<]
TUDelft

Delft University of Technology

Generating Class-Level Integration Tests Using Call Site Information

Derakhshanfar, Pouria; Devroey, Xavier; Panichella, Annibale; Zaidman, Andy; van Deursen, Arie

DOI
10.1109/TSE.2022.3209625

Publication date
2023

Document Version
Final published version

Published in
IEEE Transactions on Software Engineering

Citation (APA)

Derakhshanfar, P., Devroey, X., Panichella, A., Zaidman, A., & van Deursen, A. (2023). Generating Class-
Level Integration Tests Using Call Site Information. IEEE Transactions on Software Engineering, 49(4),
2069-2087. https://doi.org/10.1109/TSE.2022.3209625

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TSE.2022.3209625
https://doi.org/10.1109/TSE.2022.3209625

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

2069

Generating Class-Level Integration
Tests Using Call Site Information

Pouria Derakhshanfar™, Student Member, IEEE, Xavier Devroey ™, Member, IEEE, Annibale Panichella,

Andy Zaidman

, Member, IEEE, and Arie van Deursen

, Member, IEEE

Abstract—Search-based approaches have been used in the literature to automate the process of creating unit test cases. However,
related work has shown that generated tests with high code coverage could be ineffective, i.e., they may not detect all faults or kill all
injected mutants. In this paper, we propose CLiNG, an integration-level test case generation approach that exploits how a pair of classes,
the caller and the callee, interact with each other through method calls. In particular, CLing generates integration-level test cases that
maximize the Coupled Branches Criterion (CBC). Coupled branches are pairs of branches containing a branch of the caller and a
branch of the callee such that an integration test that exercises the former also exercises the latter. CBC is a novel integration-level
coverage criterion, measuring the degree to which a test suite exercises the interactions between a caller and its callee classes. We
implemented Cuing and evaluated the approach on 140 pairs of classes from five different open-source Java projects. Our results show
that (1) CLinG generates test suites with high CBC coverage, thanks to the definition of the test suite generation as a many-objectives
problem where each couple of branches is an independent objective; (2) such generated suites trigger different class interactions and
can kill on average 7.7% (with a maximum of 50%) of mutants that are not detected by tests generated randomly or at the unit level; (3)
Cuing can detect integration faults coming from wrong assumptions about the usage of the callee class (25 for our subject systems) that
remain undetected when using automatically generated random and unit-level test suites.

Index Terms—CLING, class integration testing, coverage criteria, search-based software testing, test adequacy

1 INTRODUCTION

EARCH-BASED approaches have been applied to a variety
Sof white-box testing activities [1], among which test case
and data generation [2]. In white-box testing, most of the
existing work has focused on the unit level, where the goal
is to generate tests that achieve high structural (e.g., branch)
coverage. Prior work has shown that search-based unit test
generation can achieve high code coverage [3], [4], [5],
detect real-bugs [6], [7], and help developers during debug-
ging activities [8], [9].

Despite these undeniable results, researchers have identi-
fied various limitations of the generated unit tests [7], [10],
[11]. Prior studies have questioned the effectiveness of the
generated unit tests with high code coverage in terms of
their capability to detect real faults or to kill mutants when
using mutation coverage. For example, Gay et al. [10] have
highlighted how traditional code coverage could be a poor
indicator of test effectiveness (in terms of fault detection

o Pouria Derakhshanfar, Annibale Panichella, Andy Zaidman, and Arie van
Deursen are with SERG, Delft, University of Technology, 2628 CD, Delft,
Netherlands. E-mail: {p.derakhshanfar, a.panichella, a.e.zaidmanj@tudelft.nl.

o Xavier Devroey is with NADI, University of Namur, rue de Bruxelles 61,
B-5000, Namur, Belgium. E-mail: xavier .devroey@unamur.be.

Manuscript received 27 August 2021; revised 25 July 2022; accepted 12 Sep-
tember 2022. Date of publication 14 October 2022; date of current version 18
April 2023.

This work was supported in part by EU Project STAMP ICT-16-10 under
Grant 731529, in part by EU Horizon 2020 H2020-ICT-2020-1-RIA
“COSMOS” project under Grant 957254, and in part by NWO Vici project
“TestShift” under Grant VI.C.182.032.

(Corresponding author: Pouria Derakhshanfar.)

Recommended for acceptance by A. Orso.

Digital Object Identifier no. 10.1109/TSE.2022.3209625

rate and mutation score). Shamshiri et al. [7] have reported
that around 50% of faults remain undetected when relying
on generated tests with high coverage. Similar results have
also been observed for large industrial systems [3].

Gay et al. [10] have observed that traditional unit-level
adequacy criteria only measure whether certain code ele-
ments are reached, but not how each element is covered. The
quality of the test data and the paths from the covered ele-
ment to the assertion play an essential role in better test
effectiveness. As such, they have advocated the need for
more reliable adequacy criteria for test case generation
tools. While these results hold for generated unit tests, other
studies on hand-written unit tests have further highlighted
the limitation of unit-level code coverage criteria [11], [12].

In this paper, we explore the usage of the integration
code between coupled classes as guidance for the test gener-
ation process. The idea is that, by exercising the behavior of
a class under test E (the calleE) through another class R (the
calleR) calling its methods, R will handle the creation of
complex parameter values and exercise valid usages of E. In
other words, the caller R contains integration code that (1)
enables the creation of better test data for the callee E, and
(2) allows to better validate the data returned by E.

Integration testing can be approached from many differ-
ent angles [13], [14]. Among others, dataflow analysis seeks to
identify possible interactions between the definition and
usage (def-use) of a variable. Various coverage criteria based
on intra- (for class unit testing) and inter-class (for class inte-
gration testing) def-uses have been defined over the years [15],
[16], [17], [18], [19], [20], [21]. Dataflow analysis faces several
challenges, including the scalability of the algorithms to iden-
tify def-use pairs [22] and the number of test objectives that is

0098-5589 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3549-9019
https://orcid.org/0000-0003-3549-9019
https://orcid.org/0000-0003-3549-9019
https://orcid.org/0000-0003-3549-9019
https://orcid.org/0000-0003-3549-9019
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
mailto:p.derakhshanfar@tudelft.nl
mailto:a.panichella@tudelft.nl
mailto:a.e.zaidman@tudelft.nl
mailto:xavier.devroey@unamur.be

2070

much higher for dataflow criteria compared to control flow
ones like branch and branch pair coverage [15], [20].

In our case, we focus on class integration testing between a
caller and a callee [23]. Class integration testing aims to
assess whether two or more classes work together properly
by thoroughly testing their interactions [23]. Our idea is to
complement unit test generation for a class under test by
looking at its integration with other classes using control
flow analysis. To that end, we define a novel structural ade-
quacy criterion called the Coupled Branches Coverage criterion
(CBO), targeting specific integration points between two
classes. Coupled branches are pairs of branches (r, e), with r
a branch of the caller, and e a branch of the callee, such that
an integration test that exercises branch r also indirectly
exercises branch e.

Furthermore, we implement a search-based approach
that generates integration-level test suites leveraging the
CBC criterion. We name our approach CLING (for class inte-
gration testing). CLING uses a state-of-the-art many-objective
solver that generates test suites maximizing the number of
covered coupled branches. For the guidance, CLING uses
novel search heuristics defined for each pair of coupled
branches (the search objectives).

We conducted an empirical study on 140 well-distributed
(in terms of complexity and coupling) pairs of caller and
callee classes extracted from five open-source Java projects.
Our results show that CLING can achieve up to 99% CBC cov-
erage, with an average of 49% across all pairs of classes. We
analyzed the benefits of the integration-level test cases gener-
ated by CLING compared to unit-level tests generated by Evo-
Surte [24], the state-of-the-art generator of unit-level tests,
and random tests generated by Ranpoor [25], a random-
based test case generator. In particular, we assess whether
integration-level tests generated by CLING can kill mutants
and detect faults that would remain uncovered when relying
on other generated tests given the same generation budget.

According to our results, on average, CLING kills 7.7%
(resp. 13%) of the mutants per class that remain undetected
by other tests generated using EvoSurte (resp. Ranpoor) for
both the caller and the callee. The improvements in muta-
tion score are as high as 50% for certain pairs of classes. Our
analysis indicates that many of the most frequently killed
mutants are produced by integration-level mutation opera-
tors. Finally, we have found 25 integration faults (i.e., faults
due to wrong assumptions about the usage of the callee
class) that were detected only by the integration tests gener-
ated with CLING (and not through testing with EvoSurte or
RANDOOP).

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes the background and related work in the
area. Section 3 defines the Coupled Branches Criteria and
introduces CLING, our integration-level test case generator. Sec-
tion 4 describes our empirical study, while Section 5 reports
the corresponding empirical results. Section 6 discusses the
practical implication of our results. Section 7 discusses the
threats to validity. Finally, Section 8 concludes the paper.

2 BACKGROUND AND RELATED WORK

McMinn [2] defined search-based software testing (SBST) as
“using a meta-heuristic optimizing search technique, such as a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

genetic algorithm, to automate or partially automate a testing
task”. Within this realm, test data generation at different
testing levels (such as unit testing, integration testing, etc.) has
been actively investigated [2]. This section provides an over-
view of earlier work in this area.

2.1 Search-Based Approaches for Unit Testing

SBST algorithms have been extensively used for unit test
generation. Previous studies confirmed that such generated
tests achieve a high code coverage [5], [26], real-bug detec-
tion [3], and a debugging cost reduction [9], [27], comple-
menting manually-written tests.

From McMinn'’s [2] survey about search-based test data
generation, we observe that most of the current approaches
rely on the control flow graph (CFG) to abstract the source
code and represent possible execution flows. The CFG,, =
(N, Ey,) represents a method (or function in procedural
programming languages) m as a directed graph of basic
blocks of code (the nodes N,;,), while E,, is the set of the con-
trol flow edges. An edge connects a basic block n; to another
one ny if the control may flow from the last statement of n;
to the first statement of n,.

Listing 1 presents the source code of Person, a class rep-
resenting a person and her transportation habits. A Person
can drive home (lines 4-10), or add energy to her car (lines
12-18). Fig. 1 presents the CFG of two of Person’s methods,
with the labels of the nodes representing the line numbers
in the code. Since method driveToHome calls method
addEnergy, node 6 is transformed to two nodes, which are
connected to the entry and exit point of the called method.
This transformation is explained in the last paragraph of
this section.

Listing 1. Class Person

1 class Person{
2 private Car car =newCar () ;

3 protected boolean lazy = false;
4 public void driveToHome () {

5 if (car.fuelAmount < 100) {
6 addEnergy () ;

7 } else {

8 car.drive() ;

9 }

10 }

11

12 protected void addEnergy () {

13 if (this.lazy) {

14 takeBus () ;

15 } else {

16 car.refuel () ;

17 }

18 }

19 }

Many approaches based on CFGs combine two common
heuristics to reach a high branch and statement coverage in
unit-level testing: the branch distance and the approach level.
The branch distance measures (based on a set of rules) the
distance to satisfying (true branch) and the distance to not
satisfying (false branch) a particular branching node in the
program. For instance, the distance to true for the condition

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

DERAKHSHANFAR ETAL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION

Person

addEnergy() driveToHome()

()
(=)

Fig. 1. Class-level CFG for class Person.

at line 5 in Listing 1 is 100 — car. fuelAmount + 1, and the
distance to false is car. fuel Amount — 100. The approach level
measures the distance between the execution path and a tar-
get node in a CFG. For that, it relies on the concepts of post-
dominance and control dependency [28]. As an example, in
Fig. 1, node 8 is control dependent on node 5 and node 8 post-
dominates edge (5,8). The approach level is the minimum
number of control dependencies between a target node and
an executed path by a test case.

In this study, we analyze how a class is used/invoked by
the other classes within the same system. For this purpose,
we merge the Class-level Control Flow Graph (CCFG) of
target callee and caller classes.

2.2 Search-Based Approaches for Integration
Testing

Integration testing aims at finding faults that are related to

the interaction between components. We discuss existing

integration testing criteria and explain the search-based

approaches that use these criteria to define fitness functions

for automating integration-level testing tasks.

2.2.1 Integration Testing Criteria

Jin et al. [13] categorize the connections between two proce-
dures into four types: call couplings (type 1) occur when one
procedure calls another procedure; parameter couplings (type
2) happen when a procedure passes a parameter to another
procedure; shared data couplings (type 3) occur when two
procedures refer to the same data objects; external device cou-
pling (type 4) happens when two procedures access the
same storage device. They introduce integration testing cri-
teria according to the data flow graph (containing the defini-
tions and usages of variables at the integration points) of
procedure-based software. Their criteria, called coupling-
based testing criteria, require that the tests’ execution paths
cover the last definition of a parameter’s value in the CFG
of a procedure (the caller procedure), a node (the call site) call-
ing another procedure with that parameter, and the first use
of the parameter in the callee (and in the caller after the call
if the parameter is a call-by-reference).

Harrold etal. [16] introduced data flow testing for a single
class focusing on method-integration testing. They define
three levels of testing: intra-method testing, which tests an
individual method (i.e., the smallest possible unit to test);
inter-method testing, in which a public method is tested that

2071

(in)directly calls other methods of the same class, and intra-
class testing, in which the various sequences of public meth-
ods in a class are tested. For data flow testing of inter-method
and intra-class testing, they defined a Class-level Control Flow
Graph (CCFG). The CCFG of class C is a directed graph
CCFG¢ = (Nom, Eci) which is a composition of the control
flow graphs of methods in C; the CFGs are connected
through their call sites to methods in the same class [16]. This
graph demonstrates all paths that might be crossed within
the class by calling its methods or constructors.

