
Challenges and Common Solutions
in Smart Contract Development

Niclas Kannengießer , Sebastian Lins , Christian Sander, Klaus Winter ,

Hellmuth Frey, and Ali Sunyaev ,Member, IEEE

Abstract—Smart contracts are a promisingmeans of formalizing and reliably enforcing agreements between entities using distributed

ledger technology (DLT). Research has revealed that a significant number of smart contracts are subject to programming flaws, making

them vulnerable to attacks and leading to detrimental effects, such as asset loss. Researchers and developers call for a thorough analysis

of challenges to identify their causes and propose solutions. To respond to these calls, we conducted two literature reviews and diverse

expert interviews and synthesized scattered knowledge on challenges and solutions.We identified 29 challenges (e.g., code visibility, code

updateability, and encapsulation) and 60 solutions (e.g., gas limit specification, off-ledger computations, and shadowing). Moreover, we

developed 20 software design patterns (SDPs) in collaboration with smart contract developers. The SDPs help developers adjust their

programming habits and thus support them in their daily development practices. Our results provide actionable knowledge for smart

contract developers to overcome the identified challenges and offer support for comparing smart contract integration concepts across

three fundamentally different DLT protocols (i.e., Ethereum, EOSIO, andHyperledger Fabric). Moreover, we support developers in

becoming aware of peculiarities in smart contract development and the resulting benefits and drawbacks.

Index Terms—Blockchain, distributed ledger technology, decentralized applications (dapps), patterns, smart contracts, software

development

Ç

1 INTRODUCTION

SMART contracts are software programs that express logic
formalized in code for the reliable enforcement of business

agreements between defined entities (e.g., individuals, organi-
zations, or machines) [1]. An early form of smart contracts is
enabled by the primitive Script available for the Bitcoin block-
chain to define conditional asset transfers [2], [3], [4]. In 2015,
the Ethereum foundation went beyond Bitcoin Script’s primi-
tive capabilities by introducing the Ethereum Virtual Machine
(EVM), which enables the execution of Turing complete smart
contracts1 in high-level programming languages, such as

Obsidian, Solidity, or Vyper. Following the success of Ether-
eum, various DLT protocols (e.g., EOSIO or Hyperledger Fab-
ric) have focused on enabling smart contracts. Through (quasi)
Turing completeness, smart contracts have become more
expressive and better usable for manifold decentralized appli-
cations (DApps). However, the gain in expressiveness of smart
contract code comes with its downsides because it can increase
the complexity of smart contract code and favors the occur-
rence of programmingflaws.Moreover, developersmust antic-
ipate the special characteristics of smart contracts, such as the
public visibility of smart contract code [6], [7], the tamper resis-
tance of deployed smart contracts [8], [9], and access manage-
ment for the execution of smart contract functions [9], [10], [11].

Extant research has revealed that a significant number of
smart contracts deployed on the Ethereum blockchain are
subject to programming flaws [12], [13], [14] that make smart
contracts vulnerable to attacks. The criticality of flaws
became apparent in various incidents, such as theDAO hack
and the Parity Wallet hack. Each incident led to a loss of
USD $150 MM [15], [16]. Beyond Ethereum, it became clear
that smart contract development is also challenging for other
DLT protocols, including EOSIO (e.g., USD $58000 was sto-
len using faked EOS tokens [17]) and Hyperledger Fabric
(e.g., dealing with phantom reads [18]). Given the frequency
and severity of flaws in smart contract code, researchers and
developers call for a thorough analysis of the challenges
that lead to flaws in identifying their causes and propos-
ing corresponding solutions, ultimately improving devel-
opment practices.

To reduce the challenges of smart contract development
and improve the quality of smart contract code, prior research
has identified several challenges (e.g., [10], [19], [20], [21]) and
proposed corresponding solutions (e.g., [8], [10], [14]). These

� Niclas Kannengießer and Ali Sunyaev are with the Institute of Applied
Informatics and Formal Description Methods, Karlsruhe Institute of Tech-
nology, 76133 Karlsruhe, Germany, and also with KASTEL Security
Research Labs, 76131 Karlsruhe, Germany. E-mail: {niclas.kannengiesser,
sunyaev}@kit.edu.

� Sebastian Lins is with the Institute of Applied Informatics and Formal
Description Methods, Karlsruhe Institute of Technology, 76133 Karlsruhe,
Germany. E-mail: lins@kit.edu.

� Christian Sander, Klaus Winter, and Hellmuth Frey are with the EnBW
Energie Baden-W€urttemberg AG, 76131 Karlsruhe, Germany.
E-mail: {c.sander, k.winter, h.frey}@enbw.com.

Manuscript received 14 August 2020; revised 17 September 2021; accepted 18
September 2021. Date of publication 1 October 2021; date of current version 14
November 2022.
This work was funded by the EnBW Energie Baden-Württemberg AG,
Germany, and supported by the KASTEL Security Research Labs.
(Corresponding author: Niclas Kannengießer.)
Recommended for acceptance by D. Lo.
Digital Object Identifier no. 10.1109/TSE.2021.3116808

1. We are aware of the discussion on the potential Turing complete-
ness of Bitcoin’s Script [5]. Since this discussion has not been finished,
we align with the Bitcoin documentation [3] and find Bitcoin’s smart
contract capabilities not Turing-complete.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022 4291

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2880-3361
https://orcid.org/0000-0002-2880-3361
https://orcid.org/0000-0002-2880-3361
https://orcid.org/0000-0002-2880-3361
https://orcid.org/0000-0002-2880-3361
https://orcid.org/0000-0001-7480-275X
https://orcid.org/0000-0001-7480-275X
https://orcid.org/0000-0001-7480-275X
https://orcid.org/0000-0001-7480-275X
https://orcid.org/0000-0001-7480-275X
https://orcid.org/0000-0002-7940-1653
https://orcid.org/0000-0002-7940-1653
https://orcid.org/0000-0002-7940-1653
https://orcid.org/0000-0002-7940-1653
https://orcid.org/0000-0002-7940-1653
https://orcid.org/0000-0002-4353-8519
https://orcid.org/0000-0002-4353-8519
https://orcid.org/0000-0002-4353-8519
https://orcid.org/0000-0002-4353-8519
https://orcid.org/0000-0002-4353-8519
mailto:niclas.kannengiesser@kit.edu
mailto:sunyaev@kit.edu
mailto:lins@kit.edu
mailto:c.sander@enbw.com
mailto:k.winter@enbw.com
mailto:h.frey@enbw.com

solutions can be largely distinguished into automated verifica-
tion and coding support. For automated verification, research
presents software tools (e.g., MadMax [14] or ReGuard [22])
for automatically identifying flaws in smart contract code
(e.g., using static analysis [23], dynamic analysis [24], or
machine learning [25]) and increasing code quality. Never-
theless, the applicability of automated verification to smart
contract code is limited in terms of comprehensiveness
because most formal verification tools apply static patterns to
identify code flaws, and mostly applies to a single type of
DLT protocol, such as those using the EVM. Because of the
undecidability of several computational problems (e.g., the
halting problem), flaws such as infinite loops can often not be
proven beyond technical boundaries (e.g., limited memory
allocations).

While automated verification only applies to existing
code, coding support aims to sensitize developers to smart
contract challenges and corresponding solutions. To this
end, prior research has started tackling said challenges by
developing software design patterns (SDPs; e.g., [8], [9],
[26]). However, existing SDPs for smart contract develop-
ment focus on only a few DLT protocols (foremost Ether-
eum) and are scattered across various sources (e.g., scientific
papers [8], [9], [26], blogs [27], [28], and DLT-related docu-
mentation [29]), obfuscating the actual causes for existing
challenges. Details of the proposed SDP and related solu-
tions, such as the problem context, are often missing, which
hinders their practical applicability for developers in day-to-
day operations. It remains unclear which features of DLT
protocols cause what challenges for smart contract develop-
ment and how developers should effectively address these
challenges.

To sensitize developers to the peculiarities of and
resulting challenges in smart contract development for
different DLT protocols and to help improve smart con-
tract code quality, we ask the following research ques-
tions (RQ):
RQ1: What are the key challenges in smart contract development?
RQ2: How can developers tackle the identified challenges?

To answer these RQs, we applied a two-step research
method. First, we conducted two complementary litera-
ture reviews [29], [30] and diverse expert interviews to
synthesize scattered knowledge on challenges and corre-
sponding solutions concerning smart contract develop-
ment. In total, we identified 29 challenges, including code
visibility, concurrency, and data type complexity, and 60
corresponding solutions, including off-ledger computa-
tions, synchronization, and array replacement. We further
grouped these into three principal origins—platform, pro-
gramming language and execution environment, and coding
practice—according to the individual challenge’s causes.
Second, we iteratively derived and evaluated SDPs for
smart contract development based on a selected set of
identified challenges and solutions because the details of
proposed solutions in general and SDPs in particular are
often missing in extant research. We particularly applied
a thorough pattern generation approach and a strict
canonical structure for SDPs (e.g., [31], [32], [33]) to ease
the understanding and usage of patterns for smart con-
tract developers and overcome the limitations of prior
research regarding pattern applicability.

This work contributes to practice, as we present chal-
lenges developers frequently face when programming smart
contracts for Ethereum, EOSIO, and Hyperledger Fabric and
corresponding solutions. Moreover, we derived 20 SDPs in
collaboration with smart contract developers from solutions
that became best practices. These help developers address
frequent challenges in smart contract development and
avoid common flaws in smart contract code. By developing a
three-layered hierarchy of challenges that starts with three
principal origins for challenges, we support developers in
separately assessing possible drawbacks of DLT protocols
and offered programming languages and execution environ-
ments.We thereby help developers select and configure DLT
protocols under consideration of particular use-case require-
ments and their personal preferences. For example, develop-
ers can better assess which DLT protocol to combine
with which virtual machine as offered by upcoming middle-
ware, such as Neutron [34] for the Ethereum-based Qtum
framework.

We contribute to research by synthesizing scattered
knowledge on smart contract development challenges and
solutions across three major DLT protocols—Ethereum,
EOSIO, and Hyperledger Fabric. We highlight the implica-
tions of different design decisions for DLTprotocols for smart
contract development (e.g., regarding the characteristics of an
execution environment and corresponding programming
languages). Thereby, we support the understanding of the
interplay between DLT protocols and their smart contract
execution environments. By applying the canonical pattern
structure proposed in prior research [31], [32], [33], our SDPs
contain detailed descriptions of each challenge and its solu-
tion and a discussion on benefits and boundary conditions,
thereby extending prior research that briefly outlined poten-
tial solutions to overcome challenges.

This work is structured as follows. First, we introduce the
fundamentals of DLT, smart contract development, and
SDPs. Second, we briefly explain the applied methods for
identifying smart contract development challenges and cor-
responding solutions and how we derived the 20 SDPs.
Third, we present the derived challenges for smart contract
development and depict how the identified solutions and
our SDPs can overcome these challenges. Fourth, we discuss
this study and our findings in the context of related works
and describe our implications for research and practice. We
conclude with a summary of our principal findings and
describe the limitations of this work, as well as correspond-
ing starting points for future research. To make the devel-
oped SDPs easy to use, we made them accessible in our
public git repository.2

2 BACKGROUND

2.1 Distributed Ledger Technology

DLT enables multiple individuals or organizations to collec-
tively operate a digital platform in a decentralized manner.
This decentralized digital platform is based on a highly
available and tamper-resistant distributed database (i.e.,
distributed ledger), where various storage and computing
devices (i.e., nodes) maintain local copies of stored data

2. https://github.com/KITcii/smart-contract-dev-support

4292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

https://github.com/KITcii/smart-contract-dev-support

[35]. Nodes add data to their local ledger version in the form of
transactions. In blockchains, these transactions are batched
together in blocks. Transactions can contain digital representa-
tions of assets (e.g., coins) or the byte code of a smart contract
(e.g., in Ethereum). When a node receives a new transaction,
the node first validates the transaction [36]. Validated transac-
tions remain in the node’s local storage (i.e., mempool) until
the node verifies the transaction by appending it to its local
copy of the ledger. The order inwhich transactions are verified
is decided by each individual node, leading to a kind of con-
currency in transaction processing [37].

Distributed ledgers operate in untrustworthy environ-
ments characterized by the arbitrary occurrence of Byzan-
tine faults, comprising temporarily unreachable nodes,
crashed nodes, or malicious behavior of nodes (e.g., double-
spending of assets) [38], [39]. Byzantine faults and network
delays can cause nodes in a DLT network to store different
ledger versions and thus be in different states. Such incon-
sistencies in a distributed ledger can cause vulnerabilities in
DLT systems. For example, inconsistencies across nodes
cause network partitions that can make distributed ledgers
vulnerable to tampering [35], [39]. To resolve inconsisten-
cies between the versions of the ledger stored on different
nodes, consensus mechanisms are used.

Within DLT networks, nodes can have different per-
missions for appending new data to the ledger (i.e., write
permissions) [35]. In permissioned DLT protocols, only
specified nodes are permitted to participate in consensus
finding and commit new data to the distributed ledger.
In permissionless DLT systems, all nodes in the DLT net-
work can participate in consensus finding.

When interacting with a distributed ledger, entities
(i.e., individuals, organizations, or devices) have individual
digital identities with attributes, such as a unique pseudo-
nym as an identifier (e.g., an account address in Ethereum).
The pseudonym can be used to reference an account in
the distributed ledger, and entities can send and receive
transactions using the pseudonym.

2.2 Smart Contracts

Smart contacts offer reliable enforcement of agreements for-
malized in the program code between multiple parties.

Depending on the DLT protocol, different concepts have been
applied for the integration of smart contracts (see Table 1).
These differences often originate from design decisions, espe-
cially concerning the consensus mechanism. For example, the
Hyperledger Fabric protocol does not require deterministic
smart contract execution to favor consensus finding, but
applies Raft as a centralized consensus mechanism with only
crash-fault tolerance and no Byzantine fault tolerance. In con-
trast, the Ethereum protocol requires determinism in smart
contract execution to make the consensus mechanism more
secure, which can be decentralized and Byzantine fault-toler-
ant. In the following sections, we explain the concepts of how
smart contracts are integrated into three major open-source
DLT protocols supporting smart contracts: Ethereum, EOSIO,
andHyperledger Fabric.

Ethereum. The Ethereum protocol natively uses a proof-
of-work-based consensus mechanism and applies the con-
cept of a Greedy Heaviest Observed Sub-Tree (GHOST) to
resolve inconsistencies between nodes. Smart contracts are
independently executed by all nodes in Ethereum-based
DLT networks. Still, these nodes must eventually agree on a
consistent state requiring the deterministic execution of
smart contracts. To prevent nondeterministic smart contract
execution, the EVM encapsulates smart contracts, hindering
interaction with external information systems (i.e., oracles)
and the use of real randomness (e.g., for random number
generation).

Ethereum allows for the development of smart contract
code in several high-level programming languages, includ-
ing Solidity, Obsidian, or Vyper. After development, the
smart contract code must be compiled to bytecode (e.g.,
using solc compiler for Solidity or vyper compiler for Vyper)
and produce a corresponding application binary interface
(ABI) file to specify application programming interface
(API) for interactions with the smart contract. For deploy-
ment, the bytecode is included in the payload of a transac-
tion issued to the Ethereum network. After the bytecode has
been deployed, the smart contract is included in the block-
chain and stored in a tamper-resistant manner.

Each Ethereum smart contract has an individual account
with a unique address, similar to the externally owned
accounts used by entities external to the distributed ledger.

TABLE 1
Comparison Between Smart Contract Integration Concepts

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4293

Smart contracts can receive, store, and transfer assets and
interact with other accounts. The execution of a particular
smart contract function is triggered by a transaction sent to
the smart contract address with the signature of the target
function in the data field.

In Ethereum, each node maintains its own state s. Suc-
cessfully processed transactions cause a state transition
from st to stþ1 [37]. Although these nodes independently
execute smart contracts, all nodes in the DLT network must
eventually agree on a common state requiring the determin-
istic execution of smart contracts following a replicated state
machine model.

To counter denial of service in smart contract execution
(e.g., through infinite loops) and reward nodes for the pro-
vision of computational resources for the execution of smart
contract code, the Ethereum protocol applies a pricing
scheme. The pricing scheme uses the unit gas to measure
computational resource consumption associated with trans-
action processing. With each transaction, entities pass a
maximum amount of gas they are willing to spend (i.e., gas
limit) for the transaction processing (e.g., to execute a func-
tion or deploy a smart contract) and the corresponding
amount of Ether to pay per consumed unit of gas. If the exe-
cution exceeds the gas limit, the execution is aborted and
rolled back.

For function calls from one smart contract (A) to another
(B), Solidity offers three ways to invoke functions [40], [41]:
call, delegatecall, and staticcall. When using
call (e.g., in direct calls like ContractB.functionName

(. . .)), the target function provided by B is executed in a
separate context from caller contract A and can only access
its own variable values. When using delegatecall, the
target function is executed in the context of the caller con-
tract and can also change variable values of the caller con-
tract. staticcall can be used to call a smart contract but
disallows any state changes during its execution. Attempts
to make state modifications result in an exception, and no
modifications are made.

EOSIO.Blockchains that build on the EOSIOprotocol (e.g.,
the EOS blockchain) natively use a consensus mechanism
consisting of two components: Delegated Proof-of-Stake
(DPoS) to elect block producers and asynchronous Byzantine
fault tolerance (aBFT) to finalize blocks [42]. The EOSIO con-
sensus mechanism requires all nodes to agree on the same
state of the main chain. Thus, EOSIO imposes a deterministic
execution of actions to favor consensus finding [43].

EOSIO smart contracts are programmed in Cþþ and are
compiled into WebAssembly (WASM) formatted bytecode
using the eosio-cpp compiler. The compilation process also
produces an ABI file to derive the smart contract API for
interactions. For deployment, a smart contract bytecode
is put into a transaction that is sent to call the eosio.sys-
tem contract. Executable bytecodes of current EOSIO
smart contracts are hosted in the random-access memory
(RAM) of nodes. The blockchain records all transactions
and events on the disks of nodes in the DLT network
[44], [45].

In EOSIO, each account is identified by a unique name
with a length of one to twelve characters [46]. Each smart
contract has a unique account and exhibits actions invoked
by accounts. Actions are invoked through action instances,

defining the target account, the name of the action to be exe-
cuted, a list of authorizations to prove permissions for
action execution, and action data (e.g., function arguments).
Action instances are included in transactions and are exe-
cuted by validating nodes in sequential order.

Upon transaction receival, nodes check whether the
authorizations included in action instances fulfill the per-
missions defined for the smart contract actions to be called.
Permissions are linked to an authority table where the indi-
vidual permissions for the execution of actions are defined
by the respective smart contract owners [46]. If the permis-
sion check fails for at least one account in an action instance,
the entire transaction processing is aborted and no smart
contract action is executed. Otherwise, the node invokes the
actions defined in the action instances [47].

Before executing the called actions, the nodeos daemon
running on each node makes a local snapshot of the state
history and loads the WASM bytecode of the smart contract
into the EOS Virtual Machine (EOSVM) for execution [43].
During the execution of actions, EOSIO smart contracts can
invoke other contract actions by using inline actions [48],
[49]. Inline actions synchronously execute an action in the
context of the original transaction. If an action execution is
aborted, all changes made in the transaction context are
rolled back using the snapshot.

Analogous to Ethereum, EOSIO applies a mechanism to
prevent infinite loops. Developers can define a maximum
number of instructions or use a watchdog timer with a max-
imum runtime for the sequential execution of actions in a
transaction [43]. If one of the defined thresholds is exceeded,
the execution of actions in the transaction is aborted, and all
changes are rolled back.

Hyperledger Fabric. Hyperledger Fabric is used to set up
permissioned blockchains, with Raft as the recommended
consensus mechanism [50]. Unlike Ethereum and EOSIO,
Hyperledger Fabric does not use a native cryptocurrency
and was designed for business use cases where known indi-
viduals and organizations form a consortium that operates
and uses the blockchain.

To keep data confidential within consortia, Hyperledger
Fabric allows for setting up channels on top of the con-
sortium’s infrastructure. Channels are private subnetworks
between specific consortium members that use granular
access control based on their identities [51]. Consortium
members that are part of a channel (i.e., channel members)
operate a blockchain and a world-state database on their
peer nodes isolated from other channels. The blockchain
records all transactions and determines the world state,
storing current values related to defined business objects.
Within channels, peer nodes enforce endorsement policies
for transactions, and ordering nodes execute the consensus
mechanism and commit transactions to the blockchain.
Data stored on the blockchain are only visible to members
of the corresponding channel [51].

In Hyperledger Fabric, there are chaincodes that can
include multiple smart contracts [52]. To make smart con-
tracts available to applications [53], developers manually
install chaincodes on peer nodes in the channel that are
specified in the policy to endorse transactions. Smart con-
tracts contain the actual transaction logic, which can be
expressed in Go, Java, or Node.js [52].

4294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

To call a smart contract function, an entity sends a trans-
action proposal via its software client to peer nodes hosting
the chaincode. The transaction proposal includes the chain-
code identifier and input parameters for the function call.
Before function execution, the peer nodes check whether
the transaction proposal matches the required format and
whether the issuer is authorized to call the smart contract
according to the chaincode endorsement policy [54]. If the
transaction proposal succeeds in these checks, the corre-
sponding peer node executes the smart contract function.
Otherwise, the transaction is marked invalid. Valid and
invalid transactions are stored on the blockchain, but only
valid transactions can update the world state database.
After the smart contract function is executed, the smart con-
tract produces a new transaction (i.e., transaction response)
that includes updates on the world state. The peer nodes
send their transaction responses to the client. The client
compares the transaction responses to check whether the
smart contract execution fulfills the endorsement policy
defined for the chaincode. For example, if the endorsement
policy requires two of three peer nodes to have an equal
outcome upon transaction execution, the client compares
the transaction responses from the three peer nodes for con-
sistency. If at least two peer nodes calculate an equal output,
the client creates a new transaction, including the transac-
tion proposal, the transaction response, and the digital sig-
natures of the peers. The client sends the new transaction to
the channel’s ordering nodes to be committed to the block-
chain [53].

