
Construct Validity in Software Engineering
Dag I. K. Sjøberg ,Member, IEEE and Gunnar Rye Bergersen

Abstract—Empirical research aims to establish generalizable claims from data. Such claims may involve concepts that must be

measured indirectly by using indicators. Construct validity is concerned with whether one can justifiably make claims at the conceptual

level that are supported by results at the operational level. We report a quantitative analysis of the awareness of construct validity in the

software engineering literature between 2000 and 2019 and a qualitative review of 83 articles about human-centric experiments

published in five high-quality journals between 2015 and 2019. Over the two decades, the appearance in the literature of the term

construct validity increased sevenfold. Some of the reviewed articles we reviewed employed various ways to ensure that the indicators

span the concept in an unbiased manner. We also found articles that reuse formerly validated constructs. However, the articles

disagree about how to define construct validity. Several interpret construct validity excessively by including threats to internal, external,

or statistical conclusion validity. A few articles also include fundamental challenges of a study, such as cheating and misunderstanding

of experiment material. The diversity of topics included as threats to construct validity calls for a more minimalist approach. Based on

the review, we propose seven guidelines to improve how construct validity is handled and reported in software engineering.

Index Terms—Measurement, research quality, empirical research, systematic review, guidelines

Ç

1 INTRODUCTION

IN many sciences, researchers attempt to measure things
that are not directly measurable. A set of indicators may

then serve as a substitute for a single measure of the phe-
nomenon or characteristic of interest. For example, a collec-
tion of key performance indicators (KPIs) is supposed to
express how a company performs.

In software engineering, studies typically investigate the
effect of using various processes, methods, technologies, or
practices for software development [85]. If a software devel-
opment method is evaluated according to the maintainabil-
ity of the developed software, a set of indicators must be
identified to measure maintainability.

A concept that is not directly measurable but is repre-
sented by indicators at the operational level to make it mea-
surable is called a construct. The validity of a construct, which
is called construct validity (CV), is defined by how adequate a
concept definition is and how well the indicators represent
the concept [19], [21]. The development and use of well-
defined concepts are at the core of all sciences, as explained
by Einstein [29, p. 674]: “thinkingwithout the positing of cate-
gories and of concepts in general would be as impossible as is
breathing in a vacuum”. To make valid inferences at the con-
ceptual level, the indicators must be independent of each
other and span the conceptwithout systematic bias [54].

To support knowledge building, results from single stud-
ies should be confirmed in replications and aggregated in
secondary studies, such as systematic literature reviews. An
unsatisfactory CV may lead to inconclusive and contrary

results in a series of replications and in systematic reviews.
Kitchenham et al. [46, p. 29] state that part of the validity of a
systematic review is “the consistency and comparability of
the operationalisation of the outcome measures used in the
primary studies”. Suppose a set of replications or studies in a
systematic review evaluate and compare different software
development methods regarding the maintainability of the
developed software. The results of the primary studies may
be a consequence of different definitions and/or operational-
izations of maintainability rather than of differences in the
effects of themethods being investigated [73].

Our motivation for studying CV is that it not only
appears intrinsically difficult to evaluate [62] but is also
more difficult to evaluate than other kinds of validity [50, p.
43]. Consequently, there is a need for guidelines for CV.

CV in software engineering is typically addressed in text-
books [68], [85] that cover both quantitative and qualitative
studies and in papers on the validity of measurements [23],
[41], [62]. However, the state of awareness and practice of
CV has not been systematically investigated before. In this
article, we first report a quantitative analysis of how the
awareness of CV in has changed over time.

We then report a qualitative review of how CV is defined
and how its threats are discussed in 83 human-centric experi-
ments published in five high-quality journals. We expected
to find a higher frequency of CV discussion in human-centric
studies, which tend to involve concepts such as usability,
maintainability, understanding, difficulty, skill, competence,
and motivation, and in experiments in particular because
they require such concepts to be measured to be used in
descriptive statistics or statistical hypothesis testing. Note
that our focus is on constructs in a study, independently of
whether humans are involved in the study. Based on the
review, we propose a set of guidelines to improve the under-
standing and handling of CV in software engineering.

The remainder of this article is organized as follows.
Section 2 defines and describes CV and the threats to it.

� The authors are with the Department of Informatics, University of Oslo,
0315 Oslo, Norway. E-mail: {dagsj, gunnab}@ifi.uio.no.

Manuscript received 4 Mar. 2021; revised 7 May 2022; accepted 16 May 2022.
Date of publication 23 May 2022; date of current version 15 Mar. 2023.
(Corresponding author: D.I.K. Sjøberg.)
Recommended for acceptance by A. Sarma.
Digital Object Identifier no. 10.1109/TSE.2022.3176725

1374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4941-7240
https://orcid.org/0000-0002-4941-7240
https://orcid.org/0000-0002-4941-7240
https://orcid.org/0000-0002-4941-7240
https://orcid.org/0000-0002-4941-7240
https://orcid.org/0000-0002-8135-9052
https://orcid.org/0000-0002-8135-9052
https://orcid.org/0000-0002-8135-9052
https://orcid.org/0000-0002-8135-9052
https://orcid.org/0000-0002-8135-9052
mailto:dagsj@ifi.uio.no
mailto:gunnab@ifi.uio.no

Section 3 reports the analysis of CV awareness. Section 4
reports the review. Section 5 describes the guidelines and
demonstrates their use. Section 6 discusses limitations and
Section 7 related work. Section 8 concludes.

2 CONSTRUCT VALIDITY

2.1 Definition of Construct

Creating and understanding concepts are fundamental in the
development and acquisition of knowledge. We use con-
cepts to categorize physical and abstract phenomena. More-
over, concepts allow us to generalize the particulars and
abstract the details, making complexity simpler tomanage.

A concept has a name, an intension, and an extension,
three components that are well described in the classical lit-
erature of logic, linguistics, and philosophy.1 The intension
is the definition (meaning) or characteristics of the concept.
The extension is the set of instances that the concept
denotes. In computer science, this understanding of a con-
cept has been directly applied: Apart from the name, the
notion of class in object-oriented programming [24] is identi-
cal to the notion of concept described above.2

In an empirical science, one may need to measure con-
cepts. For some concepts, measurement is straightforward
for practical purposes because the concept is sufficiently
understood. For example, time can be directly measured
using a time-keeping device. However, for concepts that are
not directly measurable, one needs to use one or more indi-
cators [17] to represent the concept at an observational level
(Fig. 1). The process of determining such indicators is called
operationalization. A construct is a concept that has an associ-
ated operationalization into indicators.

When the definition of the concept is the starting point
for choosing indicators that reflect the concept, one has a
reflective measurement model, which is the focus in this
article. Conversely, when one chooses one or more indica-
tors to form (define) a concept, one has a formative mea-
surement model [18].

2.2 Validity and Validation

Validity is whether an inference, proposition, or claim is
(approximately) true or correct [70], preferably supported
by evidence or data. Validation is the process of investigating
validity [9], of which convergent and divergent validation
are two well-known types. In this article, a “validated con-
struct” means that the construct has undergone validation.

Convergent validation [14] investigates the extent to which
the results yielded by two instruments that measure similar
(or the same) concepts converge. Convergence of indicators
may also be investigated, for example, whether a new indi-
cator of system size has similar values to established indica-
tors, such as lines of code (LOC) and function points. As
part of convergent validation, one may calculate internal
consistency reliability (e.g., Cronbach’s alpha), or conduct a
principal components analysis (PCA) or exploratory factor
analysis [21]. Somewhat more advanced is to use confirma-
tory factor analysis [38], which requires an explicit, a priori
model of the relationship between a concept (factor) and its
indicators (observable variables). One can then test, for
example, whether the variables load on the same factor
according to the model.

Divergent validation3 [14], [55] investigates the extent to
which a set of indicators represents one specific concept
only and no other. This type of validation might be used to
determine whether two concepts that might be expected to
differ (as specified in the intension of the concept) do in fact
diverge according to available data. For example, if one has
high skill in programming, one would learn little that is
new when solving a trivial programming task. Conversely,
if one has low skill, one would learn much by solving the
same task. Therefore, one would expect learning and pro-
gramming skill to diverge and be negatively correlated [6].
A technique used in both convergent and divergent valida-
tion is the Multitrait-Multimethod Matrix (MTMM), where
each concept (trait) is measured by multiple data collection
methods, and each method is used to measure multiple con-
cepts [14].

Fig. 1. Elements of a construct.

Fig. 2. Examples of construct underrepresentation.

Fig. 3. Examples of construct-representation bias.

1. ”Intension and extension, in logic, correlative words that indicate
the reference of a term or concept: “intension” indicates the internal
content of a term or concept that constitutes its formal definition; and
“extension” indicates its range of applicability by naming the particular
objects that it denotes. For instance, the intension of “ship” as a substan-
tive is “vehicle for conveyance on water”, whereas its extension embra-
ces such things as cargo ships, passenger ships, battleships, and sailing
ships”, https://www.britannica.com/topic/intension.

2. The intention is a description of its attributes, which are variables
or methods that can be performed on those variables. The extension is
the set of instances of the class that are created during program execu-
tions, called objects.

3. The term discriminant validation is often used synonymously with
divergent validation.

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1375

https://www.britannica.com/topic/intension

2.3 Threats to Construct Validity

One major threat to CV is a missing or inadequate definition
of the concept. Two other major threats concern operational-
ization: The indicators may underrepresent the concept, and
there may be bias in the representation of the concept.

2.3.1 Inadequate Definition of Concept

CV requires an unambiguous definition or an established
understanding of the concept involved in the construct.
Without such a basis, it is difficult to evaluate how well a
set of indicators represents the concept. The threat to CV
that Cook and Campbell [19] refer to as the “inadequate pre-
operational explication of constructs” is informally
explained by Trochim et al. [81]: “what this phrase means is
that you didn’t do a good enough job defining what you meant by
the construct [concept] before you tried to translate it into a meas-
ure”. For example, lead time may have different definitions
in a software engineering context [77]. It may denote the
amount of time between the proposal for a new feature or
another request and its deployment in the customer’s envi-
ronment. Alternatively, it may denote the amount of time
that passes from the moment that the development team
receives a request to the moment that it completes the work
item. How well a set of indicators represent the concept of
lead time will depend on which definition is chosen.

Inspired by Mark [49], we categorize ways researchers
might err when defining or identifying concepts:

1) the concept may be at too general a level;
2) the concept may be at too specific a level;
3) the concept is not the right one, even though it is at

the appropriate level of abstraction.
Suppose the real concept of interest is “programming

skill”. The identification, then, of “software engineering
skill” is an example of the first type of error, “Java program-
ming skill” is an example of the second, and “usability skill”
is an example of the third.

Ideally, already well-defined concepts should be used if
available. In particular, a theoretically defined concept,
which is based on an underlying theory that describes the
concept, provides guidance on how to operationalize that
concept. In the presence of a well-established substantive
theory, previously validated measures are often available
and should be used. For example, a theoretical definition of
the concept of skill, a concept much used in the software
engineering literature, was originally proposed by Fitts and
Posner [33]. Unfortunately, most of the concepts involved in
software engineering research are not theoretically defined,
which is on a par with the fact that, in general, theories in
the field are relatively under-used [36].

2.3.2 Construct Underrepresentation

Construct underrepresentation [54] occurs when the set of
indicators resulting from the operationalizations are too
narrow to include all important aspects or dimensions of
the concept that should be included.4 The identification of
these important aspects is relative to the purpose of the

concept in the present setting. Such a consideration should
be addressed from both a theoretical and an empirical per-
spective. To determine whether underrepresentation is
present, one should consult the research literature that
reports earlier use of the construct under investigation. It
may also be useful to confer with practitioners that are
domain experts to obtain additional viewpoints on central
aspects of the involved concept that may be missing from
the research literature. Successful operationalization also
requires measurement expertise.

Fig. 2 (left) shows the result of a single operationalization
(also referred to as mono-operation [19]); that is, only one
indicator represents the concept. For example, when the
number of bugs is the only indicator of software quality, the
construct is underrepresented because additional aspects
are needed to span the concept of software quality. In fact,
the standard ISO25010 defines eight overall characteristics
of software quality. Reliability is one, for which the number
of bugs is only one of several possible indicators.

Detecting single operationalizations is trivial (counting to
one). However, determining the quality of a single opera-
tionalization is not trivial. Measuring the concept of pro-
gram length in terms of LOC would not be a serious case of
underrepresentation, but using LOC to measure the concept
of software complexity would be serious because important
aspects of software complexity are not captured by LOC
alone. For example, poor naming of identifiers [26] would
be another indicator that the software is complex, that is,
“not easy to analyze or understand” [37].

Fig. 2 (right) shows another example of construct under-
representation where there are multiple indicators that nev-
ertheless do not span the concept sufficiently because they
are clustered and unbalanced. An example is if software
complexity is measured in terms of both LOC and function
points. Even though they represent the concept of size well,
they do not capture other aspects of software complexity.

A special case of imbalance occurs when two indicators
overlap; that is, when they essentially measure the same
thing. For example, answers to the questions “are you a
parent?” and “do you have children?” would have a corre-
lation that approaches unity, and only one of the questions
should be used. So, although high values of Cronbach’s
alpha of a questionnaire indicate high internal consistency
reliability, values that are too high (typically from > :85 to
> :95) may indicate that the questions do not span the con-
cept being measured and thus cause construct underrepre-
sentation [59].

2.3.3 Construct-Representation Bias

The third major threat to CV is construct-representation
bias.5 Even though an obvious goal is to obtain an “ideal”
representation of a concept through its indicators, they will
in practice misrepresent the concept to some extent; that is,
the representation will be somewhat biased. If the indicators
fully represent a concept, they are actually not indicators.
Instead, they are measures or variables that uniquely form

4. Underrepresentation has also been referred to as “incomplete rep-
resentation” [78].

5. Messick [54] uses the term construct-irrelevant variance. However,
we consider that term to be more appropriate as part of measurement
theory, while construct-representation bias describes the issue better, and
at the same conceptual level as construct underrepresentation.

1376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

the concept. Evaluating CV would then be meaningless
because there is nothing more to the concept than what the
variables define.

We consider two kinds of construct-representation bias.
First, one or more indicators may be outside the scope of the
indicators (Fig. 3, left); that is, the indicator does not follow
“naturally” from the definition of the concept. The indicator
may only indirectly represent the concept and may be a bet-
ter indicator of another concept. For example, LOC would
be an inappropriate measure of usability, which is one
of the aspects of quality included in ISO25010. There is
some relationship between usability and LOC, of course; if
there is hardly any LOC, the usability would certainly be
unsatisfactory, but LOC is nevertheless a weak indicator of
usability.

Another kind of bias occurs when multiple indicators
systematically misrepresent the concept (Fig. 3, right),
which is the case when the error variance of the indicators
is systematic. For example, if the values of several indicators
are collected using the same method, any error caused by
that method will be systematic, which is referred to as com-
mon-method variance. The operationalization will then face
mono-method bias [19]. For example, in investigating the
effect of education on the quality of developed code, a
mono-method bias would be in play if the data on education
is collected only through self-reports. Such a mono-method
bias would not exist if data on education were also collected
from university transcripts. In addition, even when several
indicators are used to represent education (i.e., there is no
mono-operation), a mono-method bias would exist if the
same method is used for all the indicators. An example of
avoiding mono-method bias is when the quality of code is
evaluated using objective code metrics provided by tools in
addition to the subjective opinions of experts.

A construct with only one indicator has a mono-opera-
tion bias [19] and thus faces two threats. The first is under-
representation, because there is only a single indicator. The
second is construct-representation bias, because any (ran-
dom or systematic) measurement error in the indicator will
be included in the representation of the concept.