Let us consider again the class Person in Listing 1. The
CCFG of class Person is created by merging the CFGs of its
method, as demonstrated in Fig. 3. For example, in the CFG
of the method Person.driveToHome (), the node 6¢ is a
call site to Person.addEnergy (). In the approach intro-
duced by Harrold et al. [16], they detect the def-use paths
in the constructed CCFGs and try to cover those paths.

Denaro et al. [22] revisited previous work on data flow
analysis for object-oriented programs [16], [17] to define an
efficient approach to compute contextual def-use coverage [17]
for class integration testing. The approach relies on contex-
tual data flow analysis to take state-dependent behavior of
classes that aggregate other classes into account. Compared
to def-use paths, contextual def-use include the chain of
method calls leading to the definition or the use.

A special case is represented by the polymorphic interac-
tions that need to be tested. Alexander et al. [18], [19] used
the data flow graph to define testing criteria for integrations
between classes in the same hierarchy tree.

All of the mentioned approaches are using data-flow anal-
ysis to define integration testing criteria. However, generating
data-flow graphs covering the def-uses involved in between
classes is expensive and not scalable in complex cases [15].
Vivanti et al. [20] shows that the average number of def-use
paths in a single class in isolation is three times more than the
number of branches. By adding def-use paths between the
non-trivial classes, this number grows exponentially.

In search-based approaches, the number of search objec-
tives matters, as too many objectives lead to search process
misguidance. Compared to previous work, our approach
does not try to cover def-use paths. Instead, we use a control
flow analysis to identify from a CCFG a restricted number of
pairs of branches (in a caller and a callee) that are not trivi-
ally executed together. For instance, the couple of branches
(13,16) and (b8,b9) in Fig. 3 are used to define the search
objectives of our test case generator. Section 3 details the
analysis of the CCFG to identify such pairs of branches,
including for special cases of interaction (namely inheri-
tance and polymorphism), and the definition of the objec-
tives and search algorithm.

CCFGs have previously been used in other approaches.
For instance, Wang et al. [29] merge the CFGs of methods
of classes in the dependencies of the software under test to
identify dependency conflicts.

2.2.2 Search-Based Approaches

Search-based approaches are widely used for test order-
ing [301, [31], [32], [33], [33], [34], [35], [36], [37], [38], [39],
[40], [41], typically with the aim of executing those tests
with the highest likelihood of failing earlier on. However,

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

2072

search-based approaches have rarely been used for generat-
ing class integration tests. Ali Khan et al. [42] have pro-
posed a high-level evolutionary approach that detects the
coupling paths in the data-flow graphs of classes and have
used it to define the fitness function for the genetic algo-
rithm. They also proposed another approach for the same
goal relying on Particle Swarm Optimization [43]. Since
objectives are defined according to the def-use paths
between classes, the number of search objectives can grow
exponentially, thus severely limiting the scalability of the
approach (as we explained in Section 2.2.1).

Most related to our approach is the work on dynamic data
flow testing (DyNaFLow) from Denaro et al. [21]. Dynamic
data flow testing is a two steps test amplification pipeline [44],
[45] where: (i) a set of existing test cases are executed to col-
lect execution traces, compute new data flow information,
and subsequently derive new test objectives; and (ii) the
new test objectives are fed to a test case generation tool. The
pipeline is repeated until no new test objectives are found.

In this study, we propose a novel approach for class inte-
gration test generation. Instead of using the data flow graph,
which is more expensive to construct than a class call graph,
or incrementally amplify the existing test suite, requiring
several executions of a test case generation tool, we use the
information available in the class call graph of the classes to
calculate the fitness of the generated tests. We do note that
we could not find any available implementation of data
flow-based approaches.

2.3 Evolutionary Approaches for Other Testing Levels
Arcuri [46] proposed EvoMaster, an evolutionary-based
white-box approach for system-level test generation for
RESTful APIs. A test for a RESTful web service is a sequence
of HTTP requests. EvoMaster tries to cover three types of
targets: (i) the statements in the System Under Test (SUT);
(ii) the branches in the SUT; and (iii) different returned
HTTP status codes. Although EvoMaster tests different clas-
ses in the SUT, it does not systematically target different
integration scenarios between classes.

In contrast to EvoMaster, other approaches perform fuzz-
ing [47], “an automated technique providing random data as
input to a software system in the hope to expose a vulnerability.”
Fuzzing uses information like grammar specifications [47],
[48], [49], [50] or feedback from the program during the exe-
cution of tests [51] to steer the test generation process. These
approaches are black-box and do not rely on any knowledge
about classes in the SUT. Hence, their search processes are
not guided by the integration of classes.

Our approach performs white-box testing. It monitors
the interaction between the target classes and strives to
cover different integration scenarios between them.

3 CLASS INTEGRATION TESTING

The main idea of our class integration testing (hereinafter
referred to as CLING) is to test the integration of two classes
by leveraging the usage of one class by another class. More
specifically, we focus on the calls between the former, the
callee (E), and the latter, the caller (R). By doing so, we ben-
efit from the additional context setup by R before calling £ (
e.g., initializing a complex input parameter), and the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

1 v i @ - -
: Genetic algorithm

Caller Detect covering| _|_ .
class (R) rl methods } Initialization Selection
2 .
Callee T Detect coupled || - Fitness Crossover
class (E) ” branches evaluation Y

Repair
chromosomes

A

Y

Application
bytecode

Repair
chromosomes

Fig. 2. General overview of CLING.

additional post-processing after E returns (e.g., using the
return value later on in R), thus (implicitly) making
assumptions on the behavior of E.

Fig. 2 presents the general overview of CLING. CLING takes
as input a pair of caller-callee (R, E) classes with at least
one call (denoted call site hereafter) from R to E. Since the
goal of CLING is to generate test cases covering E by calling
methods in R, the first step (@) statically collects the list of
covering methods in R that, when called, may directly or indi-
rectly cover statements in E. This list is later used during
the generation process to ensure that test cases contain calls
to covering methods. The second step (@) statically analyzes
the CCFGs of R and FE to identify the coupled branches
between R and E used later on to guide the search. The
CCEFGs are statically built from the CFGs of the methods
(including inherited ones) in R and E. Finally, the genera-
tion of the test cases (®) uses a genetic algorithm with two
additional repair steps, ensuring that the crossover and
mutation only produce test cases able to cover lines in E.
The result is a test suite for E, whose test cases invoke meth-
ods in R that cover the interactions between R and E.

The remainder of this section describes our novel underly-
ing Coupled Branches Criterion, the corresponding search-
heuristics, and test case generation in CLING.

3.1 Coupled Branch Testing Criterion

To test the integration between two classes £ and R, we
need to define a coverage criterion that helps us to measure
how thoroughly a test suite 7" exercises the interaction calls
between the two classes (E and R). One possible coverage
criterion would consist of testing all possible paths (inter-
class path coverage) that start from the entry node of the caller
R, execute the integration calls to £ and terminate in one of
the exit points of R. However, such a criterion will be
affected by the path explosion problem [52]: the number of
paths increases exponentially with the cyclomatic complex-
ity of £ and R, and thus the number of interaction calls
between the two classes.

To avoid the path explosion problem, we define an integra-
tion-level coverage criterion, namely the Coupled Branch
Criterion (CBC), where the number of coverage targets
remains polynomial to the cyclomatic complexity of £ and
R. More precisely, CBC focuses on call coupling between
caller and callee classes. Intuitively, let s € R be a call site,
i.e., a call statement to a method of the class E. Our criterion

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

DERAKHSHANFAR ETAL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION

Car (Callee) Person (Caller)

refuel()

addEnergy() driveToHome()

otherMethod()

Fig. 3. Merging CCFGs of two classes: Person (caller) and Car (callee).

requires to cover all pairs of branches (b,,b.), where b, is a
branch in R that leads to s (the method call), and b, is a
branch of the callee E that is not trivially covered by every
execution of E. So, in the worst case, the number of cover-
age targets is quadratic in number of branches in the caller
and callee classes.

3.1.1 Target Caller Branches

Among all branches in the caller class, we are interested in
covering the branches that are not trivially (always) exe-
cuted, and that always lead to the integration call site (i.e.,
calling the callee class) when covered. We refer to these
branches as target branches for the caller.

Definition 3.1 (Target branches for the caller). For a call
site s in R, the set of target branches Br(s) for the caller R con-
tains the branches having the following characteristics: (1) the
branches are outgoing edges for the node on which s is control
dependent (i.e., nodes for which s post-dominates one of its out-
going branches but does not post-dominate the node itself); and
(ii) the branches are post-dominated by s, i.e., branches for
which all the paths through the branch to the exit point pass
through s.

To understand how we determine the target branches in
the caller, let us consider the example of the caller and the
callee in Fig. 3. The code for the class Person is reported in
Listing 1. The class Person contains two methods, addE-
nergy () and driveToHome (), with the latter invoking
the former (line 6 in Listing 1). The method Person.addE-
nergy () invokes the method refuel () of the class Car
(line 16 in Listing 1). The method Person.driveToHome
() invokes the method Car.drive () (line 8 in Listing 1).
Therefore, the class Person is the caller, while Car is the
callee.

Fig. 3 shows an excerpt of the Class-level Control Flow
Graphs (CCFGs) for the two classes. In the figure, the names
of the nodes are labelled with the line number of the corre-
sponding statements in the code of Listing 1. Node 16 in
Person.addEnergy () is a call site to Car.refuel (); it
is also control dependent on nodes 5 (Person.driveTo-
Home ()) and 13 (Person.addEnergy ()). Furthermore,
node 16 only post-dominates branch (13,16). Instead, the
branch (5, 6¢) is not post-dominated by node 16 as covering

2073

(5,6¢) does not always imply covering node 16 as well.
Therefore, the branches in the caller Person.addEnergy
() that always lead to the callee are Bpeyson(Car.refuel()) =
{(13,16)}. Hence, among all branches in the caller class
(Person in our example), we are interested in covering the
branches that, when executed, always lead to the integration
call site (i.e., calling the callee class). We refer to these
branches as target branches for the caller.

3.1.2 Target Callee Branches

Like the target branches of the caller, the target branches of
the callee are branches that are not trivially (always) exe-
cuted each time the method is called.

Definition 3.2 (Target branches for the callee). The set of
target branches Bg(s) for the callee E contains branches satis-
fying the following properties: (i) the branches are among the
outgoing branches of branching nodes (i.e., the nodes having
more than one outgoing edge); and (ii) the branches are accessi-
ble from the entry node of the method called in s.

Let us consider the example of Fig. 3 again. This time, let
us look at the branches in the callee (Car) that are directly
related to the integration call. In the example, executing the
method call Car.refuel () (node 16 of the method Per-
son.addEnergy ()) leads to the execution of the branching
node b8 of the class Car. Hence, the set of branches affected
by the interaction calls is Bca,(Car.refu-el()) = {(b8, b9);
(b8,010)}. In the following, we refer to these branches as tar-
get branches for the callee. Note that, for a call site s in R call-
ing FE, the set of target branches for the callee also includes
branches that are trivially executed by any execution of s.

3.1.3 Coupled Branches

Given the sets of target branches for both the caller and
callee, an integration test case should exercise at least one tar-
get branch for the caller (branch affecting the integration call)
and one target branch for the callee (i.e., the integration call
should lead to covering branches in the callee). In the follow-
ing, we define pairs of target branches (b, € Bg(s),b. €
Bg(s)) as coupled branches because covering b, can lead to
covering b, as well.

Definition 3.3 (Coupled branches). Let Bi(s) be the set of
target branches in the caller class R; let Bg(s) be the set of tar-
get branches in the callee class E; and let s be the call site in R
to the methods of E. The set of coupled branches CBp g(s) is
the cartesian product of Br(s) and Bg(s)

CBRE(S) = CBR,E(S) = BR(S) X BE(S) (1)

In our example of Fig. 3, we have two coupled branches:
the branches ((13,16), (b8,09)) and the branches ((13,16),
(b8,010)).

Definition 3.4 (Set of coupled branches). Let S =
(s1,--.,sk) be the list of call sites from a caller R to a callee E,
the set of coupled branches for R and E is the union of the cou-
pled branches for the different call sites S

CBrr = UsesCBRr&(s),

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

2074

3.1.4 The Coupled Branches Coverage Criterion (CBC)

Based on the definition above, the CBC criterion requires
that for all the call sites S from a caller R to a callee E, a
given test suite 7" covers all the coupled branches

{(ri,ei) € CBrpg|3t € T : t covers r; and e;}|
|CBR x| '

CBCRrpE =

We do note that this formula is only relevant if there are
indeed call interactions between caller and callee. As for
classical branch and branch-pair coverage, CBp r may con-
tain incompatible branch-pairs (e.g., when the conditions
are mutually exclusive). However, detecting and filtering
such pairs is an undecidable problem. Hence, in this study,
we target all coupled branches.

