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Abstract—Software vulnerabilities are now reported unprecedentedly due to the recent development of automated vulnerability
hunting tools. However, fixing vulnerabilities still mainly depends on programmers’ manual efforts. Developers need to deeply
understand the vulnerability and affect the system’s functions as little as possible.
In this paper, with the advancement of Neural Machine Translation (NMT) techniques, we provide a novel approach called SeqTrans to
exploit historical vulnerability fixes to provide suggestions and automatically fix the source code. To capture the contextual information
around the vulnerable code, we propose to leverage data-flow dependencies to construct code sequences and feed them into the
state-of-the-art transformer model. The fine-tuning strategy has been introduced to overcome the small sample size problem. We
evaluate SeqTrans on a dataset containing 1,282 commits that fix 624 CVEs in 205 Java projects. Results show that the accuracy of
SeqTrans outperforms the latest techniques and achieves 23.3% in statement-level fix and 25.3% in CVE-level fix. In the meantime, we
look deep inside the result and observe that the NMT model performs very well in certain kinds of vulnerabilities like CWE-287
(Improper Authentication) and CWE-863 (Incorrect Authorization).

Index Terms—Software engineering, vulnerability fix, neural machine translation, machine learning
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1 INTRODUCTION

SOFTWARE evolves quite frequently for numerous reasons
such as deprecating old features, adding new features,

refactoring, bug fixing, etc. Debugging is one of the most
time-consuming and painful processes in the entire software
development life cycle (SDLC). A recent study indicates that
the debugging component can account for up to 50% of
the overall software development overhead, and the major-
ity of the debugging costs come from manually checking
and fixing bugs [1]. This leads to a growing number of
researchers working on teaching machines to automatically
modify and fix the program, which is called automated
program repair [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14].

A software vulnerability is one kind of bug that can be
exploited by an attacher to cross authorization boundaries in
the source code. Vulnerabilities like HeartBleed [15], Spec-
tre [16] and Meltdown [17], introduced significant threats
to millions of users. Nevertheless, identifying and fixing
vulnerabilities is more challenging than bugs [18], [19], [20].
Firstly, the number of vulnerabilities is fewer than bugs,
making learning enough knowledge from historical data
more difficult. In other words, we usually have only a rel-
atively small database of vulnerabilities. Secondly, labeling
and identifying vulnerability requires a mindset of the at-
tacker that may not be available to developers [21]. Thirdly,
vulnerabilities are reported at an unprecedented speed due
to the recent development of automated vulnerability hunt-
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ing tools like AFL [22], AFLGo [23], AFLFast [24]. Never-
theless, fixing vulnerabilities depends heavily on manually
generating repair templates and defining repair rules, which
are tedious and error-prone [25]. Automatically learning to
generate vulnerability fixes is urgently needed and will sig-
nificantly improve the efficiency of software development
and maintenance processes.

There are many works of automated program repair
(APR) or called code migration in both industrial and aca-
demic domains [5]. Some APR studies focus on automati-
cally generating fix templates or called fix patterns [26], [27],
[28], [29], [30]. Some of APR studies focus on mining similar
code changes from historical repair records such as Cap-
Gen [31] and FixMiner [32]. Other approaches utilize static
and dynamic analysis with constraining solving to accom-
plish patch generation [7], [33]. IDEs also provide specific
kinds of automatic changes [34]. For example, refactoring,
generating getters and setters, adding override/implement
methods or other template codes, etc. Recently, introducing
Machine Learning (ML) techniques into program repair has
also attracted a lot of interest and became a trend [35], [36],
[37], [38], which build generic models to capture statistical
characteristics using previous code changes and automati-
cally fixing the code being inserted.

However, although some promising results have been
achieved, current studies of automated program repair face
a list of limitations, especially on fixing vulnerabilities.
Firstly, most APR approaches heavily rely on domain-
specific knowledge or predefined change templates, which
leads to limited scalability [5]. Tufano’s dataset [39] con-
tains 2 million sentence pairs of historical bug fix records.
Nevertheless, a vulnerability fix dataset such as Ponta’s
dataset [40] and the AOSP dataset [41] only contain 624
and 1380 publicly disclosed vulnerabilities. The confirmed
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CVE records number is nearly 150K 1. This means we
need to train and learn from a small dataset of vulner-
abilities. Secondly, traditional techniques leverage search
space exploration, statistical analysis to rank similar repair
records [42]. These techniques need to define large numbers
of features, which can be time-consuming and not accurate
enough. ML models can alleviate these problems but as
mentioned above, only a few studies have been done to
focus on vulnerability fixing because of the small sample
size.

In this paper, we focus on the two issues raised above
and rely entirely on machine learning to capture grammati-
cal and structural information as common change patterns.
In order to solve the small sample size problem, we use
the fine-tuning method [43]. Fine-tuning means that if our
specialized domain dataset is similar to the general domain
dataset, we can take weights of a trained neural network
and use it as initialization for a new model being trained
on data from the same domain. It has been widely utilized
to speed up the training and overcome the small sample
size. Using this method, we can combine two related works
together: vulnerability fixing and bug repair. We will first
pre-train the model based on the large and diverse dataset
from bug repair records to capture universal features. Then,
we will fine-tune the model on our minor vulnerability
fixing dataset, freeze or optimize some of the pre-trained
weights to make the model more suitable for vulnerability
fixing work.

We choose the general approach of Neural Machine
Translation (NMT) to learn rules from historical records and
apply them to future edits. It is widely utilized in Natural
Language Processing (NLP) domain, such as translating one
language (e.g., English) to another language (e.g., Swedish).
The NMT model can generalize numerous sequence pairs
between two languages, learn the probability distribution
of changes, and assign higher weights to appropriate editing
operations. Previous studies such as Tufano et al. [37] and
Chen et al. [38] have shown an initial success of using the
NMT model for predicting code changes.

However, they only focus on simple scenarios such as
short sequences and single-line cases. Since the NMT model
is originally exploited for natural language processing, there
is a distinction between natural language and programming
language [44]. Firstly, program language falls under the
category of language called context-sensitive languages.
Dependencies in one statement may come from the entire
function or even the entire class. Nevertheless, in natural
language, token dependencies are always distributed in
the same or neighboring sentences. Secondly, the vocabu-
lary of natural languages is filled with conceptual terms.
The vocabulary of programming languages is generally
only grammar words like essential comments, plus various
custom-named things like variables and functions. Thirdly,
programming languages are unambiguous, while natural
languages are often multiplied ambiguous and require in-
terpretation in context to be fully understood.

In order to solve the dependency problem across the
entire class, we construct the define-use (def-use) [45] chain,
which represents the data-flow dependencies to capture im-

1. https://cve.mitre.org/

portant context around the vulnerable statement. It will ex-
tract all variable definitions from the vulnerable statements.
We use the state-of-the-art transformer model [46] to reduce
the performance degradation caused by long statements.
This enables us to process long statements and captures a
broader range of dependencies.

We called our approach SeqTrans, and it works as fol-
lows: Firstly, we collect historical bug and vulnerability fix-
ing records from two previous open datasets, which contain
2 million and 5k sentence pairs of confirmed fix records.
Secondly, we start by training a transformer model with a
self-attention mechanism [46] for bug repairing on the big
dataset. Then, we fine-tune the model on the small dataset
to match the target of our work for vulnerability fixing.
Thirdly, if a new vulnerable object is inputted to the trained
model, beam search [47] will be utilized first to obtain a list
of candidate predictions. Then, a syntax checker will filter
the candidate list and select the most suitable prediction.

In order to evaluate our approach, we calculate the
accuracy at statement level and across the CVE on Ponta’s
dataset [40]. The experimental result shows that our ap-
proach SeqTrans reaches a promising accuracy of single line
prediction by 23.3% when Beam=50, outperforms the state-
of-the-art model SequenceR [38] by 5% and substantially
surpasses the performance Tufano et al. [37] and other
NMT models. As for predicting the full CVE, our approach
also achieves the accuracy of 25.3% when Beam=50, which
is also better than other approaches. We also conducted
a traditional evaluation experiment to verify our actual
performance. The result shows that among the 120 CVEs
we select from 5 open-source projects, we correctly fix 21
of them. We believe these promising results can confirm
that SeqTrans is a competitive approach that achieves good
performance on the task of vulnerability fixing.

In the meantime, we also made some ablation studies
and observed internally what SeqTrans could well predict
types of vulnerability fixes. An interesting observation we
find is that our model gives results that vary for different
types of CWEs. Our model performs quite well in specific
types of CWEs like CWE-287 (Improper Authentication) and
CWE-863 (Incorrect Authorization) but even cannot make
any prediction for certain CWEs like CWE-918 (Server-Side
Request Forgery). The conclusion is that training a general
model to fix vulnerabilities automatically is too ambitious
to cover all cases. However, if we can focus on specific
types of CWEs, the NMT model can provide developers
with promising results. SeqTrans can cover about 25% of
the types of CWEs in the data set.

The paper makes the following contributions:

1) We use the NMT model transformer to learn and
generalize common patterns from historical data for
vulnerability fixing.

2) We propose to leverage data-flow dependencies to
construct vulnerable sequences and maintain the
vital context around them.

3) Fine-tuning has been introduced to overcome the
small sample size problem.

4) We implement our approach SeqTrans and evalu-
ate real publicly disclosed vulnerabilities on open-
source Java projects. Our SeqTrans outperforms
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other program repair techniques and achieves the
accuracy of 23.3% in statement-level validation and
25.3% in CVE-level validation.

5) We make an internal observation about prediction
results on different CWEs and find some interesting
CWE fixing operations captured by our model. Our
model can predict specific types of CWEs pretty
well.

2 MOTIVATING EXAMPLES

Figure 1 shows a motivating example of our approach. In
Figure 1, there are two vulnerability fixes for CVE-2017-
1000390 and CVE-2017-1000388, respectively. These two
CVEs belong to the same CWE: CWE-732, which is named
”Incorrect Permission Assignment for Critical Resource”.
CWE-732 emphasizes that ”the product specifies permis-
sions for a security-critical resource in a way that allows
that resource to be read or modified by unintended actors”,
which means that when using a critical resource such as a
configuration file, the program should carefully check if the
resource has insecure permissions.

In Figure 1 (a), before the function getIconFileName
returns the IconFileName, it should check whether the
user has the corresponding permission. A similar vul-
nerability is included in Figure 1 (b). Before the func-
tion EdgeOperation accesses two resources JobName, it
should first confirm whether the user has the permission.
Otherwise, it will constitute an out-of-bounds permission,
which can lead to the leakage of sensitive data such as pri-
vacy. Although these two CVEs belong to different projects,
their repair processes are very similar. This inspired us
that it might be possible to learn common patterns from
historical vulnerability fixes that correspond to the same or
similar CWEs.

Figure 2 is a more extreme situation, containing two
identical CVE modifications CVE-2014-0075 and CVE-2014-
0099. These two CVEs belong to the same CWE-189, which is
named ”Numeric Errors”. This CWE is easy to understand.
Weaknesses in this category are related to improper calcu-
lation or conversion of numbers. These two CVEs contain
a series of modifications for overflow evasion, and they are
identical. We can directly copy the experience learned in one
project to another project.

