimed for credibility (also referred to as
trustworthiness), resonance, usefulness, transferability, depend-
ability, and conformability [12], [26], [32]. To mitigate threats
to the validity and the reliability, we applied the strategies
described in Section 2.3 as follows.

6.1 Threats to qualitative validity
To mitigate threats to qualitative validity we checked for
the accuracy, trustworthiness, and credibility of the findings.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 13
Correspondence between patterns and clusters: (a) for 2 clusters, (b) for 4 clusters)

(a) K-means 2 clusters (b) K-means 4 clusters
Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Organ. Pattern Organ. Pattern Organ. Pattern Organ. Pattern Organ. Pattern Organ. Pattern
ID19 B ID8 D ID8 D ID2 C ID1 A ID3 D
ID1 A ID18 D ID18 D ID19 B ID4 A ID9 D
ID4 A ID24 C ID24 C ID27 B ID5 A ID10 D
ID5 A ID11 C ID11 C ID6 B ID13 C
ID6 B ID17 C ID17 C ID7 B ID15 D
ID7 B ID2 C ID12 A ID22 D
ID12 A ID27 B ID16 A ID23 D
ID16 A ID3 D ID20 A ID26 D
ID20 A ID9 D ID25 A ID28 D
ID25 A ID10 D ID14 B ID29 D
ID14 B ID13 C ID30 C

ID15 D ID31 D
ID22 D
ID23 D
ID26 D
ID28 D
ID29 D
ID30 C
ID31 D

The strategies implemented for this purpose were (1) trian-
gulation, (2) spending prolonged time in the field, and (3)
external auditory procedures. (1) We conducted two types
of triangulation as follows. Data triangulation so that we in-
terviewed 46 stakeholders from 31 companies, which means
we collected data in different times and locations, and from
different populations. Methodological triangulation so that
we used different methods to collect data, i.e., interviews,
workshops, observations, and retrieval of a set of software
delivery performance indicators. On the one hand, the GT
study mainly focused on the analysis of the interviews while
observations and workshop annotations were recorded in a
research diary and used to triangulate and complete data
omissions. On the other hand, we perform an statistical
analysis focused on the resulting patterns of the GT study
and the indicators we retrieved. (2) We spent more than 3
years in retrieving and analyzing all these data. (3) Finally,
preliminary results were previously reported and presented
in an international conference [14], which can be considered
as an external auditory.

Qualitative validity is also concern to resonance. A key
strategy to that end is member checking, so that the partic-
ipants first received the interview transcription, and then,
some of them received preliminary results to ensure the
correctness of our findings through a presentation in an
industrial event4.

Finally, qualitative validity is also concerned to transfer-
ability so that the data were iteratively gathered from a num-
ber of companies that is large enough to build a complete
picture of the phenomenon. In this study, 31 companies were
included, and 46 stakeholders participated in the interviews.
This multiplicity is what provides the basis for analytical
generalization or theoretical generalization, where the results
are extended to cases that have common characteristics and
hence for which the findings are relevant [30].

4. https://bit.ly/2LDRA2W, last accessed January 2020.

6.2 Threats to qualitative reliability
To mitigate threats to qualitative reliability we checked for
the consistency and dependability of procedures. The strate-
gies implemented for this purpose were (1) a rich descrip-
tion of the research, (2) report of discrepant information,
and (3) bias clarification. (1) We documented as many of
the steps of the procedures as possible and provided a full
description of involved organizations and teams as confi-
dentiality and ethical issues allowed. (2) We documented
some memos to highlight some minor contradictions. (3)
We conducted a double-check of transcripts: a first one to
eliminate possible errors in literal transcription, as quite half
of the interviews were transcribed by students and they
were not familiar with certain terminology; and a second
one to eliminate different interpretations of a same concept.
For example, related to the question about autonomy, ID2
says that they are not an autonomous teams because they
have dependencies to deploy into production (a check point
from business), but ID23 says that they are autonomous,
although reviewing other questions, they later say that they
have dependencies to deploy into production. Although
this was the most time-consuming task, the following re-
liability procedures are also undoubtedly the most impor-
tant: (i) identify possible drifts or shifts in the definition
and meaning the codes, which were mainly addressed and
documented by memos as the described in Section 3, and
(ii) coordination and communication among coders through
online meetings through Microsoft Teams, which were doc-
umented and mostly of them recorded.