2.4 Internal, External, and Statistical
Conclusion Validity

According to Rogers [62, p. 246], Courtis [20] provided the
first “institutional definition of validity” in 1921, in the con-
text of psychological testing.6

Internal validity refers to the extent to which an observed
co-variation between treatment and outcome variables
reflects a causal relationship between treatment and out-
come concepts [70]. Threats to internal validity are factors
that negatively affect, or threaten, the inferences about such
a causal relationship.

In the context of causal or explanatory case studies,
Yin describes internal validity as “the strength of the
causal or other ‘how’ and ‘why’ inferences made in a
case study, in part bolstered by showing the absence of
spurious relationships and the rejection of rival hypoth-
eses” [87, p. 351]. Even though cause and effect may be
studied in case studies [52] and surveys [12], experi-
ments are considered the primary research method for
causal inference [69], [70].

Research questions may include causal relationships at
the conceptual level (i.e., A affects B), while hypotheses and
data analyses used to investigate such relationships occur at
the operational level using variables that represent A or B.
Fig. 4 shows the conceptual and operational levels for such
cause-effect studies.

The figure also shows a moderator construct. A moderator
changes the strength and/or direction of the relationship
from cause to effect [4]. A change of direction means that a
positive effect becomes negative, or vice versa. In regression
and variance analyses, a moderator variable is often mod-
elled as an interaction effect.

Unlike a moderator, a mediator is on the causal chain (not
shown in the figure); the relationship from cause to effect is
not direct but indirect via the mediator [4]. For example, the
effect of working memory capacity (WMC) on code review
performance was studied as a direct relationship by Baum
et al. [A8]. However, a previous study reported that the
effect of WMC on programming performance was mediated
by programming knowledge [8]. Thus, an alternative causal
chain in the study of Baum et al. could be that the effect of
WMC on code review performance was mediated by code
review knowledge.

Related to internal validity is also the notion of con-
founding [70]. Spurious relationships between the cause
and effect concepts may occur due to a confounder (also
called confounding factor or confounding variable). A
confounder is associated, or correlated, with both the
cause and effect concepts but is not on the cause-effect
chain. For example, the use of sunglasses will typically
correlate with the sale of ice cream. However, it is not
because people wear sunglasses that they buy ice cream;
instead, temperature, a confounder, causes an increase in
both the use of sunglasses and ice cream sales. In soft-
ware engineering, suppose one observes that software
systems with a large share of design patterns are more
maintainable than systems with a small share of design
patterns. A potential confounding factor is that developer
experience affects both the use of design patterns and the
general maintainability of the systems (beyond a possible
improvement of maintainability due to the use of design
patterns). The standard method to reduce confounding
effects in experiments in general is to randomly allocate
the units (which in human-centric experiments are partic-
ipants) to treatment and control groups.

External validity refers to whether a study’s findings are
generalizable beyond the immediate study [86]. In case
studies, one often generalizes analytically using theory [86].
In experiments and surveys, however, one typically gener-
alizes statistically from the elements that are sampled to the
population of interest. In addition, one may wish to general-
ize the findings of a study to elements that the study did not

6. “Two of the most important types of problems in measurement
are those connected with the determination of what a test measures,
and of how consistently it measures. The first should be called the prob-
lem of validity, the second, the problem of reliability.” [20], as cited in
[64, p. 80]. Since then, several distinct aspects of validity have been
described and named in the literature. In software engineering, empiri-
cal studies typically focus on internal validity, external validity, and
statistical conclusion validity, in addition to CV [85].

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1377

include [70]. For example, even if only students participated
in a study, one may argue that the results also hold for pro-
fessionals [31]. In software engineering, the elements may
belong to different types, including actors (individuals,
teams, projects, or organizations), technologies (process mod-
els, methods, techniques, tools, or languages), activities
(plan, create, modify or analyze (a software system), and
software systems (characterized by size, complexity, applica-
tion domain, project (business, scientific, student), type
(administrative, embedded, real-time), etc.) [72].

Statistical conclusion validity refers to the appropriate
use of statistics to infer whether the independent and
dependent variables correlate, or co-vary [19]. Typical
aspects addressed are choice of statistical tests, sample
size, measurement reliability, effect size [40], and statistical
power [28].

To summarize, internal validity concerns inferences
between the cause and effect concepts, representing a hori-
zontal dimension at the conceptual level; see Fig. 4. Statisti-
cal conclusion validity concerns statistical analysis on
the cause and effect variables, representing a horizontal
dimension at the operational level. In contrast, CV repre-
sents a vertical dimension in Fig. 4. External validity
concerns generalizations from the elements used in a study
to other elements of the same type that were not studied.

2.5 Construct Validity in an Example Experiment

The reference model in Fig. 4 is instantiated in Fig. 5, using
the experiment reported by Krein et al. Their experiment
replicates another replication [82], which in turn replicated

the original experiment that investigated the effect of using
design patterns on maintainability [61]. The replication pre-
sented in Fig. 5, whose constructs this section discusses,
focuses on the moderating effects of developer experience
and pattern knowledge.

The terms independent and dependent variables are
sometimes used at the conceptual level. However, we will
use the term variable only at the operational level. More-
over, indicators are variables but not vice versa: an indicator
is a particular variable that is associated with a concept that
is not directly measurable. In software engineering, the
terms metrics and measures are also used at the operational
level, although they are not the same: while “every measure
is a ‘metric’, the converse is certainly not true” [32].7

2.5.1 Independent Concept: Design Pattern

The concept of design pattern is adequately defined
(Section 2.3.1) by Krein et al. [A39] through a reference to a
well-known book on design patterns [34], which clearly
describes it.

Concrete patterns must represent the concept at the oper-
ational level. The experiment by Krein et al. used the Deco-
rator and Abstract Factory patterns. Use of concrete

Fig. 4. Reference model for constructs in cause-effect studies.

Fig. 5. Model of constructs in an experiment replicated by Krein et al. [A39].

7. The particular terms used in this area vary across different disci-
plines; for example, among synonyms to “dependent variable” are
“criterion”, “experimental variable”, “explained variable”, “measured
variable”, “outcome variable”, “output variable”, “predicted variable”,
“regressand”, “response variable”, and “responding variable”. Further-
more, in many disciplines, researchers may use the terms “independent
variable” and “dependent variable” at the conceptual level.

1378 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

patterns in experimental groups may be modelled by an
indicator variable (“1” if the pattern is present, otherwise
“0”, i.e., a dummy variable). To what extent do these two
instances underrepresent or give a biased representation of
the concept of design pattern? Gamma et al. list 23 patterns
in their book published in 1995 [34]. Since then, many more
patterns have been proposed. Even though the operationali-
zation does not suffer from mono-operation, using only two
patterns may still under-represent the concept. In both the
original experiment [61] and the previous replication [82],
the patterns Observer and Visitor were used in addition.
However, Krein et al. excluded Observer, because it was
only used in a programming task that appeared to be too
easy in the previous replication and thus posed a threat to
external validity, not CV. Krein et al. also excluded Visitor
because “the prior two studies both found the Visitor pat-
tern to be overly difficult” [A39]. Including Visitor might
then have made the sample of design patterns unbalanced
towards difficult patterns. Ideally, underrepresentation
might have been reduced if a set of (say five or more) design
patterns had been selected randomly.

We observe no construct-representation bias regarding
scope (Fig. 3); Decorator and Abstract Factory are clearly
instances of design patterns. However, it is difficult to judge
whether the mono-method of data collection is present
because there is no description of how the four design pat-
terns were selected in the original experiment, which, in
turn, determined the patterns used in the replications.

The original experiment and the replications found dif-
ferent effects of the different patterns. Krein et al. [A39]
quote Vokac et al. [82]: “each design pattern ...has its own
nature, so that it is not valid to characterize patterns as use-
ful or harmful in general”. Similarly, in another study, four
functionally equivalent Java systems were developed inde-
pendently [2]. Each of the systems could be considered
most maintainable depending on the indicators used to
measure maintainability [73]. Thus, using different indica-
tors may lead to different conclusions of a study.

2.5.2 Moderating Concept: Developer Experience

Krein et al. introduce “developer experience” and “pattern
knowledge” as moderator concepts of the investigated
causal relation. Concepts commonly understood and agreed
upon in a given context, such as “developer” among TSE
readers, do not require an explicit definition to ensure CV.
However, “experience” is ambiguous, as discussed by Die-
ste et al. [A20]. They refer to two dictionary definitions of
experience: “(1) skill or knowledge that you get by doing
something, and (2) the length of time that you have spent
doing something (such as a particular job)”. Siegmund et al.
[71] adhere to the first interpretation when they define pro-
gramming experience as “the amount of acquired knowl-
edge regarding the development of programs”. It is
apparent that Krein et al. adhere to the second interpreta-
tion, as discussed by Ericsson [30], both from the choice of
the indicators and that “knowledge” is used instead of
“experience” in the other moderator (”pattern knowledge”).
Nevertheless, it is prudent to be explicit in unclear cases;
judging how well a set of indicators represents a concept
relies on its definition.

Four indicators operationalize “developer experience”:
number of programming languages, lines of code written,
number of hours programming, and self-assessed program-
ming skill. Consequently, the construct does not face mono-
operation. However, it does face the threat of mono-method
bias because all the indicators are based on self-reporting.

2.5.3 Moderating Concept: Pattern Knowledge

Krein et al. do not explicitly define the concept of pattern
knowledge. However, like “developer”, “knowledge” is a
term that is commonly understood. Thus, “pattern knowl-
edge” would also be easily understood given that the con-
cept of (design) pattern is already defined and explained.

The concept of pattern knowledge is operationalized by
only one indicator and thus the construct suffers from
mono-operation. The construct also has mono-method bias
because the only method used is self-reporting. Objective
tests of pattern knowledge might also have been used.

A major finding in the experiment is that both developer
experience and pattern knowledge change the direction of
the effect of using design patterns; the effect is positive if
experience and knowledge are high and negative if they are
low. Such a moderating effect of expertise is also referred to
as the expertise reversal effect [39], [74].

2.5.4 Dependent Concept: Maintainability

Maintainability [48] denotes how easy it is to maintain a
software system and is a commonly understood concept in
the software engineering community. Maintainability may
be evaluated regarding the effort needed for software devel-
opers to perform maintenance tasks and the quality of the
outcome,8 as is the case in the experiments conducted by
Krein et al. However, quality is underrepresented as it only
focuses on one aspect, correctness. Another quality aspect
might have been whether the maintainability had been
improved or deteriorated after the tasks had been per-
formed. However, resources are limited. Correctness as the
single indicator of quality is a pragmatic choice in the origi-
nal and replicated experiments. Nevertheless, they are
examples of comprehensive and resource-demanding
experiments in software engineering.

3 AWARENESS OF CONSTRUCT VALIDITY

IN SOFTWARE ENGINEERING

This section reports on the awareness of CV as reflected in
the general software engineering research literature and in
specific software engineering journals and experiment
articles, respectively.

3.1 Data Collection

We identified the proportion of documents that include
“construct validity” in the general research literature of soft-
ware engineering, more specifically in five leading software
engineering journals, and even more specifically in articles
that report human-centric experiments in these five journals.

8. A general challenge is how to weigh different indicators of perfor-
mance in an analysis, for example, when combining time and quality
[5].

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1379

3.1.1 CV in the General Software Engineering

Literature

As a source for the general literature, we used the docu-
ments in Google Scholar produced between 2000 and 2019.
The search was conducted in February 2021. As a coarse-
grained indicator of awareness, we used the proportion of
software engineering documents that contains the term con-
struct validity (see Fig. 6); that is, the number of documents
containing both the terms construct validity and software
engineering divided by those documents containing only
the term software engineering.

Producing Figs. 7 and 8 required 180 Google Scholar
searches. Each of the 20 years in the period from 2000 to
2019 entailed nine searches: three denominators common
for both figures (“information systems”, “software engi-
neering”, and “hardware”); three numerators for Fig. 7
(“construct validity” in each of the three categories); and
three new numerators for Fig. 8 (“external validity”,
“internal validity”, and “conclusion validity”).

However, there is a probabilistic component in Google
Scholar. Identical searches within a few hours usually give a
unique estimate, but the same searches a day later differ,
possibly by more than 15 percent, particularly for broad
searches. Averaging over time will improve the stability and
reproducibility of the numbers but may need to be repeated
over several weeks. An alternative method that can be exe-
cuted in a few minutes is to exploit the fact that even though
Google Scholar is case-insensitive, the same search string
but with different use of uppercase and lowercase letters,
e.g., “software engineering” and “Software engineering”,
will give different counts. It appears that a query for
“Software engineering” does not use the cached value of
“software engineering” but makes its own estimate. One can
then average over different letter cases, e.g., “soft..”, “Soft..”,
“sOft..”, and “SOft..”. This method is used by the Python
script in Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2022.3176725, available in the online sup-
plemental material.

3.1.2 CV in Software Engineering Journals

We wanted to investigate the awareness of CV in the soft-
ware engineering research literature that report empirical
studies and where one is likely to find discussions on CV.
We selected five journals with a high journal impact factor:
IEEE Transactions on Software Engineering (TSE), Empirical
Software Engineering (EMSE), Information and Software Tech-
nology (IST), ACM Transactions on Software Engineering and

Methodology (TOSEM), and Journal of Systems and Software
(JSS). We calculated the proportion of research articles that
included the term construct validity for each year in the
period 2000 to 2019. We used the ACM Digital Library for
TOSEM, IEEE Explore for TSE, Springer’s internal search
engine for EMSE, and Elsevier’s internal search engine for
IST and JSS. The search procedure and a supporting R script

Fig. 6. The construct “CV awareness in SE literature”.

Fig. 7. Percentage of documents in Google Scholar that contain
“construct validity” in three subdisciplines.

Fig. 8. Percentage of software engineering documents that contain
“external validity”, “internal validity”, “construct validity”, and “conclusion
validity”, respectively.

Fig. 9. Percentage of articles that contain “construct validity” in five jour-
nals. Weighted/unweighted means in dashed black/grey.

1380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3176725
http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3176725

are shown in Appendices B and C, respectively, available in
the online supplemental material.

3.1.3 CV in Software Engineering Experiments

We identified the human-centric experiments published in
the five journals listed in Section 3.1.2 for the period 2015 to
20199 using the procedure and definition of human-centric
experiment described in Appendix D, available in the online
supplemental material. As shown in Table 1, the five jour-
nals published 2265 research articles in the given period.
Our search script yielded 571 articles. After a manual exclu-
sion process, we ended up with 102 articles that reported
human-centric experiments, of which 83 discuss CV.

3.2 Results

3.2.1 CV in the General Software Engineering

Literature

The use of the term construct validity in the general software
engineering literature has greatly increased over the past two
decades. Fig. 7 shows an increase from 0.4 percent in 2000 to
3.1 percent in 2019; that is, seven times more in 2019. Most of
the increase occurred in the last decade. To compare the
awareness of CV in software engineering with that of other
computing disciplines, we conducted searches on
“information systems” and “hardware” that were similar to
those for “software engineering”; see Fig. 7. The use of the
term construct validity has also increased substantially in
recent years in the disciplines of information systems and
hardware. In that period, a slightly higher proportion of docu-
mentswith CVwere published in information systems than in
software engineering,which, in turn, has had a higher propor-
tion than hardware. This ordering of disciplines is plausible
because it reflects the extent towhich human aspects are stud-
ied. Human-centric studies tend to involve concepts, such as
performance, ability, skill, and motivation of individuals and
teams. Naturally, software engineering’s focus on humans is
somewhere between information systems and hardware.

