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Managing Technical Debt Using Intelligent
Techniques - A Systematic Mapping Study

Danyllo Albuguerque, Everton Guimaraes, Graziela Tonin, Pilar Rodriguez, Mirko Perkusich,
Hyggo Almeida, Angelo Perkusich and Ferdinandy Chagas

Abstract—Technical Debt (TD) is a metaphor reflecting technical compromises that can yield short-term benefits but might hurt the
long-term health of a software system. With the increasing amount of data generated when performing software development activities,
an emergent research field has gained attention: applying Intelligent Techniques to solve Software Engineering problems. Intelligent
Techniques were used to explore data for knowledge discovery, reasoning, learning, planning, perception, or supporting
decision-making. Although these techniques can be promising, there is no structured understanding related to their application to
support Technical Debt Management (TDM) activities. Within this context, this study aims to investigate to what extent the literature has
proposed and evaluated solutions based on Intelligent Techniques to support TDM activities. To this end, we performed a Systematic
Mapping Study (SMS) to investigate to what extent the literature has proposed and evaluated solutions based on Intelligent Techniques
to support TDM activities. In total, 150 primary studies were identified and analyzed, dated from 2012 to 2021. The results indicated a
growing interest in applying Intelligent Techniques to support TDM activities, the most used: Machine Learning and Reasoning under
uncertainty. Intelligent Techniques aimed to assist mainly TDM activities related to identification, measurement, and monitoring. Design
TD, Code TD, and Architectural TD are the TD types in the spotlight. Most studies were categorized at automation levels 1 and 2,
meaning that existing approaches still require substantial human intervention. Symbolists and Analogizers are levels of explanation
presented by most Intelligent Techniques, implying that these solutions conclude a general truth after considering a sufficient number
of particular cases. Moreover, we also cataloged the empirical research types, contributions, and validation strategies described in
primary studies. Based on our findings, we argue that there is still room to improve the use of Intelligent Techniques to support TDM
activities. The open issues that emerged from this study can represent future opportunities for practitioners and researchers.

Index Terms—Technical Debt, Intelligent Techniques, Technical Debt Management Activities, Systematic Mapping Study.

INTRODUCTION

1
ECHNICAL DEBT (TD) refers to technical compromises
Tthat can yield short-term benefits but might hurt the
long-term health of a software system [1]. TD can be as-
sociated with different software artifacts (e.g., requirement,
source code, and test artifacts) and span over different
development phases [2]. Managing its impact includes
identifying, monitoring, and measuring TD symptoms [3].
TD is always present in real-world software develop-
ment. Even though Technical Debt Management (TDM) is
a critical activity [1], many organizations do not have es-
tablished TDM practices. Project managers and developers
are longing for methods and tools to help them strategically
plan, track, and pay down TD occurrences [4]. Given the
diversity of everyday practices in software development,
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TDM can be complex since it relies on a decision process
based on multiple and heterogeneous data, which are hard
to be gathered and synthesized.

Based on this scenario, appropriate techniques must
retrieve and handle data from various software artifacts to
assess whether TD has occurred or is beyond a defined
threshold. Moreover, deciding when and how TD occur-
rences should be paid is based on several objectives such as
Lead Time, Maintenance Costs, and Risk mitigation. In other
words, software organizations need techniques that analyze,
process and make decisions based on extensive data from
multiple sources to support TDM activities.

According to the challenges mentioned above, there is
a promising opportunity to use Intelligent Techniques to
support TDM activities. For this study’s purposes, we de-
fined Intelligent Techniques as those that explore data for
knowledge discovery, reasoning, learning, planning, natural
language processing, perception, or supporting decision-
making [5]. Examples of Intelligent Techniques are expert
systems, case-based reasoning, neural networks, genetic al-
gorithms, probabilistic methods, and fuzzy systems. It is
essential to mention that there is no complete consensus
on what makes a technique “intelligent”. An advantage of
using this term over more popular ones such as “Artificial
Intelligence” (Al) is because it is more comprehensive. The
term is also used as an “umbrella” to group a set of tech-
niques, including Al-based techniques in general and other
techniques out of this classification (e.g., Analytic Hierarchy
Process and Dynamic Programming).
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Although Intelligent Techniques have a great potential to
optimize TDM activities, there is little empirical knowledge
of how these techniques can benefit them. To address this
gap, we conducted a Systematic Mapping Study (SMS)
based on the guideline presented by Petersen et al. [6] to
explore the intersection of both fields and pointing out
new and future research directions. This article describes
the protocol of the employed SMS and reports our findings
focusing on:

— investigating how the existing solutions apply Intelli-
gent Techniques to support TDM;

— exploring which Intelligent Techniques currently sup-
port TD types and TDM activities;

— understanding the risks involved in using Intelligent
Techniques-based solutions to support TDM activities;

— gathering the contributions, empirical research type,
and validation strategies of studies that report the
application of Intelligent Techniques to support TDM
activities;

— analyzing our result’s implications for industry practi-
tioners and researchers; and

— documenting current research challenges and gaps for
future research.