3.1.5 Inheritance and Polymorphism

In the special case where the caller and callee classes are in
the same inheritance tree, we use a different procedure to
build the CCFG of the super-class and find the call sites S.
The CCFG of the super-class is built by merging the CFGs
of the methods that are not overridden by the sub-class. As
previously, the CCFG of the sub-class is built by merging
the CFGs of the methods defined in this class, including the
inherited methods overridden by the sub-class (other non-
overridden inherited methods are not part of the CCFG of
the sub-class).

Listing 2. Class GreenPerson

1 class GreenPerson extends Person{

2 private HybridCar car = new HybridCar () ;
3 @override
4 public void addEnergy () {
5 if (this.lazy) {
6 takeBus () ;
7 telse if (chargerAvailable()) {
8 car.recharge ()
9 }else{
10 car.refuel();
11 }
12 }
13
14 private void chargerAvailable () {
15 if (ChargingStation.takeavailableSta-
tions () .size>0){
16 return true;
17 }
18 return false;
19 }
20 }

For instance, the class GreenPerson in Listing 2, repre-
senting owners of hybrid cars, extends class Person from
Listing 1. For adding energy, a green person can either
refuel or recharge her car (lines 7 to 11). GreenPerson
overrides the method Person.addEnergy () and defines
an additional method GreenPerson.chargerAvail-
able() indicating whether the charging station is avail-
able. Only those two methods are used in the CCFG of the
class GreenPerson presented in Fig. 4, inherited methods
are not included in the CCFG; the CCFG of the super-class

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

GreenPerson

addEnergy() chargerAvailable()

Fig. 4. CCFG of GreenPerson as subclass.

Person does not contain the method Person.addEnergy
(), redefined by the sub-class GreenPerson.

The call sites S are identified according to the CCFGs,
depending on the caller and the callee. If the caller R is the
super-class, S will contain all the calls in R to methods that
have been redefined by the sub-class. For instance, nodes 6
and 13 in Fig. 3 with Person as caller. If the caller R is the
sub-class, S will contain all the calls in R to methods that
have been inherited but not redefined by R. For instance,
node 7c in Fig. 4 with GreenPerson as caller.

3.2 Cuna

CLING is the tool that we have developed to generate integra-
tion-level test suites that maximize the proposed CBC ade-
quacy criterion. The inputs of CLING are the (1) application’s
bytecode, (2) a caller class R, and (3) a callee class E. As pre-
sented in Fig. 2, CLING first detects the covering methods
(step @) and identifies the coupled branches CBp z(s) for
the different call sites (step ®), before starting the search-
based test case generation process (detailed in the following
subsections). CLING produces a test suite that maximizes the
CBC criterion for R and F.

Satisfying the CBC criterion is essentially a many-objective
problem where integration-level test cases have to cover pairs
of coupled branches separately. In other words, each pair of
coupled branches corresponds to a search objective to opti-
mize. The next subsection describes our search objectives.

3.2.1 Search Objectives

In our approach, each objective function measures the dis-
tance of a generated test from covering one of the coupled
branch pairs. The value ranges between [0, +00) (zero denot-
ing that the objective is satisfied). Assume that CBry =
{c1,¢2,...,¢,} is the set of coupled branches (r;, e;) between
R and E. Then, the fitness for a test case ¢ is defined by the
following distinct objectives

d(cht) = D(rlvt) S3] D(elvt)
Objectives = { ... (2)
d(ca,t) = D(rn,t) © D(en,t)

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

DERAKHSHANFAR ETAL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION

where D(b,t) = al(b,t) + bd(b,t) computes the distance
between the test ¢ to the branch b using the classical
approach level al(b,t) (i.e., the minimum number of control
dependencies between b and the execution path of ¢) and
normalized branch distance bd(b,t) (i.e., the distance, com-
puted based on a set of rules, to the branch leading to b in
the closest node on the execution path of t) [2]; and
D(r;,t) ® D(e;,t) is defined as D(r;,t)+ 1 if D(r;,t) > 0
(i.e., the caller branch is not covered) and D(e;,t) otherwise
(i.e., the caller branch is covered).

For example, assume that we want to measure the fit-
ness of a test case t/, generated during the search process
while targeting coupled branches from the classes Per-
son (caller class) and Car (callee class). This test case
covers the following path in the CCFG depicted by
Fig. 3: Entry — 13 — 16 — b8 — b10 — Ewit. As
explained in Section 3.1.3, this pair of classes contains
two coupled branches: ((13,16),(b8,010)) and
((13,16), (b8,49)), each corresponding to a search objec-
tive. Since t' covers both of the branches in the first cou-
ple, the objective corresponding to that couple is fulfilled
and its fitness value is 0. In contrast, ¢ only covers the
first branch of the second couple (i.e., (b8,09) is not cov-
ered). In this case, D(r,t') equals zero, but D(e,t') is cal-
culated using the approach level and branch distance
heuristics. Since ¢’ covers all of the control dependent
branches the approach level, al(b,t'), equals zero. The
branch distance, bd(b,t') € [0,1], is calculated according
to the concrete values used in the branching condition in
the last covered control dependent node (here, b8) where
the execution path of ¢’ changed away from reaching to
the second target branch (b8, 09).

3.2.2 Search Algorithm

To solve such a many-objective problem, we tailored the
Many-Objective Sorting Algorithm (MOSA) [53] to gener-
ate test cases through class integration. MOSA has been
introduced and assessed in the context of unit test gener-
ation [53] and security testing [54]. Additionally, previ-
ous studies [26], [53] have shown that MOSA is very
competitive compared with alternative algorithms when
handling hundreds and thousands of testing objectives.
Interested readers can find more details about the origi-
nal MOSA algorithm in Panichella et al. [53]. Although
a more efficient variant of MOSA has recently been pro-
posed [55], such a variant (DynaMOSA) requires to have
a hierarchy of dependencies between coverage targets
that exists only at the unit level. Since targets in unit
testing are all available in the same control flow graph,
the dependencies between objectives can be calculated
(i.e., the control dependencies). In contrast, CLING’s objec-
tive is covering combinations of targets in different con-
trol flow graphs. Since covering one combination does
not depend on the coverage of another combination,
DynaMOSA is not applicable to this problem.

Therefore, in CLING, we tailored MOSA to work at the
integration level, targeting pairs of coupled branches
rather than unit-level coverage targets (e.g., statements).
In the following, we describe the main modifications we
applied to MOSA to generate integration-level test cases.

2075

3.2.3 Initial Population

The search process starts by generating an initial population
of test cases. A random test case is a sequence of statements
(object instantiations, primitive statements, method calls, and
constructor calls to the class under test) of variable lengths.
More precisely, the random test cases include method calls
and constructors for the caller R, which directly or indirectly
invoke methods of the callee E (covering methods). Although
CLING generates these test cases randomly, it extends the ini-
tialization procedure used for search-based crash reproduc-
tion [27]. In particular, the initialization procedure in CLING
gives a higher priority to methods in the caller class R that
invoke methods of the callee class E. While calls to other
methods of R are also inserted, their insertion has a lower
probability. This prioritization ensures to generate tests cov-
ering call sites to the callee class. In the original MOSA algo-
rithm, all methods of the class under test are inserted in
each random test case with the same probability without
any prioritization. The execution time of the initialisation
procedure is part of the search budget.

3.2.4 Mutation and Crossover

CLING uses the traditional single-point crossover and muta-
tion operators [24] (adding, changing and removing state-
ments) with an additional procedure to repair broken
chromosomes. The initial test cases are guaranteed to con-
tain at least one covering method (a method of R that directly
or indirectly invokes methods of F). However, mutation
and crossover can lead to generating offspring tests that do
not include any covering method. We refer to these chromo-
somes as broken chromosomes. To fix the broken chromo-
somes, the repair procedure works in two different ways,
depending on whether the broken chromosome is created
by the crossover or by the mutation.

If the broken chromosome is the result of the mutation
operator, then the repair procedure works as follows: let ¢
be the broken chromosome and let M be the list of covering
methods; then, CLING applies the mutation operator to ¢ in
an attempt to insert one of the covering methods in M. If
the insertion is not successful, then the mutation operator is
invoked again within a loop. The loop terminates when
either a covering method is successfully injected in ¢ or
when the number of unsuccessful attempts is greater than a
threshold (50 by default). In the latter case, ¢ is not inserted
in the new population for the next generation.

If the broken chromosome is generated by the crossover
operator, then the broken child is replaced by one of its
parents.

3.2.5 Polymorphism

If the caller and callee are in the same hierarchy and the cal-
ler is the super-class, CLING cannot generate tests for the cal-
ler class that will cover the callee class (since the methods to
cover are not defined in the super-class). This is the case for
instance if the super-class (caller) calls abstract methods
defined in the sub-class (callee). In this particular case,
CLING generates tests for the callee class. However, it selects
the covering methods only from the inherited methods
which are not overridden by the callee (sub-class). A cover-
ing method should be able to cover calls to the methods that

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

2076

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

TABLE 1
Projects in Our Empirical Study

Project # Caller Callee Calls Coupled branches

cc o cc o count o min count o max
closure 26 1,221.3 1,723.0 377.2 472.5 70.3 101.0 4 10,542 17,080 60,754
mockito 20 115.3 114.4 127.8 113.2 39.5 64.9 0 1,185 1,974 6,929
time 51 68.7 84.0 87.2 92.3 239 50.5 0 494 1,093 5,457
lang 18 145.0 177.8 235.3 2427 124 14.6 2 409 598 1,826
math 25 79.2 88.4 57.5 64.4 18.8 34.5 2 294 613 2,682
All 140 301.1 859.5 160.6 257.7 32.4 62.8 0 2,412 8,294 60,754

Indicates the number of caller-callee pairs. CC indicates the cyclomatic complexity of the caller and callee classes. Calls indicates the number of calls from the
caller to the callee. Coupled branches indicates the number of coupled branches.

have been redefined by the sub-class. With this slight change,
CLNG can improve the CBC coverage, as described in
Section 3.1.5.

3.3 Implementation

We implemented CLING as an open-source tool written in
Java.! The tool relies on the EvoSurte [24] library as an exter-
nal dependency. It implements the code instrumentation for
pairs of classes, builds the CCFGs at the byte-code level,
and derives the coverage targets (pairs of branches) accord-
ing to the CBC criterion introduced in Section 3.1.4. The tool
also implements the search heuristics, which are applied to
compute the objective scores as described in Section 3.
Besides, it implements the repair procedure described in
Section 3.2.4, which extends the interface of the genetic
operators in EvoSurte. Moreover, we customized the many-
objective MOSA algorithm [55], which is implemented in
EvoSurre, for our test case generation problem in CLING.

4 EMPIRICAL EVALUATION

Our evaluation aims to answer three research questions.
The first research question analyzes the levels of CBC cover-
age achieved by CLING. For this research question, we first
analyze the coupled branches covered by CLING in each of
the cases:

RQ1.1 What is the CBC coverage achieved by CLING?

As explained in Section 2.2.2, to the best of our knowledge,
there is no class-integration test case generator available for
comparison. We thus compare CLING to the state-of-the-art
unit test generators in terms of CBC coverage:

RQ1.2 How does the CBC coverage achieved by CLINGcompare to
automatically generated unit-level and random tests?
Since the test cases generated by CLING aim to cover cou-
pled branches between two classes, we need to determine
the effectiveness of this kind of coverage compared to test
suites generated for high branch coverage in unit testing:

RQ2.1 What is the effectiveness of the integration-level tests com-
pared to unit-level and random tests?

Additionally, as the integration code of the caller can
help to create better test data for the callee and validate its
returned data, we investigate the complementarity between
CLING and unit testing w.r.t. fault detection in the callee:

1. Available at https://github.com/STAMP-project/botsing/tree/
master/cling

RQ2.2 How complementary are the integration-level tests to the
unit-level and random tests w.r.t. fault detection?
Finally, we want to see whether the tests generated by
CLING can make any difference in practice. Hence, we ana-
lyzed the integration faults captured by these tests:
RQ3 What integration faults does CLING detect?

4.1 Baseline Selection

The goal of this evaluation is to explore the impact and com-
plementarity of the tests generated by CLING on the results of
the search-based unit testing in various aspects. To achieve
this purpose, we run our tool against EvoSurrg, which is cur-
rently the best tool in terms of achieving branch coverage [56],
[57], [58], [59], [60]. Additionally, we compare CLING against
randomly generated tests using Ranpoor [25], a feedback-
directed random test case generator. In contrast to EvoSurre,
RANDOOP can randomly generate tests for multiple classes.

4.2 Subjects Selection

The subjects of our studies are five Java projects listed in
Table 1, namely Closure compiler, Apache commons-lang,
Apache commons-math, Mockito, and Joda-Time. Our primary
reason to use these projects is that they have been used in
prior studies to assess the coverage and the effectiveness of
unit-level test case generation [7], [55], [61], [62], program
repair [63], [64], fault localization [65], [66], and regression
testing [67]. A consequence of this selection is that the source
code under analysis is relatively old, making it hard to inter-
act with developers to get confirmation about potential
faults. Thus, the route that we take instead is to use future
commits (after the commits under analysis) to explore
whether the bugs we identify were addressed (possibly after
failures in production), as explained in the next section.

