
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 1

Automatically Distilling Storyboard with Rich
Features for Android Apps
Sen Chen, Lingling Fan, Chunyang Chen, and Yang Liu

Abstract—Before developing a new mobile app, the development team usually endeavors painstaking efforts to review many existing
apps with similar purposes. The review process is crucial in the sense that it reduces market risks and provides inspirations for app
development. However, manual exploration of hundreds of existing apps by different roles (e.g., product manager, UI/UX designer,
developer, and tester) can be ineffective. For example, it is difficult to completely explore all the functionalities of the app from different
aspects including design, implementation, and testing in a short period of time. However, existing reverse engineering tools only
provide basic features such as AndroidManifest.xml and Java source files for users.
Following the conception of storyboard in movie production, we propose a system, named StoryDistiller, to automatically generate the
storyboards for Android apps with rich features through reverse engineering, and assist different roles to review and analyze apps
effectively and efficiently. Specifically, we (1) propose a hybrid method to extract a relatively complete Activity transition graph (ATG),
that is, it first extracts the ATG of Android apps through static analysis method first, and further leverages dynamic component
exploration to augment ATG; (2) extract the required inter-component communication (ICC) data of each target Activity by leveraging
static data-flow analysis and renders UI pages dynamically by using app instrumentation together with the extracted required ICC data;
(3) obtain rich features including comprehensive ATG with rendered UI pages, semantic activity names, corresponding logic and layout
code, etc. (4) implement the storyboard visualization as a web service with the rendered UI pages and the corresponding rich features.
Our experiments unveil that StoryDistiller is effective and indeed useful to assist app exploration and review. We also conduct a
comprehensive comparison study to demonstrate better performance over IC3, Gator, Stoat, and StoryDroid.

Index Terms—Android apps, app review, competitive analysis, reverse engineering, storyboard

F

1 INTRODUCTION

MObile applications (apps) now have become the most
popular way of accessing the Internet as well as

performing daily tasks, e.g., reading, shopping, banking,
and chatting [2]. Different from traditional desktop applica-
tions, mobile apps are typically developed under the time-
to-market pressure and facing fierce competitions — over
3.8 million Android apps and 2 million iPhone apps are
striving to gain users on Google Play and Apple App Store,
the two primary mobile app markets [3]. Additionally, a
large number of mobile apps still suffer from functional
bugs [4], [5], security vulnerabilities [6], [7], [8], and the lack
of marketing competitiveness.

Therefore, for app developers and companies, it is cru-
cial to perform extensive competitive analysis through app
review over existing apps with similar purposes [9], [10],
[11], [12]. This analysis helps understand the competitors’
strengths and weaknesses, and reduces market risks be-
fore development. Specifically, it identifies common app
features, design choices, and potential customers. More-
over, researching similar apps also helps developers gain

• Sen Chen is with the College of Intelligence and Computing, Tianjin
University, China. Email: senchen@tju.edu.cn. Lingling Fan (Corre-
sponding author) is with the College of Cyber Science, Nankai University,
China. Email: linglingfan@nankai.edu.cn. Chunyang Chen is with the
Faculty of Information Technology, Monash University, Australia. Email:
chunyang.chen@monash.edu. Yang Liu is with the Zhejiang Sci-Tech
University, China and School of Computer Science and Engineering,
Nanyang Technological University. Email: yangliu@ntu.edu.sg.

• This work is an extension to our previous paper published in ICSE’19 [1].
This journal version has substantially extended our conference version in
terms of technique contributions and experiments.

more insights on the actual implementation, given that
delivering commercial apps can be time-consuming and
expensive [13]. Besides, from the perspective of app testers
for testing purpose, they aim to catch more useful features,
such as logic, functionalities, and version changes. However,
to the best of our knowledge, existing reverse engineering
tools can only provide partial features, such as the configu-
ration file (i.e., AndroidManifest.xml) and Java source files
to analysts directly [14].

To achieve the aforementioned tasks such as competitive
analysis, a freelance developer or a product manager (PM)
in a tech company has to download the apps from markets,
install them on mobile devices, and use them back-and-
forth to identify what he is interested in [9], [10], [12],
[11]. However, such manual exploration can be painstaking
and ineffective. For example, if a tech company plans to
develop a social media app, over 200 similar apps on Google
Play will be under review. It is overwhelming to manually
analyze them — register accounts, feed specific inputs if
required, and record necessary information (e.g., what are
the main features, how are the app pages connected). Addi-
tionally, commercial apps can be too complex to be manually
uncovered all functionalities in a reasonable time [15]. For
UI/UX designers, the same exploration problem still re-
mains when they want to get inspiration from similar apps’
design. In addition, the large number of user interface (UI)
screens within the app also makes it difficult for designers to
understand the relation and navigation between pages. For
developers who want to get inspiration from similar apps,
it is difficult to link the UI screens with the corresponding
implementation code — the code can be separated in layout

ar
X

iv
:2

20
3.

06
42

0v
1

 [
cs

.S
E

]
 1

2
M

ar
 2

02
2

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 2

Fig. 1: The storyboard diagram of an Android app

files as well as a large piece of functional code. For app
testers who want to understand the existing apps in depth
from multiple aspects, such as app logic, functionalities,
and version changes in order to design test cases or testing
strategies, it is difficult to obtain all the useful features at the
same time with existing reverse engineering tools, such as
ApkTool [16] and Androguard [17].

Inspired by the conception of storyboard1 in movie
industry [18], we intend to generate the storyboard of an
Android app to visualize its key app behaviors and rich
features. Specifically, we use activities (i.e., UI screens) to
characterize the “scenes” in the storyboard, since activities
represent the intuitive impression of the apps in a full-screen
window and are the most frequently used components for
user interactions [19]. Fig. 1 shows the storyboard diagram
of Facebook (one of the most popular social media apps),
which includes the activity transition graph (ATG) with UI
pages, the detailed layout code, independent UI compo-
nents, the functional code of each activity (Activity Code),
and method call relations within each activity (Method Hier-
archy). Based on this storyboard, PMs can review a number
of apps in a short period of time and propose more com-
petitive features in their own app.2 UI designers can obtain
the most related UI pages for reference. And developers can
directly refer to the related code to improve development
efficiency. Meanwhile, app testers can understand the main
logic, functionalities, as well as version changes to generate
test cases.

However, generating storyboards is challenging. First,
ATG is usually incomplete with low activity coverage due
to the limitations of static analysis tools such as A3E [15],
IC3 [20], and Gator [21]. Second, to render all UI pages,
a pure static approach may miss parts of UIs that are dy-

1. “Storyboard” was developed at Walt Disney Productions, in-
cluding a sequence of drawings typically with some directions and
dialogues, representing the shots planned for a movie or television
production.

2. The main purpose is to help PMs, developers, designers, and
testers understand and get inspiration from existing apps, instead of
directly distributing any part of the code for developing apps for
commercial purpose.

namically rendered and reduce UI similarity compared with
real pages, whereas existing pure dynamic approaches [22],
[23], [24], [25] can only reach limited activities in the app,
especially for those requiring login. Third, the obfuscated
activity names lack the semantics of corresponding func-
tionalities, making the storyboard hard to understand.

In our previous conference version [1], to overcome these
challenges, we propose a system (named StoryDroid) to au-
tomatically generate the storyboards of apps in three main
phases: (1) Activity transition extraction, which extracts ATG
from the apks, especially the transitions in fragments [26]
(components of Activity) and inner classes [27], making
ATG more complete. (2) Static UI page rendering, which first
extracts the dynamic components (if any) for each UI page
and embeds them into the corresponding static layout. It
then renders each UI page statically based on the static
layout files. (3) Semantic name inferring, which infers the
semantic names for the obfuscated activity names by com-
paring the layout hierarchy with the ones in our database.3

However, there are still some limitations in Story-
Droid [1], which motivates us to extend to this journal
version. (1) The completeness of ATG is still not satisfying
(below 70% activity coverage on average) especially for
the closed-source apps (below 60%) due to the limitations
of pure static analysis such as decompilation errors and
dynamic-loading components. (2) Some of the rendered
pages by the pure static method have a big visual difference
compared with the real pages (Fig. 9 (a)) even though it
achieves ~80% similarity on average. More importantly,
not all the dynamic/hybrid layout code can be transferred
to static layout code, causing unexpected errors such as
rendering failures of user-defined components, third-party
dependency errors, and resource file errors, which directly
leads to low success rate of page rendering (~55% launch
ratio on average). These above issues significantly reduce
the usability of storyboards in practice.

However, it is non-trivial to overcome the above lim-
itations, because it is challenging to further improve (1)
the completeness of ATG only by a pure static method
because it is hard to handle various types of activity star-
tups or address the limitations caused by code reverse
engineering [20], [21], [1], [15]; (2) the capability of static
UI page rendering because it cannot transfer various types
of dynamic components and is hard to render UI pages of
closed-source apps due to compilation failures. To address
the limitations of the pure static method in StoryDroid [1],
we propose a hybrid approach named StoryDistiller, which
combines static and dynamic methods to distill and generate
storyboards for Android apps more effectively, and further
help different stakeholders to explore and review apps.
Consequently, in this paper, we make substantial effort to
upgrade the generation capability of storyboards for apps
from the following technical aspects:
• In terms of the Activity transition extraction, we leverage

Dynamic UI component exploration to dynamically augment
the transition graph extracted by the pure static method
in StoryDroid. Consequently, StoryDistiller combines the

3. According to a pilot study on 1,000 randomly selected activities
names, we found that few activity names lack semantics in the exper-
imental dataset. Therefore, in this version, to make the paper more
compact, we did not pay more attention to the semantic name inferring.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 3

advantages of static and dynamic methods with over 20%
increase in activity transition pairs and more than 10%
improvement in activity coverage.

• As for the Dynamic UI page rendering, we leverage static
data-flow analysis to extract the inter-component com-
munication (ICC) data transferred across different ac-
tivities. Based on it, StoryDistiller can render UI pages
dynamically with a high success launch ratio (~80% vs.
~55% in StoryDroid on average) and can address the low
page similarity of the static rendering method4 used in
StoryDroid (~95% vs. ~80% on average).

• StoryDistiller provides a web service to visualize the
storyboards with rich features and enhance the usability
of StoryDistiller. Thanks to the capability of StoryDistiller
and large-scale dataset of apps, we are able to build a
large and multi-dimension dataset with different kinds of
data to enable different follow-up research directions.
Specifically, in this extension, we evaluate StoryDistiller

on 150 apps (75 open-source and 75 closed-source apps)
from the following two aspects: effectiveness evaluation of
each phase of the proposed method and usefulness eval-
uation of the visualization outputs as a web service. The
experimental results show that (1) for activity transitions,
StoryDistiller outperforms the existing static methods such
as IC3, Gator, and StoryDroid (7.8, 10.0, and 18.2 vs. 23.3
transition pairs on average); For activity coverage, Story-
Distiller also performs the best compared with the above
three static methods (38.7%, 33.7%, and 69.6% vs. 77.5% on
average) and the dynamic method (i.e., Stoat) (36.3% vs.
77.5%). (2) StoryDistiller achieves around 80% launch ratio
of activities for each app on average on the 150 selected
apps, while StoryDroid only launches about 55% activities
due to the limitations of the pure static rendering method.
Moreover, our rendered UI pages clearly show the actual
functionalities of the activities compared with the ones that
are obtained by manual exploration and achieve over 95%
UI similarity. In addition, the user study shows that with
the help of StoryDistiller, activity coverage has a significant
improvement compared with exploration without StoryDis-
tiller when exploring and reviewing apps.