Qualitative reliability is also concern to conformability.
In this regard, Section 3 presents clear chain of evidence
from interviewee quotations to the proposed categories
concepts.

6.3 Limitations
Finally, some limitations concern to the lack of inter-rater
agreement analysis to improve reliability of coding. Al-

https://bit.ly/2LDRA2W


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

though, the authors of this article have most often applied
inter-coder agreement within thematic analysis, and found
it improved the quality, transparency, and reliability, we
also found that the recursive and incremental nature of
grounded theory’s analytic process makes inter-coder agree-
ment difficult to implement. Thus, GT does not guarantee
that different researchers working with the same data would
code identical categories and achieve identical theory, as
depends of the the researchers’ theoretical sensitivity, which
is consistent with our epistemological philosophy.

7 RELATED WORK

Chronologically, although the study by Iden et al. [34] did
not explicitly mention DevOps, we can consider that is
one of the seminar papers that empirically analyzed the
conflict between development and operations teams when
they have to collaborate. This follows the idea initiated by
P. Debois [1] and Flickr employees [2]. Iden et al. [34] used
the Delphi method (brainstorming with 42 Norwegian IT
experts, reduction and ranking) to provide a key baseline for
analyzing the problems that reveal the lack of cooperation
between developers and IT operations personnel. Later, Ny-
bom et al. [35] interviewed 14 employees of an organization
to analyze the benefits of dev & ops collaboration, such as
improved trust and smoother work flow, and costs, such as
new sources for friction among the employees and risk for
holistically sub-optimal service configurations.

Some years later, Erich et al. [36] performed a systematic
mapping study to analyze the benefits of this cooperation
between development and operations, and Smeds et al.
[5] interviewed 13 subjects in a software company adopt-
ing DevOps to research the main defining characteristics
of DevOps and the perceived impediments to adopting
DevOps. Later, Lwakatare et al. [37] used multi-vocal lit-
erature and three interviews from one case company to
describe what DevOps is and outline DevOps practices ac-
cording to software practitioners. In the same year, Riungu-
Kalliosaari et al. [38] conducted a qualitative multiple-case
study and interviewed the representatives of three software
development organizations in Finland to answer how indus-
try practitioners perceive the benefits of DevOps practices
in their organization and how they perceive the adoption
challenges related to DevOps.

In the following years a greater number of studies
conducted empirical research by involving an increasing
number of companies. Luz et al. [4] conducted grounded
theory analysis on about 15 scenarios of successful DevOps
adoption in companies to build a model. Recently, Leite et
al. [39] published an exhaustive survey on DevOps con-
cepts and challenges, in which through a method inspired
by systematic literature review and grounded theory, they
analyze practical implications for engineers, managers and
researchers.

However, there exist few literature with clear focus on
analyzing team structures. One of first papers in analyzing
team structures is the work by Shahin et al. [19]. They
conducted a mixed-method empirical study, which collected
data from 21 interviews in 19 organizations and a survey
with 93 practitioners. They also identified four common
types of team structures: separate Dev and Ops teams

with higher collaboration; separate Dev and Ops teams
with facilitator(s) in the middle; small Ops team with more
responsibilities for Dev team; and no visible Ops team. Soon
after, we already started to sketch a first version of the
taxonomy presented in this paper and started to correlate
the DevOps organizational patterns with software delivery
performance [14]. Shortly afterwards, Leite et al. [40] [41]
collected data from 27 IT professionals and identified also
four patterns: siloed departments, classical DevOps, cross-
functional teams, and platform teams.