To sample the classes under test, we first extract pairs of
caller and callee classes (i.e., pairs with interaction calls)
in each project. Then, we remove pairs that contain trivial clas-
ses, i.e., classes where the caller and callee methods have no
decision point (i.e., with cyclomatic complexity equal to one).
This is because methods with no decision points can be cov-
ered with single method calls at the unit testing level. Note
that similar filtering based on code complexity has been used
and recommended in the related literature [4], [55], [58]. From
the remaining pairs, we sampled 140 distinct pairs of classes
from the five projects in total, which offers a good balance
between generalization (i.e., the number of pairs to consider)
and statistical power (i.e., the number of executions of each

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/STAMP-project/botsing/tree/master/cling
https://github.com/STAMP-project/botsing/tree/master/cling

DERAKHSHANFAR ETAL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION

tool against each class or pair of classes). We performed the
sampling to have classes with a broad range of complexity
and coupling. In our sampling procedure, each selected class
pair includes either the classes with the highest cyclomatic
complexity or the mosts coupled classes. The numbers of
pairs selected from each project are reported in Table 1 (col-
umn #), as well as the average cyclomatic complexity (¢c) of
the caller and the callee, the average number (count) of calls
from the caller to the callee, and the minimum (min), average
(count), and maximum (maz) number of coupled branches.
Each pair of caller and callee classes represents a target for
CLiNG.

As reported in Table 1, CLinG did not identify any cou-
pled-branches for three pairs of classes (one in mockito
and two in time). This is due to the absence of target
branches in either the caller or the callee, resulting in no
couple of branches to cover. Those three pairs have been
excluded from the results.

Our replication package [68] contains the list of class
pairs sampled for our study, their detailed statistics (i.e.,
cyclomatic complexity and the number of interaction calls),
and the project versions.

4.3 Configurations
To answer the research questions, we run CLING on each of
the selected class pairs. For each class pair targeted with
CLING, we run EvoSurte with the caller and the callee classes
as target classes under test (i.e., each class is targeted inde-
pendently) to compare the class integration test suite with
unit level test suites for the individual classes. We configure
EvoSurte to use DynaMOSA (-Dalgorithm=DynaMOSA3),
which has the best outcome in structural and mutation cov-
erage [55] and branch coverage (-Dcriterion=BRANCH).
RanpooP does not include any dynamic dependency anal-
ysis and requires the user to manually specify the list of clas-
ses whose methods, constructors, and fields may appear in a
test. Following the guidelines provided in the RANDoOOP man-
ual®, we use the Java dependencies analysis utility (jdeps)
to identify direct and indirect dependencies of the caller and
callee classes. As the first step, we recursively collected all of
the dependencies for caller and callee classes (as suggested
by the Ranpoor manual). However, after running the first
round of the experiment with all of the dependencies, we
noticed that using all the indirect dependencies resulted in a
large number of RANDOOP executions not terminating due to
infinite test case executions (Ranpoopr did not terminate in
128/140 of cases used in this experiment). As mentioned in
the Ranpoor manual, this scenario occurs when one of the
tests generated by RaNDoOP traps in an infinite loop and
drives the whole test generation process to get stuck in an
infinite loop. Hence, we followed another suggestion men-
tioned in the Ranpoor manual and limited the depth to 2:i.e.,
for each caller and callee, we provided a list of classes to use
in the generated tests containing the caller and the callee,
their direct dependencies, and the direct dependencies of
those dependencies. Additionally, we specify (using option
-require-covered-classes=) to keep only test cases in
which the caller or callee class are directly or indirectly used.
As mentioned by the manual, this option only works if

2. https:/ /randoop.github.io/randoop/manual/

2077

RanpoOP is executed using the covered-class java-
agent to instrument the classes. So, we also used this java-
agent for RANDOOP executions in our experiment.

This results in having the following configurations, each
one corresponding to a test suite generated by one indepen-
dent execution of CLING, RaNDooP or EVOSUITE:

1) Teune, the integration-level test suite generated by
CLING (-target_classes <Caller>, <Callee>);

2) Tpren, the random test suite generated by Ranpoop for
the caller and callee (-classlist=<Caller>,
<Callee>, <level 1 dependencies>, <level
2 dependencies>);

3) Trwr, the unit-level test suite generated by EvoSurte
for the caller (-class <Caller>);

4) Tgyor, the unit-level test suite generated by EvoSurte
for the callee (-class <Callee>).

All other parameters were left to their default values.

4.4 Evaluation Procedure

To address the random nature of the three tools, we repeat
each run 20 times (140 pairs of classes x 4 executions x 20
repetitions = 11,200 executions). Moreover, each CLING run is
configured with a search budget of five minutes, including
two minutes of search initialization timeout. To allow a fair
comparison, we run EvoSurte for five minutes on each caller
and callee class, and RanDooP for ten minutes as it generates
tests for both the caller and the callee, including default ini-
tialization timeout. This represents a total of ~48.6 days exe-
cution time for test case generation.

For RQ1, we analyze the CBC coverage achieved by Tcy;,.
As the CBC coverage of Ty is equal to 0.0 by construction,
we compare Tyin, with Tr,, and Tgy,r across the 20 indepen-
dent runs.

For RQ2, we measure the effectiveness of the generated
test suite using both line coverage and mutation analysis on
the callee classes E (considered as the class under test in
our approach). Mutation analysis is a high-end coverage cri-
terion, and mutants are often used as substitutes for real
faults since previous studies highlighted its significant cor-
relation with fault-detection capability [69], [70]. Besides,
mutation analysis provides a better measure of the test
effectiveness compared to more traditional coverage crite-
ria [12] (e.g., branch coverage).

We compute the line coverage and mutation scores
achieved by Ty for the callee class in each target class pair.
Then, we compare them to the line coverage and mutation
scores achieved by Tr,,, and the unit-level test suites Tryr
and Tgyp) for the callee class. Moreover, we analyse the
orthogonality of the sets of mutants in the callee that are
strongly killed by ¢, and those killed by the random and
unit-level tests individually. In other words, we look at
whether Tt v allows killing mutants that are not killed at
unit-level or by random tests (strong mutation). Also, we ana-
lyze the type of the mutants which are only killed by T n-

For line coverage and mutation analysis, we use Pir [71],
which is a state-of-the-art mutation testing tool for Java code,
to mutate the callee classes. Pir also collects and reports the
line coverage of the test suite on the original class before muta-
tion. Pit has been used in literature to assess the effectiveness
of test case generation tools [57], [58], [59], [60], [61], [72], and

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

https://randoop.github.io/randoop/manual/

2078

it has also been applied in industry.® In our study, we use Pt
v.1.4.9 with all mutation operators activated (i.e., the ALL
mutators group).

For RQ3, we analyze the exceptions triggered by both
integration, random, and unit-level test suites. In particular,
we extract unexpected exceptions causing crashes, i.e.,
exceptions that are triggered by the test suites but that are (i)
not declared in the signature of the caller and callee methods
using throws clauses, (ii) not caught by a try-catch
blocks, and (iii) not documented in the Javadoc of the caller
or callee classes. Then, we manually analyze unexpected
exceptions that are triggered by the integration-level test
cases (i.e., by CLING), but not by the random and unit-level
tests. Since our subjects are selected from DEerecTs4), and
thereby the projects used as subjects in this study are not the
latest versions, the faults that we find for this research ques-
tion may be fixed in the subsequent commits. Hence, the
three first authors performed a code history analysis by look-
ing at the modifications made to the source code of the clas-
ses involved in a fault. Based on this analysis, the authors
could examine whether the faults found by CLING were later
identified, approved, and fixed by the developers.

The test suites generated by CLiNG, EvoSuite, and Ran-
DOOP may contain flaky tests, i.e., test cases that exhibit inter-
mittent failures if executed with the same configuration. To
detect and remove flaky tests, we ran each generated test
suite five times. Hence, the test suites used to answer our
three research questions likely do not contain flaky tests. In
this process, we identified 8%, 3.5%, and 4.7% of the tests
generated by CLING, EvoSuite, and RaNDoOP, respectively, as
flaky. For 20 runs, we detected a total of 1,410,320 flaky tests
out of 29,785,260 generated test cases.

To keep the execution time (which includes test genera-
tion, flaky test detection, and mutation and coverage analy-
sis) manageable, we used a cluster (with 20 CPU-cores,
384 GB memory, and 482 GB hard drive) to parallelize the
execution for our evaluation (50 simultaneous executions).
With this parallelization, the automated execution of the
whole evaluation took about five days (one day for test gen-
eration and four days for flaky test detection and mutation
and line coverage measurement).

5 EVALUATION RESULTS

This section presents the results of the evaluation and answers
the research questions.

5.1 CBC Achieved by Cuing (RQ1.1)
As explained in Section 4.2, CLING did not identify any cou-
pled-branches for three pairs of classes. Fig. 5 gives the dis-
tribution of the CBC coverage achieved by CLiNG for 137
pairs of classes. In total, CLING could generate at least one
test suite achieving a coupled-branches coverage of at least
50% for 87 out of 137 class pairs. Fig. 6 presents the cou-
pled-branches coverage of Ty in all projects. On average
(the diamonds in Fig. 6) the test suites generated by CLING
cover 49.1% of the coupled-branches.

The most covered couples are in the time project (62.4%
on average), followed by math (61.9% on average) and lang

3. http:/ /pitest.org/sky_experience/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

CBC: >75% 50%< & <75% 25%< & <50% <25%

all- 35 (26%) 15 (11%) 27 (20%) 60 (44%)
14 (57%)
7 (39%)
31 (64%)

4(22%)

math - 4(16%) 1(4%) 6 (24%)

lang - 7 (39%) 1(6%) 3(17%)

Projects

time- 2 (5%) 8(17%) 8 (17%)

mockito - 7 (37%) 3 (16%) 5 (27%)

closure - 15 (58%) 2 (8%) 6 (24%) 3 (12%)

0.00 025 0.50 0.75 1.00
Frequency

Fig. 5. Distribution of Cuing’s CBC coverage for the different class pairs.

(48.9% on average). The least covered couples are in the clo-
sure (23.2% on average) and mockito projects (33.6% on
average), which are also the projects with the highest number
of coupled-branches in Table 1 (10,542 coupled-branches on
average for all the class pairs in closure and 1,185 coupled-
branches on average inmockito).

For 9 caller-callee pairs, CLING could not generate a test
suite able to cover at least one coupled branch during 20
executions: 3 pairs from math, 3 pairs from mockito, 2
pairs from closure, and 1 from lang. In the class pair
from lang, CLING could not cover any coupled branch
because the callee class (StringUtils) misleads the search
process (we detail the explanation in Section 5.2). The
remaining 8 pairs cannot be explained solely by the com-
plexities of the caller (with a cyclomatic complexity ranging
from 8 to 5,034 for those classes) and the callee (with a cyclo-
matic complexity ranging from 1 to 2,186) or the number of
call sites (ranging from 1 to 177). This calls for a deeper
understanding of the interactions between caller and callee
around the call sites. In our future work, we plan to refine
the caller-callee pair selection (for which we currently
looked at the global complexity of the classes) to investigate
the local complexity of the classes around the call sites.

Summary (RQ1.1). On average, the generated tests by
CLING cover 49.1% of coupled-branches. In 87 out of 137
(59.2%) of the pairs, these test suites achieve a CBC
higher than 50%.

5.2 CBC Achieved by CLinG Versus Unit Tests (RQ1.2)

Since Tpyor test suites cover only branches in the callee class
(i.e., it does not call any methods in the caller class), the cou-
pled-branches coverage achieved by these tests is always
zero. Hence, for this research question, we compare the tests
generated by CLING (T¢in) against the tests generated by
Ranpoor (Tg.,) and EvoSuite applied to the caller class
(Trvor) w.r.t. coupled-branches coverage.

Fig. 6 presents the coupled-branches coverage of Ty,
Tran, and Ty for all projects. The number of covered cou-
pled-branches by Tcy e is higher in total (all in Fig. 6). On
average (the diamonds in Fig. 6), the test suites generated
by CLING (49.1%) cover more coupled-branches compared to
37.8% for Tpywr, and 27.2% for Tr,,. On average, the cou-
pled-branches coverage achieved by unit tests is lower than
the one achieved by CLING in all of the projects except lang.
The average coupled-branches coverage of EvOSUITE in this
project is 58%, compared to 48.9% for CLING. We also
observe a wider distribution of the CBC coverage for Tc;ng
(with a median of 51.0% and an IQR of 78.2%) compared to

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

DERAKHSHANFAR ETAL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION

closure mockito time lang math (all)
1.00- e .
[0)
2 | iR |
g |
>
3075 | s
g 0
< - -
S 0.50- LI 3 g]
S . ' 8 <o
°
m H |
o (]
o) 0.25-
a
: U@
: T
Ooo0- =4 - T - T
TF2 %52 ¢52 858 $52 858
W0 w0 w®o w®¥o wXko wmXo
Test Suites

Fig. 6. Total coupled-branches coverage achieved by T, (Cling), Tran
(Ran) and T,z (EVoR). (¢) denotes the arithmetic mean and (—) is the
median.

Trwr (With a median of 30.7% and an IQR of 59.0%) and
Tran (With a median < 1.0% and an IQR of 57.1%).