In summary, we make the following main contributions:
• This research work aims to automatically generate the

storyboards of Android apps. It assists app development
teams including PMs, designers, developers, and app
testers to quickly have a clear overview of other similar
apps and target different tasks such as app exploration
and app review.

• We leverage a hybrid approach to extract a compre-
hensive ATG for Android apps, and render UI pages
dynamically with high UI similarity compared with the
real ones.

• We propose a novel method to render UI pages by ob-
taining the required ICC data for launching each activity,
minimizing unexpected errors when rendering UI pages
(Algorithm 2 in § 4.3).

• Our comprehensive experiments demonstrate not only
the effectiveness of the generated storyboards, but also

4. For the pure static method in StoryDroid, rendering the page is
based on the static layout files or the transferred layout files for the
dynamic/hybrid layouts, and no more other parameters are needed
like ICC data using in StoryDistiller.

the usefulness of our StoryDistiller with the extracted rich
features for assisting app review and analysis.

• To enhance the usability of StoryDistiller, we visualize the
storyboards with all rich features through a web service
(Fig. 4). We also construct a multi-dimension dataset
with different kinds of features based on StoryDistiller
and enable several follow-up research directions, such as
extracting commonalities across apps, recommending UI
design and code, and guiding app testing. We will grad-
ually release these datasets to enable different research
applications [28].

• We released the code of StoryDistiller on GitHub for the
community to facilitate the following works: https://gi
thub.com/tjusenchen/storydistiller

2 MOTIVATING SCENARIO

We detail the typical app review process [29], [30], [9], [10],
[12] with our StoryDistiller for Android apps in terms of
different roles in the development team. Eve is a PM of an IT
company. Her team plans to develop an Android social app.
In order to improve the competitiveness of the designed
app, she searches hundreds of similar apps (e.g., Facebook,
Instagram, and Twitter) based on the input keywords (e.g.,
social and chat) from Google Play Store. She then inputs
all of the URLs of these apps into StoryDistiller which
automatically download all of these apps with Google Play
API [31]. StoryDistiller further generates the storyboard
(e.g., Fig 1) of all these apps and displays them to Eve for
an overview. By observing these storyboards together, she
easily understands the storyline of these apps, and spots
the common features among these apps such as registering,
searching, setting, user profile, posting, etc. Based on these
common features, Eve comes up with some unique features
which can distinguish their own app from existing ones.

Alice, as a UI/UX designer, needs to design the UI pages
according to Eve’s requirements. With our StoryDistiller, she
can easily get not only a clear overview of the UI design
style of related apps, but also interaction relations among
different screens within the app. Then, Alice can develop
the UI and user interaction of her app inspired by others’
apps [32], [33].

Bob is an Android developer who needs to develop the
corresponding app based on Alice’s UI design. Based on
Alice’s referred UI design in the existing app, he can also
refer to that app with the help of our StoryDistiller. By
clicking the UI screen of each activity in the storyboard,
StoryDistiller returns the corresponding UI implementation
code no matter it is implemented with pure static code,
dynamic code, or hybrid ones. To implement their own UI
design, he can refer to the implemented code and customize
it based on their requirement. That development process is
much faster than starting from scratch. In addition, Bob may
also be interested in certain functionality within a certain
app. By using StoryDistiller, he can easily locate the logic
code.

Mallory is an Android tester who has to test the cor-
responding app based on Bob’s implementation. By ex-
ploring StoryDistiller, she can understand the main logic
and functionalities to generate test cases. For apps with
multiple versions, StoryDistiller is able to identify the UI

https://github.com/tjusenchen/storydistiller
https://github.com/tjusenchen/storydistiller

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 4

components that have been modified between different app
versions. Therefore, she can also reuse most of the test cases
since different versions of a single app have many common
functionalities. Reusing test cases is useful to improve the
efficiency of app testing.

3 PRELIMINARIES

In this section, we briefly introduce the concept of An-
droid Activity and Fragment, and the mechanism of inter-
component communication (ICC).

3.1 Android Activity and Fragment
There are 4 types of components in Android apps (i.e.,
Activity, Service, Broadcast, and Receiver). Activity [19] and
Fragment [26] render the user interface and are the visible
parts of apps. Activity is a fundamental component for
drawing the screens which users can interact with. Frag-
ment represents a portion of UIs in the activities, which con-
tributes their own UI to certain activities. Fragment always
depends on an Activity and cannot exist independently. A
Fragment can also be reused in multiple activities and an
activity may contain multiple fragments based on the screen
size, with which we can create multi-panel UIs to adapt to
mobile devices with different screen sizes. Service is another
important component of Android that is used to perform
operations on the background such as playing music and
handling network transactions. It does not has any UI.

3.2 Inter-component Communication
When an app intends to make inter-component commu-
nication (ICC), e.g., start a new activity B or connect to
other apps from the current activity A, it requires to create
an “Intent” object describing the task. If there is other
data/messages required to be transferred from activity A
to activity B, the parameters, such as action, category, and
extra parameters can be stored in the “Intent” object or in the
“Bundle” class, and transferred to activity B for successful
launching. When activity B receives it, it can parse the data
inside and use them to render the UI screen or conduct other
transactions. If activity B does not receive the necessary
data or the proper form of the necessary data, it could
not be rendered successfully, sometimes even causing an
app crash, usually “NullPointerException”. Note that, one
activity also can be started by other activities via Fragments
and inner classes [27].

As shown in Table 1, the ICC data transferred be-
tween components are classified into two categories:
primitive attribute and extra parameter. The primitive at-
tributes are usually stated in the intent-filter element of
an activity in the AndroidManifest.xml file, indicating
that only the intents with specific attributes can launch
the activity, such as actions to be performed (e.g., an-
droid.intent.action.VIEW), URI data to be operated on (e.g.,
vnd.android.cursor.dir/vnd.google.note), and special flags
associated with the “Intent”, etc. Primitive attributes can
also be declared in the Java files. The extra parameters
are usually declared in the Java files in an Intent object or
Bundle class, indicating the data transferring to the target
activity, which is also the necessary data to launch the target

TABLE 1: Data types transferred in ICC

Category SubCategory Data Type/Description

Primitive
Attributes

Action String
Category Set<String>

Data String
Type String

Extra
Parameters

Basic
<key, type>pair, where key refers to the
parameter name, and type indicates the
data type of the value (e.g., Integer, String).

Bundle Set of <key, type>pairs, each of which
is a basic extra parameter.

activity, in the form of <key, type> pairs where key is a
String indicating the parameter name and type indicates the
data type of the value. For example, if an activity requires
a specific “pid” (e.g., pid = 2) to be successfully launched,
then the key refers to the parameter name “pid”, and the
type refers to data type of 2 (i.e., Integer).

4 OUR HYBRID APPROACH (STORYDISTILLER)
StoryDistiller takes an apk as input and outputs the visu-
alized storyboard (S) with rich features for the app. Fig. 2
shows the overview of our hybrid approach (named Sto-
ryDistiller): (1) First of all, StoryDistiller instruments the
apk so that activities can be launched by third-parties. (2)
Static extraction includes ATG extraction, which leverages
static program analysis to obtain relatively complete ATG.
Meanwhile, the required ICC data (i.e., Activity launching
parameters shown in Table 1) can be extracted through
control- and data-flow analysis (refer to Section 4.2.2). (3)
Dynamic UI page rendering launches the activities registered
in the app one by one with the extracted ICC parameters.
Meanwhile, it can also augment ATG through dynamic UI
component exploration. After that, we can obtain a compre-
hensive ATG with rendered UI pages. (4) Moreover, the
other rich features, such as layout code, Activity code, UI
component, and call graphs are collected. (5) StoryDistiller
then visualizes the storyboard of the app with all the ex-
tracted features in a webpage.

4.1 APK Instrumentation
In terms of the APK instrumentation, we first decompile the
target apk and set “exported=true” in the AndroidMani-
fest.xml file for each activity to enable the launching process
by third-parties. We then repackage it to a new installable
APK file and sign it to ensure its usability. Note that the
repackaged apps are only used for the experimental pur-
pose, and all the experiments are conducted in a controlled
environment. The repackaged apps will not be released for
commercial use.

4.2 Static Extraction
Static extraction mainly contains two steps: ATG extraction
and ICC data extraction for dynamic UI page rendering in
the next phase.

4.2.1 ATG extraction
Activity transition in fragment and inner class are repre-
sentative and widely-used components in real-world apps.
According to our study on 150 randomly selected real apps

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 5

Fig. 2: Overview of StoryDistiller

Millions of Android Apps

Activity1

Activity2 Inner Class

Fragment1 Activity3

Start Activity

Start Fragment

Start Activity

Use Inner Class

StartActivity

Start Activity

Start Fragment

Start Activity

Main

PrefEditor

PrefEditor
Fragment

Advanced
PrefEditor

SearchPanel

SearchBy
PartName

PartList
Start Activity

Use Inner Class

(a) Transitions with Fragment (b) Transitions with Inner Class

Fig. 3: Activity transitions between activities and fragment,
inner class

(75 open-source and 75 closed-source apps used in RQ1
(§ 5.1)), we find 44 apps use Activity transitions in fragment
and 84 apps use Activity transitions in inner class. Before
extracting activity transitions in inner classes and fragments,
we illustrate the transitions in them. Fig. 3 (a) is the sub
ATG of Vespucci [34], a map editor. Firstly, activity Main
starts PrefEditor, in which PrefEditorFragment is started.
And PrefEditorFragment further starts AdvancedPrefEdi-
tor. Specifically, as shown in Listing 1, fragments can be
added to an activity in two ways: (1) by invoking fragment
modification API calls, e.g., “replace()”, “add()”, and fur-
ther leveraging “FragmentTransaction.commit()” (lines 3-
4) to start the fragment; (2) By using “setAdapter” (line
7) to display the fragment in a certain view (e.g., View-
Pager). The started PrefEditorFragment then starts a new
activity (i.e., AdvancedPrefEditor). Fig. 3 (b) shows the
sub ATG of ADSdroid, where SearchPanel uses an inner
class SearchByPartName to handle time-consuming oper-
ations as shown in Listing 2. After finishing the task, it
starts an activity PartList by invoking “StartActivity()” (line
4). In this example, our goal is to extract activity tran-
sitions: Main→PreEditor, PreEditor→AdvancedPrefEditor,
and SearchPanel→PartList.