Finally, this article is an extension of study originally
presented at the International Conference on Technical Debt
2022 (TechDebt'22) [7]. The remainder of this article is or-
ganized as follows. Section [2| describes the main concepts
required to understand this study. Section [3| discusses re-
lated work. Section [ presents the methods employed to
conduct this SMS. Section [5| points out the results and
presents our main findings. Section [f] discusses the results
from practitioners’ and researchers’ perspectives. Section
discusses the study’s threats to validity and the actions we
took to mitigate them. Finally, Section [§| presents our final
remarks and future work.

2 BACKGROUND

This section discusses the TD fundamentals, its types,
and activities required for TD Management (Section [2.T).
Next, we introduce the concept of Intelligent Techniques
and explain the classification framework adopted in this

study (Section 2.2).

2.1 Technical Debt

TD concept. The term was introduced by Cunning-
ham [8] when discussing with stakeholders the conse-
quences of releasing poorly written code snippets to acceler-
ate the development process. For example, even though the
source code meets the system requirements in the current
release, the consequences of TD occurrences might spread
over other software components in case of future changes.
That is, TD occurrences can negatively affect maintainability
and evolvability [1].

The TD metaphor is used to communicate with non-
technical stakeholders (e.g., corporate managers and clients,
among others) about immature software artifacts and their

impact. TD can be associated with the decision-making pro-
cess about the shortcuts and workarounds taken in software
development. However, these decisions can positively or
negatively influence the quality of the artifacts produced
as the outcome of the software development. TD items can
occur due to many factors, such as a lack of team members’
knowledge of writing the source code without following a
specific programming style. Therefore, software organiza-
tions must perceive and manage TD in their projects [9].

TD types. Li et al. [10] classified TD into ten coarse-
grained types, and each of those was further classified into
several subtypes based on the root causes of TD. Next,
we describe the most prominent TD types according to the
classification mentioned above:

— Design TD refers to technical shortcuts in detailed de-
sign.

— Code TD is poorly written code that violates best coding
practices or coding rules. Examples include duplicated
and complex code.

— Architectural TD is caused by architecture decisions that
compromise internal quality aspects, such as maintain-
ability.

— Test TD refers to shortcuts taken in testing. An example
is the lack of tests (e.g., unit tests, integration tests, and
acceptance tests).

— Requirements TD refers to the distance between the opti-
mal requirements specification and how these require-
ments are satisfied based on the system implementation
under domain assumptions and constraints.

Other TD types are mentioned in the original study [10],
such as Build TD, Documentation TD, Infrastructure TD,
Versioning TD, and Defect TD. These TD types will also be
discussed in our SMS (Section , but here we focused on
describing the most recurrent ones.

Technical Debt Management (TDM). It includes a set of
activities that: (i) prevent potential TD from being incurred;
(ii) deal with the accumulated TD to make it visible and con-
trollable; and (iii) balance cost and value in repayment TD
occurrences. Li et al. [10] classified TDM into eight coarse-
grained activities, being the most prominent described as
follows:

— TD Identification detects TD caused by intentional or
unintentional technical decisions in a software system
through specific techniques, such as static code analy-
sis.

— TD Measurement quantifies the benefit and cost of
known TD in a software system through estimation
techniques or estimates the level of the overall TD in
a system.

— TD Monitoring watches the changes in the cost and
benefit of unresolved TD over time.

— TD Repayment resolves or mitigates TD in a software
system by techniques such as re-engineering and refac-
toring.

— TD Prioritization ranks identified TD according to spe-
cific predefined rules to support deciding which TD
items should be (re)paid first and which TD items can
be tolerated until later releases.
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Besides those TDM activities listed above, Li et al. [10]
mention others such as TD Communication, TD Prevention,
and TD Representation/Documentation. These TD types
and TDM categorization served as a basis for our SMS to
understand the application of Intelligent Techniques and to
what extent they support different TD types.