Regarding the types of validity commonly discussed
in the software engineering research literature, Fig. 8 shows
that “external validity” and “internal validity” consistently
appear more frequently than “construct validity”, which
in turn appears much more than “conclusion validity”.
All the validity types have increased substantially since the
year 2000.

3.2.2 CV in Specific Software Engineering Journals

For the five specific software engineering journals, there is a
similar pattern of growth (Fig. 9) as in the general software
engineering literature. The proportion of the use of the CV
term increased from 4 percent in 2000 to 44 percent in 2019.
The variation for 2019 is from 36 percent for TOSEM and
JSS to 53 and 56 percent for IST and EMSE, respectively. It is
plausible that EMSE has a higher proportion than the other
journals because it is tailored to report empirical studies,
which typically involve measurements.

3.2.3 CV in Experiments

Of the 102 published experiments, the 83 articles that dis-
cuss CV constitute 81 percent; see Table 1. EMSE is on top
among the journals, with a CV discussion in 96 percent of
the experiment articles. In an earlier study, we investigated
human-centric experiments published in the period from
1993 to 2002 [76]. In the sample of 72 experiment articles
that were published in the same five journals as examined
here, only six discussed CV, that is, 8 percent. The propor-
tion of human-centric experiments published in these jour-
nals increased from 2.8 percent in the period 1993 to 2002 to
4.5 percent in the period 2015 to 2019. Neto and Conte [56]
reported a study of experiments published in nine journals
(including the five just mentioned) and four conferences in
the period 2003 to 2011. In their sample of 46 papers, 10 dis-
cussed CV (22 percent).

4 CONSTRUCT VALIDITY DISCUSSIONS IN

SOFTWARE ENGINEERING EXPERIMENTS

This section reports how the 83 experiment articles identi-
fied in Section 3.1.3 define CV and discuss threats to CV.

4.1 Data Collection

We analyzed a set of articles reporting human-centric
experiments in depth because we expected to find a higher
frequency of CV discussions in such articles than in those
reporting other kinds of empirical studies.10 Operationaliz-
ing the concepts of the research questions of an experiment
that are not directly measurable is required before descrip-
tive statistics or results of statistical hypothesis testing can
be reported. Particularly, in human-centric experiments,
which focus on “software engineering methods, techniques
and procedures that depend on human expertise” [45], the
concepts studied (e.g., usability, maintainability, compe-
tence, understanding, difficulty) tend to be more abstracted
than those studied in experiments that do not involve
humans (e.g., time, defect).

4.2 Analysis Method

Both authors read the whole article independently to obtain
an overview of the reported experiment. Along the way, we
extracted text related to CV, which was primarily found
under threats to validity but occasionally also in sections on
experiment design or research method.

TABLE 1
Number of Articles Identified in the Steps of the Review

Journal Articles # Search # Exp. # Discuss CV # (%)

EMSE 387 171 28 27 (96)
IST 540 146 31 26 (84)
JSS 947 181 24 16 (67)
TOSEM 103 18 8 5 (63)
TSE 288 55 11 9 (82)

Total 2265 571 102 83 (81)

9. In TOSEM, Volume 24 covers parts of 2014 and parts of 2015, Vol-
ume 25 parts of 2015 and parts of 2016, etc. The five-year period for the
analysis of TOSEM includes Volumes 24 to 28.

10. Data from TSE in the period 2015 to 2019 supports our expecta-
tions: 9 of 11 (82 percent) of the human-centric experiments discussed
CV (see Table 1), whereas the proportion was 20 of 48 (42 percent) for
the qualitative studies to be reported in Section 5.3.

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1381

To help ensure thatwe did notmiss relevant CV information
through our reading, we searched through plain text versions
of the articles, usingLinux grep -i (case-insensitive), for the terms
“bias”, “confound”, “construct”, “effect”, “indicator”, “mono-
operation”, “mono-method”, “operationalization”, “mono-
method”, “threat”, “underrepresentation”, “validation”, and
“validity”, including spelling variations (“monomethod”,
“monooperation”, “operationalisation”, and “under-repre-
sentation”).We also searched for seven named types of validity
thatwe argue are peripheral toCV; see Section 4.4.5 andTable 4.

We categorized how CV was defined and how threats to
CV were described according to the three predefined cate-
gories of threats to CV given in Section 2.3; see Table 3. The
sentences or sections that could not be placed in the prede-
fined categories were encoded into new categories. One cat-
egory that emerged from the texts is “imported constructs”;
see Section 4.4.4. A large group of issues that we consider
outside CV are described in Section 4.4.6.

In most cases, we quickly agreed on the encoding. In
three cases, however, interpreting the meaning of the CV
text was so difficult for both of us that we decided to
exclude the text from the reported analysis.

4.3 Results: Definition of CV

This section discusses the definitions of CV found in the
analyzed articles; see Table 2.

The most common definition of CV is that it is concerned
with the relationship between theory and observation
(Table 2, row 1) [A6], [A9], [A15], [A33], [A40], [A49], [A53],
[A56], [A60], [A61], [A63], [A65], [A66], [A81], [A82]. Seven
of those 15 articles cite the textbook by Wohlin et al. [84],
[85],11 which provides the statement, “Construct validity is
concerned with the relation between theory and observa-
tion” [85, p. 103]. However, apart from [A81], none of the
articles explains what “theory” and “observation” mean in
the context of CV.

If the articles had referred to or developed named scientific
theories, the “relation between theory and observation” could
havemeant the relationship between the concepts of such theo-
ries and the variables that contain observed data in the experi-
ments. Such an approach would have been consistent with the
notions of “theoretical vocabulary” and “observational

vocabulary” used by, e.g., Suppe [79] in his discussion of theo-
retical and observational terms in scientific theories. Theories
are formulated at the conceptual level, while they are tested in
hypotheses at the operational level. Theories include validated
constructs. However, in the articles with this definition, there
are no explicit references to theories that include the constructs
of the reported experiments. And vice versa: those articles that
use named theories, for example, the Technology Acceptance
Model (TAM) [25], which is used by [A1], [A10] ,[A35] ,[A76],
do not adhere to this definition of CV.

The authors of the articles with this definition may not
have intended to use “theory” in the meaning of scientific
theories [36], [72] but only as something that resides at the
conceptual (abstract) level and in contrast to the operational
(concrete) level, as shown in Fig. 4. A similar figure, which
distinguishes between the levels of “theory” and
“observation”, is shown in Trochim [80] and adapted in
[85]. Nevertheless, none of the articles is explicit about what
is at the conceptual (theory) level, what is at the observa-
tional level, and what the relationship is. Thus, the articles
themselves do not seem to apply the definition.

Six articles [A2], [A13], [A14], [A71], [A72], [A73] define
CV as concerning the relationship between the goals of an
experiment and its results, or the cause-effect investigated
in the experiment (Table 2, row 2). However, CV does not
relate to cause and effect per se, which represents a horizon-
tal relationship in Fig. 4, whereas CV represents a vertical
relationship.

Four articles [A7], [A51], [A67], [A75] define CV as the
extent to which the variables (or measures) measure what
they intend (or claim) to measure (Table 2, row 3). One arti-
cle [A67] states that CV is “the extent to which the experi-
ment and its various measures test and measure what they
claim to test and measure”. This definition adheres to an
early definition of validity (before CV was conceptualized)
given by Buckingham [13] in the context of intelligence test-
ing: “Validity [is] the extent to which [intelligence tests]
measure what they purport to measure”.

It is correct that CV is about the degree towhich something
measures what it “intends”, “claims”, or “is supposed” to
measure. However, a problemwith such a definition is that it
is difficult to establish and describe accurately what the inten-
tion or claim is. None of the articles is explicit about what that
intention is. Consequently, judging how well the variables
span the (intention of) the concept is problematic.

Defining CV as to how well the variables measure what
they intend to measure has support in the classical CV liter-
ature [15], [42]. However, more recent literature questions
the usefulness of such a definition: “It does seem that if one
knows exactly what one intends to measure, then one will
probably know how to measure it, and little if any valida-
tion research will be necessary. If this is correct, then the
problem of validation research is not that it is difficult to
find out what is measured; the problem is that it is difficult
to find out what one intends to measure” [9, p. 1067].

Furthermore, an intention is subjective, which means that
people will differ on the interpretation of the intention of a
measure. Even if people agree on the intention (for example,
measured by inter-rater agreement), the subjective nature of
the intention makes it challenging to agree on the operation-
alization of the concept. If a concept is vaguely and

TABLE 2
Definitions or Explanations of CV

Definition category # % of total % of def

Relationship between theory and
observation

15 18 42

Relationship between experiment
goals and results

6 7 17

Measure of intention 4 5 11
Represents the concepts of study 3 4 8
Miscellaneous definitions 8 10 22
No definition 47 56
Total 83 100 100

11. Appendix E shows a Sankey diagram of the references that the
authors use to support their definition of CV.

1382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

subjectively defined through an intention or claim, a possi-
ble consequence is that any set of (arbitrary chosen) indica-
tors then uniquely determine the concept. Evaluating CV
would then be meaningless; see Section 2.3.3. An example is
when intelligence is defined as what is measured by an IQ
test, which is an example used by Sakhnini et al. [A67]. They
discuss the challenge of operationalizing the concept of cre-
ativity: “The shakiest measure used in the experiment is the
Williams test of individual creativity. For any psychometric
test, such as the Williams test and the standard IQ tests,

there is always the question of whether the test measures
what its designers say it measures”.

Examples in software engineering are when researchers
equate software complexity with McCabe’s cyclomatic com-
plexity metric [53] and when they equate software maintain-
abilitywith themaintainability index [58]. Software complexity
and maintainability are certainly more comprehensive con-
cepts than can be fully represented by thesemetrics [73].

Three articles [A11], [A35], [A39] define CV as the extent
to which variables (or measures) represent the concepts

TABLE 4
Peripheral Named CV Threats

Named Threat Threat Mitigated Threat No Threat #

Hypothesis guessing [A6], [A8], [A12], [A22],
[A43], [A54], [A55], [A59],
[A63], [A74]

[Al], [A9], [A21], [A28], [A32],
[A34], [A69], [A71], [A77]

19

Interaction of different
treatments

[A54], [A61] [A32], [A72], [A73], [A80],
[A83]

[A9] 8

Interaction of testing and
treatment

[A28] [A9], [A54], [A69] 4

Restricted generalizability
across constructs

[A28], [A32] [A9], [A55] 4

Evaluation apprehension [A19] [A31], [A54], [A61], [A62],
[A63], [A73]

[Al], [A9], [A16], [A17], [A23],
[A24], [A25] ,[A28], [A32], [A72]

17

Experimenter expectancies [A32], [A51], [A55] [Al], [A56], [A77], [A80] [A21], [A40], [A61], [A68], [A71],
[A72] [A73], [A75]

15

Confounding constructs and
levels of constructs

[A61], [A73] [A52], [A72] [A9] 5

Total 11 27 34 72

TABLE 3
Threats to CV that are Present, Mitigated, or not Present in Experiments

Threats to CV Role of
Construct

Threat Mitigated No Threat #

Inadequate definition

of concept

Independent Different definitions [A37]
Redefinition [A41]

Definition by examples [A6] 3

Moderator Disagreement about extension [A38] Disagreement about extension
[A53]

Imported definition
[A28]

3

Dependent Different definitions [A8]
Imported definition [A73]

Imported definition
[A18]
Definition by
examples [A9]

4

Underrepresentation Independent Mono-operation [A54], [A55], [A58]
Multiple indicators [A41]

Mono-operation [A9], [A16] 6

Moderator Mono-operation [A8], [A28], [A65],
[A69]
No operation [A39]

Mono-operation [A2], [A12],
[A17], [A36], [A74]

Mono-operation
[All], [A39], [A78]

13

Dependent Mono-operation [A28], [A35], [A60],
[A65], [A78]
Multiple indicators [A35], [A57], [A64],
[A67], [A81]

Mono-operation [A9], [A29],
[A32], [A54], [A63] Multiple
indicators [A51]

Mono-operation
[A54]

17

Construct-

representation bias

Independent 0

Moderator Subjectivity [A40] Subjectivity [A5] 2

Dependent Subjectivity [A77], [A81] Monomethod [A18] Subjectivity
[A33], [A49], [A53], [A56], [A65],
[A79] Indicators outside scope
[A30]

Mono-method
[A32], [A74]
Subjectivity [Al],
[A4], [A7], [A15],
[A18], [A43], [A75],
[A76], [A78]

21

Total 25 26 18 69

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1383

under study (Table 2, row 4), which is consistent with our
definition in Section 2 and illustrated in Fig. 4.

Other explanations are that CV is about the construction
or design of an experiment, whether the experiment setting
reflects the research objective or the method used to evaluate
the outcome of the tasks of an experiment (Table 2, row 5).

4.4 Results: Threats to CV

This section reports on discussions in the 83 analyzed
articles of the three core threats to CV introduced in Sec-
tion 2.3. Table 3 summarizes the findings. The table includes
three columns that indicate whether the authors of the
articles consider a given threat to be present, mitigated, or
not present. The frequency of specific threats shown in the
table is as follows (the percent of the total of 69 is given in
parentheses): mono-operation 28 (41%), subjectivity 19
(28%), multiple indicators 7 (10%), imported definition 3
(4%), mono-method 3 (4%), definition by examples 2 (3%),
different definitions 2 (3%), disagreement about extension 2
(3%), indicators outside scope 1 (1%), no operation 1 (1%),
and redefinition 1 (1%).

The first three subsections discuss the core threats to CV.
The remaining three subsections report on, respectively,
import of constructs, peripheral threats to CV, and other
kinds of validity than CV.

4.4.1 Inadequate Definition of Concept

Ten articles discuss threats related to inadequate definitions
of concepts, which we categorize as follows.

Different Definitions. If the definition of a concept under
investigation is specific to a research context, the findings
may be less relevant to an industry context that uses another
definition [A8]. Furthermore, different definitions of core
concepts may lead to results that are not comparable across
experiments [A37].

Redefinition. Lenberg et al. [A41] wish to form a psycho-
logical concept that relates to the understanding of a subject
that comprises knowledge and experience. In the absence of
a suitable new term, they redefine knowledge to mean the
combination of knowledge and experience. They acknowl-
edge that such a redefinition is questionable.

Imported Definition. A few articles refer to definitions pro-
vided by frameworks [A73] or prior studies [A18], [A28] to
mitigate [A73] or avoid [A18], [A28] the threat that their
concepts are inadequately defined.

Definition by Examples. Two articles discuss how a con-
cept is formed from concrete examples, cf. denotative defini-
tion [17]. Arnaoudova et al. [A6] discuss the risk that
developers’ perception of linguistic antipattern is bound to
particular examples (instances) instead of the concept of lin-
guistic antipattern. Bernandez et al. [A9] investigate the
effect of mindfulness in the performance of conceptual
modeling. They state that to avoid “inadequate pre-opera-
tional explication of constructs”, they developed reference
“conceptual models”, which served as examples of the con-
cept of “conceptual model”.

Disagreement About Extension. Even if a concept has a com-
monly agreed definition, its extension may be in question.
Kosar et al. [A38] describe the threat of people disagreeing
about whether a given tool is a build tool, editor, find and

replace tool, or some other tool. Palomba et al. [A53] discuss
the threat of tools for detecting code smells identifying smells
that are not perceived as smells by developers.

