2206.08574v1 [cs.SE] 17 Jun 2022

arxXiv

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

Using Transfer Learning for Code-Related Tasks

Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota

Abstract—Deep learning (DL) techniques have been used to support several code-related tasks such as code summarization and
bug-fixing. In particular, pre-trained transformer models are on the rise, also thanks to the excellent results they achieved in Natural
Language Processing (NLP) tasks. The basic idea behind these models is to first pre-train them on a generic dataset using a
self-supervised task (e.g., filling masked words in sentences). Then, these models are fine-tuned to support specific tasks of interest (e.g.,
language translation). A single model can be fine-tuned to support multiple tasks, possibly exploiting the benefits of transfer learning. This
means that knowledge acquired to solve a specific task (e.g., language translation) can be useful to boost performance on another task
(e.g., sentiment classification). While the benefits of transfer learning have been widely studied in NLP, limited empirical evidence is
available when it comes to code-related tasks. In this paper, we assess the performance of the Text-To-Text Transfer Transformer (T5)
model in supporting four different code-related tasks: (i) automatic bug-fixing, (ii) injection of code mutants, (iii) generation of assert
statements, and (iv) code summarization. We pay particular attention in studying the role played by pre-training and multi-task fine-tuning
on the model’s performance. We show that (i) the T5 can achieve better performance as compared to state-of-the-art baselines; and (ii)
while pre-training helps the model, not all tasks benefit from a multi-task fine-tuning.

Index Terms—Deep Learning, Empirical Software Engineering

1 INTRODUCTION

Several code-related tasks have been recently automated by
researchers exploiting Deep Learning (DL) techniques [81].
Several of these works customize DL models proposed in
the Natural Language Processing (NLP) field to support
code-related tasks, and most of them share one common
characteristic: They shape the problem at hand as a text-to-
text transformation, in which the input and the output of the
model are text strings. For instance, Tufano et al. [78] used an
encoder-decoder architecture, commonly adopted in Neural
Machine Translation (NMT) [16], [33], [69]], to predict code
changes usually recommended by reviewers in a code review
process. Both the input and output are represented as a
stream of tokens (i.e., textual format), with the input being
the code submitted for review and the output a revised
code implementing changes likely to be required in the code
review process. While this is only one concrete example,
similar observations hold for techniques automating bug
fixing [15]], [25], [48], [75]], learning generic code changes [73],
supporting code migration [52], [53]], code summarization
[24], [32], [39], [42], code reviews [77], [78], pseudo-code

e A. Mastropaolo is with SEART @ Software Institute, Universita della
Svizzera italiana, Switzerland.
E-mail: antonio.mastropaolo@usi.ch
e N. Cooper is with SEMERU @ William & Mary, USA.
E-mail: nacooper01@email.wm.edu
e D. Nader Palacio is with SEMERU @ William & Mary, USA.
E-mail: danaderp@gmail.com
e 5. Scalabrino is with University of Molise, Italy.
E-mail: simone.scalabrino@unimol.it
e D. Poshyvanyk is with SEMERU @ William & Mary, USA.
E-mail: denys@cs.wm.edu
e R. Oliveto is with University of Molise, Italy.
E-mail: rocco.oliveto@unimol.it
o G. Bavota is with SEART @ Software Institute, Universita della Svizzera
italiana, Switzerland.
E-mail: gabriele.bavota@usi.ch

generation [55], code deobfuscation [31]], [79]], injection of
code mutants [76], generation of assert statements [82], clone
detection [74], [83]], traceability [49] and code completion [5],
[T, [171, [17], [34], [35], [701], [84].

Recent years have seen the rise of transfer learning in the
field of natural language processing. The basic idea is to
first pre-train a model on a large and generic dataset by
using a self-supervised task, e.g., masking tokens in strings
and asking the model to guess the masked tokens. Then,
the trained model is fine-tuned on smaller and specialized
datasets, each one aimed at supporting a specific task. In
this context, Raffel et al. [60] proposed the T5 (Text-To-Text
Transfer Transformer) model, pre-trained on a large natural
language corpus and fine-tuned to achieve state-of-the-art
performance on many tasks, all characterized by text-to-text
transformations.

In our recent work [44] we empirically investigated the
potential of a T5 model when pre-trained and fine-tuned to
support four code-related tasks also characterized by text-to-
text transformations. In particular, we started by pre-training
a T5 model using a large dataset consisting of 499,618 English
sentences and 1,569,889 source code components (i.e., Java
methods). Then, we fine-tuned the model using four datasets
from previous work with the goal of supporting four code-
related tasks:

Automatic bug-fixing. We used the dataset by Tufano et al.
[75], composed of instances in which the “input string” is
represented by a buggy Java method and the “output string”
is the fixed version of the same method.

Injection of code mutants. This dataset is also by Tufano
et al. [76]], and features instances in which the input-output
strings are reversed as compared to automatic bug-fixing (i.e.,
the input is a fixed method, while the output is its buggy
version). The model must learn how to inject bugs (mutants)
in code instead of fixing bugs.

Generation of assert statements in test methods. We used the

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

dataset by Watson et al. [82]], composed of instances in which
the input string is a representation of a test method without
an assert statement and a focal method it tests (i.e., the main
production method tested), while the output string encodes
an appropriate assert statement for the input test method.

Code Summarization. We used the dataset by Haque et al.
[24] where input strings are some representations of a Java
method to summarize, & an output string is a textual
summary.

We fine-tuned a single pre-trained T5 model in a multi-
task setting on all four tasks, and showed that it is able to
achieve better results as compared to the four referenced
baselines in all tasks [24], [75], [76], [82]. However, since we
only experimented with a pre-trained model fine-tuned in
a multi-task setting, questions about the actual advantage
offered by transfer learning remained unanswered. In this
work, we aim at overcoming such a limitation that is also
typical of several other works in the literature using off-
the-shelf pre-trained models like T5 to support code related
tasks (e.g., [61], [87]). Indeed, little effort has been spent
on understanding the actual benefits (if any) that transfer
learning brings when dealing with code-related tasks. Such
observation holds for both (i) the pre-training phase, that
should provide the model with general knowledge about a
language of interest (e.g., Java) being at the core of the tasks
to automate (e.g., bug-fixing); and (ii) the multi-task fine-
tuning, that should allow the model to exploit knowledge
acquired when trained for a specific task (e.g., bug-fixing) also
for the automation of other tasks (e.g., generation of assert
statements), thus possibly boosting the overall performance
in all the tasks. Besides the expected positive impact on
performance, pre-training and multi-task fine-tuning are also
useful in real-life scenarios in which the training data for
a particular task of interest is scarce (e.g., when manually
labeled instances are needed) [63]]. Pre-training the model
in an unsupervised setting and/or fine-tuning it on other
related tasks for which more training data is available can
unlock the possibility of using deep learning models also for
tasks characterized by scarcity of training data.

In this paper, we extend our previous work [45] by
carefully assessing the impact of both pre-training and multi-
task fine-tuning on the T5 performance. In particular, we
assess the performance of the T5 in the following scenarios:

e No Pre-training: We do not run any pre-training step.
We directly fine-tune four different T5 models, each one
supporting one of the four tasks we experiment with.

o Pre-training single task: We first pre-train the T5 model
on the dataset presented in Table[l} Then, starting from
it, we fine-tune four models, one for each single task.

o Pre-training Multi-Task: Lastly, we fine-tune the pre-
trained model using a multi-task learning framework
in which we train a single model to support all four
code-related tasks. We experiment with two different
multi-task fine-tunings: (i) the first is the one used in our
original paper [45], in which the percentage of training
instances from each of the four tasks is proportional to
the size of their training dataset; (ii) the second in which
the percentage of training instances is the same for all
four tasks (i.e., 25% per task).

In total, this resulted in the training, hyperparameters

2

tuning, and testing of ten different models. Note that the
choice of the four tasks subject of our study (i.e., bug-fixing,
mutants injection, asserts generation, and code summarization)
is dictated by the will of experimenting with tasks that use,
represent, and manipulate code in different ways. In particu-
lar, we include in our study tasks aimed at (i) transforming
the input code with the goal of changing its behavior (bug-
fixing and mutants injection); (ii) “comprehending code” to
verify its behavior (asserts generation); and (iii) “compre-
hending code” to summarize it in natural language (code
summarization). Also, following what has been done in the
original datasets from previous work, the four tasks involve
abstracted source code (bug-fixing 75|, mutants injection [76],
and asserts generation [82]), raw source code (asserts generation
[82] and code summarization [24])), and natural language (code
summarization [24]). Such a mix of tasks helps in increasing
the generalizability of our findings.

We also perform a novel analysis of our dataset aimed at
assessing the generalizability of our models by looking at the
level of data snooping among our training and test datasets.

Our results confirm that the T5 can substantially boost
the performance on all four code-related tasks. For example,
when the T5 model is asked to generate assert statements
on raw source code, ~70% of test instances are successfully
predicted by the model, against the 18% of the original
baseline [82]. Also, we show that the pre-training is beneficial
for all tasks, while the multi-task fine-tuning does not
consistently help in improving performance. Finally, our
datasets analysis confirm the generalizability of the tested
models. The code and data used in this work are publicly
available [2].

2 BACKGROUND AND RELATED WORK

In recent years, DL techniques have been increasingly used to
support software engineering (SE). The activities commonly
supported by state-of-the-art approach include software
maintenance and software testing [86], and most of the
proposed approaches target the source code [81]. While
available approaches support a plethora of concrete SE tasks
[81]], [86]], in this section we focus on the ones we target in
our study: automated bug-fixing, injection of code mutants,
generation of assert statements in test methods, and code
summarization. We discuss in detail the techniques we use
as baselines for each task. A broader literature review on the
topic is available in two recent surveys by Yang ef al. [86]
and Watson et al. [81].

2.1

Many techniques have been proposed for the automatic
fixing of software bugs. Several of them [7], [13]], [20], [21]],
[38], [54], [58], [66], [85] rely on the redundancy assumption,
claiming that large programs contain the seeds of their own
repair. Such an assumption has been verified by at least
two independent studies [9]], [43]. Automated bug-fixing
techniques based on DL can rely on different levels of code
abstraction. Word tokenization is a commonly used one, even
if higher-level abstractions (e.g., AST-based) allow to achieve
better results [51]].

Mesbah et al. [48] focus on build-time compilation failures
by presenting DeepDelta, an approach using NMT to fix the

Automatic Bug-Fixing

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

build. The input is represented by features characterizing the
compilation failure (e.g., kind of error, AST path, etc.). As
output, DeepDelta provides the AST changes needed to fix
the error. In the presented empirical evaluation, DeepDelta
correctly fixed 19,314 out of 38,788 (50%) compilation errors.

Chen et al. [15] present SequenceR, a sequence-to-
sequence approach trained on over 35k single-line bug-
fixes. SequenceR takes as input the buggy line together
with relevant code lines from the buggy class (abstract buggy
context). The output of the approach is the recommended fix
for the buggy line. The approach, tested on a set of 4,711
bugs, was able to automatically fix 950 (~20%) of them.
Similar approaches have been proposed by Hata et al. [25]
and Tufano et al. [75]. The latter is the one we compared our
approach with and, thus, we describe it in more details.

Tufano et al. [75] investigate the performance of an NMT-
based approach in the context of automatic bug-fixing. They
train an encoder-decoder model on a set of bug-fix pairs
(BEPs), meaning pairs of strings in which the first one (input)
represents a Java method that has been subject to a bug-fixing
activity, and the second one (target) represents the same Java
method once the bug was fixed. To build this dataset, the
authors mined ~787k bug-fixing commits from GitHub, from
which they extracted ~2.3M BFPs. After that, the code of
the BFPs is abstracted to make it more suitable for the NMT
model (i.e., to reduce the vocabulary of terms used in the
source code identifiers and literals). The abstraction process
is depicted in Fig.

raw source code
public Integer getMinElement(List myList) {
if(myList.size() >= @) {
return ListManager.getFirst(myList);

return 0;

abstracted code
public TYPE_1 METHOD_1 (TYPE_2 VAR_1)
{ if (VAR_1 . METHOD_2 () >= INT_1)
{ return TYPE_3 . METHOD_3 (VAR_1) ; }
return INT_1 ; }

abstracted code with idioms
public TYPE_1 METHOD_1 (List VAR_1)
{ if (VAR_1 . size () >= 0)
{ return TYPE_2 . METHOD_3 (VAR_1) ; }
return @ ; }

Fig. 1: Abstraction process [75]

The top part of the figure represents the raw source code
to abstract. The authors use a Java lexer and a parser to
represent each method as a stream of tokens, in which Java
keywords and punctuation symbols are preserved and the
role of each identifier (e.g., whether it represents a variable,
method, etc.) as well as the type of a literal is discerned.

