IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

4611

Aroc: An Automatic Repair Framework for
On-Chain Smart Contracts

Hai Jin™, Fellow, IEEE, Zeli Wang

, Ming Wen

, Weigi Dai*, Yu Zhu, and Deqing Zou

Abstract—Ongoing smart contract attack events have seriously impeded the practical application of blockchain. Although lots of
researches have been conducted, they mostly focus on off-chain vulnerability detection. However, smart contracts cannot be modified
once they have been deployed on-chain, thus existing techniques cannot protect those deployed contracts from being attacked. To
mitigate this problem, we propose a general smart contract repairer named Aroc, which can automatically patch vulnerable deployed
contracts without changing the contract codes. The core insight of Aroc is to generate patch contracts to abort malicious transactions in
advance. Taking the three most serious bug types (i.e., reentrancy, arithmetic bugs, and unchecked low-level checks) as examples, we
present how Aroc automatically repairs them on-chain. We conduct abundant evaluations on four kinds of datasets to evaluate the
effectiveness and efficiency of Aroc. In particular, Aroc can repair 95.95% of the vulnerable contracts with an average correctness ratio of
983.32%. Meanwhile, Aroc introduces acceptable additional overheads to smart contract users and blockchain miners. When compared
with the state-of-the-art techniques, Aroc introduces either fewer execution overheads or contract codes.

Index Terms—Smart contract, vulnerability, repair, on-chain protection

*

1 INTRODUCTION

APPLYING smart contracts in blockchain is an epoch-mark-
ing milestone in blockchain development history.
Etherum, a popular platform, is the first smart contract blok-
chain, so we focus on ethereum in the paper. Since then,
blockchain can support diverse business requirements in
widespread fields [1], [2]. Consequently, more and more digi-
tal assets have been linked to smart contracts. However, they
have suffered heavy losses from widespread attacks [3]. The
slow mist community [4] reports the money lost by merely
hacking ethereum DApps have reached to 531,300,756.56 dol-
lars [5]. What is even worse is that people have gradually lost
confidence in blockchain. To prevent contracts from being
hacked, many vulnerability detection tools have been pro-
posed, such as Osiris [6], Zeus [7], EthRacer [8], and Solar [9].
Osiris can effectively dig out diverse integer bugs [6]; Zeus

Hai Jin and Zeli Wang are with the National Engineering Research Cen-
ter for Big Data Technology and System, Services Computing Technology
and System Lab, Cluster and Grid Computing Lab, School of Computer
Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China. E-mail: {hjin, zeliwangj@hust.edu.cn.

Ming Wen, Weiqi Dai, Yu Zhu, and Deging Zou are with the National
Engineering Research Center for Big Data Technology and System, Serv-
ices Computing Technology and System Lab, Hubei Engineering Research
Center on Big Data Security, School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail: {mwenaa, wqdai, zy_hust, deqingzou}@hust.edu.cn.

Manuscript received 11 January 2021; revised 12 August 2021; accepted 26 Sep-
tember 2021. Date of publication 27 October 2021; date of current version 14
November 2022.

This work was supported by the National Key Research and Development Pro-
gram of China under Grant 2020YFB1006000, the National Natural Science
Foundation of China under Grants 62072202 and 62002125, the Science and
Technology Program of Guangzhou, China under Grant 201902020016,
and the Fundamental Research Funds for the Central Universities under
Grant HUST: 2020]YCX]JJ068.

(Corresponding author: Ming Wen.)

Recommended for acceptance by X. Zhang.

Digital Object Identifier no. 10.1109/TSE.2021.3123170

can transfer source codes embedded with assertion predicts
into LLVM intermediate language, and then verify their
safety [7]; EthRacer focuses on event-ordering bugs by com-
bining dynamic symbolic executions and fuzzing technolo-
gies [8]; Solar can automatically synthesize attack contracts
for a given vulnerable contract [9]. However, they are all off-
chain tools and cannot guarantee deployed contracts from
being attacked. Besides, merely relying on such off-chain
audit technologies is very risky since smart contracts cannot
be modified on chain. Therefore, there is an emergent need
for on-chain contract protection countermeasures.

Several approaches have been proposed to protect
deployed contracts [10], [11], [12]. Sereum [10] dynamically
prevents reentrancy attacks through monitoring transaction
executions, and throws exceptions when the executions are
consistent with predefined vulnerability patterns. However,
Sereum can only handle reentrancy bugs. Hydra [11], based
on n-version programming, deploys multiple versions of con-
tracts with the same functions and determines execution cor-
rectness by comparing the results of different versions.
However, it cannot support all opcodes such as CREATE and
DELEGATECALL. The contract upgrade model [12] separates
data access codes from logic process codes. When a logic con-
tract becomes vulnerable, it can be substituted by a new
repaired version through the proxy contract. But this method
cannot handle the vulnerable data contracts. To sum up, cur-
rent proposals are neither general enough to protect diverse
vulnerability types nor flexible enough towards random vul-
nerability discovery locations. An ideal approach should deal
with diverse bug types without assuming that specific loca-
tions are bug-free.

To realize this goal, we propose Aroc, an on-chain smart
contract repair framework, which can generate patches to
plug up loopholes in deployed vulnerable smart contracts.
Since anything stored in blockchain cannot be tampered, we
must repair contracts without modifying their codes, which

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-5053-5201
https://orcid.org/0000-0002-5053-5201
https://orcid.org/0000-0002-5053-5201
https://orcid.org/0000-0002-5053-5201
https://orcid.org/0000-0002-5053-5201
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0003-0666-8231
https://orcid.org/0000-0003-0666-8231
https://orcid.org/0000-0003-0666-8231
https://orcid.org/0000-0003-0666-8231
https://orcid.org/0000-0003-0666-8231
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
mailto:hjin@hust.edu.cn
mailto:zeliwang@hust.edu.cn
mailto:mwenaa@hust.edu.cn
mailto:wqdai@hust.edu.cn
mailto:zy_hust@hust.edu.cn
mailto:deqingzou@hust.edu.cn

4612

is extraordinarily challenging and tricky. The core idea of
this work is to leverage independent smart contracts embed-
ded with secure rules (patches) to block malicious transac-
tions in advance. Specifically, we enhance Ethereum Virtual
Machine (EVM) to support contracts binding and transac-
tions verification. Given a vulnerable smart contract, Aroc
first automatically generates a patch contract containing
secure rules based on the repair template, and deploys the
patch on blockchain as a regular contract. Second, the owner
of the vulnerable contract needs to send a special transaction
through our enhanced EVM to wrap the contract with the
patch. Finally, any transaction that invokes the vulnerable
contract will be first verified by the submitted patch. Then
those transactions that trigger potential vulnerabilities will
be blocked. Therefore, the original vulnerable contract can
be protected from being attacked. Be noted that patches in
this work are different from the traditional ones, which do
not involve complete functionalities of the vulnerable con-
tracts. Since smart contracts that are deployed on blockchain
cannot be modified, one cannot directly apply traditional
patches (i.e., in the form of code changes) on them. Essen-
tially, our patches are actually transaction verifiers which
contain secure constraints that vulnerable transactions must
obey. The constraints should have been programmed in the
vulnerable contracts to guard safety. Since deployed con-
tracts cannot be modified, we put the constraints in a sepa-
rate contract to enforce them work, indirectly repairing the
contracts. Since our generated patches serve for the same
functionalities as the traditional patches, we referred to them
as “patches” in our paper.

Designing Aroc has the following key challenges: 1) How
to efficiently access state variables of the vulnerable contracts in
patches? In smart contracts, plenty of vulnerabilities are
caused by contract state variables (i.e., global variables). For
example, contracts always use the state variable balance
to record the contract balances. Therefore, the generated
patches must fetch these data to perform necessary verifica-
tions. Moreover, to restrict the overheads (i.e., contract run-
time gas consumptions) within an acceptable range, such a
process must be efficient. 2) How to generate the solidity path
constraints reaching the vulnerable statements? Blocking trans-
actions by examining whether they violate secure rules may
introduce false positives. We should first examine whether
they can pass path constraints to reach the target locations.
However, deriving constraints is a non-trivial task. It is
because conditions can be enforced in diverse syntactic
structures in smart contracts such as require, assert,
if, and many other hybrid syntactic structures. 3) How to
define effective secure rules for diverse vulnerability types? Dif-
ferent contract vulnerabilities have distinct features, and
even one bug type has diverse manifestation patterns.
Hence, using a uniform standard to identify and repair
them is hard. 4) How to automatically synthesize and deploy a
patch contract to make it effectively work? Code synthesis is
generally recognized as a challenging task. Especially in our
task, we need to automatically create demand-driven and
brand-new contracts to protect vulnerable smart contracts.

For the first challenge, Aroc utilizes the execution princi-
ples of the delegatecall [13] to meticulously design the
structure of patches. Namely, patches first make the same
state variable declarations as the vulnerable contracts. Then

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Aroc enforces that patches are delegate called by the vulner-
able contracts with the verifying transactions in EVM. So
patches can directly access the state variables of the vulnera-
ble contracts according to delegatecall principles.

For the second challenge, one may think it easy to obtain
target path constraints via symbolic execution. Yet, the tech-
nology will introduce substantial symbolic variables, which
are hard to be mapped to the variables declared in the con-
tracts. Therefore, the path constraints involving such inter-
mediate variables are difficult to be embedded into patch
contracts. We elude this by extracting conditional expres-
sions as path constraints from coarse-grained program sli-
ces derived through backward analysis on the Control Flow
Graph (CFG). Since slices range from the starting point of
the function to the target line, the target line control flow
depends on the conditional expressions in the slices. How-
ever, raw conditions may involve local variables of the vul-
nerable functions, and the patches cannot identify them
since only state variables are declared in patches as men-
tioned above. Besides, we enforce that a patch has the same
function head (i.e., function name and parameters) as the
vulnerable function head. Therefore, we further rewrite raw
conditional expressions by function parameters and state
variables as path constraints through data flow analysis.
Compared with symbolic execution, we avoid path explo-
sion by backward static analysis and symbolic constraints
transformation by data flow analyzing on source codes.

For the third challenge, bearing the core idea that most
vulnerabilities are posed by incomplete permission control,
we design appropriate access control rules for diverse vul-
nerability types. Specifically, we take arithmetic bugs, reen-
trancy, and unchecked low-level calls as examples, since
they are the most common vulnerabilities that lead to seri-
ous consequences [14]. We present the detailed secure rules
and automatic patch generation processes in the following
sections. Finally, we design repair templates for the above
three bug types. Each template gives an outline of the
patches for a specific bug type, which specifies the code
entities that are required to be generated. Based on the tem-
plate and information of the vulnerable contracts such as
Abstract Syntax Tree (AST), path constraints and bug type,
Aroc first generates the patches” AST and then converts it to
a solidity contract. Meanwhile, we provide an enhanced
EVM to help bind the patches with the targeted vulnerable
contracts. Whenever any transaction tries to call the vulner-
able contracts, the associated patches will verify the trans-
action’s legality based on inputs and contract storage states.
Only those transactions that will not trigger vulnerabilities
can be executed, thus protecting vulnerable contracts.

We evaluate Aroc on four kinds of datasets provided by
smartBugs [15], EVMPatch [16], ContractGuard [17], and
Sereum [10] respectively. In particular, Aroc can automati-
cally patch 95.95% of the contracts with a high correctness
ratio of 93.32%. Meanwhile, Aroc outperforms existing the
state-of-the-art techniques to some extent. For instance,
Aroc usually takes less execution overheads than Contrac-
tGuard [17], and introduces less contract codes than EVM-
Patch [16]. Moreover, Aroc not only can repair traditional
reentrancy vulnerabilities but also is effective on two new
reentrancy patterns proposed in Sereum [10]. In summary,
our contributions are as follows:

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

e We are the first to propose an automatic on-chain
contract protection countermeasure for various vul-
nerabilities without modifying original contracts.

e We present an efficient way to automatically synthe-
size patch contracts based on backward slicing and
data flow analysis.

e We implement a framework, named Aroc, which
consists of an automatic patch synthesis system and
an on-chain contract protection system. Given con-
tract source codes, the vulnerable lines, and the bug
types, Aroc can automatically protect vulnerable
deployed contracts.

e We perform abundant evaluations on four kinds of
datasets to demonstrate that our proposal is practical
and useful.

2 BACKGROUND

Smart Contracts. Blockchain is a distributed decentralized
ledger, which is naturally tamper-proof, transparent, and
decentralized. Smart contracts are executable codes on
blockchain, so contracts also inherit the above features. Cur-
rently, the most popular contract programming language is
solidity (the main target of this study). Because any execu-
tion of contracts is consented by all peers and exposed to
the public, contracts can be fully trusted if free of vulner-
abilities. However, smart contracts are frequently attacked
because of their particular features. For example, tamper-
proofing prevents vulnerable deployed contracts from
being patched directly; transparency facilitates attackers in
identifying fragile targets. Consequently, there is an urgent
requirement to mitigate such problems. Next, we introduce
some bases of smart contracts that our paper involves.