According to our constructivist stance, we believe that
there are several realities that can be discovered from differ-
ent approaches. Although these studies [19] [40] [41] and the
present work have come up with some common elements,
such as organizational structures based on development and
operations silos, or the existence of cross-functional product
teams, each one brings different insights. For example, we
found that in every organizational pattern there is always
a horizontal DevOps team, which can be formed by people
exclusively dedicated to platforms (i.e., DevOps platform
teams, DevOps CoE) or by people from each product team
specialists in DevOps (i.e., DevOps chapter), that provides
some service to the product teams, which is essential to
decrease the cognitive load of these product teams and
improve their productivity. In addition, each study reaches
certain structures through different observations and vari-
ables. For example, we observed a set of variables, such as
leadership from management or shared ownership, which
from our perspective are essential to understand the orga-
nizational structure of teams. However, other studies had
not paid so much attention to these variables as we do. Fur-
thermore, each study uses different research methods. For
example, we carried out, in addition to a qualitative study,
an in-depth statistical analysis to (i) check whether certain
patterns imply better performance, and (ii) assess whether
clustering identified the same patterns we qualitatively had
identified. In this way, all the differentiating elements of
each study complement each other, thus allowing to reach a
more complete and solid theory. It is important to take into
account that the mentioned researches are contemporary
and have been carried out in different parts of the world,
so that a triangulation of studies could be later analyzed in
a systematic study.

Finally, Bahadori & Vardanega [42] analyzed the impor-
tance of platform teams. Specifically, they discussed why
product teams require infrastructure agility and how dy-
namic orchestration of infrastructure delivery (e.g., in Cloud
environment) may accelerate software delivery. They stated
that the Cloud, containers and microservices, dynamically
orchestrated (e.g., using technologies such as Kubernetes,
Openshift, etc.), enable an effective team structure so that
developers and operators use Infrastructure-as-a-Service as
its platform. Thus, this paper showed, through an experi-
ment, the importance of horizontal DevOps teams (either
platform teams or CoEs) by improving a set of indicators,
such as system response time. This study is complementary
to ours since we show the importance of platform teams
through a grounded theory study that involves real compa-
nies and later statistical analysis based on software delivery
performance.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

8 CONCLUSION

This paper presents a taxonomy for DevOps team structure
patterns. It reveals four team structures that companies have
been adopting, from the most emerging ones based on a
sporadic collaboration between Dev and Ops to the most
consolidated ones, in which silos were broken. They are
cross-functional and highly autonomous teams, and thus,
achieve better software delivery performance. This taxon-
omy is the result a Grounded Theory study that analyzed 31
multinational software-intensive companies. To improve the
research validity and reliability we used various strategies
(e.g., data triangulation, rich description, use of external
auditors, etc.) that mitigate the problems inherent to quali-
tative methods and reinforce our findings. This qualitative
analysis was subsequently supported and reinforced with a
statistical analysis.

Practitioners can use the presented taxonomy to evolve
the organizational structure of their company to one with
which to effectively implement DevOps, as well as to eval-
uate their current degree of maturity regarding DevOps.
Furthermore, SE researchers can use this work as a guide
or example for conducting qualitative research involving
Grounded Theory.

8.1 Lessons Learnt

Horizontal DevOps teams work closely with product teams.
We found that the more strong horizontal teams are, the
more services they can offer to the product teams, which
enables better software delivery performance as shown in
Section 5.1. Therefore, if an organization wants to move
forward with its DevOps adoption, it should start by creat-
ing a strong horizontal DevOps team (i.e., a DevOps Center
of Excellence), which provides an added value beyond the
service of the CI/CD platforms. For example, actions such
as evangelization, mentoring or the temporarily human re-
sources assignment, help product teams to acquire DevOps
practices and to establish the DevOps culture. This recom-
mendation is critical to address one of the main problems
that motivated companies to adopt DevOps, i.e., too much
time for releasing, as we analyzed in a previous research [3].

Furthermore, although it is not the objective of this
paper, we observed that some organizational patterns usu-
ally lead to some modern architectures, i.e., it seems that
organizational team patterns may impact on software ar-
chitecture. For example, in many cases the most mature
team patterns result in microservice architectures due to the
valuable support of a DevOps CoE. On the contrary, the
less mature patterns result in monolithic architectures, even
when a microservice approach would bring great benefits.
This insight is related to one of the main drivers of organi-
zations when adopting DevOps [3], i.e., the need to initiate
a transformation due to technological obsolescence or large
architectural, infrastructural and organizational changes.