4.4.2 Construct Underrepresentation

Twenty-eight of the articles address threats to construct
underrepresentation, which we categorize as follows.12

Mono-Operation. Twenty-two articles consider the mono-
operation threat, where most of them discuss it for modera-
tor concepts. Twelve articles use the term “mono-operation”
explicitly; the other articles describe this threat using other
terms such as “single operationalization” or by explaining
that a concept was measured using only one variable. Five
articles use the term mono-method bias to describe mono-
operation of measures; they do not discuss methods at all.
Their view is consistent with that of Trochim [81], who con-
fines the use of mono-operationalization to the side of cause
and mono-method to the side of effect. However, such a
view confuses two separate issues. One concerns the num-
ber of operationalizations, the other the number of methods
used for data collection, independently of whether the
methods apply to the cause or effect side [19], [70].

Multiple Indicators. Seven articles report underrepresenta-
tion of a concept even though multiple indicators are used:
six indicators are used in [A64], four in [A57], three in [A81]
and [A41], two in [A35] and [A67], and an unspecified num-
ber of indicators are used in [A51].

No Operation. An extreme case of underrepresentation is
when no indicator represents the concept. Krein et al. [A39]
did use an indicator of motivation in the analysis but
acknowledge it as a threat that they did not formally opera-
tionalize or measure, but instead used “ad hoc, largely qual-
itative data” to represent the concept. Consequently, they
state, “our conclusions about motivation should not be
accepted as established fact, but rather should be consid-
ered as justification for future work”.

4.4.3 Construct-Representation Bias

Twenty-two of the articles address threats to construct-
representation bias, which we divide into three categories.

Mono-Method. Three articles address threats related to
mono-methods bias. Hassan et al. [A32] use two methods
for measuring the completeness of definitions of software
project scope: calculation of a software project index and
expert judgement. Sharif et al. [A74] use a developer’s gaze
as the only method for data collection but suggest using a
tool that tracks how a developer interacts with an IDE as an
additional method. In the experiment of Czepa et al. [A18],
keeping time records was the personal responsibility of the
participant. They suggest using an online tool as an addi-
tional measurement method.

Subjectivity. Data based on a person’s opinions, feelings,
views, or desires is subjective. If the purpose of a study is to
investigate a subjective phenomenon, subjectivity does not
lead to construct-representation bias. For example, the goal
of the experiment reported in Alves et al. [A4] was “to see
the practical impact that each inspection strategy has on
developers’ opinions”. However, 18 articles discuss

12. Note that one article may appear several times in Table 3.

1384 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

subjectivity as a source of bias, that is, as an unintended side
effect. The articles distinguish between evaluator bias (called
“rater bias” in educational research and other disciplines)
and participant bias. Evaluator bias was discussed in twelve
articles and concerned how evaluators rated participants’
performance on the dependent variables, which included
the number of correctly fixed faults [A15], usefulness of
business value modeling methods [A76], quality of models
of stakeholders’ prioritization in requirements specification
[A1], architectural design decisions [A43], release notes
[A49], maintenance tasks [A56], comments on scenarios
[A65], conceptual models [A75], use case specifications
[A77], system functionality [A78], architectural changes
[A79], and requirement documents [A81]. Among reasons
for reporting no threat for evaluator bias were the use of
automated techniques [A78], automatically extracted objec-
tive variables [A43], and high inter-rater reliability between
two experts [A75]. Participant bias was reported in nine
articles. This bias was discussed for the self-reported mod-
erator variables skill [A40] and knowledge [A5]. The depen-
dent variables discussed were developers’ opinion on an
inspection strategy [A4], usability of visualization and inter-
action techniques [A7], understandability of graphical and
textual constraint representations [A18], usefulness of fea-
ture diagrams and textual requirements [A33], quality of
release notes [A49], code smell identification [A53], and
understanding of requirement documents [A81].

Indicators Outside Scope. An extreme case of construction-
representation bias is when indicators are outside the scope of
the concept; see Fig. 3 (left). Hannebauer et al. [A30] report an
example of this kind of threat: “the tasks might not measure
program comprehension but rather a completely different
cognitive process. We tried to avoid this pitfall commonly
known as construct validity by using different types of tasks,
so it becomes more unlikely that all tasks measure something
different than program comprehension”.

4.4.4 Import of Constructs

Reuse of formerly defined and validated constructs in a
study increases quality and saves effort, similarly to the
reuse of software components. Sixteen of the articles
describe constructs imported from various sources.

Models, Theories, and Frameworks. Well-founded models
and theories include validated constructs. Five articles [A1],
[A7], [A10], [A35], [A76] import the constructs perceived use-
fulness and perceived ease of use from the Technology Accep-
tance Model (TAM) [25] to evaluate technologies. Two
articles [A23], [A31] use a framework for evaluating com-
prehensibility of conceptual models described in [3]. This
framework is, in turn, based on several theories.

Psychometric Tests. The fields of psychology and educa-
tion have developed many constructs to describe skills,
knowledge, and learning achievements, which are also used
in software engineering. Baum et al. [A8] reuse an instru-
ment for measuring working memory capacity.

Questionnaires. A construct may be measured using ques-
tionnaires, where the responses to the questions (items) are
indicators. Caivano et al. [A13] reuse the System Usability
Scale questionnaire [11] and the Net Promoter Score ques-
tionnaire [35], which have been used and validated over

years and across disciplines. Four other articles [A8], [A40],
[A47], [A48] reuse questionnaires used in other studies but
do not cite validation studies of those questionnaires.

Other Studies. The models, theories, instruments, etc.
described above have been the subjects of comprehensive
validation studies where the sole purpose is to understand
and validate the constructs of interest. The investigated
articles referred to above cite these validation studies. In
contrast, some of the articles [A1], [A18], [A25] reuse meas-
ures and variables of constructs used by others, but without
citing studies that have explicitly attempted to validate
those constructs. Thus, the threats to the involved constructs
are unknown.

4.4.5 Peripheral Threats to CV

Sections 4.4.1– 4.4.3 discussed the three core types of threats
to CV, which are also the first three of ten types defined by
Cook and Campbell [19]. The remaining seven types are
listed in Table 4. Almost half of the articles discuss at least
one of those seven types. All the articles with citations
regarding these types cite Wohlin et al. [84], [85], who
brought forward the CV types introduced by Cook and
Campbell [19].

These seven types describe aspects of validity, but it is
questionable whether they should primarily be categorized
as belonging to CV or to internal, external, or statistical con-
clusion validity. Cook and Campbell themselves, together
with Shadish, removed the first four types in Table 4 from
their updated list of types of threats to CV in 2002 [70, p. 73].
The fifth type, “evaluation apprehension”, was subsumed in
a broader CV type called “reactivity to the experimental sit-
uation” in [70]. Furthermore, four types that were catego-
rized as internal validity in [19], were later categorized as CV
in [70]. Nevertheless, the articles that report on these four
types, which are “resentful demoralization” [A9], [A18],
[A32], [A37], [A54], [A63], [A69], [A80], “compensatory
equalization” [A9], [A32], [A69], “compensatory rivalry”
[A9], [A18], [A32], [A37], [A54], [A63], [A69], [A78], and
“treatment diffusion” [A9], [A18], [A32], [A35], [A37], [A59],
[A61], [A72], [A73], [A82] categorize them as internal valid-
ity. The change of categories over the years by the same
scholars illustrates the challenges of understanding and con-
ceptualizing CV. The place to which things belong is amatter
of perspective and is subject to argumentation. In the subsec-
tions below, we present arguments for why the types in
Table 4 should not be primarily categorized as threats to CV.

Independently of category, the types in Table 4 may be
considered peripheral in software engineering also because
of the frequency of no threats versus (real) threats in the
investigated articles. The types in Table 4 have three times
as many “no threats” as “threat” (34 versus 11), whereas for
the core CV types in Table 3, there are fewer “no threats”
than “threats” (18 versus 25).

Hypothesis Guessing. If the participants try to guess the
purpose of the experiment, they may change their behavior
to meet the purpose. Hypothesis guessing may be con-
founded with the treatment, and is thus better categorized
as a threat to internal validity rather than to CV. The 16
articles that mention this kind of threat consider it mitigated

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1385

or not present, indicating that it is of little concern in soft-
ware engineering.

Interaction of Different Treatments. If several treatments in
a study are present, “we would not be able to unconfound
the effects of the treatment from the effects of the context of
several treatments” [19, p. 68]. The solution to the problem
is either to give only one treatment or to conduct separate
analyses of the effect of the different treatments. Because
the primary concern of this threat is related to cause and
effect, the interaction of different treatments is also better
categorized as a threat to internal validity than to CV.

Interaction of Testing and Treatment. A pretest in an experi-
ment may “condition the reception of the experimental
stimulus” [19]. A threat to validity is then whether the treat-
ment will have the same effect on people who did not con-
duct the pretest; that is, can the results of the experiment be
generalized to a non-pretested population? Generalizations
from populations that were studied to those that were not
studied is an issue of external validity [70].

Restricted Generalizability Across Constructs. Cook and
Campbell [19] state, “it is useful to explore ... how a treat-
ment might influence constructs other than those that first
come to mind in the original formulation of the research
questions”. The treatment may have unintended negative
side effects. One should be careful about generalizing the
outcome of a treatment to other dependent constructs than
those specified, but this challenge is more related to general
experimental design than to the operationalization of a par-
ticular concept, which is the core of CV.

Evaluation Apprehension. Participants in an experiment
may be worried that their potentially poor performance
may become visible to others, which is termed evaluation
apprehension [65]. Dalpiaz et al. [A19] give an example:
“The tagging activity was not graded, but this is still part of
a course assignment, and this may have influenced the per-
formance of some participants”. A threat is that the effect of
such an evaluation is confounded with the effect of the
treatment, and is thus better categorized as concerning
internal validity rather than CV.

Experimenter Expectancies. The “experimenter expect-
ancies” effect [19], also referred to as the “observer-expect-
ancy” effect [66], is that the experimenter intentionally or
unintentionally influences the behavior of the participants
in a study. This kind of experimenter bias may then distort
the effect of the treatment. We thus consider it as a threat to
internal validity. Ideally, a double-blind study may be
designed to deal with this effect where neither the experi-
menter nor the participant knows whether the participant is
in the treatment or the control group.

Confounding Constructs and Levels of Constructs. The
amount, magnitude, or quantity of a construct may be
divided into levels. The use of different levels may affect
the inferences from a study. Trochim [81] gives an example
from medicine: A certain dosage of a drug may have no
effect against cancer, but a different level of the dosage
(increase or decrease) may have an effect. Examples from
the articles include levels of the treatment UML diagram
(low, high) [A24], code comment (none, bad, good) [A11],
domain knowledge awareness (ignorant, aware) [A5], and
mindfulness (number and duration of mindfulness training
sessions) [A9]. None of the analyzed articles that discuss

this threat [A9], [A61], [A52], [A72], [A73] consider levels of
treatments. They only discuss characteristics of the experi-
ment participants as moderators, such as ability, expertise,
and experience. Variations in levels of constructs may create
problems related to cause and effect (internal validity), gen-
eralizations from what was sampled in a study to other pop-
ulations of people, tasks, settings, etc. (external validity),
and how concepts are represented by indicators (CV). How-
ever, the term confounding is used in the combined terms
confounding factor and confounding variable, and is
strongly connected to the terms confounder or confound,
which are all mostly used in descriptions of threats to inter-
nal validity in the general literature; see Section 4.4.6.
Accordingly, three of the articles investigated [A61], [A72],
[A73] describe problems of internal validity when they dis-
cuss “confounding constructs and levels of constructs”. One
article [A52] describes problems of external validity. The
remaining article [A9] just stated that this confounding
problem was not relevant for the reported experiment. We
consider the type “confounding constructs and levels of
constructs” as unnecessary because it is already included in
the three core threats to CV, as described in Section 2.3.

4.4.6 Study Quality Aspects outside CV

This section describes aspects of the quality of a study that
the articles include in their section on threats to CV but that
are not part of CV according to our definition. We recom-
mend that these aspects are discussed under threats to inter-
nal, external, or statistical conclusion validity or as general
limitations of the reported study.

Internal Validity. The articles discuss inequality between
treatment and control groups with respect to a range of fac-
tors as part of threats to CV:

� Participants’ general expertise [A77], skill [A77],
knowledge [A82], experience [A70], [A82], ability
[A10], and capability [A21].

� Task difficulty [A14] and tool support [A38].
� Familiarity or understanding of tools [A16], [A19],

[A36], questions [A10], [A40], scenarios [A77], and
application domain [A20], [A37].

However, because unequal treatment groups may result
in wrong inferences about the causal relationships, we con-
sider such group differences to be a threat to internal
validity.

Furthermore, in our opinion, threats related to an experi-
ment as it proceeds should also be considered as threats to
internal validity, not to CV. Examples are ordering effects
[A21], sharing of solutions [A39], collaboration among partic-
ipants [A21], and learning effects [A4], [A23]. Most of the
articles do not discuss learning effects as part of threats to CV
but more appropriately as part of threats to internal validity
[A7], [A11], [A17], [A18], [A27], [A34], [A44], [A50], [A51],
[A61], [A70], [A73], [A74], [A78], [A82], [A83] or experiment
design [A15], [A21], [A22], [A24], [A25], [A26], [A35], [A39],
[A40], [A47], [A48], [A54], [A56], [A57], [A58], [A66].

External Validity. As part of threats to CV, several of the
articles discuss generalizations regarding participants,
tasks, and material used in the experiments. However,
according to the description in Section 2.4, such generaliza-
tions should be discussed as part of external validity. The

1386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

validity of using students is discussed in [A64], [A83],
which is a subject of recurring debate in software engineer-
ing [31]. Whether the tasks used in the experiments are rep-
resentative for tasks in industry with respect to size and
complexity is a topic in [A24], [A26], [A60], [A64]. A con-
cern is also whether the experimental material is representa-
tive for material used in industry, which includes system
requirements [A65], code [A56], [A62], code comments
[A11], and seeded faults [A2], [A27].

Measurement Scales. Under their discussions on threats to
CV, four articles [A8], [A21], [A22], [A51] reflect on the use of
a binary nominal variable versus a more fine-grained scale.
Three articles discuss the use of an ordinal scale with respect
to whether a more accurate scale would be suitable [A65],
whether a five-point ordinal scale can be treated as an interval
scale [A39], and whether an ordinal scale with three levels is
pseudo, i.e., a binary scale, when one level is hardly used
[A70]. One article [A7] states that the limited number of
options of a Likert scale prevents the accurate measurement
of opinions, while another one [A18] justifies using a 5-point
Likert scale instead of a scale with 7 or 11 points. Two other
articles [A33], [A6] simply state that they use a Likert scale.
Core literature and textbooks describe measurement scales as
separate from CV [54], [57], [70]. We share the view of Kaner
and Bond [41]: “Both in the historical development and logical
structure of scientific knowledge, the formulation of a theoret-
ical concept or construct ... precedes the development of mea-
surement procedures and scales”. Measurements scales and
statistical aspects such as ceiling/floor effects, discretization
of continuous variables, measurement reliability, and hetero-
genity of units may be better discussed under statistical con-
clusion validity, as recommended by Shadish et al. [70].

Fundamental Study Requirements. Empirical research
assumes willing participants who follow the procedure of a
study. The issues below are discussed under threats to CV
in the articles, but we recommend they be discussed as limi-
tations of the reported study:

� Participants receive task instructions that have unclear
wording [A81] or are otherwise confusing [A50], [A52].
One reason may be unsatisfactory translation from the
original language of the instructions to the native lan-
guage of the participants [A25].

� Participants misunderstand task descriptions because
they are written in another language than the native
language of the participants [A8], [A19], [A43], [A73].

� Experimental material is of unsatisfactory quality
because of lack of testing [A8], [A31], [A75].

� Participants are not allocated sufficient time to finish
the study [A81].