IDs are assigned to identifiers and literals by considering
their position in the method to abstract: The first variable
name found will be assigned the ID of VAR_1, likewise the
second variable name will receive the ID of VAR_2. This
process continues for all identifiers as well as for the literals
(e.g., STRING_X, INT_X, FLOAT_X). The output of this stage
is the code reported in the middle of Fig. (1] (i.e., abstracted
code). Since some identifiers and literals appear very often
in the code (e.g., variables i, j, literals 9, 1, method names
such as size), those are treated as “idioms” and are not
abstracted (see bottom part of Fig. [1} idioms are in bold).

3

Tufano et al. consider as idioms the top 0.005% frequent
words in their dataset. During the abstraction a mapping
between the raw and the abstracted tokens is maintained,
thus allowing to reconstruct the concrete code from the
abstract code generated by the model.

The set of abstracted BFPs has been used to train and test
the approach. The authors build two different sets, namely
BF P, only including methods having a maximum
length of 50 tokens (for a total of 58,350 instances), and
BF Py edium, including methods up to 100 tokens (65,455).
The model was able to correctly predict the patch for the
buggy code in 9% and 3% of cases in the BF Pyy,q1 and
BF Py, cqium dataset, respectively.

While other works have tackled the automatic bug-fixing
problem, the approach by Tufano ef al. has been tested on
a variety of different bugs, rather than on specific types of
bugs/warnings (e.g., only single-line bugs are considered in
[15], while compilation failures are addressed in [48]).

Thus, we picked it as representative DL technique for
automatic bug-fixing and we use the two datasets by Tufano
et al. [75] to fine-tune the T5 model for the “automatic bug-
fixing” problem, comparing the achieved performance with
the one reported in the original paper.

2.2

Brown et al. [12] were the first to propose a data-driven
approach for generating code mutants, leveraging bug-fixes
performed in software systems to extract syntactic-mutation
patterns from the diffs of patches. Tufano et al. [76] built
on this concept by presenting an approach using NMT to
inject mutants that mirror real bugs. The idea is to reverse
the learning process used for fixing bugs [75]: The model
is trained to transform correct methods (i.e., the method
obtained after the bug-fixing activity) into buggy methods
(before the bug-fix). Indeed, the methodology used by the
authors is the same used for the bug-fixing task (previously
described), including the abstraction process.

This is, to date, the only DL-based technique for injecting
code mutants. Thus, we use the dataset exploited by Tufano
et al. [76] to fine-tune the T5 model for the problem of
“injecting code mutants”, comparing the achieved results
with the ones reported in the original paper. Specifically, we
reused their largest dataset, referred to as GM;gen: in the
papelﬂ featuring 92,476 training instances, 11,560 used for
hyperparameter tuning (evaluation set), and 11,559 used for
testing. On this data, the approach by Tufano et al. was able
to correctly predict the bug to inject in 17% of cases (1,991).

Injection of Code Mutants

2.3 Generation of Assert Statements in Test Methods

Watson et al. [82] start from the work by Shamshiri et al. [65],
who observed that tools for the automatic generation of test
cases such as Evosuite [19], Randoop [56] and Agitar [3]
exhibit insufficiencies in the automatically generated assert
statements.

Thus, they propose ATLAS, an approach for generat-
ing syntactically and semantically correct unit test assert

1. A subset of this dataset named G M; 4en¢—1i¢ has also been used in
the original paper [76] to avoid including in the study bugs requiring
the generation of previously unseen literals. We decided to test the T5
model on the most complex and complete dataset.

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

statements using NMT. To train ATLAS, the authors mined
2.5M test methods from GitHub with their corresponding
assert statement. For each of those test methods, they also
identified the focal method, meaning the main production
code method exercised by the test. A preprocessing of the
dataset has been performed to remove all test methods longer
than 1K tokens. Also, test methods requiring the synthesis of
one or more unknown tokens for generating the appropriate
assert statements have been removed. Indeed, if the required
tokens cannot be found in the vocabulary of the test method
they cannot be synthesized when the model attempts to
generate the prediction. Finally, all duplicates have been
removed from the dataset, leading to a final set of 158,096
Test-Assert Pairs (TAPs). Each method left in the dataset has
then been abstracted using the same approach previously
described by Tufano et al. [75]. However, in this case the
authors experiment with two datasets, one containing raw
source code and one abstracted code. ATLAS was able to
generate asserts identical to the ones written by developers in
31.42% of cases (4,968 perfectly predicted assert statements)
when only considering the top-1 prediction, and 49.69%
(7,857) when looking at the top-5 in the abstracted dataset,
while performance is lower on the raw dataset (17.66% for
top-1 and 23.33% for top-b).

We use the datasets by Watson ef al. [82] to fine-tune our
T5 model for the “generation of assert statements” problem,
and compare the achieved performance with the one in
the original paper. Recently, Tufano et al. [72] proposed
an approach based on transformers to achieve a the same
goal. Their results show that such an approach achieves
better results than ATLAS [82]. We did not use the approach
proposed by Tufano et al. [72] as the main baseline because it
is very similar to the one we presented in the our conference
paper that this paper extends [45].

2.4 Code Summarization

Code summarization is one of the mainstream methods
for automatic documentation of source code. The proposed
summarization techniques fall into two categories. Extractive
summarization techniques generate summaries by extracting
information from the code components being summarized
[23], [50], [64], [68]. On the other hand, abstractive sum-
marization techniques aim at including in the summaries
information not directly available in the source code [24],
[28]], [32], [46], [67]. DL techniques have been used to support
for the latter.

Hu et al. [28] use a Deep Neural Network (DNN) to
automatically generate comments for a given Java method.
The authors mine ~9k Java projects hosted on GitHub to
collect pairs of (method, comment), where “comment” is
the first sentence of the Javadoc linked to the method. These
pairs, properly processed, are used to train and test the DNN.
The authors assess the effectiveness of their technique by
using the BLEU-4 score [57]], showing the superiority of their
approach with respect to the competitive technique presented
in [30].

Allamanis et al. [4] use attention mechanisms in neural
networks to suggest a descriptive method name starting from
an arbitrary snippet of code. Their approach can name a code
snippet exactly as a developer would do in ~25% of cases.

4

LeClair et al. [39] present a neural model combining the
AST source code structure and words from code to generate
coherent summaries of Java methods. The approach, tested
on 2.1M methods, showed its superiority as compared to the
previous works by Hu et al. [28] and Iyer et al. [30].

The approach by Haque ef al. [24] is the most recent in
the area of DL-aided source code summarization, and it is
an improvement of the work by LeClair ef al. [39].

It still aims at documenting Java methods through an
encoder-decoder architecture but, in this case, three inputs
are provided to the model to generate the summary: (i) the
source code of the method, as a flattened sequence of tokens
representing the method; (ii) its AST representation; and (iii)
the “file context”, meaning the code of every other method
in the same file. The authors show that adding the contextual
information as one of the inputs substantially improves
the BLEU score obtained by deep learning techniques. The
dataset used in the evaluation is composed of 2.1M Java
methods paired with summaries. We reuse this dataset for
the fine-tuning of the T5 model for the code summarization
problem, and compare its performance to the state-of-the-art
approach proposed by Haque et al. [24].

3 TEXT-TO-TEXT-TRANSFER-TRANSFORMER

The T5 model has been introduced by Raffel et al. [60] to
support multitask learning in Natural Language Processing
(NLP). The idea is to reframe NLP tasks in a unified text-
to-text format in which the input and output are always
text strings. For example, a single model can be trained to
translate across languages and to autocomplete sentences.
This is possible since both tasks can be represented in a
text-to-text format (e.g., in the case of translation, the input
is a sentence in a given language, while the output is
the translated sentence). T5 is trained in two phases: pre-
training, which allows defining a shared knowledge-base
useful for a large class of sequence-to-sequence tasks (e.g.,
guessing masked words in English sentences to learn about
the language), and fine-tuning, which specializes the model
on a specific downstream task (e.g., learning the translation of
sentences from English to German). We briefly overview the
T5 model and explain how we pre-trained and fine-tuned it to
support the four said code-related tasks. Finally, we describe
the decoding strategy for generating the predictions.

3.1

T5 is based on the transformer model architecture that allows
handling a variable-sized input using stacks of self-attention
layers. When an input sequence is provided, it is mapped
into a sequence of embeddings passed into the encoder.
The T5, in particular, and a transformer model [80], in
general, offer two main advantages over other state-of-the-
art models: (i) it is more efficient than RNNs since it allows
to compute the output layers in parallel, and (ii) it is able to
detect hidden and long-ranged dependencies among tokens,
without assuming that nearest tokens are more related than
distant ones. This last property is particularly relevant in
code-related tasks since a variable declaration may be distant
from its usage. Five different versions of T5 have been
proposed [60]]: small, base, large, 3 Billion, and 11 Billion. These

An Overview of T5

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

variants differ in terms of complexity, with the smaller model
(T5smanr) having 60M parameters against the 11B of the largest
one (T51;5). As acknowledged by the authors [60], even if
the accuracy of the most complex variants is higher than
the less complex models, the training complexity increases
with the number of parameters. Considering the available
computational resources, we decided to use the simplest
T5sm,;11 model.

T5,,.qu architectural details. The T5,,,; architecture is
characterized by six blocks for encoders and decoders. The
feed-forward networks in each block consist of a dense layer
with an output dimensionality (dy) of 2,048. The key and
value matrices of all attention mechanisms have an inner
dimensionality (dx,) of 64, and all attention mechanisms
have eight heads. All the other sub-layers and embeddings
have a dimensionality (d,ode1) of 512.

3.2 Pre-training of T5

In the pre-training phase we use a self-supervised task similar
to the one used by Raffel et al. [60], consisting of masking
tokens in natural language sentences and asking the model
to guess the masked tokens. However, we did not perform
the pre-training by only using natural language sentences,
since all the tasks we target involve source code. We use a
dataset composed of both (technical) natural language (i.e.,
code comments) and source code. To obtain the dataset for
the pre-training we start from the CodeSearchNet dataset
[29] which provides 6M functions from open-source code.
We only focus on the ~1.5M methods written in Java, since
the four tasks we aim at supporting are all related to Java
code and work at method-level granularity (e.g., fixing a bug
in a method, generating the summary of a method, etc.).

Then, since for three of the four tasks we support (i.e.,
automatic bug-fixing [75], generation of assert statements [82]],
and injection of code mutants [76]) the authors of the original
papers used an abstracted version of source code (see
Section , we used the src2abs tool by Tufano [75] to create
an abstracted version of each mined Java method. In the
abstraction process, special tokens are used to represent
identifiers and literals of the input method. For example, the
first method name found (usually the one in the method
signature) will be assigned the METHOD_1 token, likewise the
second method name (e.g., a method invocation) will be
represented by METHOD_2. This process continues for all the
method and variable names (VAR_X) as well as the literals
(STRING_X, INT_X, FLOAT_X). Basically, the abstract method
consists of language keywords (e.g., for, if), separators (e.g.,
“(”,*;”,“}”) and special tokens representing identifiers and
literals. Comments and annotations are removed during
abstraction. Note that, since the tool was run on Java methods
in isolation (i.e., without providing it the whole code of the
projects they belong to), src2abs raised a parsing error in
~600k of the ~1.5M methods (due e.g., to missing references),
leaving us with ~900k abstracted methods. We still consider
such a dataset as sufficient for the pre-training.

The CodeSearchNet dataset does also provide, for a
subset of the considered Java source code methods, the first
sentence in their Javadoc. We extracted such a documenta-
tion using the docstring_tokens field in CodeSearchNet,
obtaining it for 499,618 of the considered methods. We

5

added these sentences to the pre-training dataset. This whole
process resulted in a total of 2,984,627 pre-training instances,
including raw source code methods, abstracted methods, and
code comment sentences. In the obtained dataset there could
be duplicates between (i) different raw methods that become
equal once abstracted, and (ii) comments re-used across
different methods. Thus, we remove duplicates, obtaining
the final set of 2,672,423 instances reported in Table 1| This
is the dataset we use for pre-training the T5 model, using
the BERT-style objective function Raffel et al. used in their
experiments and consisting of randomly masking 15% of
tokens (i.e., words in comments and code tokens in the raw
and abstracted code).

TABLE 1: Datasets used for the pre-training of T5.

Data sources Instances
Source code 1,569,773
Abstracted source code 766,126
Technical natural language 336,524
Total 2,672,423

Finally, since we pre-train and fine-tune the models on
a software-specific dataset, we create a new SentencePiece
model [37] (i.e., a tokenizer for neural text processing) by
training it on the entire pre-training dataset so that the T5
model can properly handle the Java language and its abstrac-
tion. This model implements subword units (e.g., byte-pair-
encoding BPE) and unigram language model [36] to alleviate
the open vocabulary problem in neural machine translation.
The pre-training of the models has been performed for 250k
steps which, using a batch size of 128 results in ~32M of
masked code instances processed that, given the size of the
pre-training dataset (see Table|I) correspond to ~12 epochs.