We further compare the different test suites using
Friedman’s non-parametric test for repeated measurements
with a significance level o = 0.05 [73]. This test is used to
test the significance of the differences between groups
(treatments) over the dependent variable (CBC coverage in
our case). We complement the test for significance with
Nemenyi’s post-hoc procedure [74], [75]. Fig. 7 provides a
graphical representation of the ranking (i.e., mean ranks
with confidence interval) of the different test suites. Accord-
ing to the Friedman test, the different treatments (i.e., CLING,
EvoSurtg, and Ranpoor) achieve significantly different CBC
coverage (p-values < 0.001). According to Fig. 7, the aver-
age rank of CLING is much smaller than the average ranks of
the two baselines. Furthermore, the differences between the
average rank of Tt v and the average rank of the two base-
lines are larger than the critical distance CD = 0.283 deter-
mined by Nemenyi’s post-hoc procedure. This indicates
that Ttn achieves a significantly higher CBC coverage
than TEvoR and TR(m .

Finally, we have manually analyzed the search progress
of CLING for pairs of classes where the number of covered
coupled-branches is low (i.e., lower than 10). We noticed
that CLING is counter-productive for specific class pairs
where the callee class is StringUtils. In those cases, the
test cases generated during the search initialization throw a
NoSuchFieldError in the callee class (StringUtils
here). Since these test cases achieve small approach levels
and branch distances from the callee branches, they are fit-
ter (i.e., their fitness value is lower) than other test cases.
Therefore, these test cases are selected for the next genera-
tion and drive the search process in local optima.

Summary (RQ1.2). On average, the generated test suites
by CLING cover 11.3% more coupled-branches compared
to EvoSurte and 21.9% more coupled-branches compared
to RANDOOP.

5.3 Line Coverage and Mutation Scores (RQ2.1)

Fig. 8a shows line coverage of the callee classes (E) for the test
suites generated by the different approaches. On average,

2079
Friedman: 0.000 (Ha: Different)
Critical distance: 0.283
Ran - 2.54 — 9
EvoR - 1.95 e
Cling-151 =—e@——

T T T T T T 1
1.4 1.6 1.8 2.0 22 24 2.6

Mean ranks
Fig. 7. Non-parametric multiple comparisons (i.e., mean ranks with confi-

dence interval) in terms of CBC score for Tc, e (Cling), Tx.0r (EVOR), and
Tran (Ran) using Friedman’s test with Nemenyi’s post-hoc procedure.

CLING covers 39.5% of the lines of the callee classes. This is
lower compared to unit-level tests generated using EvoSuite
(58.2% for Tryor and 59.4% for Tr,,r), and Ranpoor (47.4% for
TRmL)-

To understand the fault revealing capabilities of CLING
compared to unit-level and random test suites, we first
show in Fig. 8b the overall mutation scores when mutating
class E, and apply the test suite Trwr, Trwor, TRan, and
Tcune. Similar to line coverage, test suites optimized for
overall branch coverage achieve a total higher mutation
score (35.4% for T'p,or and 34.2% for Tg,,r On average), sim-
ply because a mutant that is on a line that is never executed
cannot be killed. Ranpoor achieves on average the best
mutation score (38% for Tr.,), which would tend to indicate
that despite a lower line coverage, indirect testing of the
callee class through its dependencies enables discovering
more faults. Tci i scores lower (20.0% on average), since
CLING searches for dedicated interaction pairs, but does not
try to optimize overall line coverage. Note that Ttine
achieves the highest average mutation score for classes in
math, while it achieves the lowest mutation score for classes
in the mockito project.

Our results are consistent with the design and objectives
of the tools: EvOSUITE seeks to cover all the branches of the
class under test; CLING targets specific pairs of branches
between the caller and callee; and Ranpoor performs (feed-
back-directed) random testing.

Summary (RQ2.1). The results in terms of line coverage are
as expected, namely that EvoSurte has the highest average
line coverage (58.2% for Ty and 59.4% for Tkyor), fol-
lowed by Ranpoor (47.4%) and CLING (39.5%). Regarding
mutation score, Ranpoop achieved the highest mutation
score on average (38%), followed by EvoSurre (35.4% for
Tpwor and 34.2% for Tr,,r on average) and CLING (20.0%).
This tends to indicate that despite a lower line coverage,
indirect testing of the callee class through its dependen-
cies in RANDOOP enables discovering more faults.

5.4 Combined Mutation Analysis (RQ2.2)

Fig. 8b shows that unit test suites do not kill almost half of
the mutants. CLING targets more mutants, including those
that remain alive with unit tests. In Fig. 9, we report the
improvement (A) in the mutation score when executing T¢yne
in addition to different test suites Tk, Trwr, and Tran),
and their unions (TryoE+ EvoR)-

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

2080

closure mockito time lang math (all)

1.00- 1 J_ o SEE e i J_
0.75-
ted (=
o
o N o o
[]
050-
X o
o
0.25- <
L]
o [}
0.00- - - LIl 1 B
14 ['q
[<} o
g g
w w

line coverage
| S

—]

EvoE ™
Cling
EvoE
EvoR ™
Ran ~
Cling

c
o]
o

EvoE
EvoR ™
Cling ~

c
51
14

EvoE ™
EvoR
Cling ™

c
o]
o

EvoE
EvoR
Ran ~
Cling
EvoE
Cling ™

c
o]
o

(a) Line coverage of the callee (E)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

closure mockito time lang math (all)
1.00 5 5
« i l J i
Ll
. | ! ' §
0.75- '
S s
] ' H
7] =]
< .
_g 0.50 s l o
s . ©
S . <
= ' o L
0.25-
0.00- - T L L
' o ' ') o o '
DwmrXro 4w®@0 dwXo ww®o0 OomXo0 wm®o

(b) Mutation score of the callee (E)

Fig. 8. Effectiveness of Tty v (Cling), Trvor (EVOE), Tryr (EVoR), and Tr,., (Ran). (¢) denotes the arithmetic mean and (—) indicates the median.

On average, 13% of the mutants are killed only by Tcyine
compared to both Tpy,x, the unit test suites optimized for
the class under test (£), and Tg,,, randomly generated tests.
This difference decreases to 10.4% if we use Tg,r the unit
test suites exercising £ via the caller class R (as more class
interactions are executed). The difference with traditional
unit testing is still 7.7%, when comparing CLING with the
combined unit test suites TpyrtE0or, exercising E directly
as much as possible as well as indirectly via call sites in R.

The outliers in Fig. 9 are also of interest: for 20 classes
(out of 137), CLING was able to generate a test suite where
more than half of the mutants were killed only by Tcyme,
compared to Tgy,p (ie., +50% of mutation score). When
compared to Tryr+Ewr there are 4 classes for which Ty g
kills more than half of the mutants that are killed by neither
Trwor nor Tgyg. This further emphasizes the complementar-
ity between the unit and integration testing. Comparing to
randomly generated tests Trqn, Tciine kills more than half of
the mutants for 13 classes, demonstrating the need for guid-
ance when generating class integration tests.

Table 2 presents the status of the mutants that are killed
by Tcune but not by unit-level or random test cases. What
stands out is that many mutants are in fact covered, but not
killed by unit-level or random test suites. Here CLING lever-
ages the context of the caller, not only to reach a mutant, but
also to propagate the (modified) values inside the caller’s
context, so that the mutants can be eventually killed.

closure mockito time lang math (all)
1.00
i | i I
o °
° °
0.75- . . 8 ! .
° °
L] L] l

i
il é

Fig. 9. Increases (A) of the mutation score when combining T¢; v with
unit test suites Tx,r (EVOE), Tryr (EVOR), and their unions Tgyop i Bk
(EvoE+R), and T, (Ran). (¢) denotes the arithmetic mean and (—) is
the median.

A(score(x), score(Cling + X))

!

=
5
o

EvoE ~
EvoR
EvoE ~

= c
5 15
o [:4

EvoE ~

EvoEsR" ([esmmmmen e oo
Xy
- [BH— .
B - -
EvoE+R E_-

EvoR
EvoE+R ™

c
5
o

EvoE
EvoR

c
15
o

EvoE
EvoR
EvoE+R ™
Ran ~
EvoE ~
EvoR
EvoE+R ™
EvoR
EvoE+R ™

5.4.1 Mutation Operators

We analyzed the mutation operators that generate mutants
that are exclusively killed by T . We categorize the muta-
tion operators implemented in PiT into integration-level and
non-integration-level. For this categorization, we rely on the
definition of mutation operators for integration testing pro-
vided by Delamaro et al. [76]. We observed that ten of the
mutation operators implemented in PIr inject integration-
level faults. These operators can be mapped to two integra-
tion-level operators defined by Delamaro et al. [76]: RetStaRep,
which replaces the return value of the called method, and
FunCalDel, which removes the calls to void method calls and
replaces the non-void method calls by a proper value.

Table 3 lists the number of mutants killed exclusively by
Tcune and grouped by mutation operators. Integration-level
operators are indicated in bold with the mapping to either
RetStaRep or FunCalDel between parenthesis. As we can see
in this table, the most frequently killed mutants are pro-
duced by an integration-level operator, and other integra-
tion-level operators also produce frequently killed mutants.
We can see that all of the ten integration-level mutation
operators generate mutants that can be killed using CLING.

Furthermore, some of the most frequently killed mutants
are not produced by integration-level operators. For
instance, operator NegateConditionalsMutator, which mutates
the conditions in the target class, produces the second most
frequently killed mutants. These mutants are not killed but
also not covered by tests generated by EvOSUITE.

As an example of a mutant killed only by T, Fig. 10b
illustrates one of the mutants in method evaluateStep in
class SwitchState (callee class) from the Apache commons-
math project. This mutant is produced by an integration-level
mutation operator (RetStaRep) that replaces a boolean return
value by true. Method evaluateStep is called from the
method evaluateStepC (Fig. 10a) declared in Switch-
ingFunctionsHandler (caller class). Method evalua-
teStepC must return false if it calls the callee class in a
certain situation: (i) the variable first in the caller class is
null, and (ii) the callee method returns false because of the
execution of line 12 in Fig. 10b.

The unit test suites generated by EvoSurte targeting
SwitchState (Tgwr) or class SwitchingFunction-
sHandler (Tg,pr) both cover the mutant but do not kill it.
Trwor easily cover the mutant statement, but it does not

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

DERAKHSHANFAR ET AL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION 2081
TABLE 2
Status (For Truwr, Trvwe, and Tr,) of the Mutants Killed Solely by Tc; e

Test Suite closure lang math mockito time

not-covered survived not-covered survived not-covered survived not-covered survived not-covered survived
TrwE 1,988 (<1%) 881(<1%) 3247 (1%) 403(<1%) 6,178(5%) 1,747 (1%) 5,604 (4%) 2,414(2%) 10,905((3%) 5,920 (1%)
Trewor 2,480 (<1%) 780(<1%) 2,797 (<1%) 851(<1%) 5,310 (4%) 2,55812%) 4,867 (4%) 3,144(2%) 7431Q2%) 9,150 2%)
TRan 18,935 (2%) 246(<1%) 1,834(1%) 343(<1%) 13,316 (1%) 1,381 (1%) 18,419 (1%) 949 (1%) 18,073 4%) 5,942 (1%)

Not-covered denotes the number of mutants killed by Tc,e, which are not covered by EvoSuiTe (or RANDOOP) test suites, and survived denotes the number
of mutants killed by Tcyg, which are covered by EvoSuite (or RANDOOP) tests but not killed. The numbers between parentheses denote the percentage of mutants.

have any assertion to check the return value. T, also cov-
ers this statement by calling the right method in Switch-
ingFunctionsHandler. However, as is depicted by
Fig. 10, both methods in caller and callee class have multiple
branches. So, Trw,r covers the mutant from another path,
which does not reveal the change in the boolean return
value.

Listing 3. CLING Test Case Killing Mutant in Fig. 10

1 publicvoidtest07() throws Throwable {

2 [...]

3 boolean booleanl = switchingFunctionsHandlerO0.
evaluateStepC (stepInterpolator0) ;

4 assertTrue (booleanl == boolean0) ;

assertFalse (booleanl) ;

a1

In contrast, this mutant is killed by T, targeting
SwitchingFunctionsHandler and SwitchState as
the caller and callee classes, respectively (Listing 3).
According to the assertion in line 5 of this test case,

TABLE 3
Number of Mutants Killed Solely by T¢;x and
Grouped by Mutation Operators

Against EvoSuite Randoop
Mutation operator Rank #kills Rank #kills
NonVoidMethodCallMutator (RetStaRep) 1 1,983 1 2,340
NegateConditionalsMutator 2 1,638 2 2,020
InlineConstantMutator 3 1,201 5 1,183
ReturnValsMutator (RetStaRep) 4 1,195 4 1414
RemoveConditionalMutator EQUAL_IF 5 1,110 3 1,424
RemoveConditionalMutator EQUAL_ELSE 6 1,015 6 1,138
NullReturnValsMutator (RetStaRep) 7 578 7 695
ArgumentPropagationMutator (FunCalDel) 8 518 9 539
MathMutator 9 513 11 398
MemberVariableMutator 10 458 8 576
ConstructorCallMutator (FunCalDel) 11 379 10 481
RemoveConditionalMutator ORDER_IF 12 375 13 348
VoidMethodCallMutator (FunCalDel) 13 374 12 394
RemoveConditionalMutator ORDER_ELSE 14 348 16 270
ConditionalsBoundaryMutator 15 322 15 272
PrimitiveReturnsMutator (RetStaRep) 16 309 14 295
NakedReceiverMutator 17 264 17 235
IncrementsMutator 18 143 19 154
BooleanTrueReturnValsMutator (RetStaRep) 19 142 18 162
RemovelncrementsMutator 20 106 22 89
RemoveSwitchMutator 21 89 20 134
EmptyObjectReturnValsMutator (RetStaRep) 22 71 21 105
BooleanFalseReturnValsMutator (RetStaRep) 23 63 23 83
InvertNegsMutator 24 38 24 44
SwitchMutator 25 16 25 36

Integration-level operators are highlighted in bold face and the corresponding
integration-level mutation operator defined by Delamaro et al. [76] is indi-
cated between parenthesis.

switchingFunctionsHandler0O.evaluateStep

must return false. However, the mutant changes the
returned value in line 7 of the caller class (Fig. 10a), and
thereby the true branch of the condition in line 7 is executed.
This true branch changes the value of variable first from
null to a non-null value. Hence, the evaluateStep method
in the caller class returns true in line 12. So, the assertion in
the last line of the method in Listing 3 kills this mutant.