Unlike Ethereum and EOSIO, Hyperledger Fabric does
not strictly bind smart contract execution to resources (e.g.,
by gas in Ethereum or time in EOSIO). Instead developers
can define a maximum execution time per chaincode (i.e.,
ExecuteTimeout).

Blockchains based on Hyperledger Fabric do not strictly
require determinism in the execution of smart contracts.
Inconsistent results from smart contract execution are fil-
tered out to avoid contradictions in consensus findings after
endorsing peer nodes have executed the smart contract. Fol-
lowing the order-execute-validate approach in Hyperledger
Fabric instead of the execute-order approach applied in
Ethereum and EOSIO, only consistent results will be for-
warded to ordering nodes to be committed to the block-
chain after consensus finding [55].

2.3 Software Design Patterns

A pattern is an abstraction from a concrete design that keeps
recurring in specific nonarbitrary contexts [31], [56], [57]. Pat-
terns usually refer to the architecture or structure of several
parts in a superordinate system. They comprise a general
description of a recurring problem and an associated solu-
tion with defined objectives and constraints. SDPs form a
special class of patterns that describe objects and classes and
their communication and customization to solve a general
software design problem in a particular context [56]. SDPs
can be further distinguished into three abstraction levels
[31]: architectural patterns, design patterns, and idioms.Architec-
tural patterns describe “[. . .] a fundamental structural organi-
zation or scheme for software systems and provide a set of
predefined subsystems, specify their responsibilities, and
include rules and guidelines for organizing the relationships

between them” [31, p. 12]. Design patterns provide “[. . .] a
scheme for refining the subsystems or components of a soft-
ware system, or the relationships between them” [31, p. 13]
to solve a general design problem within a certain context.
Idioms are patterns on the lowest level of abstraction and
“describe how to implement particular aspects of compo-
nents or the relationships between them using the features of
the given language” [31, p. 14].

3 METHODS

To answer our research questions, we applied a two-step
research approach. First, we conducted extensive literature
reviews and expert interviews following established meth-
odological guidelines [30], [58], [59] to identify challenges
and solutions in smart contract development. Second, we
iteratively derived and evaluated SDPs for smart contract
development based on identified challenges and solutions,
while considering extant research, grey literature, and
practitioners’ knowledge.

3.1 Identifying and Synthesizing Smart Contract
Challenges and Solutions

Weapplied amixed-method approach to identify and synthe-
size preliminary challenges and corresponding solutions in
smart contract development, comprising different types of
descriptive literature reviews [60] augmented by expert inter-
views.We performed four iterations of data gathering accom-
panied by iterative data analyses to achieve theoretical
saturation. Table 2 summarizes the objectives, applied meth-
ods, and outcomes of each iteration. In the following sections,
we briefly summarize each iteration. Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2021.3116808, pro-
vides detailed information on each iteration to enhance
method transparency and reproducibility.

3.1.1 First Iteration: Snowballing Literature Review

To generate an initial set of smart contract challenges and
solutions as a foundation for our study, we conducted a lit-
erature search utilizing the snowballing approach proposed
by Wohlin [58]. Snowballing starts with a core set of rele-
vant documents and then uses these to identify further rele-
vant documents in a specific domain through multiple
iterations of forward- and backward-snowballing.

We first applied the search string “Smart Contract�” AND
(“Challeng�” OR “Vulnerabilit�”) to Google Scholar, as sug-
gested by Wohlin [58], yielding 879 documents as of July 4,
2019. We analyzed documents’ meta-information (i.e., title,
abstract, etc.), read potentially relevant documents, and
applied inclusion and exclusion criteria (see Table 3) to
identify the documents relevant to answer our research
question. This relevancy check led to a set of ten starting
documents on which we then conducted three rounds of
backward and forward searching [58], resulting in 21 docu-
ments, including grey literature.

For the literature analysis, we applied thematic analysis
[30] to identify themes for challenges and related solutions
apparent in smart contract development. During this the-
matic analysis, we performed multiple rounds of data-
driven coding. Afterward, we compared our codes and the

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4295

respective text segments to form overarching themes [30].
We were able to identify 18 candidate themes, including
event order and exception handling. We revised these themes by
applying Patton’s [61] dual criteria of internal homogeneity
(i.e., data within themes should cohere together meaning-
fully) and external heterogeneity (i.e., there should be clear
and identifiable distinctions between themes), leading to
seven themes as a result.

3.1.2 Second Iteration: Focus Group Interview

We decided to conduct a second iteration for two reasons.
First, we wanted to validate our literature findings because
qualitative coding techniques bear the risk of interpretation
and other biases. Second, we strove to incorporate knowl-
edge from experts in the field to extend and enrich our
themes. We, therefore, conducted a focus group interview
[59] in July 2019 using a convenience sample of five DLT
experts (see Table 4). Three researchers participated in and
moderated theworkshop.

We conducted the focus group interview based on an inter-
view guide [62] comprising a brainstorming phase about

potential challenges in smart contract development, a discus-
sion about potential solutions, and specific questions to vali-
date and gather additional data surrounding the seven
themes identified in the first iteration. The interview lasted six
hours andwas recorded and then transcribed.We applied sci-
entific coding techniques to analyze the interview data, espe-
cially selective (i.e., assigning prior themes to interview data),
open (i.e., labeling new challenges and solutions discussed in
the interviews), and axial coding (i.e., identifying the causes
and consequences of each challenge) [63]. We identified one
new challenge theme—code discoverability—and a correspond-
ing solution, refined existing themes by enriching their cause and
consequence descriptions, identified minor inconsistencies, and
resolved these accordingly. For example, we unified the levels of
abstraction of the solutions.

3.1.3 Third Iteration: Database Literature Review

We decided to return to scientific literature in the next itera-
tion for two reasons. First, new documents may have been
published since our first literature search. Second, we might
have overlooked relevant documents given our snowballing
research approach. We, therefore, performed a descriptive
literature review [60] in scientific databases, trying to
achieve theoretical saturation.

To cover a broad set of documents, we applied the search
string (“smart contract�” OR “chaincode�”) AND (“challenge�”
OR “pattern�” OR ”issue�” OR “develop�” OR “programming�”)
in the title, abstract, or keywords (TAK) of prominent

TABLE 2
Summary of Iterations to Identify and Synthesize Smart Contract Challenges and Solutions

TABLE 3
Inclusion and Exclusion Criteria for Literature Searches

in Iteration 1 and Iteration 3

TABLE 4
Verview of Interviewees’ Demographics

4296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

databases, including ACM Digital Library, AISel, EBSCO-
Host, IEEEXplore, Proquest, ScienceDirect, and Web of Sci-
ence. Our search yielded a total of 1774 potentially relevant
documents as of November 6, 2020.We once again performed
a comprehensive relevancy check by applying the same inclu-
sion and exclusion criteria fromour first iteration (see Table 3),
resulting in 86 novel relevant documents.

We again applied thematic analysis [30] to refine our
existing themes and identify novel ones for challenges and
solutions, comprising two rounds of data-driven coding,
constant comparison of coded challenges and solutions to
identify subthemes, and frequent theme refinement. This
analysis process resulted in 13 themes, including code effi-
ciency, confidentiality, and determinism. To further group
these themes, we compared their different origins and
strived to identify a core set of common ones. Our compara-
tive analysis revealed three principal challenge origins that
can make smart contracts prone to programming flaws (see
Table 5): platform, programming language and execution envi-
ronment, and coding practice.

Compared to our first snowballing literature research, we
were not only able to identify six novel high-level themes,
but also to refine and enrich existing themes, and create a
hierarchy of themes raging from text segments and initial
labels for challenges and solutions up to aggregated chal-
lenge themes that were assigned to principal challenge
origins.

3.1.4 Fourth Iteration: Expert Interviews

While we already gathered rich information on various chal-
lenges and were able to identify solutions for many of them,
we decided to conduct a fourth iteration due to two reasons.
First, we strove to validate our literature review findings
with further knowledge from DLT experts. Second, most of
the literature focuses on Ethereum, and the EVM and Solid-
ity, respectively. Hence, we were eager to reflect the applica-
bility of our findings to other DLT protocols. We particularly
focused on EOSIO and Hyperledger Fabric in addition to
Ethereum because these DLT protocols are frequently used
in organizational contexts and allow for insights into three
distinct smart contract integration concepts.

In the fourth iteration, we conducted nine semi-structured
interviews [59] with DLT experts (see Table 4).We again pre-
pared a guide [62] to structure the interviews. In particular,
we askedwhether the identified challenges and solutions are
relevant and applicable to other ledgers. All interviews were
performed via video conference tools between December

2020 and February 2021 and were recorded with the permis-
sion of the participants. The average interview time was
63 minutes. The researcher who carried out the interviews
took notes on each challenge and solution discussedwith the
interview partners during the interviews.

After each interview, we analyzed our notes and com-
pared them to our intermediate findings from the third iter-
ation. We enriched our theme descriptions, renamed
themes and challenges suggested by the interviewees,
added novel challenges and solutions, and added ledger-
specifics to each challenge and solution description. The
analyses results confirmed the three principal challenge ori-
gins and led to refinements of the associated sub-themes.
More importantly, we were able to identify novel challenges
and solutions by comparing challenges and solutions across
ledgers and by considering ledger specifics. For example,
we identified the challenge of nondeterministic behavior that
only applies to smart contracts developed in Go. By finish-
ing the fourth iteration, we identified 29 challenges and 60
solutions.

To ensure that we identified a reliable set of challenges
and solutions, we followed researchers stressing that an
important goal is to reach theoretical saturation in qualita-
tive research [64], [65], [66]. Theoretical saturation is often
taken to indicate that further data collection or analysis is
unnecessary based on the data analyzed hitherto because it
is unlikely that further data collection will generate new
findings [67], [68].

We first looked at our literature review protocols, discov-
ering that our literature analysis did not reveal new
challenges or solutions since the last twelve analyzed docu-
ments. Similarly, we asked our interviewees during our
fourth iteration if they knew of any further challenges or sol-
utions that had not been discussed so far during the inter-
views. We sent our manuscript to the interviewees after
finishing the writing to ask them once more if they had any
challenge or solution to add. In both cases, the interviewees
agreed that they were not aware of further challenges
and solutions to the best of their knowledge. Consequently,
we are confident that we have reached at least a sufficient
degree of theoretical saturation after completing our fourth
iteration.

3.2 Generating and Evaluating Software Design
Patterns

3.2.1 Generation of SDP

By performing multiple iterations of data gathering and
analysis, we were able to identify 29 challenges and 60 solu-
tions. However, details of proposed solutions in general
and SDPs in particular are often missing, such as the prob-
lem context and resulting context, which have been
requested by existing research (e.g., [31], [32], [33]). This
lack of information hinders practical applicability by devel-
opers in day-to-day operations and hampers the adjustment
of their programming habits. To counteract these issues, we
next transferred the identified solutions into SDPs as action-
able means.

Selection of Solutions as a Base for SDPs. Given the high
quantity and diversity of solutions, we first selected a set of
solutions as a base for developing SDPs. On the one hand,
we derived an SDP for a solution if (1) an SDP had been

TABLE 5
Principal Origins That Can Cause Challenges in Smart

Contract Development

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4297

proposed by prior research; (2) a problem kept recurring in
specific nonarbitrary contexts; (3) sufficient information was
available to describe the SDP in detail (e.g., information
gained from interviewees or studies); or (4) interviewees
called for the development of SDPs and stressed their rele-
vance and potential contribution. On the other hand, we par-
ticularly refrained from developing SDPs for a solution if
they were (1) trivial (e.g., solution S.10.1 Read the Documenta-
tions); (2) only applicable on a limited scale (e.g., challenge
C.13 Non-deterministic Behavior applies to smart contracts
developed in Go only); or (3) on a very low abstraction
degree that prevents generalization (e.g., solution S.21.1 rec-
ommending the usage of data type bytes over byte[]).
After applying these selection criteria, we decided to develop
20 SDPs related to various challenges and solutions.

SDP Generation. To generate SDPs, we followed existing
research providing common pattern structures [31], [32],
[33], comprising a name, context, problem, forces, solution,
examples, resulting context, rationale, related patterns, and
known uses of a pattern. For each pattern, we carefully speci-
fied each structural dimension based on extant research,
interview findings, our own experiences, and prototypical
instantiations, as outlined below.

First, for each SDP we defined a meaningful name [33]. If
it was suitable, we aligned the naming of the derived smart
contract SDPwith the naming of common SDPs in traditional
software engineering (e.g., Façade Pattern or Proxy Pattern). In
the results section, we refer to these names but cite the origi-
nal documents in whichwe found a similar solution.We also
adapted our SDP names based on the feedback gained
throughout the interviews to increase their comprehensibil-
ity and align our wording with the terms used in the soft-
ware engineering community. For example, we renamed the
Register Contract Pattern [9] theObserver Pattern.

We next elaborated on the context that suggests SDPs’
applicability and in which a problem and its solution recur
[33]. For each SDP, we discussed to which challenges and
solutions the pattern relates. For example, we mapped the
Checks-Effects-Interactions Pattern with challenge C.15 Cross-
Account Interactions and solution S.15.4 Instruction Order
because the pattern can prevent reentrancy attacks. This
mapping helped us to ground our SDP descriptions on
extant research and interviewees’ opinions. In addition, we
discussed the applicability of the pattern to Ethereum,
EOSIO, and Hyperledger Fabric.

We then defined a problem that described the objectives to
be achieved within the contexts by applying the SDP [33].
While typical pattern objectives relate to the mitigation of
risks, such as those associated with the removal or deactiva-
tion of smart contractswith theDeactivation Pattern, we partic-
ularly considered problem specifics, such as pre-conditions
and boundary conditions. We also reflected on whether the
problemmay appear in eachDLT protocol because they differ
in their smart contract integration concepts (see Table 1). For
example, problems leading to challenge C.21 Data Type Com-
plexity only relate to smart contracts based on Ethereum and
EOSIO because they bind smart contract execution to resour-
ces (e.g., gas in Ethereumor time in EOSIO).

Afterward, we specified forces that reveal the details of a
problem and define the kinds of trade-offs that must be con-
sidered in the presence of the tension or dissonance they

create [33], [69]. Forces commonly relate to the characteris-
tics of an application, such as maintainability or response
time. For example, the Token Pattern improves maintainabil-
ity but comes at the cost of code efficiency as the number of
required interactions increases. When describing the forces
and constraints and how they interact, we considered the
objectives to be achieved when using the SDP. Analyzing
potential forces also supported us in comparing different
solutions and their appropriateness for use in the pattern.

Next, we focused on describing a solution that includes
relationships and rules to realize the desired outcome [33].
To define an appropriate solution (i.e., fulfilling the SDPs’
objectives while considering the forces), we went back to
the data gathered through identifying and synthesizing
challenges and solutions and compared proposed solutions
for a given challenge. For example, prior research proposes
using the Oracle Pattern whenever external data or real-
world data is required by a smart contract [70], [71]. We syn-
thesized information about oracles to come up with a solu-
tion for our SDP. We also coped with opposing views and
research findings. For example, prior research provides dif-
ferent means to tackle the challenge C.4 Randomness,
whereas some of these means have been later proven to
expose flaws (e.g., dependence on blockchain properties to
generate random numbers, such as block hash values). If
needed, we implemented solutions and tested them to
ensure their correctness and to better describe their inner
functioning.

To increase the understandability and applicability, we
added an example to each SDP [33]. The example shows a
possible implementation of the solution. We took examples
from extant research, GitHub and related smart contract
repositories, interviewees’ suggestions, and developed and
tested our own examples. To further support developers,
we also provided antipattern examples to emphasize what
typically goes wrong in smart contract development.

As the next step, we defined the resulting context that
describes the system state after applying a pattern [33]. For
explaining the resulting context, we reflected on benefits
(e.g., problems solved) and drawbacks (e.g., further chal-
lenges caused by the pattern utilization).

To substantiate the solution, we provided a rationale con-
cerned with justifying how and why the solution resolves its
forces to align with the desired objectives and why it is suit-
able [33]. Since we built our SDPs on justificatory knowl-
edge from extant research and practitioners’ expertise, we
aimed to summarize the assumptions of why the SDP works
as a solution.

Since patterns often share common forces and compati-
ble initial or resulting contexts, we defined related patterns
[33]. Related “patterns might be predecessor patterns whose
application leads to this pattern; successor patterns whose
application follows from this pattern; alternative patterns
that describe a different solution to the same problem but
under different forces and constraints; and codependent
SDPs that may (or must) be applied simultaneously with
this pattern” [33, p. 6]. Highlighting relations between pat-
terns supports developers in selecting alternative solutions
to a problem. For example, the Mutex Pattern can be used as
an alternative to the Checks-Effects-Interactions Pattern to pro-
tect smart contracts from reentrancy attacks.

4298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

To show that the SDP is an approved solution for a prob-
lem, we finally listed the known uses of an SDP in existing
systems [33]. We searched smart contract databases (e.g.,
etherscan.io), developer repositories (e.g., GitHub), websites
(e.g., Ethereum Name Service), and whitepapers and foun-
dation blogs (e.g., Ethereum foundation blog) to identify
known uses of SDPs.

By applying this canonical structure to SDPs, we want to
ease the understanding and usage of patterns for smart con-
tract developers and overcome issues regarding pattern
applicability in prior research.

3.2.2 Software Design Pattern Evaluation

Whereas we built the SDPs on the data and findings from
identifying and synthesizing challenges and solutions, we
aimed to evaluate them to ensure correctness, comprehensi-
bility, and practical applicability.

SDP Quality Criteria Derivation. To evaluate our SDPs, we
first defined a set of quality criteria. Therefore, we con-
ducted a scoping literature review to identify quality crite-
ria for SDPs to consider in the evaluation (see Appendix B,
available in the online supplemental material). We particu-
larly focused on the most cited scientific works on software
design patterns in the English language. Eventually, we
identified 12 particularly relevant documents on quality cri-
teria for software design patterns (e.g., [72], [73], [74], [75]).
To synthesize quality criteria across these documents, two
researchers read the relevant documents and independently
analyzed their content following the open coding approach
[63]. In total, the analysis revealed 23 criteria for the evalua-
tion of the SDPs. Based on the identified quality criteria, we
created five groups to which we assigned the quality crite-
ria: flexibility, outcome, pattern design, perception, and utiliza-
tion. Flexibility refers to the range of applicability of an SDP.
Outcome is about the results when a software design is
applied. The structure of an SDP is discussed in the group
pattern design. Perception considers the characteristics of
users’ perceptions of an SDP. Utilization refers to the appli-
cability of an SDP. Among the identified quality criteria, we
found a subset of 12 criteria suitable for our evaluation.

Evaluation Interviews. To evaluate the SDPs, we con-
ducted a focus group workshop with four smart contract
developers. First, we wrote a handout that included the 12
suitable quality criteria and the 20 SDPs, which should be
discussed considering these 12 quality criteria. For the eval-
uation, we organized two events: an introductory event and
a focus group interview. In the introductory event, we dis-
cussed the handout with the four smart contract developers
to familiarize them with the SDPs and let them share their
initial thoughts. The developers had an average experience
in developing smart contracts of 4.5 years. During the fol-
lowing week, the four smart contract developers individu-
ally familiarized themselves with the SDPs and took notes
in their handouts. The participants sent us their notes on the
SDPs before the second event to consolidate their feedback.
Based on the participants’ feedback, we developed an inter-
view guide for the semi-structured focus group workshop,
as recommended in prior works [76], [77]. Next, we carried
out a focus group workshop with three of the four smart
contract developers. We discussed each SDP in detail

during the workshop, elaborated on the feedback, and
jointly improved the SDPs. We recorded the focus group
workshop, subsequently transcribed the recordings, and
analyzed the transcriptions by extracting improvements for
the SDPs. We refined the SDPs accordingly and sent the
revised SDPs to the fourth participant of the introductory
event for an additional interview. We revised the SDPs
again and sent the revised version to all four participants to
gather additional comments. This final round of feedback
comprised only minor issues, such as wording and descrip-
tion improvements.

4 SMART CONTRACT DEVELOPMENT

We identified three principal challenge origins in smart con-
tract development that can make smart contracts prone to
programming flaws (see Table 5): platform, programming lan-
guage and execution environment, and coding practice. Associ-
ated with the principal challenge origins, we revealed 11
sub-themes (e.g., confidentiality challenges and interopera-
bility challenges), including 29 specific challenges and 60
corresponding solutions (see Table 6), including 20 SDPs. In
the following, we describe the three principal challenge ori-
gins and their subordinate 11 challenge themes. For each
challenge theme, we describe the identified challenges (C)
and discuss the corresponding solutions (S). If not men-
tioned, the identified solutions apply to blockchains based
on Ethereum, EOSIO, and Hyperledger Fabric. If an SDP
relates to a solution, we also briefly describe the SDP. For
the complete description of the SDPs, please refer to
Appendix C, D, and E, available in the online supplemental
material, or our GitHub repository.2

4.1 Challenges Caused By the Platform

The principal challenge of the origin platform refers to the
protocol put in place to manage the interactions between
nodes and to define the procedures for the issuance, verifi-
cation, and storage of transactions.