The Operation Mechanism of Smart Contracts. There are two
types of accounts in ethereum, External Owned Accounts
(EOAs) and contract accounts, which can both interact with
the blockchain. A public-private key pair controls EOAs, and
the contract codes manage their own contract accounts.
EOAs send a transaction attached with bytecodes to deploy a
contract. Miners will then create a corresponding contract
account holding its vital information such as the creator and
bytecodes, and compute a unique ID (the contract address) as
its identity in the blockchain. To invoke a function, the con-
tract address, executing function signature (equal to the ID of
function in the contract), and the parameters should be
explicitly provided. The miners will load the bytecodes from
the address and input data (including function signature and
parameters) from the transaction into EVM, which is an iso-
lated execution environment for ethereum smart contracts.

EVM will find the bytecodes of targeted function based on
the function signature and execute them. Precisely, each byte
in the bytecodes corresponds to a low-level instruction, and
there is a detailed definition for all instructions, including
the operation semantics and gas costs [18]. After executing
each instruction, EVM will accumulate all consumed gases
from the first executed instruction. EVM will throw excep-
tions if all gases provided in the transaction are consumed
out. Consumed gases will be rewarded to miners. The gas
mechanism can protect ethereum from distributed denial of
service attacks such as endless computations and also moti-
vate miners to participate in the blockchain consensus.

Repair

AST generator

(=

Sl <
- g e~og
@._ Blockchain ’
@ o

4613

l¢— Transaction
(Tx)

template
- Patch binding [Exploit prevention
o— Malicious tx
Code converter P X
e v
; Normal tx
Patch synthesis module Enhanced EVM miner
Variable Path Contract
Source . . dependence constraints metadata
s Solidity compiler N * N
AST 7
Ta.rget
lines ®
CFG d % %
- -
Bug type —» Backward analyzer
Slices
Info extractor module

Fig. 1. Architecture of Aroc.

The Storage Layout and Call Ways of Smart Contracts. Smart
contracts have three ways to store data: stack, memory, and
storage. The stack stores simple local variables of smart con-
tracts. It is free to use, but has a length limit - 1,024. The
stack will be cleared after finishing executing the contract.
The memory stores temporary variables such as function
parameters and return values. It will be recycled after exe-
cuting the functions. The storage stores state variables and
complex local variables, which will be kept in the block-
chain. State variables are global variables in smart contracts.

The costs of storage in EVM are expensive. Each contract
account has an isolated storage space, keeping its codes,
state variables, transaction history, etc. This space is identi-
fied by a unique 120-bit address, i.e., contract address. Con-
tract accounts can only access their own storages. One
exception is using the delegatecall or callcode call
method. The delegatecall is similar to the library-call
method. The callee executes its codes in the caller’s context.
State variables, msg. sender and msg.value will keep the
same between the callee and the caller. The callee runs as a
library. Precisely, if state variables declarations of the caller
are declared in the same locations in the callee, the callee
can directly access the state variables of the caller. That is,
the callee can tamper with them.

Therefore, those contracts that are delegate called must
be trusted enough. The callcode is an original version of
delegatecall, in which the callee also uses the caller’s
contexts while the msg . sender and msg.value are differ-
ent. Currently, callcode is almost deprecated. Besides,
call and staticcall are common mechanisms to invoke
contract functions. In these two calling executions, the callee
uses his own storage context and message information. The
staticcall prevents any modification to state variables,
which cannot be used in smart contracts because there are
no low-level supported APIs. But it can be invoked through
calling functions decorated with keywords pure or view.

3 AUTOMATICAL CONTRACT REPAIR ON CHAIN

3.1 Overview

Fig. 1 shows the overview of Aroc, which mainly consists of
three modules: (1)Info Extractor Module (IEM, see Section 4.1),
which extracts the fundamental information necessary for

4614

synthesizing patches given vulnerable contract source codes,
target lines, and bug types. Such information includes the
Variable Dependence Relationships (VDR), path constraints and
the contract metadata (e.g., state variable declaration state-
ments). (2) Patch Synthesis Module (PSM, see Section 4.2),
which generates patches based on repair templates and the
information provided by IEM; (3) An enhanced EVM (see
Section 5), which binds patches with the vulnerable con-
tracts, and transactions that violate the patches’ verification
will be aborted. The first two modules work off-chain while
the last module works on-chain. Hence, Aroc can be divided
into two sub-systems: an off-chain automatic patch genera-
tion system responsible for patch generation (see Section 4),
and an on-chain exploit prevention ethereum responsible for
blocking malicious transactions (see Section 5).

IEM focuses on analyzing vulnerable contracts to pro-
vide necessary information for PSM. The most significant
part is to generate VDR and path constraints. To achieve
these goals, IEM first locates the vulnerable functions con-
taining target lines and generates their AST. Then Aroc cre-
ates a CFG based on the AST of the vulnerable function.
IEM will adopt a backward analysis method to generate
program slices based on the CFG. Each slice represents a
path from the function entrance to the target line, and the
branch conditions in each slice can form a group of path
constraints. To derive such constraints, [IEM performs data
flow analysis on each slice. In this process, IEM iteratively
records VDR and re-expresses branch conditions. Finally,
all rewritten conditions are regarded as path constraints.

Given the path constraints and VDR provided by IEM,
vulnerable lines and bug types supplied by any existing
static analysis tool, PSM will choose the corresponding
repair templates and determine the transaction verification
rules based on the bug types. Then for each vulnerability,
PSM will organize the required information in order based
on its repair template. After generating a complete AST of
the patch, PSM will convert it to a concrete solidity contract.

After patches are deployed to blockchain, the vulnerable
contract owner can send a special transaction to specify
which vulnerable function should be protected by which
patch. Special transactions are the same as common transac-
tions, but their receivers are fixed at an address so that EVM
can recognize special transactions through the receiver
address. After EVM receives special transactions, it will
parse out messages attached in the transaction and link the
specified function of the vulnerable contract to the assigned
patch. When the contract’s vulnerable function is called, our
enhanced EVM first launches the patch contract to verify
transactions. Any malicious transaction that will trigger vul-
nerabilities of the vulnerable contracts will be aborted.

3.2 Example

We now show an example to demonstrate how Aroc can
automatically repair reentrancy vulnerabilities. To simplify
representation, we use A/B to stand for line number A of
Listing B. Listing 1 presents the source codes of a vulnerable
contract, and (12/1) is the vulnerable line. This contract real-
izes a simplified transfer function: a user can deposit assets
in the contract by calling the addCredit function. He can
later withdraw his deposits by calling the withdraw func-
tion. At this time, if the fallback function of the user

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

contract is similar to the codes shown in Listing 2, it can re-
call the withdraw function of the Example contract. Since
credits will not be deducted (13,14/1) until finishing assets
transfer (12/1), constraints (9,11/1) are still satisfied in the
re-calling process. Transfer operation (12/1) can be exe-
cuted successfully. The user’s fallback function can re-
call the withdraw function in the Example iteratively until
the balances are less than that the user withdraws.

Listing 1. Example of the Reentrancy Vulnerability

pragma solidity ~0.4.0;
contract Example{
mapping (address => uint) credit;
4 uint sum = 1000;
function addCredit() payable{
6 credit [msg.sender] += msg.value;
!
8 function withdraw () {
9 require (credit[msg.sender] > 0);
10 uint value = credit[msg.sender];
1 require (sum >= value);

12 if ((msg.sender.call.value(value)())) {

13 credit [msg.sender] = 0;
14 sum —= value;
1 }

Listing 2. The Fallback Function in the Attack Contract

1 function () payable{
2 Example (ExampleAddr) . withdraw () ;
)

Intuitively, directly swapping the order between (12/
1) and (13,14/1) can address this problem. However,
deployed contracts are not allowed to be modified. To
enable repairing this vulnerability on-chain, we design a
repair template of such reentrancy vulnerabilities as
shown in Listing 3. It mainly consists of three parts: the
variable declaration (3-8/3), the shadow variables ini-
tialization (11-15/3), and the verification part (16-22/3).
Hereafter, we refer to shadow variables in patches as
SVs and state variables in the vulnerable contracts as
GVs. Patches generated by the template can directly
access GVs of the corresponding vulnerable contracts
without modifying their values through part 1. In part 2,
we initialize SVs with the values of GVs. Therefore, SVs
can represent GVs since their values are equal. In part 3,
we can directly verify SVs to judge whether transactions
obey the secure states of GVs. Consequently, the verifica-
tion in part 3 is executed before transferring assets of the
vulnerable contracts. Therefore, the patch implements
the same functionality as swapping the vulnerable code’s
order in the deployed vulnerable contract, thus indirectly
repairing the contract. The following explains the three
parts in detail.

In part 1, var_X and var_Y are abstract representations of
variable declaration statements, which are completely identi-
cal with the state variable declarations of vulnerable contracts.
As Section 2 describes, if contract A delegate calls contract B, B
will be executed in the context of A. Our enhanced EVM
forces target contracts to delegate call their bonded patches
before they are executed. At this time, patches can directly

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

access state variables of vulnerable contracts efficiently. To
avoid affecting them, we insert shadow variables to represent
them, namely var_X1 and var_Y1.

Listing 3. Repair Template of Reentrancy Bug

1 pragma solidity verXX ;
> contract contractName {

var_X; // GVs of map type

I var_Y; // GVs of basic type
var_X1; //SVs
6 var_Y1;

7 //create variable update flag

8 mapping (address => bool) flag;

9 function funcName (paraml, param2) public {
variables

alse){
var_X_name[msg.sender] ;

10 //update shadow

11 if (flag[msg.sender] ==
12 var_X1_name[msg.sender] =

13 var_Y1_name = var_Y_name ;
14 flag [msg.sender] = true;

16 if (path_cons_exprs){//path constrains

17 Expr_x; //storage variables evoluations
18 }else{

19 var_X_name[msg.sender] = var_X1_name[msg.sender] ;
20 var_Y_name = var_Y1_name ;
21 require (false);

In part 2, flag marks whether the sender is new. The part 2
will synchronize SVs with GVs for each new sender. Hence,
SVs are equal to GVs. In theory, maybe only synchronizing
once when deploying patches is also feasible. However, to
improve reliability, the initialization is in the account’s
granularity.

In part 3, we verify transactions, conduct variable evolu-
tions, and update GVs. Aroc guarantees that path constraints
(16/3) and evolution expressions (17/3) are equivalent to
(9,11/1) and (13-14/1) in vulnerable contracts. One difference
between them is that SVs re-express expressions in patches.
But SVs reflect the correct values of GVs at any time (see
Fig. 2). Hence, conducting verifications on SVs in patches is
equivalent to performing verifications on GVs before trans-
ferring assets in vulnerable contracts. This method indirectly
realizes preventing reentrancy attacks. As Fig. 2 shows, GVs
may not reflect real changes (case 2), so part 3 will update
GVsbased on SVs (19-20/3).

Fig. 2 uses swim lane diagrams to show three possible
cases in executing vulnerable contracts. In case 1, the trans-
action does not satisfy verification rules in the first call, and
it is aborted in the patch. SVs keep equal to GVs since ini-
tialization. In case 2, SVs reflect correct changes, but GVs
keep unchanged. The multiple re-calls in case 3 are legal
because all the calls pass verification. Namely, the attacker
has enough balances to withdraw. In n times of re-calls,
each change of SVs follows an asset transfer in the victim
contract. SVs have correct changes. However, GVs keep
unchanged until the end. Hence, SVs reflect correct values
of GVs at any time. Therefore, SVs of patches can represent

4615

GVs of vulnerable contracts, and we should update GVs
after blocking malicious transactions.

For the Example contract, Aroc generates the patch for it
as shown in Listing 4. As explained above, creditl and
suml can represent credit and sum of the Example con-
tract in real-time. For each call, the patch will first verify
whether the path constraints (how the path constraints are
generated is shown in the next paragraph) are satisfied (16/
4) to prevent reentrancy. Moreover, the value of GVs will be
corrected following assets transfer (20-21/4). In summary,
the patch helps the Example contract prevent the reen-
trancy attack without affecting its original functions.