In this paper, we proposed a novel method to exploit
historical vulnerability fix records to provide suggestions
and automatically fix the source code. If the function with
similar structure requests accesses to a critical resource, our
deep learning model can learn to check permissions before
allowing access, eliminating the tedious process for devel-
opers to search for vulnerability and recapitulate repair
patterns.

3 BACKGROUND

Before describing our approach, we need to briefly intro-
duce the transformer and other tools used in our approach.

Tansformer: In this work, we choose to use the trans-
former model [46] to solve the performance degradation
problem of the seq2seq model on long sequences. It has
been widely used by OpenAI and DeepMind in their

language models. The implementation of the transformer
model comes from an open-source NMT framework Open-
NMT [48]. It is designed to be research-friendly to try out
new ideas in translation, summary, morphology, and many
other domains. Some companies have proven the code to be
production-ready.

Unlike Recurrent Neural Network (RNN) [49] or Long
Short Term Memory (LSTM) [50] models, transformer relies
entirely on the self-attention mechanism to draw global
dependencies between input and output data. This model
is more parallel and achieves better translation results. The
transformer consists of two main components: a set of
encoders chained together and a set of decoders chained
together. The encode-decoder structure is widely used in
NMT models, the encoder maps an input sequence of sym-
bol representations (x1, ..., xn) to an embedding representa-
tion z = (z1, ..., zn), which contains information about the
parts of the inputs which are relevant to each other. Given
z, the decoder then exploits this incorporated contextual
information to generate an output sequence. Generates an
output sequence (y1, ..., ym) of symbols one element at a
time. At each step, the model consumes the previously
generated symbols as additional input when generating the
next [51]. The transformer follows this overall architecture
using stacked self-attention and point-wise, fully connected
layers for both the encoder and decoder. Each encoder and
decoder make use of an attention mechanism to weigh the
connections between every input and refer to that informa-
tion to generate output [46]. The key design of the trans-
former that brings the biggest performance improvement is
to set the distance between any two words to 1, which is
very effective in solving the tricky long-term dependency
problem in NLP [46].

Fine-tuning: Fine-tuning means taking weights of a
trained neural network and using it as initialization or a
fixed feature extractor for the task of interest [43]. Why do
we need to fine-tune? The reasons are shown as follows [52]:

1) Overcome small sample size: it is impractical to
train a large neural network, and overfitting cannot
be avoided. At this time, if we still want to use the
super feature extraction ability of large neural net-
works, we can only rely on fine-tuning the already
trained models.

2) Low training costs in the later stages: it can reduce
training costs and speed up training.

3) No need to build the wheel over and over again:
the model trained by the previous work with great
effort will be stronger than the model built from
scratch in a large probability.

Using this method, we can combine two related works, such
as vulnerability fixing and bug repair. The process of fine-
tuning usually consists of three parts [52]:

1) Pre-train a neural network model on the source
dataset.

2) Create a new neural network target model. It repli-
cates all the model designs and their parameters on
the source model except for the last output layer.

3) Train the target model on the target dataset. We will
train the output layer from scratch.
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(a) CVE-2017-1000390, jenkinsci/tikal-multijob-plugin, 2424cec7a099fe4392f052a754fadc28de9f8d86

(b) CVE-2017-1000388, jenkinsci/tikal-multijob-plugin, d442ff671965c279770b28e37dc63a6ab73c0f0e

Fig. 1: Two similar vulnerability fixes belonging to CWE-732

(a) CVE-2014-0075, apache/tomcat,
f646a5acd5e32d6f5a2d9bf1d94ca66b65477675

(b) CVE-2014-0099, apache/tomcat70,
184cdc0d3f03f5737e12d21fff246d7285034597

Fig. 2: Two identical vulnerability fixes belonging to CWE-189

Gumtree: GumTree is the state-of-the-art diff searching
tool [53]. It provides several interfaces to accommodate dif-
ferent kinds of parsers such as srcML [54] to parse the source
code and build the AST tree. It is worth noting that GumTree
only provides a fine-grained mapping between AST nodes,
so we modified the code of GumTree and combined it with
another tool, Understand [55], to extract the precise diffs.
In the meantime, we found some bugs in Gumtree that led
to incorrect mismatching and reported them to the author.
These issues are explained in more detail in Section 6.2. The
algorithm of Gumtree is inspired by the way developers
manually look at changes between files. It will traverse the
AST tree pairs and compute the mappings in two successive
phases:

1) A greedy top-down algorithm to find isomorphic
sub-trees of decreasing height. Mappings are es-
tablished between the nodes of these isomorphic
subtrees. They are called anchors mappings.

2) A bottom-up algorithm where two nodes match
(called a container mapping) if their descendants
(children of the nodes, and their children, and so
on) include a large number of common anchors.
When two nodes match, an optimal algorithm will
be applied to search for additional mappings (called
recovery mappings) among their descendants.

4 METHODS

We use the NMT method to automatically guide vulnera-
bility fixing, which aims to learn common change patterns
from historical records and apply them to the new input
files. In order to overcome the small sample size problem,
we introduce the fine-tuning technique. Data-flow depen-
dencies have also been introduced to maintain and capture
more critical information around the diff context. SeqTrans
can work together with other vulnerability detection tools
such as Eclipse Steady [56]. They can provide vulnerability
location information at the method level.

4.1 Overview

The overview of our approach is given in Figure 3, which
contains three stages: preprocessing, pre-training and fine-
tuning, prediction and patching.

Preprocessing: In this step, we will extract diff con-
texts from two datasets: bug repair and vulnerability fixing
datasets. Then, we perform normalization and abstraction
based on data-flow dependencies to extract the def-use
chains. We believe def-use chains are suitable for deep
learning models to capture syntax and structure information
around the vulnerabilities with fewer noises. These def-use
chains can be fed into the transformer model.

Pre-training and fine-tuning: The training process starts
on the bug repair dataset because bug repairs are easier to
collect a large enough training set than vulnerability fixes.
The tasks of vulnerability and bug fixing have something
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Fig. 3: Overview of our SeqTrans for automatically vulnerability fixing

in common, in other words, something to learn from each
other. We can learn and capture parts of general features and
hyperparameters from the general task domain dataset, the
bug repair dataset. After the pre-training, we will fine-tune
the transformer model on the vulnerability fixing dataset.
This dataset is much smaller than the first dataset because it
is hard to confirm and collect a big enough size for training.
Based on the first model, we will refine some of the weights
to make the model more suitable for the task of vulnerability
fixing. Fine-tuning has been proven to achieve better results
on small datasets and speeds up the training process [57],
[58].

Prediction and patching: If one vulnerable file is in-
putted, we need to locate the suspicious codes and predict
based on the trained model. In this paper, we do not pay
much attention to the vulnerability location part. They can
be accomplished by previous vulnerability location tools or
with the help of a human security specialist. SeqTrans can
provide multiple candidates for users to select the most suit-
able prediction. Syntax checker Findbugs [59] is exploited
to check for errors and filter out predictions that contain
syntax errors in advance. After that, we refill abstraction
and generate patches. We will discuss the details of each
part in the following part of this section.

4.2 Code Change Mining
The two datasets we utilized are Tufano’s [39] and Ponta’s
datasets [40]. Tufano’s dataset provides raw source code
pairs extracted from the bug-fixing commits, which is easy
to be used. However, Ponta’s dataset only provides the CSV
table containing the vulnerability fixing records. We need
a crawler to crawl the project we want. The table contains
vulnerability fixing records are shown as follows:

(vulnerability id; repository url; commit id)

where vulnerability id is the identifier of a vulnerability
fixed in the commit id in the open-source code repository
at the repository url. Each line in the dataset represents a
commit that contributes to fixing a vulnerability. Then, we
utilize a crawler to collect program repositories mentioned
in the dataset. Pull Request (PR) data will be extracted
based on commit id. After that, we need to find out Java
file changes involved in each PR. Because our approach
SeqTrans only supports Java files now. With the help of a git
version control system JGit [60], we can retrieve the version
of Java files before and after code changes implemented
in the PR. We call these Java file pairs ChangePair(CP ),
each CP contains a list of code diffs. In some cases, repair
operations are performed only on XML or other resource
files, or the entire file is refactored directly. In these cases,
examples are filtered out. Lastly, we extracted 5K and 650K
CPs from Ponta’s and Tufano’s datasets.

4.3 Code Diff Extraction

After obtaining CPs from PR, we need to locate the diff
context. Although we can exploit the ”git diff” command
provided by git to search line-level code diffs, it just does
not fulfill our needs. Slight code structure changes such as a
new line and adding space are not required. For this reason,
we choose to search for code diffs by using Abstract Syntax
Trees (ASTs). The state-of-the-art diff searching tool named
GumTree [53] is utilized to search for fine-grained AST node
mappings.

After that, each CP is represented as a list of code diffs:

CP = (stsrc, stdst)1, ..., (stsrc, stdst)n

where (stsrc, stdst) represents statements from the source
file and the destination file.
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Test.java: source
class Foo {
    int i;
    int k;
    String test;
    public void clear(String test){
        test = "";
    }   
    private String foo(int i, int k) {
        if(i == k) return i-k;
    }
}

Test.java: buggy body
int i;
int k;

String test;

private String foo(int i, int k) {
    if(i == k) return i-k;

}

Fig. 4: One example of the buggy body

Then, we will extract data-flow dependencies around
code diffs to construct our def-use chains. A def-use chain
means assigning some value to a variable, containing all
variable definitions from the vulnerable statement. The
reasons why we use data-flow dependencies are shown
as follows: 1) Context around the vulnerable statements is
valuable for understanding risky behavior and capturing
structure relationships. However, it is too heavy to maintain
the full context with lots of unrelated code at the class
level. 2) Data-flow dependencies provide enough context for
transformation. If one statement needs to be modified, it is
highly likely to co-change its definitions simultaneously. 3)
Control flow dependencies often contain branches, making
them too long to be tokenized. One example has been given
in Figure 4. Assume that the method ”foo” contains one
vulnerability, we will maintain the method and the vulner-
able statement. All global variables will be preserved. All
statements that have data dependencies on the vulnerable
statement will be retained, too. Statements located after
the vulnerable statement within the same method will be
removed.

The definition and use (def-use) dependencies can be
extracted from the ASTs. The process can be divided into
three parts:

1) Traverse the whole AST and label each variable
name, constant name, and string name. These
names are distributed over the leaf nodes of the
AST. This step will be done in the first phase of the
modified Gumtree algorithm.

2) Traverse up from the leaf node to search for the
defined parent nodes, record the locations.

3) Locate the relevant definition statements of the
error-prone statements by location records.

We implement this by modifying the code of Gumtree. An-
other static analysis tool named Understand is also used to
transfer the location records to codes. SeqTrans will change
each CP as the following shows:

CP = ((def1, ..., defn, stsrc), (def2, ..., defm, stdst))1, ...,

((def1, ..., defn, stsrc), (def2, ..., defm, stdst))n

In this paper, we ignore code changes that involve the
addition or deletion of entire methods/files.