2.2 Intelligent Techniques

Concept. The term comprises techniques used to explore
data for knowledge discovery, reasoning, learning, plan-
ning, perception, or supporting decision-making [5]. These
techniques tolerate imprecision, uncertainty, partial truth,
and approximation [11]]. The guiding principle of Intelligent
Techniques is to exploit this tolerance to achieve tractability,
robustness, and low computation cost [12]. Moreover, Intel-
ligent Techniques mimic consciousness in many important
cases: (i) they can learn from experience; (i) they can be
popularized in areas where there is no direct experience; and
(iii) they speed up input/output mapping with sequential
analysis views.

On the other hand, Conventional Techniques commonly
use the principles of accuracy, certainty, and stiffness. These
techniques are based on mathematical or analytical models,
binary logic, transparent systems, numerical analysis, and
transparent software [12]. All input data, products, and
processes are clearly defined. However, using only these
techniques to manage real problems is challenging since
they process raw data without reasoning about the problem
and do not consider the system’s historical or contextual
information [11]. Table [1| shows a comparative analysis
highlighting the main characteristics of Conventional and
Intelligent Techniques [12], [11].

Table 1
Conventional Techniques versus Intelligent Techniques.

Conventional Techniques

Intelligent Techniques

Require an analytical model to
accurately describe traditional
computations, which require a
lot of processing time.

Allowance for irrationality, un-
certainty, partial truth, and ap-
proximation.

Although the calculations are
complex, imprecision and un-
certainties are undesirable qual-
ities.

Allowance for imprecision and
uncertainty can provide man-
agement capabilities, low cost,
intelligent computing quotas,
and savings in communications.

It is deterministic, that is, there
is an accurate forecast for the
outputs obtained due to the in-
puts used in the program.

It is stochastic, that is, there is
no forecast for the outputs ob-
tained due to the inputs used in
the program.

Require accurate input.

Process uncertainty data.

Provide the exact answer.

Provide approximate answers.

Classification. Machine Learning, Expert Systems, Ge-
netic Algorithms, and Fuzzy Systems are typical examples
of Intelligent Techniques since they simulate human behav-
ior, including the ability to learn, accomplish tasks, and em-
ulate human expertise and decision-making. A complete list
of Intelligent Techniques and their concepts are described in
Table[2] In general, these techniques may be used to:

— acquire the individual and collective knowledge and
extend a knowledge base using artificial intelligence
and database technologies;

— collect and analyze the tacit knowledge using expert
systems, case-based reasoning, and fuzzy logic;

— enable knowledge discovery, or discovering underly-
ing, hidden patterns in data sets, using neural networks
and data mining;

— generate solutions to highly complex problems using
genetic algorithms;

— automate routine tasks using intelligent agents.

Furthermore, it is important to mention that there is no
complete consensus in the literature on a broader nomen-
clature encompassing various techniques considered to be
“intelligent”. We are using this nomenclature as it has been
used in other recent studies [11]], [5]], [12] and appears to be
the most recurrent (and suitable) nomenclature to enclose
this category of techniques. For this study, we did not
consider techniques not listed by such studies [11], [5], [12]
as being intelligent (e.g., formal methods, software process
simulation modeling, and model-driven development) since
they do not adhere to the characteristics of Intelligent Tech-
niques adopted in this study (See Table ).

3 RELATED WORK

This section discusses secondary studies that focused
on Technical Debt Management (TDM) (Section and
investigated how Intelligent Techniques have been applied
to solve TDM problems (Section [3.2). Finally, it summarizes
how our study complements the existing body of knowl-

edge (Section [3.3).

3.1 Technical Debt Management

Technical Debt and its management have been increas-
ingly investigated in recent years due to the existence of
several secondary studies in the area [20], [21], [10], [22],
[3]. Next, we discuss these studies and underlying results
chronologically.

Tom et al. [20] presented a Systematic Literature Review
(SLR) to achieve a consolidated understanding of TD and
determine its positive and negative outcomes. The study
identified code decay and architectural deterioration as the
major TD symptoms. The authors proposed a theoretical
framework to help uncover TD elements by establishing
boundaries and identifying the causes behind accruing TD.
Budget and resource constraints were cited as potential
causes of accumulating TD, and negative consequences in
scheduling, risks, and quality were found as the associated
outcomes.

Ampatzoglou et al. [21] conducted an SLR focusing on
the financial perspective of TD. The authors found that the
most common financial terms used in TD research were
principal and interest. In contrast, the financial strategies that
have been more frequently applied for managing TD are
real options, portfolio management, cost/benefit analysis,
and value-based analysis. The authors also emphasized that
such strategies lacked consistency, i.e., the same strategy
was differently applied in many studies. Sometimes, it
lacked an explicit mapping between financial and Software
Engineering concepts.