Algorithm 1 details the extraction of ATG. Specifically,
it takes as input an apk, and outputs the activity transition
graph (atg). We first initialize atg as an empty set (line 1),
which stores the activity transitions gradually. We then gen-
erate the call graph (cg) of the given apk. For each method
(m) in each class (c), if there exists an activity transition,
we first get the target activity (callee_act) by analyzing the
data in Intent via getTargetAct() (lines 4-8). Specifically, for
each explicit activity transition, the target activity is explic-
itly indicated in the Intent object where an intent variable
usually either explicitly declares the callee activity or uses
a variable defined before or other types of implementation
to indicate the target activity. We first analyze which intent
constructor it creates (Intent has various constructors to

receive different kinds/numbers of parameters), and then
track the parameter that indicates the target activity by
data-flow analysis. Finally, we can obtain the target activity
(callee_act). If the method (m) is in an inner class, we regard
the outer class as the activity that starts the target activity
and add the transition to atg (lines 9-11). Take Fig. 3 (b) as
an example, we add an edge SearchPanel→PartList to atg.
1 public c l a s s PrefEditor { . . . / / Using replace / add
2 PrefEditorFragment pref = new PrefEditorFragment () ;
3 FragmentTransaction . replace (R. id . content , pref) ;
4 FragmentTransaction . commit () ;
5 }
6 public c l a s s PrefEditor { . . . / / Using setAdapter
7 ViewPager . setAdapter (getSupFragmentManager () , new

PrefEditorFragment ()) ;
8 }

Listing 1: Simplified code snippet of Fragment

1 public c l a s s SearchPanel { . . .
2 private c l a s s SearchByPartName extends Asynctack

< > { . . .
3 Intent i n t en t = new Intent (MainActivity . this ,

P a r t L i s t . c l a s s) ;
4 s t a r t A c t i v i t y (i n t e nt) ;
5 }
6 }

Listing 2: Simplified code snippet of Inner Class

If m is in a fragment, we construct the relation between
the fragment (caller_frag) and the target component (lines
12-13). Specifically, for each activity transition, we first
locate the class c that starts a new activity according to
m, and then check the super class of it. If it extends a
fragment, we then set caller_frag = c. In fact, in terms
of extracting the target activities from explicit transitions,
there is no difference between extracting activities started
by activity and fragment. Note that this relation between
the caller fragment and the target activity does not rep-
resent the actual component transition, we optimize it by
identifying the activities that start the fragment in lines 18-
21. Specifically, to identify the activities that bind a specific
fragment, we investigate different types of methods that
bind activities and the corresponding fragments, where
fragments are operated (e.g., removed, added, replaced, and
setAdapter) using specific APIs, and we can track specific
APIs to identify the activity corresponding to a specific
fragment. After that we update atg by merging fragment
relations to construct the actual activity transitions (line
22). For example, as shown in Fig. 3 (a), we first obtain
the relations PrefEditorFragment→AdvancedPrefEditor,
PrefEditor→PrefEditorFragment, then we merge it to
PrefEditor→AdvancedPrefEditor to represent the actual ac-
tivity transition. For method m that is neither in an inner
class nor a fragment, we backward traverse cg starting from

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 6

Algorithm 1: Static ATG Extraction
Input: apk
Output: atg: Activity transition graph, including

Activity and Service
1 atg ← ∅
2 cg ← getCallGraph(apk)
3 all_classes← getAllClasses(apk)
4 foreach c ∈ all_classes do
5 methods← getClassMethods(c)
6 foreach m ∈ methods do
7 if hasActivityTransition(m) then
8 callee_act← getTargetAct(m)
9 if isInnerClass(c) then

10 caller_act← outerClass(c)
11 atg.addPair(caller_act, callee_act)

12 else if isInFragment(m) then
13 atg.addPair(caller_frag, callee_act)

14 else
15 caller_acts← getCallerAct(m, cg)
16 foreach act ∈ caller_acts do
17 act.addPair(act, callee_act)

// Optimize atg

18 if startFragment(m) then
19 caller_acts← getCallerAct(caller_frag)
20 foreach act ∈ caller_acts do
21 atg.addPair(act, callee_frag)

22 updateATGIfNeeded(atg)

23 return atg

m to obtain all the activities that start the target activity
(callee_act), then add them to atg (lines 14-17).

4.2.2 ICC data extraction
As aforementioned in § 3.2, to successfully launch an ac-
tivity, data that are required to render the target UI page
should be provided, including the primitive attributes and
extra parameters listed in Table 1. Algorithm 2 details the ex-
traction process of ICC data. We highlight that the data-flow
analysis for ICC data extraction is one of the core phases in
StoryDistiller, which obviously improves the ability of UI
page rendering (c.f. § 4.3).

As shown in Algorithm 2, it takes an apk as input,
and outputs the ICC data required to launch each activity.
Specifically, we first obtain the call graph, all class instances,
and the AndroidManifest.xml file by decompiling the apk,
and the output icc_data is initialized as an empty set (Lines
1-4). We then traverse the classes to identify activities. For
each activity act, we use the function getParamters() to
obtain the required parameters (including primitive attributes
and extra parameters) for launching the activity (Lines 9-31).
As for the primitive attributes, we obtain them (if any) from
the manifest file by parsing the corresponding fields, such
as “action” and “category”, and then save it in para (Lines
11-12). Sometimes primitive attributes are also declared in
the source code, and the extraction method is similar to that
of extra parameters.

Algorithm 2: ICC Data Extraction
Input: apk
Output: icc_data <act, para>: ICC data of each

activity for Activity launching
1 icc_data← ∅
2 cg ← getCallGraph(apk)
3 all_classes← getAllClasses(apk)
4 mani← getManifest(apk)
5 foreach c ∈ all_classes do
6 if isActivity(c) then

// Get parameters for activity c

7 para← getParameters(c, cg, mani)
8 icc_data = icc_data

⋃
<c, para>

9 Function getParameters(act, cg, mani):
10 para← ∅

// Get primitive attributes from manifest
11 attr, value← getPrimitiveAttr(c, mani)
12 para← para

⋃
<attr, value>

// Get extra parameters from source code
13 methodslc ← getLifecycleCallbacks(act)
14 foreach m ∈ methodslc do
15 type, key ← null
16 para← getExtras(m, para);

17 return para

18 Function getExtras(m, para):
19 if hasExtraParameters(m) then
20 extras← getAllExtras(m)
21 foreach e ∈ extras do
22 key ← getKey(e)
23 type← getValueType(e)
24 para← para

⋃
<key, type>

25 else
26 mcallee ← getCalleeMethod(m, cg)
27 while mcallee 6= null do
28 para← getExtras(mcallee, para)
29 mcallee ← getCalleeMethod(mcallee, cg)

30 return para

31 return icc_data

As for the extra parameter extraction, we first identify
methods related to activity lifecycle (denoted by methodslc),
such as onCreate() and onStart() since extra parameters in
these methods are related to page rendering. For each lifecy-
cle callback (i.e., method) m, if it invokes specific APIs (e.g.,
getStringExtra, getBundle) to get the ICC extra data from the
previous activity, we obtain the key through backward data-
flow analysis and the value type of each extra parameter
based on the corresponding APIs. We then save them in
para (Lines 19-24). Specifically, as for the key, whose main
purpose is to get the attached data transferred from the
source activity to the target activity, therefore, it is usually
presented using constant strings and can be directly ex-
tracted from the code according to the specific APIs. As for
the value type, we can get it according to the specific APIs of
value types such as getStringExtra and getBooleanExtra. For
example, btd =getIntent().getStringExtra(“returnKey1"), the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 7

key we obtained is “returnKey1”, the value type is “String”,
and the ICC data is saved as <returnKey1, String>, we will
provide a string value for the key returnKey1 at runtime
to launch the target activity. In some cases, the extra pa-
rameters are not directly declared in the lifecycle methods,
but in the methods that the lifecycle methods invoke, which
would also affect the UI rendering if not provided with
proper parameters. To tackle this situation, we first obtain
the methods that the lifecycle callbacks invoke according
to the call graph cg (Line 26), and iteratively explore each
method to obtain the potential extra parameters with their
key and value types by invoking getExtras method (Lines
28-29). After obtaining the parameters for activity act, we
store it together its required parameters to icc_data for
further UI page rendering and exploration.

4.3 Dynamic UI Page Rendering

Dynamic UI page rendering mainly contains two steps: UI
page rendering, which launches each activity dynamically
based on the extracted ICC data; UI component exploration,
which augments static ATG by exploring all interactive
components of each activity to identify more activity tran-
sitions together with UI pages. Note that the static UI page
rendering method used in StoryDroid by leveraging layout
code transformation may lead to a big visual difference
between the rendered pages and the real pages like Fig. 9
(a), the reasons are explained in § 5.2.2. However, there are
no such limitations in StoryDistiller which uses the dynamic
UI page rendering with the ICC data extracted by the data-
flow analysis.

4.3.1 UI page rendering
After generating the activity transitions between different
pages, we now aim to render the corresponding UI pages
by exploring each activity of the app. Our goal is to ren-
der/explore as many UI pages as possible to visualize the
transitions between activities. To the best of our knowledge,
basically, there exist two methods rendering/exploring the
UI pages: (1) Dynamic app testing tools such as Monkey [22]
and Stoat [23], which aim to explore as many UI pages as
possible by dynamically running the apps to detect more
bugs, however they are demonstrated to only achieve ~35%
activity coverage, which is far away from representing the
complete relations between activities. (2) Static UI page
rendering. Chen et al. [1] proposed to render UI pages by
first converting dynamic/hybrid layout to static layout since
they found 62.3% apps construct their UI pages by adopting
dynamic/hybrid layout, and developing a dummy app to
launch each activity with the help of static layouts. How-
ever, the rendering largely relies on the layout conversion
process, causing incomplete or error rendering of the UI
pages if the conversion process is incomplete.

To this end, we propose to render and launch activities
dynamically with the help of the extracted ICC data and
Android toolkit, and take screenshots accordingly. This ap-
proach has several advantages over the existing methods:
(1) It does not need to generate test cases to run the app
like dynamic app testing, but directly launch all activities
one by one, which addresses the limitation that the test
cases may not reach all the activities successfully; (2) It

considers the data transferred from the previous activity
that is essential for rendering the current activity, which
alleviates the limitation of improper conversion process in
StoryDroid [1]. The detail of the rendering process is as
follows.

For each activity, if it requires parameters to launch,
we provide it with a random dummy value according
to its required data types (e.g., String/Integer/Boolean).
As for the dummy value, we extracted the data defined
the layout files when exploring apps and randomly
choose values from them for different data types. In this
way, we can append all parameters needed for activity
launching. For example, if the extracted parameters of
one Activity are <“userid”, Integer> and <“username”,
String>. We will use the command: “adb shell am
start -n pkg/pkg.activityname -ei userid 2
-es username Alice” to launch the current Activity,
where -ei and -es refer to the data types of the parameters
are Integer and String, respectively. More required extra
parameters can be appended. For other data types, there
are also corresponding commands, such as -ez for Boolean
and -ef for float. Besides, to eliminate side-effect between
different activities during launching, we provide a fresh
state for each activity by forcing stop the previous launched
ones. For activities that fail to launch due to app crashes or
permissions required, we dump the layout hierarchy of the
current activity and analyze it to check whether it contains
keywords (e.g., “has stopped” and “keeps stopping”
for app crashes, “ALLOW” and “DENY” for permission
requests). When the app crashes, we stop the app and set
it to the original state (i.e., a fresh state for another activity
to launch). When the app requests permission from users,
we automatically grant it to make it render the UI page
normally.

Note that, the activity that is actually launched may be
different to what is intended to be launched. For example,
we intend to launch an activity called “NewsDetailActiv-
ity”, however this activity requires user credentials (e.g.,
user name and password). Without valid user credentials,
it would jump to the “sign in” or “sign up” page. Thus
the actual launched activity would be the “signInActivity”.
Considering such situations, to avoid assigning incorrect
activity names to the launched UI pages, we obtain the
current launched activity by retrieving the top activity from
the back stack through the Android running system. This
strategy also addresses the code obfuscation problem on
activity names, which is better than the solution proposed in
StoryDroid [1], i.e., inferring semantic names based on the
layout tree similarity.