Test.java: source
private String foo(int i, int k) {
     if(i == 0) return "Foo!";

     if(k == 1) return 0;}

Test.java: normalized source
private String foo(int var1, int var2) {
     if(var1 == num1) return "str";

     if(var2 == num2) return num1;}

Fig. 5: Normalize the source code

4.4 Normalization & Tokenization
In the training process of the NMT model, there exist a
couple of drawbacks. Because NMT models output a prob-
ability distribution over words, they can become very slow
with many possible words. We need to impose an artificial
limit on how many of the most common words we want
our model to handle. This is also called vocabulary size. In
order to reduce the vocabulary size, we need to preserve the
semantic information of the source code while abstracting
the context.

The normalization process is shown in Figure 5. We
replace variable names to “var1”, . . . , “varn”, each literal
and string are also replaced to ”num1”, . . . , ”numn” and
”liter”. The reasons why we do this involve: 1) reducing
the vocabulary size and the frequency of specific tokens;
2) reducing the redundancy of the data and improving
the consistency of the data. We will maintain a dictionary
to store the mappings between the original label and the
substitute to be refilled after prediction. We can control
the vocabulary size and make the NMT model concentrate
on learning common patterns from different code changes
through the above optimization.

Subsequently, we split each abstract CP into a series of
tokens. It is worth mentioning that the seq2seq model uti-
lized in previous studies faces severe performance degrada-
tion when processing long sequences. For example, Tufano
et al.[37] limited the token number to 50-100. By utilizing
the transformer model we can better handle long sequences.
In our approach, we will limit the CP to 1500 tokens. The
vocabulary size is set to 8k based on Gowda’s work [61]. We
will discuss the details in the following sections.

4.5 Neural Machine Translation Network
In this phase, we train SeqTrans to transform the vulner-
able codes and generate multiple prediction candidates.
The training process can be divided into two phases: pre-
training and fine-tuning.

4.5.1 Pre-training
In the pre-training process, we will utilize a generalized
domain corpus from Tufano’s dataset for bug repairing
to perform the first training. Vulnerability fixing can be
considered as a subset of bug repairing. We believe that
by pre-training on generic data, we can learn many generic
fixing experiences and features that can be applied to the
task of vulnerability fixing. A list of CPsgeneral will be
extracted by using the approach discussed in section 4.3.
These CPsgeneral that contain vulnerable version and fixed
version diff context will be given to the network. We will
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discuss the network in detail in the following subsection.
The pre-training model will be trained for 300K steps till
convergence because we found that the validation accuracy
smoothed at this training step and no longer fluctuated. In
the next fine-tuning process, we will select the model with
the highest accuracy on the validation dataset as the final
model. The model comes from a breakpoint backup every
5K steps.

4.5.2 Fine-tuning
The purpose of fine-tuning is to improve the model’s gen-
eralization ability when the target dataset is much smaller
than the source dataset. Using this method, we can combine
two related works: vulnerability fixing and bug repair. How-
ever, one issue is that although fine-tuning is widely used
in the Neural Language (NL) field and many pre-training
models are provided, there are very few such pre-trained
models in the Programming language (PL) field. That is why
we need to train the generic domain model by ourselves.
The model trained in the previous training process will be
fine-tuned using a new vulnerability fixing corpus so that
the knowledge learned in the bug repair training can be
transferred to the vulnerability fixing task. We set the step
size to 1/10 of the pre-training step size. The model selection
process is the same as the previous step.

Due to overfitting concerns [62], we will keep earlier
layers fixed and only fine-tune the last layer of the model.
The training process will update the vocabulary corpus
and continue till convergence. A smaller learning rate was
selected than the pre-training process, which was set to 0.01.
It is worth noting that some studies such as Gururangan’s
work [63] and documents of OpenNMT[64] mentioned that
some sequences were translated poorly (like unidiomatic
structure or UNKs) by the retrained model while they are
translated better by the base model, which is called ”Catas-
trophic Forgetting”. In order to alleviate the catastrophic
forgetting, the retraining should be a combination of in-
domain and generic data. In this work, we will try to mix
part of general domain data into specific domain data to
generate such a combination. We have roughly selected
some data to be blended into the special domain data on the
basis that the blended data should not expand the size of
the corpus as much as possible. Eventually, we will double
the size of the training set, and the test set will remain
unchanged.

4.5.3 Encoder
The encoder is composed of a stack of 6 identical layers.
Each layer consists of two sub-layers: a multi-head self-
attention mechanism and a feed-forward neural network.
Residual connection [65] and normalization [66] have been
employed to each sub-layer so that we can represent the
output of the sub-layer as:

sub layer output = Layer normization(x+(SubLayer(x)))

where Sublayer(x) is the function implemented by the sub-
layer itself. The self-attention mechanism takes in a set of
input encodings from the previous encoder and weighs
their relevance to each other to generate a set of output
encodings. The feed-forward neural network then further

processes each output encoding individually. These output
encodings are finally passed to the next encoder as its input.
The padding mask has been utilized to ensure that the
encoder does not pay any attention to padding tokens. All
sub-layers as well as the embedding layers produce outputs
of dimension dmodel = 512

4.5.4 Decoder
The decoder also contains a stack of 6 identical layers. How-
ever, each layer consists of three sub-layers: an attention
sub-layer has been added to perform multi-head attention
to draw relevant information from the encodings generated
by the encoders. The masking mechanism that contains
padding mask and sequence mask has been used to prevent
positions from attending to subsequent positions and ensure
that the predictions for position i can depend only on the
known outputs at positions less than i [46]. The other parts
are the same as the encoder.

4.5.5 Attention Mechanism
The purpose of an attention mechanism is to use a set of
encodings to incorporate context into a sequence. For each
token the attention mechanism requires a query vector Q
of dimension dk, a key vector K of dimension dk and a
value vector V of dimension dv . These vectors are created by
multiplying the embedding by three matrices trained during
the training process. The essence of the attention mechanism
is actually an addressing process, which is the embodiment
of the attention mechanism to alleviate the complexity of the
neural network model: instead of feeding all N inputs to the
neural network for computation, only some task-relevant
information from X needs to be selected and fed to the
neural network. Self-attention refers to the situation where
the queries, keys, and values are all created using sequence
encodings. Then the output Z of this attention mechanism
is:

Z = Attention(Q,K, V ) = softmax(
QKT

√
n

)V

The multi-head attention utilized in the transformer imple-
ments several attention mechanisms in parallel and then
combines the resulting encoding in a process.

4.6 Prediction and Patch Generation
The original output (or a list of outputs) is far from the
version that can be successfully compiled. Because it con-
tains abstraction and normalization, it even may contain
grammatical errors after prediction. Our patch generation
consists of two steps to solve these problems: abstraction
refill and syntax check. In this work, we assume perfect vul-
nerability localization because different studies may choose
different fault localization algorithms, implementations, and
granularities such as method-level or statement-level. Liu
et al. has pointed out that it is hard to compare different
repair techniques due to the reason of different assumptions
about the fault localization [67]. We have made a discussion
about fault localization in Section 6. Vulnerable codes can
come from a classifier, a vulnerability detection tool, or
suspicious codes. We will utilize an example from the open-
source project called activemq to illustrate the process of
patch inference and generation.
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Fig. 6: CVE-2015-5254, activemq, 73a0caf758f9e4916783a205c7e422b4db27905c

private static final ClassLoader var1 = 
ClassLoadingAwareObjectInputStream.calss.getClassLoader();

private static String[] var2;

public Static boolean isAllAllowed() {
return getSerialziablePackages().length == num1 && 

getSerialziablePackages()[num2].equals("liter1");
}

public static final String [ ] var1
public static final Map [ ] var1
public static final Set < String > var1
private static final ClientRootCertificate 
[ ] var1 = values ( )
private static final Java7Support var1

return var1 . length == num1 && var1 [ num2 ] . equals ( "liter1" )
return var1 . length == num1 && var1 [ num2 ] . equals ( "liter1" ) )
return var1 . length == num1 && var1 [ num2 ] . equals ( "liter1" ] )
return var1 . length == num1 && var1 [ num2 ]
return var1 . length ( )

Abs Origin
var1 FALLBACK_CLASS_LOADER
var2 serializablePackages
num1 1
num2 0
liter1 *

private static final ClassLoader FALLBACK_CLASS_LOADER = 
ClassLoadingAwareObjectInputStream.calss.getClassLoader();

public static final String[] serializablePackages;

public Static boolean isAllAllowed() {
return serializablePackages.length == 1 && 

serializablePackages[0].equals("*");
}

Fig. 7: CVE-2015-5254, activemq, 73a0caf758f9e4916783a205c7e422b4db27905c

Figure 6 shows a CVE repair record in activemq, which
contains three statement fixes. Firstly, as mentioned in Fig-
ure 3, the input codes need to be abstracted and normalized.
We decompose them into sequences following a similar
process as depicted in Figure 7. In Figure 7, every abstracted
variable has been marked in blue color, with every constant
in yellow color and every literal in green color. Each se-
quence will maintain a dictionary for future recovery. The
location of the sequence will also be recorded for subsequent
backfill. Then, these sequences are fed into the transformer
model, beam search [37] are used to generate multiple
predictions for the same vulnerable statement. The output
of the network is also abstracted sequences like Figure 7. It
is a sequence that contains the predicted statement and the
context around it. Thirdly, we backfill all the abstractions
when a prediction is selected and apply syntax checks. The
next subsections will supplement some concrete techniques
and tools applied in this process.

4.6.1 Beam Search

In many cases, developers have specific domain-specific
knowledge. We can generate a list of prediction results
to let developers pick the most suitable one. Beam search
a heuristic graph search algorithm [68], [69]. Instead of
greedily choosing the most likely next step as the sequence

is constructed, the beam search expands all possible next
steps and keeps the k most likely, where k is a user-specified
parameter and controls the number of beams or parallel
searches through the sequence of probabilities. Beam search
maintains the n best sequences until the upper limit of the
set beam size.

As has been depicted in Figure 7, each of the vulnerable
statements will generate five prediction candidates. Usually,
the highest-ranked predictions will be chosen and utilized.
In some cases, there are syntax errors in the prediction
results. We will use syntax checking tools to detect these
errors. This will be discussed in the following subsections
These k candidates will be provided as suggestions to
developers to select the best result.

4.6.2 Abstraction Refill

As has been shown in Figure 7, SeqTrans will maintain a
dictionary to store the necessary information for restora-
tion before abstraction. After prediction, the output will
be concretized, and all the abstractions in the dictionary
will be refilled. The code will be automatically indented in
this process. It should be noted that all comments will be
deleted and will not be refilled again. The dictionary we
maintain will store relevant variable, constant and literal for
the whole CP . We believe that the search space explosion is
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not an important issue at this scale. One shortcoming of Seq-
Trans is that the mappings included in the dictionary come
from the source files. If the abstraction is the content that
needs to be repaired, it is hard for SeqTrans to understand
and infer them. All we can do is reduce the corresponding
abstraction according to the dictionary. For example, if one
println function changes what it wants to print. The model
has difficulty predicting what it wants to print. If a predicted
abstraction cannot find a mapping in the dictionary, we will
copy the original abstraction content to the current location.