Li et al. [10] performed a Systematic Mapping Study
(SMS) to understand TD and its management better. The



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, OCTOBER 2022

Table 2
Intelligent Techniques

Intelligent
Technique

Description

Examples

Machine learning

Consists an evolving branch of computational algorithms designed to emulate human intelli-
gence by learning from the surrounding environment. [13].

Regression and Sup-
port Vector Machine

Reasoning under It has been studied in the fields of probability theory and decision theory. This technique can ~ Bayesian Network
uncertainty be used for determining what is true in the world based on observations of the world [14]. and Fuzzy logic
Search and opti- Iterative computation process composed of encoding, initialization, selection, evaluation, and  Genetic ~ algorithm,
mization stop decision. They implement adaptive algorithms with potential learning opportunities [15].  Linear programming
Natural language Automatic text generation is associated with text processing, machine translation, speech  Speech  recognition
processing synthesis and analysis, grammatical analysis, and style [16]. and text mining
Mathematical An umbrella classification term for techniques that are not any of the other types and describes ~ Conceptual model
Model a system by variables and equations that establish relationships between the variables [11]. and Moving average
Multi-agent Are systems comprised of agents who decide what to do based on their utilities. The agents BDI and Cognitive
systems can act autonomously, each with its information about the world and the other agents [14]. Systems

Multiple decision Is a sub-discipline of operations research that explicitly considers multiple criteria in decision- ~ Analytic = Hierarchy

criteria analysis

making problems [11].

Process (AHP)

Rules

It consists of rule-based expert systems, in which production rules represent the knowledge
(i.e., if - then expressions) [14].

Decision tree

Recommendation Computer-based systems that would work as a human expert. This technique is associated =~ Recommenders

systems with processing knowledge and adopting complex decisions [17].

Semantic Network A semantic network or net is a graph structure used for representing knowledge in patterns Complex  networks
of interconnected nodes and arcs [18]. and Graphs

Cognitive Simula-  Cognitive simulations are runnable computer programs representing models of human cogni- Data analytic and

tion

tive activities [19].

comprehension model

authors identified different TD types and TDM activities.
They pointed out that the term “debt” has been used in
different ways by different people, which leads to am-
biguous interpretations of the term. The authors found
that code-related TD and its management have gained the
most attention. Finally, they concluded there is a need for
more empirical studies with high-quality evidence on the
whole TDM process and on the application of specific TDM
approaches in industrial settings.

Alves et al. [22] conducted an SMS to investigate strate-
gies proposed in the literature to identify and manage TD.
The authors identified various TD indicators (i.e., God Class
and Duplicate Code), which support identifying specific TD
types. Software visualization techniques were the least used
to identify TD. Regarding TD management strategies, the
authors identified the portfolio approach and cost-benefit
analysis as the most frequently cited strategies.

Lastly, Behutiye et al. [3] conducted a study to analyze
and synthesize the state of the art of TD and its causes,
consequences and management strategies in the context of
Agile Software Development (ASD). They identified five
research areas of interest related to the literature on TD in
ASD. Among those areas, managing TD in ASD received
significant attention, followed by investigations regarding
software architecture in ASD and its relationship with TD.
Moreover, eight categories regarding the causes and five
categories regarding the consequences of incurring TD in
ASD were identified.

3.2 TDM supported by Intelligent Techniques

Mostow [23], Partridge [24], and Ford [25] published
the first studies on the topics and paved the road for this
research area in the 80’s. These authors compared Software
Engineering and Artificial Intelligence (i.e., a type of Intelli-
gent Technique), contrasting them in terms of the problems
they attempt to solve and the methods, tools, and techniques
used for both. These authors argued that a fusion of these

two disciplines would be needed for many new demands
and more advanced software solutions.

More recent studies have explored Intelligent Techniques
and Technical Debt in more depth. For instance, Tsintzira
et al. [26] conducted a literature review by analyzing the
research corpus published in five high-quality SE journals
with the goal of cataloging: (a) the software engineering
practices in which machine learning (ML) is used; (b) the
ML technologies that are used for solving them; and (c) the
intersection of the ML and TDM: developing a problem-
solution mapping. Similarly, Azeem et al. [27] presented an
SLR on Machine Learning Techniques for Code Smell De-
tection. The authors focused on four different perspectives:
(i) code smells considered, (ii) setup of machine learning
approaches, (iii) design of the evaluation strategies, and (iv)
a meta-analysis of the performance achieved by the models
proposed so far. The analyses performed show code smells
types and machine learning in the spotlight. In addition,
the results also revealed several existing issues and open
challenges that the research community can focus on in the
near future.