Finally, we also observed that some patterns, such as
Interdepartmental Dev & Ops collaboration, which shows
less maturity in the DevOps adoption, may becomes a silver
bullet to accelerate value delivery in large companies. Some
large companies are not able to adopt a “pure” DevOps with
stable and cross-functional product teams because, although

results might be better, the cost would be unbearable. Deep-
ening in this issue, it is worth mentioning that although
some organizations carry out all their projects following
DevOps, most organizations take a bimodal approach and
they also use the traditional approach for certain projects
that do not need what DevOps offers (e.g., a decrease of
time-to-market, etc.). This is because to adopt DevOps is
costly and it is often smart to use DevOps for new ap-
plications that require frequent updates and maintain the
traditional approach for other projects.

8.2 Future Work

Although the team structure patterns impact on the soft-
ware delivery performance, as we shown in Section 5.1,
the performance is probably also affected by many other
factors, such as the tools for automating testing, CI/CD,
monitoring, and so on. As future work, we plan to study
how these factors impact on the performance of product
teams. Moreover, it would also be interesting to explore
DevOps adoption barriers, and more specifically, the prob-
lems or barriers associated with the adoption of each of the
organizational team patterns defined in this research.

Finally, we observed that many organizations are invest-
ing in technical debt reduction and this seems to have a
medium-term impact on the performance achieved. An in-
depth research of this issue could also be of interest.

ACKNOWLEDGMENTS

This research project is being performed thanks to Vass,
Clarive, Autentia, Ebury, Carrefour, Vilt, IBM, AtSistemas,
Entelgy, Analyticalways, Mango eBusiness, Adidas, Seur,
Zooplus, as well as other participating companies that pre-
fer to remain anonymous.

REFERENCES

[1] P. Debois, “Agile infrastructure and operations: How infra-gile are
you?” in Agile 2008 Conference, 2008, pp. 202–207.

[2] J. Allspaw and P. Hammond, “10+ deploys per day: Dev and ops
cooperation at flickr,” in Velocity: Web Performance and Operations
Conference, 2009.

[3] J. Diaz, D. López-Fernández, J. Perez, and Á. González-Prieto,
“Why are many business instilling a devops culture into their
organization?” To appear in Empirical Software Engineering. Preprint
arXiv:2005.10388, 2020.

[4] W. P. Luz, G. Pinto, and R. Bonifácio, “Adopting devops
in the real world: A theory, a model, and a case
study,” Journal of Systems and Software, vol. 157, p.
110384, 2019. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121219301517

[5] J. Smeds, K. Nybom, and I. Porres, “Devops: A definition and
perceived adoption impediments,” in Agile Processes in Software
Engineering and Extreme Programming, C. Lassenius, T. Dingsøyr,
and M. Paasivaara, Eds. Cham: Springer International Publishing,
2015, pp. 166–177.

[6] L. E. Lwakatare and M. Kuvaja, Pasiand Oivo, Relationship of
DevOps to Agile, Lean and Continuous Deployment. Cham: Springer
International Publishing, 2016, pp. 399–415. [Online]. Available:
https://doi.org/10.1007/978-3-319-49094-6{ }27

[7] M. Senapathi, J. Buchan, and H. Osman, “Devops capabilities,
practices, and challenges: Insights from a case study,” in
Proceedings of the 22nd International Conference on Evaluation and
Assessment in Software Engineering 2018, ser. EASE’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 57–67.
[Online]. Available: https://doi.org/10.1145/3210459.3210465

http://www.sciencedirect.com/science/article/pii/S0164121219301517
http://www.sciencedirect.com/science/article/pii/S0164121219301517
https://doi.org/10.1007/978-3-319-49094-6{_}27
https://doi.org/10.1145/3210459.3210465


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[8] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in
software engineering research: A critical review and guidelines,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 120–131. [Online]. Available:
https://doi.org/10.1145/2884781.2884833

[9] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, and J. E.
Hannay, Building Theories in Software Engineering. London:
Springer London, 2008, pp. 312–336. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5{ }12

[10] P. Ralph, “Toward methodological guidelines for process theories
and taxonomies in software engineering,” IEEE Transactions on
Software Engineering, vol. 45, no. 7, pp. 712–735, July 2019.