4.6.3 Syntax Check
We combine beam search with a grammar check tool to
analyze the syntax and grammatical errors contained in
the predictions. The static analysis tool FindBugs [59] is
exploited to identify different potential bugs in Java pro-
grams. The version we utilized is 3.0.1. The motivation for
introducing static analysis is to filter out as many invalid
generation patches as possible before executing test cases.
Because the time cost of running all the test cases is very
high. Potential errors can be divided into four levels: scari-
est, scary, troubling, and of concern based on their possible
impact or severity.

In SeqTrans, one generated patch needs to pass the
compiler first and then the FindBugs detection. If the can-
didate prediction cannot pass the checking process, it will
be filtered. It should be noted that Findbugs may trigger a
warning even on the pre-commit version, so we only check
the warning messages that are added after the prediction.
For example, in Figure 7, the second and the third candi-
dates contain a syntax error, which cannot pass the check
of FindBugs. We will remove these two candidates. In other
words, we use FindBugs to check the candidates to ensure
that the five candidates we recommend introduce as few
new bugs as possible. We also make an evaluation for this
checker in the experimental Section.

Finally, we can generate the newly patched file and
provide it to developers. We provide flexible choices for
developers to enable this feature or judge by their domain-
specific knowledge. Developers also have the flexibility
to choose the predictions they need based on their own
domain experience and based on our five recommended
candidates. In addition, we believe that with the continuous
improvement of model training, these grammatical errors
will become less and less. In the end, we will no longer rely
on third-party grammatical error check tools.

5 EMPIRICAL STUDY & EVALUATION

In this section, we conduct our experiment on a public
dataset [40] of vulnerability fixes and evaluate our method:
SeqTrans by investigating three research questions.

5.1 Research Questions
We explore the following research questions:

• RQ1: How much effectiveness can SeqTrans provide
for vulnerable code prediction?
RQ1 aims to prove that the NMT-based technique
is a feasible approach to learn automated code trans-
formations, and SeqTrans outperforms other state-of-
the-art techniques.

• RQ2: What are the characteristics of the ML model
used that can impact the performance of SeqTrans.
RQ2 will evaluate the impacts of the main compo-
nents of SeqTrans on performance, such as the data
structure and the transformer model.

• RQ3: How does SeqTrans perform in predicting spe-
cific types of CWEs?
RQ3 will explore in-depth the prediction results and
the source codes of the data set to observe whether
our method performs inconsistently when predicting
different kinds of CWEs.

5.2 Experimental Design

In this section, we discuss our experimental design for RQ1,
RQ2, and RQ3. All experiments were accomplished on a
server with an Intel Xeon E5 processor, four Nvidia 3090
GPU, and 1TB RAM.
Dataset: Our evaluation is based on two public datasets:
Tufano’s [39] 1 and Ponta’s datasets [40] 2. Tufano’s dataset
contains 780,000 bug fix commits and nearly 2 million
sentence pairs of historical bug fix records. For each bug-
fixing commit, they extracted the source code before and
after the bug-fix using the GitHub Compare API [70]. Each
bug-fixing record contains the buggy (pre-commit) and the
fixed (post-commit) code. They discarded commits related
to non-Java files and new files created in the bug-fixing
commit since there would be no buggy version to learn.
Moreover, they discarded commits impacting more than five
Java files since they aim to learn focused bug fixes that are
not spread across the system.

Ponta’s dataset was obtained from the National Vulner-
ability Database (NVD) and from project-specific Web re-
sources that they continuously monitor. From that data, they
extracted a dataset that maps 624 publicly disclosed vul-
nerabilities affecting 205 distinct open-source Java projects,
used in SAP products or internal tools, onto the 1282 com-
mits that fix them. The distribution of these CVEs ranges
from 2008 through 2019. Out of 624 vulnerabilities, 29 do not
have a CVE identifier, and 46, which do have a CVE iden-
tifier assigned by a numbering authority, are not available
in the NVD yet. These vulnerabilities have been removed
from the dataset, the final number of non-repetitive CVEs
is 549 with 1068 related commits. In total, the processed
Ponta’s dataset contains 1068 different vulnerabilities fixing
commits with 5K diff contexts across 205 projects classified
as 77 CWEs from 2008 to 2019. Figure 8 shows the CWE
distribution in descending order of frequency, with the
cumulative yellow line on the secondary axis, identifying
the percentage of the total number. In the appendix, we have
listed the IDs and type explanations of all CWEs in Ponta’s
dataset.

The datasets are released under an open-source license,
together with supporting scripts that allow researchers to
automatically retrieve the actual content of the commits
from the corresponding repositories and augment the at-
tributes available for each instance. Also, these scripts com-
plement the dataset with additional instances that are not

1. https://sites.google.com/view/learning-fixes/data
2. https://github.com/SAP/vulnerability-assessment-kb
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security fixes (which is useful, for example, in machine
learning applications).

Fig. 8: CWE distribution of Ponta’s dataset

Validation: We will use three methods to validate the per-
formance of the experiments.

The first validation set Tcross is 10-fold cross-validation.
Cross-validation is a technique to evaluate predictive mod-
els by partitioning the original sample into a training set to
train the model and a test set to evaluate it. In 10-fold cross-
validation, the original sample is randomly partitioned into
ten equal size subsamples. Of the ten subsamples, a single
subsample is retained as the validation data for testing the
model, and the remaining nine subsamples are used as
training data. The process is then repeated ten times (the
folds), with each of the ten subsamples used exactly once as
the validation data. It should be noted that cross-validation
is only applied to fine-tuning process. All nine subsamples
will share the same pre-training set. If the predicted state-
ment equals the statement in the test set, there is a correct
prediction. The ten results from the folds will be averaged to
produce a single estimation. The advantage of this method
is that each sample of data is used as training data and
test data. The over-learning and under-learning states are
avoided, the results obtained are more convincing.

The second validation set Tcwe is based on the chrono-
logical relationship of the CVE repair records to simulate the
actual development process of using historical vulnerability
fix records to fix subsequent suspicious code. We also sorted
the CVE samples in Ponta’s dataset by time series and used
the CVE fix records from 2008 to 2017 as the training set (708
CPs), the CVE fix records from 2018 and 2019 were utilized
as the validation (136 CPs) and test sets (150 CPs). If one
CP has been fully and correctly predicted, we regard it as
one successful fix. The distribution of the 42 CWEs in the test
set is shown in Figure 9. The previous two validations do not
contain compilation and syntax checker in the abstraction
refill part. We match the refilled statements strictly with
the statements in historical repair records to verify if it is
a correct patch. We will verify the performance of this part
in the next validation experiment.

Fig. 9: CWE distribution of the test set

(a) Tufano’s dataset (b) Ponta’s dataset

Fig. 10: Label distribution for each dataset
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Fig. 11: Token distribution for each dataset

TABLE 1: Detailed information of Ttra

Project Name CVE Number CWE Number
UAA 37 10

Struts 30 8

Spring-framework 26 11

Lucene-solr 14 2

Jenkins 13 8

Figure 10 shows the label distribution of each dataset.
We can find that the frequency distribution of labels in
the two datasets is very dissimilar. Figure 11 shows the
token distribution of the vulnerable abstract context in each
dataset. It should be noted that the token length that is
bigger than 2000 has been ignored in Tufano’s dataset. The
token length bigger than 800 has been ignored in Ponta’s
dataset. We can find that most tokens in Tufano’s dataset
are distributed between 0 and 1500. The majority of tokens
in Ponta’s dataset are distributed between 0 and 400.

In the third test set Ttra, we will try to use traditional
evaluation approaches. Five open-source projects which
contain the largest number of CVEs (120 CPs) will be
selected as the test sets. Fixing records on other projects will
be used as training sets. We will input suspicious files into
the model of SeqTrans to generate patches. We consider it a
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successful prediction if the predicted file passes the relevant
test case and no new failures are introduced. The detailed
information of the test sets is shown in Table 1.

In Table 1, the first column shows the project name,
including CloudFoundry User Account and Authentication
Server (UAA), Apache Struts, Spring framework, Apache
Solr and Jenkins. Except for Apache Solr, every one of them
has received more than 1K stars on Github. Each of them has
more than ten years of development history and has a stable
maintenance team. We believe that their CVE fix records are
relatively reliable and follow the specifications. The second
column shows the number of CVEs included in each project,
and the third column shows the number of CWEs contained
in each project. It should be noted that nearly 5% of the
commit records were removed because they failed to pass
compilation or the version was too old. In addition, because
these projects have long maintenance cycles and use differ-
ent version control tools and development environments.
We manually configured all remaining project versions to
ensure that each one would compile successfully and pass
as many test cases as possible.

5.2.1 RQ1 Setup:
The experimental part of RQ1 will be divided into three
components, RQ1.1, RQ1.2 and RQ1.3.

Firstly, RQ1.1 will show and analyze the joint training
and independent training results of the two datasets. Since
SeqTrans uses two datasets and a fine-tuning approach to
overcome the problem of small samples, then independent
and joint analyses for both datasets are necessary. For the
bug repair dataset of the general domain, we will train on
Gtrain and validate on Gval. Gval is separated from the bug
repair dataset, which is not contained in Gtrain. Likewise,
we will separate the vulnerability dataset of specific domain
to Strain, Sval and Stest. The Stest will be utilized to validate
the performance for both joint training and independent
training. Sequences in each set are mutually exclusive. This
experiment is designed to verify whether fine-tuning can
help small samples overcome the problem of dataset size,
learn from general domain tasks, and transfer it to specific
domain tasks.

Secondly, RQ1.2 will compare SeqTrans with some state-
of-the-art techniques such as Tufano [37], [71] et al. and
SequenceR [38]. In order to avoid the effects of using pre-
trained models, we will divide SeqTrans into SeqTrans full
and SeqTrans single to refer to methods that use the pre-
train model and the one that do not use the pretrain model.
SeqTrans full can be regarded as an enhancement of Seq-
Trans single as to alleviate the overfitting problem. In the
following sections, all SeqTrans that are not specified refer
to SeqTrans full.

Tufano has investigated the feasibility of using neural
machine translation for learning wild code. The disadvan-
tage of his method is that only sentences with less than 100
tokens are analyzed. SequenceR presents a novel end-to-end
approach to program repair based on sequence-to-sequence
learning. It utilizes the copy mechanism to overcome the
unlimited vocabulary problem. To the best of our knowl-
edge, it achieves the best result reported on such a task.
However, the abstract data structure of this method retains
too much useless context. It does not use the normalization

method either. We have also added the model that utilizes
the same data structure but uses the seq2seq model. Seq2seq
model is an RNN encoder-decoder model widely used in
the NMT domain, previous approaches such as SequenceR
[38] and Tufano et al. [37] is also based on this model. We
have calculated the prediction accuracy for each technique.
Prediction accuracy will be calculated using 10-fold cross-
validation for each technique. Then we will calculate the
number of correct predictions divided by the total number
to calculate the accuracy.