3.3 Our Contribution

The amount of secondary studies on the topic of TDM
shows its relevance for the research community and indus-
try. Further, the TDM research community is following the
trend of applying Intelligent Techniques to solve Software
Engineering problems [5], [28], [29]. However, the existing
secondary studies focus on how TDM is supported by ML
techniques, ignoring other Intelligent Techniques such as
fuzzy systems, genetic algorithms, and natural language
processing. Additionally, these studies focused on specific
TD subtypes (i.e., code smell) rather than analyzing TD
more broadly in its various types and classifications. Fur-
thermore, they do not detail which TD types or TDM activi-
ties are most common and their association with Intelligent
Techniques.
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Our study might be the pioneer in covering this gap
and pointing out new and future research directions. The
main differences between our study compared to the ex-
isting literature are: (i) we used a systematic approach
for obtaining and analyzing studies related to Intelligent
Techniques to support TDM activities; (ii) we sought to
identify the intersection of a particular area of Software
Engineering (i.e., TDM activities) with a broader concept
of Intelligent Techniques; (iii) we researched the application
of Intelligent Techniques (in addition to Machine Learning
and other Al-Based techniques) demonstrating the need for
a broader concept to define this category of techniques,
(iv) we demonstrated the risk behind using Intelligent
Techniques through a three-faceted analysis, involving the
automation level, explanation level and point of application
following the taxonomy provided by Feldt et al. [30], and (v)
we assessed the maturity of research intersecting both areas
by cataloging the empirical research types, contributions,
and validation strategies described in primary studies.

4 RESEARCH METHODOLOGY

This section describes our research protocol. We con-
ducted a Systematic Mapping Study (SMS) because we
expected existing research to be fragmented and not follow
common terminology or use theoretical concepts. Therefore,
the SMS approach works well in such circumstances since it
involves categorizing and aggregating knowledge dispersed
across disconnected studies. Our approach is based on the
guideline described by Petersen et al. [6].

4.1 Research Questions

Based on our research purpose - to identify, classify, and
analyze the use of Intelligent Techniques to support Technical Debt
Management (TDM) activities - the Research Questions (RQ)
for this SMS are as follows:

RQ1. What is the state of the art on the intersection of TDM
and Intelligent Techniques? Our first RQ focused on identi-
fying what (i) Intelligent Techniques, (ii) TDM activities,
and (iii) TD Types are in the spotlight. For this purpose,
we derived three secondary RQs as follows:

— RQ1.1. What Intelligent Techniques have been em-
ployed to support TDM activities?

— RQ1.2. What TDM activities have been supported by
Intelligent Techniques-based solutions?

— RQ1.3. What TD types have been supported by Intelli-
gent Techniques-based solutions?

RQ2. What is the risk level associated with Intelligent
Techniques-based solutions for TDM? Our second RQ focused
on assessing the risks involved in the use of existing so-
lutions that apply Intelligent Techniques to support TDM
activities. For doing so, we used the taxonomy presented
by Feldt et al. [30], which is composed of three facets:
level of automation (i.e., from 1 to 10); explanation level
(i.e., symbolist, analogizer, evolutionary, connectionist and
Bayesian); and point of application (i.e., process, product,
and runtime). According to Feldt et al. [30], in general, the
higher the level of automation, the lower the explanation
level, and as we move from the point of application being

from the process to the runtime level, the riskier it is. The
reasoning is that these situations mean having less control
from humans, and it becomes costlier to reverse incorrect
actions closer (or after) deploying the product. We argue
that this information is vital for organizations in analyzing
the feasibility of using these solutions and creating strategies
for their adoption. Section presents more details about
the adopted taxonomy. We have derived three secondary
RQs to address each of the facets separately:

— RQ2.1. What are the Automation Levels of Intelligent
Techniques-based solutions for TDM?

— RQ2.2. What are the Points of Application of Intelligent
Techniques-based solutions for TDM?

— RQ2.3. What are the Explanation Levels of Intelligent
Techniques-based solutions for TDM?