� Participants do not use the treatments as specified
[A25], [A42], [A43], [A75].

� Participants cheat [A17], [A78].

5 GUIDELINES

The review showed discrepancies in how CV is defined
(theory-observation, goals-results, intentions, etc.). A lack of
consensus in the definition may not be a concern if the
articles otherwise share an understanding of how to address
CV in practice. However, the articles vary substantially
regarding the topics included in the discussion of CV and
their relevance to CV, and the extent to which they discuss
real versus mitigated or non-present threats to CV. To
achieve a more shared understanding and reporting of CV
in software engineering, we propose a set of guidelines that
are based on a combination of core CV literature and the
findings in the analyzed articles.

We illustrate the use of the guidelines by applying them
specifically to the construct “CV awareness in software
engineering literature’’ investigated in Section 3 and gener-
ally to a set of qualitative studies published in TSE.

5.1 Proposed Guidelines

The guidelines, numbered G1 to G5, are shown in Table 5.

TABLE 5
Guidelines for CV

Guideline Description

G1 Create model of constructs Create a model of the constructs under study, preferably represented as a
figure or table, that includes the concepts, their indicators, and the
relationships among the concepts. While creating the model, for each
construct, do G2 if possible, else do G3.

G2 Import constructs if possible Import already validated constructs from established theories,
frameworks, standards, tests, instruments, or questionnaires, or refer to
studies that have formerly validated the constructs. If the imported
construct needs modification, consider Steps G3.1-G3.3.

G3 Define new constructs
G3.1 Ensure adequate concept definitions If available, import definitions of core study concepts from theories,

frameworks, standards, or refer to studies that have formerly defined the
concepts. If not available, carefully define the concepts.

G3.2 Avoid construct underrepresentation Select indicators that span the concepts. In general, the more indicators
that are non-overlapping, the less underrepresentation.

G.3.3 Avoid construct-representation bias Select indicators that avoid systematic bias in the representations of the
concepts; for example, avoid using only one data collection method or
collecting only subjective data.

G4 Avoid excessive interpretation of CV Focus on the core CV aspects given by G3-G5. Many aspects of study
quality are important but do not naturally belong to a discussion of CV.

G5 Report threats and constructs explicitly When reporting threats to CV in a paper, be explicit about what the
threats are and which constructs are subject to the threats.

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1387

5.1.1 Create Model of Constructs

The constructs of a study typically correspond to the con-
cepts used in the research question of the study. However,
for some of the analyzed articles, it is difficult to obtain an
overview of the constructs under study and how they are
used. We recommend creating a model of the constructs in
the form of a figure, as illustrated in Fig. 4. Such a model will
help ensure that the constructs are referred to consistently
throughout an article, which, in turn, will alleviate the confu-
sion that occurs when terms differ (such as synonyms used
that may not be universally defined) in the abstract, intro-
duction, method, results, and discussion sections, even
though they are intended to refer to the same constructs.

Another benefit of such a model is that other researchers
can more easily judge whether a paper is relevant to their
research. Although most constructs are on the dependent
side in the analyzed articles, the model should also include
independent and moderator/mediator constructs when
reporting experiments.

5.1.2 Import Constructs if Possible

One-fifth of the articles imported constructs. The import of
explicitly validated constructs saves effort and improves
research quality. Meta-studies also benefit from such reuse
of constructs because it is easier to identify and synthesize
primary studies that use the same concepts and operational-
izations. Note that there should be evidence that the
imported construct has been subject to a validation process.

5.1.3 Define New Constructs

If a suitable construct is not found under G2, define a con-
struct according to guidelines G3.1–G3.3. These guidelines
could also be followed if the concept definition or set of
indicators of the imported construct need modification.

Ensure Adequate Concept Definitions. One-seventh of the
articles address threats regarding concept definitions, which
include different definitions of the same concept, concept
redefinitions, and disagreement about the extension of a
concept. To avoid or mitigate such threats, definitions of
concepts should be primarily imported from established
theories, standards, or frameworks, or from other articles
that explicitly and thoroughly define the concepts. If appro-
priate definitions are not available, new ones must be made.
A recommendation is that a definition should be attempted
that is consistent with a common perception of the concept
or with at least one of the meanings given in contemporary
dictionaries or encyclopedias. If a unique definition is
required, a reason for a deviation from a common definition
should be given. A particular challenge when defining con-
cepts is the jingle-jangle fallacy [42], which is the erroneous
assumption that two concepts have the same definition
(intension) and extension because the concepts have the
same name (jingle) or that two concepts have different defi-
nitions and extensions because the concepts have different
names (jangle). An example of a jingle fallacy is the two defi-
nitions of experience described in Section 2.5.2: “(1) skill or
knowledge that you get by doing something, and (2) the
length of time that you have spent doing something (such
as a particular job).’’ An example of a jangle fallacy is if expe-
rience and expertise are both defined by (2). If a jingle fallacy

is present, it will become clear which definition the authors
adhere to if they refer to a specific alternative in a dictionary
definition (as for experience above) or to a source that defines
the concept in the meaning intended by the authors. Alter-
natively, the authors themselves must carefully define the
concept as intended. If a jangle fallacy is present, it may be
useful to mention that another concept (with another name)
also has, or may have, the same definition.

Avoid Construct Underrepresentation. One-third of the
articles address the threat of construct underrepresentation,
primarily that only one indicator is used (mono-operation). In
most cases, several indicators are necessary to span the con-
cept sufficiently. However, even if more indicators are used,
the concept may still be underrepresented, as noted in seven
of the articles; in two of the articles, as many as six indicators
were still not considered to be sufficient to avoid underrepre-
sentation. Therefore, we cannot advise any concrete number
of indicators, but in general, the broader a concept is, the
more indicators are needed. As long as new indicators do not
fully overlap existing ones (resulting in redundancy), adding
new indicators will reduce underrepresentation. Within the
constraints of a study, it is often difficult to achieve an accept-
able representation of a broad concept. A practical approach
is then to use a narrower concept, aswe have illustrated previ-
ously [75]: When the available indicator is “faults per line of
code’’, it would be better to use the narrow concept of “fault
density’’ rather than the broad concept of “software quality’’,
whichwould be severely underrepresented.

Avoid Construct-Representation Bias. One-fourth of the
articles address the threat of construct-representation bias.
Bias means here that there is a systematic error in the meas-
urements (as opposed to random error). The most common
bias discussed in the articles was subjectivity of evaluators
or experiment participants when they rated a variety of qual-
ity-related aspects (Section 4.4.3). In software engineering,
several quality concepts, such as usability and maintainabil-
ity, may benefit from indicators where both subjective and
objective data are collected. Dyba

�
et al. [27] identified differ-

ences between subjective and objective measures of software
methodology usage. Generally, to avoid mono-method bias,
one should use several methods, that is, method triangula-
tion [14], [60].

5.1.4 Avoid Excessive Interpretation of CV

The analyzed articles reveal a variety of definitions of CV
and an extensive set of what is considered threats to CV. If
the software engineering community achieves a common
ground on what CV is, how to improve it, and how to evalu-
ate the threats to it, it would be easier to learn from one
another and review others’ work and, thus, generally raise
the quality of studies in our field. We believe that achieving
a common ground would be more obtainable with a nar-
rower interpretation of CV, which is reflected through our
guidelines. Many of the issues discussed as threats to CV in
the articles should, in our view, be considered as threats to
other types of validity or as more general limitations of the
studies; see Section 4.4.6. In particular, we recommend that
the set of threats to CV proposed by Cook and Campbell
[19] more than 40 years ago (Table 4) should not be
regarded as threats to CV. Moreover, even though

1388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

measurement scales are central in measurements, we argue
that such threats should be included under statistical con-
clusion validity.

5.1.5 Report Threats and Constructs Explicitly

Several of the articles discuss threats to CV where it is
unclear what the threat is or which construct is concerned.
Sometimes the experimental design or material is described
without indicating any threat. Other articles state a problem
with a particular threat (e.g., mono-operation) without stat-
ing which construct faces that threat. In addition to being
explicit about threats and constructs, we also recommend
that the authors should primarily describe threats that are
present in the study, and to a lesser extent describe non-
threats. Following G1 may make it easier to be explicit about
which construct is discussed.

5.2 Guidelines Applied to a Specific Construct

Below, we apply the guidelines numbered in Table 5 to
the construct “CV awareness in software engineering
literature”.

G1 Fig. 6 shows a model of the construct.
G2 We found no previously validated theories, frame-

works, standards, tests, instruments, or question-
naires from which we could import the awareness
construct.

G3.1 We found no definition of the concept of “CV aware-
ness in the software engineering literature’’ either.
Note that a concept may be defined even though a
corresponding construct, which also includes the
operationalizations, is not defined.

G3.2 We have a mono-operation threat because we use
only one indicator. Better would have been to add
indicators such as (1) density of the term construct
validity in the documents; that is, frequency relative
to the length of the document, i.e., not only a binary
indicator; (2) length of discussions of CV in the docu-
ments; and (3) quality of the text that concerns CV, cf.
our discussion in Section 4. Certainly, there are docu-
ments where it is not relevant to mention CV. Such
cases would not indicate a lack of awareness. Thus,
when we report increased awareness, there is an
assumption that the proportion of relevant docu-
ments has increased at a lower pace than the propor-
tion of documents with the term construct validity.
When claiming that a sevenfold increase over two
decades in the appearance of the term construct valid-
ity shows an increase in awareness, it is assumed that
the increase in the relevance of the documents is
(much) less than sevenfold. Still, a challenge is that
our single indicator is biased (Section 2.3.3) in some
way because the extent to which a variation in rele-
vance affects our indicator of awareness is unknown.

G3.3 Our approach faces mono-method bias because we
use only text analysis to collect data. If we had had
the extra indicator (item (3) in G3.2 above), we could
have evaluated the quality of the CV text by inter-
viewing experts who read the text. Moreover, if we
had investigated the broader construct of “CV

awareness among software engineering researchers’’
mentioned above, it would have been natural to use
both surveys and interviews as methods. The present
data collection is objective. If we had included the
indicator (3) based on interviews with experts, we
would have faced the bias of subjectivity.

G4 By following the guidelines, we have only discussed
the three core aspect of CV. Other quality aspects are
discussed under limitations; see Section 6.

G5 We explicitly stated the construct in question and
what the threats to CV were.

5.3 Guidelines Applied to Qualitative Studies

To assess the applicability of the guidelines beyond experi-
ments, we identified 20 TSE articles published in the period
2015 to 2019 that included the term “construct validity” in
the body text and the terms “case study” (16 articles), “field
study” (2 articles), or “qualitative study” (2), in the title,
abstract, title, or set of keywords. (One method article that
included “case study” as an index term was excluded.)
Twenty-eight other articles met the same search criteria
apart from “construct validity” in the body text.

Using the categorization in Table 2, the articles define CV
as, respectively, represents the concepts of study (3 articles), the
relationship between theory and observation (2), the measure of
intention (1), miscellaneous definitions (1), and no definition (13).
Regarding threats to validity, three articles cite Wohlin et al.
[84], [85], who define CV as the relationship between theory and
observation. Another three articles cite the work by Runeson
et al., on case studies in software engineering [67], [68], which
states that CV “reflects to what extent the operational meas-
ures that are studied really representwhat the researcher have
in mind”, which complies with our category of the measure of
intention. Yet another three articles cite Yin [86], who defines
CV as the “accuracy with which a case study’s measures
reflect the concepts being studied”, which complies with our
category of representing the concepts of study. The only definition
found in the experiment articles not found in the qualitative
articles is the relationship between experiment goals and results.

Our informal assessment of the 20 articles regarding the
guidelines found the following:

G1 One-fourth of the articles include figures, tables, or
structured text that show clearly how the core con-
cepts of the investigation are operationalized. Only
some of the constructs are sufficiently illustrated or
described in another two-fourths of the articles. We
spent considerable time discerning how the concepts
were operationalized for the remaining articles.

G2 Two-thirds of the articles import at least one construct
frommethods, tools, frameworks, or predefined sets of
measures. No article imports all the constructs used,
which is unsurprising given that none of the reported
studies are replications.

G3.1 The articles vary from assuming that a core concept
is generally well understood to discussing the defini-
tion of the concept in depth. In one study, a tool was
developed to identify the extension (Section 2.1) of
the concept of configuration constraint in a set of
software systems, which required a particularly pre-
cise and unambiguous definition.

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1389

G3.2 Five articles involve constructs with mono-opera-
tionalization, of which three did not address this lim-
itation as a threat. The remaining articles have made
efforts to avoid construct underrepresentation.

G3.3 The five articles with mono-operationalization also
involve mono-method (as the former implies the lat-
ter). One of those articles states in its CV discussion
that there might be bias in measuring time for fixing
bugs. Another article explicitly follows Yin’s recom-
mendation of using multiple sources of evidence
(data sources) to improve CV [86]. Multiple sources
help reduce both construct underrepresentation and
construct-representation bias.

G4 Two-thirds of the articles discuss threats outside the
way CV is defined and interpreted in this article.
Examples are confounding factors (Section 2.4), matu-
ration [19], and evaluation apprehension (Section 4.4.5),
which belong to internal validity. We consider skew-
ness distribution and log transformations to belong to
statistical conclusion validity and data correctness to
fundamental study requirements (Section 4.4.6).

G5 The articles vary from clearly stating which con-
structs face which threats to vague statements like
“to reduce CV threats, we [did something]”. In our
view, the readability and understandability of CV
could be improved in most cases if the constructs
and threats were described explicitly.

As illustrated above, the qualitative articles comply with
the proposed guidelines to varying extents. If all articles
had fully complied with these guidelines already, then they
might have been redundant. In summary, our assessment
indicates that the guidelines apply to qualitative studies
even though they are based on experiments; see further dis-
cussion in Section 6.3.

6 LIMITATIONS

This section discusses limitations of our quantitative and
qualitative studies and the general applicability of the
guidelines.

6.1 Quantitative Study of Awareness

To identify the CV awareness in the software engineering liter-
ature, we first sampled documents from Google Scholar. Soft-
ware engineering documents were identified by whether they
contained the term software engineering. Indeed, a document
may contain that term even though the document is not part of
the software engineering literature. The same is the case for the
hardware and information systems literature, which we also
investigated. However, since we investigated thousands of
documents, it follows from the law of large numbers that the
overall effect of random errors (noise) is likely to be small.

Furthermore, it is much more likely that people who use
a specific term are more aware of the phenomenon denoted
by the term than those who do not. Nevertheless, docu-
ments might include the term construct validity accidentally
or deliberately without the author being “aware of CV”.
However, such noise may be ignored when the number of
documents is large. Therefore, a sevenfold increase in the
number of occurrences of the term construct validity would

reflect a substantial increase in the awareness among the
document authors.

Furthermore, the five journals from which we sampled
articles in general and those that reported experiments in
particular have relatively high impact factors and publish
many human-centric studies. The absolute proportion of
documents that include the CV term differs between the
general software engineering literature, selected journals,
and selected experiment articles. However, the increase is
evident for all of them, strengthening the overall result.

6.2 Qualitative Study of CV Discussions

Some of the CV analyses reported in Section 4 are objective,
for example, the frequency of articles with specific terms
(e.g., CV types reported in [19]). However, because the texts
are often not explicit regarding the topics we investigate,
much analysis required interpretation. Also, our choice of
and emphasis on the various CV topics in this article is sub-
jective. Our perspective reflects our former work related to
validity in general in software engineering [76] and specifi-
cally on CV when we constructed and validated an instru-
ment for measuring programming skill [6], [7].