3.3 Fine-tuning of T5

We detail the process used to fine-tune the T5 model. Before
explaining how the training instances are represented within
each fine-tuning dataset, it is important to clarify that both
in the pre-training and in the fine tuning the T5 can handle
any sort of training instance as long as it can be formulated
as a text-to-text transformation. Indeed, the T5 represents
each training dataset as a N x 2 matrix, where N is the
number of instances in the dataset and the 2 dimensions
allow to express the input text and the expected output text.
In the case of pre-training, the input text is an instance (i.e.,
a raw method, an abstract method, or a Javadoc comment)
in which 15% of tokens have been masked, while the output
text represents the correct predictions for the masked tokens.
In the four downstream tasks, instead, the text-to-text pairs
are represented as explained in the following.

3.3.1 Fine-tuning dataset

We describe the datasets we use for fine-tuning the model
for the four targeted tasks. The datasets are summarized
in Table [2 The number of training steps performed for the
different tasks is proportional to the size of their training
dataset. Indeed, we aim at ensuring that the same number
of “epochs” is performed on each training dataset. Thus,
smaller training datasets require a lower number of steps

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

to reach the same number of epochs of larger datasets. In
particular, we used 1.75M fine-tuning steps for the multi-task
setting ~90 epochs) and we scaled the others proportionally
to reach the same number of epochs (e.g., ~1.41M for the
code summarization task).

Automatic Bug Fixing (BF). We use the dataset by Tufano
et al. [[75] composed by triplets BF',,, = (m;,, my, M), where
my and my are the abstracted version of the buggy and fixed
version of Java method, respectively, and M represents the
mapping between the abstracted tokens and the raw code
tokens (e.g., VAR_1 — webServerPort), which allows to track
back the output of the model to source code. The triplets refer
to methods with at most 100 tokens and they are split into
two sub-datasets: (i) the small version, containing methods
with up to 50 tokens, and a medium version, with methods
with at most 100 tokens. We train the model to predict the
fixed versions, my, given the buggy versions, m;. Given
the presence of two datasets, we divide the BF task in two
sub-tasks, BF sy and BF p,edium, depending on the size of
the involved methods [75].

Injection of Code Mutants (MG). For the MG task we ex-
ploited one of the two datasets provided by Tufano et al. [73]:
MG ;gent and MG ;jgent—ii:- In both datasets each instance is
represented by a triple (my,my, M), where, similarly to the
BF datasets, m; and my are the buggy and fixed version
of the snippet, respectively, and M represents the mapping
between the abstracted tokens and the code tokens. The
first dataset (MG qent) represents the most general (and
challenging) case, in which the mutated version, m;, can
also contain new tokens (i.e., identifiers, types, or method
names) not contained in the version provided as input (my).
MG igent—iit, instead, only contains samples in which the
mutated version contains a subset of the tokens in the non-
mutated code. In other words, MG gent—1i+ represents a
simplified version of the task. For this reason, we decided
to focus on the most general scenario and we only use the
MG ;gent dataset.

Generation of Assertions in Test Methods (AG). For the
AG task we used the dataset provided by Watson et al. [82]
containing triplets (T, TM,,, A), where T is a given test case,
TM,, is the focal method tested by T, i.e., the last method
called in T before the assert [59], and A is the assertion
that must be generated (output). For such a task, we use
two versions of the dataset: AG 4., which contains the raw
source code for the input (I'+1'M,,) and the output (A4), and
AG 4ps, which contains the abstracted version of input and
output, i.e., src2abs(T +TM,,) and src2abs(A), respectively.
These are the same datasets used in the original paper.

Code Summarization (CS). For code summarization, we
exploited the dataset provided by Haque et al. [24] containing
2,149,120 instances, in which each instance is represented by
a tuple (S, Ag,Cg, D), where S represents the raw source
code of the method, Ag is its AST representation, Cy is the
code of other methods in the same file, and D is the summary
of the method, i.e., the textual description that the model
should generate [24]. For this specific task, we consider a
variation of the original dataset to make it more coherent
with the performed pre-training. In particular, since in the
pre-training we did not use any AST representation of code,
we decided to experiment with the T5 model in a more
challenging scenario in which only the raw source code to

6

summarize (i.e., S) is available to the model. Therefore, the
instances of our dataset are represented by tuples (S, D): We
train our model to predict D given only S.

3.3.2 Decoding Strategy

Once the models have been trained, different decoding
strategies can be used to generate the output token streams.
T5 allows to use both greedy decoding and Beam-search. When
generating an output sequence, the greedy decoding selects,
at each time step ¢, the symbol having the highest probability.
The main limitation of greedy decoding is that it only allows
the model to generate one possible output sequence (e.g., one
possible bug fix) for a given input (e.g., the buggy method).

Beam-search is an alternative decoding strategy previ-
ously used in many DL applications [8], [10], [22], [62]. Unlike
greedy decoding, which keeps only a single hypothesis
during decoding, beam-search of order K, with K > 1,
allows the decoder to keep K hypotheses in parallel: At
each time step ¢, beam-search picks the K hypotheses (i.e.,
sequences of tokens up to t) with the highest probability,
allowing the model to output K possible output sequences.

We used Beam-search to provide several output se-
quences given a single input, and report results with different
K values. It is worth noting that having a large K increases
the probability that one of the output sequences is correct,
but, on the other hand, it also increases the cost of manually
analyzing the output for a user (i.e., a developer, in our
context).

3.3.3 Data Balancing for the multi-task model

The datasets we use for fine-tuning have different sizes, with
the one for code summarization dominating the others (see
Table). This could result in an unbalanced effectiveness of
the model on the different tasks. In our case, the model
could become very effective in summarizing code and
less in the other three tasks. However, as pointed out by
Arivazhagan et al. [6], there is no free lunch in choosing the
balancing strategy when training a multi-task model, with
each strategy having its pros and cons (e.g., oversampling of
less represented datasets negatively impacts the performance
of the most representative task). For this reason, we decide
to experiment with both strategies. In the first strategy, we
follow the true data distribution when creating each batch.
In other words, we sample instances from the tasks in such a
way that each batch during the training has a proportional
number of samples accordingly to the size of the training
dataset. For the second strategy, we train a multi-task pre-
trained model using a balanced sampling strategy. In other
words, we feed the T5 model with batches of data having
exactly the same number of samples per task randomly
selected during the fine-tuning.

The results we obtained confirm the findings of Ari-
vazhagan et al. [6]. In particular, when using the first
training sampling strategy (i.e., proportional sampling), the
performance of the tasks having a large training dataset (i.e.,
AG 4ps, AG gy, CS) had a boost. In contrast, when using the
second strategy (i.e., balanced sampling), the performance
increases for those tasks whose training dataset is small with,
however, a price to pay for the other three tasks. Nonetheless,
since the observed differences in performance are not major
and each strategy has its pros and cons, we decided to discuss

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

TABLE 2: Task-specific datasets used for fine-tuning T5.

Task Dataset Training-set Evaluation-set Test-set
. e BF g 1751 46,680 5,835 5,835
Automatic Bug-Fixing BF yedivom 1751 52,364 6,546 6,545
Injection of Code Mutants MG igent 176] 92,476 11,560 11,559
. . AG 415 [82] 126,477 15,809 15,810
Generation of Asserts in Test AG o [82] 150,523 18,816 18,815
Code Summarization CS [24] 1,953,940 104,272 90,908
Total 2,422,460 162,838 149472

in this paper the results achieved using the proportional
sampling schema, as we did in [45].

The results of the proportional sampling are available in
our replication package [2].

4 STUDY DESIGN

We aim at investigating the performance of the T5 model on
four code-related tasks: Automatic bug-fixing, Injection of code
mutants, Generation of Asserts in Tests and Code Summarization.
The focus of our evaluation is on (i) investigating the extent
to which transfer learning is beneficial when dealing with
code-related tasks, studying the impact on performance of
both pre-training and multi-task learning; and (ii) comparing
the obtained results with representative state-of-the-art tech-
niques. The context is represented by the datasets introduced
in Section P2} i.e., the ones by Tufano et al. for bug fixing [75]
and injection of mutants [76]], by Watson et al. for assert
statement generation [82]], and by Haque et al. for code
summarization [24]. We aim at answering the following
research questions (RQs):

o RQ:What are the performances of the T5 model when
supporting code-related tasks? With RQ; we aim at un-
derstanding the extent to which T5 can be used to auto-
mate code-related tasks, investigating the performance
achieved by the model on the four experimented tasks.
In the context of RQ;, we also investigate the impact of
transfer learning on performance:

— RQq.1: What is the role of pre-training on the performances
of the T5 model for the experimented code-related tasks?
With RQ;; we aim at investigating the boost in
performance (if any) brought by pre-training the
models on a software-specific dataset.

— RQj ot What is the role of multi-task learning on the
performances of the T5 model for the experimented code-
related tasks? RQq 2 analyzes the influence of the multi-
task learning (i.e., training a single model for all four
tasks) on the model’s performance.

o RQy: What are the performances of T5 as compared with state-
of-the-art baselines? In RQs we compare the performances
achieved by the T5 model against the ones achieved by
the baseline approaches. In this regard, we run T5 on the
same test sets used in the four original papers presenting
automated solutions for the code-related tasks we target.

4.1 Data Collection and Analysis

As explained in Section we experimented with different
variants of the T5: (i) no pre-training (i.e., four models each

fine-tuned for one of the supported tasks, without any pre-
training); (ii) pre-training single task (i.e., four models each
fine-tuned for one of the supported tasks, with pre-training);
and (iii) pre-training multi-task (i.e., one model pre-trained
and fine-tuned for all four tasks). These nine models have
all been run on the test sets made available in the works
presenting our four baselines and summarized in Table
Once obtained the predictions of the T5 models on the test
sets related to the four tasks, we compute the evaluation
metrics reported in Table 3] We use different metrics for the
different tasks, depending on the metrics reported in the
papers that introduced our baselines.

Accuracy@K measures the percentage of cases (i.e., in-
stances in the test set) in which the sequence predicted by
the model equals the oracle sequence (i.e., perfect prediction).
Since we use beam-search, we report the results for different
K values (ie., 1,5, 10, 25, and 50), as done in [75] (BF) and
[82] (AG). Tufano et al. 73] do not report results for K > 1
for the MG task. Thus, we only compute K = 1.

BLEU score (Bilingual Evaluation Understudy) [57] mea-
sures how similar the candidate (predicted) and reference
(oracle) texts are. Given a size n, the candidate and reference
texts are broken into n-grams and the algorithm determines
how many n-grams of the candidate text appear in the
reference text. The BLEU score ranges between 0 (the
sequences are completely different) and 1 (the sequences
are identical). We use different BLEU-n scores, depending
on the ones used in the reference paper of the baseline (see
Table @ For the CS task, we report BLEU-{1, 2, 3, 4} and
their geometric mean (i.e., BLEU-A); for the MG task we only
report BLEU-A.

ROUGE (Recall-Oriented Understudy for Gisting Eval-
uation) is a set of metrics for evaluating both automatic
summarization of texts and machine translation techniques
in general [41]]. ROUGE metrics compare an automatically
generated summary or translation with a set of reference
summaries (typically, human-produced). We use the ROUGE
LCS metrics based on the Longest Common Subsequence
for the CS task [24]. Given two token sequences, X and
Y, and their respective length, m and n, it is possible to
compute three ROUGE LCS metrics: R (recall), computed

s %, P (precision), computed as w, and F
(F-measure), computed as the harmonic mean of P and R.

The computed metrics are used to select what the best
training strategy for the T5 is (i.e., no pre-training, pre-training
single task, or pre-training multi-task). We also statistically
compare the performance of these three strategies for each
task using the McNemar’s test [47], which is a proportion

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

TABLE 3: Baselines and evaluation metrics for the tasks.

Task Baseline Accuracy@K BLEU-n ROUGE LCS
Automatic Bug-Fixing 175 {1,5,10,25,50} - -

Injection of Code Mutants 176] {1} {A} -

Generation of Asserts in Test [82] {1,5,10,25,50} - -

Code Summarization 124] - {1,2,3,4,A} {P,R,F}

test suitable to pairwise compare dichotomous results of
two different treatments. We statistically compare each pair
of training strategy in our study (i.e., no pre-training vs pre-
training single task, no pre-training vs pre-training multi-task,
pre-training single task vs pre-training multi-task) in terms of
their Accuracy@l (i.e., perfect predictions) for each of the
four experimented tasks. To compute the test results for two
training strategies T} and 15, we create a confusion matrix
counting the number of cases in which (i) both T} and T5
provide a correct prediction, (ii) only 77 provides a correct
prediction, (iii) only 7% provides a correct prediction, and (iv)
neither T nor 75 provide a correct prediction. We comple-
ment the McNemar’s test with the Odds Ratio (OR) effect
size. Also, since we performed multiple comparisons, we
adjusted the obtained p-values using the Holm’s correction
[26].