4.1.1 Confidentiality Challenges

Challenges related to confidentiality can decrease the degree
to which data is protected from unauthorized access.

(C.1) Code Visibility: The protection of deployed smart con-
tract code from being visible to entities with access to the distrib-
uted ledger.

In DLT protocols, where multiple nodes execute smart
contract code (e.g., Ethereum-based and EOSIO-based
blockchains), smart contract logic is usually exposed to all
entities operating these nodes. The visibility of code to these
entities is particularly challenging for companies that have
smart contract logic at the core of their business processes
and must keep this sensitive logic confidential. In addition,
visibility of tamper-resistant code facilitates the identifica-
tion of vulnerabilities and their exploitation. Challenges
related to code confidentiality preservation apply to block-
chains based on Ethereum or EOSIO. In Hyperledger Fabric,
only nodes that must endorse transactions store the respec-
tive chaincode. Nonetheless the following solutions also
apply to blockchains based on Hyperledger Fabric.

(S.1.1) Off-Ledger Computations: A solution to protect
smart contract logic from being visible to all entities with

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4299

access to the distributed ledger represents the deployment
and execution of logic external to the distributed ledger (i.e.,
off-ledger) using an oracle (see Oracle Pattern) [70], [71].
Upon the invocation of a smart contract function, the smart
contract can initiate a call to a service provided by the ora-
cle. Before the called service invokes the callback function
of the smart contract, the oracle must convert its response to
a compatible data type. Otherwise, it can lead to asset loss.
For example, Ethereum does not support decimal data
types. Thus, oracles provide integer values to the smart con-
tract to avoid truncation errors (see C.26 Appropriate Data
Type Use). The integration of oracles into smart contracts is
especially challenging for DLT protocols that encapsulate
smart contract execution, for example, Ethereum-based and

EOSIO-based blockchains (see C.16 Encapsulation in Sec-
tion 4.2.3). Using Hyperledger Fabric, oracles are accessible
directly from chaincode.

(C.2) Data Visibility: The protection of transaction data stored
on a distributed ledger from being visible without authorization.

In addition to smart contract bytecode, other transaction
data (e.g., number of transferred assets) are commonly
visible to entities that operate nodes. The broad visibility
of data can violate data confidentiality. However visibil-
ity of data representing verifiable proofs for the happen-
ings of events is important for the secure functioning of
DLT systems. Protection of data visibility is challenging
on blockchains based on Ethereum, EOSIO, and Hyper-
ledger Fabric.

TABLE 6
Overview of Identified Challenges, Corresponding Solutions, and Software Design Patterns in Smart Contract Development

4300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

(S.2.1) Data Encryption:A solution to protecting data from
unauthorized reads is to encrypt the data prior to its sub-
mission to a DLT network [78], [79]. However, not all trans-
action data can be encrypted in transactions but only the
payload data or even only parts of the payload data—for
example, if the transaction is to invoke a smart contract.

(S.2.2) Commitment Pattern: To keep data secret for a par-
ticular time while binding an entity to that data (e.g., bind-
ing an entity to their bid value in a bet), the Commitment
Pattern can be used [9]. The Commitment Pattern comprises a
commitment phase and a reveal phase. In the commitment
phase, each entity first individually specifies data (e.g., a
result in a lottery) and a random nonce, concatenates these
two values, and sends the hash values of the concatenated
value and the nonce to a smart contract. The smart contract
stores the hash values of the concatenation and the nonce in
a tamper-resistant way. In the reveal phase, the entities
send the plain values of the data and nonce to the smart
contract. The smart contract checks whether the plain data
and nonce match the corresponding hash values stored in
the commit phase. If the check succeeds, the contract is exe-
cuted and the plain values are visible to any other entity
with access to the distributed ledger.

(S.2.3) Off-Ledger Data Storage:Another solution to control
data visibility is to store the data off-ledger using oracles
(see Oracle Pattern). Sensitive data are managed by the ora-
cle and are not stored in the distributed ledger. Smart con-
tracts can request information related to data from the
services offered by the oracle. On oracles, data confidential-
ity can be improved by using trusted execution environ-
ments (e.g., Intel SGX in Town Crier [80]). Although
keeping data off-ledger is most effective for protecting data
confidentiality, the use of oracles in smart contracts of dis-
tributed ledgers with strong requirements for determinism

(e.g., EOS and Ethereum) can be challenging because of the
typically encapsulated smart contract execution environ-
ment. Moreover, oracles can represent a cause of nondeter-
minism when providing different data to smart contracts.

(S.2.4) Multi-Ledger Network: To keep data confidentially
stored in a distributed ledger, multiple private blockchains
can be operated on the same infrastructure. For this pur-
pose, Hyperledger Fabric offers to set up channels between
specified consortium members. Only channel members can
interact with the corresponding blockchain. However, inter-
actions between smart contracts of different channels are
hardly possible in Hyperledger Fabric [52], thus, can exhibit
a hurdle for applications. Ethereum and EOSIO do not offer
channels like Hyperledger Fabric.

(S.2.5) Front-Running Prevention: Transaction payload vis-
ibility can cause vulnerabilities to front-running in Ether-
eum [81]. In front-running, a transaction T1 is sent; an
adversary reads T1, creates a concurrent transaction T2, and
sends T2 with the goal that T2 executes the smart contract
before T1 to realize a particular benefit. Countering front-
running is highly specific to smart contract logic [82]. Still,
there are different ways to mitigate front-running. First,
developers should minimize the profitability of front-run-
ning. Second, a pre-commitment scheme similar to the Com-
mitment Pattern can be used, where entities first announce
the use of a functionality before calling it [82].

(S.2.6) Private Data Collections: To keep data secret while
allowing nodes in a channel to see that a transaction hap-
pened, Hyperledger Fabric offers private data collections
[83], [84]. Only a defined subset of nodes in a channel can
endorse, commit, or query the data of private collections. Pri-
vate data are stored in a separate and private state database
on authorized peers. The state database can be accessed via
chaincode. Transactions involving private data store the

TABLE 6 (Continued)

X: Challenge and solution apply to DLT protocol HLF: Hyperledger Fabric

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4301

hash value of the used data on the blockchain so that nodes
can check if a state betweenmembers exists.

(C.3) Pseudonymity: The hurdles related to the verification of
identity attributes of real-world entities.

Pseudonymity can cause challenges related to account-
ability and liability because the actual entities remain
unknown [7]. Pseudonyms are hard to associate with corre-
sponding real-world entities, especially in public instances
of EOSIO-based or Ethereum-based blockchains. In Hyper-
ledger Fabric, the membership service enables the identifi-
cation of entities associated with pseudonyms [85].

(S.3.1) Identity Service: To manage entities’ digital identi-
ties and their associated pseudonyms, prior research has
proposed implementations for decentralized identity man-
agement (e.g., [86], [87], [88]). In these implementations, an
identity publishes personal information about itself in a
decentralized identifier (DID) document and stores the hash
value of the DID document on a distributed ledger so that
the integrity of the DID document is provable. Real entities
can confirm or deny the information contained in the DID
document by issuing transactions with verifiable claims
that reference the associated DID. Verifiable claims consist
of an assertion to express an affirmation or denial of the
information in the DID document and an attestation to
make the claim verifiable. The more verifiable claims that
exist per DID document, the likelier it is that the informa-
tion contained is accurate [86], [88].

4.1.2 Determinism Challenges

Challenges related to determinism hinder nodes in a DLT
network from computing consistent results by following the
same protocol.

(C.4) Randomness: The difficulties of using secure random val-
ues in smart contracts.

Random value generation is challenging in blockchains
based on Ethereum, EOSIO, and Hyperledger Fabric due to
two main causes. First, nodes in DLT networks indepen-
dently execute smart contracts in a distributed manner.
Nonetheless, all nodes must generate equal random values
to preserve determinism [21], [89]. In blockchains based on
Hyperledger Fabric, the generation of equal random num-
bers can be relevant to fulfilling the individual endorsement
policy [90], [91]. In blockchains based on Ethereum and
EOSIO that use an order-execute architecture, nondetermin-
ism may cause a consensus to be unreachable [55]. Second,
high entropy (i.e., unpredictability and bias-resistance)
regarding random value generation is fundamental to
achieving a high level of security but challenging to achieve.
Environmental variables (e.g., nodes’ local timestamps and
block hash values; see Fig. 1) should not be used for random
value generation because they are predictable or biasable by
nodes [89], [92], [93]. Seeds cannot be stored in smart con-
tracts deployed to EOSIO-based or Ethereum-based block-
chains because they cannot be kept secret (see C.1 Data
Visibility). Reaching high entropy in random value genera-
tion is also challenging in Hyperledger Fabric.

(S.4.1) Centralized Randomness Generator: To enable ran-
domness in distributed systems while achieving determin-
ism, developers can use oracles (e.g., [94], [95]) like beacons
[92], [96] (i.e., services that emit new random data called bea-
con records at a regular rate) or other distributed ledgers

[92]. Beacons (e.g., the NIST beacon service) offer a simple
way to integrate random number generation into smart con-
tracts, using theOracle Pattern for implementation. Nonethe-
less, beacons can centralize DLT applications and can be
prone to manipulation. Moreover, values of beacons that
periodically change the delivered random values can be
reused by multiple smart contracts, and can be exploited by
adversaries that first retrieve the random value and use it in
an attack until the next random value is generated [97].

(S.4.2) Decentralized Randomness Generator: For decentral-
ized randomness generation, the Commitment Pattern can be
used. In the commit phase, multiple entities send hash values
h(se) of secretly generated randomvalues s to the Randomness
Contract. The Randomness Contract stores h(se) of authorized
entities e 2 E, whereE is the set of entities registeredwith the
Randomness Contract. In the reveal phase, the entities submit
the preimage s to the Randomness Contract. To generate a
random number, the Randomness Contract can calculate the
XOR result of all submitted preimages as a random value [98].
This approach can be modified by requiring each entity to
send coordinates of a point in a 2D-matrix instead of random
numbers. Then, the Randomness Contract calculates the poly-
nomial f(x) from all coordinates using barycentric Lagrange
interpolation. The Y-axis value in f(x) represents the random
number [99]. The decentralized randomness solution avoids
single points of failure but requires each entity to interact
with the Randomness Contract two times. Thus, the decen-
tralized randomness solution increases the cost and time
required for random value generation. Moreover, the last
entity sending the plain value can already predict the random
number, which can cause vulnerabilities.

To the best of our knowledge, there are still no estab-
lished best practices for randomness generation in Ether-
eum-based and EOSIO-based blockchains. When choosing a
solution, developers should estimate the cost (e.g., compu-
tational resources) of predicting or biasing the outcome of
random number generation, and in parallel consider the
gains to an attacker.

(C.5) Transaction-Ordering Dependence: The dependence of
smart contract logic on the processing order of transactions.

Fig. 1. Insecure examples of implementation for random number genera-
tion on a distributed ledger. Both examples allow us to predict and bias
random number generation. Do not use these examples in your produc-
tive smart contracts.

4302 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

In blockchains based on Ethereum, EOSIO, and Hyper-
ledger Fabric, transactions have counters per address so that
all transactions issued by an account are processed in a
defined order. Transactions issued by multiple accounts can
be imagined as concurrent processes [37], making smart con-
tracts vulnerable when relying on a particular transaction
order. This class of vulnerabilities is caused by transaction
order dependence [7], [100], [101]. Since nodes individually
determine the order in which transactions from different
accounts are processed, the state in which a smart contract is
executed by a particular transaction is unpredictable [102].
Moreover, transaction-ordering dependence favors success-
ful replay attacks (see S.27.2 Protection from Replay Attacks).
This challenge also applies to Hyperledger Fabric [50], [103].

(S.5.1) Target-State Definition: To counter transaction-
ordering vulnerabilities, linearizability and synchronization
need to be ensured to guarantee that either the invocation of
a function fails or terminates successfully [104]. In accor-
dance with the finite state machine model, function calls can
be represented as state transitions. To allow for state transi-
tions only in an intended order, the Event-Ordering Pattern
recommends implementing checks that only allow for the
execution of functions from specified states [102]. In the
Event-Ordering Pattern, transactions sent to a smart contract
carry a nonce that represents the state in which the contract
should be executed. Functions of the target smart contract
are guarded by checks that deny function execution if the
nonce carried in the transaction does not match the current
nonce stored in the contract. After each successful function
execution, the nonce is changed by the smart contract.

4.1.3 Maintainability Challenges

Maintainability challenges deteriorate the ease with which
deployed smart contract code can be updated, for example, to
add functionality, correct flaws, or improve code efficiency.

(C.6) Code Discoverability: The difficulty of finding smart con-
tracts deployed on a distributed ledger.

Since the deployment of code often costs resources (e.g.,
gas in Ethereum), it is reasonable to use existing contracts
or libraries. However, it is not easy to discover them in
blockchains, where smart contract addresses are hard to
read and not intuitive (e.g., because they are represented as
hexadecimals). EOSIO overcomes this challenge by offering
entities the ability to define custom names for their account.
In Hyperledger Fabric, all organizations that execute a
smart contract on their nodes must manually deploy these
contracts and thus are aware of the contract names and
where to discover the smart contract code.

(S.6.1) Name Service: While EOSIO offers the definition of
custom account names associated with a smart contract
[11], the addresses of Ethereum accounts are represented by
hexadecimals, which are not intuitive for humans to read
and recall. To easily look up smart contracts, the use of con-
cise names instead of smart contract addresses is promising.
This solution is not necessary in Hyperledger Fabric
because all entities know all the IDs of the required smart
contracts.

To use names instead of smart contract addresses, a Reg-
istry Contract can be put in between smart contracts to han-
dle their interactions (see Name-Service Pattern) [26]. Smart
contracts can be registered at the Registry Contract, which

assigns a unique, user-defined name to a smart contract
address or function. Thereby, the address of the latest smart
contract version can be looked up.

(C.7) Code Updatability: The limitations in changing code of
deployed smart contracts.

After smart contract bytecode is deployed to Ethereum-
based blockchains, tamper resistance of the blockchain
decreases maintainability of the deployed contracts for adap-
tive, corrective, perfective, and preventive maintenance [105].
If the smart contract code is to be updated, the deprecated ver-
sion should be deactivated (e.g., using selfdestruct(. . .)
in Ethereum smart contracts or the Deactivation Pattern), and
the current contract version should be deployed. To favor
maintainability of tamper-resistant code, developers should
strictly apply a separation of concerns and the implementa-
tion of mechanisms that ease maintenance (see Façade Pattern
and Proxy Pattern). Challenges and solutions that relate to
code updateability apply to Ethereum-based blockchains.
Smart contracts deployed to blockchains based on EOSIO or
Hyperledger Fabric are not stored in a tamper-resistant man-
ner and can be updated after deployment.

(S.7.1) Separation of Concerns: To improve code updatabil-
ity, smart contracts can be modularized to decouple the
application logic from data. In this notion, the Token Pattern
separates data (i.e., tokens, balances, and their associated
account mapping) stored in a Token Contract from the
application logic in a Logic Contract. While the Token Con-
tract provides data about an account’s balances without
depending on the application using the tokens [106], [107],
the Logic Contract serves as an entry point for interactions
with the Token Contract. The Logic Contract can be easily
replaced with another version.

(S.7.2) Observation of Addresses: If multiple smart contracts
interact with one smart contracts (e.g., a Token Contract),
developers can implement an Observer Contract (see
Observer Pattern) [108]. Caller Contracts call Target Con-
tracts. The Caller Contracts register with the Observer Con-
tract and subscribe to address updates of Target Contracts.
A developer informs the Observer Contract about an update
of a Target Contract by sending the Target Contract’s new
address to the Observer Contract. The Observer Contract
notifies all Caller Contracts about the new Target Contract
address, and the Caller Contracts update the new address
accordingly. This SDP promises increased efficiency in
updating multiple smart contracts. However, it might
become costly (e.g., in terms of gas) when many Caller Con-
tracts are called to update the Target Contract address. Since
this cost must be taken by the developer initiating the
update, this approach is suitable for updating smart con-
tracts that are part of a project.

(S.7.3) Static Entry Point: An alternative and less costly
approach is to implement a Proxy Contract with a static
address that points to the latest version of a target smart
contract and has a similar interface to the target smart con-
tract (see Proxy Pattern) [9], [107]. All function calls are
made to the Proxy Contract, which forwards the calls to the
corresponding function of the target smart contract. If the
Target Contract’s address changes after an update, only the
Proxy Contract must be updated.

To update the address of imported libraries in deployed
smart contracts, the use of proxy libraries has been

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4303

proposed as a workaround [109], which follows a similar
concept as the Proxy Pattern. When implementing proxy
libraries, a regular smart contract is used as a dispatcher to
communicate with target libraries. The individual addresses
of the libraries can be updated in a storage contract called
by the dispatcher. Smart contracts that use a library make a
delegatecall to the dispatcher contracts, which calls the
respective libraries in another delegatecall.

(S.7.4) Static Entry Point with Additional Logic: To allow for
a rigorous separation of concerns by using different smart
contracts while keeping the interaction with the separate
contracts simple, the Façade Pattern can be used [9]. In the
Façade Pattern, a Façade Contract serves as a unified inter-
face that manages the interaction with multiple smart con-
tracts. The Façade Contract has functions implemented that
facilitate calls to a sequence of external smart contract func-
tions of different smart contracts and handles errors. Thus,
the Façade Contract can manage the execution of different
modules of an application logic implemented in separate
smart contracts. All smart contract addresses registered
with the Façade Contract are updatable independently.

Although these mechanisms offer different ways to make
smart contracts maintainable, it is important to consider
that the tamper resistance of smart contracts is a unique
DLT characteristic and an anchor of trust into reliable
enforcement of agreements, which should not be mitigated
by exhaustive maintainability of smart contracts.

4.1.4 Regulated Executability Challenges

Challenges concerning regulated executability impact the
mechanisms put in place to control the execution of smart
contract code.

(C.8) Execution Restriction: The undesired executability of
smart contract functions by entities that can interact with the dis-
tributed ledger.

In several distributed ledgers (e.g., Ethereum and EOS),
smart contracts are exposed to all nodes in a DLT network.
Thus, contracts can become subject to undesired function
calls. For example, undesired function calls to the selfde-

struct(address a) function in Ethereum smart contracts
are of particular criticality, as seen in the Parity hack [13],
[110]. After selfdestruct(address a) is executed, all
balances kept by the smart contract account are transferred
to a. Then, the smart contract is locked and cannot be exe-
cuted anymore.

(S.8.1) Visibility Declaration: Developers should carefully
declare whether functions should be callable by identities in
the respective DLT system (e.g., using external in Solid-
ity [111]) or only by the smart contract itself or in its execu-
tion context (e.g., declaring a function’s visibility private

in Solidity) [112], [113].
(S.8.2) Identity-based Authorization: To prevent unautho-

rized execution of smart contract functions, functions can be
guarded by authorization checks that ensure that only speci-
fied accounts can execute functions in the intended context
[9], [102], [106]. Therefore, function execution can be
restricted to specific accounts [106], [108]. Despite different
implementations for account-based authorization, these
approaches follow a similar structure: when a function is
called, the identity is authenticated, and its permission for
the function execution is checked for authorization (see

Guarding Pattern). In EOSIO, entities manage permissions via
authorization tables. In authorization tables, the eosio.

code permission is of particular importance because all enti-
ties whose accounts have the eosio.code permission can
transfer assets from that account [11]. In Ethereum smart
contracts, developers should use msg.sender to identify
the account that issued the original transaction for a function
call, especially when smart contracts make external calls
[89]. In EOSIO, identity-based authorization per function is
at the core of the DLT protocol, and developers must use the
authority table that corresponds to their smart contracts to
specify permissions of accounts [46]. In Hyperledger Fabric,
identity-based authorization is largely managed via the defi-
nition of endorsing peer nodes in the chaincode.

(S.8.3) State-based Authorization: Functions can be pro-
tected by ensuring that accounts can only execute functions
in a particular state using the Event-Ordering Pattern [9],
[102], [106]. In the Event-Ordering Pattern, a state variable s
is defined and initialized with a nonce. The value of s indi-
cates a particular state of the smart contract and is changed
after each successful function call associated with the state
transition of the smart contract. To successfully execute a
function, the transaction invoking the function must pass
the current value of s as an argument. Otherwise, the func-
tion invocation is denied.

(S.8.4) Provisional Authorization: Function execution can
be restricted to entities knowing a certain secret (e.g., secret
preimage of a hash [108]). For provisional authorization,
hash values can be stored in a smart contract. For function
invocations, entities must pass the preimage of a stored
hash value to the smart contract. If the hash value of the pre-
image included in the transaction matches the stored hash
value required for authorization, the function call proceeds.
Otherwise, the call is denied. Each hash value must only be
used for a single authorization because the preimages in the
transactions are publicly visible. Nonetheless, this solution
is prone to front running and needs additional protection
[82]. For example, accounts can be associated with individ-
ual hash values, and hash values can only be used for
authorization when the transaction is sent from the associ-
ated accounts.

(S.8.5) Time-based Authorization: Function execution can be
restricted to time intervals (i.e., speed bump [8] or automatic
depreciation [9]) to prevent a rush of transactions. Whenever
a target smart contract receives a transaction, it first checks
whether the timestamp of the transaction issuance is within
the period that allows the execution of a smart contract func-
tion. Otherwise, the smart contract denies the call. When
using this solution, developers should be aware of the degree
to which nodes’ local timestamps can bemanipulated.