In the investigated literature, CV may have been dis-
cussed under other terms (cf. the jingle-jangle fallacy) and
thus may not be detected in our study. For example, the
term theoretical validity has been used synonymously with
CV in the quality research literature [43]. As such, Fig. 9
may underreport the number of articles that discuss CV.
However, only 29 of all the 7538 research articles published
in TSE, EMSE, IST, TOSEM, and JSS in the period 2000 to
2019 (i.e., 0.4 percent) use the term theoretical validity.
None of the 29 articles reported experiments. (In particular,
none of the 83 experiments that we investigate uses the
term.) Nine of those articles explicitly use the term construct
validity to distinguish CV from theoretical validity and
other types of validity. The 29 articles describe theoretical
validity in five ways.

1) One group refers to the understanding described by
Maxwell [51]: “theoretical validity closely matches
what is generally known as construct validity, and is
primarily what Kirk and Miller [43] mean by theoret-
ical validity. The second aspect includes, but is not
limited to, what is commonly called internal or
causal validity [19]”.

2) Another group refers to the interpretation of theoret-
ical validity given by Briand et al. [10], which resem-
bles CV in that “theoretical validation is concerned
with demonstrating that a measure is measuring the
concept it is purporting to measure”, albeit within
the formalism offered by representational measure-
ment theory [47], [63].

3) Yet another group refers to the framework proposed
by Kitchenham et al. [44], which is also based on rep-
resentational measurement theory but widens the
understanding of theoretical validation to also
include both direct and indirect measures, measure-
ment unit definitions, measurement instruments, and
measurement protocols (data collection procedures).

4) A few articles discuss confounders and learning
effects under theoretical validity, which we consider

1390 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

part of internal validity as it refers to the relations
between constructs and not the constructs per se; see
Section 4.4.6.

5) The final group of articles uses the term theoretical
validity without explicating what it means in the
article.

We are not aware of any synonyms for CV other than
“theoretical validity”, but articles may discuss CV issues
without using any specific term. For example, among the 19
experiments in Table 1 that do not use the term CV, one arti-
cle discusses validity related to measuring the usability of
security APIs [83].

6.3 General Applicability of Guidelines

We do not claim any generalizability of the results of the
review of the 83 human-centric experiments beyond what is
reflected in the guidelines.

A threat to the external validity of the guidelines may be
that they are not based on other types of study than human-
centric experiments. Three specific challenges are

1) whether the guidelines are unsuitable or useless
when using other research methods,

2) whether the guidelines are redundant because they
are followed anyway by researchers who use other
methods, and

3) whether other guidelines should be prioritized or
added when researchers use other methods.

The guidelines contain no references to particular aspects
of research methods. The research method used will not
affect whether a diagram gives a good overview of con-
structs (G1) or whether a construct is imported (G2). It will
also not affect whether a concept is defined adequately, is
underrepresented by its indicators, or has a biased repre-
sentation (G3). The guideline that constructs and threats
should be explicitly mentioned when discussing threats to
CV (G5) is clearly independent of the research method.
Finally, while an excessive interpretation of CV (G4) is more
subjective than the other guidelines, we cannot envisage
this guideline would depend on the research method.

The set of qualitative studies analyzed in Section 5.3 var-
ied in the degree to which they followed the guidelines; they
were, therefore, not redundant for those studies. Neverthe-
less, we cannot exclude the possibility that sub-communities
that conduct surveys, action research, experiments without
human subjects, etc., already complywith the guidelines.

When conducting other types of studies, other guidelines
may be added to our proposed set or prioritized over some
of those we have included. For example, a guideline may
help design questionnaires to better support CV when con-
ducting surveys [1].

Another limitation is that we reviewed only articles pub-
lished in top-tier journals. However, we believe the guide-
lines would be helpful and not redundant also for papers
published in less prestigious journals, conference or work-
shop proceedings, or book chapters. Nevertheless, for papers
published at those venues, new guidelines may need to be
added or prioritized over some of thosewe have proposed.

Future work may include analyzing papers that claim to
follow the guidelines and obtaining feedback from the
authors of such papers.

7 RELATED WORK

Already in 1980, Curtis [23] imported discussions of CV
from the general psychological literature to the software
engineering literature. In a framework for evaluating soft-
ware metrics, Kaner and Bond [41] included one of ten
questions as “the CV question”: “What is the relationship of
the attribute to the metric value?”. The discussion of CV by
Wohlin et al. [84], [85] is primarily based on Cook and
Campbell [19], whose work then became better known
within software engineering.

Ralph and Tempero [62] proposed a set of guidelines for
assessing CV. We share the philosophical view of scientific
realism as the underpinning of CV.13 Their guideline on gener-
ating a nomological network14 somewhat corresponds to our
guideline on creating a model of the constructs under study
(G1). Furthermore, their guideline on assessing content validity
(“the degree to which an operationalization encompasses all
aspects of a construct’’) corresponds to our guideline on avoid-
ing construct underrepresentation (G3.2). We also agree on
their convergent/divergent approach for CV, which is
reflected in our guidelineG3.

Ralph and Tempero also include a guideline on assessing
face validity. Despite the appeal of intuitively reasonable
operationalizations, we do not support such a guideline
because of the problems acknowledged by Ralph and Tem-
pero themselves: “intuition is subjective and reality is often
counterintuitive”. Note that we already included subjectiv-
ity as one category of construct-representation bias in Sec-
tion 4.4.3. Moreover, Messick [54] state: “Face validity,
which refers to what a test appears to measure to the
untrained eye, is discounted as not really being validity at
all in the technical sense”. Ralph and Tempero also provide
a guideline on assessing predictive validity15 as part of CV. In
our opinion, CV should be restricted to how well a set of
indicators represent a single concept, not to how well a con-
struct predicts another construct.

What to subsume under CV has historically been a chal-
lenge. From its conception in the 1950s, the notion of CV
continued to expand into the 1980s and 1990s. Cronbach
stated in 1984 [22, p. 126], “the profession is coming around
to the view that all validation is construct validation”. This
broad interpretation of CV also underlies many of the
articles we analyzed that were published between 2015 and
2019, where a wide range of topics is included under the CV
umbrella. Messick advocated an even broader view in 1989
[54], which included topics such as the social consequences
of using measurements in particular ways.

13. We have discussed CV at a practical level to support software
engineering researchers in evaluating CV in the studies they undertake.
We have deliberately refrained from a more in-depth philosophical dis-
cussion. Readers who would be interested in understanding more
about CV in the context of the philosophy of science may start reading,
for example, Cherryholmes [16], who discusses CV in relation to decon-
struction (Derrida), critical theory (Habermas), and interpretive analytics
(Foucault).

14. The term nomological network was coined by Cronbach and
Meehl [21]. It indicates a lawlike network, which is difficult to establish
in the human-centric parts of software engineering. The term is never
used in the analyzed articles, which signifies an unfamiliar term in soft-
ware engineering.

15. Predictive validity is also referred to as empirical, statistical, and
criterion-related validity [57].

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1391

More recently, Borsboom et al. [9] called for a conceptual-
ization of validity that has been “stripped of all excess
baggage”. Our guidelines are a step in the direction of strip-
ping the excess baggage of CV in particular.

8 CONCLUSION

Awareness of CV in software engineering has increased
substantially over the last 20 years. CV is now a topic in
four of five experiments published in five top-tier journals
that we investigated.

We reviewed CV in 83 articles that reported human-
centric experiments between 2015 and 2019. In several of
the articles, it was challenging to identify the core con-
structs of the reported study and the constructs that
were the objects of the discussion of threats to CV.
Therefore, we advise researchers to create and present a
model of the principal constructs in a study, one that
includes the concepts, their indicators, and the relation-
ships among the concepts. We also advise researchers to
be explicit about which constructs face which threats
when discussing threats to CV.

One in five of the reviewed articles reuse formerly defined
and validated constructs. To save effort and improve quality,
we recommend that researchers import available, relevant
constructs from established theories, frameworks, standards,
tests, instruments, or questionnaires.

The articles discuss a wide range of topics under the
notion of CV. Some topics are clearly outside CV. Other
topics may be included if one takes the broad view that “all
validation is CV”. However, a concept that is too wide is
less useful as a means to establish common ground. We
observed that many types of validity classified as CV in the
articles are better described as internal, external, or statisti-
cal conclusion validity. Therefore, we encourage a minimal
approach, which is reflected through the three core CV prin-
ciples brought forward from the classical literature: state
how the concept is defined, how indicators span the con-
cept, and how bias is handled.

CV is crucial to the overall quality of empirical research.
We hope that our recommendations, with illustrative exam-
ples from the analyzed articles and summarized in a set of
guidelines, will help improve how CV is handled and
reported in the software engineering community.

ACKNOWLEDGMENTS

The authors would like to thank Børge Kile Gjelsten for help
with the analysis reported in Section 3 and developing the
scripts in the supplemental material, Lenore Hietkamp for
editing the article, and Marthe Berntzen, Raluca Florea,
Børge Kile Gjelsten, Antonio Martini, Paul Ralph, Viktoria
Stray, the editor, and the anonymous referees for useful
comments and discussions.

REFERENCES

[1] N. K. Agarwal, “Verifying survey items for construct validity:
A two-stage sorting procedure for questionnaire design in infor-
mation behavior research,” Proc. Amer. Soc. Inf. Sci. Technol.,
vol. 48, no. 1, pp. 1–8, 2011.

[2] B. C. Anda, D. I. Sjøberg, and A. Mockus, “Variability and repro-
ducibility in software engineering: A study of four companies that
developed the same system,” IEEE Trans. Softw. Eng., vol. 35,
no. 3, pp. 407–429, May/Jun. 2009.

[3] J. Aranda, N. Ernst, J. Horkoff, and S. Easterbrook, “A framework
for empirical evaluation of model comprehensibility,” in Proc.
IEEE Int. Workshop Model. Softw. Eng., 2007, pp. 7–13.

[4] R. M. Baron and D. A. Kenny, “The moderator–mediator variable
distinction in social psychological research: Conceptual, strategic,
and statistical considerations,” J. Pers. Soc. Psychol., vol. 51, no. 6,
pp. 1173–1182, 1986.

[5] G. R. Bergersen, J. E. Hannay, D. I. Sjoberg, T. Dyba, and A. Kara-
hasanovic, “Inferring skill from tests of programming perfor-
mance: Combining time and quality,” in Proc. IEEE Int. Symp.
Empirical Softw. Eng. Meas., 2011, pp. 305–314.

[6] G. R. Bergersen, D. I. K. Sjøberg, and T. Dyba
�
, “Construction

and validation of an instrument for measuring programming
skill,” IEEE Trans. Softw. Eng., vol. 40, no. 12, pp. 1163–1184,
Dec. 2014.

[7] G. R. Bergersen, “Measuring programming skill–construction and
validation of an instrument for evaluating java developers,” Ph.D.
dissertation, Dept. Inform., Univ. Oslo, Oslo, Norway, 2015.

[8] G. R. Bergersen and J.-E. Gustafsson, “Programming skill, knowl-
edge, and working memory among professional software devel-
opers from an investment theory perspective,” J. Individual
Differences, vol. 32, no. 4, pp. 201–209, 2011.

[9] D. Borsboom, G. J. Mellenbergh, and J. Van Heerden, “The
concept of validity,” Psychol. Rev., vol. 111, no. 4, pp. 1061–1071,
2004.

[10] L. Briand, K. El Emam, and S. Morasca, “Theoretical and empiri-
cal validation of software product measures,” Int. Softw. Eng.
Res. Netw. Tech. Rep., 1995, pp. 1–23.

[11] J. Brooke, “Sus: A “quick and dirty’usability,” in Usability
Evaluation in Industry, P. W. Jordan, B. Thomas, I. L. McClel-
land, and B. Weerdmeester, Eds., New York, NY, USA: Taylor,
1996, pp. 189–194.

[12] A. Bryman and D. Cramer, Quantitative Data Analysis With SPSS
Release 10 for Windows: A Guide for Social Scientists. Evanston, IL,
USA: Routledge, 2002.

[13] B. Buckingham, “Intelligence and its measurement: A sympo-
sium. XIV,” J. Educ. Psychol., vol. 12, no. 5, pp. 271–275, 1921.

[14] D. T. Campbell and D. W. Fiske, “Convergent and discriminant
validation by the multitrait-multimethod matrix,” Psychol. Bull.,
vol. 56, no. 2, pp. 81–105, 1959.

[15] R. B. Cattell, “Personality structure and measurement,” Brit.
J. Psychol. Gen. Sect., vol. 36, no. 3, pp. 159–174, 1946.

[16] C. H. Cherryholmes, “Construct validity and the discourses of
research,” Amer. J. Educ., vol. 96, no. 3, pp. 421–457, 1988.

[17] B. P. Cohen, Developing Sociological Knowledge: Theory and Method,
vol. 1123. Belmont, CA, USA: Wadsworth, 1989.

[18] T. Coltman, T. M. Devinney, D. F. Midgley, and S. Venaik,
“Formative versus reflective measurement models: Two applica-
tions of formative measurement,” J. Bus. Res., vol. 61, no. 12,
pp. 1250–1262, 2008.

[19] T. D. Cook and D. T. Campbell, “The design and conduct of true
experiments and quasi-experiments in field settings,” in, Repro-
duced in Part in Research in Organizations: Issues and Controversies.
Akron, Ohio: Goodyear Publishing Company, 1979.

[20] S. Courtis, “Report of the standardization committee,” J. Educ.
Res., vol. 4, no. 1, pp. 78–90, 1921.

[21] L. J. Cronbach and P. E. Meehl, “Construct validity in psychologi-
cal tests,” Psychol. Bull., vol. 52, no. 4, pp. 281–302, 1955.

[22] L. Cronbach, Essentials of Psychological Testing. New York, NY,
USA: Harper& Row, 1984.

[23] B. Curtis, “Measurement and experimentation in software engi-
neering,” Proc. IEEE, vol. 68, no. 9, pp. 1144–1157, 1980.

[24] O.-J. Dahl and K. Nygaard, “SIMULA: An algol-based simulation
language,” Commun. ACM, vol. 9, no. 9, pp. 671–678, 1966.

[25] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS Quart., vol. 13, no. 3,
pp. 319–340, 1989.

[26] F. Deissenboeck and M. Pizka, “Concise and consistent naming,”
Softw. Qual. J., vol. 14, no. 3, pp. 261–282, 2006.

[27] T. Dyba
�
, N. B. Moe, and E. Arisholm, “Measuring software meth-

odology usage: Challenges of conceptualization and oper-
ationalization,” in Proc. IEEE Int. Symp. Empirical Softw. Eng., 2005,
pp. 447–457.

1392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

[28] T. Dyba
�
, V. B. Kampenes, and D. I. Sjøberg, “A systematic review

of statistical power in software engineering experiments,” Inf.
Softw. Technol., vol. 48, no. 8, pp. 745–755, 2006.

[29] A. Einstein, “Remarks concerning the essays brought together in
this co-operative volume,” Albert Einstein: Philosopher-Scientist 2,
vol. 2, pp. 665–688, 1949.

[30] K. A. Ericsson, “The influence of experience and deliberate prac-
tice on the development of superior expert performance,” in The
Cambridge Handbook of Expertise and Expert Performance, K. A. Erics-
son, N. Charness, P. J. Feltovich, and R. R. Hoffman, Eds., ch. 38.
New York, NY, USA: Cambridge Univ. Press, 2006, pp. 685–705.

[31] R. Feldt et al., “Four commentaries on the use of students and pro-
fessionals in empirical software engineering experiments,” Empir-
ical Softw. Eng., vol. 23, no. 6, pp. 3801–3820, 2018.