Listing 4. Patch of the Example Contract

pragma solidity "0.4.16;
contract Example{

mapping (address => uint) credit;

4 uint sum = 1000;
5 mapping (address => uint) creditl;
6 uint suml;

mapping (address => bool) flag;

function withdraw () public {

10 if (flag[msg.sender] == false){

1 creditl [msg.sender] = credit[msg.sender];
12 suml = sum;

13 flag [msg.sender] = true;

16 if (creditl [msgsender] > 0 &&
suml >= creditl [msg.sender]){
17 creditl [msg.sender] = 0;

18 suml —= creditl [msg.sender];

19 }else{

20 credit [msg.sender] = creditl [msg.sender];
21 sum = suml;

2 require(false);}

Y

Next, we will show how Aroc automatically generates a
patch for the Example contract. Aroc only needs to extract
information asked to fit (highlighted lines of Listing 3) as
specified in the repair template. Aroc first uses the solidity
compiler to generate the AST of Example. Then the AST is
traversed to collect information. The information mainly con-
sists of two parts. One part is straight information that can be
reused in the patch, such as compiler version, contract name,
the head of red the function, and state variable declarations.
The other part is evaluated information for embodying above
three critical parts of the reentrancy repair template. Since the
first part information of Example contract is the same as the
patch, Aroc will reuse them in patches.

Part 1 is straightforward. var_X/Y (3-4/3) are declara-
tions of GVs in the vulnerable contract, and var_X1/Y1 are
their corresponding SVs. During traversing the AST, Aroc
can identify GVs declaration statements (3-4/4). Aroc then
generates the associated SVs declaration statements (5-6/4)
based on the GVs’. They will be inserted into the patch AST
following the GVs declaration statements AST nodes.

Part 2 is closely related to part 1. After locating the GVs
declaration statements as mentioned above, Aroc can deter-
mine SVs’ names based on GVs’ names. According to the
fixed formats predefined in the template (12-13/3), Aroc
can generate SVs’ initialization expressions (11-12/4). Espe-
cially for map type variables whose value is address type,

4616

Case 1: Failed in the first call

The attack contract The patch contract The victim contract

Attack ————— SVs initialization

v

Pass verifications?

¢No

SVs keep

End

Case 2: Failed in the second call

The attack contract The patch contract The victim contract

Attack ————® SVs initialization

Pass verifications?

L Yes
SVs change ——————»/ Pass verifications
Tranfer assets,
i GVs keep
Re-Call ——®-Pass verifications?
l No
SVs keep

End

Fig. 2. Three reentrancy cases in Aroc.

Aroc will attach [msg.sender] to the tail of the variable
names. The most challenging part is to generate path con-
straints and re-express them by state variables and function
parameters. Specifically, Aroc will first generate the CFG
(see Fig. 3) based on the AST. CFG presents data and control
dependence relationships between variables. Given the tar-
get line (12/1), IEM can locate its subordinate function
withdraw and basic block 4.

Starting from block 4, IEM will analyze each basic block
and get all program slices reaching the target block 4. In the
Example contract, only a slice 4-3-2-1-0 flows from the
function’s start point to the target line. Then IEM will analyze
each slice to obtain path constraints and VDR. Specifically,
IEM forward traverses the AST of the generated slices and
iteratively records VDR and re-expresses branch conditions.

In Example contract, IEM starts from block 1 and gets the
first branch expression ‘credit [msg.sender] > 0’. Next,
block 2 is an assignment expression. IEM will record this var-
iable dependence ‘value — credit [msg.sender]’. The

0 withdraw()

T~ -
- T _— - .
— require(credit —— _—"msg.sender.call

“—[msg.sende r/]/>QL/// \\4\\\ _value(value)() —

True
uint value= N
| 2 Qredit[msg.sender]=OD

_credit[msg.sender];
NS [msg % | sum-=value;

\\5

True

<3 require(sum>value)

Fig. 3. Control flow graph of the example contract.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Case 3: Failed in the n call

The attack contract The patch contract The victim contract

Attack —— SVs initialization

¢ Yes
Pass verifications?

v

SVs change -————»{ Pass verifications

Tranfer assets,
i GVs keep

Re-Calt ——®-Pass verifications?

l Yes

SVs change -~ Pass verifications

|

Transfer assets,
i GVs keep

Re-Call

(n re-calls)
- E.

Re-call ———+——»_Pass verifications?

&No

SVs keep

!

End

block 3 is a branch expression. IEM will first search existed
VDR to find whether sum and value have mapped value
expressions in VDR. As value is mapped to credit [msg.
sender], the condition in block 3 is re-expressed as sum
>=credit [msg.sender].IEM ends extracting path con-
straints when meeting block 4 that contains the target line.
Consequently, IEM gets the path constraints: ‘credit
[msg.sender] >0, sum >= credit[msg.sender]’.
After replacing their state variables with the shadow ones,
Aroc generates the final path constraints (16/4) for the patch.
As for Expr_x, IEM will explore GVs-related assignment
expressions (13-14/1) following asset transfer operations
and also re-express them as mentioned above to generate
Expr_x (17-18/4). GVs update expressions (20-21/4) can be
directly derived by reversing SVs initialization expressions
of part 2. (22/4) aims to inform EVM that current transaction
is malicious by throwing exceptions. Then EVM will abort
this transaction by the require (false) statement.

4 OFF-CHAIN AUTOMATIC PATCH GENERATION

This section illustrates how Aroc designs and implements
the off-chain patch generation system, so that Aroc can
automatically generate patches for vulnerable smart con-
tracts. We will describe it in two parts: the info extractor
module 4.1 and the patch synthesis module 4.2.

4.1 Info Extractor Module
IEM runs on the vulnerable contracts, mainly focusing on
extracting path constraints and VDR. Meanwhile, IEM also
identifies certain contract metadata that will be used in
patches. We will next detailedly describe the design and
workflow of IEM.

Given contract source codes, multiple pairs of the vulner-
able line and bug type, IEM will first locate the function of
each vulnerable line by traversing the contract codes, and

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

group these lines based on their enclosing functions. IEM
then leverages the solidity compiler to generate the AST of
the original contract, which contains the detailed syntax
structures such as contract definitions, function declara-
tions, statement type, etc. Finally, IEM will traverse the AST
to derive information that can be reused in the patch, such
as the compiler version and the contract name for GVs.

For each vulnerable function, IEM extracts the function’s
AST from the original vulnerable contract. Subsequently,
IEM performs the following operations to generate path con-
straints, which is the most challenging part in generating
patches. The basis to achieve such a goal is creating a CFG
based on the AST. However, a significant challenge in gener-
ating CFG is that Aroc needs to identify and handle diverse
branch statements in solidity such as require and assert.
Although they do not have explicit then and else state-
ments, it is implicit that the former contains subsequent
blocks and the latter represents program termination accord-
ing to their semantics. We overcome this challenge by analyz-
ing their representations on source codes and summarizing
the location of conditions in different statements.

Based on the CFG, IEM can generate program slices effi-
ciently given a target line. Specifically, IEM backward tra-
verses the CFG from the target location to the entry point of
the function. All statements of a basic block flowing into the
target line will be recorded into slices. Generating such
coarse-grained slices helps Aroc work more efficiently.
Since slices are mainly used to generate path constraints,
which is closely related to branch conditions, and several
irrelevant expressions in basic blocks do not have effects on
final results. Therefore, it is not necessary for our slices to
extract statements that only have dependence relationships
with those variables in the target line as adopted by tradi-
tional slice generation methods. If n basic blocks point to
the same basic block that flows into the target line, the cur-
rent part slice will be further to form n slices following dif-
ferent paths. Each slice represents a unique path from the
entry point of the function to the target location. Each path
is identified by a series of sequence numbers of its contained
basic blocks, hereafter referred as the path identifier. IEM
will finally obtain all slices reaching the target line. Simi-
larly, IEM will derive all slices for the remaining target lines.

After obtaining all slices for all target lines within a func-
tion, to reduce potential static analysis overheads in analyz-
ing the same slices redundantly and reduce the size of
patches, IEM will extract the longest common path prefix by
comparing the path identifiers of all slices. The common path
prefix means a string of continuous path identifiers that is
shared by multiple paths, which also represents the common
path consisting of the same CFG basic blocks. Those VDG
and path constraints that are extracted from the common
path are referred as the common VDG and common path con-
straints hereafter. By contrast, paths that are unique to a slice
are referred as the personal path, whose VDG and constraints
are denoted as the personal VDG and personal path con-
straints. For paths that have a common prefix (referred as the
first level prefix), IEM will further measure whether some
paths have a common prefix following the first prefix.

The above processes are repeated until no paths that
have a common high-level prefix have a low-level common
prefix. Considering these common paths, in the subsequent

4617

analysis IEM can try to avoid analyzing the same path seg-
ments, lessen patches size and further reduce patch execu-
tion consumptions. To sum up, each slice is a CFG path
starting from the function entry point to the target line, each
path has a path identifier, and some paths may have multi-
ple common path prefixes.

For each slice, IEM executes the following operations.
First, it examines whether the current slice involves common
path prefixes. If the slice contains a common prefix that has
not been analyzed, IEM will flag the last basic block in the
common path as the ‘breakpoint’. [IEM will then start travers-
ing each slice. Specifically, IEM analyzes each basic block of
the slice from the entry point of the vulnerable function.
When this traverse process reaches the ‘breakpoint’, [EM
will record the path constraints and the VDR of the current
common path prefix, namely, the path starting from the
function start point to the breakpoint. By default, the func-
tion entry point is the first ‘breakpoint’. On the contrary, if
the slice contains a common prefix that has already been ana-
lyzed, IEM can directly fetch the recorded information of this
path prefix, and jump to the basic block subsequent to the
common prefix in the slice to proceed analyzing. If the slice
does not contain a common prefix, IEM analyzes it to get per-
sonal path constraints and VDG.

Meanwhile, in analyzing basic blocks, IEM focuses on the
assignment and conditional expressions due to the following
reasons. First, the control flow dependence relationships are
established by conditional expressions, and thus we need
the relationships to derive path constraints. Second, the
assignment expressions can directly affect VDR. To examine
whether transaction inputs obey path constraints, we need to
remove local variables in the path constraints based on VDR.
Therefore, IEM highlights these two expressions.

For each assignment expression, IEM will record the VDR
between the left value of the assignment (i.e., denoted as
lvalue) and the right value of the assignment (i.e., denoted
as rvalue). Specifically, IEM will identify all variables in r-
value. For each variable, it searches existing VDR to check
whether it has mapped value expressions. If any mapping
exists, the rvalue will be re-expressed by replacing the vari-
able with its mapped expressions. Finally, the mapping rela-
tionship between the 1value and rewritten rvalue will be
recorded in VDR. In this case, all local variables will be rewrit-
ten in terms of the function parameters and state variables.

For each conditional expression, IEM first identifies
all variables involved in it. Similarly, for each variable, [EM
searches existing VDRs to determine whether it has mapped
value expression, and thus the conditional expressions can
also be rewritten. Finally, all local variables in conditions can
be removed. These re-expressed conditions are regarded as
path constraints. In particular, if target lines contain reen-
trancy vulnerability, after finishing analyzing slices, IEM
will continue traversing the remaining paths in the complete
CFG to search GVs change statements. At last, each target
vulnerable line has multiple pairs of personal path con-
straints and VDG (together with GVs change statements if
the bug type is reentrancy). Besides, a mapping between the
common path prefix, constraints and VDG will be recorded.

Although in this procedure, it is complicated to handle
diverse syntax structures, Aroc can still work efficiently by
analyzing slices to extract path constraints and reusing

4618

information in common path prefixes. Moreover, since sli-
ces derived by backward analysis consider all paths flowing
to the target line without exploring irrelevant paths, the
extracted path constraints are more sound and preciser
comparing with forward program analysis.

4.2 Patch Synthesis Module

PSM is responsible for synthesizing the patch smart con-
tracts. It mainly performs three steps: (1) Integrating path
constraints - a function may have multiple vulnerable lines,
and a line may also have multiple paths flowing into it. For
a function, PSM integrates the common constraints of these
paths, to reduce the size of patches and further reduce patch
deployment costs together with execution consumptions.
Specifically, PSM processes all constraints simultaneously
and does not distinguish them between different target lines
since those paths flowing into the same lines or different
lines are distinctive. Consequently, if paths share common
path prefixes, they will be classified into one group. Then
PSM iteratively organizes path constraints of all slices fol-
lowing two principles. First, for each group of path con-
straints, the first part is the common constraints while the
second part is the customized path constraints. Second, if
several paths in the second part still share common path
prefixes, the prefix will be extracted as the second common
path prefix for the paths, that is, extracting the common con-
straints is an iterative process. (2) Extracting secure rules -
following the customized path constraints, PSM will gener-
ate and place secure rules in related locations of the repair
template. Different bug types have different patterns of
secure rules, and the detailed generation process is illus-
trated in the following subsections. Finally, the structure of
those integrated path constraints is similar to that as shown
in Listing 5. (3) Synthesizing information - PSM first gener-
ates a patch contract framework, which contains almost all
the required information of the patch except for the function
bodies. Specifically, PSM first chooses a repair template
based on the detected bug type. Second, PSM feeds the
information provided by IEM, such as the compiler version
and state variable declarations, to the corresponding loca-
tions of the template. In this step, if the bug type is reen-
trancy, PSM will create shadow variable declarations as
mentioned in Section 3.2; otherwise, PSM will not create
these. A contract framework has been created in this step.
Next, PSM aims to to create the body of the patch functions.
Since different bug types have diverse processing proce-
dures, we introduce the repair procedures of our target vul-
nerabilities as follows.