[11] B. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine de Gryter, New York,
1967.

[12] K. Charmaz, Constructing Grounded Theory. Sage 2nd Ed., 2014.
[13] J. Dı́az, R. Almaraz, J. Pérez, and J. Garbajosa, “DevOps in

practice,” in Proceedings of the 19th International Conference on Agile
Software Development Companion - XP '18. ACM Press, 2018.
[Online]. Available: https://doi.org/10.1145/3234152.3234199

[14] J. Dı́az, J. E. Perez, A. Yague, A. Villegas, and A. de Antona,
“Devops in practice – a preliminary analysis of two multina-
tional companies,” in Product-Focused Software Process Improvement,
X. Franch, T. Männistö, and S. Martı́nez-Fernández, Eds. Cham:
Springer International Publishing, 2019, pp. 323–330.

[15] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian,
Selecting Empirical Methods for Software Engineering Research.
London: Springer London, 2008, pp. 285–311. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5{ }11

[16] R. K. Yin., Case study research and applications - Design and Methods,
6ed. SAGE Publication, 2018.

[17] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software
engineers: Data collection techniques for software field studies,”
Empirical Software Engineering, vol. 10, pp. 311 – 341, 2005.

[18] D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering,” in 2011 international symposium
on empirical software engineering and measurement. IEEE, 2011, pp.
275–284.

[19] M. Shahin, M. Zahedi, M. A. Babar, and L. Zhu, “Adopting
continuous delivery and deployment: Impacts on team structures,
collaboration and responsibilities,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 384–393. [Online]. Available:
https://doi.org/10.1145/3084226.3084263

[20] M. Skelton and M. Pais, “Devops topologies,” accessed on Oct
2020. (2013). [Online]. Available: https://web.devopstopologies.
com/

[21] N. Salleh, R. Hoda, M. T. Su, T. Kanij, and J. Grundy, “Recruit-
ment, engagement and feedback in empirical software engineering
studies in industrial contexts,” Information and Software Technology,
vol. 98, pp. 161 – 172, 2018.

[22] S. Bick, K. Spohrer, R. Hoda, A. Scheerer, and A. Heinzl, “Coor-
dination challenges in large-scale software development: A case
study of planning misalignment in hybrid settings,” IEEE Transac-
tions on Software Engineering, vol. 44, no. 10, pp. 932–950, 2018.

[23] C. Halaweh, Mohanad; Fidler and S. McRobb, “Integrating the
grounded theory method and case study research methodology
within is research: A possible ’road map’,” in International
Conference on Information Systems, ser. 165, 2008. [Online].
Available: http://aisel.aisnet.org/icis2008/165

[24] J. Saldaña, in The Coding Manual for Qualitative Researchers. Sage
publications, 2012.

[25] C. B. Seaman, “Qualitative methods in empirical studies of
software engineering,” IEEE Transactions on Software Engineering,
vol. 25, no. 4, pp. 557–572, 1999.

[26] P. Ralph, ACM SIGSOFT Empirical Standards, 2020. [Online].
Available: https://arxiv.org/abs/2010.03525

[27] D. Research and Assessment, “Accelerate: State of devops 2018:
Strategies for a new economy,” https://devops-research.com,
2018, last accessed: 2020-01-01.

[28] ATLAS.ti Scientific Software Development GmbH, https://atlasti.
com/, 2019, last accessed: 2020-01-01.

[29] J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.

[30] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering. Springer
Publishing Company, Incorporated, 2012.

[31] A. Strauss and J. Corbin, Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. SAGE Publication, London, 1990.

[32] Y. Lincoln and E. Guba, Naturalistic inquiry. Beverly Hills, CA:
Sage, 1985.

[33] N. K. Denzin, The Research Act: A Theoretical Introduction to Socio-
logical Methods, 1970.

[34] J. Iden, B. Tessem, and T. Päivärinta, “Problems in the interplay
of development and it operations in system development projects:
A delphi study of norwegian it experts,” Information and Software
Technology, vol. 53, no. 4, pp. 394 – 406, 2011.