Thirdly, RQ1.3 will apply SeqTrans on Ttra, the five
projects selected from Ponta’s dataset with the traditional
evaluation approach. Suspicious files will be input to the
fine-tuned SeqTrans model to generate multiple patches.
The beam size is set to 10 but not 50 because it takes
too long to compile and complete the test process. The
predicted and restored files will be sent back to the project
to overwrite the source files. Then, we will recompile the
whole project and run the test cases. There is a vital problem
here, how to define a vulnerability is successfully fixed?
We will manually search and compare the parent commit
of this CVE fix record. If predicted files are compilable, all
the diffs are semantically modified, and no new test failures
are introduced, we consider it a correct fix.

Generated patches will be categorized into three types:

• Compilable: The patch can pass the compiler.
• Plausible: The patch can pass the compiler and the

test suite.
• Correct: The patch can pass the compiler and the test

suite. It has also passed our manual checking.

These three types are inclusive relationships. If the modified
statement matches the changes in the commit, we consider
it to be a correct patch. If the modified statement does
not match the changes in the commit, it will be manually
determined if it affects the code logic. The plausible patches
are manually checked by the first and the second author of
this paper. Both of them have more than five years of Java
development experience.

5.2.2 RQ2 Setup:
In this part, we will discuss the impacts of the main factors
that affect the performance of SeqTrans.

The process is shown as follows: Firstly, we will select
a list of parameters that may affect the performance of our
model. Then we will change one parameter at one time and
make the experiment in the same dataset. We will utilize
cross-validation ten times for each parameter and calculate
the mean value as the final precision. The final parameter
selections of SeqTrans will produce the highest acceptance
rates for the alternative configurations and data formats we
tested.

5.2.3 RQ3 Setup:
In this part, we will discuss the observations when we look
deep inside the prediction results. We only manually ana-
lyzed the prediction results generated by SeqTrans. Other
models are not considered.

We have calculated the prediction accuracy for each
CWE and each category of code transformation. We will
look deep inside some well-predicted CWEs to explore why
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SeqTrans performs better on them. We will also analyze why
some CWEs have very poor prediction performance.

5.3 Experimental Results

5.3.1 RQ1: How much effectiveness can SeqTrans provide
for vulnerable code prediction?

In RQ1, our goal is to analyze the performance of SeqTrans
on the task of vulnerability fix. As we have mentioned
before, RQ1 will be divided into three components. Firstly,
we will analyze the joint training and independent training
results of the two datasets in RQ1.1. Table 2 shows the
prediction accuracy of models which were trained only on
the general domain dataset (only on Tufano’s dataset) or
trained only on a specific domain dataset (only on Ponta’s
dataset) or trained jointly (fine-tuning strategy). The first
column is the training approach of the three models. The
second column is the beam search size. For example, in
the situation of Beam=10, for each vulnerable sequence, we
will generate ten prediction candidates. If one of these ten
candidates contains the correct prediction, the prediction
accuracy is 1 otherwise it is 0. The third column is the
total prediction accuracy. Recall that we use 10-fold cross-
validation to calculate the accuracy of the model. If the
predicted statement equals the statement in the test set,
there is a correct prediction.
RQ1.1: From Table 2, we can observe that SeqTrans that use
the fine-tuning strategy achieves the best performance of
14.1% when Beam=1 and 23.3% when Beam=50. Next is
the performance of 11.3% when Beam=1 and 22.1% when
Beam=50 achieved by training on a specific domain dataset.
The worst prediction performance is using only data sets
from the general domain, it can just achieve the accuracy
of 4.7% when Beam=1 and 6.9% when Beam=50. Detailed
Beam search results are shown in Figure 14 when beam size
increases from 1 to 50. The x-axis represents beam size and
the y-axis represents the prediction accuracy.

Results show that using fine-tuning strategy to transfer
knowledge from the general domain of bug repairing to
the specific domain of vulnerability fixing improved the
prediction performance of SeqTrans and achieved better per-
formance than doing the training on two separate datasets.
Fine-tuning is helpful to alleviate and overcome the small
data size problem. In the following experiments, the fine-
tuning strategy will become one of the default configura-
tions in SeqTrans.
RQ1.2: Secondly, we will compare SeqTrans with some state-
of-the-art techniques. Table 4 shows the accuracy results
of single line prediction in five different NMT models
including SeqTrans full, SeqTrans single, Seq2seq model,
SequenceR, and the work of Tufano et al.. SeqTrans full,
SeqTrans single refer to SeqTrans models that have been
pre-trained and fine-tuned, and SeqTrans models that have
been trained using only the Ponta’s dataset. For the Seq2seq
model and transformer model, we use the same training set
with def-use chains. As for the SequenceR [38] and Tufano
et al. [71], we will strictly follow their original codes and
data structures, repeat their preprocessing, training, and
translating steps.

The reason why the total number in Tcross is inconsistent
is that the data structure in different approaches is not
the same. SequenceR packages the entire class containing
the buggy line, keeps the buggy method, all the instance
variables, and only constructor’s signature and non-buggy
methods (stripping out the body). Then it performs tok-
enization and truncation to create the abstract buggy con-
text. Because this abstract buggy context maintains too
much context, even the whole buggy method and the
constructor’s signature in the class have the highest total
number after deduplication. Tufano et al. only construct
the buggy pair that contains the buggy method and the
corresponding fixed method. However, they limit the whole
sentence to 100 tokens and do not contain any statement
outside of the method, so that this approach has the lowest
total number after deduplication. As introduced in Section 4,
our approach will maintain the buggy method with the
vulnerable statement and any statement that has a data
dependency on the vulnerable statement. The total number
of our approach is in the middle.

In order to maintain a relatively fair training and testing
environment, we introduce a second verification method. As
it has been explained previously, Tcwe provides an identical
set of raw training, validation, and test dataset for each
approach. If one CP has been fully and correctly predicted,
we regard it as a successful fix. We have also tried to exploit
the beam search to generate a list of predictions. Figure 15
shows the performance on Tcross when beam size increases
from 1 to 50. The x-axis represents beam size and the y-axis
represents the prediction accuracy.

From table 4, we see that our SeqTrans full performs the
best and achieves an accuracy of 301/2130 (14.1%) when
Beam=1 on Tcross, followed by SeqTrans single 338/2130
(11.3%), Seq2seq 121/2130 (7.5%), SequenceR 252/3661
(6.9%) and Tufano et al. 37/883 (4.2%). On Tcwe, Seq-
Trans full also reaches the best accuracy of 35/150(23.3%)
when Beam=1, followed by SeqTrans single 26/150 (17.3%)
SequenceR 24/150 (16.0%), Seq2seq 20/150 (13.3%) and
Tufano et al. 5/150 (3.3%). The experimental results of
Tcross and Tcwe are generally consistent. We will do a more
detailed case study in the RQ3.

To our surprise is that SequenceR is not as good as
described. It even performs worse than Seq2seq when
Beam=1 on Tcross. The difference between data structures
can explain the poor performance of SequenceR. SequenceR
utilizes the buggy context, which contains the buggy line
and the context around the buggy line in the same function.
Other variable and method declarations in the same class
will also be retained. However, this buggy context keeps
many statements with no relationship with the buggy line.
The whole data structure is too long and contains numerous
declaration statements unrelated to the buggy line, which
performs poorly in our vulnerable public dataset. Another
disadvantage is that SequenceR only supports single-line
prediction, but there are cases of statement deletions and
additions included in the vulnerability fix.

In our SeqTrans, we only maintain the data depen-
dencies before the vulnerable statement. Meanwhile, we
will normalize the data and replace variable names by
”var1, var2....vark”. The literals and numerical values will
also be replaced by constants and maintained in a dictionary
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for future recovery. The poor performance of Tufano et al.
may be due to few data samples. We strictly follow their
method and only select sequences with less than 100 tokens.
On the other hand, the fine-tuning method we use to learn
from the general domain improves performance. Another
observation is that setting the beam size to 10 is sufficient
in most cases. Overall, SeqTrans leverages def-use chains
and fine-tuning strategy to maintain data dependencies and
overcome the minor data size issue, which can help the
NMT model reach higher accuracy.
RQ1.3: Thirdly, we will use our SeqTrans to perform a
traditional evaluation on five open source projects which
contain the largest number of CVEs. Table 3 shows the
results of these five projects. The first column is the project
name and the second column is the overall number. The
third column is the compilable number, which means that at
least one of the patches in this commit version is compilable.
The fourth column is the plausible number, it requires that
the patch not only be compilable but also pass the test
suite. The fifth column is the number of correct patches, we
will manually check the plausible patches to ensure these
changes are semantically and functionally equivalent to the
historical fixes.

Results show that out of 120 vulnerabilities, SeqTrans
generates at least one compilable patch for 98 vulnera-
bilities. Some suspicious files cannot generate one com-
pilable patch because some fixed records add or remove
entire methods or rewrite the entire file. For example, in
SECURITY-499 of Jenkins, it rewrites two files and the asso-
ciated test cases. This case cannot be correctly fixed by our
approach now. SeqTrans also generates at least one plausible
patch for 30 vulnerabilities. This number is much smaller
than the compilable number because many fixing histories
not only modify source files but also change resource files
such as the configuration files. For another case, one fix may
introduce new third-party packages. This situation cannot
be fixed by our approach now. Finally, SeqTrans successfully
generated at least one correct patch for 21 vulnerabilities. We
can see that nearly 18% of the 120 vulnerabilities are fixed.
These patches have been manually checked to ensure they
are semantically equivalent to the historical fixing records.
Figure 12 shows a fixing fragment of CVE-2016-0785, CWE-
20 in Struts. There is a pair of useless brackets in the
prediction results of SeqTrans (the third line). However, it
does not influence the function of the statement. In this case,
we also treat it as a correct fix.

Figure 13 shows a global statistic for Ttra. In the fig-
ure, we add a checked tag to analyze the effectiveness
of FindBugs, which means the patch that has passed the
static analysis check. For a total of 1200 generated patches,
438 patches can be compiled. Then, after the checking of
FindBugs, 413 patches are survived. In these patches, 49
of them are plausible, and finally, 25 patches are validated
to be correct, which means they have passed the relevant
test cases and are semantically equivalent to historical fix
records. Here we give some observations from Figure 13.
The compiler filters out most of the 787 invalid patches
filtered by the compiler and the checker. The checker only
filtered out 25 patches. FindBugs actually reports more
numbers than this, but most of them are not associated with
the vulnerable statements. The total plausible number in

Figure 13 is larger than Tabel 3, which means there is more
than one plausible patch for one CVE. This situation can
heavily rely on the quality of the related test cases [72]. This
gap will be reduced if the developer commits the relevant
test set changes together with the commit promptly. This
result makes us consider whether removing the checking
part to reduce the overhead is good. We will explore more
options in our future work.

In general, the current functionality of SeqTrans is suit-
able as assistance to developers for program repair. There
is still a long way to separate from the developers and
independently do accurate automatic program fixes.