Summary (RQ2.2). The test suite generated by CLING for a
caller R and callee E, can kill different mutants than unit
and random test suites for E, R or their union, increasing
the mutation score on average by 13.0%, 10.4%, and
7.7%, respectively, for EvoSurtg, and 13% for Ranpoor,
with outliers well above 50%. Our analysis indicates that
many of the most frequently killed mutants are pro-
duced by integration-level mutation operators.

5.5 Integration Faults Exposed by CLing (RQ3)

In our experiments, CLING generates 50 test cases that trig-
gered unexpected exceptions in the subject systems. None
of those exceptions were observed during the execution of
the test cases generated by EvoSurte and RANDOOP.

The first and second author independently performed a
manual root cause analysis for all 50 unexpected exceptions
to check if they actually stemmed from an integration-level
fault. For this analysis, we check the API documentation to
see if the generated test cases break any precondition. We
indicated a test case as a fault revealing test if it does not
violate any precondition according to the documentation,
and it truly exposes an issue about the interaction between
the caller and callee class. We found that out of the 50 test
cases generated by CLING, 25 are fault revealing. The remain-
ing 25 test cases trigger exceptions expected according to
the documentation (5 tests), violate preconditions specified
in the documentation (14 tests) or in the existing tests (1
test), return a wrong value for a method call on a mocked
object (3 tests), or do not actually expose an issue between
the caller and the callee class (2 tests).

To analyze if developers have already identified the faults
in the following commits, the first three authors analyzed the
code history of the classes involved in the detected faults. In
this analysis, we manually checked all of the modifications
made to the involved classes to see if the faults are fixed.
Based on this analysis, we classify the 25 fault revealing test
in one of the categories reported in Table 4. According to this
Table, seven faults (found only by tests generated via CLING)
were detected, confirmed, and fixed by developers in
the next commits. We describe hereafter a representative

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

2082

1 boolean evaluateStepC (StepInterpolator interpolator
) o

2 if (functions.isEmpty ()){[...]1}

3 if (! initialized) {[...]}

4 for ([...]1) |

5 [...];

6 // calling the callee class in the next line.

7 if (state.evaluateStep(interpolator)) {

8 // Changing variable first

9 [...]

10 }

11 }

12 return first != null;

13

(a) Method evaluateStepC declared in the caller
class switchingFunctionsHandler.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

1 boolean evaluateStep(final StepInterpolator

interpolator) {
2 [...]
3 for([...1){
4 1f(0...0){
5 [...1;
6 }
7 1f(0...0){
8 [...1;
9 }
10 }
11 [...1;
12 ——retura—fatses return true; //mutant
13}

(b) Mutant evaluatestep declared in the callee class
switchsState.

Fig. 10. Example of a integration-level mutant killed only by CLing From Apache commons-math.

example of these faults. The detailed descriptions of the anal-
ysis for all 25 fault revealing test cases are available in our
replication package [68].*

Example. To illustrate the type of problem detected by
CLING, consider the generated test case in Fig. 11a and the
induced stack trace (for a NullPointerException) in
Fig. 11b.” This test is produced by CLING for classes Union-
Type (caller class) and JSType (callee class). In this sce-
nario, the UnionType is a sub-class of JSType. The test
(Fig. 11a Line 3) instantiates a UnionType object and passes
a null value for the first parameter of its constructor. This
constructor sets the value of a local variable (registry) to
the value passed as the first parameter of the constructor
(here, null). After instantiating UnionType, the generated
test calls getTypesUnderInequality (Fig. 11a Line 6),
which in turns indirectly calls isEmptyType in the super-
class. The isEmptyType method tries to use the attribute
registry. Since this attribute is null, calling getType-
sUnderInequality leads to a NullPointerExcep-
tion. No indication in the documentation specifies that the
registry parameter should not be null, and no checks
are done on the value of the input parameters.

By reviewing the code history of UnionType class, we
observed that this fault has been fixed.® A UnionType
should be instantiated only by a UnionTypeBuilder to
ensure that it is instantiated properly, but this was not
enforced in the source code nor documented in the class. The
fixing commit message indicates that it refactors the
“UnionTypeBuilder into UnionType.Builder, a nested
class of UnionType” to “better reflect the entangled nature
of the two classes.” Concretely, the commit (i) refactors the
UnionTypeBuilder class into UnionType.Builder, a
nested class of UnionType; (ii) makes UnionType’s con-
structor private; and (iii) updates the UnionType con-
structor’s documentation to indicate that this class has to be
instantiated using its builder.

We also analyzed the tests generated by baseline tools for
this case to understand why this specific fault is substantially

4. Also available online at https://github.com/STAMP-project/
Cling-application/blob/master/data_analysis/manual-analysis/
failure-explanation.md.

5. The details are available at https://github.com/STAMP-project/
Cling-application/blob/master/data_analysis/manual-analysis/
failure-explanation.md#st28

6. The fixing commit is https:/ / github.com/google/ closure-compiler/
commit/ cfcOfab3dc2be49692a4£e9162b8095c934f6¢41.

less likely to be captured by EvoSuite and Ranpoor. For Evo-
Surtk, since the tool concentrates on coverage of a single class,
the tests generated by EvoSurte only concentrate on covering
the branches in the given class under test. So, in the EvoSurte
test generation process, tests cases that achieve higher
branch coverage have higher priority than this failure cap-
turing test case. This prioritization leads EvoSurte to exclude
this test case from the most optimized solutions during the
search process. In contrast with EvoSuite, CLING's search
objectives (i.e., CBC coverage) are designed to exercise the
interactions between given class pairs and thereby give a
higher priority to failures that can be captured in this interac-
tion. Moreover, since RANDOOP gets a set of classes under test
(i.e., classes that are direct or indirect dependencies of the
given caller and callee classes), it has a higher search space to
explore. In this case, RANDOOP generates tests using 30 classes
indicated by jdeps (25 classes from the project under test and
five from Java). In total, these classes contain 867 visible
(non-private) methods. Also, the tests generated by Ranpoopr
initialize and use many objects, and hence the length of test
cases are relatively higher than test cases generated by Evo-
Surte and CLING. Consequently, by looking at tests generated
by Ranpoop, we can see that this tool generates many test
cases that lead to higher coverage in the given set of classes
but could not explore the particular part of the search space
to capture this fault in the given time budget. However, theo-
retically, by giving enough time budget to RANDOOP, this tool
should be able to cover this failure. In contrast, since CLING
focuses on the interactions between two given classes,

TABLE 4
Categorization and Number (#) of the
Fault Revealing Test Cases

Category #
Confirmed 7

Description

The test case exposes a fault that has
been fixed (e.g., by updating the code or
the documentation), or has been marked
as such in the source code (e.g., using a
comment).

The test case potentially exposes a fault
that has not been fixed.

The test case is not relevant anymore as
the source code it executes has been
deleted from the project (e.g., in the case
of a deprecated method).

Pending 4

Deprecated 14

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md#st28
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md#st28
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md#st28
https://github.com/google/closure-compiler/commit/cfc0fab3dc2be49692a4fe9162b8095c934f6c41
https://github.com/google/closure-compiler/commit/cfc0fab3dc2be49692a4fe9162b8095c934f6c41

DERAKHSHANFAR ETAL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION

1 public void testFraction() {

2 [...]

3 UnionType unionTypeO = new UnionType ((
JSTypeRegistry) null, immutableListO);

4

5 // Undeclared exception!

6 unionType0.getTypesUnderInequality (unionTypeO) ;

7 3

(a) CLING test case triggering the crash in Figure 11b.

2083

1 java.lang.NullPointerException:

2 at [..].JSType.isEmptyType ([..]:159)

3 at .JSType.testForEqualityHelper ([..]:666)
4 at .JSType.testForEquality ([..]:655)

5 at .NumberType.testForEquality ([..]:63)

6 at .JSType.getTypesUnderInequality ([..]:
7 at .UnionType.getTypesUnderInequality ([..
8 at .JSType.getTypesUnderInequality ([..]:
9 .UnionType.getTypesUnderInequality ([

at

(b) Exception captured only by CLING.

Fig. 11. Example of test case generated by CLing and exposing a fault in the Closure project.

thereby having a smaller search space, it manages to capture
this failure in a shorter time (i.e., 5 minutes).

Summary (RQ3). Our manual analysis indicates that CLING-
based automated testing of (caller, callee) class pairs can
expose actual problems that are not found by unit testing
either the caller or callee class individually. These prob-
lems relate to conflicting assumptions on the safe use of
methods across classes (e.g., due to undocumented excep-
tion throws, implicit assumptions on parameter values,
etc.). Several of these faults are identified, confirmed, and
fixed later by developers in subsequent commits.

6 DiscussION

6.1 Applicability

The CBC criterion and its implementation in CLING consider
pairs of classes and targets the integration between them.
We did not propose any procedure for selecting pairs of
classes to give in input to CLING. Since the technique
requires pairs of classes to test, it would be time-consuming
and tedious for developers to manually collect and provide
the class pairs. Hence, we suggest using an automated pro-
cess for class pair selection, as well. In this study, we imple-
mented a tool that automatically analyzes each class pair to
find the ones with high cyclomatic complexity and coupled
branches (according to the CBC criterion defined in this arti-
cle). This procedure is explained in Section 4.2.

Besides, our approach can be further extended by incorpo-
rating automated integration test prioritization approaches
and selecting classes to integrate according to a predefined
ordering [30], [32], [33], [34], [35], [37], [38], [39], [40], [41]. So,
the end-to-end process of generating test for class integrations
can be automated to require a minimal manual effort from the
developer.

Moreover, since it is easier for developers to handle and
integrate generated test cases in continuous integration, the
number of tests generated by test generation approaches is
also playing a crucial role in the effectiveness and applicabil-
ity of techniques. Although CLING generates test cases that
kill mutants and capture integration-level failures that can-
not be covered by unit and random testing, this approach
generates less test cases compared to EvoSurte and RaNDOOP.
In total, CLING generated 64,537 test cases in this experiment.
This number is lower than EvoSulte (183,795 test cases) and
RaNDoOP (29,536,928 test cases).

6.2 Test Generation Cost

One of the challenges in automated class integration testing
is detecting the integration points between classes in a SUT.

The number of code elements (e.g., branches) that are
related to the integration points increases with the complex-
ity of the involved classes. Finding and testing a high num-
ber of integration code targets increases the time budget
that we need for generating integration-level tests.

With CBC, the number of coupled branches to exercise is
upper bounded to the cartesian product between the
branches in the caller R and the callee E. Let By be the set
of branches in R and Bp the set of branches in E, the maxi-
mum number of coupled branches CBrfg is Br X Bp. In
practice, the size of CBp is much smaller than the upper
bound as the target branches in the caller and callee are sub-
sets of R and E, respectively. Besides, CBC is defined for
pairs of classes and not for multiple classes together. This
substantially reduces the number of targets we would incur
when considering more than two classes at the same time.

While a fair amount of the test generation process can be
automated, multiple instances of this approach can be exe-
cuted simultaneously, and thereby, this approach can be
used to generate test suites for a complete project at once in
a reasonable amount of time. For instance, in this study, we
managed to test each of the 140 class pairs with CLING for 20
times in less than a day thanks to a parallelization of the
executions.

Finally, we have used a five minutes time budget to test
each class pair’s interactions. Since CLING considers each cou-
pled branch as an objective for the search process, we could
have defined a different search budget per pair, depending
on the number of objectives. Similarly to EvoSurte and RAN-
poor, the outcome of CLING may differ depending on the
given time budget. Defining the best trade-off between the
search-budget and effectiveness of the tests generated using
CLING is part of our future work.

6.3 Effectiveness

To answer RQ2, we analyzed the set of mutants that are
killed by CLING (integration tests), but not by the unit and
random test suites for the caller and callee separately (boxes
labeled with Tryop+r and Tr,y, in Fig. 9). The test suite Tty v
was generated using a search budget of five minutes. Simi-
larly, the unit-level suites were generated with a search bud-
get of five minutes for each caller and callee class separately.
Therefore, the total search budget for unit test generation
(Trvor+r) is twice as large: 10 minutes, which corresponds to
the time budget allocated to Ranpoopr (I'r,,) as it generates
random tests for both the caller and the callee. Despite the
larger search budget spent on unit and random testing, there
are still mutants and faults detected only by CLING and in less
time. It is worth mentioning that, theoretically, all of these
approaches might capture these failures with an infinite time

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

2084

budget. The point is that Cling can capture these failures
faster, thanks to the CBC criterion.