The best model output of this analysis has then been used
to compare the best T5 model with the four baselines by using
the performance metrics reported in Table 3| Moreover, we
also statistically compare the Accuracy@1 of the T5 and of the
baselines using the same procedure previously described (i.e.,
McNemar's test with the OR effect size). We also perform
a complementarity analysis: We define the sets of perfect
predictions generated by the T5 (PP 75,) and by the baseline
(PPpr,) with a beam size K = 1. Then, for each task and
dataset we compute three metrics:

Shared —‘ PPrsy 0 PP a1yl
4=
‘PPTSd UPPBLdI

_ |PPpr, \ PPrs5,|

|PPr5,\ PPpL OnlyBL, =
= 4 i Yol |PPrs5,U PPpL,|

OnlyTs ; =
M = PPy, U PPy,

Shared ; measures the percentage of perfect predictions
shared between the two compared approaches on the dataset
d, while OnlyT5 ; and OnlyBL,; measure the percentage of
cases in which the perfect prediction is only generated by T5
or the baseline, respectively, on the dataset d.

We also present an “inference time” analysis: we compute
the time needed to run T5 on a given input. We run such an
experiment on a laptop equipped with a 2.3GHz 8-core 9th-
generation Intel Core i9 and 16 GB of RAM, using the CPU
to run the DL model. We do this for different beam search
sizes, with K € {1, 5,10, 25, 50}. For each K, we report the
average inference time (in seconds) on all the instances of
each task. Besides that, we also report the training time (in
hours) for the nine different models involved in our study, i.e.,
no pre-training (four models, one for each task), pre-training
single task (+4 models), and pre-training multi-task (one model
pre-trained and fine-tuned for all four tasks). For the training
we used a 2x2 TPU topology (8 cores) from Google Colab
with a batch size of 128, with a sequence length (for both
inputs and targets) of 512 tokens.

Finally, we discuss qualitative examples of predictions
generated by T5 and by the baselines to give a better idea
to the reader about the capabilities of these models in
supporting the four code-related tasks.

4.2 Hyperparameter Tuning

Before running the T5 models on the test sets, we performed
a hyperparameter tuning on the evaluation sets from Table
to decide the best configuration to run. This was done for
all nine models we built (e.g., with/without pre-training,
with/without multi-task learning).

For the pre-training phase, we use the default parameters
defined for the T5 model [60]. Such a phase, indeed, is task-
agnostic, and hyperparameter tuning would provide limited
benefits. Instead, we tried different learning rate strategies
for the fine-tuning phase. Especially, we tested four different
learning rates: (i) Constant Learning Rate (C-LR): the learning
rate is fixed during the whole training; (ii) Inverse Square
Root Learning Rate (ISR-LR): the learning rate decays as the
inverse square root of the training step; (iii) Slanted Triangular
Learning Rate [27] (ST-LR): the learning rate first linearly
increases and then linearly decays to the starting learning
rate; (iv) Polynomial Decay Learning Rate (PD-LR): the learning
rate decays polynomially from an initial value to an ending
value in the given decay steps. Table [reports the specific
parameters we use for each scheduling strategy.

TABLE 4: Learning-rates tested for hyperparameter tuning.

Parameters
LR = 0.001

LRstm‘ting =0.01
Warmup = 10,000

LRstm'ting = 0.001
LRpae = 0.01
Ratio = 32

Cut = 0.1

LRst(M‘ting =0.01
LR.,q = 0.001
Power = 0.5

Learning Rate Type

Constant

Inverse Square Root

Slanted Triangular

Polynomial Decay

In total, we fine-tuned 36 models (i.e., nine models with
four different schedulers) for 100k steps each. To select the
best configuration for each training strategy, we compute
the following metrics: for BF and AG, we compute the
percentage of perfect predictions achieved on the evaluation
set with the greedy decoding strategy (Accuracy@1); for
MG, we compute the BLEU score [57]]; for CS, we compute
BLEU-A, the geometric average of the BLEU-{1,2,3,4} scores
[57]. Basically, for each task we adopt one of the evaluation
metrics used in the original paper. The complete results of the

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

hyperparameters tuning phase are reported in our replication
package [2].

5 RESULTS DISCUSSION

We discuss our results accordingly to the formulated RQs.

5.1 Performance of T5 (RQ;) and impact of transfer
learning on performance (RQ; 1-RQ; »)

Table 5| reports the performance achieved by the different
variants of the T5 model that we experimented with. For
each task (e.g., Automatic Bug-Fixing) and for each dataset
(e.g., BFsmall), performance metrics are reported for the three
adopted training strategies (i.e., no pre-training, pre-training
single task, and pre-training multi-task). For readability
reasons, we only report the BLEU-A, but the results of
the other BLEU scores (e.g., BLEU-4) are available in our
online appendix [2]. The pre-training multi-task setting
is the same as used in our ICSE’21 paper [45] that this
work extends. Note that for some tasks (e.g., AGrqy) the
results reported in Table 5 are different as compared to
the ones reported in the ICSE paper. This is due to two
changes we performed in our experimental pipeline. First,
as compared to the ICSE paper, we updated our scripts to
exploit the latest TS version available as of today (i.e., TS
0.9.2 - https://libraries.io/pypi/t5/0.9.2) and re-executed
all of our experiments. Second, in our ICSE paper we lower-
cased the source code before providing it as input to the
T5. However, we realized that when working with Java raw
code (see e.g., the AG g, task), it is important to keep such
information considering the wide adoption of the camelCase
naming convention in such a language.

Table [| reports the results of the statistical analysis we
performed using the McNemar’s test [47] to identify (if any)
statistical differences in terms of Accuracy@l when using
different training strategies.

Focusing on the Accuracy@l, it is evident that there is
no training strategy being the best one across all tasks and
datasets. In particular: no pre-training works better on the
BF a1 dataset for automatic bug-fixing; pre-training single
task works better on the BF ;,¢q4um dataset for automatic bug-
fixing, on both datasets related to the generation fo assert
statements, and for the code summarization task; finally,
pre-training multi-task works better for the injection of code
mutants. Overall, the pre-training single task strategy seems
to be the best performing strategy. Indeed, even when it is
not the first choice for a given task/dataset, it is the second
best-performing training strategy. Also, by looking at Table [6]
we can observe that:

1) When pre-training single task is the best strategy, its
performance in terms of Accuracy@1 are significantly
better (p-value < 0.001) than the second best-performing
strategy, with ORs going from 1.13 (for CS) to 3.39
(AG rqw)- This means that chances of getting a perfect
predictions using this strategy are 13% to 339% higher
when using this strategy as compared to the second
choice.

2) When pre-training single task is not the best strategy, but
the second choice, the difference in Accuracy@l is not
significant when compared to pre-training multi-task for

9

MG gent. The only significant difference is the one in
favor of no pre-training on BF 4,411, with an OR of 0.77.

For these reasons, in our RQy we will compare the T5
using the pre-training single task strategy against the baselines.

A few observations can be made based on the findings
in Table |5 First, the additional pre-training is, as expected,
beneficial. Indeed, on five out of the six datasets the T5
performs better with pre-training. Second, the multi-task
setting did not help in most of cases. Indeed, with the
exception of MG jgen: in which the performance of pre-
training single task and pre-training multi-task are basically
the same, the single task setting performs always better. Such
a result, while surprising at a first sight, can be explained by
diverse types of input/output handled by the models across
the four tasks. Indeed, (i) the datasets related to automatic
bug-fixing and AG 445 include abstracted code instances as
input/output; (ii) the dataset used for code mutants and
AG 4, feature raw code instances as input/output; and (iii)
the one for code summarization has raw source code as
input and natural language text as output. Basically, given
the different formats, the transfer learning across different
tasks is likely to hinder the model rather than helping it.

Differently, the pre-training dataset features all three
input/output representations and, thus, provides the model
with a basic knowledge about all of them that, as a result,
boosts performance.

While we will discuss more in depth the performance of
the T5 model when comparing it to the considered baselines
(Section [5.2), it is also worth commenting on the ability of
the T5 to generate correct predictions, namely outputs that
are identical to the reference ones (e.g., a method summary
equal to the one manually written by developers). Quite
impressive are the performances achieved on the generation
of assert statements, especially on the dataset dealing with
raw source code, in which the T5 correctly predicts 68.93%
of assert statements with a single guess (75.95% when using
five guesses). The Accuracy@l is instead much lower for
the other tasks, ranging between 11.85% (fixing bugs in the
most challenging BF,,cdium dataset) up to 28.72% when
injecting mutants. Also worth noticing is the 12.02% of code
summaries generated by the T5 that are identical to the
manually written ones. In the next subsection, together with
a comparison of our model with the baselines, we present
qualitative examples of predictions generated by the T5.

5.2 Competitiveness of the T5 model compared to the
baselines (R(Q)-)

We compare the results achieved by the T5 model when
using the pre-training single task strategy with the baseline we
consider for each task (Table [B). The comparison is depicted
in Fig. P} while Table [§] shows the results of the statistical
tests, and Table |10 shows the overlap metrics described in
Section A.1]

5.2.1 Automatic Bug Fixing (BF)

When using T5 for automatically fixing bugs, the accuracy
achieved using a greedy decoding strategy (K = 1) differs
according to the dataset we consider. For example, the T5
model achieves 15% of perfect predictions on the BF g, .11

https://libraries.io/pypi/t5/0.9.2

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 10
TABLE 5: Overall results achieved by the T5 model for each tasks. The best configuration is highlighted in bold
Task Dataset Model Configuration Accuracy@l Accuracy@5 Accuracy@10 Accuracy@25 Accuracy@50 BLEU-A

1o pre-training 16.70% 29.88% 34.37% 39.57% 42.86% -

BF span pre-training single task 15.08% 32.08% 37.01% 42.51% 45.94% -

Automatic Bug-Fixin pre-training multi-task 11.61% 35.64% 43.87% 52.88% 57.70% -
grang no pre-fraining 10.50% 17.60% 2053% 24.38% 27.62% E

BF pedium pre-training single task 11.85% 19.41% 23.28% 28.60% 32.43% -

pre-training multi-task 3.65% 19.17% 24.66% 30.52% 35.56% -

1o pre-training 25.78% - - - - 78.26%

Injection of Code Mutants MG igent pre-training single task 28.72% - - - - 78.69%
pre-training multi-task 28.92% - - - - 78.29%

no pre-training 60.95% 59.14% 62.41% 69.05% 71.97% -

AG raw pre-training single task 68.93% 75.95% 77.70% 79.24% 80.22% -

Generation of Asserts in Test pre-training multi-task 58.60% 66.90% 70.31% 73.19% 74.58% -
no pre-training 47.81% 49.60% 55.04% 64.28% 68.57% -

AG aps pre-training single task 56.11% 71.26% 74.32% 76.67% 78.02% -

pre-training multi-task 44.90% 63.40% 68.23% 73.04% 73.12% -

no pre-training 11.80% - - - - 24.67%

Code Summarization cS pre-training single task 12.02% - - - - 25.21%
pre-training multi-task 11.45% - - - - 24.90%

TABLE 6: McNemar’s test (adj. p-value and OR) considering only accuracy@1 matches as correct predictions

Task Dataset Model Configuration p-value OR
no pre-training vs pre-training single task <0.001 077

BF gmall no pre-training vs pre-training multi-task < 0.001 0.46

. v pre-training multi-task vs pre-training single task < 0.001 1.67
Automatic Bug-Fixing no pre-training vs pre-training single task <0.00I 156
BF 1 edium no pre-training vs pre-training multi-task < 0.001 0.12

pre-training multi-task vs pre-training single task < 0.001 8.56

no pre-training vs pre-training single task < 0.001 151

Injection of Code Mutants MG igent no pre-training vs pre-training multi-task <0.001 138
pre-training multi-task vs pre-training single task 075 0.99

no pre-training vs pre-training single task < 0.001 339

AGraw no pre-training vs pre-training multi-task <0.001 071

. . pre-training multi-task vs pre-training single task < 0.001 4.95
Generation of Asserts in Test no pre-training vs pre-training single task <0.001 255
AG g no pre-training vs pre-training multi-task < 0.001 0.74

pre-training multi-task vs pre-training single task < 0.001 2.93

no pre-training vs pre-training single task <0.001 113

Code Summarization cs no pre-training vs pre-training multi-task < 0.001 0.83
pre-training multi-task vs pre-training single task < 0.001 1.40

dataset against 9% achieved by the baseline, with an improve-
ment of 6 percentage points, while in the most challenging
scenario, (i.e., BF ;edium) our model obtains an improvement
of 8 percentage points over the baseline (11% vs 3%). Such
improvements are statistically significant (Table [8) with ORs
of 2.39 (BF ¢mau) and 6.88 (BF ,edium), indicating higher
chance of observing a perfect prediction when using the T5
as compared to the baseline. Worth noticing is that as the
beam width increases, the performance of the T5 and of the
baseline gets closer, with the baseline performing better for
K =25and K = 50 on BF 4,411