RQ3. What is the maturity of the existing Intelligent
Techniques-based solutions for TDM? Our third RQ focused
on analyzing aspects of the empirical study conducted to
develop and validate the proposed solutions. Such aspects
include the empirical research types (i.e., experiment, obser-
vational study, experience report, case study, or systematic
review) [31]; the research contribution types (i.e., procedure
or technique, report, qualitative or descriptive model, tool,
or empirical model) [32]]; and research validation strategy
(i.e., analysis, evaluation, example, experience, persuasion
or blatant assertion) [32], which include the artifacts used
(e.g., source code, bug report, and change report) [22] and
the context of the application (i.e., open source, industrial,
not specified). To this end, we derived three secondary RQs
to address each of these aspects separately:

— RQ3.1. What empirical research types have been used
by studies that reported Intelligent Techniques-based
solutions for TDM?

— RQ3.2. What research contributions have been provided
by studies that reported Intelligent Techniques-based
solutions for TDM?

— RQ3.3. How the Intelligent Techniques-based solutions
for TDM have been validated?

4.2 Search Method

Given the broad nature of the search required in this
study, we used a hybrid search method. First, we performed
a database search. Later, we used the primary studies identi-
fied in the database search as the seed set for a snowballing
search (backward and forward) [33].

Database Search. When designing the search string,
our main goal was not to miss relevant studies. Thus, we
prioritized conducting a broader search with the expense of
possibly having more studies filtered manually by applying
the selection process. We defined the search string using the
Population, Intervention, Comparison, and Outcome (PICO)
criteria [34] as a reference. We focused on the Population
and Intervention aspects, and ignored the Comparison and
Outcome because they were out of our scope. We defined the
Population facet with search terms about TD types and TDM
activities. Similarly, we defined the Intervention facet using
keywords that refer to Intelligent Techniques, based on the
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Population [ Technical Debt ]

Component

TD type
"Technical debt" OR "design debt" OR "code debt" OR "architectur* debt"
"debt metaphor" OR "Defect"” OR "test* debt" OR "Requirement Debt" OR

Document* debt” OR "Build debt" OR "infraestructur* debt" OR
"environmental debt" OR "knowledge debt"

Identificat* OR Detect* OR Measur* OR Monitor* OR Repay* OR Prioritiz* OR
Prevent* OR Document* OR Represent* OR Communicat*

Intelligent Technique ]

TDM activity

Intervention
Component

"prediction model" OR Bayes OR BBN OR "Genetic algorithm" OR "Case-based
reasoning” OR "Neural network"” OR "Support Vector Machine” OR SVM OR k-
means OR "Multi-agent system™ OR BDI OR "machine learning” OR cluster OR

fuzzy OR fuzz OR "tree search” OR "rule learning" OR "artificial intelligence" OR

"Natural Language" OR “text mining” OR “speech recognition” OR "Link
analysis" OR "Statistical analysis" OR regression OR ontology OR "evolutionary
algorithm" OR heuristic OR "decision tree" OR "recommend* system” OR
tagging OR "random forest" OR "dependency graph" OR “conceptual model”
OR "Logistic model" OR “comprehension model” OR “statistical model” OR
"statistical method" OR "data analysis" OR "petri net" OR knn OR k-nn OR
"complexity theory" OR "Genetic programming"” OR “Linear programming” OR
"search-based software engineering” OR "data mining" OR "Information
extraction” OR "Randomized search” OR "Intelligent agent” OR "Supervised
learning” OR "Reinforcement learning" OR "Cross-validation” OR "Bayesian
Network" OR "Markov Network" OR “Data Analytic” OR “Analytic Hierarchy
Process” OR “complex networks”

Figure 1. Search String.

search string presented in Perkusich et al. [5]. Figure[T|shows
the final version of the search string employed in this SMS.

Moreover, we used Scopus ACM IEEE Xplore and
Engineering Villageﬁ as the data sources. The rationale
behind selecting these databases was their extensive list
of articles, journals, and conference proceedings related to
Software Engineering. In addition, these databases were
widely used in secondary studies related to our study [10],
B, [22]], [5]. For each database, we executed tailored search
queries given the required syntax.

We initially tested our string by applying it to the data
sources selected for the study to check if it would return 14
known relevant papers, which we identified by manuall
exploring the proceedings of three conferences (i.e., MTD
TechDebtﬂ and ICSMEJ’) between the years 2010 and 2020
before conducting the SMS. As a result, all the papers were
returned, indicating that the search string was comprehen-
sive.

However, while conducting the study, we refined the
terms related to the Population facet by adding synonyms
(e.g., we added Identification as a synonym of Detection) and
removing redundant terms (e.g., using the term "technical
debt" as a prefix for the TDM activity terms).