TABLE 2: Prediction results in three training strategies

Approach Beam Accuracy

Only on general domain Gtrain

1 100/2130(4.7%)

10 121/2130(5.7%)

50 146/2130(6.9%)

Only on specific domain Strain

1 242/2130(11.3%)

10 338/2130(15.5%)

50 473/2130(22.1%)

Joint training on Gtrain and Strain

1 301/2130(14.1%)

10 411/2130(19.3%)

50 497/2130(23.3%)

TABLE 3: Effectiveness on the five selected projects

Project Name Total Compilable Plausible Correct

UAA 37 31 9 6

Struts 30 25 10 7

Spring-framework 26 21 6 4

Lucene-solr 14 11 3 2

Jenkins 13 9 2 2

TABLE 4: Performance of different techniques

Approach Beam
Accuracy

Tcross Tcwe

SeqTrans full

1 301/2130(14.1%) 35/150(23.3%)

10 411/2130(19.3%) 38/150(25.3%)

50 497/2130(23.3%) 38/150(25.3%)

SeqTrans single

1 242/2130(11.3%) 26/150(17.3%)

10 338/2130(15.5%) 31/150(20.7%)

50 473/2130(22.1%) 31/150(20.7%)

SequenceR

1 252/3660(6.9%) 24/150(16.0%)

10 418/3660(11.4%) 26/150(17.3%)

50 725/3660(19.8%) 27/150(18.0%)

Seq2seq

1 121/2130(7.5%) 20/150(13.3%)

10 242/2130(11.3%) 23/150(15.3%)

50 390/2130(18.3%) 23/150(15.3%)

Tufano et al.

1 37/883(4.2%) 5/150(3.3%)

10 59/883(6.7%) 7/150(4.6%)

50 63/883(7.1%) 7/150(4.6%)
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> if (ComponentUtils.altSyntax(getStack())&&ComponentUtils.isExpression(value)){

= if (ComponentUtils.altSyntax(getStack())&&ComponentUtils.isExpression(value.toString())){

> if (ComponentUtils.altSyntax(getStack())&&ComponentUtils.isExpression((value.toString()))){

Fig. 12: Case: fixing snippet of CVE-2016-0785 in Struts
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Fig. 13: Statistics of SeqTrans generated patches for Ttra

Answer to RQ1: In summary, NMT models are able
to learn meaningful code changes from historical code
repair records and generate predicted patch to assist de-
velopers with code repairs. Our approach SeqTrans based
on a transformer model outperforms other NMT models
on the task of vulnerability fixing. Even it outperforms
the state-of-the-art approach SequenceR in our public
vulnerability fix dataset.

5.3.2 RQ2: What are the characteristics of the ML model
used that can impact the performance of SeqTrans?

In RQ2, we will discuss some of the data formats and
configuration exploration processes that we have tried to get
a default SeqTrans model eventually. Table 5 and Figure 16
shows an ablation study for SeqTrans. From Table 5, we
can see the prediction result of our default SeqTrans against
the results of single changes on the model. We will explain
them one by one. These ablation results will help future
researchers understand which configurations are most likely
to improve their own models. Due to the random nature of
the learning process, we will use the 10-fold cross-validation
on Tcross to train each control group 10 times and take
the mean value as the final result. The first row is the
performance of the default SeqTrans model as a reference.

Group 1 in the second and third rows explored the effect
of word size on the performance of our model. Results show
that both the smaller and larger word sizes perform worse
than the configuration we choose. We think the reason is that
Smaller word sizes may lead to transitional compression of
features and loss of some valid information. Larger word
sizes may not be appropriate for the size of our dataset.

In Group 2 and Figure 16b we have discussed whether
more training steps would significantly improve perfor-
mance. The result indicates that the performance difference
between 30K and 100K training steps is very small. The
growth in predicted performance begins to converge after
30k training steps. We do not consider it worthwhile due to
the large time overhead of 100K training steps. It is worth
noting that the training step here refers to the step used
when fine-tuning the dataset of vulnerability fixing tasks
in the special domain, and the general domain model is
consistent.
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Fig. 14: Performance of three training strategies
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1 2 3 5 6 74 
Layers

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

P
re

c
is

io
n

(a) Layers

10000 20000 40000 5000030000 
Steps

0.668

0.67

0.672

0.674

0.676

0.678

0.68

0.682

P
re

c
is

io
n

(b) Training Steps

Fig. 16: Factor analysis with selected parameters

Group 3 in the fifth and sixth rows and Figure 16a are
the test of model layers, we have tried different features
and the conclusion is that 6 layers are a suitable choice. It
is worth noting that we need to ensure that the encoder
and decoder parts of the transformer model have the same
number of layers, so we use the same number of layers on
both the encoder and decoder. Results show that prediction
performance rises with the number of layers until it reaches
6. The performance of layer 7 is not better than 6, so we
decide on 6 as the parameter. Group 4 and Group 5 are
the test of different batch sizes and hidden state sizes. The
experimental results show a similar conclusion: decreasing
the size leads to decreased performance.

In group 6, 7 and 8, we will discuss the impact of
data structure and processing on performance. The result
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TABLE 5: Factor impact analysis with selected parameters

Group Description Precision Impact

- Default SeqTrans model 23.3% -

1 Word Size (256 vs 512) 22.4% -4%

Word Size (512 vs 1024) 22.1% -5%

2 Training steps (30K vs 100K) 23.5% 1%

3 Layers (5 vs 6) 21.9% -6%

Layers (6 vs 7) 22.4% -4%

4 Batch Size (2048 vs 4096) 22.6% -3%

5 Hidden State Size (256 vs 512) 22.8% -2%

6 Without Def-use Chains 20.9% -10%

7 Without Code Normalization 21.9% -6%

8 Without BPE 23.3% 0%

9 Without Mixed Fine-tuning 22.1% -5%

10 Without Fine-tuning Strategy 20.2% -13%

shows a 10% improvement in model performance when
comparing our data structure to the original single vulner-
able line. Normalization in data preprocessing will lead to
a 6% increase in performance. An interesting phenomenon
is that whether BPE is enabled or not has only a minimal
performance impact. We think the main purpose of BPE is
to compress the data and solve the problem of unregistered
words. Our vocabulary size is able to cover the majority of
words. However, when we prepare the first general model,
not using BPE to compress the sequences will cause a huge
vocabulary size and lead to the overflow of GPU memory.

Group 9 is designed to explore whether mixing some
general domain training data into the small specific domain
dataset can alleviate the problem of catastrophic forgetting.
We tried to mix in the same number of randomly selected
Gtrain training data as Strain and compare the results
with the original Strain experiments. The result shows that
without mixing the prediction performance indeed causes
a degradation of the performance. The last Group 10 is the
performance change before and after using the fine-tuning
strategy as explained in the previous experiments. SeqTrans
achieves a 13% performance improvement, indicating that
the fine-tuning strategy is very beneficial for training small-
scale data and helps us migrate knowledge from similar
domains.

Answer to RQ2: The ablation study results demonstrate
that parameter selections for the SeqTrans produce the
highest acceptance rates for the configurations we tested.
These ablation results will help future researchers under-
stand which configurations are most likely to improve
their own models.

5.3.3 RQ3: How does SeqTrans perform in predicting spe-
cific types of CWEs?

We now look at what types of vulnerabilities fix our model
can well identify and generate predictions. The purpose of
this experiment is to verify whether SeqTrans has better
performance for a specific type of CWE. For example, the
CWEs have a high number of repair cases in the dataset or
the CWEs are uniformly distributed in the data set by time

TABLE 6: Prediction results in the data set

Tcross Tcwe

CWE No. Accu CWE No. Accu
CWE-444 3/5 0.60 CWE-306 1/1 1.00

CWE-287 45/84 0.54 CWE-287 2/3 0.67

CWE-306 1/2 0.50 CWE-20 8/14 0.57

CWE-362 5/11 0.45 CWE-522 2/4 0.50

CWE-22 13/30 0.43 CWE-22 10/21 0.48

CWE-361 3/7 0.43 CWE-295 1/3 0.33

CWE-863 7/17 0.41 CWE-269 1/3 0.33

CWE-284 3/8 0.38 CWE-863 3/10 0.30

CWE-522 24/67 0.36 CWE-502 5/12 0.42

CWE-20 31/97 0.32 CWE-611 3/13 0.23

CWE-502 311/1013 0.31 CWE-200 2/11 0.18

CWE-78 7/23 0.30 CWE-noinfo 2/13 0.15

CWE-74 4/14 0.29 CWE-78 0/5 0

CWE-310 41/147 0.28 CWE-35 0/3 0

CWE-269 8/29 0.28 CWE-601 0/2 0

CWE-264 14/60 0.23 CWE-74 0/2 0

CWE-611 1/52 0.21 CWE-362 0/1 0

CWE-noinfo 7/54 0.13 CWE-521 0/1 0

CWE-200 3/28 0.11 CWE-50 0/1 0

CWE-19 5/56 0.09 CWE-89 0/1 0

All 563/2130 26.4% All 40/150 26.7%

series. Table 6 shows the prediction accuracy of each CWE
in Tcross and Tcwe when Beam=50. The Common Weak-
ness Enumeration (CWE) is a category system for software
weaknesses and vulnerabilities. Every CWE contains a list
of CVEs. Because there are too many kinds of CWE, we only
list the top 20 with the highest accuracy in the table, which
contains the vast majority of correct predictions. It should
be mentioned that the total result may be higher than the
results in Table 4. The reason is that some CVE may belong
to multiple kinds of CWE. It will be counted multiple times
when counting the number of CWEs.

Then we will explain Table 6. As for Tcross, the highest
one is CWE-444, which achieves the accuracy of 60%. If
only the highest number of predictions is considered, it is
CWE-502, which contains 311 correct predictions. As for
Tcwe, the highest one is CWE-306 and it achieves a sur-
prising prediction performance of 100%. If only the highest
number of predictions is considered, it is CWE-22, which
contains ten correct predictions. Detailed results are given
in Table 6. CWE No. indicates the CWE number. The first
column of Accu is the right prediction number and the
total prediction number. The second column of Accu is
prediction accuracy. We can find that most of the TOP CWE
predictions in the two test sets are the same. CWEs with
large differences will be labeled. CWEs in Tcwe contain less
CWE categories than Tcross, which may have contributed to
the greater concentration of top CWE. In the following, we
will compare the difference between these two test sets and
make a detailed analysis of why the model performs well
on certain specific CWEs. They perform differently or even
achieve zero accuracies in one dataset. First of all, it must
be stated that the reason why these CWEs marked blue are
not present on the right side is that they are not included in
Tcwe. These will not be the focus of our attention.

Case Study: CWE-306: CWE-306 means ”Missing Au-
thentication for Critical Function”. It is special because it



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2021 16

has a very small sample but makes a correct prediction. The
software does not perform any authentication for function-
ality requiring a provable user identity or consuming sig-
nificant resources. This commit contains two code changes
as shown in Figure 17. The first one (second line) is to add
the annotation ”@SuppressWarnings ( ”resource” )” before
the method declaration. The second one is to modify two
parameters in the put method.