(S.8.6) Smart Contract Deactivation: In Ethereum, smart
contracts can be disabled using selfdestruct(. . .) or
deactivated (see Deactivation Pattern). If a smart contract is
disabled, all asset transfers to the contract’s account will get
lost [114]. Instead of disabling a contract, developers can
deactivate the contract by changing the value of an internal
state variable. After the value is changed to deactivated, all
incoming requests will be reverted. Thereby, no assets will
get lost in regular asset transfer to a deactivated smart con-
tract account, but the contract is still not usable any-
more [114]. Regular means that assets are not transferred in

4304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

the context of executing selfdestruct(. . .) in the caller
Ethereum smart contracts.

(C.9) Resource Management: The limitations regarding the
execution of smart contract functions caused by the corresponding
allocation and revocation of computational resources by control
mechanisms put in place.

The mechanisms to guarantee the termination of smart
contracts mostly limit smart contract execution by a specific
resource, such as gas in Ethereum or execution time in
EOSIO. After the resource is consumed, the execution is
aborted. The abortion of function execution can cause denial
of service, for example, in unbounded mass operations.
Unbounded mass operations can occur, for example, when
entities can add new addresses to the balanceList array
in the Ethereum smart contract illustrated in Fig. 2.
Addresses kept in the balanceList array are used for
payouts initiated by calling the payout() function. While
looping through the balanceList array, the execution
may run out of gas or exceed the block gas limit in Ether-
eum-based blockchains. Accordingly, the transaction is
reverted, and the address kept in the balanceList array
will receive payments leading to denial of service [14], [20],
[115]. Challenges related to resource management apply to
Ethereum-based and EOSIO-based blockchains [14], [44],
[116], [117]. In Ethereum, unlike Solidity, Vyper defines
an upper bound on gas consumption per function call
to prevent DoS from operations on unbounded data
structures [115].

(S.9.1) Pull-over-Push: To counter challenges caused by
unbounded mass operations on EOSIO-based and Ether-
eum-based blockchains, developers can use pull mecha-
nisms (see Pull Pattern). Pull mechanisms require every
entity to call the smart contract themselves, for example to
receive payments via payout(). This way, the account the
transaction has been issued from only pays gas for their
own payouts. Although the Pull Pattern is especially pro-
posed for payments, it also applies to other unbounded
data operations [14]. However, pull payments can decrease
the utility of DLT applications because each account must
individually invoke the smart contract.

(S.9.2) Continuable Loop: If loops over unbounded arrays
cannot be avoided, developers should keep track of the
progress inside the loop. This allows the loop to continue in
the next call at the last entry before the iterations have been
aborted [14]. To make the execution of a loop continuable,

an index referencing the last successful iteration can be
used (see Indexed-Loop Pattern). When resuming the loop, it
continues at the entry after the last successful iteration.

4.2 Challenges Caused By the Programming
Language & Execution Environment

Challenges related to an offered programming language
and execution environment for smart contracts refer to the
limitations and shortcomings of the technical conditions
offered to develop and execute smart contracts.

4.2.1 Language Definition Completeness Challenges

Challenges pertaining to language definition completeness
relate to the incomplete coverage of the formal model in the
definition of a programming language and the resulting
undefined behaviors of smart contracts.

(C.10) Undefined Behavior: The shortcomings in the specifica-
tion of the behavior of a programming language.

Undefined behavior of a smart contract occurs when a
language’s definition of particular operations is ambiguous
or non-existent, and the smart contract relies on these under-
specified operations, altering its actual semantic intent at
compile time [118]. In Solidity, for example, the order in
which expressions are evaluated in the same statement is not
specified [111].

(S.10.1) Read the Documentations: Undefined behavior can
have individual effects on smart contract execution depend-
ing on the specific implementation. Developers should be
aware of ambiguous or missing language definitions to
avoid unexpected program flow.

4.2.2 Theoretical Expressiveness Challenges

Challenges related to theoretical expressiveness are con-
cerned with the lack of functional capabilities offered by a
programming language or its execution environment.

(C.11) Arithmetic Operations: The limitations and vulnerabil-
ities related to using arithmetic operations.

Arithmetic operations can lead to truncation errors or
undefined behavior that can result in asset loss. Truncation
errors can occur in Solidity, for example, when dividing
numeric values because Solidity only supports integer val-
ues. Challenges related to arithmetic operations apply pri-
marily to Solidity and the EVM, which do not natively
support floating-point data types [43]. EOSIO uses softfloat
from the IEEE-754 float-point arithmetic [43] supporting
deterministic rounding behavior. In Hyperledger Fabric,
arithmetic operations offered by supported programming
languages can be used because nondeterministic behavior is
filtered by applying endorsement policies.

(S.11.1) Fixed-Point Arithmetic: Developers can use fixed-
point arithmetic to avoid truncation errors to a certain
extant [119], [120]. To express a fixed-point number, devel-
opers must specify a fixed number of digits after the deci-
mal point. When using this solution, developers must
consider interactions with the smart contract with other con-
tracts or oracles and convert numeric values according to
the individual specifications. As an alternative to Solidity,
Vyper supports decimal fixed point numbers [121]. None-
theless, fixed-point arithmetic can be prone to truncation
errors when not handled appropriately.

Fig. 2. Example of an unbounded data structure in Solidity that may run
into an infinite loop because of an integer overflow.

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4305

(C.12) Concurrency: The protection from nondeterministic
behavior caused by code that is executed with time overlaps.

In addition to the concurrency between transactions of
different accounts regarding their processing order (see C5
Transaction-Ordering Dependence), concurrency can occur
during the execution of smart contracts causing nondeter-
minism. Concurrency is a challenge in Hyperledger Fabric
smart contracts that are programmed in Go [7]. Go is
designed for parallel execution and supports concurrent
execution using goroutines, which are functions that run
concurrently with other functions. Concurrency is not a
challenge in EOSIO-based and Ethereum-based blockchains
using the EOSVM or the EVM.

(S.12.1) Synchronization: To avoid nondeterministic
behavior in smart contracts programmed in Go, developers
can synchronize the execution of goroutines within their
contracts [122]. For synchronization, Go offers the package
sync, including WaitGroup, for low-level library use
[123]. Using WaitGroup, Go code waits for a collection of
Go subroutines to finish before continuing with subsequent
computations [122].

(C.13) Non-Deterministic Behavior: The use of operations
offered by a programming language that return arbitrary results.

Several general-purpose programming languages behave
nondeterministically for the execution of particular func-
tions [7], [124]. This behavior contradicts the requirements
for determinism of most DLT protocols (see Table 1). This
challenge applies to smart contracts developed in Go, which
is currently only offered for Hyperledger Fabric smart con-
tracts. For example, in Go’s type collections, range iterations
over maps return values in random order, which challenges
deterministic smart contract execution [124].

(S.13.1) Cautious Use of Range Iterations: Developers
should avoid using nondeterministic constructs if their use
can affect deterministic function execution.

4.2.3 Usability Challenges

Challenges related to usability are concerned with the hur-
dles faced by developers when using a programming
language.

(C.14) Conformity to Expectations: The mismatch between
developer expectations of how their program should be executed
and its actual execution.

Solidity offers the declaration of different integer types
(e.g., uint8, uint32, or uint256) that resemble those in
the programming language C, which can lead novice devel-
opers to assume that an uint8would allocate 8 bits in mem-
ory, while an uint128 would allocate 128 bits. However,
the EVM uses a simple (key, value) storage, where each
value consumes 256 bits. Variables declared as uint8 even
consume more gas than uint256 variables because of addi-
tional operations performed to downscale uint8 variables
from uint256. Thus, integer types of Solidity are not
entirely consistent with the EVM [118], [125], which may
lead to code defects or underestimated costs. Another exam-
ple of weak typing in Solidity is the instantiation of smart
contracts within a contract. If a smart contract SCcaller refers
to an instantiation of another smart contract SCcallee using
SCcallee’s address, it is not checkedwhether the smart contract
instance stored on the particular address complies with the
type declaration of SCcallee. Moreover, data type conversions

of variables storing a very large uint value to int or varia-
bles storing a negative int value to uint can cause unex-
pected results because Solidity uses two’s complement to
represent int [118], [126]. The following solutions should
also be considered for blockchains based on EOSIO:

(S.14.1) Data Type Selection: To resolve discrepancies
related to the conformity of programming languages to their
execution environment, we advise smart contract develop-
ers to carefully read the documentation of the programming
language and the targeted execution environment to decide
on the data types to be used. In Solidity, developers should
gauge whether the benefits of using unsigned integers other
than uint256 exceed the costs caused by increased gas
consumption.

(S.14.2) Data Type Conversions: When using type conver-
sion from a larger data type (e.g., uint256) to a smaller
one (e.g., uint8), developers should first thoroughly
test their code to ensure that conversions do not decrease
accuracy.

(C.15) Cross-Account Interactions: The protection from unde-
sired outcomes of calls from one account to another.

In Ethereum, there are three types of issues that can
be caused by cross-account interactions (also called
external calls) [21], [22]: first, unavailable smart contract;
second, function not found; and third, unintended function
call. In unavailable smart contract, the target smart contract
does not exist or has been destroyed. The EVM does not
throw an error if a transaction’s recipient does not exist.
In EOSIO, cleos generates an error message if an action
does not comply with the definitions of the functions or
the smart contract name. In Hyperledger Fabric, clients
are notified through an error message if a target smart
contract could not be found. In function not found, the
interface of the smart contract or library does not match
the signature of the function to be called through the
transaction. In this case, the target smart contract func-
tion cannot be found. If the function cannot be found,
the smart contract’s fallback function3 is invoked, which
can implement arbitrary procedures. In Solidity, no
exception is thrown if a function is not found and the
caller is likely to be unaware of the error [21]. If an
entity issues a transaction to a non-existing EOSIO
account or calls a function that is not implemented in
the target contract, an HTTP 404 error is returned, and
the transaction is rolled back. The Hyperledger Fabric
protocol first checks whether the target function exists in
the smart contract before trying to execute the function.
Calls to functions that do not exist in the smart contract
trigger an unknown transaction handler [127]. In unin-
tended function calls, a recipient of funds unintentionally
invokes a function (e.g., from its constructor or fallback
function). For example, when a smart contract transfers
an asset to a recipient smart contract, the recipient smart
contract may have a procedure implemented (e.g., in its
fallback function), which is executed upon receiving the
assets. This procedure calls for a function in the original

3. In Solidity, each smart contract can implement a fallback function,
which is called when the function signature does not match any func-
tion in the smart contract. If no fallback function is given in these situa-
tions, the EVM throws an exception.

4306 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

contract. Such a sequence of function calls is called reen-
trancy. Challenges caused by cross-account interactions
apply to smart contracts developed for Ethereum-based
blockchains. Smart contracts for blockchains based on
EOSIO and Hyperledger Fabric are not prone to vulner-
abilities caused by unavailable smart contracts or calls to
non-existing functions. Moreover, the processing of
instructions in smart contracts on blockchains based on
EOSIO or Hyperledger Fabric prevents reentrancy.

(S.15.1) Contract Availability Check: To check whether a
smart contract is available (i.e., existing and not destroyed),
smart contracts of Ethereum-based blockchains can load
code associated with a target address into a bytes variable
using Solidity Assembly (see External-Call Pattern) [128]. If
the length of the value stored in the bytes variable is larger
than zero, the address is associated with a callable smart
contract. However, it cannot be uniformly checked whether
the smart contract complies with an expected data type. In
EOSIO since the Dawn 4.0 update, the availability of an
account is automatically checked in the eosio.token con-
tract [129].

(S.15.2) Gas Limit Specification: In Solidity, there are three
ways to transfer native assets (e.g., Ether) from a smart
contract:

(1) <recipientAddr>.send(_amount)
(2) <recipientAddr>.transfer(_amount)
(3) <recipientAddr>.call{value: _amount}(““)

When using (1) or (2), a fixed amount of exactly
2300 gas is forwarded to the recipient, which should pro-
tect smart contracts from reentrancy (as of March
2021) [20]. If an out-of-gas exception is thrown in asset
transfers, (1) only returns false and errors must be
handled manually. In contrast, (2) further propagates the
exception and automatically reverts the callchains of the
failed transactions, which is similar to require

(<address>.send(. . .)). Since the Istanbul hard fork,
it is known that gas costs for instructions are not con-
stant and (1) and (2) may fail in the future. To counter
failed asset transfers in the future due to increased gas
costs, developers should use (3), which forwards all
available gas to the recipient contract [130]. However,
using (3) can make a smart contract vulnerable to reen-
trancy, which is why developers must also implement
mechanisms to protect the contracts from corresponding
attacks (see S.16.4 Protection from Reentrancy). If the exe-
cution of the target contract runs out of gas when using
(3), the function returns false and error handling must
be manually performed similar to (1). Vyper offers send

(recipientAddr, _amount to transfer assets, which works
similar to (1) [115] and, thus, is prone to failed transac-
tions caused by volatile gas costs.

(S.15.3) Check Return Values: In favor of proper error han-
dling, the Error-Handling Pattern recommends that develop-
ers implement return values in all functions so that their
successful execution can be determined [10], [131]. This rec-
ommendation is especially important for Ethereum smart
contracts. Checks of return values are automatically added
for calls in Vyper so that failed calls are automatically
reverted [115].

(S.15.4) Instruction Order: We identified four types of
reentrancy attacks caused by external calls by Ethereum
smart contracts [12], [22], [132]: fallback reentrancy, cross-func-
tion reentrancy, delegated reentrancy, and create-based reen-
trancy. In fallback reentrancy, a smart contract transfers assets
to another contract. After receiving the assets, the recipient
contract calls the function in the original contract that trans-
ferred the assets again from its payable or fallback function.
In cross-function reentrancy, a smart contract function is
invoked and reentered through another function, while the
smart contract is still in an inconsistent state. Attackers can
perform cross-function reentrancy if a smart contract
includes functions that read from or write to the same varia-
bles [132], [133]. Delegated reentrancy occurs when a smart
contract imports a library and state updates are not synchro-
nized appropriately [132], [133]. Create-based reentrancy can
occur if a smart contract A invokes the constructor of
another contract B before updating its state. During the exe-
cution of B’s constructor, B can call a function in A, causing
reentrancy [132].

The Checks-Effects-Interactions Pattern defines an execution
order for instructions in a smart contract function. First, it is
necessary to check if the context is valid to execute the func-
tion. Second, all changes are to be applied to the values of rel-
evant variables. Third, the function execution can proceed.
Following this execution order, malicious smart contracts
cannot reenter the same function again in the previous state
[9], [132].

(S.15.5) Execution Locking: As an alternative to the Checks-
Effects-Interactions Pattern, the Mutex Pattern can be used to
protect smart contracts from reentrancy attacks. In theMutex
Pattern, parts of a smart contract are locked using a mutex
variable when the execution of logic to be protected starts.
After the particular logic is executed, the code is unlocked
again using the mutex variable [8], [102]. If an attacker per-
forms a reentrancy attack within the scope of the execution of
protected logic, the execution of the reentrancy call is aborted
when passing the check of the locked mutex variable. Devel-
opers can apply checks for the mutex variable to every func-
tion of the smart contract [102]. However, the Mutex Pattern
can become very complex when trying to prevent reentrancy
across multiple function calls and can become prone to pro-
gramming flaws that, for example, allow attackers to lock a
smart contract for an arbitrary time or even forever [82]. In
Vyper, the @nonreentrant(<unique_key>) decorator
corresponds to the Mutex Pattern and can be used to protect
functions from reentrancy [134].

(C.16) Encapsulation: The limitations of smart contracts in
interacting with data and information systems external to the exe-
cution environment.

To request external data (e.g., sensor data) or move the
execution of computation to oracles [70], [71], [107], smart
contracts must interact with oracles. Because of the require-
ment for determinism in blockchains building on Ethereum
and EOSIO (see Table 1), these DLT systems encapsulate
smart contract execution in virtual machines (i.e., the
EOSVM and EVM) that prevent direct calls to oracles [43].
In Hyperledger Fabric, direct interaction from smart con-
tracts with oracles is supported [135]. Nonetheless, the fol-
lowing solutions also apply to Hyperledger Fabric when
gauging how to integrate reliable oracles.

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4307

(S.16.1) Push Oracle: To retrieve external data from smart
contracts on EOSIO-based and Ethereum-based blockchains
despite their encapsulated execution, a Relay Contract can
be instantiated that is periodically updated by an oracle
[136]. The Relay Contract stores current data, and other
smart contracts can retrieve that data. However, this
approach can be inefficient due to unnecessary updates to
the Relay Contract. Moreover, this approach can introduce
vulnerabilities (e.g., toward malicious behaviors of oracle
controllers) due to the reliance on single parties.

(S.16.2) Pull Oracle: To make push oracles more efficient
in terms of required interactions, we propose event-driven
updates, for example, using events in the Relay Contract,
such as native Solidity events, a listener plugin for EOSIO
(e.g., EOS Watcher Plugin [137]), or periodic polls of nodeos
[138]. The oracle listens to requests triggered by the Relay
Contract for specified events (see Oracle Pattern). Such
requests may refer to arbitrary computational tasks, for
example, data storage, data retrieval, or outsourcing of com-
putations [80], [139]. The oracle manages the execution of
the requested tasks. Then, the oracle pushes the results to
the Relay Contract. Unfortunately, this approach comes
with the downside that the oracle is operated by a single
party, forming a single point of failure [70], [71].

(S.16.3) Decentralized Pull Oracle: To tackle malicious
behavior of oracle controllers while increasing their avail-
ability and reliability, developers can use decentralized
oracles [71]. Multiple oracles listen to the Relay Contract
(see Oracle Pattern), process received requests, and push
their results to the contract. The Relay Contract decides on
one result to use among those provided by the oracles, for
example, by choosing the result that has been returned by
most oracles. As an extension, an incentive mechanism
should be put in place to avoid malicious behavior of
oracles (see Oracle Pattern) [139], [140]. For example, oracles
can pay collateral when registering with the Relay Contract.
After oracles push valid results to the smart contract, they
are rewarded with coins, while oracles that push wrong
results are punished by reducing their collateral.

(C.17) Error Handling: The difficulties of implementing
thorough handling of errors and exceptions in smart contract
execution.

In Ethereum, inappropriate error handling can cause
undesired smart contract states and can even lead to asset
loss and denial of service [14]. Appropriate error handling
is, however, challenging because error handling strongly
depends on the individual call chain. A call chain describes
the sequence of function calls performed during smart con-
tract execution. In Solidity, a call chain can include different
types of calls (i.e., call, delegatecall, and static-

call; see Section 2.2). The EVM propagates exceptions up
the call chain and reverts all side effects until the last call
command, which returns false. The smart contract execu-
tion is resumed from this point, and only the gas allocated
by the call command is consumed [21].

(S.17.1) Isolate Calls: To minimize the potential damage
caused by flawed error handling for complex call chains in
the EVM, developers should isolate separate external calls
in Ethereum instead of chaining calls. This way, developers
can implement more granular error handling. To orches-
trate multiple isolated calls, the Façade Pattern applies.

(C.18) Programming Language Concept Compliance: The
degree to which a programming language conforms to established
concepts and the use of terms in related programming languages.

In smart contract development, protected keywords (e.g.,
private or public) in established programming languages,
such as Cþþ or Java, can mislead developers. For example,
visibility declarations in Solidity (e.g., external, private, or
public) often suggest to developers that private variables
may not be visible to other entities [20].

(S.18.1) Cautious Use: If developers have no other oppor-
tunity to develop code than using a language with mislead-
ing keywords, developers must be cautions and read the
programming language documentation first.

(C.19) Iteration through Data Structures: The functionality
provided by a programming language to support the step-by-step
traversal of individual elements of a higher-level data structure.

As in conventional software development, there are data
structures that are not iterable but that can store and return
data from a collection in O(1).

(S.19.1) Auxiliary Data Structures: To loop through non-
iterable data structures (e.g., mapping in Solidity), auxiliary
data structures (e.g., an array) can be used. Auxiliary data
structures should be iterable and store all keys of the non-
iterable data structure. When iterating over the auxiliary
data structure, its current value can be used as a key to
retrieve values of the non-iterable data structure.

4.3 Challenges Caused By Coding Practices

Challenges related to the principal challenge origin coding
practices refer to issues caused by developers in their coding
activities.

4.3.1 Code Efficiency Challenges

Code efficiency challenges refer to the constrained quantity
of allocated resources to deploy a smart contract code (e.g.,
gas) and execute the deployed code on a distributed ledger
(e.g., in terms of space and time complexity).

(C.20) Data Storage: The way data is stored to keep a smart
contract operational in a trustworthy manner, but also efficient
with respect to resource consumption for smart contract
execution.

Storing data on EOSIO-based and Ethereum-based block-
chains is expensive. Therefore, developers must consider
alternatives to storing data in smart contracts. This chal-
lenge does not apply to blockchains based on Hyperledger
Fabric.

(S.20.1) Off-Ledger Storage: Like heavy computations and
sensitive data, large amounts of data should be stored off-
ledger and should be managed on oracles. The Oracle Pat-
tern (see S.1.1 Off-Ledger Computations) describes how smart
contracts can interact with oracles. To make the integrity of
stored data provable, developers can implement mecha-
nisms to store a hash value of the externally stored data in
the smart contract.