Listing 5. The Structure of Integrated Path Constraints

1 if (common_path_cons1){
if (personal_path_consA){

repair_rulesA;}

4 if (common_path_cons2){

5 if (personal_path_consB){

6 repair_rulesB;}

7 if (personal_path_consC){

8 repair_rulesC;} }

0}

11 if (common_path_cons2){...}

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

4.2.1 Reentrancy Vulnerability Repair

Reentrancy is the culprit of the notorious DAO attack caused
by the wrong order between asset transfer and state variables
change operations [19]. Specifically, state variables are
changed after asset transfer operations. In this case, if the
receiver is a contract with a well-designed fallback func-
tion, it can reenter (call back) the sender contract to drain
assets iteratively. Because expressions of state variable
changes are not executed in this iterative process, such a pro-
cess will not stop until the contract balances are less than the
withdrawal amount. Repairing reentrancy through our
patches encounters two significant challenges: 1) Aroc can-
not swap the incorrect operations directly, since vulnerable
deployed contracts cannot be modified; 2) patches cannot get
the transaction execution traces of vulnerable contracts to
protect against reentrancy like Sereum [10], since patches are
executed before vulnerable contracts. Nevertheless, our core
idea of repairing reentrancy vulnerabilities is to swap the
order between state variables change and asset transfer
expressions without modifying vulnerable contracts. As
introduced in Section 3.2, the reentrancy repair template
(Listing 3) mainly consists of three parts (variable declara-
tion, shadow variable initialization, and verification).

For part 1, to enable patches efficiently accessing GVs of
the original vulnerable contracts, the template takes full
advantage of the delegatecall principles. That is, the
template declares the same GVs (3-4/3) as those of the origi-
nal. Under such an organization, when vulnerable contracts
delegate call patches, patches can directly get values of
GVs. To avoid impacts on GVs of vulnerable contracts, Aroc
introduces the shadow mapping mechanism. That is, each
GV has a corresponding SV, which will keep consistent to
the corresponding GV’s real value through part 2, and thus
representing the corresponding GV. In part 2, patches ini-
tialize the value of SVs with GVs’ value to make them
equivalent. To try to reduce intervention between contract
users, for each new sender, SVs will be synchronized to the
value of GVs. Part 3 is responsible for implementing secure
rules and verifying transactions. Because (17/3) in patches
is derived by rewriting original storage variables change
statements with function parameters and state variables, it
is equal to state variables change statements following asset
transfer of vulnerable contracts.

According to the design of Aroc architecture, patches are
executed before vulnerable contracts, so (17/3) in patches is
executed before asset transfer in vulnerable contracts, which
indirectly swaps the order, i.e., secure rules. Path constraints
(16/3) generated by Aroc for patches are equivalent to path
constraints in vulnerable contracts. Path constraints involv-
ing checks on state variables of state variables change expres-
sions such as (9,11/1), so (16/3) in patches can check the
legality of transactions. Moreover, as Fig. 2 shows, GVs may
not reflect correct values in blockchain sometimes when
reentrancy attacks are launched. Luckily, SVs keep consis-
tent with correct values of GVs so that the repair template
will enforce updating GVs with SVs after each failed call.

4.2.2 Arithmetic Vulnerability Repair

Arithmetic errors are pervasive in smart contracts. Since
contracts involve many asset transfers, there are plenty of

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

TABLE 1
Repair Rules of Arithmetic Bugs

Result = LHD op RHD Repair rules

op="+ Result >= RHD & Result > =LHD
op="- LHD >=RHD

op="* if(RHD !=0) Result / RHD == LHD
op="/" RHD!=0

modifications on account balances. Arithmetic bugs will be
triggered when the computed results excess the data type
range, causing that the real computed results are not equal
to the intended one. Hence, patches here need to verify
whether arithmetic results on the transaction inputs are cor-
rect. We should define verification/secure rules for different
arithmetic operations. According to the popular library
(SafeMath) for securing smart contracts [20], we summarize
four rules (see Table 1). In the table, ‘Result = LHD op RHD’
stands for vulnerable arithmetic expressions, ‘Result’ means
the computing expression, ‘RHD’ and ‘LHD’ means the
right and left operand, respectively. If the operator is +,
Aroc asks the sum should be larger than any addend. If the
operator is -, Aroc asks the difference should be less than
the minuend. If the operator is *, Aroc asks the quotient of
the product and one multiplier is equal to the other multi-
plier if no multiplier’s value is zero. If the operator is /,
Aroc asks the divisor is not equal to 0.

Listing 6 shows the repair template for arithmetic bugs.
The compiler version, contract name, the head of vulnerable
functions, and state variable declarations (1-4/6) are
directly copied from the corresponding vulnerable con-
tracts. The same state variable declarations help patches
directly access the value of state variables, and the same
function head helps patches directly parse transaction input
data. The remaining of the template mainly consists of two
parts: path constraints (5/6) and secure rules of transaction
verification (6/6). Part 1, consisting of path constraints,
aims to judge whether transactions can reach the vulnerable
target location. Path constraints are rewritten branch condi-
tions of the vulnerable contracts provided by IEM.

Listing 6. Repair Template of Arithmetic Bug

pragma solidity verXX;
contract contractName {
var_X;//original storage variables
4 function funcName(paraml, param2) public {
path_cons_exprs;//path constraints

6 require(repair rules);// transaction verification rules

Part 2 is the template’s core part, focusing on verifying
whether transactions are legal through secure rules. As
shown in Table 1, PSM should first extract operators and
operands of vulnerable arithmetic statements to construct
secure rules. However, this task is a big challenge. On the one
hand, arithmetic operations have diverse representations.
They can be combined with assignment operations, such as

=, -=, *=, and they may also be tangled with other compli-
cated expressions such as correct arithmetic operations or
logic expressions. On the other hand, arithmetic operations

4619

can exist in diverse code elements, including conditional
expressions, block statements, assignments, and so on. Con-
sequently, splitting and identifying target arithmetic expres-
sions are not easy. We tackle this challenge by presenting
each syntax structure as a 'class’, which includes member
attributes to store data type of return values, operators, oper-
ands, etc, and member functions to set and get these attrib-
utes. When IEM traverses the AST of a vulnerable contract, it
will set values of different attributes.

Given a vulnerable arithmetic expression, PSM locates its
AST node and gets its operators and operands. Then PSM
can choose appropriate repair rules based on operators, fur-
ther constructing secure rules based on operands and opera-
tors. The operands in the rules are rewritten based on the
VDR provided by IEM. Feeding all such information as
mentioned above into the arithmetic repair template, the
associated patches can be generated.

4.2.3 Unchecked Low-Level Call Vulnerability Repair

All exceptions in traditional languages are thrown, but some
functions (call, callcode, delegatecall, send) in
solidity only return a boolean value when exceptions occur.
If contracts lack checks on such execution results, subsequent
operations will continue even when these functions failed,
thus causing hazardous consequences if the following opera-
tions are sensitive. One famous example of this bug type is
found in the smart contract game - ‘The King of the Ether
Throne’ (KotET) [21]. Gamers can pay KotEt to get the rights
of the King, but attackers may deliberately fail to pay, such
as attaching insufficient gases. However, because of lacking
checks, the attackers can still obtain the rights.

Repairing this kind of bug is tricky since we can get the
call function execution results only after the vulnerable con-
tracts have been executed. But patches are called before
them. However, we can execute them under an identical
environment in the patch to check the execution results.
Therefore, we design the repair template for these bugs as
shown in Listing 7. Except for the basic contract metadata
(1-4/7) replicated from the vulnerable contracts, it mainly
consists of two parts: path constraints (5/7) and the verifica-
tion on the function call (6-10/7). The first part is the same
as part 1 of the arithmetic repair template provided by IEM
and can be directly placed in the fixed location.

The second part is the core of the template, which focuses
on verifying whether the call will succeed for each transac-
tion. The low-level call including the call expression seman-
tics and execution context in (6/7) should be entirely equal
to the vulnerable function call of the vulnerable contract.
The expression ‘external call statement’ is an equivalent
sentence obtained by rewriting the vulnerable call expres-
sion based on the VDR provided by IEM. Patches are dele-
gate called by the vulnerable contracts, so execution
contexts, including msg . sender, msg.value, and storage
states, are identical to the vulnerable contracts. In a word,
the call statement in patches (6/7) is equivalent to that in
the vulnerable contracts. Any transaction that fails in the
call will be blocked.

Moreover, to elude effects on the original contracts, Aroc
rolls back all state changes caused by patches. Implementing
this is a challenging project. Fortunately, solidity provides

4620

two keywords, revert and assert, both of which reset the
current execution and throw exceptions when assertions are
not satisfied or the revert statement is executed. Besides,
the differences between them make Aroc easier to distin-
guish whether transactions pass checks. That is, revert
refunds remaining gases to users while assert confiscates
all gases. In other templates such as the arithmetic repair
template, the require condition expressions, responsible to
deal with malicious cases, also terminate execution but
refund the remaining gases . Therefore, in the underlying
EVM implementation, we will modify EVM to abort excep-
tion-throw transactions with remaining gases (require).
But exception-throw transactions without remaining gases
(assert) areregarded as benign.

Listing 7. Repair Template of Unchecked Low-Level Call
Bug

1 pragma solidity verXX;

contract contractName {

var_X;
i function funcName(paraml, param2) public {
path_cons_exprs; //path constraints

6 if (external_call_statement){
7 assert(0==1);
8 telse{
9 revert();}

In summary, patch contracts will execute the same low-
level call as the target vulnerable line in advance. As men-
tioned above, due to the delegatecall principles and
contract storage layouts, patches share the same execution
contexts with the vulnerable smart contracts. So execution
results of the low-level call in patches must be identical
with the vulnerable contracts. If the executions in patches
fail, the transaction will also fail to execute in related vulner-
able contracts. Consequently, we can judge execution
results of vulnerable calls in advance and timely abort trans-
actions that will fail in the vulnerable call.

5 ON-CHAIN CONTRACT PROTECTION SYSTEM

Patches are deployed as normal smart contracts. After they
have been deployed, users need to send special transactions to
link patches to the related vulnerable contracts. Special trans-
actions have the same structures with the normal ones, but
their receiver addresses are fixed at a predefined address and
the ‘data’ field carries customized messages according to dif-
ferent application scenarios. Ethereum miners can distinguish
them through the receiver address, and parse messages deliv-
ered through the ‘data’ field of transactions. These messages
help Aroc protect deployed contracts in a secure controlled
way. Specifically, to prevent malicious bindings, Aroc checks
the identity of special transaction senders based on the mes-
sage. Only target contracts deployers have such a right. When
EOAs or contracts call vulnerable contracts, the input data
will be enforcedly forwarded to the related patches by EVM.
EVM will check execution results of patches. Only transac-
tions that pass checks can call target vulnerable contracts. Oth-
erwise, they will be aborted. So the vulnerabilities in contracts
cannot be exploited, patches repair them indirectly.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

5.1 Patch Binding

To support the contract binding, we add new variables
in the account struct of EVM, which record binding rela-
tionships for the current contract. Each smart contract
can be bound to a patch, and the patch is deployed like
normal contracts. The bound patch can be replaced with
a new one at any time through special transactions.
The receiver of those special transactions is fixed as
’0x1000000000000000000000000000000000000000". Payloads
in the ‘data’ field point out the address of the patch and the
vulnerable contract, the vulnerable function’s signature, and
the nonce of vulnerable contract deployment transaction.
EVM identifies special transactions through the recipient
address and parses out above messages. To avoid malicious
binding, EVM only allows the vulnerable contract deployers
to patch. In ethereum the contract address is computed based
on the sender address and the contract deployment transac-
tion nonce as the Identity 1 [18] shows, where RLP is the RLP
encoding function and KEC is the Keccak 256-bit hash func-
tion, and Ay 255 extracts a binary value ranging the indices
[96, 255]. Hence, Aroc can determine whether the current
sender is the deployer of the vulnerable contract by compar-
ing the address computed from msg. sender and nonce in
special transaction with the real vulnerable contract address.
If the special transaction sender has the authority, Aroc can
record the binding relationship between the patch and the
vulnerable function specified in the special transaction into
the vulnerable contract account.

a = Bog.255(KEC(RLP(sender,nonce))). (1)

Since patches are independent smart contracts, they will
not be confined by bound vulnerable contracts. They run
like libraries by the delegatecall mechanism. As long as
vulnerable functions have identical vulnerabilities and path
constraints, they can share the same patches. This feature of
high reusability facilitates reducing costs of vulnerable con-
tract owners.