The CBC criterion and its implementation in CLING are not an
alternative to unit or random testing. In fact, integration test
suites do not subsume unit-level and random suites as the
different types of suites focus on different aspects of the sys-
tem under test. Our results (RQ2) confirm that integration
and unit and random testing are complementary. Indeed,
some mutants can be killed exclusively by unit or random
test suites: e.g., the overall mutation scores for the unit tests
Trwr and Tryr, and random tests Tr,, are larger than the
overall mutation scores of CLING. This higher mutation score
is expected due to the larger branch coverage achieved by
the unit and random tests (i.e., coverage is a necessity but
not a sufficient condition to kill mutant).

Instead, the CBC criterion and its implementation in
CLING focuses on a subset of the branches in the units (caller
and callee), but target the integration between them more
extensively. In other words, the search is less broad (fewer
branches), but more in-depth (the same branches are cov-
ered multiple times within different pairs of coupled
branches). This more in-depth search allows killing mutants
that could not be detected by satisfying unit-level criteria.

Furthermore, our results in RQ3 indicate that CBC and its
implementation in CLING steer us toward finding bugs that
are not detectable by other tests. In Section 5.5, we have
shown that the tests generated by CLING capture exceptions,
which are not detectable by unit or random tests. We have
carefully performed an extensive manual analysis on these
stack traces to identify whether they expose software faults.
According to this manual analysis, we have detected 25 fail-
ures. Finally, for external confirmation, we have investi-
gated if these 25 faults are identified and fixed by
developers in the subsequent commits. The results of our
investigation have confirmed that developers have actually
fixed some of the faults in the following commits. To dem-
onstrate the impact of the CLING in finding bugs, we have
presented an example in Section 5.5. Moreover, the other
faults, which were confirmed by our investigation, are avail-
able in our replication package [68]. While our evaluation
pointed to 25 real faults, we have not yet applied CLING in a
live setting in a currently active project. Doing so requires a
project that does intensive (unit) testing already, and whose
developers are interested in exploring issues raised by tests
dedicated to exercising various inter-class interactions. As
part of our future work, we intend to set up and conduct
such a (longitudinal) study.

7 THREATS TO VALIDITY

Internal Validity. Our implementation may contain bugs. We
mitigated this threat by reusing standard algorithms imple-
mented in EvoSurtg, a widely used state-of-the-art unit test
generation tool. And by unit testing the different extensions
(described in Section 3.3) we have developed.

To take the randomness of the search process into
account, we followed the guidelines of the related litera-
ture [77] and executed CLinG, EvoSurrg, and Ranpoor 20 times
to generate the different test suites (Tcuwe, Trvor, TEvor,
Tranr, and Trg,r) for the 140 caller-callee classes pairs. We
have described how we parametrize CLING, EvOSUITE, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

RaNDoOP in Sections 3.2 and 4. We left all other parameters to
their default value, as suggested by related literature [53],
[781, [79].

External wvalidity. We acknowledge that we report our
results for only five open-source projects. However, we
recall here their diversity and broad adoption by the soft-
ware engineering research community. We also did not use
the latest version of those five projects. On the one hand, it
prevented us from reporting potential faults to the develop-
ers, which could have provided anecdotal evidence of the
capability of the approach to find faults, but would have not
provided any information in case of a rejection of a pull
request by the developers. On the other hand, it allowed us
to investigate the history of the code base and identify
whether developers fix these faults, which were identified
in our study, in the further commits. Additionally, consider-
ing the broad adoption of the projects by the software engi-
neering community, it enables comparisons with the state-
of-the-art and future approaches.

Construct Validity. The identification and analysis of the
integration faults done in RQ3 have been performed by the
first and second authors independently. The subsequent
code history analysis and categorization have been per-
formed by the three first authors independently. Each docu-
mented analysis was reviewed by one of the other authors
involved.

Reproducibility. We provide CLING as an open-source pub-
licly available tool as the data and the processing scrips
used to present the results of this paper.” Including the sub-
jects of our evaluation (inputs) and the produced test cases
(outputs). The full replication package has been uploaded
on Zenodo for long-term storage [68].

8 CONCLUSION AND FUTURE WORK

In this paper we have introduced a testing criterion for inte-
gration testing, called the Coupled Branches Coverage (CBC)
criterion. Unlike previous work on class integration testing
focusing on (costly) data-flow analysis, CBC relies on a (ligh-
ter) control flow analysis to identify couples of branches
between a caller and a callee class that are not trivially exe-
cuted together, resulting in a lower number of test objectives.

Previous studies have introduced many automated unit
and system-level testing approaches for helping developers
to test their software projects. However, there is no
approach to automate the process of testing the integration
between classes, even though this type of testing is one of
the fundamental and labor-intensive tasks in testing. To
automate the generation of test cases satisfying the CBC cri-
terion, we defined an evolutionary-based class integration
testing approach called CLING.

In our investigation of 140 branch pairs, collected from 5
open source Java projects, we found that CLING has reached
an average CBC score of 49.1% across all classes, while for
some classes we have reached 90% coverage. More tangibly,
if we consider mutation coverage and compare automati-
cally generated random and unit tests with automatically
generated integration tests using the CLING approach, we
find that our approach allows to kill 7.7% (resp. 13%) of

7. https:/ / github.com/STAMP-project/Cling-application

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/STAMP-project/Cling-application

DERAKHSHANFAR ETAL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION

mutants per class that cannot be killed by tests generated
with EvoSurte (resp. Ranpoop). Finally, we identified 25
faults causing system crashes that could be evidenced only
by the generated class-integration tests.

The results indicate a clear potential application perspec-
tive, more so because our approach can be incorporated
into any integration testing practice. Additionally, CLING
can be applied in conjunction with other automated unit
and system-level test generation approaches in a comple-
mentary way.

From a research perspective, our study shows that CLING
is not an alternative for unit or random testing. However, it
can be used for complementing unit testing for reaching
higher mutation coverage and capturing additional crashes
which materialize during the integration of classes. These
improvements of CLING are achieved by the key idea of
using existing usages of classes in calling classes in the test
generation process.

For now, CLING only tests the call-coupling between clas-
ses. In our future work, we will extend our approach to
explore how other types of coupling between classes (e.g.,
parameter coupling, shared data coupling, and external
device coupling) can be used to refine the couples of
branches to target. Indeed, our study indicates that despite
the effectiveness of CLING in complementing unit tests, lots of
objectives (coupled branches) remain uncovered during our
search process. Hence, in future studies, we will enhance the
detection of infeasible branches to remove them from the
search objectives and perform a fitness landscape analysis of
the search process to identify potential bottlenecks.

Finally, this study mostly focuses on examining the
results of this approach on coupled branches coverage,
mutation coverage, and detected faults. In our future work,
we will explore how CLING can be effectively integrated
with a development lifecycle (for instance, in a continuous
integration process) and how automatically generated class
integration tests can help developers to detect potential
faults and debug their software.

In this study, we have evaluated CLING against state-of-
the-art test generation tools (i.e., EvoSurte and Ranpoop). In
our future work, we would like to compare the tests gener-
ated by CLING with the manually written tests. Also, since
CBC is a new criterion, we aim to perform another study to
investigate how well the class integration tests written by
developers cover CBC targets.

Finally, since this paper is the first step toward generat-
ing class integration tests, we only collected the call-sites
from the static analysis. However, a dynamic analyzer is
able to detect more call-sites, and thereby CLING can gener-
ate more tests that cover class interactions that can only be
identified dynamically.

REFERENCES

[11 M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based soft-
ware engineering,” ACM Comput. Surv., vol. 45, no. 1, pp. 1-61,
Nov. 2012.

[2] P.McMinn, “Search-based software test data generation: A survey,”
Softw. Testing Verification Rel., vol. 14, no. 2, pp. 105-156, 2004.

[3] M.M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real
faults in a financial application,” in Proc. IEEE/ACM 39th Int. Conf.
Softw. Eng.: Softw. Eng. Pract. Track, 2017, pp. 263-272.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

2085

J. Campos, Y. Ge, G. Fraser, M. Eler, and A. Arcuri, “An empirical
evaluation of evolutionary algorithms for test suite generation,”
in Proc. Symp. Search Based Softw. Eng., 2017, pp. 33—48.

A. Panichella, F. M. Kifetew, and P. Tonella, “A large scale empiri-
cal comparison of state-of-the-art search-based test case gener-
ators,” Inf. Softw. Technol., vol. 104, pp. 236-256, 2018.

G. Fraser and A. Arcuri, “1600 faults in 100 projects: Automati-
cally finding faults while achieving high coverage with evosuite,”
Empir. Softw. Eng., vol. 20, no. 3, pp. 611-639, 2015.

S. Shamshiri, R. Just,]. M. Rojas, G. Fraser, P. McMinn, and A.
Arcuri, Do automatically generated unit tests find real faults? An
empirical study of effectiveness and challenges,” Proc. IEEE/ACM
30th Int. Conf. Automated Softw. Eng., pp. 201-211, 2016.

M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P.
Tonella, “Do automatically generated test cases make debugging
easier? an experimental assessment of debugging effectiveness
and efficiency,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 1,
pp. 5:1-5:38, 2015.

S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance:
An empirical investigation,” Proc. - Int. Conf. Softw. Eng., -2016,
pp. 547-558, 2016.

G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, “The risks of
coverage-directed test case generation,” IEEE Trans. Softw. Eng.,
vol. 41, no. 8, pp. 803-819, Aug. 2015.

A. Schwartz, D. Puckett, Y. Meng, and G. Gay, “Investigating
faults missed by test suites achieving high code coverage,” J. Syst.
Softw., vol. 144, pp. 106-120, 2018.

Y. Wei, B. Meyer, and M. Oriol, ”Is branch coverage a good mea-
sure of testing effectiveness?” in Empirical Software Engineering and
Verification, Berlin, Germany: Springer, 2012, pp. 194-212.

Z. Jin and A.]. Offutt, “Coupling-based criteria for integration
testing,” Softw. Testing, Verification Rel., vol. 8, no. 3, pp. 133-154,
1998.

A. Offutt, A. Abdurazik, and R. Alexander, “An analysis tool for
coupling-based integration testing,” in Proc. IEEE 6th Int. Conf.
Eng. Complex Comput. Syst., 2000, pp. 172-178.

T. Su et al., “A survey on data-flow testing,” ACM Comput. Surv.,
vol. 50, no. 1, pp. 1-35, 2017.

M. J. Harrold and G. Rothermel, “Performing data flow testing on
classes,” SIGSOFT Softw. Eng. Notes, vol. 19, no. 5, pp. 154-163,
Dec. 199%4.

A. L Souter and L. L. Pollock, “The construction of contextual def-
use associations for object-oriented systems,” IEEE Trans. Softw.
Eng., vol. 29, no. 11, pp. 1005-1018, Nov. 2003.

R. T. Alexander and A. J. Offutt, “Criteria for testing polymorphic
relationships,” in Proc. 11th Int. Symp. Softw. Rel. Eng., 2000,
pp- 15-23.

R. T. Alexander, J. Offutt, and A. Stefik, “Testing coupling rela-
tionships in object-oriented programs,” Softw. Testing, Verification
Rel., vol. 20, no. 4, pp. 291-327, 2010.

M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-
flow test generation,” in Proc. IEEE 24th Int. Symp. Softw. Rel. Eng.,
2013, pp. 370-379.

G. Denaro, A. Margara, M. Pezze, and M. Vivanti, “Dynamic data
flow testing of object oriented systems,” in Proc. IEEE/ACM 37th
IEEE Int. Conf. Softw. Eng., 2015, pp. 947-958.

G. Denaro, A. Gorla, and M. Pezze, “Contextual integration test-
ing of classes,” in Fund. Approaches Softw. Eng., 2008, pp. 246-260.
A. Scott, Building Object Applications That Work, Your Step-by-Step
Handbook for Developing Robust Systems Using Object Technology,
Cambridge, U.K.: Cambridge Univ. Press, 1997.

G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite genera-
tion for object-oriented software,” in Proc. 19th ACM SIGSOFT
Symp. 13th Eur. Conf. Found. Softw. Eng., 2011, pp. 416-419.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in Proc. 29th Int. Conf. Softw.
Eng., 2007, pp. 75-84.

J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri,
“An empirical evaluation of evolutionary algorithms for unit
test suite generation,” Inf. Softw. Technol., vol. 104, pp. 207-235,
2018.

M. Soltani, A. Panichella, and A. van Deursen, “A guided genetic
algorithm for automated crash reproduction,” in Proc. IEEE/ACM
39th Int. Conf. Softw. Eng., 2017, pp. 209-220.

F. E. Allen, “Control flow analysis,” ACM SIGPLAN Notices, vol. 5,
no. 7, pp. 1-19, Jul. 1970.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

2086

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Y. Wang et al.,, “Could I have a stack trace to examine the depen-
dency conflict issue?,” in Proc. IEEEJACM 41st Int. Conf. Softw.
Eng., 2019, pp. 572-583.

Z. Wang, B. Li, L. Wang, M. Wang, and X. Gong, “Using coupling
measure technique and random iterative algorithm for inter-class
integration test order problem,” in Proc. IEEE 34th Annu. Comput.
Softw. Appl. Conf. Workshops, 2010, pp. 329-334.