Looking at the overlap metrics (Table [10), 25.90% of
perfect predictions on BF gy, and 28.78% on BF pedium
are shared by the two techniques. The remaining are perfect
predictions only with T5 (53.20% on BF s,qu and 36% on
BF edium) or only with the baseline (20.90% on BF g4
and 35.16% on BF ,,cdium). This indicates that the two
approaches are complementary for the bug fixing task
suggesting that further improvements could be possible by
exploiting customized ML-based bug-fixing techniques. To
further look into this finding, we analyzed the type of “code
transformation” that TS5 and the baseline were able to learn.
With “code transformation” we refer to Abstract Syntax Tree
(AST) operations needed to correctly transform the input
code into the target prediction (i.e., the AST operations

performed by developers to transform the buggy code
into the fixed code). In particular, we used the Gumtree
Spoon AST Diff [18] to collect the Delete, Insert, Move and
Update operations performed on the AST nodes when fixing
bugs. Then, for each of these operations, we extracted the
5 most popular ones (e.g., the five most popular Delete
node operations). These 20 AST-level operations (4 types
of operations x 5 most popular for each type) characterize
the successful fixing of bugs/injection of code mutants in the
three datasets. The column “Oracle” of (Table[7) reports such
numbers. Then, we took the correct predictions generated by
T5 and by the baselines and checked the extent to which
those predictions feature the “popular” AST operations
that, accordingly to our oracles, are needed to properly fix
bugs. Table [7] reports for both techniques and both datasets
(BF smmai and BF pedium) the number of times the different
AST operations were performed by the models.

Given the previously discussed superior performance of
T5, it is expected to see that it managed to correctly perform
the needed AST operations more often than the baseline.
However, what is interesting is that there are specific types
of operations that are not learned by the baseline while they
are successfully implemented by T5. This is especially true for
less popular operations such as the Insert ones, that require to
synthesize new nodes that were not present in the input AST.

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

TABLE 7: Top-20 AST operations needed to fix bugs in our dataset (see “Oracle”

predictions generated by T5 and the baseline

11

column) and their presence in correct

Delete
BFsmall BFmedium
Oracle Baseline [75] T5 Oracle Baseline |75] T5
Delete TypeAccess at Invocation 2,016 402 450 1,926 125 250
Delete Invocation at Block 1,444 294 326 1,315 159 240
Delete TypeAccess at ThisAccess 821 92 134 598 32 81
Delete VariableRead at Invocation 818 51 106 1,106 61 126
Delete FieldRead at BinaryOperator 479 92 100 651 66 116
Insert
BFsmall BFmsdwm
Oracle Baseline [75] T5 Oracle Baseline |75] T5
Insert Block at If 486 3 28 828 3 48
Insert Literal at BinaryOperator 468 5 27 736 0 37
Insert If at Block 406 2 22 659 0 33
Insert BinaryOperator at If 380 3 23 634 0 36
Insert VariableRead at Invocation 328 10 33 675 0 38
Move
BF smau BF medium
Oracle Baseline [75] T5 Oracle Baseline [75] T5
Move Invocation from Block to Invocation 633 17 61 1,005 4 86
Move VariableRead from Invocation to VariableRead 158 7 11 281 2 19
Move Assignment from Block to Assignment 120 0 13 209 1 19
Move Invocation from BinaryOperator to Invocation 95 7 11 183 1 14
Move BinaryOperator from BinaryOperator to BinaryOperator 68 0 2 174 0 9
Update
BF smau BF medium
Oracle Baseline [75] T5 Oracle Baseline [75] T5
Update Wra at Method 280 15 37 191 1 22
Update TypeAccess at Invocation 201 17 41 404 18 115
Update Invocation at Block 115 0 8 153 2 21
Update VariableRead at Invocation 101 1 12 226 0 19
Update BinaryOperator at If 56 3 8 148 1 12

TABLE 8: McNemer's test considering the correct predictions
achieved by the T5 model and the baselines when both
techniques generate only one prediction (i.e., accuracy@1)

Task Dataset (d) p-value OR
. e BF gmail <0.001 239
Automatic Bug-Fixing BF. 0 < 0.001 6.88
Injection of Code Mutants MG ;gent < 0.001 2.95
. . AG aps <0.001 619
Generation of Asserts in Test AGons <0001 4312
Code Summarization CS < 0.001 35.56

In BF ,cdium, four of the top-five AST Insert operations are
never applied by the baseline (see Table[7). Similar results are
also obtained for the Update operations, while both models
work similarly well when the bug-fix mostly requires the
deletion of existing AST nodes.

5.2.2 Injection of Code Mutants (MG)

Looking at Fig.[2]we can observe that using T5 to generate
mutants allows to obtain more accurate results than the
baseline, with the Accuracy@1 improving by 12 percentage
points, with 1,336 additional perfect predictions. The average
BLEU score also improves by ~0.02 on top of the very

good results already obtained by the baseline (i.e., 0.77).

Minor improvements in BLEU score can still indicate major
advances in the quality of the generated solutions [[14]. Also
in this case differences in terms of Accuracy@1 are statistically
significant, with the T5 model being more likely to generate
correct solutions (OR = 2.95) as compared to the baseline
approach [76] (Table 8).

Differently from the bug-fixing task, for the injection of
code mutants the percentage of shared perfect predictions
(Table |10) is slightly higher (33%) with, however, T5 being
the only one generating 50.52% of perfect predictions as com-
pared to the 16.48% generated exclusively by the baseline.

Similarly to what has been done in the context of the bug-
fixing task, Table | reports the top-20 AST-level operations
needed to correctly inject mutants in our dataset. Note
that, differently from what observed for the bug-fixing task,
injecting mutants mostly requires the insertion of new AST
nodes. The trend that we observe is, as expected, the opposite
of what we found for the bug-fixing task because the task
is the same but with reversed input/output. Indeed, the
baseline seems to correctly predict the most popular Insert
operations in the AST, while it almost ignores the more rare
Delete ones. T5 instead, covers all top-20 operations.

5.2.3 Generation of Assertions in Test Methods (AG)

T5 achieve much better performance in this task as compared
to the baseline. The gap is substantial both with (A G 435) and
without (A G qy) code abstraction (Fig. |2[) With abstraction,

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

TABLE 9: Top-20 AST operations needed to inject mutants
in our dataset (see “Oracle” column) and their presence in
correct predictions generated by T5 and the baseline

Delete
MG igent
Oracle Baseline [76] T5
Delete TypeAccess at Invocation 387 1 30
Delete Return at Block 327 20 64
Delete FieldRead at BinaryOperator 283 0 7
Delete FieldRead at Invocation 242 0 19
Delete Invocation at Block 236 0 15
Insert
MGigent
Oracle Baseline [76] T5
Insert TypeAccess at Invocation 6,230 1,125 1,744
Insert Invocation at Block 3,979 860 1,183
Insert TypeAccess at ThisAccess 2,219 479 722
Insert VariableRead at Invocation 2,061 245 466
Insert Block at If 1,795 485 671
Move
MGigent
Oracle Baseline [76] T5
Move Invocation from Block to Invocation 1,154 225 356
Move Invocation from Return to Invocation 283 55 105
Move Return from Block to Return 224 58 100
Move Assignment from Block to Assignment 190 26 56
Move Invocation from Invocation to Invocation 129 1 27
Update
MGigent
Oracle Baseline |76] T5
Update TypeAccess at Invocation 923 67 220
Update FieldRead at BinaryOperator 408 14 63
Update Wra at Method 264 1 31
Update TypeAccess at ThisAccess 228 10 73
Update TypeReference at Method 208 0 25

the T5 achieves a 56% accuracy at K = 1 against the 31%
achieved by ATLAS [82]. When both approaches are asked
to generate multiple assert statements (i.e., K = 5, 10, 25, 50)
the gap in performance ranges between 13-25 percentage
points. When using the more challenging non-abstracted
dataset A G g1, TS achieves even better results. In this regard,
when T5 is asked to generate only one assert statement
(K = 1), the reported accuracy is 51 percentage points higher
compared to the baseline , while for larger K values the
gap in performance ranges between 51-53 percentage points.
The McNemar’s test confirms the huge gap in performance
between the two techniques, with O Rs ranging between 6.19
(AG 4ps) and 43.12 (AG rqu)-

In terms of overlap, we found a trend similar to the
previously discussed task (mutants injection): On AG 455 we
have 34.92% of perfect predictions shared between the two
approaches, while the remaining instances are distributed
between the ones only predicted by T5 (58.87%) and the
ones only predicted by the baseline (6.21%). The overlap is
much smaller on the AG,,,, dataset, with only 9.56% of the
instances correctly predicted by both the approaches, 89.65%
of them correctly predicted only by T5, and 0.79% only by
the baseline.

5.2.4 Code Summarization (CS)

On this task, T5 achieves a substantial increase in BLEU score
as compared to the baseline. When considering the average
BLEU (BLEU-A), the improvement is of ~5 percentage points.
On the other hand, it can be noticed that the ROUGE-LCS

12

scores achieved when using T5 are lower than the ones
achieved by the baseline (~5 percentage points lower on
the F-measure score). Thus, looking at these metrics, there
is no clear winner, but T5 seems to be at least comparable
to the baseline. To have something easier to interpret, we
compared the two approaches in terms of the number of
perfect predictions they generate, despite the fact that such a
metric was not used in the original paper [24]. This means
counting the comments generated by a technique that are
exactly equal to the ones manually written by humans. T5
managed to generate 12.02% of perfect predictions (10,929
instances) against the 3.4% (3,048) of the baseline technique
(over 3 x better). As expected from previous results, the
majority of the perfect predictions for this task can be done
only using T5 (93.79%). A limited percentage of perfect
predictions is shared (4.79%), and a minority of instances
can be only predicted through the baseline (1.42%). The
McNemar’s test highlights a statistical significance in terms
of Accuracy@1, with an OR of 35.56.

TABLE 10: Overlap metrics for correct predictions generated
by the T5 model and the baselines.

Task Dataset (d) ~ Sharedq OnlyT5,; OnlyBL,
. . BF gman 25.90% 53.20% 20.90%
Automatic Bug-Fixing BFooium 2878% 3606% 35.16%
Injection of Code Mutants MG igent 33.00% 50.52% 16.48%
i) AG 4 34.92% 58.87% 6.21%
Generation of Asserts in Test Aoy 9.56% 89.65% 0.79%
Code Summarization cS 4.79% 93.79% 1.42%

5.2.5 Qualitative Analysis

To give a better idea to the reader about the capabilities
of the T5 model in supporting the four code-related tasks,
Fig.[3|shows two examples of perfect predictions made by T5
for each task. Each example is bordered with a dashed line
and shows (i) the input provided by the model, and (ii) the
generated output. In particular, in the case of the bug-fixing,
mutants injection, and code summarization tasks, the first
line shows the input and the second the output. Concerning
the generation of assert statements, the first two lines (i.e.,
those marked with “//Test method” and “//Focal method”)
represent the input, while the third line shows the generated
assert statement. We highlighted in bold the most relevant
parts of the output generated by the model. The bottom
part of Fig. Balso shows some “wrong” predictions (i.e., the
output of the model is different from the expected target) for
the code summarization task, that we will discuss later on.

Concerning the bug-fixing task, in the first example the
model adds the break statement to each case of the switch
block, thus allowing the program to break out of the switch
block after one case block is executed. In the second example,
instead, it changes the execution order of a statement as done
by developers to fix the bug.

As per the mutants injection, the first example represents
an arithmetic operator deletion, while the second is a non void
method call mutation [1]. While these transformations might
look trivial, it is worth remembering that they are considered
as correct since they reproduce real bugs that used to affect
these methods. Thus, the model is basically choosing where
to mutate and what to mutate in such a way to simulate

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

13

Fig. 2: Performance of the T5 model against the experimented baselines.