5.2 Exploit Prevention
For each transaction, our enhanced EVM will search the
blockchain’s state to determine whether the target contract
has bound patches. Meanwhile, by extracting the first four
bytes function signature from transaction payloads, Aroc
can further determine whether the target function has
bound patches. If there are, Aroc will first repack the trans-
action to delegate call patches. Since the raw EVM limits
that delegatecall can only be triggered by correspond-
ing EVM opcodes, we change the original EVM to support
delegatecall to be called externally. EVM will delegate
call corresponding patches with repacked input payloads.
delegatecall provides patches with the same execution
environment as the original contracts. They share same stor-
age space, state variable values, msg. sender, etc. Hence,
patches can verify transaction input data and original con-
tract storage states in the almost same environment as the
vulnerable contract’s. Moreover, the repair function in a
patch has the same head as the target vulnerable function,
so the patch can directly parse input payloads.

If inputs pass patches’ verification, their subordinate
transactions can then be transferred to call the vulnerable

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

contracts. If EVM throws exceptions and the remaining gases
are not zero, transactions will be aborted. Since all transac-
tions that trigger bugs are blocked by patches, contracts with
vulnerabilities can run securely. Moreover, because contracts
can be called by EOAs through transactions and also con-
tracts through message calls, we add the exploit prevention
function in both the transaction processing module and call
instructions (CALL, CALLCODE DELEGATECALL) implemen-
tation module of EVM. Since we enhance EVM to enforce
that transactions are verified by related patches before trig-
gering vulnerable contracts, attackers cannot bypass patch
verifications. As long as they call contract functions by trans-
actions or message calls, the exploit prevention function in
EVM will be triggered.

6 EVALUATION

In this section, we evaluate the effectiveness and effi-
ciency of Aroc, including the usability of patches and the
performance of Aroc system. Specifically, we evaluate the
performance of Aroc with respect to three types of bugs:
reentrancy, arithmetic bugs, and unchecked low-level
checks.

Experimental Setup. The off-chain patch generation sys-
tem is implemented in C++ based on SIF [22]; and the on-
chain protection system is based on go-ethereum 1.9.0. All
experiments are conducted on the Linux server with 2.40
GHz 64-bit Intel Xeon CPU E5-2630 v3 processor with 8-
cores, 64 GB RAM, and the 18.04 Ubuntu operating system.
We apply Aroc on abundant datasets that consist of the fol-
lowing diverse data sources:

1) 98 smart contracts with the location of bugs provided
by [23], in which 15 contracts contain arithmetic bugs, 31
contracts contain reentrancy bugs, and the other 52 con-
tracts have unchecked low-level call bugs. This dataset
organized by the DASP taxonomy has been widely used by
existing studies [15], [24].

2) 500 smart contracts that are randomly selected from
the EVMpatch dataset [16]. Although EVMPatch provides
the bytecodes of 14,107 ethereum mainnet smart con-
tracts, Aroc requires the source codes. Therefore, we
crawl the source codes from etherscan [25], a famous
ethereum blockchain explorer. Finally, we collect the cor-
responding sources for 4,018 contracts. We utilize Osiris
[6] to get the vulnerable lines for these contracts. More-
over, the evaluations on these contracts need benign and
malicious transactions to determine whether patches
affect the original functionalities and prevent bugs from
being exploited. Such a process requires huge manual
efforts. Therefore, we randomly sampled 500 contracts
out of the 4,018 contracts.

3) Three contracts with the new reentrancy patterns that
are provided by Sereum [10]. Sereum only provides three
contracts for the new patterns in its evaluations, and thus
we utilize the three contracts to measure whether Aroc can
repair other reentrancy patterns.

4) Six contracts provided by ContractGuard [17]. Con-
tractGuard presents the detailed analysis on six contracts in
its paper while the tool is not open-sourced. Therefore, we
evaluate Aroc on the six contracts, to compare the experi-
mental results with contractGuard presented results.

4621

6.1 Usability of Patches

The usability is to measure whether our patches can be
effectively and efficiently used in practice. If the usability is
low, the generated patches will not be accepted and used by
widespread users, and thus the practical usefulness of our
system will be significantly compromised. Specifically, the
usability mainly includes two parts, which are the correct-
ness and gas costs, and the latter involves deployment gases
and execution gases. If patches have low correctness, the
protected vulnerable contracts can still be attacked. If
patches have high gas costs, they will be hardly adopted. To
evaluate such usability of our generated patches, we con-
duct experiments on two kinds of datasets, including one
provided by [15] and the other randomly selected from the
EVMpatch dataset [16] as mentioned above. The first data-
set can verify whether Aroc can effectively work on diverse
vulnerabilities, and the second dataset can verify whether
Aroc works on real-life large and complicated smart con-
tract projects.

6.1.1 Correctness

Since Aroc includes off-chain patch generation and on-chain
contract protection, we evaluate the correctness from these
two parts. The correctness of the off-chain process is exam-
ined by whether the generated patches contain complete
path constraints and correct secure rules, while that of on-
chain means the correctness of blocking malicious transac-
tions and passing benign transactions. Table 2 presents the
evaluation results. The columns of Dataset properties in
Table 2 describe features of the dataset, in which ‘Contract
amount’ and ‘Bug amount’ mean the number of vulnerable
contracts and the corresponding number of bugs respec-
tively. The columns of ‘Off-chain analysis’ in Table 2 measure
the correctness of off-chain patch generation. Specifically,
‘Imprecise patches’ indicates the number of patches that
include correct secure rules and incomplete path con-
straints; ‘Precise patches’ shows the number of total correct
patches. Those patches with incorrect secure rules are
regarded as failed cases. The ‘Correctness’ is used to measure
how many bugs’ patches are correctly generated, which is
computed by the amount of precise patches divided by the
amount of all bugs. The ‘Patch ratio* is computed by the sum
of ‘Imprecise patches’ and ‘Precise patches” divided by the ‘Bug
amount’, aimed to measure how many bugs can be protected
by Aroc. The columns of ‘On-chain protection’ in Table 2
measure the correctness of on-chain contracts protection.
Specifically, ‘Failed rep.” (FR) indicates the number of bugs
that we cannot attack successfully; ‘False pos.” (FP) indicates
the number of patches that block benign transactions; ‘False
neg.” (FN) indicates the number of patches that pass mali-
cious transactions; ‘True pos.” (TP) indicates the number of
patches that block malicious transactions without affecting
benign transactions; and ‘Correctness’ indicates the propor-
tion of TP to all patches that can be tested on-chain. We will
introduce the evaluation processes and results next.
Correctness of the Off-Chain Patch Generation System. In this
assessment, Aroc first generates patches for all the 598 con-
tracts. As the columns in ‘Off-chain analysis’ of Table 2
shows, Aroc can successfully generate correct patches for
most vulnerable contracts, achieving the correctness ratio of

4622 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022
TABLE 2
The Correctness of Aroc
Dataset properties Off-chain analysis On-chain protection

Data source Bug type Contract| Bug Imprecise Precise| Correc-| Patch | Failed| False| False| True | Correc-

amount | amount| patches | patches| tness ratio rep. pos. | neg. | pos. tness

Arithmetic 15 23 0 23 100% 100% 1 0 0 22 100%
Reentrancy 31 31 2 20 64.52% | 70.97% 0 2 0 20 90.91%

smartBugs [15]
Unchecked 52 78 5 65 83.33% | 89.74% 13 5 0 52 91.23%
low-level call

Total 98 132 7 110 83.33% | 88.64% 14 7 0 94 93.07%
EVMPatch [16] Arithmetic 500 1252 63 1148 | 91.69% | 96.72% | 264 63 0 884 | 93.35%
Total - 598 1384 70 1258 | 90.90% | 95.95% | 278 70 0 978 | 93.32%

90.90%. Moreover, since imprecise patches contain correct
secure rules, they can also protect vulnerabilities from being
exploited. By taking them into account, Aroc can patch
88.64% of the bugs in the smartBugs dataset and 96.72% bugs
in the EVMPatch dataset, with the total patching ratio of
95.95%. In this off-chain analysis, comparing with another
two vulnerabilities, Aroc needs to search for storage variables
change expressions following asset transfers for reentrancy
vulnerabilities. But the locations of the change expressions
are diverse, they can even locate in different basic blocks of
CFG with respect to the vulnerable lines. It is more difficult
for Aroc to overcome this problem, so Aroc achieves a rela-
tive low correctness for repairing reentrancy bugs.

Aroc cannot generate patches for all bugs. It is because that
the vulnerable lines can exist in diverse syntactic combina-
tions while Aroc works on the AST of programs. Therefore,
Aroc may fail in generating patches, when many paths flow
into the target lines or the structure of target lines is too com-
plicated. Listing 8 shows an example that Aroc fails to gener-
ate patches, whose address in the ethereum mainnet is
0x4f8144764a115b868cb14d71576ccf961f943452. The target
line is highlighted at line 19, where nextCorIndex is a con-
tract storage variable. In total, there are six paths flowing into
the target line. Each path has its own particular VDG and
path constraints, and thus they should be handled individu-
ally. However, to reduce the patch size, we try to integrate
these paths. Due to the abundant paths and complicated path
combinations, Aroc fails to generate a patch. Especially, if a
function has too many bugs, the number of paths will sharply
increase. Consequently, there are more kinds of path combi-
nations, and Aroc may fail. Sometimes, if the target line is too
complicated, Aroc may fail to generate patches neither. For
example, the ‘BattleOfTitansToken’ contract, whose address
is Oxdbd23bde88d4169fb60b0d9966falbef8eb74179 in the
ethereum mainnet, has the vulnerable line ‘'require
(balances[msg.sender] >=_value+frozenAccount
[msg.sender] *forbiddenPremine/ (86400*1))".
This line has four arithmetic operations and the two
contain bugs in the operand of the parameter of the
require statement. Moreover, six paths flow into this
vulnerable line. Due to the complicated syntax, Aroc
also fails to generate the patch for this vulnerable line.
Similarly, Aroc-generated patches may be imprecise due

to the tangled paths, complicated target lines, or the sub-
ordinate function with multiple bugs.

The fifth column of Table 2 presents the number of bugs
that do not be patched precisely. To obtain the correctness
of patches, we manually verify whether they involve correct
path constraints and secure rules of all the bugs. The preci-
sion loss of patches directly influences its effectiveness in
blocking transactions. As introduced above the imprecision
of patches means the patches do not contain complete path
constraints. Thus, some benign transactions that violate
secure rules while cannot reach the target lines may be
blocked by mistakes on-chain, causing false positives. This
also explains why the amount of false positives on-chain
(the tenth column of Table 2) is equal to the number of
imprecise patches off-chain (the fifth column of Table 2). To
conclude, evaluation results on the two kinds of datasets
demonstrate that Aroc can repair most of the contracts for
the three bug types and real-world contracts.

Listing 8. Example of the Failed Patch Peneration

function createTokens(address _cor) payable {
uint _amount = msg.value,'
uint cAmount = _amount;
uint returnAmount = 0;
if (_amount > (maxCap — ethRaised)) {
6 cAmount = maxCap — ethRaised;
7 returnAmount = _amount — cAmount;

9 if (ethRaised + cAmount > minCap
10 && minCap > ethRaised) {
11 MinCapReached (block.number) ;

13 if (ethRaised + cAmount == maxCap
1+ && ethRaised < maxCap) {
15 MaxCapReached (block.number) ;

17 if (corList[_contributor].cAmount == 0){
18 corIndexes[nextCorIndex] = _contributor;
19 nextCorlndex +=1; }

B

Correctness of the On-Chain Exploit Prevention System. We
assess whether patches can effectively protect the bugs
from being exploited without affecting the original func-
tionalities. As the ninth column presents, we cannot conduct
on-chain evaluations on all bugs with precise patches due to

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

the three following reasons: 1) we cannot launch attacks on
the bugs. For example, if the caller of the unchecked low-
level calls is a constant, we cannot assign it as the contract
attacker; if path constraints or variables that trigger bugs are
related to the future block timestamp, these conditions can
hardly to be established. 2) Patches cannot pass compiling
due to undefined variables. For example, patches include
calling other functions of the vulnerable contract or storage
variables inherited from parent contracts. 3) The parent con-
tracts inherited by the vulnerable contracts include global
variables. Since Aroc generates patches based on the AST of
the original vulnerable contracts, patches do not contain dec-
larations of the state variables of the parent contracts. Due to
the inconsistent order of global state variables, the values of
the state variables between patches and vulnerable contracts
are not identical. For the remaining patches, we generate 20
test cases with benign and malicious inputs respectively for
each bug.