4.3.2 UI component exploration

Although the completeness of ATG is much better than the
existing static method such as IC3 and dynamic method
such as Stoat according to the comparison experiments in
StoryDroid [1], some of the important activity transitions are
still missing due to the limitation of the pure static method.
In this paper, we propose to explore interactive components
on each page and augment ATG. Specifically, when the UI
page is rendered successful (§ 4.3.1), StoryDistiller follows
two steps to conduct dynamic UI component exploration.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 8

Fig. 4: Web service of StoryDistiller

Firstly, we parse the layout code of each rendered activ-
ity and extract each interactive component (e.g., ImageButton,
Button, and clickable TextView) together with its attributes,
including UI component id, component description, etc.
Secondly, we trigger each interactive component on the
rendered activity by using UIAutomator[35]. If the behavior
triggers the launching of another activity and the transition
is not included in the current ATG, we add the new explored
transition pair into the ATG. By leveraging the hybrid
ATG construction approach, we are able to obtain a more
complete ATG for the demonstration of storyboards.

4.4 Rich Feature Extraction and Implementation
4.4.1 Feature Extraction
To visualize the storyboards of Android apps with all rich
features, we highlight the extracted rich features for dif-
ferent software engineering tasks. Specifically, as shown in
Fig. 2, we extract 8 kinds of features, including ATG, UI
page, activity name, layout code, activity code, call graph,
and UI components with their attributes. Among them,
ATG, UI page, activity name, and call graph are extracted
in § 4.2-§ 4.3 to achieve specific tasks. For activity code,
we extracted the corresponding code by decompiling the
APK file using the reverse-engineering tool. For layout code,
we obtain them when rendering UI pages by dumping the
layout for the current activity, which is the actual layout
for the launched activities. For UI components and their
attributes, we first identify the boundary and the attributes
of each component (e.g., “Button” and “EditText”) from the
layout code, and crop each component according to the
boundary.

4.4.2 Implementation
We implement StoryDistiller as an automated tool, which
is written in 4K lines of Java code, and 3K lines of Python
code. StoryDistiller is built on top of several off-the-shelf
tools: IC3, jadx [36] and Soot [37]. We extend the Soot
framework to extract inputs of UI page rendering, such
as ATG and ICC data, and get the call graphs from apks.
Activity transition extraction is built on IC3 to obtain a
comparatively complete ATG. jadx is used to decompile the
apk to obtain the source code for Android apps. ApkTool
(v2.4.1) [16] is used to repackaged the apk to implement
the instrumentation. We dump the actual activity names for

each UI page from the console through activity back stack
[38]. For the few cases where activity names lack seman-
tics and users have demand to obtain the inferred activity
name, the method proposed in StoryDroid [39] can also be
applied. The used Android emulator (Nexus 5X) is running
on Genymotion (v3.0.0) with Android 8.0, 4G RAM, and
1920∗1080 resolution ratio. We use data-driven document
(D3) [40] to visualize StoryDistiller’s results, which provides
a visualized technique based on data in HTML, JavaScript,
and CSS. As shown in Fig. 4, the visualization [1] contains
4 parts: (1) ATG with activity names and corresponding
UI pages; (2) The layout code of each UI page; (3) The
functional code of each activity; (4) The components of each
UI page with corresponding attributes, such as label and
size; (5) The method call relations within each activity.

5 EVALUATION OF STORYDISTILLER

In this section, we evaluate the effectiveness and the useful-
ness of StoryDistiller based on the following three research
questions:
RQ1: Can StoryDistiller extract a more complete ATG in
terms of more transitions and higher activity coverage com-
pared with existing ATG exploration tools (i.e., IC3 [20],
Gator [21], Stoat [23], and StoryDroid [1])?
RQ2: Can StoryDistiller render more UI pages with higher
UI similarity compared with StoryDroid?
RQ3: Can StoryDistiller help explore and review the func-
tionalities of Android apps effectively and efficiently?

5.1 RQ1: Effectiveness of Hybrid ATG Extraction
5.1.1 Setup
To investigate the capability of constructing ATG, we ran-
domly download 75 apps from Google Play Store (closed-
source apps) and 75 apps from F-Droid [41] (open-source
apps) as subjects to demonstrate the effectiveness of ATG
extraction on real-world apps. We compare StoryDistiller
with four existing ATG exploration tools including three
static methods (i.e., IC3 [42], Gator [21], and StoryDroid [1]),
and one dynamic method, i.e., Stoat [23] which has been
demonstrated to be more effective on app exploration than
other tools such as Monkey [22]. For some closed-source
apps, IC3 and Gator take more than one hour to extract
ATG probably due to some internal errors, therefore, we set
a timeout of 30 minutes for each app which is sufficient to
explore most of the apps. For Stoat, we run each app for 30
minutes. As for the evaluation metrics, we use the number
of activity transition pair and activity coverage to demonstrate
the performance of each tool. “activity coverage” is com-
puted as the number of unique activities in the ATG over
the total number of activities declared in the app.

5.1.2 Results of RQ1
Activity transition pairs. Fig. 5 shows the result of tool
ability in terms of extracting activity transition pairs. It
can be seen that StoryDistiller outperforms the other three
static tools for both open-source apps and closed-source
apps. More specifically, StoryDistiller is able to extract 15.2
and 31.4 transition pairs on average for each open-source
app and each closed-source app, receptively. Compared

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 9

Fig. 5: Comparison of transition pairs

with StoryDroid, StoryDistiller improves over 20% tran-
sition pairs, which benefits from the proposed dynamic
UI component exploration. Compared with IC3 and Gator,
StoryDistiller increases more than twofold (7.78 for IC3, 9.96
for Gator vs. 23.30) on all these selected apps.

As for StoryDistiller, it can extract activity transitions
with respect to all the features such as fragments, inner
classes, and callbacks. Since we extract transitions by using
particular APIs (e.g., StartActivity, StartActivityForResult,
and StartActivityIfNeeded) that start new activities by lever-
aging data-flow analysis, the extracted transitions are more
accurate. To investigate the contribution of fragment and
inner class to ATG, we record the number of apps that use
fragment or inner class to start new activities. The result
shows 44 apps use fragments and 84 apps use inner class
to start new activities, indicating the popularity of using
these two types to build activity transitions in real scenarios.
Besides, the dynamic UI component exploration can also
augment ATG. Even though, StoryDistiller sometimes may
still miss some transitions due to the limitation of the un-
derlying tools such as decompilation failures or extraction
errors of certain classes. Besides, developers may self-define
some methods to start new activities instead of using the
default patterns (c.geo [43] open-source app), causing some
activity transition pairs cannot be identified and extracted.
Similarly, intent overloading [44] would also lead to missing
activity transitions (FBReader: Favorite Book Reader [45]). To
some extend, dynamic UI component alleviates this problem
and augment the transitions effectively. Overall, the results
shown in Fig. 5 demonstrate the effectiveness of StoryDis-
tiller on extracting activity transitions over other existing
tools.

Compared with IC3, StoryDistiller has advantages on in-
ner classes, fragments, and callbacks when extracting activ-
ity transitions, which has been evaluated in StoryDroid [1].
However, according to our investigation, for intent over-
loading with complex parameters, IC3 can extract partial
activity transitions statically. Therefore, to obtain a compar-
atively complete ATG and maximize the activity coverage,
we implemented StoryDistiller by integrating the transition
results of IC3.
Activity coverage. Fig. 6 depicts the activity coverage re-
sults of each tool. Compared with the dynamic method,
on average, StoryDistiller outperforms Stoat in terms of
activity coverage, achieving 88.5% (vs. 43.2%) and 66.4%

Fig. 6: Comparison of activity coverage

(vs. 29.4%) coverage on open-source apps and closed-source
apps, respectively. In addition, StoryDistiller costs much less
time (i.e., 8.50 minutes on average) to extract and render the
activities than Stoat (i.e., 30 minutes). The time cost includes
the apk instrumentation and UI page rendering. As for the
comparison results with static methods, the performance
trend is similar to that of activity transition pairs. Story-
Distiller still outperforms other tools, achieving nearly 80%
coverage on average. Compared with StoryDroid, StoryDis-
tiller improves over 10% activity coverage.

StoryDistiller does not cover all the activities for some
apps due to the following reasons: (1) the limitation of
reverse engineering techniques, some classes and methods
cannot be decompiled from apks, causing failures in ex-
traction of activity transition and coverage. That situation
is more severe in closed source apps due to packing [46]
and code obfuscation techniques [47], [48]. (2) Another
reason is the dead activities (no transitions), such as unused
legacy code and testing code in apps. We also investigate
the reasons why dynamic exploration tools such as Stoat
achieve low activity coverage: (1) Login requirement. For
example, Stoat fails to explore Santander which is a banking
app requiring login using password or fingerprint. (2) Lack
of specific events. For example, Open Training is a fitness-
training app, which can create fitness plans by swiping
across the screen. However, Stoat does not support such
events, resulting in low coverage.

Answer to RQ1. StoryDistiller outperforms the static
methods (e.g., IC3, Gator, and StoryDroid) in terms of
activity transition pairs (23.3 vs. 7.8 in IC3, 10.0 in Gator,
and 18.2 in StoryDroid), and the dynamic method (e.g.,
Stoat) in terms of activity coverage (77.5% vs. 36.3%
in Stoat). Therefore, StoryDistiller is able to obtain a
more complete activity transition graph compared with
existing tools.

5.2 RQ2: Effectiveness of UI Page Rendering

5.2.1 Setup
To investigate the effectiveness of UI page rendering, we
compare StoryDistiller (dynamic method) and StoryDroid
(static method) in terms of the ratio of rendered pages
and the UI similarity of rendered pages, by using the 150
Android apps in RQ1. Specifically, (1) we first investigate the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 10

Fig. 7: Comparison the Launch ratio of activities between
StoryDroid and StoryDistiller

ratio of UI pages (activities) that are successfully launched
in each app, denoted by LaunchR.

LaunchRi =
NLaunched_act

i

NAll_act
i

× 100%

Where NAll_act
i indicates the number of activities declared

in the AndroidManifest.xml file in the ith app. (2) We fur-
ther investigate whether the functionalities of the launched
pages are clearly displayed, i.e., users can easily and clearly
understand the functionality through the UI pages. To do it,
we compute the visual similarity between the rendered UI
pages and the real UI pages to demonstrate the rendering
ability of StoryDistiller in practice. Note that the real UI
pages are obtained by Monkey [22].

5.2.2 Results of RQ2
Launch ratio. Fig. 7 shows the distribution of the launch
ratio of each app. Note that since StoryDroid fails to launch
activities due to the apk compilation failures for most of the
closed-source apps (only 6 out of 75 closed-source apps),
to avoid introducing bias based on such a small dataset,
we only show its result on open-source apps in the box
plot. The reasons for such a low launch ratio on closed-
source apps are also described in this section. We can
see that on average, over 80% activities (i.e., 82.37% for
open-source apps, 80.14% for closed-source apps shown in
Table 2) can be launched successfully by StoryDistiller in
our dataset, the remaining ones encounter crashes when be-
ing launched, usually caused by “NullPointerException” or
“ClassNotFoundException”. Besides, we further investigate
the contribution of ICC data to activity launching, with the
help of the extracted ICC data by StoryDistiller, there are
37.69% additional activities for closed-source apps (29.48%
for open-source apps) being launched successfully.