Automatic Bug Fixing (BF)

Injection of Code Mutants (MG)

beam width beam width

Baseline [1 — T5[25
m 28] Baseline [15] | T5 [25]
100%— 100%—
90%—] BFsmai 90%—] BFmedium
(Methods up to 50 tokens) (Methods up to 100 tokens) -
80%~ 80%~ BLEU-A Accuracy@1
70%—] 20%—]
% Gg"f 562; Baseline [1]: Baseline [1]:
o o
£ oo S s T5 [25]: 0.79 T5 [25]: 20% (3,327)
8 a9 5% 8 409
8 40%— 50 42% ’ S 40%— _—
30%—| 30%— 23%
20%—159/ 20%—, 1%
10%—| 10%—|
T T T LT T 1T T 11 T T 1T T 1T T 1T T 111
1 5 10 15 2025 30 35 40 45 50 1 5 10 15 2025 30 35 40 45 50
beam width beam width
Generation of Asserts in Tests (AG) Code Summarization (CS)
ac Baseline [16] — T5[25] nc Baseline [11] I T5 [25]
abs raw
100%— (Abstracted code) 100% (Raw code) 100%— 100%—
90%— 90%—) o
ool o 78% posoll I 90%— 90%—
ol RETBAD ’ //*”"*/‘ 80%— 80%—
70%—| 70% o © 70%—] 2 70%—
3 60%—| & 60%—{ 5% 5 3
g g 8 60%—| @ 60%—|
g 50%— 56% 3 50% 2 50%— W 50%—
& 40%— & 40%— W 409 S 40%—
30%— 30%—] D 300, 2 309
20%— 20%— 20%—| 20%—
10%— 10%—| 10%—] I I 10%—
rT I T I T 1T 1T T 11 T 11 T T T 1T 11 T T T T
1 5 10 15 20 25 30 35 40 45 50 1 5 10 15 2025 30 35 40 45 50 BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-A P R F

BLEU Variants ROUGE LCS

real bugs (accomplishing one of the main goals of mutation
testing).

Both examples of correct prediction we report involve the
generation of an assert statement including an invocation
to the focal method (i.e., the main method tested by the test
method). While the first is a rather “simple” assertFalse
statement, the second required the guessing of the expected
value (i.e., assertEquals).

Finally, for the code summarization, the two reported
examples showcase the ability of T5 to generate meaningful
summaries equivalent to the ones manually written by
developers. For this task, we also reported in the bottom part
of the figure some wrong but still meaningful predictions.
In this case, the grey text represent the original summary
written by developers, while the bold one has been generated
by T5. In both cases, the generated summary is semantically
equivalent and even more detailed that the manually written
one.

These two examples help in discussing an important
limitation of our analysis: While we assume the correct
predictions to be the only valuable outputs of T5 and of the ex-
perimented baselines, they actually represent a lower-bound
for their performance. Indeed, there are other predictions
that, even if wrong, could still be valuable for developers,
such as the two shown for the code summarization task.

5.3 Training and Inference Time

Table [11| reports the training time (in hours) for the nine
models we trained. On average, the infrastructure we used
for training requires 31.5 seconds every 100 training steps

which, given our batch size = 128, means that 12,800 training
instances can be processed in 31.5 seconds. Of course,
multiple passes (usually referred to as epochs) are needed
on the dataset during the training. Table [TT|shows that (i) the
pre-training has a cost of ~22h that should be added on top
of the fine-tuning cost shown for each task; (ii) as expected,
the training time increases with the increase in size of the
training dataset, with the code summarization task being the
most expensive in terms of training time; (iii) clearly, the
multi-task setting requires to train the model on all tasks,
resulting in the highest training time (175h).

TABLE 11: Training time (hours) for the trained T5 models

Mutants

. Code
Bug-fixing generation

Generation of
t: ization

assert stat Multi-Task

Training

No pre-training 6.26 5.85
Pre-training 28.10 27.72

17.51
39.40

123.55

145.42 175.00

Table presents, instead, the results of the inference
time analysis (i.e., the time needed to run the model on a
given input and obtain the prediction). Such analysis allows
to understand the extent to which such a model can be used
in practice. Table |12|reports the inference time in seconds for
different K values (e.g., with K = 10 the reported time is the
one required by the model to generate 10 possible solutions).

Concerning the bug-fixing task, the time needed to
generate a fix depends on the dataset, since the complexity of
the instances they feature is different. In the BF',;,,,1; dataset,
the average inference time ranges between 0.72s (K = 1)
and 5.99s (K = 50), while it is larger on the BF ,cdium
dataset (1.86s for K = 1 and 20.90s for K = 50). For the

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 14

Fig. 3: Examples of perfect and alternative predictions

Bug-fixing

private void METHOD_1 (int VAR_1 , int offset) { switch (VAR_1) { case @ : this . VAR 2 = offset ; case 1 : this . VAR_3 = offset ; case INT_1 :
ithis . VAR_4 = offset ; case INT_2 : this . VAR_5 = offset ; } }

i
'private void METHOD_1 (int VAR_1 , int offset) { switch (VAR_1) { case @ : this . VAR 2 = offset ; break ; case 1 : this . VAR 3 = offset ; break ;
case INT_1 : this . VAR_4 = offset ; break ; case INT_2 : this . VAR_5 = offset ; break ; } }

public void METHOD_1 (final long [1 data , boolean length) { int VAR_1 = (data . length) * (VAR_2) ; if (length) METHOD_2 (VAR_1) ; METHOD_3
(((position) + VAR_1)) ; VAR_3 . METHOD_4 (data , VAR_4 , null , ((VAR_5) + (position)) , VAR_1) ; position += VAR_1 ;
end = ((position) > (end)) ? position : end ; }

public void METHOD_1 (final long [] data , boolean length) { int VAR_1 = data . length ; if (length) METHOD_2 (VAR_1) ; VAR_1l %= VAR_2 ;
METHOD_3 (((position) + VAR_1)) ; VAR_3 . METHOD_4 (data , VAR_4 , null , ((VAR5) + (position)) , VAR_1) ; position += VAR_1
end = ((position) > (end)) ? position : end ; }

Mutants generation
ipublic int METHOD_1 (int a) { int index = VAR_1 [(a + 1)] ; return VAR_2 . METHOD_2 (index) ; }

i
public int METHOD_1 (int a) { int index = VAR_1 [@] ; return VAR_2 . METHOD_2 (index) ; }
i

\// Test method

]

|shouldNeverValidateNullUserIV () { final uk . gov . gchq . gaffer . federatedstore . FederatedAccess access = new uk . gov . gchq . gaffer
federatedstore . FederatedAccess . Builder () . addingUserId (null) . build () ; "<AssertPlaceHolder>" ; }

lisvalidToExecute (uk . gov . gchq . gaffer . user . User) { return (isPublic) || ((null != user) && ((isAddingUser (user))
1 € 1 (isAuthsNullOrEmpty ())) & (isUserHasASharedAuth (user))))) ; }

i

lorg . junit . Assert . assertFalse (access . isValidToExecute (null))

i
i
|
i

‘ |
]

1// Focal method
|
i
|
i
]
i
]

i// Test method

itestClone () { org . apache . flink . api . common . accumulators . DoubleMinimum min = new org . apache . flink . api . common . accumulators .
DoubleMinimum () ; double value = 3.14159265359 ; min . add (value) ; org . apache . flink . api . common . accumulators . DoubleMinimum clone =
min . clone () ; "<AssertPlaceHolder>" ; }

]
!// Focal method
;getLocalValue () { return null ; }

larg . junit . Assert . assertEquals (value , clone . getLocallValue () , 0.0)

=

‘public void update() { check Widget () ; Utils . paintComponentImmediately (handle) ; update (false) ; }

i
forces all outstanding paint requests for the widget

public void setWordWrap(int row, int column, boolean wrap) { prepareCell (row , column) ; String wrapValue = wrap ? 8 ; DOM .
setStyleAttribute (getElement (row, column) , , wrapValue) ; }

Wrong but meaningful predictions for the code summarization task

testCase getTestCase (String implementationNumber) int index = Integer . valueOf (implementationNumber) ; int value = return getTestCase (index) ;

return the specific test case

returns the test case with the given implementation number

protected void doConfigure(HierarchicalConfiguration config) throws ConfigurationException {}
override to handle config

subclasses can override this method to perform custom configuration

TABLE 12: Inference time with different beam size values. ;¢ 0.94s, while for K = 50 it is 7.60s. The generation of assert

statement is very fast for low values of K (0.73s for AG s

K BF gman BF 1cdium MG igent AG gps AGrqw cs and 0.53s for AGraw with K = 1), while it gets slower for

1072 1.86 0.94 0.73 0.53 0.20 higher values of K (10.24 for AG 45 and 5.45 for AG,a.
5 1.47 3.69 1.70 1.59 1.04 0.36 ith K = 50). Finall . th d izati
0 191 526 220 264 152 04 Wi = 50). Finally, concerning the code summarization
25 354 11.10 4.32 5.45 3.15 0.81 task, T5 takes only 0.20s for K = 1 and 1.45s for K = 50 to
50 599 2090 7.60 1024 545 145 output code summaries for a method given as input.

Overall, considering that all the targeted tasks do not

have strong real-time constraints (e.g., a developer can wait

injection of code mutants, we observed results comparable a few seconds for the automated fixing of a bug), the
to those of BF 4,41 With K = 1 the average inference time inference times should not hinder the model applicability in

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

practice. Also, the reported inference times were obtained by
running the model on a consumer-level device and by only
using CPUs. We also computed the inference time using an
Nvidia Tesla P100 GPU equipped with 16GB of VRAM. The
achieved results are available in our replication package [2].
In summary, we observed an average decrease of inference
time of ~70% as compared to the one obtained using the
CpPU.

6 THREATS TO VALIDITY

Construct validity. Threats to construct validity concern
the relationship between theory and observation. We used
existing datasets that are popular and used in the commu-
nity for both pre-training and fine-tuning our model with
minimal additional processing (e.g., removal of duplicates
after abstraction in the dataset used for the pre-training).
Additionally, we have released all of our code and models in
our replication study [2] for verification.

Internal validity. Threats to internal validity concern
factors, internal to our study, that could influence its results.
Many factors can influence our results, from model architec-
ture, hyperparameter choices, data processing, the data itself,
etc. For mitigating these issues, we have adopted methodolo-
gies usually employed in DL-based research. Specifically, we
performed a detailed analysis of hyperparameter choices as
discussed in Section Concerning the pre-training phase,
we used the default TS5 parameters selected in the original
paper [60] since we expect little margin of improvement
for such a task-agnostic phase. For the fine-tuning, due
to computational feasibility reasons, we did not change
the model architecture (e.g.,, number of layers), but we
experiment with different learning rates schedulers. We
are aware that a more extensive calibration would likely
produce better results. Finally, we pre-trained the model
by masking 15% of tokens (i.e., words in comments and
code tokens in the raw and abstracted code) in the ~2.7M
instances from the pre-training dataset. However, we did
not experiment with the model after pre-training to verify
whether it actually learned the languages of interest (i.e.,
raw source code, abstracted source code, and technical
natural language). To address this limitation, we randomly
selected 3k instances from the BF',,.q;um test set, both in
their abstract and raw representation (6k in total). We also
selected 3k code summaries from the CS dataset obtaining
a dataset of 9k instances, equally split across raw source
code, abstracted source code, and technical natural language.
Note that these are instances that have not been used to
pre-train the model and, thus, are unseen for a model only
subject to pre-training. We randomly masked 15% of tokens
in each of those instances, asking the pre-trained model to
predict them. T5 correctly predicted 87,139 out of the 102,711
masked tokens (i.e., 84.8% accuracy). As expected, given the
different complexity of the three “languages”, T5 achieved a
higher accuracy of 90.8% when working on abstracted code,
82.7% on raw code, and 64.6% when guessing tokens from
technical language. Overall, such results indicate that the
model successfully gathered knowledge about the languages
of interest during the pre-training.

Also the quality of the employed datasets can dramati-
cally impact the achieved results. This is because there may

15

be biases making the dataset not representative of the real
world. To assess the quality of our datasets we conducted
various analyses around sampling bias and data snooping as
recommended by Watson ef al. [81]].

To this end, we conducted an exploratory data analysis
(EDA), which helps answering questions related to the
reliability and quality of our datasets. To accomplish this, we
performed a two-fold statistical procedure: complexity size
and token distributions. In the complexity size procedure, we
count the number of tokens per dataset and data partition.
Then, we present the relative distribution in log scale. While
in the token procedure, we concentrated on counting specific
tokens by popularity or special interest (e.g., i f, assert, or
public). The purpose of the EDA is to monitor the size of
datasets and its impact in the model performance. EDA’s
results can be found in our web appendix [2].

Conclusion validity. Threats to conclusion validity con-
cern the relationship between evaluation and outcome. To
this extent, we used appropriate statistical procedures, also
adopting p-value adjustment when multiple tests were used
within the same analysis.