For each vulnerable contract, we deploy it and the associ-
ated patches. We first run the vulnerable contracts without
patches, and then check whether they can execute all the gen-
erated test cases successfully. We then send a designed trans-
action to establish the relationship between the patch and the
vulnerable contract. We again test the vulnerable contract
using the above test cases to verify whether the patch can
block malicious transactions while allowing benign transac-
tions to execute successfully. As the tenth and eleventh col-
umns of Table 2 shows, patches can block all malicious
transactions but may abort some benign transactions by mis-
takes. Since the inaccuracy of patches generated by Aroc is
reflected in that the patches contain incomplete path con-
straints, all successfully-generated patches contain correct
path constraints and secure rules, as introduced in the analy-
sis of patch generation correctness. Consequently, patches
may pose false positives but not false negatives. All in all,
patches can block all malicious transactions with a few false
positives, achieving approximately a correctness ratio of
93.32% for all the selected datasets, which is computed by
the following equation.

#patches — FR — FP — FN
#patches — FR
TP

#patches — FR'

Correctness =

(2)

Correctness of Preventing New Reentrancy Patterns. To fur-
ther evaluate the effectiveness and correctness of Aroc, we
verify whether Aroc can block three new reentrancy pat-
terns, which are cross-function, create-based, and delegated
reentrancy, as proposed by Sereum [10]. Smart contracts
have multi-entrances because each public function is a con-
tract entrance. All the functions of a contract share the same
contract state variables. Based on these features, to launch
the cross-function reentrancy, attackers pose the inconsis-
tent states by invoking different victim functions in a care-
fully constructed way. For delegated reentrancy, a library is
delegate-call by a victim contract function. The attack lever-
ages those libraries that share the same runtime contexts as
the contract. Therefore, executions in libraries may cause
inconsistent state-update, causing the victim function to be
re-invoked in obsolete states. Created-based reentrancy is

4623

similar to the delegated reentrancy. When a victim function
creates a new contract that invoke other malicious contracts,
attackers can re-enter the victim.

Aroc successfully generates correct patches for all test
cases provided by Sereum. We then deploy victim contracts,
and the attack contracts and patches. After depositing sev-
eral ethers into the victim contracts, we launch attacks. The
experimental results show that Aroc can successfully block
malicious transactions for created-based and delegated
reentrancy, but cannot prevent cross-function reentrancy. It
is because that for the first two patterns, their re-entered
functions are the same as the initial victim functions. There-
fore, Aroc can block the malicious transactions for them
similar to the common reentrancy vulnerabilities. However,
for the cross-function pattern, the re-entered function is dif-
ferent from the initial victim function.

Unfortunately, our repair templates require that the sig-
natures of the patch functions and the vulnerable functions
are same. In such cases, patch functions can directly parse
transaction data towards the vulnerable functions and ver-
ify whether the transactions are secure. Therefore, patches
generated by Aroc cannot detect transactions towards func-
tions that have different function signatures from patch
functions. Besides, to reduce impacts on the vulnerable con-
tract’s state variables, we use shadow variables in the
patches to represent the original storage variables in the vul-
nerable contracts. Although we have changed the shadow
storage variables and verified them in patches, the vulnera-
ble contract state variables do not change until the reen-
trancy process terminates, and thus the executions in the re-
entered function can pass. Therefore, Aroc cannot repair
cross-function reentrancy but is able to repair the remaining
two kinds of reentrancy patterns.

6.1.2 G@Gas Costs

Many vulnerabilities in the EVMPatch dataset are repeated.
Therefore, in this evaluation, we ignore the contracts cont-
aining identical bugs to improve the evaluation efficiency.
Specifically, we conduct evaluations on all those unique con-
tracts whose vulnerabilities can be attacked and patches can
be generated. We consider two parts to evaluate the gas costs:
patch deployment and execution. By deploying patches
through remix, we can directly obtain their gas costs from the
remix console. The remix is a popular ethereum contract IDE,
which can compile, deploy, and debug contracts [26]. More-
over, to investigate whether the patch deployment gases
have relationships with the contract complexity, the contract
size is computed from runtime bytecodes to represent its
complexity. Fig. 4 presents the experimental results. Specifi-
cally, Fig. 4a shows the deployment costs of patches corre-
sponding to the different sizes of vulnerable contracts. Fig. 4b
shows the deployment costs gap between the vulnerable con-
tracts and patches.

As Fig. 4a illustrates, patches of larger contracts do not
necessarily cost more deployment gases. It is because
patches mainly contain state variables declarations and sev-
eral conditional expressions (i.e., path constraints and secure
rules), and most operations of the vulnerable contracts are
irrelevant to the generation of patches. Further, since several
small contracts contain multiple bugs, their patches cost

'
°
=

Gas gap (wei)
»
s
=

-2.0M -+
20k 0

Contract size (byte)

5000 10000
Contract size (byte)

15000

(a) Patches deployment costs (b) The deployment costs gap be-

tween the generated patches and
related vulnerable contracts

Fig. 4. Deployment costs evaluations of patches for vulnerable contracts
of different sizes.

more gases in deployment. If these vulnerabilities exist in
different functions, the patch contract will have multiple
patch functions. The patches’ size will be larger, thus requir-
ing more deployment gases. Moreover, it is almost negligible
even for the upper limit of patches deployment costs, which
8,000,000 wei (= $6.22 x 1075, computed from average gas
price ($0.21/27Gwei) showing in etherscan [25].

When the deployed contracts contain vulnerabilities,
users can fix the vulnerable contracts off-chain based on
source codes, and then redeploy them. To study whether
our proposal is more cost-efficient than this common strat-
egy, we evaluate the gap of the deployment gas between
patches and vulnerable contracts. This gap is the difference
between the deployment costs of the vulnerable contracts
and the associated patches.

Fig. 4b shows evaluation results. The value of most gas
gap is higher than zero. That is, the original vulnerable
contracts cost more deployment gases than that of the
related patches in general. It implies that our strategy is
more cost-efficient comparing with directly repairing vul-
nerable contracts off-line. Moreover, contracts directly
repaired usually will be instrumented with more guarded
rules, which are always larger than the original vulnerable
contracts. Therefore, they may cost more deployment
gases than our generated patches. Besides, as the trend line
shows, directly repaired contracts will cost more deploy-
ment gases as the contract size grows. Thus, patches gener-
ated by Aroc have more outstanding advantages for large
contracts.

However, the gas gap of several contracts is less than
zero as shown in Fig. 4b, which means that these contracts’
patches cost more deployment gases than them. The size of
most of these contracts is less than 2,500 bytes as Fig. 4b
shows. Because patches need to add new statements such as
(11-15/3) in the reentrancy repair template, these additional
operations may cause that patches are bigger than original
contracts when vulnerable contracts are too small. But such
cases are rare because lines of these contracts are within 10,
which is too small to realize most real-world requirements.
Several contracts with nearly 5,000 bytes codes, also cost
fewer deployment gases than our patches. It is because that
certain simple contracts have multiple bugs, and thus the
size of patches is large than the original contracts. However,
such cases are rare as the figure shows. In general, the gas
consumption of deploying patches is in an acceptable range.
In most cases, generated patches are more cost-efficient than
directly repairing vulnerable contracts.

Gas (wei)

2o NN
v o w o (%
~ *~ X~ = x

o

x
o aad L

e S TR s S

ari
ull
ree

0 2k 4k 6k 8k
Contract size (byte)

10k

Gas (wei)
w b

=W [CR-]
o X A~ X~ X~ ~ ~ =~

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

X %,
W
.

X %
X

x

XX

* x

*x
;
x x XX x ¥

ari
ull
ree

. X
X x

0

1k

2k

3k

4k

5k

Contract size (byte)

6k

7k

(a) All dataset with contract size (b) Partial dataset with contract
ranging from 0 to 15k bytes size ranging from 0 to 7k bytes

Fig. 5. Execution gas costs evaluations of patches for vulnerable con-
tracts of different sizes.

As for the overheads of contract executions, we invoke
contracts using remix [26], and the execution costs will be
computed and shown in the transaction details of the remix
console. Specifically, we use the same test cases to call con-
tracts before and after patching to obtain the additional run-
time gases introduced by the patches. For the reentrancy
vulnerabilities, their patches need to access the storage vari-
ables such as “balances” that may cost many gases because
the storage operations are expensive in EVM. To avoid out
of gas exceptions, we temporarily cancel the gas consump-
tion of their patch executions in EVM, and obtain their gas
consumptions via printing the associated logs in EVM.
Meanwhile, since patches of the unchecked low-level call
dataset cost sharply different for various called external
functions, we cannot compute an average execution cost.
But due to the few operations in patches (see Listing 6),
patches cost fewer gases than the original contracts.

Finally, we only conduct evaluations for arithmetic and
reentrancy patches. For the arithmetic dataset, the gas over-
heads that patches introduce are approximately 939 Wei and
1434.37 Wei respectively for smartBugs and EVMPatch data-
set. Since there are only several condition expressions to ver-
ify transactions in the function body of arithmetic patches,
they cost a few overheads even the contracts are large. Mean-
while, because contracts in the EVMPatch dataset are usually
large than that in the smartBugs dataset, the corresponding
patches are also larger. Therefore, patches for the EVMpatch
dataset cost more. For the reentrancy dataset, the average
gas overheads of patches are 10062.59 Wei (=~ $7.83 x 107%).
Since reentrancy patches involve accessing storage variables
repeatedly and the read and write operations on stored vari-
ables are expensive in EVM, small contracts with reentrancy
will cost more execution gases. Nevertheless, the overheads
are nearly ignorable considering the gas price and the
amount of the additional gases.

To give a clear view on the execution overheads of
patches, we draw a picture of all recorded results as shown
in Fig. 5a. Since the size of the most contracts is less than
7,000 bytes, we present a figure on the partial dataset, whose
size is less than 7,000 bytes, as shown in Fig. 5b to make the
results more claer. In this picture, we exclude several experi-
mental results on testing contracts with unchecked low-level
call bugs. Because the invoking functions of these unconsid-
ered contracts cost too many gases, and results cannot be
plotted into the same picture with the remaining results. As
the figure shows, the execution overheads of patches do not
increase as the contract size increases. It is because Aroc will

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

TABLE 3

4625

Comparisons Between ContractGuard[17] and Aroc With Real-Life Reported Vulnerabilities

- . Deployment overhead Runtime overhead Recall False alarms
Program Vulnerability Code size (bytes)
CG Aroc CG Aroc CG Aroc CG Aroc

DAO Reentrancy[19] 1774 11.95% 49.83% 20.51% 41.26% 100% 100% 4.48 0
MultiSig Unchecked low-level call [27] 764 29.58% 33.50% 28.27% - 100% - 2.0 -
KoETH Unchecked low-level call[21] 3617 19.62% 20.22% 23.82% 2.36% 100% 100% 13.57 0
BecToken Overflow[28] 5963 9.52% 5.72% 20.51% 1.77% 100% 100% 8.2 0
OwlWallet Tx.origin authentication [27] 561 27.27% 72.19% 26.50% 7.17% 100% 100% 3.0 0
MerdeToken Underflow[27] 1013 21.03% 56.03% 18.74% 2.24% 100% 100% 4.0 0

try to reduce the patches’ size by integrating path con-
straints. Moreover, except for the cases that the low-level
called functions are exorbitant, reentrancy patches have the
highest overhead, second by unchecked low-level calls, and
arithmetic vulnerabilities are the cheapest. It is because that
reentrancy patches usually contain frequent state variables
access, and low-level call patches often involve function
calls, while arithmetic patches usually only have several
judgment statements.

6.1.3 Comparisons With Existing Work

In this subsection, we compare Aroc with two recent state-
of-the-art work, ContractGuard [17] and EVMPatch [16].
ContractGuard provides an on-chain smart contract protec-
tion approach by embedding safe paths into contracts and
identifying whether executions obey safe paths. EVMPatch
[16] can patch contracts automatically by rewriting off-chain
contracts to upgradable contracts. Since ContractGuard and
EVMpatch are not open-sourced, we directly compare Aroc
with their provided results in their papers, namely, Table 2
of [17] and Table 3 of [16]. That is, we do not conduct experi-
ments on them, but evaluate Aroc on the datasets provided
by them to obtain the values of related metrics.

Table 3 presents the comparison results between Con-
tractGuard and Aroc. The column ‘Code size’ means the run-
time code size of the vulnerable contracts, ‘Deployment
overhead’ is calculated by dividing the additional deploy-
ment gases by the original deployment gases, ‘Runtime over-
head” is derived by the additional execution gases divided
by that of vulnerable contract, ‘Recall’ means the percentage
of test cases where malicious transactions are successfully
blocked, ‘False alarms” means the percentage of test cases
where benign transactions are falsely blocked, and ‘CG’ rep-
resents ContractGuard. The six contracts presented in this
table are projects. Although we have not handled the Tx.ori-
gin bug in the OwlWallet contract, we patch them following
the repairing rules of unchecked low-level calls.