[35] K. Nybom, J. Smeds, and I. Porres, “On the impact of mixing re-
sponsibilities between devs and ops,” in Agile Processes, in Software
Engineering, and Extreme Programming, H. Sharp and T. Hall, Eds.
Cham: Springer International Publishing, 2016, pp. 131–143.

[36] F. Erich, C. Amrit, and M. Daneva, “A mapping study on coopera-
tion between information system development and operations,” in
Product-Focused Software Process Improvement, A. Jedlitschka, P. Ku-
vaja, M. Kuhrmann, T. Männistö, J. Münch, and M. Raatikainen,
Eds. Cham: Springer International Publishing, 2014, pp. 277–280.

[37] L. E. Lwakatare and M. Kuvaja, Pasiand Oivo, “An exploratory
study of devops - extending the dimensions of devops with
practices,” in Proc. The Eleventh International Conference on Software
Engineering Advances, 2016, pp. 91–99.

[38] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen,
and T. Männistö, “Devops adoption benefits and challenges in
practice: A case study,” in Product-Focused Software Process Improve-
ment, P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer,
S. Amasaki, and T. Mikkonen, Eds. Cham: Springer International
Publishing, 2016, pp. 590–597.

[39] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles,
“A survey of devops concepts and challenges,” ACM Comput.
Surv., vol. 52, no. 6, Nov. 2019. [Online]. Available: https:
//doi.org/10.1145/3359981

[40] L. Leite, F. Kon, G. Pinto, and P. Meirelles, “Platform teams: An
organizational structure for continuous delivery,” in Proceedings of
the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, ser. ICSEW’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 505–511. [Online]. Available:
https://doi.org/10.1145/3387940.3391455

[41] ——, “Building a theory of software teams organization in a
continuous delivery context,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Companion
Proceedings, ser. ICSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 296–297. [Online]. Available:
https://doi.org/10.1145/3377812.3390807

[42] K. Bahadori and T. Vardanega, “Devops meets dynamic orchestra-
tion,” in Software Engineering Aspects of Continuous Development and
New Paradigms of Software Production and Deployment, J.-M. Bruel,
M. Mazzara, and B. Meyer, Eds. Cham: Springer International
Publishing, 2019, pp. 142–154.

https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1007/978-1-84800-044-5{_}12
https://doi.org/10.1145/3234152.3234199
https://doi.org/10.1007/978-1-84800-044-5{_}11
https://doi.org/10.1145/3084226.3084263
https://web.devopstopologies.com/
https://web.devopstopologies.com/
http://aisel.aisnet.org/icis2008/165
https://arxiv.org/abs/2010.03525
https://devops-research.com
https://atlasti.com/
https://atlasti.com/
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3387940.3391455
https://doi.org/10.1145/3377812.3390807

	1 Introduction
	2 Research Methodology
	2.1 Data collection
	2.2 Data analysis
	2.3 Validity procedure

	3 A theory on DevOps Team Structures
	3.1 Categories and Concepts
	3.2 Category selection: key variables
	3.2.1 Product ownership sharing
	3.2.2 Leadership from management
	3.2.3 Organizational silos & Cultural silos
	3.2.4 Collaboration
	3.2.5 Autonomy

	3.3 Building a Theory

	4 A taxonomy of DevOps Team Structure Patterns (RQ1)
	4.1 Patterns description
	4.1.1 Pattern A: Interdepartmental Dev & Ops collaboration
	4.1.2 Pattern B: Interdepartmental Dev-Ops team
	4.1.3 Pattern C: Boosted cross-functional DevOps team
	4.1.4 Pattern D: Full cross-functional DevOps team

	4.2 The role of horizontal teams
	4.3 The four patterns in a nutshell

	5 Statistical Analysis
	5.1 Implications of patterns on software delivery performance (RQ2)
	5.1.1 Sample statistical description
	5.1.2 Correlation between patterns and performance
	5.1.3 Performance comparison

	5.2 Quantitative assessment of the taxonomy

	6 Threats to Validity and Reliability and Limitations
	6.1 Threats to qualitative validity
	6.2 Threats to qualitative reliability
	6.3 Limitations

	7 Related Work
	8 Conclusion
	8.1 Lessons Learnt
	8.2 Future Work

	References