> public static JMXConnectorServer createJMXServer (int port, boolean local) throws IOException 
= @SuppressWarnings ( "resource" ) public static JMXConnectorServer createJMXServer (int port, 

boolean local) throws IOException

< @SuppressWarnings ( "resource" ) public static JMXConnectorServer createJMXServer (int 
port, boolean local) throws IOException

> env.put(RMIExporter.EXPORTER_ATTRIBUTE, new Exporter())

= env.put(jmx.remote.x.daemon, true)

< env.put(jmx.remote.x.daemon, true))

Fig. 17: Case: right prediction of CWE-306

These two modifications have been correctly captured
and predicted by SeqTrans. The other two incorrect predic-
tions belong to variable definition changes, the model does
not make the correct prediction.

Case Study: CWE-362: CWE-362 means ”Concurrent
Execution using Shared Resource with Improper Synchro-
nization”. The program contains a code sequence that can
run concurrently with other code, and the code sequence
requires temporary, exclusive access to a shared resource,
but a timing window exists in which the shared resource
can be modified by another code sequence that is operating
concurrently. It contains a list of condition operator changes
and parallelism-related modifications.

> private boolean closed = false

= private volatile boolean closed = false 
< private static boolean closed = false

> return !getSocket().isOpen()

= return closed || !getSocket().isOpen()

< return closed || !getSocket().isOpen()

Fig. 18: Case: wrong prediction of CWE-362

In Figure 18, developers added one keyword and
changed the return condition. The condition modification
of the statement has been correctly predicted by SeqTrans.
However, the addition of the volatile keyword was not suc-
cessfully predicted by Tcwe’s model. We think the reason is
that Tcross’s model learns from other records about adding
the static keyword.

Case Study: CWE-502: CWE-502 means ”Deserialization
of Untrusted Data”. The application deserializes untrusted
data without sufficiently verifying that the resulting data
will be valid. CWE-502 related code transformations account
for half of the entire training set. It contains large numbers
of repetitive code transformations, such as deleting one
throw exception, adding a return statement, and changing
parameter orders. We will list some typical code changes
that are well captured and handled by SeqTrans.

> throw data.instantiationException(_valueClass, ClassUtil.getRootCause(cause)) 

= return data.handleInstantiationProblem(_valueClass, root, ClassUtil getRootCause(cause))

< return data.handleInstantiationProblem(_valueClass, root, ClassUtil.getRootCause(cause))

Fig. 19: Case: right prediction of CWE-502

In Figure 19, developers delete the throw keyword and
add a return keyword to transfer the instantiation problem.
In addition, a new parameter was inserted into the second
position. This code transformation can be well captured by
SeqTrans.

> if (type.isAssignableFrom(raw))

= if (raw.getParameterCount( ) == 1) 

< if (raw.getParameterCount( ) == 1)

Fig. 20: Case: right prediction of CWE-502

In Figure 20, developers firstly change the target of the
method call. Then, replace the method call from ”isAs-
signableFrom” to ”getParameterCount”. Finally, the condi-
tional expression ”== 1” is added. This code transformation
contains three single code transformations but is also well
captured by SeqTrans. In general, our tool SeqTrans per-
forms stable and outstandingly for vulnerability fixes like
CWE-502 that contain a lot of repetitive code transforma-
tions.

Case Study: CWE-78 and CWE-74: These two CWEs face
the same problem and we will explain them together. CWE-
78 means ”Improper Neutralization of Special Elements
used in an OS Command”. The software constructs all or
part of an OS command using externally-influenced input
from an upstream component, but it does not neutralize or
incorrectly neutralize special elements that could modify the
intended OS command when sent to a downstream compo-
nent. CWE-74 means ”Improper Neutralization of Special
Elements in Output Used by a Downstream Component”.
The software constructs all or part of a command, data
structure, or record using externally-influenced input from
an upstream component, but it does not neutralize or in-
correctly neutralize special elements that could modify how
it is parsed or interpreted when it is sent to a downstream
component. We give the following explanation for the 0%
accuracy of these two CWEs: Tcwe does not contain any of
them in the training set. All of them are included in the test
set. We believe that this situation is the cause of the low
accuracy rate.

The conclusion reached is that, for some CWEs that
contain duplicate vulnerability fixes or can be learned from
historical repair records, our SeqTrans performs very well.
Another hypothesis is that training a general model to fix
vulnerabilities automatically is too ambitious to cover all
cases. If we can focus on specific types of CWEs, the NMT
model can make a very promising result to help developers.

Answer to RQ3. Finding 1: SeqTrans performs well in
predicting specific kinds of vulnerability fixes like CWE-
287 and CWE-362. It also performs well on a timing
test set that simulates learning historical modification
records. The prediction range will become wider and
wider as the historical repair records increases.
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On the other hand, to deeply analyze these specific
CWEs, we derived Table 7 that shows the classification of
code transformations by manually analyzing prediction
results and source codes. We have made a change type
classification for each code change not only the correct
prediction but also the wrong prediction. We only consider
the prediction results strictly consistent with the true
modifications as correct predictions. So the actual accuracy
should be higher than the strict matching calculation
method we used. The first column is the type name
of code transformations. We roughly divided the code
transformation types into 17 categories. It is worth noting
that some single predictions can include multiple types of
code changes, they are classified into different code change
types. For this reason, the sum of the classified changes is
not equaled to the number in Table 6. Detailed definitions
are shown in the following:

• Change Parameter: Add, delete the parameter or
change the parameter order.

• Change Throw Exception: Add, delete or replace the
block of throw exception, add or delete the exception
keywords in the method declaration.

• Change Variable Definition: Change variable type or
value.

• Change Method Call: Add, delete a method call or
replace a method call by another.

• Change Target: Maintain the same method call but
change the target of the method call.

• Change String: Add, delete or replace the string.
• Change Method Declaration: Add, delete or replace

method name and the qualifier.
• Change Class Declaration: Modify the declaration of

a class.
• Change if Condition: Add, delete or replace

operands and operators in the if condition.
• Change Switch Block: Add, delete or replace the

”case” statement.
• Change Loop Condition: Modify the loop condition.
• Change Return Statement: Change return type or

value, add or delete ”return” keyword.
• Change Keywords ”this/super”: add or delete these

keywords.
• Change Try Block: Put statements into the try block.
• Change Catch Exception: Add, delete or replace the

block of catch exception.
• Refactoring: Rewrite the code without changing

functionality.
• Other: Other transformations which are hard to be

categorized or occur infrequently.

We can observe some conclusions from Table 7. In
Tcross, SeqTrans performs well in predicting throw excep-
tion, string, and keywords changes. All of them substan-
tially above average accuracy. When predicting parameter
change, method declaration, and variable definition. Seq-
Trans also performs better than the average accuracy. In
Tcwe, SeqTrans performed consistently with Tcross. Only
class declaration, switch block, loop condition, catch ex-
ception changes, and refactoring show lower accuracy than
others. We believe this gap can be explained in two points:
code change sophistication and relevance. There are certain

TABLE 7: Types of code transformation learned by
SeqTrans

Code Transformations
Accu

Tcross Tcwe

Change Parameter 126/495(25.5%) 17/49(34.7%)

Change Throw Exception 98/227(43.1%) 5/15(33.3%)

Change Variable Definition 63/265(23.8%) 11/33(33.3%)

Change Method Call 41/194(21.1%) 4/11(36.4%)

Change Target 19/123(15.4%) 2/13(15.4%)

Change String 79/178(44.4%) 12/21(57.1%)

Change Method Declaration 47/197(23.9%) 3/13(23.1%)

Change Class Declaration 1/57(1.8%) 0/3(0%)

Change If Condition 28/167(16.8%) 2/7(28.6%)

Change Switch block 3/31(9.7%) 0/2(0%)

Change Loop Condition 2/38(5.3%) 0/2(0%)

Change Return Statement 31/180(17.2%) 4/14(28.6%)

Change Keywords ”this/super” 7/18(38.3%) 1/5(20.0%)

Change Try Block 2/17(11.8%) 1/3(33.3%)

Change Catch Exception 1/13(7.7%) 0/1(0%)

Refactoring 4/85(4.7%) 0/1(0%)

Other 7/22(31.8%) 1/6(16.7%)

templates for code changes like string and throw exceptions.
SeqTrans can more easily learn how to modify such changes
from historical data. But some of code transformations in-
volve sophisticated code changes1, while others may only
be due to insufficient samples, resulting in the model not
learning well. On the other hand, code changes such as
refactorings and switch structure changes are difficult to
accomplish with independent statement changes because
the code is so interconnected. This also leads to a decrease
in model prediction accuracy.

Answer to RQ3. Finding 2: SeqTrans performs well
in handling throw exception change, string change and
keywords change in both datasets. Simple code trans-
formations is easier to be learned by the model, even
in unseen situations. Sophisticated code and strongly
correlated code transformations is not easily modified.

Overall, SeqTrans will perform well above average
against specific kinds of CWE and specific kinds of code
transformations. As the model iterates in the hands of
developers and the size of the data increases, we believe
SeqTrans has much space for improvement.

6 DISCUSSION

6.1 Internal Threats

The performance of the NMT model can be significantly
influenced by the hyperparameters we adopted. The trans-
former model is susceptible to hyperparameters. In order
to mimic the Google setup, we set a bunch of options
suggested by OpenNMT [64] to simulate their result. How-
ever, there are gaps between source code language and
natural language. We also modified and tested part of the
hyperparameters and chose the one that achieved the best
performance.

1. CVE-2015-5171, UAA, 9730cd6a3bbb481ee4e400b51952b537589c469d
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We manually analyzed the prediction result and the
source code, classified them into 17 types. This number of
categories is based on our experience during the experiment
process, which may not be complete enough to cover all
the code transformations. More refined classification may
lead to more discoveries. However, during our analysis,
we found that most code changes can be categorized into
specific code transformations or a list of them. Only a
few code changes cannot be identified, classified, and even
partly should be attributed to the mismatch of Gumtree
[53]. In addition, there is the potential to introduce human
error in the validation process. We have taken our best
efforts to avoid human errors. All the validators in the
experiments have more than three years of experience in
Java development.

The small dataset and the complex transformer model
may face the overfitting problem, which is occurred for
three reasons: a small dataset, too many training steps and
a complex model which is not fully trained. In this work,
we referenced He’s work [73] and applied a pre-training
model to alleviate it. He’s work proposes the following
observation:

1) Training from scratch is not a bad choice, either.
2) Pre-training allows the model to be converged ear-

lier.
3) When the amount of material is small, the pre-

trained model is less likely to be over-fitted.
4) Pre-training is helpless for tasks that are not very

homogeneous.

We think our specific domain dataset meets the above
conditions. The transformer model is more complex than
the seq2seq model, which contains more parameters to be
fully trained. Pre-training will speed up convergence on the
target task. Applying a pre-training model will be helpful to
alleviate the overfitting problem. Our experimental results
have also confirmed this opinion.