(S.20.2) Store Data in Logs: Solidity offers the implementa-
tion of events that are usually used to communicate with
oracles or frontends [141]. Events can be used to generate
logs that represent a cheap alternative for storing data on a
blockchain because a log costs only 8 gas per byte (at the
time of writing the study). However, logs are not accessible

4308 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

by smart contracts and only oracles or frontends can render
logged data. Using events as logs can be reasonable, for
example, when operating an exchange. The history of
entities’ deposits to a smart contract does not need to be
stored in the contract but can be stored as logs, and only the
current balances of the entities are stored in the smart
contract [141].

(C.21) Data Type Complexity: The differences between data
types with similar functionalities regarding their time and space
complexity.

The selection of appropriate data types affects the cost of
storage and execution in smart contracts based on Ethereum
and EOSIO. To provide efficient code, developers must
gauge between different data types. Still, the variety of data
types and their individual complexities regarding storing
and retrieving data differ strongly.

(S.21.1) bytes over byte[]: In Solidity, the data type byte[]
is an array of bytes but requires 31 bytes of memory between
its elements because of padding rules. Developers can use
data type bytes to reducememory consumption [142].

(S.21.2) Array Replacement: In Ethereum, using arrays can
be more costly than using individual variables [113]. To
save gas, developers should check whether they can replace
arrays of fixed length with a corresponding number of indi-
vidual variables.

(S.21.3) string Avoidance: In EOSIO, developers should
avoid storing variables in strings to save resources. For exam-
ple, saving SHA3-256 hash values as checksum instead of
string can reduce memory consumption from 64 bytes to
32 bytes. The same applies to 128-bit numbers, such as com-
monuniversal unique identifiers (UUIDs),which are typically
represented as hex-string allocating 16 bytes. In contrast, stor-
ing 128-bit numbers as string consumes 36 bytes.

(C.22) Under-Optimized Code: The optimization of smart con-
tract code toward better performance.

A recurring problem in software engineering is ineffi-
cient code. Code can be inefficient due to useless code (e.g.,
opaque predicates [117], [143] or dead code [143]) or code
smell (e.g., repeated operations in loops with constant out-
come [113], [143]). Useless code consumes additional
resources (e.g., gas or RAM) without adding reasonable
logic to the smart contract. For example, dead code will
never be executed, but costs gas for deployment in Ether-
eum smart contracts or RAM in smart contracts on EOSIO-
based blockchains. Useless code in combination with loops
can significantly increase resource consumption, for exam-
ple, when functions with constant outcomes are repeatedly
executed within a loop. Dispensable code is particularly
important to avoid in smart contracts running via DLT pro-
tocols that charge costs for smart contract execution, such as
in Ethereum-based and EOSIO-based blockchains.

(S.22.1) Constants: Developers should check if they per-
form computations with constant outcome. When identify-
ing an opaque predicate, developers can declare the result
of the computation as constant.

(S.22.2) Code Optimization: To reduce resource consump-
tion when executing smart contracts, developers should
check whether variables are required to produce a particu-
lar result and dispense with variables that are not required.
Additionally, the necessity for functions in a smart contract
should be checked to avoid opaque predicates and code

smell. To identify dead code and opaque predicates, soft-
ware tools for formal verification can help (e.g., GASPER
[143]). For the optimization of Ethereum smart contracts,
existing works present approaches to identifying and per-
forming bytecode improvements [113], [117], [144]. Using
these approaches, dispensable operations can be identified,
and the smart contract can be optimized.

(S.22.3) Shadowing: Developers should avoid processing
data in the persistent storage of the EVM to reduce resource
consumption [145]. Instead, developers can apply shadow-
ing. In shadowing, the data to be sorted is copied from the
storage into the EVM memory, which is less resource-con-
suming than sorting in storage [146]. All sorting is per-
formed in the EVMmemory.

(C.23) Required Interactions: The minimization of the required
interactions with a smart contract to achieve a targeted result.

Distributed ledgers enable the management of digital
assets without the necessity of a trusted third party to a cer-
tain extent. It is possible to represent ownership of real-
world assets (e.g., cars or houses) using tokens, which can
be implemented as a smart contract [147]. However, it is
challenging to create and deploy such tokens manually. For
example, an authorized entity responsible for the token
must create and deploy a smart contract for each requesting
user individually, which poses a single point of failure and
a potential source of fraud.

(S.23.1) Automated Deployment: To increase security regard-
ing the creation and deployment of smart contracts (e.g., in
terms of token creation and issuance, fraud resistance, and
theft), developers can use the Factory Pattern. In the Factory
Pattern, a smart contract (i.e., Factory Contract) manages the
creation and issuance of such smart contracts (i.e., Child Smart
Contracts) [148]. This pattern is consistent with the concept of
factories in existing programming languages, such as Java. In
addition to the automated creation and deployment of smart
contracts, Factory Contracts can also implement mechanisms
to better observe issued smart contracts, for example, by stor-
ing the addresses of all created smart contracts. This solution
applies to Ethereum-based blockchains.

4.3.2 Comprehensibility Challenges

Comprehensibility challenges relate to the ease with which
entities with little experience understand how a specific
smart contract code works and how it should be used.

(C.24) Readability: The hurdles faced by developers when read-
ing program code.

Readability of program code across smart contracts
developed by different entities is important for increasing
its comprehensibility and maintainability [20], [101], [149].
However, developers have different programming styles,
which can decrease readability and comprehensibility.

(S.24.1) Style Guide Conformity: To favor code readability,
developers should align their individual coding style with
the style guides published for the programming language
(e.g., the Solidity style guide for Ethereum [150] or the Go
style guide for Hyperledger Fabric [151]). For example,
Ethereum developers should align with established best
practices for naming events [20]. In EOSIO, the naming of
accounts is already regulated. Style guide conformity can be
checked automatically by software tools such as Ethlint or
Solhint.

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4309

(C.25) Ease of Code Reuse: The ease with which developers can
inform themselves about the characteristics of smart contract code
to understand contract specifications for code reuse.

Since code reuse in publicly distributed ledgers (e.g.,
those based on Ethereum or EOSIO) is often performed [101],
it is particularly important that developers can easily under-
stand the purpose and functioning of code, as well as its
shortcomings.

(S.25.1) Documentation: To support others in reusing
code, developers should add appropriate documentation in
the form of comments or additional files (e.g., README.md
files). The documentation should include the functioning of
the smart contract and report known shortcomings (e.g.,
bugs or vulnerabilities).

4.3.3 Implementation Soundness Challenges

Challenges related to implementation soundness originate
from factors that hinder an implementation from being free
from errors and flaws.

(C.26) Appropriate Data Type Use: The degree to which devel-
opers appropriately declare, initialize, and use variables.

To support developers in the selection of data types, data
type inferencing is offered by several programming lan-
guages (e.g., Cþþ and Solidity). Data type inference refers
to the automatic recognition of a data type likely suitable
for storing a given value and can expose a vulnerability in
programming languages, for example, due to overflow or
underflow [20], [152]. An overflow describes the behavior of
programming languages when a value exceeds the bound-
ary of a data type (e.g., assigning numeric values larger
than their defined maximum of 28 - 1 to uint8 variables).
An underflow occurs when a value assigned to a variable is
less than the smallest defined value that can be represented
by the variable’s data type. To avoid unforeseen code flaws,
developers should be aware of the different processing of
data types in storage.

(S.26.1) Integer Overflow and Underflow Handling:Overflow
and underflow can occur in Ethereum smart contracts pro-
grammed in Solidity. To counter overflow and underflow,
developers should not rely on data type inferences but
should define the targeted data type completely [118]. For
example, if a variable is declared as uint8 through data
type inference, this variable will overflow if it is assigned a
value larger than 28-1. Moreover, developers can either man-
ually implement checks for overflow and underflow or use
the OpenZeppelin SafeMath library [153] for any arithmetic
operations a smart contract performs [118]. Using the Safe-
Math library can also prevent most overflows and under-
flows of integer variables (see Overflow/Underflow Pattern).
Since Solidity v0.80, Solidity checks for overflow and under-
flow and reverts arithmetic operations [154]. Alternatively,
developers can use Vyper [121] instead of Solidity because
Vyper is not prone to overflow and underflow [115].

(C.27) Semantic Soundness: The difficulties of reaching a state
where an implementation is free from logical errors and flaws.

To reach semantic soundness, the implementation
should adhere to the agreed-upon business logic for interac-
tion [12] with respect to the absence of logic, incorrect logic,
and logically correct but unfair [12]. First, absence of logic
describes smart contracts that lack important logic, for
example, to protect its selfdestruct(. . .) function from

being unintendedly executed by attackers [12]. Second,
incorrect logic is concerned with a smart contract code that is
syntactically correct but logically incorrect. Third, logically
correct but unfair applies to code that is free from errors but
misleads entities so that they will be subject to fraudulent
program logic (e.g., expected payouts that will never hap-
pen, as in Ponzi Schemes [155]).

(S.27.1) Argument Sanitization: As in conventional soft-
ware engineering, passing inappropriate arguments to func-
tions can cause errors or unforeseen side effects. This also
applies to blockchains based on Ethereum, EOSIO, and
Hyperledger Fabric. In Ethereum asset transfers, for exam-
ple, the EVM pads short addresses with trailing zeroes if
the recipient address is too short. The padding can result in
the transfer of a larger number of tokens than intended
[156]. To prevent wrong arguments from being processed,
developers can implement guarding functions that first
check passed arguments upon function invocation and
deny the function execution if one of the arguments does
not comply with the function requirements (e.g., using
assert(. . .), require(. . .), or revert(. . .) in Solid-
ity [20]). For example, the length of an Ethereum address
passed to a smart contract should be checked before trans-
ferring assets to it to prevent asset loss [156].

(S.27.2) Protection from Replay Attacks: In Ethereum-based
and EOSIO-based blockchains, the visibility of the payload
of transactions favors the exploitation of smart contract vul-
nerabilities for replay attacks [7]. In a replay attack, an adver-
sary copies the content of a transaction payload to their own
transaction and issues their fraudulent transaction to the
same smart contract. The target smart contract receives the
original and the fraudulent transaction and respectively exe-
cutes the target function. Often, the copied transaction pay-
load contains data for authentication (e.g., a digital
signature). With these, critical logic for an account can be
executed (e.g., asset transfers).

To prevent replay attacks, the Replay-Protection Pattern
can be used. In this SDP, a function call may require a digi-
tal signature of all other parameters passed to the function
and the current value of a nonce defined in the targeted
smart contract. When the function is called, the smart con-
tract verifies the signature based on the passed function
parameters and the nonce. After successful verification, the
nonce is changed and future transactions with the same sig-
nature become invalid [115]. In Hyperledger Fabric, peer
nodes implement mechanisms to protect the network from
replay attacks [54]. This solution is particularly relevant to
consider when working on publicly distributed ledgers that
are in the stage of a hard fork [157]. Valid transactions can
be easily replayed from one ledger to another. To counter
replay attacks in this scenario, a chain ID should be a
required inclusion in the digital signature in addition to the
nonce.

(S.27.3) Fake-EOS Transfer Protection: In Fake-EOS Transfer
attacks, an attacker creates a token called EOS like the native
currency in EOSIO. Then, the attacker sends their fake EOS
tokens to a smart contract. If the recipient contract does not
verify the issuer of the tokens, it considers them genuine
EOS tokens and proceeds with the function execution.

To protect smart contracts from the Fake-EOS Transfer
vulnerability, smart contracts should verify that the asset

4310 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

transfer has been authorized by the eosio.token con-
tracts. For this purpose, developers can check whether the
code parameter in the apply(. . .) function of the recipient
contract refers to the eosio.token contract [11], [158].

(S.27.4) Fake-EOS Notice Protection: Smart contracts in
EOSIO-based blockchains receive a notification as soon as
an asset transfer via the eosio.token contract is com-
pleted. These notifications can be forwarded to other smart
contracts. If the notification is not checked by these smart
contracts, they may proceed as if they had received the
funds. This way, EOSIO smart contracts become vulnerable
to Fake-EOS Notices [11], [158]. In Fake-EOS Notice, an
attacker sends tokens to smart contract A. The token transfer
is handled by the eosio.token contract, which notifies A
and B about the token transfer. Upon receiving the notifica-
tion, B forwards the notification to a smart contract C. C
handles the notification as if it had received the tokens.

To protect smart contracts from being prone to Fake-EOS
Notice, developers can check if the to argument in the notifi-
cation equals their own account; if not, C ignores the notifi-
cation [11], [158].

(S.27.5) Read-Your-Writes (RYW) Consistency: RYW consis-
tency is given when a database guarantees that, after a vari-
able value is updated, all subsequent calls will read the
updated value of the variable [159]. Smart contracts of Hyper-
ledger Fabric blockchains can access the blockchain’s state data-
base, such as LevelDB per default and CouchDB as an
alternative [160]. However, LevelDB andCouchDB do not offer
RYW consistency [91], which can cause logic errors in smart
contract codes that use data from theworld state database.

To achieve RYW consistency-like behavior, developers
can make isolated calls to the database for read and write
operations after the database is synchronized.

(C.28) Technical Soundness: The hurdles developers are con-
fronted with handling the technical capabilities and limitations of
a smart contract’s execution environment.

Smart contract development is still a novel field in soft-
ware development, and especially compilers for domain-
specific languages (e.g., Solidity) are frequently updated.
These updates fix defects but can also change smart contract
execution compared to older compiler versions [20].

(S.28.1) Fixed Compiler Version: To counter potential vul-
nerabilities caused by different compiler versions, develop-
ers should use fixed compiler versions [20].

4.3.4 Interoperability Challenges

Interoperability challenges related to the ease with which
smart contracts can be called by other smart contracts or
external systems (e.g., wallets) and can communicate with
systems outside the distributed ledger.

(C.29) Smart Contract API Conformity: The certainty with
which developers can rely on the uniformity of smart contract
interfaces that conform to published conventions and standards.

Developers can develop code in their own style. How-
ever, if each developer defines smart contract functions dif-
ferently, this can cause inconsistencies across smart contract
definitions, can inform flaws in smart contract development
(e.g., regarding function call definitions), and hinder cross-
contract interoperability [147], [161].

(S.29.1) Ethereum Request for Comments:With an increasing
number of smart contracts deployed by unknown entities

with individual coding styles, the definition of standardized
smart contract interfaces has become increasingly important,
for example, to favor code reusability and ease interoperabil-
ity with smart contracts. To agree on application-level stand-
ards and conventions, members of the Ethereum community
can propose Ethereum Requests for Comments (ERCs).
Smart contract code can be published for discussion in an
ERC. After members agree on a solution presented in an
ERC, the ERC can become an Ethereum Improvement Pro-
posal (EIP) that is discussed by the Ethereum commu-
nity [162]. When the community agrees on the EIP, it can
become an official standard, such as the ERC20 token stan-
dard or ERC26 and ERC137 for name registries.

5 RELATED WORK

Existing research has made valuable contributions to the
understanding of peculiarities of smart contracts and result-
ing development challenges. These works can be associated
with three research streams: code analysis, software testing,
and system design. In works related to code analysis, selected
flaws in smart contract code (e.g., overflow and underflow
[20] or reentrancy [22]) and their detection using formal
methods have been researched (e.g., [132], [163], [164]). For
automated detection of these flaws, software tools have
been proposed that perform formal verification (e.g., [163],
[165], [166]), dynamic code analysis (e.g., [132], [133], [152]),
static code analysis (e.g., [23], [24], [167]–[169]), or machine
learning using classifiers like XGBoost or AdaBoost (e.g.,
[25]). These tools are designed to support developers in
improving their code by identifying recurring flaws in
smart contract code (e.g., by using formalized patterns of
code flaws). Multiple works on code analysis have focused
on performance optimization, especially to reduce the gas
consumption of Ethereum smart contracts (e.g., [116], [117],
[143]). For example, Chen et al. [117] presented patterns for
gas-inefficient code (e.g., opaque predicates, dead code, and
redundant SSTORE) and a software tool for the automated
identification of these patterns in bytecode. Works associ-
ated with code analysis have also revealed various smart
contract vulnerabilities (e.g., reentrancy or unchecked exter-
nal calls) and methods for their identification (e.g., [14],
[22], [132], [163]). Despite these endeavors, existing works
on code analysis are highly technology-centric (e.g., by
focusing only on Solidity or EVM [8], [20], [25], [115], [163]).
Identified frequent flaws in smart contract code are distrib-
uted across various works, hindering developers from
obtaining an overview of existing challenges. Moreover, the
presented tools (e.g., [117], [131], [170]) are applicable only
after a smart contract has been developed and are not
intended to support developers in anticipating recurring
development challenges before writing code.

To support developers in incorporating new knowledge
related to code analysis into their development routines and
directly anticipating code flaws, this work describes chal-
lenges and corresponding solutions, including 20 SDPs.
Moreover, this work extends the findings of foremost perfor-
mance- and security-focused code analysis studies through
knowledge about challenges related to maintainability and
the implementation of certain functionalities (e.g., random
number generation).

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4311

Besides code analysis, research has proposed approaches
and tools for software testing (e.g., [24], [171]–[173]). Related
works offer valuable and practical insights that support smart
contract developers in improving their code through different
testing strategies and tools. For example, Li et al. [170] pro-
posed a software tool for mutation testing of Ethereum smart
contract code to identify and fix flaws in their code. Gao et al.
[171] presented an approach for automated testing of Ether-
eum smart contracts and suggested browser-side events that
interact with smart contracts. These tools and respective
insights can support development practices. Still, challenges
occurring in smart contract development that could be useful
for software testing to avoid frequent code flaws (e.g., guard-
ing functions) remain unclear.

The challenges identified in this work can support better
planning of software testing for smart contracts on block-
chains based on Ethereum, EOSIO, and Hyperledger Fabric.
For example, tests can be developed so that all challenges
that apply to a specific DLT protocol are covered. Thereby,
our work can support the targeted detection and elimina-
tion of frequent code flaws.

Works related to system design (e.g., [99], [139], [140],
[174]) propose specific concepts or implementations to over-
come recurring smart contract development challenges,
such as random value generation with high entropy [96]
and the integration of oracles [70]. For example, Li et al.
[100] proposed the implementation of a lottery scheme
focusing on random number generation. They applied a
commitment pattern in which entities commit coordinates
in a 2D coordinate system and compute a random number
based on the polynomial that intersects with the coordi-
nates. Still, these works sensitize developers to only a few
challenges and hardly make developers aware of bad practi-
ces that should be avoided (e.g., using block numbers for
random number generation).

This work presents peculiarities and challenges in smart
contract development across DLT protocols. Developers can
consider these peculiarities and challenges in two stages of
the development process: first, when deciding to use a DLT
protocol for developing DLT-based DApps that require spe-
cific smart contract capabilities (e.g., random number gener-
ation); second, when developing smart contracts on the
chosen DLT protocol. In doing so, we complement previous
work (e.g., [35], [175]) by assisting in the selection of suitable
DLT protocols for individual DApps with a specific focus
on smart contract integration and implementation.

Building on the described research streams (i.e., code anal-
ysis, software testing, and system design), several reviews
and surveys on challenges in smart contract development
have been published (e.g., [9], [10], [89], [100], [107], [148],
[149], [170], [174], [176], [176], [177]). These publications pres-
ent surveys regarding formal verification approaches (e.g.,
[176], [177]) and smart contract development challenges per-
ceived by developers (e.g., [10], [149], [174]). Surveys on for-
mal verification (e.g., [176], [177]) compare different
approaches for code flaw detection regarding their capabili-
ties and potentials for improvements. For example, Tolmach
et al. [176] proposed formal models for smart contracts (i.e.,
contract-level models and program-level models) and sur-
veyed smart contract specifications for different application
domains (e.g., finance and social games). Miller et al. [170]

scrutinized existing formal verification approaches regarding
their capabilities to detect flaws in smart contract code and
their applicability to different programming languages. Sur-
veys on formal verification revealed valuable insights into
recurring and automatically detectable programming flaws,
such as vulnerabilities for reentrancy attacks andmishandled
exceptions.

Extant reviews of smart contract development challenges
from the perspective of developers offer brief explanations
of challenges, their corresponding solutions, and future
research directions (e.g., [10], [101], [174], [178]). Several
review studies have focused on specific challenge types,
such as security-related challenges (e.g., [8], [19]) or chal-
lenges related to performance [117] or maintainability [101].
Only a few survey studies consider different challenge types
to derive comprehensive guidance for software developers
to handle these challenges by explaining corresponding sol-
utions (e.g., [9], [10], [149]). Among these studies, Chen et al.
[10] provided an extensive overview of challenges in Ether-
eum smart contract development derived from posts on the
Ethereum StackExchange website, validated the existence of
the identified challenges in a questionnaire with developers,
and briefly described solutions to address the perceived
challenges. Hu et al. [173] revealed development paradigms
for application domains (e.g., Auction, Loan, and Lottery)
applicable to DLT protocols with script-based and Turing-
complete blockchains, such as Bitcoin and Ethereum. More-
over, the authors provided an overview of tool chains that
can support developers in improving the quality of their
code (e.g., through formal verification). Zou et al. [149]
focused on the Ethereum blockchain and examined the dif-
ferences between the development of traditional software
and smart contracts and highlighted the particular chal-
lenges for the latter. They presented procedures like frequent
code audits and code reviews to address the identified chal-
lenges and derive future research directions.

Our work advances prior reviews by collating different
categories of smart contract challenges (e.g., [8], [9]) as well
as corresponding solutions and transforming these solu-
tions into detailed and actionable SDPs that align with rec-
ommendations in existing research (e.g., [31], [32], [33],
[179]). By applying the canonical pattern structure proposed
in prior research [31], [32], [33], our SDPs contain not only
detailed descriptions of each solution, but also a discussion
on benefits and boundary conditions. Thereby, the SDPs
can help developers make better decisions for using SDPs
and ultimately avoid common smart contract development
mistakes. By iteratively discussing and refining our litera-
ture-based results with DLT experts, we provide empirical
validation of our findings.