While StoryDroid only launches 55% activities for open-
source apps, as shown in Table 2. Fig. 7 also indicates that
apps from Google Play are more likely to get lower launch
ratio, i.e., more cases at the bottom. Almost all the launch
ratio of open-source (i.e., 73 apps) are over 50%, and the
lowest launch ratio is 30% in our dataset shown in Table 2.
However, as for closed-source apps, there are some cases
(i.e., 9 apps) whose launch ratio are below 50%. Specifi-
cally, the lowest rate achieves 28.27% launch ratio shown
in Table 2. A possible reason may be the more complex
functionalities in closed-source apps, which is evidenced by
the number of transition pairs in Fig. 7 (a).

TABLE 2: Comparison the Launch ratio of activities in-
cluding average, minimum, and maximum ratio between
StoryDroid and StoryDistiller

Method Static
(StoryDroid)

Dynamic
(StoryDistiller)

Sources F-Droid F-Droid Google Play

Launch
Ratio

Avg. 55% 82.37% 80.14%
Min. 13.64% 30% 28.27%
Max. 100% 100% 100%

The main reason that StoryDroid fails to launch activities
for most of the closed-source apps is apk compilation fail-
ures listed below, which are all mitigated by StoryDistiller.
(1) Due to missing necessary configuration files. StoryDroid
supports rendering UI pages for open-source apps because
it requires to obtain the configuration file of the project (e.g.,
build.gradle5) which includes necessary library dependencies
and other configurations, however, the configuration file
only appears in the source code. It cannot be obtained
even by decompiling the apk files. (2) Due to user-defined
components [49], complex grammar representations, and resource
file errors (e.g., XML layout files), etc. Even for open-source
apps, it is still difficult for StoryDroid to obtain user-defined
components and complex grammar representations (e.g.,
Syntactic Sugar [50]) by using the proposed static method,
causing rendering failures in these UIs. Last but not least,
errors caused by resource files sometimes occur when we
build the dummy app. These limitations cause StoryDroid
ineffective in many apps in our dataset.

Visual similarity. We compare the visual similarity between
the real pages and the rendered UI pages by StoryDistiller
and StoryDroid to demonstrate the quality improvement
of rendered UI pages based on the 150 apps in RQ1. We
obtain real pages by leveraging Google Monkey [22] to dy-
namically explore UI pages and take screenshots, and select
the overlapping activities of real ones and rendered ones
by their activity names. We use two widely-used similarity
metrics [51], [1], [52]: mean absolute error (MAE) and mean
squared error (MSE) to measure the visual similarity.

The result shows that StoryDroid only achieves about
80% UI similarity, while StoryDistiller achieves 96.5% and
91.6% UI similarity in terms of MAE and MSE respectively.
Fig. 8 shows some real examples rendered by StoryDistiller,
we can see that StoryDistiller can render UI pages with
various types of components, such as RadioButton and
ListView. Even for the UI pages using complex design struc-
ture or theme, multi-components, self-defined components,
multi-images, or rich page color, StoryDistiller still performs
well in most cases. Compared with StoryDistiller, Story-
Droid only uses testing data to replace real data for compo-
nents such as ListView and GridView, which decreases the
UI similarity compared with the real UIs. As shown in Fig. 9,
StoryDroid cannot render such complex design structure or
theme due to lack of data dependency, which would lose
some main functionalities. For example, Fig. 9 (a), rendered
by StoryDroid, shows that “No hosts created yet” without
showing the main structure of the UI page due to lack

5. A build.gradle file will be generated when creating a new An-
droid project through Android Studio. We take this file as the default
build.gradle when closed-source apps render the UI pages in StoryDroid.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 11

Fig. 8: Examples of successfully rendered UI pages with diverse components

(a) EditHost
(StoryDroid)

(b) EditHost
(StoryDistiller)

(c) EditDevice
(StoryDroid)

(d) EditDevice
(StoryDistiller)

Fig. 9: Examples of the same UI pages rendered by Story-
Droid and StoryDistiller

of history data for the EditHostActivity. In contrast, Fig. 9
(b), rendered by StoryDistiller, displays all functionalities
dynamically even for the save button (on the top right) with
the real theme. Similarly, Fig. 9 (c) cannot be rendered like
Fig. 9 (d) to demonstrate the real functionalities.

As we investigated, sometimes errors still occur in the
rendered UI pages by StoryDistiller due to data loss in
practice. We summarized six types as follows and show
some real cases in Fig. 11. (1) Remote server data. Fig. 11
(a) shows an activity named “PaylistActivity”, however, the
detailed pay list information is lost since they are stored
in the remote server. (2) Local database data. Fig. 11 (b)
shows the profile of a user without detailed data since the
data should be loaded from the local SQLite database. (3)
Unauthorized access to webpages. As shown in Fig. 11 (c), it is
a WebView page shows the terms and condition, however,
due to unauthorized access, the WebView page fails to
load. (4) Hardware support. Fig. 11 (d) is an app relying on
hardware support (i.e., NFC). However, we conduct the UI
page rendering on an Android emulator without required
hardware support. (5) Login authentication. Fig. 11 (e) failed
to be rendered due to the login authentication. Only users
with valid authentication information can get access to the
page, as indicated by the activity name. (6) Long loading time.
Fig. 11 (f) is a map app. Due to the inadequate rendering
time, the map is not rendered completely.

Although some specific data is not loaded or rendered
successfully, the rendered information together with the
activity names are still enough for users to understand the

(a) Years of Android device
usage

(b) Years of conducting
Android-related work

Fig. 10: Distribution of participants

functionality of these pages. For instance, for the cases in
Fig. 11 (a) (b) (f), we still can know the core logic of the
activities. For the other three cases (i.e., Fig. 11 (c) (d) (e)),
the activity names contain rich semantics, which can help
users understand the core logic.

Answer to RQ2. StoryDistiller achieves ~80% launch
ratio of activities for each app on average, which is
much better than StoryDroid with only ~55% launch
ratio when rendering UI pages on our dataset. More-
over, the rendered UI pages by StoryDistiller achieve a
high UI similarity compared with StoryDroid (~80% vs
~95%).

5.3 Usefulness Evaluation of StoryDistiller
Apart from effectiveness evaluations, we further conduct a
user study to demonstrate the usefulness of StoryDistiller.
Our goals are to check whether StoryDistiller can help
explore and review the functionalities of apps effectively
and efficiently.
Dataset of user study. We randomly select 4 apps (i.e.,
Bitcoin, Bankdroid, ConnectBot, and Vespucci) with differ-
ent number of activities (12-15 activities) from 2 categories
(i.e., finance, tool), which are hosted on Google Play Store.
Each category contains two apps, and we ask participants
to explore each app to finish the assigned tasks.
Participant recruitment. We recruit 12 people including
2 professors, 2 postdocs, and 6 Ph.D students from our
university and 2 industry staff from local companies to

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 12

(a) PaylistActivity (d) MainActivity(c) TermsAndCondition(b) ProfileActivity (f) CycleStreets(e) ConfirmationAfterLogin

Fig. 11: Examples of rendered pages with clear functionalities but with some data loss

TABLE 3: User study results of app exploration and review.
∗ denotes p < 0.01 and ∗∗ denotes p < 0.05.

Metrics Manual Exploration StoryDistiller
Avg. Time (min) 5.47 2.85∗
Avg. Coverage 39.06% 88.30%∗

Satisfactoriness (1-5) 3.99 4.48∗∗

participate in the experiment via word-of-mouth. All of the
recruited participants have used Android devices for more
than one year, and participated in Android related research
topics. Detailed distribution is shown in Fig. 10. They never
use these apps before. They come from different countries,
1 from USA, 4 from China, 4 from European countries (e.g.,
Spain, Germany), and 3 from Singapore. The participants
receive a $10 shopping coupon as a compensation of their
time.
Experiment procedures. We installed the 4 apps on an
Android device (Nexus 5 with Android 8.0). The experiment
started with a brief introduction to the tasks. We explained
and went through all the features we want them to use
within the apps and asked each participant to explore and
review the 4 apps separately to finish the tasks below. Note
that for each category, each participant explored one app
with StoryDistiller, and the other without StoryDistiller. To
avoid potential bias, the order of app category, and the order
of using StoryDistiller or not using are rotated based on the
Latin Square [53]. This setup ensures that each app is ex-
plored by multiple participants with different development
experience. We told each participant to complete the task
with the given apps: manually explore as many functionali-
ties of the apps as possible in 10 minutes, which is far longer
than the typical average app session (71.56 seconds) [54],
and understand the app functionalities with StoryDistiller;
After the exploration, participants were asked to rate their
satisfactoriness in exploration (on the 5-point likert scale
with 1 being least satisfied and 5 being most satisfied). All
participants carried out experiments independently without
any discussions with each other. After performing the task,
they were required to write some comments about our tool.

Experiment results. As displayed in Table 3, the average
activity coverage of manual exploration is quite low (i.e.,
39.06%), showing the difficulty in exploring app functional-
ities thoroughly by manual exploration. However, the par-
ticipants’ satisfactoriness of completeness of exploration is

high (i.e., 3.99 on average). It indicates that the development
teams sometimes are not aware that they miss many features
when exploring others’ apps. Such blind confidence and
neglection may further negatively influence their strategy
or decision in developing their own apps. Compared with
manual exploration, StoryDistiller achieves over 2 times
more activity coverage (88.30% vs. 86.50% in StoryDroid)
with less time cost (2.85 minutes on average vs. 2.5 minutes
in StoryDroid) to help understand the app functionalities.
According to the participants’ feedback, the average satis-
factoriness of StoryDistiller is 4.48 (vs. 4.40 in StoryDroid),
which represents the usefulness of helping participants ex-
plore and understand app functionalities. To understand the
significance of the differences between without and with
StoryDistiller, we carry out the Mann-Whitney U test [55],
which is designed for small samples. The result in Table 3 is
significant with p-value < 0.01 or p-value < 0.05.

6 DATASET AND POSSIBLE APPLICATIONS

As aforementioned, StoryDistiller is a fundamental tool
which constructs a multi-dimension dataset (e.g., app sto-
ryboards and UI components). Such a rich dataset can be
used to expand the horizon of current mobile app research.
In this section, we discuss several application scenarios by
leveraging this dataset.

6.1 UI Design Recommendation and Layout Code Gen-
eration

Developing the GUI of a mobile application involves two
steps, i.e., UI design and implementation. Designing a UI fo-
cuses on proper user interaction and visual effects, while im-
plementing a UI focuses on making the UI work as designed
with proper layouts and widgets of a GUI framework. For
the tasks of UI design recommendation [56] and layout code
generation [24], our dataset provides a large set of diverse
UI pages, as well as the corresponding layout code. The
diversity of the collected data depends on StoryDistiller’s
ability of thoroughly exploring apps’ UI pages. Additionally,
it is crucial to provide real UI pages for the UI design
recommendation task. Based on the results of ATG extraction
(§ 5.1) and UI page rendering (§ 5.2), StoryDistiller is able
to obtain a high activity coverage compared with dynamic
testing tools and a high successful rate of UI page rendering.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 13

Moreover, the rendered UI pages are almost same as the real
ones that users would observe.