6.2 External Validity

During the experiment, we find that Gumtree [53] will
introduce mismatches, which will affect the quality of the
training set. Other researchers have mentioned that occa-
sionally GumTree cannot appropriately detect motion and
update actions between two ASTs [74], [75]. In fact, we
found two problems with Gumtree, one is related to the
IO issue. We found that the IO streams Gumtree used can
cause blockages, and this has been confirmed and fixed
by Gumtree’s author. Another problem is in the bottom-up
algorithm part of Gumtree. This question did not receive
a response from the author. Neither did we do further
experiment to evaluate the false-positive rate. Verifying this
problem is very difficult, and we have difficulty collecting a
suitable ground truth. We also modified Gumtree to support
statement-level code matching and def-use chain collection.
We believe that through these, we have minimized the
impact of Gumtree.

In addition, although we did not directly include fault
localization in our evaluation of SeqTrans, we have also
done some experiments related to fault location accuracy.
We have investigated the popular fault localization tools

and finally chose SpotBugs [76]. It contains a plugin named
Find Security Bugs [77], designed to detect 138 different
vulnerability types with over 820 unique API signatures.
We have compared the bug reports provided by Spotbugs
with our known vulnerability locations provided by the fix
records. Unfortunately, SpotBugs can only detect about 15%
of the vulnerability locations correctly. This result is beyond
our expectations. This low result shows that vulnerability
localization is such a difficult work. The latest automatic
program repair tools can still only be used to assist develop-
ers. There is still a long way to separate from the developers
and independently do accurate automatic program fixes.
Exploring how to combine fault localization and automatic
program repair together will be an important future work
for us.

6.3 Limitations
The main limitation of SeqTrans is that it currently only
supports the single-line prediction. We always assume that
these vulnerable statements are independent of each other
when making predictions about the full CVEs. We plan
to abstract and tokenize the vulnerable function at the
function-level, and the data format we currently use cannot
handle this length quite well.

6.4 Applications
We believe SeqTrans can help programmers reduce repeti-
tive work and give reasonable recommendations for fixing
vulnerable statements. As SeqTrans receives more and more
modification records from developers, we believe there is
still space for improvement in its performance. We have
also developed a VSCode plugin of SeqTrans to provide
suggestions for developers to improve their codes, which
will be opened soon.

On the other hand, training a generic model on large-
scale data is very expensive, and it takes a long time to
adjust the hyperparameters. It would be meaningful work
to provide a general model for subsequent researchers to
refine directly based on this model.

The source code of SeqTrans is available at
https://github.com/chijianlei/SeqTrans.

This approach can also be applied to areas outside of
vulnerability fixing, such as fine-grained code refactoring.
We can use historical knowledge to refactor target code such
as attribute extraction, merge parameter, inline variable, etc.
This is also part of our future exploration work. Moreover,
our study is based on the Java language now. However, we
believe that there is a common logic between programming
languages, and the rules and features learned by the model
can be easily applied to other languages.

7 RELATED WORKS

In recent years, Deep Learning (DL) has become a powerful
tool to solve problems of Software Engineering (SE), which
can capture and discover features by the DL model rather
than manual derivation. In this work, we apply the Neural
Machine Translation (NMT) model into the program repair
field to learn from historical vulnerability repair records,
summarize common pattern rules to apply to subsequent
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vulnerability fixes. In the following, we will introduce stud-
ies focus on program repair and compare our work with
related research.

Automated Program Repair Traditional program repair
techniques can be categorized into two main categories:
heuristic-based [42], constraint-based [42]. These techniques
can sometimes be enhanced by machine learning, which
we call learning-based repair [42]. It should be noted that
the classification between these three approaches is vague,
many techniques use more than one of them simultaneously.
We will list some traditional techniques to explain these
three types of approaches.

Heuristic-based APR approaches construct and traverse the
search space for syntax program modifiers [42]. ARJA-e
[78] proposes a new evolutionary repair system for Java
code that aims to address challenges for the search space.
SimFix [79] utilizes both existing patches and similar code.
It mines an abstract search space from existing patches and
obtains a concrete search space by differencing with similar
code snippets. Gatafix [80] is based on a novel hierarchical
clustering algorithm that summarizes fix patterns into a
hierarchy ranging from general to specific patterns. Gen-
Prog [6] and RSRepair [13] are two similar approaches. Both
of them try to repair faulty programs with the same muta-
tion operations in a search space. But GenProg uses random
search, rather than genetic programming, to guide the patch
generation process. Meditor [26] provides a novel algorithm
that flexibly locates and groups MR (migration-related) code
changes in commits. For edit application, Meditor matches
a given program with inferred edits to decide which edit is
applicable and produce a migrated version for developers.
AppEvolve [28] can automatically perform app updates for
API changes based on examples of how other developers
evolved their apps for the same changes. This technique is
able to update 85% of the API changes considered, but it is
quite time-consuming and not scalable enough.

Some approaches mine and learn fixing patterns from
prior bug fixes. SimFix [79], FixMiner [32], ssFix [81],
CapGen [31] and HDRepair [82]are based on frequently
occurred code change operations that are extracted from
the patches in code change histories. The main difference
between them is the object from which the data is extracted
and how the data is processed. AVATAR [33] exploits fix
patterns of static analysis violations as ingredients for patch
generation. SOFix [83] has a novel approach to digging up
bug fix records from Stack Overflow responses.

These studies are still based on statistical ranking or
strict context matching. However, more and more studies
are beginning to exploit machine learning to rank similar
code transformations and automatically generate code rec-
ommendations.

Constraint-based APR approaches usually focus on fixing a
conditional expression, which is more prone to defects than
other types of program elements. Elixir [84] uses method
call-related templates from par with local variables, fields or
constants, to construct more expressive repair expressions,
that go into synthesizing patches. ACS [85] focuses on
fine-grained ranking criteria for condition synthesis, which
combines three heuristic ranking techniques that exploit
the structure of the buggy program, the document of the
buggy program, and the conditional expressions in existing

projects.
Learning-based APR approaches is actually part of

heuristic-based APR approaches that are enhanced by ma-
chine learning techniques. We have separated them as an
independent category. DeepFix [36] is a program repair tool
using a multi-layered sequence-to-sequence neural network
with attention for fixing common programming errors. In a
collection of 6,971 incorrect C language programs written by
students for 93 programming tasks, DeepFix can completely
repair 1881 (27%) of them, and can partially repair 1338
(19%) of them. HERCULES [86] presents an APR technique
that generalizes single-hunk repair techniques to include an
important class of multi-hunk bugs, namely bugs that may
require applying a substantially similar patch at a number
of locations. The limitation is that it addresses only a specific
class of multi-hunk repairs and the evaluation is only car-
ried out on the Defects4J dataset. TRACER [87] is another
work that is very similar to Deepfix for fixing compiler
errors, and its accuracy rate exceeds that of Deepfix. Tufano
et al. [37], [71] has investigated the feasibility of using NMT
for learning wild code. The disadvantage of his method is
that only sentences with less than 100 tokens are analyzed.
In addition, this work is only limited to the type of bug that
contains only one sequence within a single method.

SequenceR [38] presents a novel end-to-end approach
to program repair based on sequence-to-sequence learning.
It utilizes the copy mechanism to overcome the unlim-
ited vocabulary problem. To the best of our knowledge, it
achieves the best result reported on such a task. However,
the abstract data structure of this method retains too much
useless context. It does not use the normalization method
either.

Vulnerability Repair Fixing vulnerability is critical to
protect users from security compromises and prevent ven-
dors from losing user confidence. Traditional tools such as
Angelix [88], Semfix [7] and ClearView [89] heavily rely on a
set of positive/negative example inputs to find a patch that
makes the program behaves correctly on those examples.
SENX [90] propose a different approach called “property-
based” which relies on program-independent, vulnerability-
specific, human-specified safety properties.

Another trending direction is the application of neural
network models for vulnerability repair. Harer et al. [91]
apply Generative Adversarial Network (GAN) to the prob-
lem of automated repair of software vulnerabilities. They
address the environment with no labeled vulnerable exam-
ples and achieve performance close to seq2seq approaches
that require labeled pairs. Chen et al. [92] apply the sim-
ple seq2seq model for vulnerability repair but the perfor-
mance is not quite promising. Ratchet [93] also utilizes the
NMT model to fix vulnerabilities, but it only stores single
statements without any context around them. All of these
functions do not consider multiple-statement, either.

Transformer and Tree Structure Another popular di-
rection is utilizing the deep learning model or treating
source code as a syntax tree to maintain richer information.
TranS3 [94] proposes a transformer-based framework to
integrate code summarization with code search. Tree-based
neural network such as TreeLSTM [95], [96], ASTNN [97]
or TreeNet [98] are also being applied on program analysis.
Shiv et al. [99] propose a method to extend transformers
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to tree-structured data. This approach abstracts the sinu-
soidal positional encodings of the transformer, using a novel
positional encoding scheme to represent node positions
within trees. It achieves a 22% absolute increase in accuracy
on a JavaScript to CoffeeScript [100] translation dataset.
TreeCaps [101] proposes a tree-based capsule network for
processing program code in an automated way that encodes
syntactical code structures and captures code dependencies
more accurately. CODIT [102] and DLFix [103] has begun to
apply tree structure into program repair and achieve some
progress.

The most similar work to us is VRepair [104]. Both of
the two studies used fine-tuning to solve the small sample
problem. The size of their training set is also in the same
order of magnitude as ours. The main differences between
VRepair and SeqTrans are the targeted languages and data
structures. VRepair focuses on the C language but the target
of SeqTrans is on the Java language. Also, in order to de-
creases the size of the output sequence, VRepair represents
edit scripts at token level and the network only outputs
the changed source code tokens not the whole function.
However, the problem is that multiple inference results will
be generated when backfilling the modified token. In our
approach, we will maintain the suspicious statements and
all statements that contain data dependencies with the sus-
picious statements. In other words, we will preserve more
context around the suspicious statements but also make
sequences longer. In addition, his work does not provide
a runnable example or code.

Most of these techniques focus on single statement pre-
diction. Translating multiple statements together is more
challenging than translating one language to another lan-
guage. Techniques for characterizing code using tree and
graph structures and converting the resulting prediction
trees into readable code are still in the exploratory stage.
Overall, we believe that using a tree-based neural network
or even combining it with a transformer structure will
become our future work.

8 CONCLUSION

In this paper, we design the automatic vulnerability fix
tool SeqTrans based on the NMT technique to learn from
historical vulnerability fixes. It can provide suggestions
and automatically fix the source code for developers. Fine-
tuning strategy is used to overcome the small sample size
problem. We conduct our study on real-world vulnerability
fix records and compare our SeqTrans with three kinds of
other NMT techniques. We investigated three research ques-
tions based on these collected data. Experiment results show
that our technique outperforms the state-of-the-art NMT
model and achieves an accuracy rate of 23.3% in statement-
level prediction and 25.3% in CVE-level prediction. The
SeqTrans-based approach indeed helps solve the scalability
and small data set problems of existing methods on the
task of vulnerability fixing. We also look deeply into the
model and manually analyze the prediction result and the
source code. Our observation finds that SeqTrans performs
exceptionally well in specific kinds of CWEs like CWE-287
(Improper Authentication) and CWE-863 (Incorrect Autho-

rization). The prediction range will become wider and wider
as the historical repair records increases.
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