Finally, prior research focuses on overcoming the chal-
lenges of smart contracts developed in Solidity or executed
in the EVM (e.g., [19], [20], [25], [163]). Only a few studies
have explored smart contract challenges related to other
DLT protocols (e.g., EOSIO [11], [180] or Hyperledger Fabric
[91], [99]). Our study broadens this one-sided approach by
considering three distinct DLT protocols with different
smart contract integration concepts and thus shows which
challenges and corresponding solutions in smart contract
development apply for which DLT protocols considering
their corresponding smart contract integration concepts.

4312 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Thereby, our work can support developers throughout the
software development lifecycle and deepen the understand-
ing of how smart contract integration concepts can limit the
flexibility of smart contracts (e.g., favoring deterministic
execution by encapsulation).

6 CONCLUSION & FUTURE WORK

In this work, we present 29 smart contract development chal-
lenges and 60 corresponding solutions associated with 11
sub-themes, including data visibility and interoperability.
The sub-themes relate to three principal challenge origins
(i.e., platform, programming language and execution environ-
ment, and coding practice) that primarily cause the individual
challenges. This classification enables a separate consider-
ation of each principal challenge origin so that developers
can better gauge between DLT protocols in combination
with individual execution environments. This regard will
become especially relevant for future DLT protocols that
offer developers the option to choose between execution
environments. For example, QTUM plans to integrate Neu-
tron, a middleware that allows developers to use the EVM or
an x86 virtual machine as desired [34]. Other DLT protocols
(e.g., Ontology 2.0 [181]) also strive to offer multiple virtual
machines in the future.

To make the generated knowledge handier for develop-
ers and adjust their programming habits, we developed 20
SDPs that can be used to address various challenges and
augment identified solutions. We developed the 20 SDPs in
cooperation with smart contract developers who are experts
in Ethereum, EOSIO, and Hyperledger Fabric and refined
the SDPs in multiple iterations considering quality criteria
that we identified in a literature review.

Our results indicate that challenges in smart contract
development are caused by individual characteristics of
DLT protocols—foremost, the visibility of data to entities
with access to the distributed ledger, the requirement for
determinism, and the public executability of smart contract
code (see Table 6). In Ethereum, several challenges relate to
the difficult maintainability of smart contract code, which
cannot be replaced but only redeployed and thereby
assigned to a separate account. Regarding current endeav-
ors in DLT protocol development, the updateability of
smart contracts can cause novel challenges because entities
may call for smart contract actions that execute unexpected
logic. Where Hyperledger Fabric requires all entities that
are relevant to endorse transactions after smart contract exe-
cution to agree on smart contract updates, updates of smart
contract code (e.g., through replacement of the current con-
tract version in EOSIO or by using the Proxy Pattern in
Ethereum) in especially public DLT systems must be recog-
nized by entities themselves prior to interacting with the
contract. The ability to update code after deployment may
decrease the trust of entities in the agreements manifested
in contract code.

Using established programming languages, such as Cþþ
or Java, can reduce the entry barrier for developers because
they do not need to learn new programming languages.
Nonetheless, our interviewees explained that using tradi-
tional general-purpose programming languages can be

misleading in smart contract development because develop-
ers may align with their usual programming habits, thus
neglecting peculiarities in smart contract development (e.g.,
regarding the visibility of variables declared as private [20]).

Despite our efforts to answer our research questions regard-
ing challenges and solutions in smart contract development,
we cannot guarantee the comprehensiveness of our work. We
focused on challenges related to current versions of compilers,
execution environments, and programming languages.
Accordingly, we excluded challenges that apply to old ver-
sions, such as the Callstack Depth Attack [19] that was fixed in
October 2016 and is now practically impossible, the use of
unsafe type inferences in Solidity using var [20], and manipu-
lating storage variables in Solidity that automatically point to
register 0x0when not initialized [182].

Performing two complementary literature reviews
enabled us to identify various challenges and solutions.
However, qualitative analysis techniques generally carry
the risk of interpretation biases. Although we conducted
multiple rounds of coding and refining themes during our
thematic analysis to mitigate potential interpretation biases,
researchers may come up with different theme conceptuali-
zations. By reviewing the ever-increasing number of grey
literature (e.g., DLT foundations’ whitepapers) and examin-
ing practitioners’ discussions on smart contract develop-
ment (e.g., developer blog and forum entries), future
research may analyze the usefulness of the solutions pre-
sented in this work and refine the contexts to which the sol-
utions apply. In doing so, future research can ultimately
deepen our knowledge of common solutions for overcom-
ing smart contract development challenges.

Our study has limitations concerning the number and
depth of interviews we conducted to gather data on chal-
lenges and solutions in smart contract development and to
improve our SDPs. While we conducted various interviews
with DLT and smart contract experts, the interviewees may
have found it difficult to verbalize some challenges of smart
contract development, and future research might gather
more information on specific findings to increase under-
standing. The limited number and depth of interviews, as
well as the fact that we could not consider all SDP quality
criteria presented in Appendix B, available in the online
supplemental material, likely left opportunities for improv-
ing the developed SDPs. To improve the SDPs presented in
this work, the SDPs should be evaluated in a longitudinal
large-scale study considering all quality criteria presented
in Appendix B, available in the online supplemental mate-
rial. This way, methodological limitations of this work can
be addressed, and the effectiveness of the presented SDPs
in overcoming smart contract development challenges will
be improved.

We provide a set of solutions, including SDPs, based on
related work and interview findings. Given the large num-
ber and diversity of solutions, we selected a subset of avail-
able solutions as the base for developing SDPs. Developers
and researchers may come up with additional solutions and
SDPs that can even improve those presented in this work.
Moreover, we have discussed the applicability of the identi-
fied challenges and solutions with DLT experts for Ether-
eum, EOSIO, and Hyperledger Fabric. Thus, it remains
unclear which challenges and solutions apply to other DLT

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4313

protocols or whether solutions applied to smart contracts
for other DLT protocols may improve the SDPs presented in
this work. To improve the presented SDPs and understand
their applicability to other DLT protocols, future studies
should investigate challenges and solutions in smart con-
tract development for other DLT protocols. In this way,
DLT protocol-agnostic SDPs can be uncovered, revealing
key best practices for smart contract development.

To advance our solutions to smart contract development
challenges, we maintain a public repository, including com-
plete descriptions of all patterns only briefly described in
this work. We have planned to add further patterns for
blockchains based on Ethereum, EOSIO, and Hyperledger
Fabric to constantly support developers in their work.

ACKNOWLEDGMENTS

The authors would like to thank all participants in the studies
that contributed to this work; N. Hasebrook and M. Pfister for
their support in analyzing the results from the focus group
workshops and refining the SDPs; J. Bartsch,M. Beyene, and F.
Morsbach for their valuable input during the preparation of
this paper; and A. Kaiser and C. Michelbach from Blockinfin-
ity, P. Mesnier from Object Computing, F. Gerbig and G.
Cyriac from the BMW Group, A. Sorniotti from IBM, and B.
Sturm for their continuous support in all stages of the develop-
ment of the manuscript. This work was carried out in the proj-
ect scope “Toward Better Development of Applications on
Distributed Ledger Technology.”

REFERENCES

[1] N. Szabo, “Formalizing and securing relationships on public
networks,” First Monday, vol. 2, no. 9, Sep. 1997, doi: 10.5210/fm.
v2i9.548.

[2] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino, “SoK:
Unraveling bitcoin smart contracts,” in Principles of Security and
Trust, Cham, Switzerland: Springer, 2018, pp. 217–242.

[3] B. community, “Script,” Bitcoin Wiki. Accessed: Jun. 16, 2019.
[Online]. Available: https://en.bitcoin.it/wiki/Script

[4] M. Andrychowicz, S. Dziembowski, D. Malinowski, and
L. Mazurek, “Secure multiparty computations on bitcoin,” in Proc.
IEEE Symp. Secur. Privacy, 2014, pp. 443–458, doi: 10.1109/
SP.2014.35.

[5] C. S. Wright, “A proof of turing completeness in bitcoin script,” in
Intelligent Systems and Applications, Y. Bi, R. Bhatia, and S. Kapoor,
Eds., Cham, Switzerland: Springer, 2020, pp. 299–313.

[6] X.Wang, J. He, Z. Xie, G. Zhao, and S. C. Cheung, “ContractGuard:
Defend ethereum smart contracts with embedded intrusion
detection,” IEEE Trans. Serv. Comput., vol. 13, no. 2, pp. 314–328,
Mar./Apr. 2020.

[7] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart contract
security: A software lifecycle perspective,” IEEE Access, vol. 7,
pp. 150184–150202, 2019.

[8] M. W€ohrer and U. Zdun, “Smart contracts: Security patterns in
the ethereum ecosystem and solidity,” in Proc. Int. Workshop
Blockchain Oriented Softw. Eng., 2018, pp. 2–8.

[9] M. W€ohrer and U. Zdun, “Design patterns for smart contracts in
the ethereum ecosystem,” in Proc. IEEE Int. Conf. Internet Things
IEEE Green Comput. Commun. Cyber Phys. Social Comput. Smart Data,
2018, pp. 1513–1520, doi: 10.1109/Cybermatics_2018.2018.00255.

[10] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
smart contract defects on ethereum,” IEEE Trans. Softw. Eng.,
early access, Apr. 20, 2020, doi: 10.1109/TSE.2020.2989002.

[11] Y. Huang et al., “Characterizing EOSIO blockchain,” Accessed:
Mar. 9, 2021. [Online]. Available: http://arxiv.org/abs/2002.05369

[12] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing
safety of smart contracts,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2018, 1–15, doi: 10.14722/ndss.2018.23082.

[13] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor,
“Finding the greedy, prodigal, and suicidal contracts at scale,”
2019, arXiv:1802.06038.

[14] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smar-
agdakis, “MadMax: Surviving out-of-gas conditions in ethereum
smart contracts,” Proc. ACM Prog. Lang., vol. 2, pp. 1–27, Oct. 2018,
doi: 10.1145/3276486.

[15] S. Palladiono, “The parity wallet hack reloaded,” OpenZeppelin.
Accessed: Aug. 27, 2019. [Online]. Available: https://blog.
openzeppelin.com/parity-wallet-hack-reloaded/

[16] X. Zhao, Z. Chen, X. Chen, Y. Wang, and C. Tang, “The DAO
attack paradoxes in propositional logic,” in Proc. 4th Int. Conf.
Syst. Inform, 2017, pp. 1743–1746.

[17] M. Young, “A billion EOS tokens faked to rob decentralized
exchange,” Ethereum World News. Accessed: Mar. 1, 2019.
[Online]. Available: https://ethereumworldnews.com/a-billion-
eos-tokens-faked-to-rob-decentralized-exchange/

[18] D. Enyeart, “Resolve phantom reads for range queries,” Linux
Found. Accessed: Jan. 10, 2021. [Online]. Available: https://jira.
hyperledger.org/browse/FAB-1668

[19] A. Mense and M. Flatscher, “Security vulnerabilities in ethereum
smart contracts,” in Proc. 20th Int. Conf. Inf. Integr. Web-based
Appl. Serv., 2018, pp. 375–380, doi: 10.1145/3282373.3282419.

[20] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis
of ethereum smart contracts,” in Proc. 1st Int. Workshop Emerg.
Trends Softw. Eng. Blockchain, 2018, pp. 9–16, doi: 10.1145/
3194113.3194115.

[21] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (SoK),” in Principles of Security and
Trust, M. Maffei and M. Ryan, Eds. Berlin, Germany: Springer,
2017, pp. 164–186.

[22] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe,
“ReGuard: Finding reentrancy bugs in smart contracts,” in Proc.
40th Int. Conf. Softw. Eng. Companion, 2018, pp. 65–68, doi:
10.1145/3183440.3183495.

[23] Y. Chinen, N. Yanai, J. P. Cruz, and S. Okamura, “Hunting for re-
entrancy attacks in ethereum smart contracts via static analysis,”
Accessed: Feb. 10, 2021. [Online]. Available: http://arxiv.org/
abs/2007.01029

[24] S. Akca, A. Rajan, and C. Peng, “SolAnalyser: A framework for
analysing and testing smart contracts,” in Proc. 26th Asia-Pacific
Softw. Eng. Conf. Putrajaya, 2019, pp. 482–489, doi: 10.1109/
APSEC48747.2019.00071.

[25] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su,
“Contractward: Automated vulnerability detection models for
ethereum smart contracts,” IEEE Trans. Netw. Sci. Eng., vol. 8,
no. 2, pp. 1133–1144, Second Quarter 2021.

[26] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A pattern collec-
tion for blockchain-based applications,” in Proc. 23rd Eur. Conf. Pat-
tern Lang. Prog., 2018, pp. 1–20, doi: 10.1145/3282308.3282312.

[27] ConsenSys, “Smart contract security best practices,” Accessed: Mar.
15, 2021. [Online]. Available: https://github.com/ConsenSys/
smart-contract-best-practices/

[28] R. Xie, “Best practices to level up your ethereum smart contrac-
ts,” Hacker Noon. Accessed: Oct.10, 2019. [Online]. Available:
https://hackernoon.com/best-practices-to-level-up-your-
ethereum-smart-contracts-944d5cea2cab

[29] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, “Systematic literature reviews in software engi-
neering,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, 2009.

[30] V. Braun and V. Clarke, “Using thematic analysis in psy-
chology,” Qual. Res. Psychol., vol. 3, no. 2, pp. 77–101, Jan. 2006,
doi: 10.1191/1478088706qp063oa.

[31] F. Buschmann, Pattern-Oriented Software Architecture: A System of
Patterns. Chichester, NY, USA: Wiley, 1996.

[32] J. Borchers and F. Buschmann, A Pattern Approach to Interaction
Design. Hoboken, NJ, USA: Wiley, 2001.

[33] B. Appleton, “Patterns and software: Essential concepts and
terminology,” Accessed: Aug. 2, 2019. [Online]. Available:
http://www.bradapp.net/docs/patterns-intro.pdf

[34] Qtum, “Neutron: Middleware for blockchain virtual machines,”
Medium, Oct. 27, 2020. [Online]. Available: https://blog.qtum.org/
neutron-middleware-for-blockchain-virtual-machines-fe267353dfb2

[35] N. Kannengießer, S. Lins, T. Dehling, and A. Sunyaev, “Trade-offs
between distributed ledger technology characteristics,” ACM
CSUR, vol. 53, no. 2, pp. 1–37, Apr. 2020, doi: 10.1145/3379463.

4314 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

http://dx.doi.org/10.5210/fm.v2i9.548
http://dx.doi.org/10.5210/fm.v2i9.548
https://en.bitcoin.it/wiki/Script
http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00255
http://dx.doi.org/10.1109/TSE.2020.2989002
http://arxiv.org/abs/2002.05369
http://dx.doi.org/10.14722/ndss.2018.23082
http://dx.doi.org/10.1145/3276486
https://blog.openzeppelin.com/parity-wallet-hack-reloaded/
https://blog.openzeppelin.com/parity-wallet-hack-reloaded/
https://ethereumworldnews.com/a-billion-eos-tokens-faked-to-rob-decentralized-exchange/
https://ethereumworldnews.com/a-billion-eos-tokens-faked-to-rob-decentralized-exchange/
https://jira.hyperledger.org/browse/FAB-1668
https://jira.hyperledger.org/browse/FAB-1668
http://dx.doi.org/10.1145/3282373.3282419
http://dx.doi.org/10.1145/3194113.3194115
http://dx.doi.org/10.1145/3194113.3194115
http://dx.doi.org/10.1145/3183440.3183495
http://arxiv.org/abs/2007.01029
http://arxiv.org/abs/2007.01029
http://dx.doi.org/10.1109/APSEC48747.2019.00071
http://dx.doi.org/10.1109/APSEC48747.2019.00071
http://dx.doi.org/10.1145/3282308.3282312
https://github.com/ConsenSys/smart-contract-best-practices/
https://github.com/ConsenSys/smart-contract-best-practices/
https://hackernoon.com/best-practices-to-level-up-your-ethereum-smart-contracts-944d5cea2cab
https://hackernoon.com/best-practices-to-level-up-your-ethereum-smart-contracts-944d5cea2cab
http://dx.doi.org/10.1191/1478088706qp063oa
http://www.bradapp.net/docs/patterns-intro.pdf
https://blog.qtum.org/neutron-middleware-for-blockchain-virtual-machines-fe267353dfb2
https://blog.qtum.org/neutron-middleware-for-blockchain-virtual-machines-fe267353dfb2
http://dx.doi.org/10.1145/3379463

[36] D. Chaum, “Blind signatures for untraceable payments,” inAdvan-
ces in Cryptology, Boston,MA,USA: Springer, 1983, pp. 199–203.

[37] I. Sergey and A. Hobor, “A concurrent perspective on smart con-
tracts,” in Financial Cryptography and Data Security, M. Brenner
et al., Eds., Cham, Switzerland: Springer, 2017, pp. 478–493.

[38] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Prog. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982.

[39] E.-E. Gojka, N. Kannengießer, B. Sturm, J. Bartsch, and A.
Sunyaev, “Security in distributed ledger technology: An analysis
of vulnerabilities and attack vectors,” in Intelligent Computing,
K. Arai, Ed. Cham, Switzerland: Springer., 2021, pp. 722–742,
doi: 10.1007/978-3-030-80129-8_50.

[40] V. Buterin, “E. Whitepaper,” Ethereum. Accessed: Mar. 6, 2021.
[Online]. Available: https://ethereum.org/en/whitepaper/

[41] V. Buterin, “EIP-214: New opcode STATICCALL,” Ethereum
Improve. Proposals. Accessed: Oct. 27, 2020. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-7

[42] EOSIO, “Consensus protocol,” Accessed: Feb. 3, 2021. [Online].
Available: https://github.com/EOSIO/welcome/blob/master/
docs/60_protocol-guides/10_consensus_protocol.md#3-eosio-
consensus-dpos–abft

[43] EOSIO, “EOS VM - A low-latency, high performance and extensi-
ble webassembly engine,” Accessed: Dec. 29, 2020. [Online]. Avail-
able: https://github.com/EOSIO/eos-vm

[44] EOSIO, “RAMas systemresource,” Accessed: Feb. 3, 2021. [Online].
Available: https://github.com/EOSIO/eosio.contracts/blob/
master/docs/01_key-concepts/02_ram.md

[45] EOSIO, “Storage and readmodes,”Accessed: Feb. 8, 2021. [Online].
Available: https://github.com/EOSIO/eos/blob/master/docs/
01_nodeos/07_concepts/05_storage-and-read-modes.md

[46] EOSIO, “Accounts andpermissions,”GitHub. Accessed: Feb. 3, 2021.
[Online]. Available: https://github.com/EOSIO/welcome/blob/
master/docs/60_protocol-guides/40_accounts_and_permissions.
md

[47] EOSIO, “Transactions protocol,” Accessed: Feb. 3, 2021. [Online].
Available: https://github.com/EOSIO/welcome/blob/master/
docs/60_protocol-guides/20_transactions_protocol.md

[48] Blockgenic, “EOSIO smart contracts tutorial,” Accessed: Feb. 08,
2021. [Online]. Available: https://medium.com/coinmonks/
eosio-smart-contracts-tutorial-f22c3bb364d9

[49] EOSIO, “Inline actions to external contracts,” Accessed: Feb. 8,
2021. [Online]. Available: https://github.com/EOSIO/welcome/
blob/master/docs/40_smart-contract-guides/70_inline-action-to-
external-contract.md

[50] Hyperledger Foundation, “The ordering service,” GitHub.
Accessed: Dec. 30, 2020. [Online]. Available: https://github.com/
hyperledger/fabric/blob/release-2.2/docs/source/orderer/
ordering_service.md

[51] Hyperledger Foundation, “Channels,” Accessed: Feb. 2, 2020.
[Online]. Available: https://hyperledger-fabric.readthedocs.io/
en/release-2.2/channels.html

[52] Hyperledger Architecture Working Group, “Fabric chaincode
lifecycle,” GitHub. Accessed: Jan. 27, 2021. [Online]. Available:
https://github.com/hyperledger/fabric/blob/release-2.2/
docs/source/chaincode_lifecycle.md

[53] Hyperledger, “Smart contracts and chaincode,” GitHub. Accessed:
Dec. 30, 2020. [Online]. Available: https://github.com/hyper-
ledger/fabric/blob/release-2.2/docs/source/smartcontract/
smartcontract.md

[54] Hyperledger Foundation, “Transaction flow,” GitHub. Accessed:
Jan, 10, 2021. [Online]. Available: https://github.com/hyper-
ledger/fabric/blob/release-2.2/docs/source/txflow.rst

[55] Hyperledger Foundation, “A new approach,” GitHub. Accessed:
Jan. 10, 2021. [Online]. Available: https://github.com/hyper-
ledger/fabric/blob/release-2.2/docs/source/whatis.md#a-
new-approach

[56] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA, USA: Addison-Wesley, 1995.

[57] D. Riehle and H. Z€ullighoven, “Understanding and using pat-
terns in software development,” Theory Prac. Object Syst., vol. 2,
no. 1, pp. 3–13, 1996.

[58] C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in Proc. 18th
Int. Conf. Eval. Assess. Softw. Eng., 2014, pp. 1–10, doi: 10.1145/
2601248.2601268.