[32] N. Fenton, “Software measurement: A necessary scientific basis,”
IEEE Trans. Softw. Eng., vol. 20, no. 3, pp. 199–206, Mar. 1994.

[33] P. M. Fitts and M. I. Posner, “Human performance,” Cole Belmont,
CA, vol. 5, pp. 7–16, 1967.

[34] E. Gamma et al., Design Patterns: Elements of Reusable Object-Ori-
ented Software. Reading, MA, USA: Addison-Wesley, 1995.

[35] D. B. Grisaffe, “Questions about the ultimate question: Conceptual
considerations in evaluating reichheld’s net promoter score
(NPS),” J. Consum. Satisfaction Dissatisfaction Complaining Behav.,
vol. 20, pp. 36–53, 2007.

[36] J. E. Hannay, D. I. K. Sjøberg, and T. Dyba
�
, “A systematic review

of theory use in software engineering experiments,” IEEE Trans.
Softw. Eng., vol. 33, no. 2, pp. 87–107, Feb. 2007.

[37] A. Hobson, The Oxford Dictionary of Difficult Words. New York,
NY, USA: Oxford Univ. Press, 2004.

[38] K. G. J€oreskog, “A general approach to confirmatory maximum
likelihood factor analysis,” Psychometrika, vol. 34, no. 2, pp. 183–
202, 1969.

[39] S. Kalyuga, “The expertise reversal effect,” in Managing Cognitive
Load in Adaptive Multimedia Learning. Hershey, PA, USA: IGI
Global, 2009, pp. 58–80.

[40] V. B. Kampenes, T. Dyba
�
, J. E. Hannay, and D. I. Sjøberg, “A sys-

tematic review of effect size in software engineering experiments,”
Inf. Softw. Technol., vol. 49, no. 11–12, pp. 1073–1086, 2007.

[41] C. Kaner and W. P. Bond, “Software engineering metrics: What do
they measure and how do we know?,” in Proc. IEEE 10th Int.
Softw. Metrics Symp., 2004, pp. 1–12.

[42] T. Kelly, Interpretation of Educational Measurements Yonkers, New
York, NY, USA: World Book, pp. 62–65, 1927.

[43] J. Kirk and M. L. Miller, Reliability and Validity in Qualitative
Research, vol. 1. Newbury Park, CA, USA: Sage, 1986.

[44] B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Towards a frame-
work for software measurement validation,” IEEE Trans. Softw.
Eng., vol. 21, no. 12, pp. 929–944, Dec. 1995.

[45] B. Kitchenham et al., “Trends in the quality of human-centric soft-
ware engineering experiments—a quasi-experiment,” IEEE Trans.
Softw. Eng., vol. 39, no. 7, pp. 1002–1017, Jul. 2013.

[46] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-Based Soft-
ware Engineering and Systematic Reviews, vol. 4. Boca Raton, FL,
USA: CRC Press, 2015.

[47] D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky, Foundations
of Measurement, Vol. I: Additive and Polynomial Representations,
New York, NY, USA: Academic Press, 1971.

[48] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Commun. ACM, vol. 21,
no. 6, pp. 466–471, 1978.

[49] M. M. Mark, Realism, Validity, and the Experimenting Society, vol. 1.
Newbury Park, CA, USA: Sage, 2000, pp. 141–166.

[50] G. Maruyama and C. S. Ryan, Research Methods in Social Relations.
Hoboken, NJ, USA: Wiley, 2014.

[51] J. Maxwell, “Understanding and validity in qualitative research,”
Harvard Educ. Rev., vol. 62, no. 3, pp. 279–301, 1992.

[52] J. A. Maxwell, “Using qualitative methods for causal explan-
ation,” Field Methods, vol. 16, no. 3, pp. 243–264, 2004.

[53] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
no. 4, pp. 308–320, Apr. 1976.

[54] S. Messick, “Validity,” Educ. Meas., vol. 1989, pp. 13–103, 1989.
[55] N. Miller, W. C. Pedersen, and V. E. Pollock, Discriminative Valid-

ity, vol. 1, Newbury Park, CA, USA: Sage, 2000, pp. 65–99.
[56] A. A. Neto and T. Conte, “A conceptual model to address threats

to validity in controlled experiments,” in Proc. 17th Int. Conf. Eval.
Assessment Softw. Eng., 2013, pp. 82–85.

[57] J. C. Nunnally and I. H. Bernstein, Psychometric Theory, 3rd ed.
New York, NY, USA: New York: McGraw-Hill, 1994.

[58] P. Oman and J. Hagemeister, “Metrics for assessing a software
system’s maintainability,” in Proc. Conf. Softw. Maintenance, 1992,
pp. 337–338.

[59] P. Panayides, “Coefficient alpha: Interpret with caution,” Eur.
J. Psychol., vol. 9, no. 4, pp. 687–696, 2013.

[60] M. Q. Patton, How to Use Qualitative Methods in Evaluation. New-
bury Park, CA, USA: Sage, 1987.

[61] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta,
“A controlled experiment in maintenance: Comparing design pat-
terns to simpler solutions,” IEEE Trans. Softw. Eng., vol. 27, no. 12,
pp. 1134–1144, Dec. 2001.

[62] P. Ralph and E. Tempero, “Construct validity in software engi-
neering research and software metrics,” in Proc. 22nd Int. Conf.
Eval. Assessment Softw. Eng., 2018, pp. 13–23.

[63] F. S. Roberts, Measurement Theory. New York, NY, USA: Cam-
bridge Univ. Press, 1985.

[64] T. B. Rogers, The Psychological Testing Enterprise: An Introduction.
California, USA: Thomson Brooks/Cole, 1995.

[65] M. J. Rosenberg, “The conditions and consequences of evaluation
apprehension,” in Artifact in Behavioral Research, R. Rosenthal and
R. L. Rosnow, Eds., San Francisco, CA, USA: Academic Press,
1969, pp. 279–349.

[66] R. Rosenthal, Experimenter Effects in Behavioral Research. Irvington,
New Jersey: Irvington, 1976.

[67] P. Runeson and M. H€ost, “Guidelines for conducting and report-
ing case study research in software engineering,” Empirical Softw.
Eng., vol. 14, no. 2, pp. 131–164, 2009.

[68] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering: Guidelines and Examples. New
York, NY, USA: Wiley, 2012.

[69] P. J. Runkel and J. E. McGrath, Research on Human Behavior: A Sys-
tematic Guide to Method. New York, NY, USA: Holt, Rinehart &
Winston, 1972.

[70] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental and
Quasi-Experimental Designs for Generalized Causal Inference. Boston,
MA, USA: Houghton Mifflin, 2002.

[71] J. Siegmund, C. K€astner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring and modeling programming experience,” Empirical
Softw. Eng., vol. 19, no. 5, pp. 1299–1334, 2014.

[72] D. I. K. Sjøberg, T. Dyba
�
, B. C. D. Anda, and J. E. Hannay,

“Building theories in software engineering,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and D. I. K.
Sjøberg, Eds., Berlin, Germany: Springer, 2008, pp. 312–336.

[73] D. I. K. Sjøberg, B. Anda, and A. Mockus, “Questioning soft-
ware maintenance metrics: A comparative case study,” in
Proc. ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas., 2012,
pp. 107–110.

[74] D. I. K. Sjøberg, G. R. Bergersen, and T. Dyba
�
, “Why theory

matters,” in Perspectives on Data Science for Software Engineering.
New York, NY, USA: Elsevier, 2016, pp. 29–33.

[75] D. I. K. Sjøberg, T. Dyba
�
, and M. Jørgensen, “The future of empiri-

cal methods in software engineering research,” in Proc. IEEE
Future Softw. Eng., 2007, pp. 358–378.

[76] D. I. K. Sjøberg et al., “A survey of controlled experiments in
software engineering,” IEEE Trans. Softw. Eng., vol. 31, no. 9,
pp. 733–753, Sep. 2005.

[77] D. I. K. Sjøberg, A. Johnsen, and J. Solberg, “Quantifying the effect
of using kanban versus scrum: A case study,” IEEE Softw., vol. 29,
no. 5, pp. 47–53, Sep./Oct. 2012.

[78] M. J. Strube, L. C. Newman, A. N. Lord, and P. L. Nguyen, Psycho-
metrics, 4th ed., ser. New York, NY, USA: Cambridge Univ. Press,
2016, pp. 612–627.

[79] F. Suppe, The Structure of Scientific Theories. Urbana, IL, USA: Univ.
of Illinois Press, 1974.

[80] W. M. Trochim and J. P. Donnelly, Research Methods Knowledge
Base, vol. 2. Ohio, USA: Atomic Dog Publ., 2001.

[81] W. Trochim, J. Donnelly, and K. Arora, Research Methods: The
Essential Knowledge Base, 2nd ed.. Boston, MA, USA: Cengage
Learning, 2016.

[82] M. Vok�a�c, W. Tichy, D. I. Sjøberg, E. Arisholm, and M. Aldrin, “A
controlled experiment comparing the maintainability of programs
designed with and without design patterns—a replication in a
real programming environment,” Empirical Softw. Eng., vol. 9,
no. 3, pp. 149–195, 2004.

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1393

[83] C. Wijayarathna and N. A. G. Arachchilage, “Using cognitive
dimensions to evaluate the usability of security APIs: An empiri-
cal investigation,” Inf. Softw. Technol., vol. 115, pp. 5–19, 2019.

[84] C. Wohlin, P. Runeson, M. H€ost, M. C. Ohlsson, B. Regnell, and
A. Wessl�en, “Experimentation in software engineering: An
introduction,” The Kluwer Int. Ser. Softw. Eng., pp. 1–204, 2000.

[85] C. Wohlin, P. Runeson, M. H€ost, M. C. Ohlsson, B. Regnell and
A. Wessl�en, Experimentation in Software Engineering. Berlin, Ger-
many: Springer, 2012.

[86] R. K. Yin, Case Study Research: Design and Methods., 3rd ed. New-
bury Park, CA, USA: Sage, 2003.

[87] R. K. Yin, Case Study Research and Applications: Design and Methods.,
6th ed. Newbury Park, CA, USA: Sage, 2018.

ARTICLES STUDIED

[A1] S. Abrah ao, E. Insfran, F. Gonz�alez-Ladr�on-de Guevara,
M. Fern�andez-Diego, C. Cano-Genoves, and R. P. de Oliveira,
“Assessing the effectiveness of goal-oriented modeling languages:
A family of experiments,” Inf. Softw. Technol., vol. 116, 2019,
Art. no. 106171.

[A2] W. Afzal, A. N. Ghazi, J. Itkonen, R. Torkar, A. Andrews, and K.
Bhatti, “An experiment on the effectiveness and efficiency of
exploratory testing,” Empirical Softw. Eng., vol. 20, no. 3, pp. 844–
878, 2015.

[A3] N. Ahmad, A. Rextin, and U. E. Kulsoom, “Perspectives on usabil-
ity guidelines for smartphone applications: An empirical investi-
gation and systematic literature review,” Inf. Softw. Technol.,
vol. 94, pp. 130–149, 2018.

[A4] E. L. Alves, M. Song, T. Massoni, P. D. Machado, and M. Kim,
“Refactoring inspection support for manual refactoring edits,”
IEEE Trans. Softw. Eng., vol. 44, no. 4, pp. 365–383, Apr. 2018.

[A5] A. M. Aranda, O. Dieste, and N. Juristo, “Effect of domain knowl-
edge on elicitation effectiveness: An internally replicated con-
trolled experiment,” IEEE Trans. Softw. Eng., vol. 42, no. 5,
pp. 427–451, May 2016.

[A6] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipat-
terns: What they are and how developers perceive them,” Empiri-
cal Softw. Eng., vol. 21, no. 1, pp. 104–158, 2016.

[A7] M. Asadi, S. Soltani, D. Ga�sevi�c, and M. Hatala, “The effects of
visualization and interaction techniques on feature model con-
figuration,” Empirical Softw. Eng., vol. 21, no. 4, pp. 1706–1743,
2016.

[A8] T. Baum, K. Schneider, and A. Bacchelli, “Associating working
memory capacity and code change ordering with code review per-
formance,” Empirical Softw. Eng., vol. 24, no. 4, pp. 1762–1798,
2019.

[A9] B. Bern�ardez, A. Dur�an, J. A. Parejo, and A. Ruiz–Cort�es, “An
experimental replication on the effect of the practice of mindful-
ness in conceptual modeling performance,” J. Syst. Softw.,
vol. 136, pp. 153–172, 2018.

[A10] G. Borrego, A. L. Mor�an, R. R. Palacio, A. Vizca�ıno, and F. O.
Garc�ıa, “Towards a reduction in architectural knowledge vapori-
zation during agile global software development,” Inf. Softw.
Technol., vol. 112, pp. 68–82, 2019.

[A11] J. B€orstler and B. Paech, “The role of method chains and com-
ments in software readability and comprehension—an
experiment,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 886–898,
Sep. 2016.

[A12] C. Cachero, S. Meli�a, and J. M. Hermida, “Impact of model nota-
tions on the productivity of domain modelling: An empirical
study,” Inf. Softw. Technol., vol. 108, pp. 78–87, 2019.

[A13] D. Caivano, D. Fogli, R. Lanzilotti, A. Piccinno, and F. Cassano,
“Supporting end users to control their smart home: Design impli-
cations from a literature review and an empirical investigation,”
J. Syst. Softw., vol. 144, pp. 295–313, 2018.

[A14] M. Campusano, J. Fabry, and A. Bergel, “Live programming in
practice: A controlled experiment on state machines for robotic
behaviors,” Inf. Softw. Technol., vol. 108, pp. 99–114, 2019.

[A15] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and
P. Tonella, “Do automatically generated test cases make debug-
ging easier? an experimental assessment of debugging effective-
ness and efficiency,” ACM Trans. Softw. Eng. Methodol., vol. 25,
no. 1, pp. 1–38, 2015.

[A16] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “Embedding,
evolution, and validation of model-driven spreadsheets,” IEEE
Trans. Softw. Eng., vol. 41, no. 3, pp. 241–263, Mar. 2015.

[A17] J. Cunha, J. Paulo Fernandes, P. Martins, J. Mendes, R. Pereira,
and J. Saraiva, “Evaluating refactorings for spreadsheet models,”
J. Syst. Softw., vol. 118, pp. 234–250, 2016.

[A18] C. Czepa and U. Zdun, “How understandable are pattern-based
behavioral constraints for novice software designers?,” ACM
Trans. Softw. Eng. Methodol., vol. 28, no. 2, pp. 1–38, 2019.

[A19] F. Dalpiaz, I. Van Der Schalk, S. Brinkkemper, F. B. Aydemir, and
G. Lucassen, “Detecting terminological ambiguity in user stories:
Tool and experimentation,” Inf. Softw. Technol., vol. 110, pp. 3–16,
2019.

[A20] O. Dieste et al., “Empirical evaluation of the effects of experience
on code quality and programmer productivity: An exploratory
study,” Empirical Softw. Eng., vol. 22, no. 5, pp. 2457–2542, 2017.

[A21] M. El-Attar, “Evaluating and empirically improving the visual
syntax of use case diagrams,” J. Syst. Softw., vol. 156, pp. 136–
163, 2019.

[A22] M. El-Attar, H. Luqman, P. Karpati, G. Sindre, and A. L. Opdahl,
“Extending theUML statecharts notation tomodel security aspects,”
IEEETrans. Softw. Eng., vol. 41, no. 7, pp. 661–690, Jul. 2015.

[A23] M. Felderer and A. Herrmann, “Manual test case derivation from
UML activity diagrams and state machines: A controlled
experiment,” Inf. Softw. Technol., vol. 61, pp. 1–15, 2015.