For most contracts, Aroc introduces more deployment
overheads than ContractGuard, since Aroc needs to re-
declare global variables and vulnerable functions for creat-
ing patches while ContractGuard inserts safe paths into the
original contracts to conduct verification. When the vulnera-
ble contracts are simple, the size of variable and function
declarations are smaller than that of safe paths. But for large
contracts, Aroc may perform better. For example, for
‘BecToken’ with the largest code size, ContractGuard costs
more deployment gases than Aroc. Since the large contracts
are usually more complicated, safe paths that Contrac-
tGuard needs to insert more complicated and larger.

For the runtime overheads, Aroc always costs less than
ContractGuard, except for the ‘DAO’ program with a reen-
trancy bug. It is because all secure rules of arithmetic bugs
are simple judgment statements, thus consuming a few
gases; the rules of the unchecked call only involve a judg-
ment statement on the function call, which are also not
expensive. However, the security rules of reentrancy bugs
include manipulations on storage variables, whose related
instructions are expensive as described in the ethereum yel-
low paper [18]. Therefore, the patch for the ‘DAO’ program
takes more execution overheads. However, Aroc-generated
patches can block all malicious transactions in the Contrac-
tGuard-provided dataset. We cannot evaluate Aroc on the
‘MultiSig’ program on-chain. Because its target line is in a
fallback function that does not have a function name, we
cannot bind it with the patch based on our binding strategy.

Table 4 presents the comparison results between EVM-
Patch and Aroc. ‘Overhead’ and ‘Code size increase’ refer to
the additional execution consumptions and codes intro-
duced by patches respectively. All contracts in this table
include CVEs, whose IDs are shown in the ‘CVE’ column.
As the table illustrates, Aroc introduces less codes than
EVMPatch for ‘UET?, ‘'SCA’, and ‘HXG’, but more for ‘BEC’
and ‘SMT’ contracts. It is because EVMPatch requires dupli-
cating certain codes of vulnerable contracts and inserting
new fixed codes.

Moreover, the size of the duplicating codes increases as
the number of vulnerable lines grows and the depth of bugs
locations is deeper. Both the ‘BEC” and ‘SMT’ contracts have
only one bug, and the bugs are at the first basic block of their
functions” CFG. Consequently, EVMPatch costs fewer for the
two contracts. For the remaining contracts, the basic blocks
that their vulnerable lines locate are deeper. Besides, UET
and SCA have multiple bug lines. Therefore, EVMpatch costs
more gases. It is noted that EVMPatch needs to re-deploy the
repaired vulnerable contracts, but our patches only include
several judgment statements. Aroc may cost less gases than
experimental results when deploying patches.

TABLE 4
Comparisons Between EVMPatch[16] and Aroc

With Arithmetic CVEs
Program CVE Overhead (gas) Code size increase (B)

EVMPatch Aroc EVMPatch Aroc
BEC 2018-10299 83 59 117 (1.0%) 310 (2.65%)
SMT 20148-10376 47 479 191(0.8%) 314 (1.32%)
UET 2018-10468 225 695 1,299(18.2%) 905 (12.68%)
SCA 2018-10706 47 7,740 3,811(1.77%) 696 (0.32%)
HXG 2018-11239 120 1,250 997 (28.10%) 334 (9.41%)

4626

o
.
~

Time (s) .

o

.
. . o
. o%e

RS J
%

0 10000 20000 0 5000 10000

Contract size (byte) Contract size (Byte)

(a) Experimental results on com- (b) Experimental results on partial
pleted dataset whose contract size dataset whose contract size ranges
ranges from 0 to 25000 from 0 to 15000

Fig. 6. Time of generating patches varies with the contract size.

However, Aroc costs more runtime overheads than EVM-
Patch. Aroc integrates all repair rules into one patch contract.
To protect contracts, the patch needs to be invoked. How-
ever, EVMPatch directly inlines secure arithmetic operations
into the vulnerable contracts bytecodes. Hence, Aroc intro-
duces more execution gases. However, as the gas price is low
(30.21/27 Gwei as mentioned above), the largest overhead
(7,740 gas of ‘SCA’) is only around $6.02 x 10~'7, which is
nearly negligible.

6.2 Performance of Aroc

Since patches should be deployed timely to avoid bugs
being exploited, the speed of generating patches should be
fast. Moreover, to support patch binding and transaction
verification, we add operations in EVM. It is crucial to mea-
sure additional overheads introduced by these operations.
Thus, next we will assess Aroc’s performance from two
parts: the time of generating patches and additional over-
heads on EVM.

6.2.1 Time of Generating Patches

Here, we run off-chain patch synthesis system of Aroc
implemented in C++. Based on the gettimeofday, a func-
tion provided by C programming language to get current
time, we instrument the off-chain system to derive the start
and end time of generating patches. The difference between
them is the patch generation time. Fig. 6 shows the relation-
ship between the patch generation time and contract com-
plexity, where the z-axis represents the contract size, and
the y-axis represents the patch generation time. In the figure
each dot represents a test result, meaning a tested smart
contract’s patch generation time. Since the size of most
tested contracts are clustered within 15,000 bytes as Fig. 6a
shows, to show rules clearly, Fig. 6b presents results on con-
tracts whose size ranges from 0 to 15,000.

As Fig. 6 shows, the generation time increases as the con-
tract size increases in general. This is reasonable because
larger contracts need more time to be traversed and ana-
lyzed. Nevertheless, for most contracts, the generation time
is less than 2.5 second (s), which is fast. Compared with the
block generation time (15s) in ethereum, this time is accept-
able. Besides, we also noted that several patches of small
contracts take more generation time than large ones.
Because these contracts contain more bugs, it takes more
time for Aroc to analyze bugs and related path constraints.
In particular, for contracts in the EVMPatch dataset, most of
them have no less than one bug and some even have six

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

?

L300k

Memory usage (B/op)
)
8

Execution time

10000 0 100] 1000
Payload (B)

0 100 1000
Payload (B)

10000

(a) Execution time (b) Memory usage

Fig. 7. Comparisons of normal transfer transaction overheads between
Aroc and Ethereum.

bugs. However, the generation time of most patches is less
than 10s. This demonstrates that Aroc enjoys the obvious
advantage compared with manual repair, considering the
generation time.

6.2.2 Performance of Enhanced EVM

In this experiment, we use the built-in benchmark to mea-
sure additional overheads on our enhanced EVM compared
with raw EVM. The benchmark test results show the aver-
age time and memory allocation for executing test function
once. New operations in the enhanced EVM focus on special
transaction and verification on transactions that the receiver
is not nil (i.e., common asset transfer transactions and con-
tract call transactions). Since different transaction types
have distinctly different proportions in transactions, for
example, special transactions are sent only when contracts
need repairing, hence we evaluate the overheads of special
transactions, normal asset transfer transactions, and con-
tract call transactions, respectively.

Since special transactions need to access the blockchain
ledger when binding contracts, they introduce about 1.74
ms longer time and 0.73 MB higher memory overheads than
transactions of raw ethereum. Nevertheless, users only send
special transactions when patching their vulnerable con-
tracts, which accounts for a tiny part of the blockchain trans-
actions. Compared with the loss brought by vulnerability
attacks, the overheads are in an acceptable range.

Then we evaluate normal transfer transaction overheads
with different payload sizes ranging from 0 B, 100 B, 1000 B,
and 10000 B. As Fig. 7 shows, Aroc needs more execution
time and memory allocation. This is as expected because
Aroc introduces additional transaction verification opera-
tions, for example, checking whether they are special trans-
actions or contract call transactions. Moreover, as with the
increase of payloads, overheads of both Aroc and ethereum
grow. But clearly that the gaps of both execution time and
memory usage between them do not become wider. Approx-
imately, Aroc introduces a mean 22.47% additional time
overhead and a mean 10.20% additional storage overhead.

As for contract call transactions, Aroc judges whether the
receiver contract is vulnerable. If vulnerable, Aroc enforces
that the receiver first delegate calls its related patches; other-
wise, the transactions can be executed directly. So in our
enhanced EVM, normal contract call and vulnerable contract
call have different overheads. Hence, we compare contract
call in raw EVM with Normal Contract call (NC) and Vulnerable
Contract call (VC) in Aroc respectively. As Fig. 8 illustrates,
both NC and VC cost more time and memory than the raw

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

W
<3
S
2

290k

Memory usage (B/op)

Execution time (ns/op)

Ethereum Aroc-NC Aroc-VC

250k

Ethereum Aroc-NC Aroc-VC

(a) Execution time (b) Memory usage

Fig. 8. Comparison of contract call overheads (execution time and stor-
age usage) with different sizes of payloads between Aroc and Ethereum.

contract call since Aroc introduces more operations to handle
contract call transactions. Moreover, VC costs more over-
heads than NC because vulnerable contract calls are first dele-
gated to patches and verified. In a summary, comparing with
the original EVM, NC and VC introduce an average of 4.40%
and 6.52% additional time overheads and an average of 1.23%
and 1.86% additional storage overheads respectively.

7 DISCUSSION

Although we only realize repair for three bug types in this
paper, Aroc can play more roles in the contract ecology envi-
ronment. First, Aroc has a good extensibility. Since three
modules in Aroc are loosely-coupled, IEM can extract path
constraints for other bug types. As long as more repair tem-
plates are placed into PSM, Aroc can repair more bugs. For
instance, Aroc can also easily be extended to repair specific
access control vulnerabilities such as verifying tx.origin
and missing restrictions on sensitive operations. Specifically,
suppose that Aroc finds tx.origin in the given target line.
In that case, Aroc can get another operand in the comparison
statement and add a comparison statement between the
operand and msg . sender in the patch. For the second vul-
nerable case, Aroc can add a new require statements with
msg . sender and the owner as operands, namely, require
(msg.sender == owner). Moreover, Aroc can deal with
more access control vulnerable cases if users interact with it.
For example, users can provide a whitelist or blacklist to
help Aroc enhance access control of patches.

Moreover, our enhanced ethereum can strengthen
deployed contracts. For example, to upgrade an on-chain con-
tract, the user can develop an additional contract with more
functions. Then he can bind it with the original contract by
sending a special transaction. Although the existing contract
upgrade model can use a new one to replace the old contract,
but this method also has several limitations. For example, it
needs to redeploy a contract with all functions, which will
spend more costs comparing with Aroc. Moreover, consider-
ing the tamper-proofing feature of blockchain, Aroc may be
an excellent supplement for this way.

Unfortunately, Aroc cannot repair all contracts yet since it
gets state variables value of vulnerable contracts based on the
delegatecall principles. But the delegatecallee can only
fetch the delegatecalller’s context, there is no way to obtain
the context of the third contract. If the target vulnerable line
depends on variables in the third contract, our generated
patches cannot protect it. Besides, Aroc cannot fix vulnerabil-
ities in fallback functions since it does not have function
signatures, which is hard to identify transactions towards
them. Moreover, to prevent malicious manipulations, Aroc

4627

requires the deployers of the vulnerable contracts to send
special transactions to bind patches with the vulnerable con-
tracts. However, smart contracts can also be deployed by con-
tracts. Then when the deployer of a vulnerable contract is also
a contract, the binding process cannot be completed because
contracts cannot send transactions.

8 RELATED WORK

Off-Chain Vulnerability Detection. Until now, most researches
focus on static vulnerability detection through static analysis
[6], [29], [30], fuzzing [31], [32], [33], [34], formal verification
[35], [36] etc. Oyente [29] first constructs a CFG and then
symbolically analyzes it to get program traces, which are lev-
eraged to detect vulnerabilities based on predefined unsafe
patterns. Osiris [6] aims at detecting integer bugs based on
symbolic execution and taint analysis. Ethainter [30] can
identify composite vulnerabilities that can only be exploited
by a successive transactions. However, tools depending on
static program analysis may not be precise enough since the
blockchain execution environment is not realistically simu-
lated. ContractFuzzer [31] fuzzes smart contracts based on
randomly generated test cases in a simulated blockchain
environment.

To further improve path coverage, Sfuzz [32] tries to
improve the effectiveness of test cases based on the dis-
tance-based heuristic strategy. Meanwhile, EthPloit [34] can
generate directed test cases towards dangerous asset trans-
fer instructions based on taint analysis. Ethploit creates
transaction sequences from the sink to sources according to
variables dependence graph that taint analysis generates, so
these test cases are more efficient. Echidna [33] randomly
generates a sequence of transactions towards the given
smart contract, and checks whether executions violate a set
of given invarients. Focusing on verifying programs’ safety,
formal verification has also attracted attentions in smart
contract field. VeriSmart [35] verifies arithmetic bugs based
on transaction invariants and loop invariants. Verx [36] can
automatically verify whether smart contracts have realized
required functional requirements through a series of formal
verification technologies. These tools are orthogonal to our
proposal, and they focus on off-chain audit while our sys-
tem aims at offering runtime protection.