[59] M. D. Myers, Qualitative Research in Business Management, 2nd ed.
Thousand Oaks, CA, USA: SAGE, 2013.

[60] G. Par�e, M. C. Trudel, M. Jaana, and S. Kitsiou, “Synthesizing
information systems knowledge: A typology of literature
reviews,” Inf. Manage., vol. 52, no. 2, pp. 183–199, 2015.

[61] M. Q. Patton, Qualitative Research & Evaluation Methods: Integrat-
ing Theory and Practice, 4th ed. Thousand Oaks, CA, USA: Sage,
2015.

[62] R. K. Yin, Case Study Research: Design and Methods, 4th ed. Los
Angeles, CA, USA: Sage, 2009.

[63] J. M. Corbin and A. L. Strauss, Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory, 4th ed. Los
Angeles, CA, USA: Sage, 2015.

[64] G. Guest, A. Bunce, and L. Johnson, “How many interviews are
enough?: An experiment with data saturation and variability,”
Field Methods, vol. 18, no. 1, pp. 59–82, Feb. 2006, doi: 10.1177/
1525822X05279903.

[65] J. M. Morse, “‘Data were saturated ...,’” Qual. Health Res., vol. 25,
no. 5, pp. 587–588, May 2015, doi: 10.1177/1049732315576699.

[66] P. Fusch and L. Ness, “Are we there yet? Data saturation in qual-
itative research,”Qual. Rep., vol. 20, pp. 1408–1416, 2015.

[67] A. L. Strauss and J. M. Corbin, Grounded Theory in Practice. Thou-
sand Oaks, CA, USA: Sage, 1997.

[68] B. Saunders et al., “Saturation in qualitative research: Exploring
its conceptualization and operationalization,”Qual. Quant., vol. 52,
no. 4, pp. 1893–1907, Jul. 2018, doi: 10.1007/s11135-017-0574-8.

[69] S. McConnell, Code Complete, 2nd ed. Redmond, WA, USA:
Microsoft Press, 2004.

[70] J. Heiss, J. Eberhardt, and S. Tai, “From oracles to trustworthy
data on-chaining systems,” in Proc. IEEE Int. Conf. Blockchain,
2019, doi: 10.1109/Blockchain.2019.00075.

[71] J. Eberhardt and J. Heiss, “Off-chaining models and approaches
to off-chain computations,” in Proc. 2nd Workshop Scalable Resil-
ient Infrastructures Distrib. Ledgers, 2018, pp. 7–12, doi: 10.1145/
3284764.3284766.

[72] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object-
oriented design patterns in game development,” Inf. Softw. Tech-
nol., vol. 49, no. 5, pp. 445–454, May 2007, doi: 10.1016/j.
infsof.2006.07.003.

[73] D. Khazanchi, J. D. Murphy, and S. C. Petter, “Guidelines for
evaluating patterns in the IS domain,” in Proc. 3rd Midwest
United States Assoc. Inf. Syst. Conf., 2008. [Online]. Available:
https://digitalcommons.unomaha.edu/cgi/viewcontent.cgi?
article=1007&context=isqafacproc

[74] D. Lea, “Christopher alexander: An introduction for object-ori-
ented designers,” SIGSOFT Softw. Eng. Notes, vol. 19, no. 1,
pp. 39–46, Jan. 1994, doi: 10.1145/181610.181617.

[75] S. Niebuhr, K. Kohler, and C. Graf, “Engaging patterns: Chal-
lenges and means shown by an example,” in Engineering Interac-
tive Systems, vol. 4940, J. Gulliksen, M. B. Harning, P. Palanque,
G. C. van der Veer, and J. Wesson, Eds., Berlin, Germany:
Springer, 2008, pp. 586–600.

[76] M. J. Brotherson, “Interactive focus group interviewing: A quali-
tative research method in early intervention,” Top. Early Child-
hood Special Educ., vol. 14, no. 1, pp. 101–118, Jan. 1994.

[77] R. L. Gorden, Interviewing: Strategy, Techniques, and Tactics.
Homewood, IL, USA: Dorsey Press, 1975.

[78] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van
Keer, “Keccak implementation overview,” Accessed: Jul. 15,
2019. [Online]. Available: https://keccak.team/files/Keccak-
implementation-3.2.pdf

[79] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou,
“Hawk: The blockchain model of cryptography and privacy-pre-
serving smart contracts,” in Proc. IEEE Symp. Secur. Privacy, 2016,
pp. 839–858.

[80] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
crier: An authenticated data feed for smart contracts,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 270–282.

[81] S. Eskandari, S. Moosavi, and J. Clark, “SoK: Transparent dishon-
esty: Front-running attacks on blockchain,” in Financial Cryptog-
raphy and Data Security, vol. 11599, A. Bracciali, J. Clark, F.
Pintore, P. B. Rønne, and M. Sala, Eds. Cham, Switzerland:
Springer, 2020, pp. 170–189.

[82] ConsenSys, “Known attacks,” GitHub. Accessed: May 21, 2020.
[Online]. Available: https://github.com/ConsenSys/smart-
contract-best-practices/blob/master/docs/known_attacks.md

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4315

http://dx.doi.org/10.1007/978-3-030-80129-8_50
https://ethereum.org/en/whitepaper/
https://eips.ethereum.org/EIPS/eip-7
https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-guides/10_consensus_protocol.md#3-eosio-consensus-dpos--abft
https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-guides/10_consensus_protocol.md#3-eosio-consensus-dpos--abft
https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-guides/10_consensus_protocol.md#3-eosio-consensus-dpos--abft
https://github.com/EOSIO/eos-vm
https://github.com/EOSIO/eosio.contracts/blob/master/docs/01_key-concepts/02_ram.md
https://github.com/EOSIO/eosio.contracts/blob/master/docs/01_key-concepts/02_ram.md
https://github.com/EOSIO/eos/blob/master/docs/01_nodeos/07_concepts/05_storage-and-read-modes.md
https://github.com/EOSIO/eos/blob/master/docs/01_nodeos/07_concepts/05_storage-and-read-modes.md
https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-guides/40_accounts_and_permissions.md
https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-guides/40_accounts_and_permissions.md
https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-guides/40_accounts_and_permissions.md
https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-guides/20_transactions_protocol.md
https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-guides/20_transactions_protocol.md
https://medium.com/coinmonks/eosio-smart-contracts-tutorial-f22c3bb364d9
https://medium.com/coinmonks/eosio-smart-contracts-tutorial-f22c3bb364d9
https://github.com/EOSIO/welcome/blob/master/docs/40_smart-contract-guides/70_inline-action-to-external-contract.md
https://github.com/EOSIO/welcome/blob/master/docs/40_smart-contract-guides/70_inline-action-to-external-contract.md
https://github.com/EOSIO/welcome/blob/master/docs/40_smart-contract-guides/70_inline-action-to-external-contract.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/orderer/ordering_service.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/orderer/ordering_service.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/orderer/ordering_service.md
https://hyperledger-fabric.readthedocs.io/en/release-2.2/channels.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/channels.html
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/chaincode_lifecycle.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/chaincode_lifecycle.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/smartcontract/smartcontract.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/smartcontract/smartcontract.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/smartcontract/smartcontract.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/txflow.rst
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/txflow.rst
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/whatis.md#a-new-approach
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/whatis.md#a-new-approach
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/whatis.md#a-new-approach
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1177/1525822X05279903
http://dx.doi.org/10.1177/1525822X05279903
http://dx.doi.org/10.1177/1049732315576699
http://dx.doi.org/10.1007/s11135-017-0574-8
http://dx.doi.org/10.1109/Blockchain.2019.00075
http://dx.doi.org/10.1145/3284764.3284766
http://dx.doi.org/10.1145/3284764.3284766
http://dx.doi.org/10.1016/j.infsof.2006.07.003
http://dx.doi.org/10.1016/j.infsof.2006.07.003
https://digitalcommons.unomaha.edu/cgi/viewcontent.cgi?article=1007&context=isqafacproc
https://digitalcommons.unomaha.edu/cgi/viewcontent.cgi?article=1007&context=isqafacproc
http://dx.doi.org/10.1145/181610.181617
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://github.com/ConsenSys/smart-contract-best-practices/blob/master/docs/known_attacks.md
https://github.com/ConsenSys/smart-contract-best-practices/blob/master/docs/known_attacks.md

[83] Hyperledger Foundation, “Private data,” GitHub. Accessed: Feb. 2,
2021. [Online]. Available: https://github.com/hyperledger/fabric/
blob/release-2.2/docs/source/private-data/private-data.md

[84] Hyperledger Foundation, “Private data,” GitHub. Accessed:
Dec. 17, 2021. [Online]. Available: https://hyperledger-fabric.
readthedocs.io/en/release-2.2/private-data-arch.html?
highlight¼private%20data

[85] Hyperledger Foundation, “Membership service providers (MSP),”
GitHub. Accessed: Jan. 5, 2021. [Online]. Available: https://github.
com/hyperledger/fabric/blob/release-2.2/docs/source/msp.rst

[86] M. L€ucking, F. Kretzer, N. Kannengießer, M. Beigl, A. Sunyaev,
and W. Stork, “When data fly: An open data trading system in
vehicular ad-hoc networks,” Electronics, vol. 1, no. 5, pp. 1–22,
Mar. 2021, doi: 10.3390/electronics10060654.

[87] W. T. Info, “Did: Erc725 method,” GitHub. Accessed: Oct. 21, 2020.
[Online]. Available: https://github.com/WebOfTrustInfo/rwot6-
santabarbara/blob/master/topics-and-advance-readings/DID-
Method-erc725.md

[88] M. Luecking, C. Fries, R. Lamberti, and W. Stork, “Decentralized
identity and trust management framework for internet of
things,” in Proc. IEEE Int. Conf. Blockchain Cryptocurrency, 2020,
pp. 1–9, doi: 10.1109/ICBC48266.2020.9169411.

[89] S. Wang, C. Zhang, and Z. Su, “Detecting nondeterministic pay-
ment bugs in ethereum smart contracts,” Proc. ACM Prog. Lang.,
vol. 3, pp. 1–29, Oct. 2019, doi: 10.1145/3360615.

[90] Hyperledger, “Peers,” GitHub. Accessed: Feb. 17, 2021. [Online].
Available: https://github.com/hyperledger/fabric/blob/release-
2.2/docs/source/peers/peers.md

[91] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Potential
risks of hyperledger fabric smart contracts,” in Proc. IEEE Int.
Workshop Blockchain Oriented Softw. Eng., 2019, pp. 1–10,
doi: 10.1109/IWBOSE.2019.8666486.

[92] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public
randomness source,” Accessed: Sep. 17, 2018. [Online]. Avail-
able: https://eprint.iacr.org/2015/1015.pdf

[93] C. Pierrot and B. Wesolowski, “Malleability of the blockchain’s
entropy,” Cryptogr. Commun., vol. 10, no. 1, pp. 211–233,
Jan. 2018, doi: 10.1007/s12095-017-0264-3.

[94] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in con-
stantinople: Practical asynchronous byzantine agreement using
cryptography,” J. Cryptol., vol. 18, no. 3, pp. 219–246, Jul. 2005,
doi: 10.1007/s00145-005-0318-0.

[95] J. Chen and S. Micali, “Algorand: A secure and efficient distrib-
uted ledger,” Theor. Comput. Sci., vol. 777, pp. 155–183, Jul. 2019,
doi: 10.1016/j.tcs.2019.02.001.

[96] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “HydRand:
Practical continuous distributed randomness,” Accessed: Nov.
17, 2020. [Online]. Available: https://eprint.iacr.org/2018/319

[97] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani,
“Probabilistic smart contracts: Secure randomness on the block-
chain,” in Proc. IEEE Int. Conf. Blockchain Cryptocurrency, 2019,
pp. 403–412, doi: 10.1109/BLOC.2019.8751326.

[98] randao, “Random number in programming is very important!.”
Accessed: Jan. 03, 2021. [Online]. Available: https://github.
com/randao/randao/blob/master/README.md

[99] J. Li, Z. Zhang, and M. Li, “BanFEL: A blockchain based smart
contract for fair and efficient lottery scheme,” in Proc. IEEE Conf.
Dependable Secure Comput., 2019, pp. 1–8, doi: 10.1109/
DSC47296.2019.8937559.

[100] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 254–269, doi: 10.1145/2976749.2978309.

[101] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintaining
smart contracts on ethereum: Issues, techniques, and future
challenges,” Accessed: Mar. 12, 2021. [Online]. Available:
http://arxiv.org/abs/2007.00286

[102] A. Mavridou and A. Laszka, “Designing secure ethereum smart
contracts: A finite state machine based approach,” Accessed: Aug.
24, 2019. [Online]. Available: http://arxiv.org/abs/1711.09327

[103] Hyperledger Foundation, “Glossary,” GitHub. Accessed: Feb. 8,
2021. [Online]. Available: https://github.com/hyperledger/
fabric/blob/master/docs/source/glossary.rst

[104] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena,
“Exploiting the laws of order in smart contracts,” in Proc. 28th
ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2019, pp. 363–373,
doi: 10.1145/3293882.3330560.

[105] ISO/IEC JTC 1/SC 7 Software and systems engineering, “ISO/
IEC 14764:2006 software engineering — Software life cycle pro-
cesses — Maintenance,” Accessed: May 11, 2019. [Online]. Avail-
able: https://www.iso.org/standard/39064.html

[106] M. Bartoletti and L. Pompianu, “An empirical analysis of smart
contracts: Platforms, applications, and design patterns,” in Finan-
cial Cryptography and Data Security, Berlin, Germany: Springer,
2017, pp. 494–509.

[107] C. R. Worley and A. Skjellum, “Opportunities, challenges, and
future extensions for smart-contract design patterns,” in Proc.
Busi. Inf. Syst. Workshops, 2019, pp. 264–276, doi: 10.1007/978-3-
030-04849-5_24.

[108] Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao, “Applying design pat-
terns in smart contracts,” in Proc. Int. Conf. Blockchain, 2018,
pp. 92–106, doi: 10.1007/978-3-319-94478-4_7.

[109] M. Araoz, “Proxy libraries in solidity,” Medium. Accessed: May
18, 2018. [Online]. Available: https://medium.com/zeppelin-
blog/proxy-libraries-in-solidity-79fbe4b970fd

[110] P. Technologies, “A postmortem on the parity multi-sig library
self-destruct,” Parity. Accessed: Jul. 22, 2019. [Online]. Available:
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-
library-self-destruct/

[111] E. Foundation, “Expressions and control structures,” GitHub.
Accessed: Dec. 3, 2020. [Online]. Available: https://github.com/
ethereum/solidity/blob/v0.5.12/docs/control-structures.rst

[112] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract:
Attacks and protections,” IEEE Access, vol. 8, pp. 24416–24427,
2020, doi: 10.1109/ACCESS.2020.2970495.

[113] Y. Jeng, Y. Hsieh, and J.-L. Wu, “Step-by-step guidelines for mak-
ing smart contract smarter,” in Proc. IEEE 12th Conf. Serv. Oriented
Comput. Appl., 2019, pp. 25–32, doi: 10.1109/SOCA.2019.00012.

[114] Ethereum, “Introduction to smart contracts,” GitHub. Accessed:
Jan. 18, 2021. [Online]. Available: https://github.com/ethereum/
solidity/blob/v0.8.2/docs/introduction-to-smart-contracts.rst

[115] M. Kaleem, A. Mavridou, and A. Laszka, “Vyper: A security
comparison with solidity based on common vulnerabilities,” in
Proc. 2nd Conf. Blockchain Res. Appl. Innov. Netw. Serv., 2020,
pp. 107–111, doi: 10.1109/BRAINS49436.2020.9223278.

[116] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and
D. Tigano, “Design patterns for gas optimization in ethereum,”
in Proc. IEEE Int. Workshop Blockchain Oriented Softw. Eng., 2020,
pp. 9–15, doi: 10.1109/IWBOSE50093.2020.9050163.

[117] T. Chen et al., “GasChecker: Scalable analysis for discovering
gas-inefficient smart contracts,” IEEE Trans. Emerg. Top. Comput.,
vol. 9, no. 3, pp. 1433–1448, Third Quarter 2021.

[118] C. F. Torres, J. Sch€utte, and R. State, “Osiris: Hunting for integer
bugs in ethereum smart contracts,” in Proc. Annu. Comput. Secur.
Appl. Conf., 2018, pp. 664–676, doi: 10.1145/3274694.3274737.

[119] M. W€ohrer and U. Zdun, “Domain specific language for smart
contract development,” in Proc. IEEE Int. Conf. Blockchain Crypto-
currency, 2020, pp. 1–9, doi: 10.1109/ICBC48266.2020.9169399.

[120] A. C. Ca~nada, “Fixed pointmath in solidity,”Medium. Accessed: Jan.
31, 2020. [Online]. Available: https://medium.com/cementdao/
fixed-point-math-in-solidity-616f4508c6e8

[121] Vyperlang, “Vyper,” GitHub. Accessed: Oct. 27, 2020. [Online].
Available: https://github.com/vyperlang/vyper/blob/5db35
ef4eb07650eb57f769deba9d3dc22b646af/docs/index.rst

[122] A. Efremov, “Concurrency patterns for hyperledger fabric go
chaincode,” SAP Community. Accessed: Jun. 19, 2021. [Online].
Available: https://blogs.sap.com/2020/02/10/concurrency-
patterns-for-hyperledger-fabric-go-chaincode/

[123] Unknown, “Package sync,” GoLang. Accessed: Jul. 12, 2020.
[Online]. Available: https://golang.org/pkg/sync/

[124] Aniruddha, “Iterating over maps in go,” Medium. Accessed: Jan.
9, 2021. [Online]. Available: https://medium.com/i0exception/
map-iteration-in-go-275abb76f721

[125] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulner-
able does not imply exploited,” Accessed: Mar. 16, 2021.
[Online]. Available: http://arxiv.org/abs/1902.06710

[126] Ethereum, “Contract ABI specification,” Solidity v.0.6.10.
Accessed: Jul. 2, 2020. [Online]. Available: https://solidity.
readthedocs.io/en/v0.6.10/abi-spec.html

[127] Hyperledger, “Transaction handlers,” GitHub. Nov. 20, 2020.
[Online]. Available: https://github.com/hyperledger/fabric/
blob/release-2.2/docs/source/developapps/transactionhan-
dler.md.

4316 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/private-data/private-data.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/private-data/private-data.md
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data-arch.html?highlight=private%20data
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data-arch.html?highlight=private%20data
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data-arch.html?highlight=private%20data
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data-arch.html?highlight=private%20data
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data-arch.html?highlight=private%20data
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/msp.rst
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/msp.rst
http://dx.doi.org/10.3390/electronics10060654
https://github.com/WebOfTrustInfo/rwot6-santabarbara/blob/master/topics-and-advance-readings/DID-Method-erc725.md
https://github.com/WebOfTrustInfo/rwot6-santabarbara/blob/master/topics-and-advance-readings/DID-Method-erc725.md
https://github.com/WebOfTrustInfo/rwot6-santabarbara/blob/master/topics-and-advance-readings/DID-Method-erc725.md
http://dx.doi.org/10.1109/ICBC48266.2020.9169411
http://dx.doi.org/10.1145/3360615
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/peers/peers.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/peers/peers.md
http://dx.doi.org/10.1109/IWBOSE.2019.8666486
https://eprint.iacr.org/2015/1015.pdf
http://dx.doi.org/10.1007/s12095-017-0264-3
http://dx.doi.org/10.1007/s00145-005-0318-0
http://dx.doi.org/10.1016/j.tcs.2019.02.001
https://eprint.iacr.org/2018/319
http://dx.doi.org/10.1109/BLOC.2019.8751326
https://github.com/randao/randao/blob/master/README.md
https://github.com/randao/randao/blob/master/README.md
http://dx.doi.org/10.1109/DSC47296.2019.8937559
http://dx.doi.org/10.1109/DSC47296.2019.8937559
http://dx.doi.org/10.1145/2976749.2978309
http://arxiv.org/abs/2007.00286
http://arxiv.org/abs/1711.09327
https://github.com/hyperledger/fabric/blob/master/docs/source/glossary.rst
https://github.com/hyperledger/fabric/blob/master/docs/source/glossary.rst
http://dx.doi.org/10.1145/3293882.3330560
https://www.iso.org/standard/39064.html
http://dx.doi.org/10.1007/978-3-030-04849-5_24
http://dx.doi.org/10.1007/978-3-030-04849-5_24
http://dx.doi.org/10.1007/978-3-319-94478-4_7
https://medium.com/zeppelin-blog/proxy-libraries-in-solidity-79fbe4b970fd
https://medium.com/zeppelin-blog/proxy-libraries-in-solidity-79fbe4b970fd
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://github.com/ethereum/solidity/blob/v0.5.12/docs/control-structures.rst
https://github.com/ethereum/solidity/blob/v0.5.12/docs/control-structures.rst
http://dx.doi.org/10.1109/ACCESS.2020.2970495
http://dx.doi.org/10.1109/SOCA.2019.00012
https://github.com/ethereum/solidity/blob/v0.8.2/docs/introduction-to-smart-contracts.rst
https://github.com/ethereum/solidity/blob/v0.8.2/docs/introduction-to-smart-contracts.rst
http://dx.doi.org/10.1109/BRAINS49436.2020.9223278
http://dx.doi.org/10.1109/IWBOSE50093.2020.9050163
http://dx.doi.org/10.1145/3274694.3274737
http://dx.doi.org/10.1109/ICBC48266.2020.9169399
https://medium.com/cementdao/fixed-point-math-in-solidity-616f4508c6e8
https://medium.com/cementdao/fixed-point-math-in-solidity-616f4508c6e8
https://github.com/vyperlang/vyper/blob/5db35ef4eb07650eb57f769deba9d3dc22b646af/docs/index.rst
https://github.com/vyperlang/vyper/blob/5db35ef4eb07650eb57f769deba9d3dc22b646af/docs/index.rst
https://blogs.sap.com/2020/02/10/concurrency-patterns-for-hyperledger-fabric-go-chaincode/
https://blogs.sap.com/2020/02/10/concurrency-patterns-for-hyperledger-fabric-go-chaincode/
https://golang.org/pkg/sync/
https://medium.com/i0exception/map-iteration-in-go-275abb76f721
https://medium.com/i0exception/map-iteration-in-go-275abb76f721
http://arxiv.org/abs/1902.06710
https://solidity.readthedocs.io/en/v0.6.10/abi-spec.html
https://solidity.readthedocs.io/en/v0.6.10/abi-spec.html

[128] Ethereum, “Solidity assembly,” GitHub. Accessed: Jan. 3, 2021.
[Online]. Available: https://github.com/ethereum/solidity/blob/
v0.5.13/docs/assembly.rst

[129] EOSIO, “eosio.token.cpp,” GitHub. Feb. 20, 2021. [Online].
Available: https://github.com/EOSIO/eos/blob/dawn-v4.0.0/
contracts/eosio.token/eosio.token.cpp#L76

[130] S. Marx, “Stop using solidity’s transfer() now,” ConsenSys.
Accessed:, Apr. 1, 2020. [Online]. Available: https://diligence.
consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/

[131] K. Bhargavan et al., “Formal verification of smart contracts: Short
paper,” in Proc. ACM Workshop Prog. Lang. Anal. Secur., 2016,
pp. 91–96, doi: 10.1145/2993600.2993611.