The UI pages with attributes in our dataset can assist
both UI designers and developers. Such a dataset bridges
the gap across the abstract activities (text), UI pages (image)
and detailed layout code (i.e., activity→ UI page→ layout
code) so that they can be searched as a whole. Due to
such mapping relation, UI/UX designers can directly use
keywords (e.g., “Login” and “Search”) to search for the
UI images by matching the activity name of the UI in our
dataset. The searched images can be used for inspiring their
own UI design. The UI developers can also benefit from
searching our dataset for UI implementation. For another
application scenario, given the UI design image from de-
signers, developers can search for the similar UIs in our
dataset by computing the image similarity. As each UI page
in our dataset is also associated with corresponding run-
time UI code, developers can choose the most related UI
page in the candidate list and then customize the UI code
for their own purpose to implement the given UI design.

Additionally, by training a neural machine translator, we
are able to translate a UI design image to a GUI skele-
ton. Chen et al. [24] collected the training data based on
the dynamic testing tool, Stoat. However, according to the
experimental results of ATG generation, we find that Story-
Distiller covers 2 times more activities than Stoat with less
time. Consequently, the results are limited to the diversity
of the training data used in [24]. Our constructed dataset of
UI pages are more comprehensive with diverse UI designs.

6.2 UI Component Recommendation
UI component sharing provides an opportunity to learn
about GUI designs, gain design inspiration and understand
design trend [57]. To enable the recommendation task of
GUI components, our dataset collected a large number of
separate UI components (e.g., “Button”) together with their
attributes and the corresponding bank-end design code.
Based on them, we highlight some typical tasks or potential
application scenarios as follows. (1) Alice aims to design
a social media app and wants to decide the style of the
buttons so that it can fit for the theme of such a social
media app. With the constructed dataset, she can search
for hundreds of buttons to get inspirations. According to
the candidates returned by the dataset, she can choose the
most attractive one as the final decision for her own apps.
(2) Apart from the style of UI component, the size and
color are also provided to Alice. Therefore, she may observe
that social apps usually use larger size with bright color
buttons for most social media apps. (3) Based on the results
of multiple-time searching, Alice may also understand the
design trend of UI components in one app category, which
is also helpful for developing apps in specific categories.

6.3 Code Search
When developers implement their own apps, aiming to
ensure the competitive edge in the markets, they usually
attempt to get inspirations from the similar components
(e.g., Activity) implemented in other apps, because the
components with the same semantic name have a great
probability to own similar logic and architectures (e.g.,

method hierarchy). To enable such a code search task, our
constructed dataset also collects the logic code with Activity
names. Firstly, we divide the apps based on their app
categories, such as finance, social media, and news since the
apps in the same category would contain more common fea-
tures. Secondly, we store the activities if they have the same
semantic activity name, such as LoginActivity, RegActivity,
AboutActivity, and EditActivity.

For example, Bob is a junior app developer. For the login
activity, he may only implement the basic logic, i.e., collect
user’ inputs and validate whether the inputs are consistent
with the information stored in the server or the database.
With the help of our constructed dataset, he can search for
the similar implementation by the same Activity name, i.e.,
LoginActivity or just Login. After searching, he would note
that he should also validate the format before collecting the
users’ inputs, which is a typical specification. In this case,
the logic code with same name could help to improve the
quality of their own apps and customize more interesting
features.

6.4 StoryDistiller for App Testing

App GUI testing. According to many previous studies [58],
[59], there are only about 40% activity coverage for most
dynamic GUI app testing tools such as Monkey and Stoat,
mainly due to lack of improper user input complex con-
straints. Thanks to the relatively complete ATG constructed
by StoryDistiller, we can leverage it to explore more activ-
ities and enhance the exploration capability of transition-
based dynamic testing tools. For example, when apps are
under testing by using Monkey, we can differentiate the
transitions that are never explored by Monkey by compar-
ing the transitions and covered activities. For the uncovered
transitions, based on our ATG, we can directly launch the
target activities and make the testing tool start to explore
from this new state (using their own exploration strategy)
to explore more state and detect more bugs.
App regression testing. Reusing test cases is useful to
improve the efficiency of regression testing for Android
apps [60]. StoryDistiller can help guide app regression
testing by identifying the ATG and UI components that
have been modified. Note that, different versions of a single
app have many common functionalities, which means most
of the UI pages in the newer version are the same as
the previous version. The ATGs of different versions can
be easily used to demonstrate the common functionalities.
Meanwhile, StoryDistiller stores the mapping relation be-
tween UI page and the corresponding layout code, there-
fore, analyzers can obtain the modified UI components by
analyzing the differences of layout code, and further update
the test cases accordingly. In this scenario, most of the test
cases can be reused, and the modified components can be
identified effectively to guide test case update for regression
testing.

7 LIMITATIONS

In this section, we discuss the limitations of StoryDroid.
Incomplete features due to the underlying tools. The in-
puts of UI page rendering are extracted from static analysis

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 14

based on Soot, but some files failed to be transformed, and
the call graphs can still be incomplete. As for the closed-
source apps, jadx is used to decompile apk to Java code.
However, some Java files failed to be decompiled, which af-
fects the analysis results of UI page rendering. But according
to our observation, these cases rarely appear in the real apps.
Besides, as the activities spawned by other components (e.g.,
Broadcast Receiver) can only be dynamically loaded, our
static-analysis based approach cannot deal with them.

Failures in UI page rendering. Although StoryDistiller
achieves ~80% launch ratio of activities for each app on
average, some UI pages still cannot be rendered success-
fully due to several errors. (1) Some activities require valid
authentication information to launch, that is, they will check
whether the current state owns valid authentication (e.g.,
successful login in) before rendering the page, if the activity
tries to be launched without valid authentication, it may
redirect to the sign-in or sign-up page. Such scenario is an
open challenge in Android app testing, unless the testers
provide the login information before hand to enable the lo-
gin process, then the app can continue explore the pages that
require valid authentication. Thus, StoryDistiller would fail
to render such kind of activities. (2) Although we provide
the required ICC data as the activity launching parameters,
some activities still need to load other required data from
local storage (e.g., SharedPreference, SQLite Database) or
remote servers. StoryDistiller cannot provide this kind of
required data so far, causing failures when launching this
kind of activities.

Incomplete activity presentations due to fragments. As
aforementioned in the paper, an activity may have multiple
fragments in practice. First of all, it is possible to define in
the static layout file of an activity that it contains fragments
(i.e., static binding), and fragments are treated as views to
render the activity. While developers can also choose to
bind the fragments (e.g., add, delete, and replace) of an
activity at runtime (i.e., dynamic binding). As for the current
version of StoryDistiller, it only records one UI page per
activity with static fragments. If the current activity uses the
static binding method to bind fragments, StoryDistiller can
leverage the proposed hybrid method to render the activity
with fragments. However, if the fragments are integrated
into the activity at runtime triggered by users or specific
operations, StoryDistiller cannot record the changes for dif-
ferent fragments in one activity so far.

8 RELATED WORK

Assist Android development. GUI provides a visual bridge
between apps and users through which they can interact
with each other. Developing the GUI of a mobile app in-
volves two separate but related activities: design the UI and
implement the UI. To assist UI implementation, Nguyen and
Csallner [51] reverse-engineer the UI screenshots by image
processing techniques. More powerful deep-learning based
algorithms [24], [61], [62] are further proposed to leverage
the existing big data of Android apps. Retrieval-based meth-
ods [63], [64] are also used to develop the user interfaces.
Reiss [63] parses the sketch into structured queries to search
related UIs of Java-based desktop software in the database.

Different from the UI implementation studies, our study
focuses more on the generation of app storyboard which not
only contains the UI code, but also the transitions among the
UIs. In addition, the UI code generated in prior work [51],
[24], [61], [62] is all static layout, which conflicts with our
observation in Section 3 that developers often write Java
code to dynamically render the UI. In our work, we provide
developers with the original UI code (no matter static code,
dynamic code, or hybrid) for each screen. Such real code
makes developers more easy to customize the UIs for their
own needs. Apart from the UI implementation, some studies
also recommend UI design [57] and explore issues between
UI design and its implementation. Moran et al [65] check
whether the UI implementation violates the original UI
design by comparing the image similarity with computer
vision techniques. They further detect and summarize GUI
changes in evolving mobile apps. They rely on the dynam-
ically running apps for collecting UI screenshots, and that
is time-consuming and leads to low coverage of the app. In
contrast, our method can extract most UI pages of the app
statically, so it can complement with these studies for related
tasks.

GUIfectch [64] customizes Reiss’s method [63] into An-
droid app UI search by considering the transitions between
UIs. It can also extract UI screenshots with corresponding
transitions, but our work is different from theirs in two
aspects. First, their model can only deal with open-source
apps, while ours can also reverse-engineer the closed-source
apps, hence leading to more generality and flexibility. On
the other hand, GUIfectch is much more heavy-weight than
our static-analysis based approach, as it relies on both static
analysis for UI code extraction and dynamic analysis for
transition extraction. In addition, dynamically running the
app usually cannot cover all screens like Stoat, leading to
the loss of information.
Assist app comprehension by reverse engineering. The
process of reverse engineering of Android apps is that re-
searchers rely on the state-of-the-art tools (e.g., Apktool [16],
Androguard [17], dex2jar [66], Soot [37]) for decompiling
an APK to intermediate language (e.g., smali, jimple) or
Java code. Android reverse engineering is usually used to
understand and analyze apps [67]. It also can be used to
extract features for Android malware detection [68]. How-
ever, reverse engineering only has the basic functionality for
code review. Different from the general reverse engineering
with plain decompiled code, our work extract more abstract
representations, i.e., storyboard of each app to give the
overview of app functionalities and mappings between the
UI page and the corresponding layout code. Such story-
board can directly help product manager and designers who
are of no technical expertise to understand competitor apps.
Assist Android app analysis. Many static analysis tech-
niques [15], [42], [20], [69], [70], [4], [5], [8], [6] have been
proposed for Android apps. A3E provides two strategies,
targeted and depth-first exploration, for systematic test-
ing of Android apps [15]. It also extracts static activity
transition graphs for automatically generated test cases.
Apart from the target of Android testing, we extract activity
transition graphs to identify and systematically explore the
storyboard of Android apps. Epicc is the first work to
extract component communication [42], and it determines

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 15

most Intent attributes to component matching. ICC [20]
significantly outperforms Epicc on the extraction ability of
inter-component communication by utilizing the solver for
MVC problems based on the proposed COAL language.
FlowDroid [69] and IccTA [70] extract call graphs based on
Soot for data-flow analysis for detecting data leakage and
malicious behaviors [68], [71], [72], [73], [74], [75], [6], [8], [7].
Liu et al. [76] utilized program analysis to understand the
patterns that cause functional and nonfunctional issues and
proposed a static analysis tool to detect two most common
patterns of wake lock misuses. Wei et al. [77] combined
program analysis and NLP techniques to prioritize Lint
warnings by leveraging app user reviews. Dong et al. [78]
proposed time-travel testing for Android apps that can
transit to the state it explored before when needed. Wei
et al. [79] proposed an approach that automatically learns
API-device correlations of compatibility issues induced by
fragmentation from existing Android apps. Yan et al. [80]
proposed multi-entry testing for Android apps by analyzing
the constraints for launching an activity and the solved
constraints are used to launch the activity through a third-
party app. They did not focus on ATG construction, instead,
they focused on the construction of Activity Launching
Models (ALM) by a static method (i.e., starting with a
coarse-grained ATG mentioned in their paper). By contrast,
extracting a relatively comprehensive ATG is one of the
most important goals in our work, and we not only statically
extract the transitions between activities, fragments, and in-
ner classes, but also dynamically augment ATG to construct
a comprehensive graph. In terms of dynamic exploration,
their goal is to adjust the weights of their Activity Launch-
ing Context (ALC) dynamically to explore apps and find
bugs by leveraging their constructed Activity Launching
Model. Instead, our goal is to augment the transition graph
extracted by the pure static method in the previous work [1]
by traversing the actionable components in the UI page to
explore as many transitions as possible. As for the activity
launching, their method required to build a dummy app to
launch activities due to the limitation of launching via adb,
while our work addresses this problem by instrumenting
the app, thereby can launch the activity directly from the
console via adb instead of a dummy app used in [80].
Compared with them, we provide another novel solution to
assist Android app testing, i.e., reveal the relations between
different components together with rich attributes to help
understand the semantic and functionality of apps.