On-Chain Vulnerability Protection. In addition to on-chain
countermeasures introduced in Section 1, Soda [37] also pro-
vides a way to detect vulnerabilities on chain. Soda instru-
ments EVM to extract transaction runtime information, and
detects vulnerabilities based on checking these information
against test oracles. Solythesis [38] provides a new compiler
to support runtime verifications by instrumenting smart con-
tracts with user-specified invariants. Any transaction violat-
ing the invariants will be aborted. SMACS [39] leverages a
off-chain service consisting of various verification tools and
Access Control Rules (ACRs) to verify transactions. Contrac-
tGuard [17] implements an intrusion detection system,
which first collects initial safe path sets based on user-pro-
vided passable test cases in the training phase, then instru-
ments the sets to the contract. Transactions whose execution
paths are not in the safe sets will trigger alarms. Then admin-
istrator will reproduce this transaction off-chain and manu-
ally verify its security. EVM* [40] instruments EVM to

4628

monitor transaction executions and stop dangerous transac-
tions in real-time. EVMPatch [16] leverages the bytecode
rewriting technology to generate patches automatically, then
uses delegatecall-proxy technology to repair vulnerable con-
tracts by replacing the implementation address with the
address of the new repaired contract. Our system proposes a
new approach to protect on-chain smart contracts without
modifying them. Besides, our system and these tools are
complementary to each other and can be integrated to create
a securer contract ecosystem.

9 CONCLUSION

Smart contract vulnerabilities are the core obstacle for the
development of blockchain, and a small and simple loophole
may even cause colossal asset losses. Providing comprehen-
sive countermeasures for guarding contract security is of
great significance. However, most existing solutions focus
on off-chain solutions, which are inapplicable to deployed
vulnerable contracts. In this paper, we offer an automatic
smart contract repair framework without the requirement to
modify source codes by combining off-chain static program
analysis and on-chain dynamical exploit prevention. Experi-
ments show that Aroc can automatically generate patches for
most vulnerable smart contracts. Moreover, these patches
are precise enough to block most malicious transactions
while only falsely blocking limited number of benign trans-
actions. Further, Aroc is able to generate a patch within sec-
onds, and the additional overheads on ethereum are also
acceptable. Compared with existing outstanding studies,
Aroc usually introduces less execution overheads than Con-
tractGuard and less contract sizes than EVMPatch.

In our future work, we will improve Aroc to support
repairing more kinds of vulnerabilities. Moreover, we will
consider leveraging backward symbolic execution technolo-
gies to generate path constraints, and generate more sound
patches without false negatives.

REFERENCES

[1] S.Zhong and X. Huang, “Special focus on security and privacy in
blockchain-based applications,” Sci. China Inf. Sci., vol. 63, no. 3,
2020, Art. no. 130100.

[2] H. Huang, X. Chen, and J. Wang, “Blockchain-based multiple
groups data sharing with anonymity and traceability,” Sci. China
Inf. Sci., vol. 63, no. 3, 2020, Art. no. 130101.

[3]1 Z. Wang, H. Jin, W. Dai, K.-K. R. Choo, and D. Zou, “Ethereum
smart contract security research: Survey and future research
opportunities,” Front. Comput. Sci., vol. 15,2021, Art. no. 152802.

[4] Slowmist, 2018. [Online]. Available: https:/ /slowmist.com

[5] S. Zone, “Slowmist hacked,” 2020. [Online]. Available: https://
hacked.slowmist.io/

[6] C.F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer
bugs in Ethereum smart contracts,” in Proc. 34th Annu. Comput.
Secur. Appl. Conf., 2018, pp. 664-676.

[7] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing
safety of smart contracts,” in Proc. 25th Annu. Netw. Distrib. Syst.
Secur. Symp., 2018.

[8] A.Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploiting
the laws of order in smart contracts,” in Proc. 28th ACM SIGSOFT
Int. Symp. Softw. Testing Anal., 2019, pp. 363-373.

[9]1 Y.Feng, E. Torlak, and R. Bodik, “Summary-based symbolic eval-
uation for smart contracts,” in Proc. 35th IEEEJ[ACM Int. Conf.
Autom. Softw. Eng., 2020, pp. 1141-1152.

[10] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” in Proc. 26th
Annu. Netw. Distrib. Syst. Secur. Symp., 2019.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

[11] L.Breidenbach, P. Daian, F. Tramer, and A. Juels, “Enter the Hydra:
Towards principled bug bounties and exploit-resistant smart con-
tracts,” in Proc. 27th USENIX Secur. Symp., 2018, pp. 1335-1352.

[12] Contract upgrade anti-patterns, 2018. [Online]. Available: https://
blog.trailofbits.com/2018/09/05/ contract-upgrade-anti-patterns/

[13] Solidity, 2020. [Online]. Available: https://docs.soliditylang.org

[14] N. Group, “Decentralized application security project (or DASP)
top 10 of 2018,” 2018. [Online]. Available: https://www.dasp.co/

[15] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical
review of automated analysis tools on 47, 587 Ethereum smart
contracts,” in Proc. IEEEJACM 42nd Int. Conf. Softw. Eng., 2020,
pp. 530-541.

[16] M. Rodler, W. Li, G. O. Karame, and L. Davi, “EVMPatch: Timely
and automated patching of Ethereum smart contracts,” in Proc.
30th USENIX Secur. Symp., 2021, pp. 1289-1306.

[17] X. Wang,]J. He, Z. Xie, G. Zhao, and S. Cheung, “ContractGuard:
Defend Ethereum smart contracts with embedded intrusion
detection,” IEEE Trans. Service Comput., vol. 13, no. 2, pp. 314-328,
Mar./Apr. 2020.

[18] G. Wood, “Ethereum yellow paper,” 2018. [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[19] D.Siegel, “Understanding the dao attack,” 2016. [Online]. Available:
https:/ /www.coindesk.com/understanding-dao-hack-journalists

[20] OpenZeppelin, “openzeppelin-contracts,” 2020. [Online]. Available:
https:/ /github.com/OpenZeppelin/openzeppelin-contracts/ tree/
master/contracts

[21] Post-mortem investigation, 2016. [Online]. Available: https://
www kingoftheether.com/postmortem.html

[22] C. Peng, S. Akca, and A. Rajan, “SIF: A framework for solidity
contract instrumentation and analysis,” in Proc. 26th Asia-Pacific
Softw. Eng. Conf., 2019, pp. 466—473.

[23] J. F. Ferreira and P. Cruz, “SB curated: A curated dataset of vul-
nerable solidity smart contracts,” 2020. [Online]. Available:
https:/ /github.com/smartbugs/smartbugs/tree/master/dataset

[24]]. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “SmartBugs: A
framework to analyze solidity smart contracts,” in Proc. 35th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2020, pp. 1349-1352.

[25] Ethereum, “The Ethereum blockchain explorer,” 2015. [Online].
Available: https:/ /cn.etherscan.com/

[26] Ethereum, “Remix, Ethereum-IDE,” 2020. [Online]. Available:
https:/ /remix-ide.readthedocs.io/en/latest/

[27] Merdetoken, 2017. [Online]. Available: https://github.com/
Arachnid/uscc/tree/master/submissions-2017 /doughoyte

[28] B. Mueller, “Detecting integer arithmetic bugs in Ethereum smart
contracts,” 2016. [Online]. Available: https://media.consensys.net

[29] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 254-269.

[30] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragda-
kis, “Ethainter: A smart contract security analyzer for composite
vulnerabilities,” in Proc. 41st ACM SIGPLAN Int. Conf. Program.
Lang. Des. Implementation, 2020, pp. 454—469.

[31] B.Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proc. 33rd ACM/IEEE Int.
Conf. Autom. Softw. Eng., 2018, pp. 259-269.

[32] T.D.Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sFuzz:
An efficient adaptive fuzzer for solidity smart contracts,” in Proc.
ACM/IEEE 42nd Int. Conf. Softw. Eng., 2020, pp. 778-788.

[33] G. Grieco, W. Song, A. Cygan,]J. Feist, and A. Groce,
“Echidna: Effective, usable, and fast fuzzing for smart contrac-
ts,” in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2020,
pp- 557-560.

[34] Q. Zhang, Y. Wang, J. Li, and S. Ma, “EthPloit: From fuzzing to
efficient exploit generation against smart contracts,” in Proc. 27th
IEEE Int. Conf. Softw. Anal. Evol. Reengineering, 2020, pp. 116-126.

[35] S.So, M. Lee,]J. Park, H. Lee, and H. Oh, “VERISMART: A highly
precise safety verifier for Ethereum smart contracts,” in Proc. IEEE
Symp. Security Privacy, 2020, pp. 1678-1694.

[36] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. T. Vechev, “VerX: Safety verification of smart contracts,” in
Proc. IEEE Symp. Security Privacy, 2020, pp. 1661-1677.

[37] T. Chen et al., “SODA: A generic online detection framework for
smart contracts,” in Proc. 27th Annu. Netw. Distrib. Syst. Secur.
Symp., 2020.

[38] A.Li, J. A. Choi, and F. Long, “Securing smart contract with run-
time validation,” in Proc. 41st ACM SIGPLAN Int. Conf. Program.
Lang. Des. Implementation, 2020, pp. 438—453.

https://slowmist.com
https://hacked.slowmist.io/
https://hacked.slowmist.io/
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://docs.soliditylang.org
https://www.dasp.co/
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.coindesk.com/understanding-dao-hack-journalists
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://github.com/smartbugs/smartbugs/tree/master/dataset
https://cn.etherscan.com/
https://remix-ide.readthedocs.io/en/latest/
https://github.com/Arachnid/uscc/tree/master/submissions-2017/doughoyte
https://github.com/Arachnid/uscc/tree/master/submissions-2017/doughoyte
https://media.consensys.net

JIN ETAL.: AROC: AN AUTOMATIC REPAIR FRAMEWORK FOR ON-CHAIN SMART CONTRACTS

[39] B. Liu, S. Sun, and P. Szalachowski, “SMACS: Smart contract
access control service,” in Proc. 50th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2020, pp. 221-232.

[40] F. Ma et al., “EVM: From offline detection to online reinforcement
for Ethereum virtual machine,” in Proc. 26th IEEE Int. Conf. Softw.
Anal., 2019, pp. 554-558.

Hai Jin (Fellow, IEEE) received the PhD degree in
computer engineering from the Huazhong Univer-
sity of Science and Technology, China, in 1994.
He is currently a chair professor of computer sci-
ence and engineering at the Huazhong University
of Science and Technology (HUST), China. In
1996, he was awarded a German Academic
Exchange Service fellowship to visit the Technical
University of Chemnitz, Germany. He worked at
.\ The University of Hong Kong, Hong Kong between

1998 and 2000, and as a visiting scholar at the
University of Southern California, Los Angeles, California between 1999
and 2000. He was awarded Excellent Youth Award from the National Sci-
ence Foundation of China, in 2001. He is a fellow of CCF, and a life mem-
ber of the ACM. He has coauthored more than 20 books and published
more than 900 research papers. His research interests include computer
architecture, parallel and distributed computing, big data processing,
data storage, and system security.

Zeli Wang is currently working toward the PhD
degree in the School of Computer Science and
Technology, Huazhong University of Science and
Technology (HUST), China. Her research interest
is blockchain smart contract security.

Ming Wen received the PhD degree from the
Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Technol-
ogy (HKUST), Hong Kong. He is currently an
associate professor at the School of Cyber Science
and Engineering, Huazhong University of Science
and Technology, Wuhan, China. His research inter-
ests include program analysis, fault localization
and repair, and software security. His research
work has been regularly published in top conferen-
ces and journals in the research communities of
software engineering, including ICSE, FSE, ASE, TSE and EMSE and so
on. For more information: https://justinwm.github.io.

4629

Weiqi Dai received the PhD degree in computer
science and technology from the Huazhong Univer-
sity of Science and Technology (HUST), China. He
is currently an associate professor at the School of
Cyber Science and Engineering, Huazhong
University of Science and Technology, China. His
research interests include blockchain, data privacy,
cloud computing security, trusted computing, and
virtualization technology.

Yu Zhu is currently working toward the PhD degree
in the School of Cyber Science and Engineering,
Huazhong University of Science and Technology
(HUST), China. His research interests include
security in smart contract and blockchain.

Deging Zou received the PhD degree from the
Huazhong University of Science and Technology
(HUST), China, in 2004. He is currently a professor
at the School of Cyber Science and Engineering,
Huazhong University of Science and Technology,
China. He has been the leader of one 863 Project
of China and three National Natural Science Foun-
dation of China (NSFC) projects, and a core mem-
ber of several important national projects, such as
the National 973 Basic Research Program of
China. He has applied almost 20 patents, pub-
lished two books, one is Xen virtualization Technologies and the other is
Trusted Computing Technologies and Principles, and published more than
50 high-quality papers. His research interests include system security,
trusted computing, virtualization, and cloud security. He has served as the
PC member/PC chair of more than 40 international conferences.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://justinwm.github.io

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