External validity. Threats to external validity are related
to the generalizability of our findings. Our study focused on
the T5 model on four tasks using six datasets, all of which
only involved Java code. While it is unclear how our model
would perform if trained on other programming languages,
excluding the abstraction component, the whole pipeline
is language agnostic and can be easily adapted to other
languages for evaluating this.

We also performed an analysis of our dataset aimed at
finding out the generalizability of our models. This analysis
assessed the level of data snooping among our datasets’
training and test sets and how this impacts our model’s
results. To accomplish this we calculate the overlap between
our fine-tuning datasets’ training and test sets by computing
the pairwise Levenshtein Distance [40] between the two sets.
With these distances calculated, we computed the correlation
between the distances and the performance of our model on
the different test sets.

Specifically, we selected a statistically representative
sample (confidence level = 95% and confidence interval = 5%)
of each training set and calculated the pairwise Levenshtein
Distance [40] between it and the entirety of the test set for
each fine-tuning dataset. Next, depending on the type of
performance metric (Perfect Prediction or BLEU Score), we
calculate the correlation between the minimum, median, and
maximum distances of all sampled training examples to each
test example and the performance of our model on the test set.
For the perfect prediction, we use Point Biserial Correlation
(PBC) [71] as it allows to compare binary and continuous
data. For the BLEU score, we use Pearson Correlation [71]]
since both are continuous values.

Table[13]shows the correlation for each dataset. As shown,
there exists a negative correlation between the minimum and
median distances and model performance, i.e., the model
tends to perform worse as the distance between the training
and test examples increases. For the maximum distance case,
there is instead a positive correlation for perfect prediction
performance, i.e., the model tends to perform better the
further away the maximum training examples are from
the test examples. Such a result may be simply due to

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

TABLE 13: Correlation between training-test set similarity
and test set performance.

Dataset Min Median Max
BFsma.ll -0.15 -0.03 0.04
BF redium ~ -0.05 -0.03 0.01
MG igent 0.21 0.03 -0.23
AG gps -0.21 -0.14 029

G raw -0.21 -0.14 019
cs -0.38 -017 -0.09

specific outliers present in the test set (i.e., an instances being
very far from the ones in the training set). However, all
the correlations we observed are quite low, supporting the
generalizability of our models.

7 CONCLUSION

We presented an empirical study aimed at investigating the
usage of transfer learning for code-related tasks. In particular,
we pre-trained and fine-tuned several variants of the Text-
To-Text Transfer Transformer (T5) model with the goal of
supporting four code-related tasks, namely automatic bug-
fixing, injection of code mutants, generation of assert statements
in test methods, and code summarization. We compared the
performance achieved by the T5 against state-of-the-art
baselines that proposed DL-based solutions to these four
tasks.

The achieved results showed that: (i) the pre-training
process of the T5, as expected, boosts its performance across
all tasks; (ii) the multi-task fine-tuning (i.e., a single model
trained for different tasks) instead, does not consistently help
in improving performance, possibly due to the different
types of “data” manipulated in the four tasks (ie., raw
code, abstracted code, natural language); (iii) in its best
configuration, the T5 performs better that the baselines
across all four tasks. When looking at the latter finding
it is important to remember that the baselines used for
comparison are not pre-trained and, thus, they (i) exploited
less training data, and (ii) did not need the additional ~22
hours of computation required by the pre-training.

Future work will aim at further advancing performance
by employing larger versions of the T5. Also, while our
results do not support the usage of multi-task learning in
code-related tasks, we believe additional investigations are
needed on this side. For example, by only considering a set of
tasks all manipulating the same type of data (e.g., all working
on raw code), it is possible that the benefits of multi-task
learning would emerge.

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 851720). W&M team has been supported in part by the
NSF CCF-1955853, CCF-1815186 and CCF-2007246 grants.
Any opinions, findings, and conclusions expressed herein
are the authors’ and do not necessarily reflect those of the
Sponsors.

16

REFERENCES

[1] “Pit - real world mutation testing https:/ /pitest.org.”

[2] “Replication package https://github.com/antonio-mastropaolo/
TransferLearning4Code.”

[3] “Utilizing fast testing to transform java development into an
agile, quick release, low risk process.” [Online]. Available:
http:/ /www.agitar.com/

[4] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional
attention network for extreme summarization of source
code,” CoRR, vol. abs/1602.03001, 2016. [Online]. Available:
http:/ /arxiv.org/abs/1602.03001

[5] U. Alon, R. Sadaka, O. Levy, and E. Yahav, “Structural language
models of code,” arXiv, pp. arXiv-1910, 2019.

[6] N. Arivazhagan, A. Bapna, O. Firat, D. Lepikhin, M. Johnson,
M. Krikun, M. X. Chen, Y. Cao, G. E Foster, C. Cherry,
W. Macherey, Z. Chen, and Y. Wu, “Massively multilingual
neural machine translation in the wild: Findings and challenges,”
CoRR, vol. abs/1907.05019, 2019. [Online]. Available: http:
/ /arxiv.org/abs/1907.05019

[7]1]. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: learning
to fix bugs automatically,” Proc. ACM Program. Lang., vol. 3, no.
OOPSLA, pp. 159:1-159:27, 2019.

[8] D.Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” CoRR, vol. abs/1409.0473,
2014.

[9] E.T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plas-

tic surgery hypothesis,” in Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser.

FSE 2014. New York, NY, USA: ACM, 2014, pp. 306-317.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio

chord recognition with recurrent neural networks.” in ISMIR.

Citeseer, 2013, pp. 335-340.

S. Brody, U. Alon, and E. Yahav, “Neural edit completion,” arXiv

preprint arXiv:2005.13209, 2020.

D. B. Brown, M. Vaughn, B. Liblit, and T. Reps, “The care and

feeding of wild-caught mutants,” in Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE

2017. New York, NY, USA: ACM, 2017, pp. 511-522. [Online].

Available: http://doi.acm.org/10.1145/3106237.3106280

A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezze,

“Automatic recovery from runtime failures,” in Proceedings of the

2013 International Conference on Software Engineering, ser. ICSE "13.

Piscataway, NJ, USA: IEEE Press, 2013, pp. 782-791.

[14] I. Caswell and B. Liang, “Recent advances in

google translate,” https:/ /ai.googleblog.com /2020/06/,

recent-advances-in-google-translate.html, 2020.

Z.Chen, S. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and

M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-

to-end program repair,” IEEE Transactions on Software Engineering,

2019. [Online]. Available: http://arxiv.org/abs/1901.01808

K. Cho, B. van Merrienboer, C. Giilgehre, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using RNN

encoder-decoder for statistical machine translation,” CoRR, vol.

abs/1406.1078, 2014.

M. Ciniselli, N. Cooper, L. Pascarella, A. Mastropaolo, E. Aghajani,

D. Poshyvanyk, M. Di Penta, and G. Bavota, “An empirical study

on the usage of transformer models for code completion,” IEEE

Transactions on Software Engineering, 2021.

[18] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,

“Fine-grained and accurate source code differencing,” in

Proceedings of the International Conference on Automated Software

Engineering, 2014, pp. 313-324. [Online]. Available: https:

/ /hal.archives-ouvertes.fr/hal-01054552/file/main.pdf

G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Genera-

tion for Object-oriented Software,” in Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations

of Software Engineering, ser. ESEC/FSE "11. ACM, 2011, pp. 416-419.

M. Gabel and Z. Su, “A study of the uniqueness of source code,” in

Proceedings of the Eighteenth ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ser. FSE “10. New York, NY,

USA: ACM, 2010, pp. 147-156.

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A

systematic study of automated program repair: Fixing 55 out of

105 bugs for $8 each,” ser. ICSE’12.

A. Graves, “Sequence transduction with recurrent neural

networks,” CoRR, vol. abs/1211.3711, 2012. [Online]. Available:

http:/ /arxiv.org/abs/1211.3711

[10]

[11]

[12]

(13]

[15]

[16]

[17]

(19]

[20]

[21]

[22]

https://pitest.org
https://github.com/antonio-mastropaolo/TransferLearning4Code
https://github.com/antonio-mastropaolo/TransferLearning4Code
http://www.agitar.com/
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://doi.acm.org/10.1145/3106237.3106280
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://arxiv.org/abs/1901.01808
https://hal.archives-ouvertes.fr/hal-01054552/file/main.pdf
https://hal.archives-ouvertes.fr/hal-01054552/file/main.pdf
http://arxiv.org/abs/1211.3711

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source
code,” in 2010 17th Working Conference on Reverse Engineering, 2010,
pp. 35-44.

S.Haque, A. LeClair, L. Wu, and C. McMillan, “Improved automatic
summarization of subroutines via attention to file context,” in MSR
"20: 17th International Conference on Mining Software Repositories, 2020.
ACM, 2020, pp. 300-310.

H. Hata, E. Shihab, and G. Neubig, “Learning to generate
corrective patches using neural machine translation,” CoRR, vol.
abs/1812.07170, 2018. [Online]. Available: http://arxiv.org/abs/
1812.07170

S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian journal of statistics, pp. 65-70, 1979.

J. Howard and S. Ruder, “Universal language model fine-tuning
for text classification,” arXiv preprint arXiv:1801.06146, 2018.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment genera-
tion,” in Proceedings of the 26th Conference on Program Comprehension,
ser. ICPC ?18. Association for Computing Machinery, 2018, p.
200?210.

H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” arXiv preprint arXiv:1909.09436, 2019.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, Aug. 2016, pp. 2073-2083. [Online].
Available: https:/ /www.aclweb.org/anthology /P16-1195

A. Jaffe,]. Lacomis, E. J. Schwartz, C. L. Goues, and B. Vasilescu,
“Meaningful variable names for decompiled code: A machine
translation approach,” in Proceedings of the 26th Conference on
Program Comprehension, ser. ICPC '18, 2018, pp. 20-30.

S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), ser. ASE’17, Oct. 2017, pp. 135-146, iSSN:.

N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation
models,” in Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing. Seattle, Washington, USA: Association
for Computational Linguistics, October 2013, pp. 1700-1709.

R. Karampatsis and C. A. Sutton, “Maybe deep neural
networks are the best choice for modeling source code,”
CoRR, vol. abs/1903.05734, 2019. [Online]. Available: http:
/ /arxiv.org/abs/1903.05734

S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by
feeding trees to transformers,” arXiv preprint arXiv:2003.13848, 2020.
T. Kudo, “Subword regularization: Improving neural network
translation models with multiple subword candidates,” arXiv
preprint arXiv:1804.10959, 2018.

T. Kudo and J. Richardson, “Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text
processing,” CoRR, vol. abs/1808.06226, 2018. [Online]. Available:
http:/ /arxiv.org/abs/1808.06226

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Trans. Software
Eng., vol. 38, no. 1, pp. 54-72, 2012.

A. LeClair, S. Jiang, and C. McMillan, “A neural model for gen-
erating natural language summaries of program subroutines,” in
Proceedings of the 41st International Conference on Software Engineering,
ser. ICSE '19, 2019, pp. 795-806.

V. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707,
1966.

C.-Y. Lin, “Rouge: A package for automatic evaluation of sum-
maries,” in Text summarization branches out, 2004, pp. 74-81.

Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: How far
are we?” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE 2018, 2018, pp. 373-384.
M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients
already exist? an empirical inquiry into the redundancy assump-
tions of program repair approaches,” in Companion Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
Companion 2014. New York, NY, USA: ACM, 2014, pp. 492—495.
A. Mastropaolo, E. Aghajani, L. Pascarella, and G. Bavota, “An
empirical study on code comment completion,” in 2021 IEEE Inter-

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

17

national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2021, pp. 159-170.

A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader-Palacio,
D. Poshyvanyk, R. Oliveto, and G. Bavota, “Studying the usage
of text-to-text transfer transformer to support code-related tasks,”
in 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021. IEEE, 2021, pp. 336-347.

P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103-119, 2016.

Q. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, no. 2,
pp. 153-157, 1947.

A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian,
“Deepdelta: Learning to repair compilation errors,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019, 2019, pp. 925-936.

K. Moran, D. N. Palacio, C. Bernal-Cardenas, D. McCrystal,
D. Poshyvanyk, C. Shenefiel, and]. Johnson, “Improving
the effectiveness of traceability link recovery using hierarchical
bayesian networks,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, oct 2020, pp. 873-885. [Online]. Available:
https:/ /doi.ieeecomputersociety.org/

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language
summaries for java classes,” in 2013 21st International Conference on
Program Comprehension (ICPC), 2013, pp. 23-32.

M. Namavar, N. Nashid, and A. Mesbah, “A controlled experiment
of different code representations for learning-based bug repair,”
arXiv preprint arXiv:2110.14081, 2021.