Snowballing Search. We used Google Scholar for for-
ward snowballing. As the seed set for the first iteration, we

. https:/ /www.scopus.com/

. https://dl.acm.org/

. https:/ /ieeexplore ieee.org/

. https:/ /www.engineeringvillage.com/

. https://dblp.org/db/conf/icse-mtd /index

. https://2020.techdebtconf.org/series/TechDebt
. https:/ /conferences.computer.org/icsm/

N O Ul W N =

used the primary studies identified in the database search.
In subsequent iterations, we analyzed only the newly pri-
mary studies identified in the preceding iteration. This
process ended at an iteration where no new primary studies
were identified.

4.3 Selection Process

For the database search, we applied a three-steps ap-
proach to select the papers. First, we did a preliminary
screening by applying a generic exclusion criteria:

1) A duplicate OR

2) Published in a non-peer reviewed channel (e.g., thesis)
OR

3) Published in a book OR
4) Unavailable in English OR
5) Published before 2012 or after 2021.

We applied this step with the support of START tool [35].
Next, we applied an RQs filtering where we analyzed the
remaining papers relevance in light of the study’s RQs
through the following inclusion criteria:

— Reports Intelligent Techniques-based solutions to sup-
port TDM activities AND
— A primary study.

For this purpose, we employed the adaptive reading
approach [36], in which at least two reviewers evaluated
each paper. Notice that the inclusion criteria only consider
studies that used Intelligent Techniques to support one or
more TDM activities. For example, since the terms “statis-
tical model” and “statistical method” were in the search
string, irrelevant papers were returned from the database
search because they have applied some “statistical analysis”
for validating hypotheses in studies not related to Intelligent
Techniques. Consequently, we did not include such papers
in our SMS because they did not satisfy the inclusion crite-
ria.

Finally, we noticed that a few studies published their
results in multiple papers. Thus, to minimize bias in our
results, as the final step of the selection process, we only
included the most comprehensive paper about the given
study (i.e., Removal of redundant papers).

For the snowballing search, we applied the same three-
steps approach previously described. One reviewer re-
moved the papers given the generic exclusion criteria. Later,
at least two reviewers applied the adaptive reading ap-
proach to select studies given the inclusion criteria. Finally,
we kept only the most comprehensive paper about the given
study for the cases in which a study was published in
multiple papers.

We evaluated the reliability of the selection process by
performing a pilot study on 20 randomly selected stud-
ies. For this purpose, two evaluators (the first and second
authors) applied the followed the selection process inde-
pendently on the 20 randomly selected studies. Once the
selection process was validated, we applied it to all the
papers retrieved by our search.

Results of the Selection Process. Figure [2| summarizes
the retrieved papers in each step of the selection process.
Next, we detail the procedures and results for each step.
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Figure 2. Summary of the SMS search and selection process.

Excluded 289 studies based on applying 161
selection criteria

Excluded 28 studies based on analysis of the 133
studies’ title, authors, and abstract

After 3 rounds of backward and forward

snowballing, we obtained 17 studies 150

1) Search for primary studies. We performed the search
queries on 5/5/2022. As a result, we retrieved 2,983 pa-
pers. We extracted the papers’ details in structured files
(i.e., BibTex files) and inputted them into the START
tool.

2) Preliminary screening. First, we used the START tool’s
features to remove papers given the generic exclusion
criteria. As a result, we removed 2,528 (i.e., 538 dupli-
cates and 1,990 irrelevant) papers, leaving us with 455

papers.

3) RQs filtering. We applied the adaptive reading approach
to the 455 papers and removed 289 papers, leaving us
with 161 papers.

4) Removal of redundant papers. We analyzed the 161 papers
and identified the ones that were related to a single
study by analyzing, for each paper, the list of authors,
title, and abstract. As a result, we identified 28 primary
studies reported in multiple papers. We only kept the
most comprehensive paper for each study, leaving us
with 133 primary studies.

5) Snowballing procedure. We used the 133 primary studies
as the seed set for the first iteration of the snow-
balling search. We conducted the first iteration’s search
on 6/6/2022, retrieved 1,579 papers, and selected 12
primary studies. We conducted the second iteration’s
search on 6/16/2022, retrieved 264 papers, and selected
5 primary studies. Finally, we conducted the third iter-
ation’s search on 6/29/2022, retrieved 103 and selected
zero primary studies, which indicated that this was our
last iteration. As a result, at the end of the snowballing
search, we included 17 primary studies, resulting in 150
primary studies in this SMS (Appendix I).