[A24] A. M. Fern�andez-S�aez, M. Genero and Chaudron, “Are forward
designed or reverse-engineered UML diagrams more helpful for
code maintenance?: A family of experiments,” Inf. Softw. Technol.,
vol. 57, pp. 644–663, 2015.

[A25] A. M. Fern�andez-S�aez, M. Genero, D. Caivano, and M. R. Chau-
dron, “Does the level of detail of UML diagrams affect the main-
tainability of source code?: A family of experiments,” Empirical
Softw. Eng., vol. 21, no. 1, pp. 212–259, 2016.

[A26] A. Fernandez and A. Bergel, “A domain-specific language to
visualize software evolution,” Inf. Softw. Technol., vol. 98,
pp. 118–130, 2018.

[A27] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg,
“Does automated unit test generation really help software test-
ers? a controlled empirical study,” ACM Trans. Softw. Eng. Meth-
odol., vol. 24, no. 4, pp. 1–49, 2015.

[A28] D. Fucci, B. Turhan, N. Juristo, O. Dieste, A. Tosun-Misirli, and
M. Oivo, “Towards an operationalization of test-driven develop-
ment skills: An industrial empirical study,” Inf. Softw. Technol.,
vol. 68, pp. 82–97, 2015.

[A29] H. Ghanbari, J. Simil€a, and J. Markkula, “Utilizing online serious
games to facilitate distributed requirements elicitation,” J. Syst.
Softw., vol. 109, pp. 32–49, 2015.

[A30] C. Hannebauer, M. Hesenius, and V. Gruhn, “Does syntax
highlighting help programming novices?,” Empirical Softw. Eng.,
vol. 23, no. 5, pp. 2795–2828, 2018.

[A31] F. H€aser, M. Felderer, and R. Breu, “Is business domain lan-
guage support beneficial for creating test case specifications:
A controlled experiment,” Inf. Softw. Technol., vol. 79, pp. 52–
62, 2016.

[A32] I. U. Hassan, N. Ahmad, and B. Zuhaira, “Calculating complete-
ness of software project scope definition,” Inf. Softw. Technol.,
vol. 94, pp. 208–233, 2018.

[A33] N. Itzik, I. Reinhartz-Berger, and Y. Wand, “Variability analysis
of requirements: Considering behavioral differences and reflect-
ing stakeholders’ perspectives,” IEEE Trans. Softw. Eng., vol. 42,
no. 7, pp. 687–706, Jul. 2015.

[A34] K. Jaber, B. Sharif, and C. Liu, “An empirical study on the effect
of 3D visualization for project tasks and resources,” J. Syst.
Softw., vol. 115, pp. 1–17, 2016.

[A35] P. Karpati, A. L. Opdahl, and G. Sindre, “Investigating security
threats in architectural context: Experimental evaluations of mis-
use case maps,” J. Syst. Softw., vol. 104, pp. 90–111, 2015.

[A36] J. King, J. Stallings, M. Riaz, and L. Williams, “To log, or not to
log: Using heuristics to identify mandatory log events–a con-
trolled experiment,” Empirical Softw. Eng., vol. 22, no. 5,
pp. 2684–2717, 2017.

[A37] S. Kopczy�nska, J. Nawrocki, and M. Ochodek, “An empirical
study on catalog of non-functional requirement templates: Use-
fulness and maintenance issues,” Inf. Softw. Technol., vol. 103,
pp. 75–91, 2018.

[A38] T. Kosar, S. Gaberc, J. C. Carver, and M. Mernik, “Program com-
prehension of domain-specific and general-purpose languages:
Replication of a family of experiments using integrated develop-
ment environments,” Empirical Softw. Eng., vol. 23, no. 5,
pp. 2734–2763, 2018.

1394 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

[A39] J. L. Krein et al., “A multi-site joint replication of a design pat-
terns experiment using moderator variables to generalize across
contexts,” IEEE Trans. Softw. Eng., vol. 42, no. 4, pp. 302–321,
Apr. 2016.

[A40] K. Labunets, F. Massacci, F. Paci, S. Marczak, and F. M. de Oli-
veira, “Model comprehension for security risk assessment: An
empirical comparison of tabular versus graphical repre-
sentations,” Empirical Softw. Eng., vol. 22, no. 6, pp. 3017–3056,
2017.

[A41] P. Lenberg, L. G. W. Tengberg, and R. Feldt, “An initial analysis
of software engineers’ attitudes towards organizational change,”
Empirical Softw. Eng., vol. 22, no. 4, pp. 2179–2205, 2017.

[A42] O. A. Lazzarini Lemos, F. Fagundes Silveira, F. Cutigi Ferrari,
and A. Garcia, “The impact of software testing education on
code reliability: An empirical assessment,” J. Syst. Softw.,
vol. 137, pp. 497–511, 2018.

[A43] I. Lytra, P. Gaubatz, and U. Zdun, “Two controlled experiments
on model-based architectural decision making,” Inf. Softw. Tech-
nol., vol. 63, pp. 58–75, 2015.

[A44] P. M€ader and A. Egyed, “Do developers benefit from require-
ments traceability when evolving and maintaining a software
system?,” Empirical Softw. Eng., vol. 20, no. 2, pp. 413–441, 2015.

[A45] S. Makady and R. J. Walker, “Debugging and maintaining prag-
matically reused test suites,” Inf. Softw. Technol., vol. 102, pp. 6–
29, 2018.

[A46] B. Marculescu, S. Poulding, R. Feldt, K. Petersen, and R. Torkar,
“Tester interactivity makes a difference in search-based software
testing: A controlled experiment,” Inf. Softw. Technol., vol. 78,
pp. 66–82, 2016.

[A47] J. M. Morales, E. Navarro, P. S�anchez, and D. Alonso, “A con-
trolled experiment to evaluate the understandability of KAOS
and i for modeling teleo-reactive systems,” J. Syst. Softw.,
vol. 100, pp. 1–14, 2015.

[A48] J. M. Morales, E. Navarro, P. S�anchez, and D. Alonso, “A family
of experiments to evaluate the understandability of tristar and I
for modeling teleo-reactive systems,” J. Syst. Softw., vol. 114,
pp. 82–100, 2016.

[A49] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Arena: An approach for the automated generation
of release notes,” IEEE Trans. Softw. Eng., vol. 43, no. 2, pp. 106–
127, Feb. 2017.

[A50] S. Nielebock, D. Krolikowski, J. Kr€uger, T. Leich, and F. Ortmeier,
“Commenting source code: Is it worth it for small programming
tasks?,” Empirical Softw. Eng., vol. 24, no. 3, pp. 1418–1457, 2019.

[A51] A. Niknafs and D. Berry, “The impact of domain knowledge on
the effectiveness of requirements engineering activities,” Empiri-
cal Softw. Eng., vol. 22, no. 1, pp. 80–133, 2017.

[A52] R. Novais, J. A. Santos, andM.Mendonça, “Experimentally assess-
ing the combination of multiple visualization strategies for soft-
ware evolution analysis,” J. Syst. Softw., vol. 128, pp. 56–71, 2017.

[A53] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De
Lucia, “The scent of a smell: An extensive comparison between
textual and structural smells,” IEEE Trans. Softw. Eng., vol. 44,
no. 10, pp. 977–1000, Oct. 2018.

[A54] J. I. Panach, S. Espana, O. Dieste, O. Pastor, and N. Juristo, “In
search of evidence for model-driven development claims: An
experiment on quality, effort, productivity and satisfaction,” Inf.
Softw. Technol., vol. 62, pp. 164–186, 2015.

[A55] J. I. Panach, N. Juristo, F. Valverde, and O. Pastor, “A framework
to identify primitives that represent usability within model-
driven development methods,” Inf. Softw. Technol., vol. 58,
pp. 338–354, 2015.

[A56] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Turning the IDE into a self-confident programming assistant,”
Empirical Softw. Eng., vol. 21, no. 5, pp. 2190–2231, 2016.

[A57] A. Przyby»ek, “An empirical study on the impact of aspectj on
software evolvability,” Empirical Softw. Eng. Int. J., vol. 23, no. 4,
pp. 2018–2050, 2017.

[A58] I. Reinhartz-Berger, K. Figl, and Ø. Haugen, “Investigating styles
in variability modeling: Hierarchical versus constrained styles,”
Inf. Softw. Technol., vol. 87, pp. 81–102, 2017.

[A59] M. Riaz et al., “Identifying the implied: Findings from three dif-
ferentiated replications on the use of security requirements
templates,” Empirical Softw. Eng., vol. 22, no. 4, pp. 2127–2178,
2017.

[A60] F. Ricca, M. Torchiano, M. Leotta, A. Tiso, G. Guerrini, and
G. Reggio, “On the impact of state-based model-driven develop-
ment on maintainability: A family of experiments using unim-
od,” Empirical Softw. Eng., vol. 23, no. 3, pp. 1743–1790, 2018.

[A61] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Aste-
siano, “Assessing the effect of screen mockups on the compre-
hension of functional requirements,” ACM Trans. Softw. Eng.
Methodol., vol. 24, no. 1, pp. 1–38, 2014.

[A62] E. Macedo Rodrigues et al., “An empirical comparison of model-
based and capture and replay approaches for performance
testing,” Empirical Softw. Eng., vol. 20, no. 6, pp. 1831–1860, 2015.

[A63] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza, “On
the use of virtual reality in software visualization: The case of the
city metaphor,” Inf. Softw. Technol., vol. 114, pp. 92–106, 2019.

[A64] G. Rong, H. Zhang, B. Liu, Q. Shan, and D. Shao, “A replicated
experiment for evaluating the effectiveness of pairing practice in
PSP education,” J. Syst. Softw., vol. 136, pp. 139–152, 2018.

[A65] L. Sabatucci, M. Ceccato, A. Marchetto, and A. Susi, “Ahab’s legs
in scenario-based requirements validation: An experiment to
study communication mistakes,” J. Syst. Softw., vol. 109, pp. 124–
136, 2015.

[A66] L. Sabatucci, M. Cossentino, and A. Susi, “A goal-oriented
approach for representing and using design patterns,” J. Syst.
Softw., vol. 110, pp. 136–154, 2015.

[A67] V. Sakhnini, L. Mich, and D. M. Berry, “Group versus individual
use of power-only epmcreate as a creativity enhancement tech-
nique for requirements elicitation,” Empirical Softw. Eng., vol. 22,
no. 4, pp. 2001–2049, 2017.

[A68] F. Saleh and M. El-Attar, “A scientific evaluation of the misuse
case diagrams visual syntax,” Inf. Softw. Technol., vol. 66, pp. 73–
96, 2015.

[A69] I. Salman, B. Turhan, and S. Vegas, “A controlled experiment on
time pressure and confirmation bias in functional software
testing,” Empirical Softw. Eng., vol. 24, no. 4, pp. 1727–1761, 2018.

[A70] A. Rodrigues Santos, I. do Carmo Machado, E. Santana de
Almeida, J. Siegmund, and S. Apel, “Comparing the influence of
using feature-oriented programming and conditional compila-
tion on comprehending feature-oriented software,” Empirical
Softw. Eng., vol. 24, no. 3, pp. 1226–1258, 2018.

[A71] B. M. Santos, A. d. S. Landi, D. S. Santib�a~nez, R. S. Durelli, and
V. V. de Camargo, “Evaluating the extension mechanisms of the
knowledge discovery metamodel for aspect-oriented modern-
izations,” J. Syst. Softw., vol. 149, pp. 285–304, 2019.

[A72] G. Scanniello, A. Marcus, and D. Pascale, “Link analysis algo-
rithms for static concept location: An empirical assessment,”
Empirical Softw. Eng., vol. 20, no. 6, pp. 1666–1720, 2015.

[A73] G. Scanniello, C. Gravino, M. Risi, G. Tortora, and G. Dodero,
“Documenting design-pattern instances: A family of experiments
on source-code comprehensibility,” ACM Trans. Softw. Eng.
Methodol., vol. 24, no. 3, pp. 1–35, 2015.

[A74] B. Sharif, J. Meinken, T. Shaffer, and H. Kagdi, “Eye movements
in software traceability link recovery,” Empirical Softw. Eng.,
vol. 22, no. 3, pp. 1063–1102, 2017.

[A75] A. P. Sinha and H. Jain, “Reusing business components and
objects for modeling business systems: The influence of decom-
position characteristics and analyst experience,” J. Syst. Softw.,
vol. 131, pp. 550–569, 2017.

[A76] E. Souza, A. Moreira, J. Ara�ujo, S. Abrah~ao, E. Insfran, and D. S.
d. Silveira, “Comparing business value modeling methods: A
family of experiments,” Inf. Softw. Technol., vol. 104, pp. 179–193,
2018.

[A77] S. Tiwari and A. Gupta, “Investigating comprehension and learn-
ability aspects of use cases for software specification problems,”
Inf. Softw. Technol., vol. 91, pp. 22–43, 2017.

[A78] A. Tosun et al., “An industry experiment on the effects of test-
driven development on external quality and productivity,”
Empirical Softw. Eng., vol. 22, no. 6, pp. 2763–2805, 2017.

[A79] S. Tragatschnig, S. Stevanetic, and U. Zdun, “Supporting the
evolution of event-driven service-oriented architectures using
change patterns,” Inf. Softw. Technol., vol. 100, pp. 133–146,
2018.

[A80] M. Trkman, J. Mendling, P. Trkman, and M. Krisper, “Impact of
the conceptual model’s representation format on identifying and
understanding user stories,” Inf. Softw. Technol., vol. 116, 2019,
Art. no. 106169.

SJØBERG AND BERGERSEN: CONSTRUCT VALIDITY IN SOFTWARE ENGINEERING 1395

[A81] Y.-C. Tu, E. Tempero, and C. Thomborson, “An experiment on
the impact of transparency on the effectiveness of requirements
documents,” Empirical Softw. Eng., vol. 21, no. 3, pp. 1035–1066,
2016.

[A82] W. Wu, A. Serveaux, Y.-G. Gu�eh�eneuc, and G. Antoniol, “The
impact of imperfect change rules on framework API evolution
identification: An empirical study,” Empirical Softw. Eng., vol. 20,
no. 4, pp. 1126–1158, 2015.

[A83] J. Zubcoff, I. Garrig�os, S. Casteleyn, J.-N. Maz�on, J.-A. Aguilar,
and F. Gomariz-Castillo, “Evaluating different I*-based
approaches for selecting functional requirements while balanc-
ing and optimizing non-functional requirements: A controlled
experiment,” Inf. Softw. Technol., vol. 106, pp. 68–84, 2019.

Dag I. K. Sjøberg (Member, IEEE) received the
MSc degree in computer science from the Univer-
sity of Oslo, in 1987, and the PhD degree in com-
puting science from the University of Glasgow, in
1993. He has five years of industry experience as
a developer and group leader. In 2001, he formed
the Software Engineering Department, Simula
Research Laboratory and was its leader until
2008. Since 1999, he has been a full professor of
software engineering with the University of Oslo.
His main research interests include the software

life cycle, including agile and lean development processes, and theories
and empirical research methods in software engineering.

Gunnar Rye Bergersen received the Cand. Sci-
ent. and PhD degrees in computer science from
the University of Oslo, in 2001 and 2015, respec-
tively. His PhD work, which was partially com-
pleted with the Simula Research Laboratory, has
later been used commercially in a start-up. He
has more than 20 years of industry experience as
a software developer, project manager, product
manager, and CEO. Since 2022, he has been an
associate professor with the University of Oslo.
His main research interests include quantitative

research methods with a particular focus on individual and team capabil-
ities and their measurement.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1396 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