9 CONCLUSION

In this paper, we propose StoryDistiller, a system to distill
visualized storyboards of Android apps with rich features
by extracting relatively complete ATG and rendering UI
pages dynamically with the help of the extracted ICC data.
Such a storyboard benefits different roles (i.e., PMs, UI
designers, developers, and testers) in the app development
process and analysis. The extensive experiments and user
study demonstrate the effectiveness and usefulness of Sto-
ryDistiller. Based on the outputs of StoryDistiller, we con-
structed different kinds of large-scale datasets to bridge the
gap across app activities (descriptive text), UI pages (image),
and implementation code (source code). In the future, we

will further explore these potential applications, and also
extend our approach to other platforms such as iOS apps
and desktop software for more general usage.

ACKNOWLEDGMENTS

We appreciate all the reviewers for their valuable comments.
This work was partially supported by the National Natural
Science Foundation of China (No. 62102284, 62102197).

REFERENCES

[1] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu,
“Storydroid: Automated generation of storyboard for Android
apps,” in Proceedings of the 41st International Conference on Software
Engineering. IEEE Press, 2019, pp. 596–607.

[2] (2018) Mobile Internet use passes desktop for the first time.
[Online]. Available: https://techcrunch.com/2016/11/01/mobi
le-internet-use-passes-desktop-for-the-first-time-study-finds/

[3] (2018) Number of apps available in leading app stores as of 1st
quarter. [Online]. Available: https://www.statista.com/statistic
s/276623/number-of-apps-available-in-leading-app-stores/

[4] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in Android
apps,” in Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.
ACM, 2018, pp. 408–419.

[5] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Effi-
ciently manifesting asynchronous programming errors in Android
apps,” in Proceedings of the 2018 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, ASE, Montpellier, France,
May 27 - June 03. ACM, 2018, pp. 485–496.

[6] S. Chen, G. Meng, T. Su, L. Fan, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“Ausera: Large-scale automated security risk assessment of global
mobile banking apps,” arXiv preprint arXiv:1805.05236, 2018.

[7] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android
banking apps,” in Proceedings of the 42nd International Conference
on Software Engineering. IEEE Press, 2020, pp. 596–607.

[8] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu,
“Are mobile banking apps secure? what can be improved?” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 797–802.

[9] L. Guo, R. Sharma, L. Yin, R. Lu, and K. Rong, “Automated
competitor analysis using big data analytics: Evidence from the
fitness mobile app business,” Business Process Management Journal,
vol. 23, no. 3, pp. 735–762, 2017.

[10] J. J. Arbon, App quality: Secrets for agile app teams. Jason Arbon,
2014.

[11] (2015) Competitor analysis before launching a mobile app startup.
[Online]. Available: https://growthbug.com/competitor-analysi
s-before-launching-a-mobile-app-startup-f2f6a19f21b7

[12] R. Fox, “Mobile app development: The effect of smartphones,
mobile applications and geolocation services on the tourist expe-
rience,” Ph.D. dissertation, University of Baltimore, 2017.

[13] (2018) How Much Does an App Cost. [Online]. Available:
https://savvyapps.com/blog/how-much-does-app-cost-massi

ve-review-pricing-budget-considerations
[14] Y. L. Arnatovich, L. Wang, N. M. Ngo, and C. Soh, “A compari-

son of Android reverse engineering tools via program behaviors
validation based on intermediate languages transformation,” IEEE
Access, vol. 6, pp. 12 382–12 394, 2018.

[15] T. Azim and I. Neamtiu, “Targeted and depth-first exploration
for systematic testing of Android apps,” in Acm Sigplan Notices,
vol. 48, no. 10. ACM, 2013, pp. 641–660.

[16] (2018) A tool for reverse engineering Android apk files. [Online].
Available: https://ibotpeaches.github.io/Apktool/

[17] (2018) Reverse engineering of Android applications. [Online].
Available: https://github.com/androguard/androguard

[18] C. Finch and P. Blake, The art of Walt Disney: From Mickey mouse to
the magic kingdoms. Abrams, 1995.

[19] (2018) Android documentation: Activity. [Online]. Available: http
s://developer.android.com/reference/android/app/Activity

https://techcrunch.com/2016/11/01/mobile-internet-use-passes-desktop-for-the-first-time-study-finds/
https://techcrunch.com/2016/11/01/mobile-internet-use-passes-desktop-for-the-first-time-study-finds/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://growthbug.com/competitor-analysis-before-launching-a-mobile-app-startup-f2f6a19f21b7
https://growthbug.com/competitor-analysis-before-launching-a-mobile-app-startup-f2f6a19f21b7
https://savvyapps.com/blog/how-much-does-app-cost-massive-review-pricing-budget-considerations
https://savvyapps.com/blog/how-much-does-app-cost-massive-review-pricing-budget-considerations
https://ibotpeaches.github.io/Apktool/
https://github.com/androguard/androguard
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 16

[20] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel,
“Composite constant propagation: Application to Android inter-
component communication analysis,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 77–88.

[21] (2020) Gator: Program analysis toolkit for Android. [Online].
Available: http://web.cse.ohio-state.edu/presto/software/gator
/

[22] (2018) Google Monkey for Testing. [Online]. Available:
https://developer.android.com/studio/test/monkey

[23] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2017.

[24] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design
image to GUI skeleton: A neural machine translator to bootstrap
mobile GUI implementation,” in Proceedings of the 40th International
Conference on Software Engineering. ACM, 2018, pp. 665–676.

[25] S. Chen, L. Fan, T. Su, L. Ma, Y. Liu, and L. Xu, “Automated cross-
platform GUI code generation for mobile apps,” in Proceedings of
the 26th IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER. IEEE, 2019.

[26] (2018) Android Fragment. [Online]. Available: https://develope
r.android.com/reference/android/app/Fragment

[27] (2018) Java Inner Class. [Online]. Available: https://www.tutori
alspoint.com/java/java_innerclasses.htm

[28] (2020) Overview of StoryDistiller. [Online]. Available: https:
//sites.google.com/view/storydistiller/

[29] (2018) Mobile app development process. [Online]. Available: http
s://thebhwgroup.com/blog/mobile-app-development-process

[30] (2018) 4 steps to develop your app idea. [Online]. Available:
http://apptology.com/blog/tag/mobile-app-storyboard/

[31] (2014) Crawl and download apps from Google Play. [Online].
Available: https://github.com/dflower/google-play-crawler

[32] (2018) Getting better at design is easy, just copy people! [Online].
Available: https://medium.com/ux-power-tools/getting-bette
r-at-design-is-easy-just-copy-people-f19ba3be8a62

[33] (2018) Uninvited Redesigns. [Online]. Available: https://uninvi
tedredesigns.com/

[34] (2018) Vespucci. [Online]. Available: https://play.google.com/st
ore/apps/details?id=de.blau.android

[35] A. U. Automator. (2020). [Online]. Available: https://developer.
android.com/training/testing/ui-automator

[36] (2018) Dex to Java decompiler. [Online]. Available: https:
//github.com/skylot/jadx

[37] (2018) Soot: A Java optimization framework. [Online]. Available:
https://github.com/Sable/soot

[38] (2020) Component stack. [Online]. Available:
https://developer.android.com/guide/components/activities/

tasks-and-back-stack?hl=en
[39] (2018) Overview of StoryDroid. [Online]. Available: https:

//sites.google.com/view/storydroid/
[40] (2018) D3.js. [Online]. Available: https://d3js.org/
[41] (2018) F-droid market. [Online]. Available: https://f-droid.org/e

n/packages/
[42] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and

Y. Le Traon, “Effective inter-component communication mapping
in Android with epicc: An essential step towards holistic security
analysis,” Effective Inter-Component Communication Mapping in An-
droid with Epicc: An Essential Step Towards Holistic Security Analysis,
2013.

[43] (2020) c.geo. [Online]. Available: https://f-droid.org/wiki/page
/cgeo.geocaching

[44] (2020) Java method overloading. [Online]. Available: https:
//www.w3schools.com/java/java_methods_overloading.asp

[45] (2020) FBReader: Favorite Book Reader. [Online]. Available:
https://play.google.com/store/apps/details?id=org.geometerpl

us.zlibrary.ui.android
[46] (2018) Android Packer Tehchniques. [Online]. Available:

http://www.ninoishere.com/android-packer/
[47] (2019) Proguard. [Online]. Available: https://www.guardsquare.

com/en/products/proguard
[48] (2019) DashO. [Online]. Available: https://www.preemptive.com

/products/dasho/overview
[49] U. defined Component. (2017). [Online]. Available:

https://documentation.alphasoftware.com/pages/Guides/Mob

ile%20and%20Web%20Components/Custom/User-defined%20C
omponents.xml

[50] J. Syntactic Sugar. (2020). [Online]. Available: https://en.wikiped
ia.org/wiki/Syntactic_sugar

[51] T. A. Nguyen and C. Csallner, “Reverse engineering mobile ap-
plication user interfaces with remaui (t),” in Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 2015, pp. 248–259.

[52] S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu, “Gui-squatting
attack: Automated generation of Android phishing apps,” IEEE
Transactions on Dependable and Secure Computing, 2019.

[53] B. J. Winer, “Statistical principles in experimental design.” 1962.
[54] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer,

“Falling asleep with Angry Birds, Facebook and Kindle: a large
scale study on mobile application usage,” in Proceedings of the 13th
international conference on Human computer interaction with mobile
devices and services. ACM, 2011, pp. 47–56.

[55] (2018) Mann-Whitney U test. [Online]. Available: http:
//www.statisticssolutions.com/mann-whitney-u-test/

[56] C. Bernal-Cárdenas, K. Moran, M. Tufano, Z. Liu, L. Nan, Z. Shi,
and D. Poshyvanyk, “Guigle: a gui search engine for android
apps,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). IEEE, 2019,
pp. 71–74.