A.T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical statistical
machine translation for language migration,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2013, 2013, pp. 651-654.

——, “Migrating code with statistical machine translation,” in
Companion Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE Companion 2014, 2014, pp. 544-547.

H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and
H. Rajan, “A study of repetitiveness of code changes in software
evolution,” in Proceedings of the 28th IEEE/ACM International Confer-
ence on Automated Software Engineering, ser. ASE’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 180-190.

Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source
code using statistical machine translation,” in Proceedings of the
30th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE "15, 2015, pp. 574-584.

C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for java,” in OOPSLA’07, 01 2007, pp. 815-816.

K. Papineni, S. Roukos, T. Ward, and W.-]. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics,
ser. ACL "02, 2002, pp. 311-318.

D. Pierret and D. Poshyvanyk, “An empirical exploration of
regularities in open-source software lexicons,” in The 17th IEEE
International Conference on Program Comprehension, ICPC 2009,
Vancouwver, British Columbia, Canada, May 17-19, 2009, 2009, pp. 228—
232.

A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
“Recovering test-to-code traceability using slicing and textual
analysis,” J. Syst. Softw., vol. 88, no. C, p. 147-168, Feb. 2014.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” 2019.

K. Rahmani, M. Raza, S. Gulwani, V. Le, D. Morris, A. Radhakr-
ishna, G. Soares, and A. Tiwari, “Multi-modal program inference:
A marriage of pre-trained language models and component-based
synthesis,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA, oct 2021.
V. Raychev, M. Vechev, and E. Yahav, “Code completion
with statistical language models,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI "14. New York, NY, USA: ACM, 2014, pp.
419-428. [Online]. Available: http://doi.acm.org/10.1145/2594291
2594321

http://arxiv.org/abs/1812.07170
http://arxiv.org/abs/1812.07170
https://www.aclweb.org/anthology/P16-1195
http://arxiv.org/abs/1903.05734
http://arxiv.org/abs/1903.05734
http://arxiv.org/abs/1808.06226
https://doi.ieeecomputersociety.org/
http://doi.acm.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2594291.2594321

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

R. Robbes and A. Janes, “Leveraging small software engineering
data sets with pre-trained neural networks,” in Proceedings of the
41st International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE (NIER) 2019, Montreal, QC, Canada, May
29-31, 2019, A. Sarma and L. Murta, Eds. IEEE / ACM, 2019, pp.
29-32.

P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting user
story information in developer-client conversations to generate
extractive summaries,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ?17, 2017, p. 49?59.

S. Shamshiri, “Automated Unit Test Generation for Evolving
Software,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. FSE’'15. Bergamo, Italy: ACM, 2015,
pp- 1038-1041.

S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard,
“Automatic error elimination by horizontal code transfer across
multiple applications,” SIGPLAN Not., vol. 50, no. 6, pp. 43-54, Jun.
2015.

G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,” in
2011 33rd International Conference on Software Engineering (ICSE),
2011, pp. 101-110.

, “Generating parameter comments and integrating with
method summaries,” in 2011 IEEE 19th International Conference
on Program Comprehension, 2011, pp. 71-80.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” CoRR, vol. abs/1409.3215, 2014.
A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” arXiv preprint
arXiv:2005.08025, 2020.

R. F. Tate, “Correlation between a discrete and a continuous
variable. point-biserial correlation,” The Annals of mathematical
statistics, vol. 25, no. 3, pp. 603-607, 1954.

M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Gener-
ating accurate assert statements for unit test cases using pretrained
transformers,” arXiv preprint arXiv:2009.05634, 2020.

M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshy-
vanyk, “On learning meaningful code changes via neural machine
translation,” in Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, 2019, pp. 25-36.

M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “Deep learning similarities from different repre-
sentations of source code,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), 2018, pp. 542-553.
M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 4, pp. 19:1-19:29, 2019.

[76]

[77]

[78]

[79]

(80]

[81]

(82]

(83]

(84]

(85]

[86]

[87]

18

, “Learning how to mutate source code from bug-fixes,” in 2019
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2019, Cleveland, OH, USA, September 29 - October 4, 2019,
2019, pp. 301-312.

R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk,
and G. Bavota, “Automating code review activities 2.0,” in 2022
IEEE/ACM 44th International Conference on Software Engineering
(ICSE). IEEE.

R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and G. Bavota,
“Towards automating code review activities,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 163-174.

B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering clear,
natural identifiers from obfuscated js names,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017, 2017, pp. 683-693.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp. 5998—
6008.

C. Watson, N. Cooper, D. Palacio, K. Moran, and D. Poshyvanyk, “A
systematic literature review on the use of deep learning in software
engineering research,” ACM Transactions on Software Engineering
and Methodology.

C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,
“On learning meaningful assert statements for unit test cases,”
in Proceedings of the 42nd International Conference on Software

Engineering, ICSE 2020, 2020, p. To Appear.
M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep

learning code fragments for code clone detection,” in 2016 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2016, pp. 87-98.

M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward Deep Learning Software Repositories,” in Proceedings
of the 12th IEEE Working Conference on Mining Software Repositories
(MSR’15), ser. MSR “15. Piscataway, NJ, USA: IEEE Press, 2015,
pp. 334-345. [Online]. Available: http://dl.acm.org/citation.cfm?
1d=2820518.2820559

M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshy-
vanyk, “Sorting and transforming program repair ingredients via
deep learning code similarities,” in 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2019, p. to appear.

Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning
for software engineering,” arXiv preprint arXiv:2011.14597, 2020.

S. Zafar, M. Z. Malik, and G. S. Walia, “Towards standardizing and
improving classification of bug-fix commits,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2019, pp. 1-6.

http://dl.acm.org/citation.cfm?id=2820518.2820559
http://dl.acm.org/citation.cfm?id=2820518.2820559

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

Antonio Mastropaolo is a Ph.D. student in the
Faculty of Informatics at the Universita della
Svizzera italiana (USI), Switzerland, where he
is part of the Software Institute. He received his
MSc. in Software System Security from Universita
degli studi del Molise, ltaly, in July 2020. His
research interests include the study and the
application of deep-learning techniques to foster
code-related tasks. More information available at:
https://antoniomastropaolo.com.

Nathan Cooper received a B.S. degree in Soft-
ware Engineering from the University of West
Florida in 2018. He is currently a Ph.D. candidate
in Computer Science at William & Mary under
the advisement of Dr. Denys Poshyvanyk and
is a member of the Semeru Research group.
He has research interests in Software Engineer-
ing, Machine / Deep Learning applications for
Software Engineering, information retrieval, and
question & answering applications for Software
Engineering. He has published in the top peer-
reviewed Software Engineering venues ICSE and MSR. He has also
received the ACM SIGSOFT Distinguished paper award at ICSE’20.
More information is available at https://nathancooper.io/#/.

19

David N. Palacio is a Ph.D. Candidate in Com-
puter Science at The College of William & Mary,
where he is a member of the SEMERU Research
Group supervised by Dr. Denys Poshyvanyk.
He received his MSc. in Computer Engineering
at Universidad Nacional de Colombia (UNAL),
Colombia, 2017. His research is concentrated
on interpretable methods for deep learning code
generators, specifically, towards using causal
inference to explain deep software models. His
fields of interest lie in complexity science, neu-
roevolution, causal inference, and interpretable machine learning for the
study and automation of software engineer processes. More information
available at https://danaderp.github.io/danaderp/.

Simone Scalabrino is a Research Fellow at the
University of Molise, Italy. He has received his
MS degree from the University of Salerno, and
his PhD degree from the University of Molise,
defending a thesis on automatically assessing
and improving source code readability and under-
standability. His main research interests include
code quality, software testing, and empirical soft-
ware engineering. He has received three ACM
SIGSOFT Distinguished Paper Awards at ICPC
2016, ASE 2017, and MSR 2019. He is co-
founder and CSO of datasound, a spin-off of the University of Molise.
More information available at: https://dibt.unimol.it/sscalabrino/.

https://antoniomastropaolo.com
https://nathancooper.io/#/
https://danaderp.github.io/danaderp/
https://dibt.unimol.it/sscalabrino/

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

Denys Poshyvanyk is a Professor of Computer
Science at William and Mary. He received the
MS and MA degrees in Computer Science from
the National University of Kyiv-Mohyla Academy,
Ukraine, and Wayne State University in 2003 and
2006, respectively. He received the PhD degree
in Computer Science from Wayne State Univer-
{ k sity in 2008. He served as a program co-chair
:(4 for ASE’21, MobileSoft'19, ICSME’16, ICPC’'13,
) WCRE'12 and WCRE'11. He currently serves on
the editorial board of IEEE Transactions on Soft-
ware Engineering (TSE), ACM Transactions on Software Engineering and
Methodology (TOSEM), Empirical Software Engineering Journal (EMSE,
Springer), Journal of Software: Evolution and Process (JSEP, Wiley)
and Science of Computer Programming. His research interests include
software engineering, software maintenance and evolution, program
comprehension, reverse engineering and software repository mining.
His research papers received several Best Paper Awards at ICPC’06,
ICPC’07, ICSM’'10, SCAM’10, ICSM’13, CODAPSY’19 and ACM SIG-
SOFT Distinguished Paper Awards at ASE’'13, ICSE’15, ESEC/FSE’15,
ICPC’16, ASE’17, ESEC/FSE’19 and ICSE’20. He also received the
Most Influential Paper Awards at ICSME’16, ICPC’17, ICPC’20 and
ICSME’21. He is a recipient of the NSF CAREER award (2013). He
is a member of the IEEE and ACM. More information is available at:
http://www.cs.wm.edu/~denys/\

20

Rocco Oliveto is a Professor in the Department
of Bioscience and Territory at University of Molise
(Italy). He is the Chair of the Computer Science
program and the Director of the Laboratory of
Computer Science and Scientific Computation
of the University of Molise. He received the PhD
in Computer Science from University of Salerno
(Italy) in 2008. His research interests include
traceability management, information retrieval,
software maintenance and evolution, search-
based software engineering, and empirical soft-
ware engineering. He is author of about 150 papers appeared in
international journals, conferences and workshops. He serves and has
served as organizing and program committee member of international
conferences in the field of software engineering. He is a member of IEEE
Computer Society and ACM.

Gabriele Bavota is an associate professor at
the Faculty of Informatics of the Universita della
Svizzera italiana (USI), Switzerland, where he
is part of the Software Institute and he leads
the SEART research group. He received the
PhD in Computer Science from the University
of Salerno, Italy, in 2013. His research inter-
ests include software maintenance and evolu-
tion, code quality, mining software repositories,
and empirical software engineering. On these
topics, he authored over 140 papers appeared
in international journals and conferences and has received four ACM
Sigsoft Distinguished Paper awards at the three top software engineering
conferences: ASE 2013 and 2017, ESEC-FSE 2015, and ICSE 2015. He
also received the best/distinguished paper award at SCAM 2012, ICSME
2018, MSR 2019, and ICPC 2020. He is the recipient of the 2018 ACM
Sigsoft Early Career Researcher Award for outstanding contributions in
the area of software engineering as an early career investigator and the
principal investigator of the DEVINTA ERC project. More information is
available at: https://www.inf.usi.ch/faculty/bavota/.

http://www.cs.wm.edu/~denys/
https://www.inf.usi.ch/faculty/bavota/

	1 Introduction
	2 Background and Related Work
	2.1 Automatic Bug-Fixing
	2.2 Injection of Code Mutants
	2.3 Generation of Assert Statements in Test Methods
	2.4 Code Summarization

	3 Text-to-Text-Transfer-Transformer
	3.1 An Overview of T5
	3.2 Pre-training of T5
	3.3 Fine-tuning of T5
	3.3.1 Fine-tuning dataset
	3.3.2 Decoding Strategy
	3.3.3 Data Balancing for the multi-task model

	4 Study Design
	4.1 Data Collection and Analysis
	4.2 Hyperparameter Tuning

	5 Results Discussion
	5.1 Performance of T5 (RQ1) and impact of transfer learning on performance (RQ1.1-RQ1.2)
	5.2 Competitiveness of the T5 model compared to the baselines (RQ2)
	5.2.1 Automatic Bug Fixing (BF)
	5.2.2 Injection of Code Mutants (MG)
	5.2.3 Generation of Assertions in Test Methods (AG)
	5.2.4 Code Summarization (CS)
	5.2.5 Qualitative Analysis

	5.3 Training and Inference Time

	6 Threats to Validity
	7 Conclusion
	References
	Biographies
	Antonio Mastropaolo
	Nathan Cooper
	David N. Palacio
	Simone Scalabrino
	Denys Poshyvanyk
	Rocco Oliveto
	Gabriele Bavota