[132] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Pro-
tecting existing smart contracts against re-entrancy attacks,”
Accessed: Aug. 24, 2019. [Online]. Available: http://arxiv.
org/abs/1812.05934

[133] S. Grossman et al., “Online detection of effectively callback free
objects with applications to smart contracts,” Proc. ACM Prog.
Lang., vol. 2, pp. 1–28, Jan. 2018, doi: 10.1145/3158136.

[134] vyperlang, “Structure of a contract,”GitHub. Accessed: Jan. 4, 2021.
[Online]. Available: https://github.com/vyperlang/vyper/blob/
v0.1.0-beta.12/docs/structure-of-a-contract.rst

[135] L. Desrosiers and R. Olivieri, “Oracles: Common architectural pat-
terns for hyperledger fabric,” IBMDeveloper. Accessed: Jan. 11, 2021.
[Online]. Available: https://developer.ibm.com/technologies/
blockchain/articles/oracles-common-architectural-patterns-for-
fabric

[136] X. Xu, I. Weber, and M. Staples, “Blockchain patterns,” in Archi-
tecture For Blockchain Applications, Cham, Switzerland: Springer,
2019, pp. 113–148.

[137] EOS. Authority, “EOSIO watcher plugin by EOS authority,”
GitHub. Accessed: Jan. 2, 2021. [Online]. Available: https://
github.com/eosauthority/eosio-watcher-plugin

[138] EOSIO, “How EOS get data from outside world,” Github.
Accessed: Feb. 13, 2021. [Online]. Available: https://github.
com/EOSIO/eos/issues/1483

[139] DOS. Network, “DOS network - A decentralized oracle service
boosting blockchain usability with off-chain data & verifiable
computing power,” Accessed: Jun. 02, 2020. [Online]. Available:
https://dosnetwork.github.io/docs/#/homepage.

[140] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kas-
tania, “Astraea: A decentralized blockchain oracle,” in Proc. IEEE
Int. Conf. Internet Things Green Comput. Commun Cyber Phys. Social
Comput Smart Data, 2018, pp. 1145–1152, doi: 10.1109/
Cybermatics_2018.2018.00207.

[141] J. Chow, “A guide to events and logs in ethereum smart contrac-
ts,” ConsenSys Blog. Accessed: Jun. 17, 2019. [Online]. Available:
https://consensys.net/blog/blockchain-development/guide-to-
events-and-logs-in-ethereum-smart-contracts/

[142] Ethereum Foundation, “Solidity documentation - Types,”
Accessed: Jul. 09, 2020. [Online]. Available: https://github.com/
ethereum/solidity/blob/v0.5.12/docs/types.rst

[143] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart
contracts devour your money,” in Proc. IEEE 24th Int. Conf.
Softw. Anal. Evol. Reeng., 2017, pp. 442–446, doi: 10.1109/
SANER.2017.7884650.

[144] T. Chen et al., “Towards saving money in using smart contracts,”
in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng. New Ideas Emerg.
Technol. Results, 2018, pp. 81–84.

[145] R. Hitches, “Getting loopy with solidity,”Medium. Accessed: Sep.
23, 2019. Aaccessed: Sep. 23, 2019. [Online]. Available: https://
blog.b9lab.com/getting-loopy-with-solidity-1d51794622ad

[146] J. Goddard, “Shadowing solidity storage variables in memory,”
Medium. Accessed: Mar. 9, 2021. [Online]. Available: https://
medium.com/coinmonks/shadowing-solidity-storage-
variables-in-memory-b56f471edd81

[147] A. Sunyaev et al., “Token economy,” Bus. Inf. Syst. Eng., vol. 63,
pp. 457–478, Feb. 2021, doi: 10.1007/s12599-021-00684-1.

[148] A. Vitanov, “Solidity smart contracts design patterns,” Medium.
Accessed: Feb. 12, 2020. [Online]. Available: https://medium.com/
@i6mi6/solidty-smart-contracts-design-patterns-ecfa3b1e9784

[149] W. Zou et al., “Smart contract development: Challenges and
opportunities,” IEEE Trans. Softw. Eng., early access, Sep. 24,
2019, doi: 10.1109/TSE.2019.2942301.

[150] Ethereum, “Style guide,” GitHub. Accessed: Nov. 27, 2020.
[Online]. Available: https://github.com/ethereum/solidity/
blob/v0.7.0/docs/style-guide.rst

[151] Hyperledger, “Coding guidelines,”GitHub. Accessed:Nov. 3, 2020.
[Online]. Available: https://github.com/hyperledger/fabric/
blob/release-2.2/docs/source/smartcontract/smartcontract.md

[152] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, “EASYFLOW:
Keep ethereum away from overflow,” in Proc. IEEE/ACM 41st
Int. Conf. Softw. Eng. Companion - Companion, 2019, pp. 23–26,
doi: 10.1109/ICSE-Companion.2019.00029.

[153] OpenZeppelin, “SafeMath,” Accessed: Aug. 23, 2019. [Online].
Available: https://github.com/OpenZeppelin/openzeppelin-
solidity/blob/master/contracts/math/SafeMath.sol

[154] Ethereum, “Solidity v0.8.0 breaking changes,” GitHub. Accessed:
Nov. 27, 2020. [Online]. Available: https://github.com/ethereum/
solidity/blob/v0.8.0/docs/080-breaking-changes.rst

[155] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou,
“Detecting ponzi schemes on ethereum: Towards healthier
blockchain technology,” in Proc. World Wide Web Conf., 2018,
pp. 1409–1418, doi: 10.1145/3178876.3186046.

[156] G. Konstantopoulos, “How to secure your smart contracts: 6 solid-
ity vulnerabilities and how to avoid them (Part 2),” Medium.
Accessed: Oct. 28, 2019. [Online]. Available: https://medium.com/
loom-network/how-to-secure-your-smart-contracts-6-solidity-
vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834

[157] A. Hertig, “Rise of replay attacks intensifies ethereum divide,”
Coinbase. Accessed: Feb. 23, 2020. [Online]. Available: https://
www.coindesk.com/rise-replay-attacks-ethereum-divide

[158] L. Quan, L. Wu, and H. Wang, “EVulHunter: Detecting fake
transfer vulnerabilities for EOSIO’s smart contracts at webassem-
bly-level,” Accessed: Mar. 17, 2021. [Online]. Available: http://
arxiv.org/abs/1906.10362

[159] A. S. Tanenbaum andM. van Steen,Distributed Systems: Principles
and Paradigms, 2nd ed. Upper Saddle River, NJ, USA: Pearson
Educ., 2016.

[160] Hyperledger, “Using CouchDB,” GitHub. Accessed: Feb. 17,
2021. [Online]. Available: https://github.com/hyperledger/
fabric/blob/release-2.2/docs/source/couchdb_tutorial.rst

[161] N. Kannengießer, M. Pfister, M. Greulich, S. Lins, and A. Sunyaev,
“Bridges between islands: Cross-chain technology for distributed
ledger technology,” in Proc. Hawaii Int. Conf. Syst. Sci., 2020,
pp. 5298–5307.

[162] Ethereum Foundation, “eip-1,” GitHub. Accessed: Mar.19, 2021.
[Online]. Available: https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-1.md

[163] P. Antonino and A. W. Roscoe, “Formalising and verifying smart
contracts with solidifier: A bounded model checker for solidity,”
Accessed: Mar. 14, 2021. [Online]. Available: http://arxiv.org/
abs/2002.02710

[164] X. Bai, Z. Cheng, Z. Duan, and K. Hu, “Formal modeling and
verification of smart contracts,” in Proc. 7th Int. Conf. Softw. Com-
put. Appl., 2018, pp. 322–326, doi: 10.1145/3185089.3185138.

[165] T. Abdellatif and K. L. Brousmiche, “Formal verification of smart
contracts based on users and blockchain behaviors models,” in
Proc. 9th IFIP Int. Conf. New Technol. Mobility Secur., 2018, pp. 1–5,
doi: 10.1109/NTMS.2018.8328737.

[166] S. Rezaei, E. Khamespanah, M. Sirjani, A. Sedaghatbaf, and
S. Mohammadi, “Developing safe smart contracts,” in Proc. IEEE
44th Annu. Comput. Softw. Appl. Conf., 2020, pp. 1027–1035, doi:
10.1109/COMPSAC48688.2020.0-137.

[167] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis frame-
work for smart contracts,” in Proc. IEEE/ACM 2nd Int. Workshop
Emerg. Trends Softw. Eng. Blockchain, 2019, pp. 8–15, doi: 10.1109/
WETSEB.2019.00008.

[168] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei,
“eThor: Practical and provably sound static analysis of ethereum
smart contracts,” Accessed: Mar. 14, 2021. [Online]. Available:
http://arxiv.org/abs/2005.06227

[169] Y.Huang,Q.Kong,N. Jia, X. Chen, andZ. Zheng, “Recommending
differentiated code to support smart contract update,” in Proc.
IEEE/ACM 27th Int. Conf Prog. Comprehension, 2019, pp. 260–270,
doi: 10.1109/ICPC.2019.00045.

[170] A. Miller, Z. Cai, and S. Jha, “Smart contracts and opportunities
for formal methods,” in Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice, T. Margaria and B.
Steffen, Eds., Cham, Switzerland: Springer, 2018, pp. 280–299.

[171] Z. Li, H.Wu, J. Xu, X.Wang, L. Zhang, and Z. Chen, “MuSC: A tool
for mutation testing of ethereum smart contract,” in Proc. 34th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2019, pp. 1198–1201,
doi: 10.1109/ASE.2019.00136.

KANNENGIEßER ETAL.: CHALLENGES AND COMMON SOLUTIONS IN SMARTCONTRACT DEVELOPMENT 4317

https://github.com/ethereum/solidity/blob/v0.5.13/docs/assembly.rst
https://github.com/ethereum/solidity/blob/v0.5.13/docs/assembly.rst
https://github.com/EOSIO/eos/blob/dawn-v4.0.0/contracts/eosio.token/eosio.token.cpp#L76
https://github.com/EOSIO/eos/blob/dawn-v4.0.0/contracts/eosio.token/eosio.token.cpp#L76
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
http://dx.doi.org/10.1145/2993600.2993611
http://arxiv.org/abs/1812.05934
http://arxiv.org/abs/1812.05934
http://dx.doi.org/10.1145/3158136
https://github.com/vyperlang/vyper/blob/v0.1.0-beta.12/docs/structure-of-a-contract.rst
https://github.com/vyperlang/vyper/blob/v0.1.0-beta.12/docs/structure-of-a-contract.rst
https://developer.ibm.com/technologies/blockchain/articles/oracles-common-architectural-patterns-for-fabric
https://developer.ibm.com/technologies/blockchain/articles/oracles-common-architectural-patterns-for-fabric
https://developer.ibm.com/technologies/blockchain/articles/oracles-common-architectural-patterns-for-fabric
https://github.com/eosauthority/eosio-watcher-plugin
https://github.com/eosauthority/eosio-watcher-plugin
https://github.com/EOSIO/eos/issues/1483
https://github.com/EOSIO/eos/issues/1483
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00207
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00207
https://consensys.net/blog/blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts/
https://consensys.net/blog/blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts/
https://github.com/ethereum/solidity/blob/v0.5.12/docs/types.rst
https://github.com/ethereum/solidity/blob/v0.5.12/docs/types.rst
http://dx.doi.org/10.1109/SANER.2017.7884650
http://dx.doi.org/10.1109/SANER.2017.7884650
https://blog.b9lab.com/getting-loopy-with-solidity-1d51794622ad
https://blog.b9lab.com/getting-loopy-with-solidity-1d51794622ad
https://medium.com/coinmonks/shadowing-solidity-storage-variables-in-memory-b56f471edd81
https://medium.com/coinmonks/shadowing-solidity-storage-variables-in-memory-b56f471edd81
https://medium.com/coinmonks/shadowing-solidity-storage-variables-in-memory-b56f471edd81
http://dx.doi.org/10.1007/s12599-021-00684-1
https://medium.com/@i6mi6/solidty-smart-contracts-design-patterns-ecfa3b1e9784
https://medium.com/@i6mi6/solidty-smart-contracts-design-patterns-ecfa3b1e9784
http://dx.doi.org/10.1109/TSE.2019.2942301
https://github.com/ethereum/solidity/blob/v0.7.0/docs/style-guide.rst
https://github.com/ethereum/solidity/blob/v0.7.0/docs/style-guide.rst
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/smartcontract/smartcontract.md
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/smartcontract/smartcontract.md
http://dx.doi.org/10.1109/ICSE-Companion.2019.00029
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/ethereum/solidity/blob/v0.8.0/docs/080-breaking-changes.rst
https://github.com/ethereum/solidity/blob/v0.8.0/docs/080-breaking-changes.rst
http://dx.doi.org/10.1145/3178876.3186046
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://www.coindesk.com/rise-replay-attacks-ethereum-divide
https://www.coindesk.com/rise-replay-attacks-ethereum-divide
http://arxiv.org/abs/1906.10362
http://arxiv.org/abs/1906.10362
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/couchdb_tutorial.rst
https://github.com/hyperledger/fabric/blob/release-2.2/docs/source/couchdb_tutorial.rst
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1.md
http://arxiv.org/abs/2002.02710
http://arxiv.org/abs/2002.02710
http://dx.doi.org/10.1145/3185089.3185138
http://dx.doi.org/10.1109/NTMS.2018.8328737
http://dx.doi.org/10.1109/COMPSAC48688.2020.0-137
http://dx.doi.org/10.1109/WETSEB.2019.00008
http://dx.doi.org/10.1109/WETSEB.2019.00008
http://arxiv.org/abs/2005.06227
http://dx.doi.org/10.1109/ICPC.2019.00045
http://dx.doi.org/10.1109/ASE.2019.00136

[172] J. Gao et al., “Towards automated testing of blockchain-based
decentralized applications,” in Proc. 27th Int. Conf. Prog. Compre-
hension, 2019, pp. 294–299, doi: 10.1109/ICPC.2019.00048.

[173] E. Andesta, F. Faghih, and M. Fooladgar, “Testing smart con-
tracts gets smarter,” Accessed: Mar. 19, 2021. [Online]. Available:
http://arxiv.org/abs/1912.04780

[174] B. Hu et al., “A comprehensive survey on smart contract
construction and execution: Paradigms, tools, and systems,” Pat-
terns, vol. 2, no. 2, Feb. 2021, Art. no. 100179, doi: 10.1016/j.
patter.2020.100179.

[175] M. E. Peck, “Blockchain world - Do you need a blockchain? This
chart will tell you if the technology can solve your problem,”
IEEE Spectr, vol. 54, no. 10, pp. 38–60, Oct. 2017.

[176] V. Dwivedi, V. Deval, A. Dixit, and A. Norta, “Formal-verifica-
tion of smart-contract languages: A survey,” in Proc. Adv. Com-
put. Data Sci., 2019, pp. 738–747.

[177] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart
contract formal specification and verification,” Accessed: Jun. 19,
2021. [Online]. Available: http://arxiv.org/abs/2008.02712

[178] M. Demir, M. Alalfi, O. Turetken, and A. Ferworn, “Security
smells in smart contracts,” in Proc. IEEE 19th Int. Conf. Softw.
Qual. Rel. Secur. Companion, 2019, pp. 442–449, doi: 10.1109/QRS-
C.2019.00086.

[179] C. Alexander, “The origins of pattern theory: The future of the
theory, and the generation of a living world,” IEEE Softw, vol. 16,
no. 5, pp. 71–82, Oct. 1999.

[180] N. He et al., “Security analysis of EOSIO smart contracts,”
Accessed: Mar. 14, 2021. [Online]. Available: http://arxiv.org/
abs/2003.06568

[181] The Ontology Team, “Multi-VM in ontology 2.0: The first to sup-
port seamless contract interactions among three environments,”
Medium, May 12, 2020. [Online]. Available: https://medium.
com/ontologynetwork/multi-vm-in-ontology-2-0-f76178022ad4

[182] R. Hitchens, “Storage pointers in solidity,” Medium. Accessed:
Mar. 17, 2011. [Online]. Available: https://blog.b9lab.com/
storage-pointers-in-solidity-7dcfaa536089

Niclas Kannengießer is currently a research
associate with KASTEL Security Labs and the
Institute of Applied Computer Science and Formal
Description Methods, Karlsruhe Institute of Tech-
nology, Germany. He has authored or coauthored
in journals, including the IEEE Access, ACM
Computing Surveys, and Business and Informa-
tion Systems Engineering. His research interests
include software engineering, the analysis of
system behaviors of distributed systems, such as
distributed ledger technology systems, and the
investigation of human interactions with software
systems.

Sebastian Lins is currently a research associate
with the Institute of Applied Computer Science and
Formal Description Methods, Karlsruhe Institute of
Technology, Germany. He has authored or coau-
thored in international journals, including the IEEE
Transactions on Cloud Computing, ACM Comput-
ing Surveys, and Business and Information Sys-
tems Engineering, and conference proceedings,
including International Conference on Information
Systems. His research interests include the design,
development, and evaluation of reliable, secure,
and purposeful software and information systems.

Christian Sander studied industrial engineering
with the Technical University of Karlsruhe. As
Lead Blockchain and Distributed Ledger Technol-
ogies at EnBW Energie Baden-W€urttemberg AG,
he deals with the application of distributed ledger
technologies in the energy industry. His tasks
range from technology scanning and business
model analysis to the implementation of applica-
tions, including energy sharing and proof of origin
and quality. He has more than 20 years of experi-
ence in ITmanagement and the energy sector.

Klaus Winter studied landscape ecology and
computer science with the University of M€unster.
He worked on expert systems, geoinformation
systems, and radio wave propagation models in
telecommunications. Since 1997, he has been
active in different fields of the IT Department,
EnBW Energie Baden-W€urttemberg AG. His
research interests include IT architectures and
distributed ledger technologies in the context of
sustainable distributed energy systems.

Hellmuth Frey received the degree in electrical
engineering from the Technical University of
Munich, Germany. Since 2008, he has been a dep-
uty head of the Department Research and Devel-
opment, EnBW Energie Baden-W€urttemberg AG,
Karlsruhe, Germany. In current projects, in the field
of smart energy, he dealswith the transformation of
electricity grids toward smart grids and the digitali-
zation of existing products and identification of new
products for customers and quarters.

Ali Sunyaev (Member, IEEE) is professor for
computer science with the Karlsruhe Institute
of Technology, Germany. His research work
accounts for the multifaceted use contexts of digi-
tal technologies with research on human behavior
affecting information systems and vice versa. He
has authored or coauthored papers in journals,
including ACM CSUR, JIT, JMIS, IEEE Transac-
tions on Cloud Computing, and Communications
of the ACM. His research interests include
complex information systems, information infra-

structures, cloud computing services, distributed ledger technology,
information privacy, auditing or certification of IT, digital health, and trust-
worthy AI.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4318 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

http://dx.doi.org/10.1109/ICPC.2019.00048
http://arxiv.org/abs/1912.04780
http://dx.doi.org/10.1016/j.patter.2020.100179
http://dx.doi.org/10.1016/j.patter.2020.100179
http://arxiv.org/abs/2008.02712
http://dx.doi.org/10.1109/QRS-C.2019.00086
http://dx.doi.org/10.1109/QRS-C.2019.00086
http://arxiv.org/abs/2003.06568
http://arxiv.org/abs/2003.06568
https://medium.com/ontologynetwork/multi-vm-in-ontology-2-0-f76178022ad4
https://medium.com/ontologynetwork/multi-vm-in-ontology-2-0-f76178022ad4
https://blog.b9lab.com/storage-pointers-in-solidity-7dcfaa536089
https://blog.b9lab.com/storage-pointers-in-solidity-7dcfaa536089

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