[57] C. Chen, S. Feng, Z. Xing, L. Liu, S. Zhao, and J. Wang, “Gallery dc:
Design search and knowledge discovery through auto-created gui
component gallery,” Proceedings of the ACM on Human-Computer
Interaction, vol. 3, no. CSCW, pp. 1–22, 2019.

[58] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test in-
put generation for android: Are we there yet?(e),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2015, pp. 429–440.

[59] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang,
and T. Xie, “Automated test input generation for android: Are we
really there yet in an industrial case?” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2016, pp. 987–992.

[60] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on software
engineering, vol. 27, no. 10, pp. 929–948, 2001.

[61] T. Beltramelli, “pix2code: Generating code from a graphical user
interface screenshot,” in Proceedings of the ACM SIGCHI Symposium
on Engineering Interactive Computing Systems. ACM, 2018, p. 3.

[62] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshy-
vanyk, “Machine learning-based prototyping of graphical user
interfaces for mobile apps,” arXiv preprint arXiv:1802.02312, 2018.

[63] S. P. Reiss, Y. Miao, and Q. Xin, “Seeking the user interface,”
Automated Software Engineering, pp. 157–193, 2018.

[64] F. Behrang, S. P. Reiss, and A. Orso, “Guifetch: Supporting app
design and development through GUI search,” in Proceedings of
the 5th International Conference on Mobile Software Engineering and
Systems. ACM, 2018, pp. 236–246.

[65] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk,
“Automated reporting of GUI design violations for mobile apps,”
arXiv preprint arXiv:1802.04732, 2018.

[66] (2018) Tools to work with Android .dex and Java .class files.
[Online]. Available: https://github.com/pxb1988/dex2jar

[67] (2013) How to analyze APK and understand it. [Online]. Available:
https://reverseengineering.stackexchange.com/questions/2703/
how-do-i-analyze-a-apk-file-and-understand-its-working

[68] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting An-
droid malware,” in Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, ASIACCS. ACM, 2016,
pp. 377–388.

[69] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269,
2014.

[70] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: De-
tectingz inter-component privacy leaks in Android apps,” in Pro-
ceedings of the 37th International Conference on Software Engineering-
Volume 1. IEEE Press, 2015, pp. 280–291.

[71] L. Fan, M. Xue, S. Chen, L. Xu, and H. Zhu, “Poster: Accuracy vs.
time cost: Detecting Android malware through pareto ensemble

http://web.cse.ohio-state.edu/presto/software/gator/
http://web.cse.ohio-state.edu/presto/software/gator/
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/reference/android/app/Fragment
https://developer.android.com/reference/android/app/Fragment
https://www.tutorialspoint.com/java/java_innerclasses.htm
https://www.tutorialspoint.com/java/java_innerclasses.htm
https://sites.google.com/view/storydistiller/
https://sites.google.com/view/storydistiller/
https://thebhwgroup.com/blog/mobile-app-development-process
https://thebhwgroup.com/blog/mobile-app-development-process
http://apptology.com/blog/tag/mobile-app-storyboard/
http://apptology.com/blog/tag/mobile-app-storyboard/
https://github.com/dflower/google-play-crawler
https://medium.com/ux-power-tools/getting-better-at-design-is-easy-just-copy-people-f19ba3be8a62
https://medium.com/ux-power-tools/getting-better-at-design-is-easy-just-copy-people-f19ba3be8a62
https://uninvitedredesigns.com/
https://uninvitedredesigns.com/
https://play.google.com/store/apps/details?id=de.blau.android
https://play.google.com/store/apps/details?id=de.blau.android
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/Sable/soot
https://github.com/Sable/soot
https://developer.android.com/guide/components/activities/tasks-and-back-stack?hl=en
https://developer.android.com/guide/components/activities/tasks-and-back-stack?hl=en
https://sites.google.com/view/storydroid/
https://sites.google.com/view/storydroid/
https://d3js.org/
https://f-droid.org/en/packages/
https://f-droid.org/en/packages/
https://f-droid.org/wiki/page/cgeo.geocaching
https://f-droid.org/wiki/page/cgeo.geocaching
https://www.w3schools.com/java/java_methods_overloading.asp
https://www.w3schools.com/java/java_methods_overloading.asp
https://play.google.com/store/apps/details?id=org.geometerplus.zlibrary.ui.android
https://play.google.com/store/apps/details?id=org.geometerplus.zlibrary.ui.android
http://www.ninoishere.com/android-packer/
http://www.ninoishere.com/android-packer/
https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard
https://www.preemptive.com/products/dasho/overview
https://www.preemptive.com/products/dasho/overview
https://documentation.alphasoftware.com/pages/Guides/Mobile%20and%20Web%20Components/Custom/User-defined%20Components.xml
https://documentation.alphasoftware.com/pages/Guides/Mobile%20and%20Web%20Components/Custom/User-defined%20Components.xml
https://documentation.alphasoftware.com/pages/Guides/Mobile%20and%20Web%20Components/Custom/User-defined%20Components.xml
https://documentation.alphasoftware.com/pages/Guides/Mobile%20and%20Web%20Components/Custom/User-defined%20Components.xml
https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Syntactic_sugar
http://www.statisticssolutions.com/mann-whitney-u-test/
http://www.statisticssolutions.com/mann-whitney-u-test/
https://github.com/pxb1988/dex2jar
https://reverseengineering.stackexchange.com/questions/2703/how-do-i-analyze-a-apk-file-and-understand-its-working
https://reverseengineering.stackexchange.com/questions/2703/how-do-i-analyze-a-apk-file-and-understand-its-working

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2020 17

pruning,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 1748–1750.

[72] S. Chen, M. Xue, and L. Xu, “Towards adversarial detection of
mobile malware: poster,” in Proceedings of the 22nd Annual Interna-
tional Conference on Mobile Computing and Networking. ACM, 2016,
pp. 415–416.

[73] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li,
“Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach,” computers &
security, vol. 73, pp. 326–344, 2018.

[74] S. Chen, M. Xue, L. Fan, L. Ma, Y. Liu, and L. Xu, “How can
we craft large-scale Android malware? An automated poisoning
attack,” in Proceedings of the 26th IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER. IEEE, 2019.

[75] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou, “A
large-scale empirical study on industrial fake apps,” in Proceedings
of the 41th ACM/IEEE International Conference on Software Engineer-
ing, ICSE. IEEE, 2019.

[76] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni, “Understanding
and detecting wake lock misuses for android applications,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 396–409.

[77] L. Wei, Y. Liu, and S.-C. Cheung, “Oasis: prioritizing static anal-
ysis warnings for android apps based on app user reviews,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 672–682.

[78] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-
travel testing of android apps,” in Proceedings of the 42nd
ACM/IEEE International Conference on Software Engineering, ICSE.
ACM, 2020.

[79] L. Wei, Y. Liu, and S.-C. Cheung, “Pivot: learning api-device
correlations to facilitate android compatibility issue detection,” in
2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE). IEEE, 2019, pp. 878–888.

[80] J. Yan, H. Liu, L. Pan, J. Yan, J. Zhang, and B. Liang, “Multiple-
entry testing of android applications by constructing activity
launching contexts,” in Proceedings of the 42nd ACM/IEEE Inter-
national Conference on Software Engineering, ICSE. ACM, 2020.

Sen Chen (Member, IEEE) is an Associate Pro-
fessor in the College of Intelligence and Comput-
ing, Tianjin University, China. Before that, he was
a Research Assistant Professor in the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. Previously,
he was a Research Assistant of NTU from 2016
to 2019 and a Research Fellow from 2019-
2020. He received his Ph.D. degree in Computer
Science from School of Computer Science and
Software Engineering, East China Normal Uni-

versity, China, in June 2019. His research focuses on Security and Soft-
ware Engineering. He has published broadly in top-tier security (IEEE
S&P, USENIX Security, CCS, IEEE TIFS, and IEEE TDSC) and software
engineering venues including ICSE, FSE, ASE, ACM TOSEM, and IEEE
TSE. More information is available on https://sen-chen.github.io/.

Lingling Fan is an Associate Professor in Col-
lege of Cyber Science, Nankai University, China.
She received her Ph.D and BEng degrees in
computer science from East China Normal Uni-
versity, Shanghai, China in June 2019 and June
2014, respectively. In 2017, she joined Nanyang
Technological University (NTU), Singapore as a
Research Assistant and then had been as a
Research Fellow of NTU since 2019. Her re-
search focuses on program analysis and testing,
software security. She got two ACM SIGSOFT

Distinguished Paper Awards at ICSE 2018.

Chen Chunyang obtained his Ph.D. degree
from School of Computer Science and Engineer-
ing, Nanyang Technological University (NTU),
Singapore, and bachelor’s degree from Bei-
jing University of Posts and Telecommunications
(BUPT), China, June 2014. He is a lecturer
(a.k.a. Assistant Professor) in Faculty of Informa-
tion Technology, Monash University, Australia.
His research focuses on Mining Software Repos-
itories, Text Mining, Deep Learning, and Human
Computer Interaction.

Liu Yang graduated in 2005 with a Bachelor of
Computing (Honours) in the National University
of Singapore (NUS). In 2010, he obtained his
PhD and started his post doctoral work in NUS,
MIT and SUTD. In 2011, Dr. Liu is awarded the
Temasek Research Fellowship at NUS to be the
Principal Investigator in the area of Cyber Se-
curity. In 2012 fall, he joined Nanyang Techno-
logical University (NTU) as a Nanyang Assistant
Professor. He is currently a full professor and the
director of the cybersecurity lab in NTU.

He specializes in software verification, security and software engi-
neering. His research has bridged the gap between the theory and
practical usage of formal methods and program analysis to evaluate
the design and implementation of software for high assurance and
security. His work led to the development of a state-of-the-art model
checker, Process Analysis Toolkit (PAT). By now, he has more than
300 publications and 6 best paper awards in top tier conferences and
journals. With more than 20 million Singapore dollar funding support, he
is leading a large research team working on the state-of-the-art software
engineering and cybersecurity problems.

https://sen-chen.github.io/

	1 Introduction
	2 Motivating Scenario
	3 Preliminaries
	3.1 Android Activity and Fragment
	3.2 Inter-component Communication

	4 Our Hybrid Approach (StoryDistiller)
	4.1 APK Instrumentation
	4.2 Static Extraction
	4.2.1 ATG extraction
	4.2.2 ICC data extraction

	4.3 Dynamic UI Page Rendering
	4.3.1 UI page rendering
	4.3.2 UI component exploration

	4.4 Rich Feature Extraction and Implementation
	4.4.1 Feature Extraction
	4.4.2 Implementation

	5 Evaluation of StoryDistiller
	5.1 RQ1: Effectiveness of Hybrid ATG Extraction
	5.1.1 Setup
	5.1.2 Results of RQ1

	5.2 RQ2: Effectiveness of UI Page Rendering
	5.2.1 Setup
	5.2.2 Results of RQ2

	5.3 Usefulness Evaluation of StoryDistiller

	6 Dataset and Possible Applications
	6.1 UI Design Recommendation and Layout Code Generation
	6.2 UI Component Recommendation
	6.3 Code Search
	6.4 StoryDistiller for App Testing

	7 Limitations
	8 Related Work
	9 Conclusion
	References
	Biographies
	Sen Chen
	Lingling Fan
	Chen Chunyang
	Liu Yang