M. Steindl and]J. Mottok, “Optimizing software integration by
considering integration test complexity and test effort,” in Proc.
10th Int. Workshop Intell. Solutions Embedded Syst., 2012, pp. 63-68.
N. Hashim, H. Schmidt, and S. Ramakrishnan, “Test order for
class-based integration testing of java applications,” in Proc. 5th
Int. Conf. Qual. Softw., 2005, pp. 11-18.

S. R. Vergilio, A. Pozo, J. C. G. Arias, R. da VeigaCabral, and T.
Nobre, “Multi-objective optimization algorithms applied to the
class integration and test order problem,” Int.]. Softw. Tools Tech-
nol. Transfer, vol. 14, pp. 461-475, 2012.

P. Bansal, S. Sabharwal, and P. Sidhu, “An investigation of strate-
gies for finding test order during integration testing of object ori-
ented applications,” in Proc. Int. Conf. Methods Models Comput. Sci.,
2009, pp. 1-8.

S. Jiang, M. Zhang, Y. Zhang, R. Wang, Q. Yu, and]. W. Keung,
“An integration test order strategy to consider control coupling,”
IEEE Trans. Softw. Eng., vol. 47, no. 7, pp. 1350-1367, Jul. 2021.

L. Borner and B. Paech, “Integration test order strategies to con-
sider test focus and simulation effort,” in Proc. 1st Int. Conf. Adv.
Syst. Testing Validation Lifecycle, 2009, pp. 80-85.

T. Mariani, G. Guizzo, S. R. Vergilio, and A. T. Pozo, “Grammatical
evolution for the multi-objective integration and test order prob-
lem,” in Proc. Genet. Evol. Comput. Conf., 2016, pp. 1069-1076.

G. Guizzo, G. M. Fritsche, S. R. Vergilio, and A. T. R. Pozo, “A hyper-
heuristic for the multi-objective integration and test order problem,”
in Proc. on Genet. Evol. Comput. Conf., 2015, pp. 1343-1350.

A. Abdurazik and J. Offutt, “Using coupling-based weights for the
class integration and test order problem,” Comput. |., vol. 52, no. 5,
pp- 557-570, 2009.

R. da Veiga, A. CabralPozo, and S. R. Vergilio, “A pareto ant col-
ony algorithm applied to the class integration and test order prob-
lem,” in Proc. IFIP Int. Conf. Testing Softw. Syst., 2010, pp. 16-29.

L. C. Briand, Y. Labiche, and Y. Wang, “An investigation of graph-
based class integration test order strategies,” IEEE Trans. Softw.
Eng., vol. 29, no. 7, pp. 594-607, Jul. 2003.

S. A. Khan and A. Nadeem, “Automated test data generation for
coupling based integration testing of object oriented programs
using evolutionary approaches,” in Proc. 10th Int. Conf. Inf. Tech-
nol.: New Gener., 2013, pp. 369-374.

S. A. Khan and A. Nadeem, “Automated test data generation for
coupling based integration testing of object oriented programs
using particle swarm optimization (PSO),” in Proc. 7th Int. Conf.
Genet. Evol. Comput., 2014, pp. 115-124.

B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,”
J. Syst. Softw., vol. 157,2019, Art. no. 110398.

C. E. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empir. Softw. Eng., vol. 27, no. 4, 2022, Art. no. 96.

A. Arcuri, “RESTful API automated test case generation with
evomaster,” ACM Trans. Softw. Eng. Methodol., vol. 28, no. 1,
pp- 1-37,2019.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments,” in Proc. 21st USENIX Secur. Symp., 2012, pp. 445-458.
M. Beyene and J. H. Andrews, “Generating string test data for
code coverage,” in Proc. IEEE 5th Int. Conf. Softw. Testing, Verifica-
tion Validation, 2012, pp. 270-279.

D. Coppit and J. Lian, “Yagg: An easy-to-use generator for struc-
tured test inputs,” in Proc. IEEEJACM 20th Int. Conf. Automated
Softw. Eng., 2005, pp. 356-359.

P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in Proc. ACM Sigplan Conf. Programm. Lang.
Des. Implementation, 2008, pp. 206-215.

R. Padhye, C. Lemieux, M. Papadakis, and Y. L. Traon, “Semantic
fuzzing with zest,” in Proc. 28th ACM SIGSOFT Int. Symp. Softw.
Testing Anal., 2019, pp. 329-340.

C. Baier and J.-P. Katoen, Principles of Model Checking, Cambridge,
MA, USA: MIT Press, 2008.

A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating
branch coverage as a many-objective optimization problem,” in
Proc. Int. Conf. Softw. Testing, Verification Validation, 2015, pp. 1-10.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

S.Jan, A. Panichella, A. Arcuri, and L. Briand, “Search-based multi-
vulnerability testing of XML injections in web applications,” Empir.
Softw. Eng., vol. 24, pp. 3696-3729, 2019.

A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with
dynamic selection of the targets,” IEEE Trans. Softw. Eng., vol. 44,
no. 2, pp. 122-158, Feb. 2018.

U. Rueda, R. Just,]. P. Galeotti, and T. E. Vos, “Unit testing tool
competition: Round four,” in Proc. IEEEJACM 9th Int. Workshop
Search-Based Softw. Testing, 2016, pp. 19-28.

A. Panichella and U. R. Molina, “Java unit testing tool competi-
tion-fifth round,” in Proc. IEEE/ACM 10th Int. Workshop Search-
Based Softw. Testing, 2017, pp. 32-38.

U. R. Molina, F. Kifetew, and A. Panichella, “Java unit testing tool
competition-sixth round,” in Proc. IEEEJACM 11th Int. Workshop
Search-Based Softw. Testing, 2018, pp. 22-29.

F. Kifetew, X. Devroey, and U. Rueda, “Java unit testing tool com-
petition: Seventh round,” in Proc. 12th Int. Workshop Search-Based
Softw. Testing, 2019, pp. 15-20.

X. Devroey, S. Panichella, and A. Gambi, “Java unit testing tool
competition - eighth round,” in Proc. IEEE/ACM 42nd Int. Conf.
Softw. Eng. Workshops, 2020, pp. 545-548.

L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler,
“GRT: Program-analysis-guided random testing (T),” in Proc.
IEEE/ACM 30th Int. Conf. Automated Softw. Eng., 2015, pp. 212-223.
R. Just, D. Jalali, and M. D. Ernst, “Defects4]: A database of exist-
ing faults to enable controlled testing studies for java programs,”
in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 437-440.

M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monper-
rus, “Automatic repair of real bugs in java: A large-scale experi-
ment on the defects4j dataset,” Empir. Softw. Eng., vol. 22, no. 4,
pp- 1936-1964, Aug. 2017.

M. Martinez and M. Monperrus, “ASTOR: A program repair
library for java,” in Proc. 25th Int. Symp. Softw. Testing Anal., 2016,
pp. 441-444.

S. Pearson et al., “Evaluating and improving fault localization,” in
Proc. 39th Int. Conf. Softw. Eng., 2017, pp. 609-620.

T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-
rank based fault localization approach using likely invariants,” in
Proc. 25th Int. Symp. Softw. Testing Anal., 2016, pp. 177-188.

T. B. Noor and H. Hemmati, “A similarity-based approach for test
case prioritization using historical failure data,” in Proc. IEEE 26th
Int. Symp. Softw. Rel. Eng., 2015, pp. 58-68.

P. Derakhshanfar and X. Devroey, Replication package of generat-
ing class-level integration tests using call site information, Dec. 2020.
[Online]. Available: https:/ /doi.org/10.5281/zenod0.4300633

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G.
Fraser, “Are mutants a valid substitute for real faults in software
testing?,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2014, pp. 654-665.

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?,” in Proc. 27th Int. Conf.
Softw. Eng., 2005, pp. 402—411.

H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Vent-
resque, “PIT: A practical mutation testing tool for java (demo),” in
Proc. 25th Int. Symp. Softw. Testing Anal., 2016, pp. 449-452.

Q. Zhu, A. Panichella, and A. Zaidman, “A systematic literature
review of how mutation testing supports quality assurance proc-
esses,” Softw. Test. Verification Rel., vol. 28, no. 6, 2018.

S. Garcia, D. Molina, M. Lozano, and F. Herrera, “A study on the
use of non-parametric tests for analyzing the evolutionary algo-
rithms’ behaviour: A case study on the CEC’2005 special session
on real parameter optimization,”]. Heuristics, vol. 15, no. 6,
pp- 617644, Dec. 2009.

N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Clas-
sification Perspective, Cambridge, U.K.: Cambridge Univ. Press,
2011. [Online]. Available: https://books.google.com/books?id=
VoWIOKVzR4C

A. Panichella, “A systematic comparison of search-based
approaches for LDA hyperparameter tuning,” Inf. Softw. Technol.,
vol. 130, 2021, Art. no. 106411.

M. E. Delamaro, J. Maidonado, and A. P. Mathur, “Interface muta-
tion: An approach for integration testing,” IEEE Trans. Softw. Eng.,
vol. 27, no. 3, pp. 228-247, 2001.

A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Softw. Testing, Verification Rel., vol. 24, no. 3, pp. 219-250, 2014.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.5281/zenodo.4300633
https://books.google.com/books?id=VoWIIOKVzR4C
https://books.google.com/books?id=VoWIIOKVzR4C

DERAKHSHANFAR ETAL.: GENERATING CLASS-LEVEL INTEGRATION TESTS USING CALL SITE INFORMATION

[78] A. Arcuri and G. Fraser, “Parameter tuning or default values? An
empirical investigation in search-based software engineering,”
Empir. Softw. Eng., vol. 18, no. 3, pp. 594-623, Jun. 2013.

S. Shamshiri et al., “Random or evolutionary search for object-ori-
ented test suite generation?,” Softw. Testing, Verification Rel., vol. 28,
no. 4, Jun. 2018, Art. no. e1660.

[79]

Pouria Derakhshanfar (Student_Member, IEEE)
received the PhD degree from the software engi-
neering research group (SERG), Delft University of
Technology, under the supervision of dr. Annibale
Panichella, prof. Andy Zaidman, and prof. Arie van
Deursen. He is a post-doctoral researcher with the
software engineering research group (SERG) of
the Delft University of Technology. Previousy. He
was part of the EU Software Testing AMPlification
(STAMP) project, where he develops new search-
based approaches for crash replication and test
amplification in a DevOps context. He is currently working on quality assur-
ance of cyber-physical systems in the EU COSMOS project. His research
interests include search-based software testing, model-based testing, and
log analysis.

Xavier Devroey (Member, IEEE) received the PhD
in computer science from the University of Namur.
He is an assistant professor with the University
of Namur. Previously, he was a post-doctoral
researcher with the software engineering research
group (SERG) of the Delft University of Technol-
ogy, where he was involved in the EU Software
Testing AMPlification (STAMP) project. His main
research interests are search-based and model-
based software testing, test suite augmentation,
and variability-intensive systems engineering.

Annibale Panichella is an assistant professor
with the Software Engineering Research Group
(SERG), Delft University of Technology (TU
Delft), Netherlands. He is also a research fellow
with the Interdisciplinary Centre for Security,
Reliability and Trust (SnT), University of Luxem-
bourg. His research interests include security
testing, evolutionary testing, search-based soft-
ware engineering, textual analysis, and empiri-
cal software engineering. He serves and has
served as program committee member of vari-
ous inter- national conference (e.g., ICSE, GECCO, ICST and ICPC)
and as reviewer for various international journals (e.g., the IEEE
Transactions on Software Engineering, the ACM Transactions on Soft-
ware Engineering and Methodology, the IEEE Transactions on Evolu-
tionary Computation, the Empirical Software Engineering, the
Software Testing, Verification & Reliability) in the fields of software
engineering and evolutionary computation.

2087

Andy Zaidman (Member, IEEE) received the
MSc and PhD degrees in computer science from
the University of Antwerp, Belgium, in 2002 and
20086, respectively. Currently, he is a full professor
with the Delft University of Technology, The Neth-
erlands. His main research interests include soft-
ware evolution, program comprehension, mining
software repositories and software testing. He is
an active member of the research community and
involved in the organization of numerous confer-
ences (WCRE’'08, WCRE’09, VISSOFT’'14 and
MSR’18); he is on the editorial board of the Empirical Software Engineer-
ing journal and the IEEE Transactions on Software Engineering. In 2013
he was the laureate of a prestigious Vidi mid-career grant, while in 2019
he received the most prestigious Vici career grant from the Dutch sci-
ence foundation NWO.

Arie van Deursen (Member, IEEE) is a full profes-
sor in software engineering with the Delft University
of Technology, The Netherlands, where he heads
the Software Engineering Research Group and
chairs the Department of Software Technology. His
research interests include human aspects of soft-
ware engineering, software architecture, and soft-
ware testing. He serves on the advisory board of
the Innovation Center for Al (ICAI). He is founder
and scientific director of Al for Fintech Research
(AFR), and one of the currently 20 ICAI labs. He
served as program co-chair for ESEC/FSE 2017 and for ICSE 2021. He
serves on the advisory board of the Empirical Software Engineering and on
the editorial board of the Peerd Computer Science.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2023 at 07:32:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