It is worth noting that about 15% of the primary studies
were retrieved during the snowballing procedure, which
shows the relevance of using snowballing to complement
database search. The Supplementary Material presents the
complete list of primary studies of our SMS [37].

4.4 Data Extraction and Synthesis

Once we identified all the primary studies, we extracted
data regarding papers’ demographics and research ques-
tions. Notice that we did not remove papers after the data
extraction was initiated.

First, we created a data extraction sheet based on the
information presented in Table |3} To ensure the reliability
of the data extraction process, we piloted it by applying the
process to 20 randomly selected primary studies. After the
disagreements were resolved, we randomly assigned the re-
maining 130 primary studies to the researchers, where each
study was assigned to a single researcher. Each researcher
read the full text of the assigned primary studies to fill the
data extraction sheet. Next, we describe the properties (Pr)
shown in Table 3l

Paper’s demographics. For Pr1-Pr7, we gathered data
about relevant descriptive statistics and that could help us
to detect studies reported on multiple papers.

ROQ1. For Pr8 and Pr9, we used the classification pre-
sented in Perkusich et al. [S]. For Pr9, we initially only used
subcategories for Machine Learning, Reasoning under un-
certainty, and Search and optimization techniques because
they were the only ones further decomposed by Perkusich
et al. [5] since they were the most prominent Intelligent
Techniques identified in their study. While conducting our
study, we did not see the need to decompose the remaining
Intelligent Techniques into subcategories. For Pr10, Prll,
and Pr12, we reused other classifications widely employed
by other secondary studies in TD research [10], [22] and [3].

RQ2. For Pr13, we classified each study using an integer
scale between 1 and 10, where the higher the level of
automation, the larger the value. These levels are based on
the ten levels of automation of Sheridan-Verplanck [38], an
existing taxonomy from Automation/HCI research focusing
on human-computer decision-making. For Pr14, we used
the framework proposed by Feldt et al. [39] that considers
when and on what the Intelligent Technique was applied
to the software system. The process level indicates that the
Intelligent Technique-based solution was applied in the soft-
ware development process and did not necessarily directly
affect the source code. Examples here include solutions for
TD prioritization. In contrast, the product level indicates
that the solution directly affects the code, which is the case
for automated program repair, e.g., automatically fixing a
code smell. Finally, the runtime level affects the deployed
product during runtime and has autonomous and self-
adaptive systems as examples. For Pr15, we used the “five
tribes of Artificial Intelligence” classification introduced by
Domingos [40] and adapted by Feldt et al. [30]. Appendix
A, B, and C details, respectively, the concepts of Pr13, Pri4,
and Pr15.

RQ3. For Pr16, we used the classification of empiri-
cal study types presented by Tonella et al. [31]. For Pr17
and Pr18, we used the classification schemes presented by
Shaw [32]. Appendices D, E, and F detail such classification
schemes. For Pr19, we used a catalog of the artifact proposed
by Alves et al. [22] (i.e., Source code, Documentation, Test
artifacts, Bug report, System Architecture Specification, Backlogs
Commit, Change Report, Requirement Specification, and Other).
Finally, for Pr19, we classified the context of the application
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Table 3
Overview of the extracted data.
ID Property Format/value RQ
Pr1-Pr4  Publication ID, title, abstract, keyword Number, phrase, text, and set of words -
Pr5-Pr7  Publication Year, source, metadata Number, conference/journal, and data (e.g., URL, Volume, Pages, DOI, ISSN) -
, Pr8 Intelligent Technique Reasoning under uncertainty, Search and optimization, Machine learning, Math- ~ RQ1
ematical model, Multi-agent system, Multiple criteria decision analysis, Rules,
Recommendation system, Natural Language Processing, Semantic network,
Cognitive simulation (See Table 2}
Pr9 Intelligent Technique subcategory Machine Learning (e.g., Regression Analysis, Neural networks, and Support RQ1
Vector Machine), Reasoning under uncertainty (e.g., Bayesian network and
fuzzy logic), and Search and optimization (Genetic Algorithm, Hill Climbing,
Linear programming).
Pr10 TDM Activity supported by Intelligent TD identification, TD measurement, TD monitoring, TD prioritization, TD  RQ1
Technique communication, TD prevention, TD documentation, and TD repayment.
Pr11 TD types supported by Intelligent Tech- ~ Requirement TD, Architectural TD, Design TD, Code TD, Test TD, Build TD, RQ1
nique Documentation TD, Infrastructure TD, Defect TD
Pr12 TD subtypes supported by Intelligent Design TD (Code smells, Complex classes or methods, Not specified), Re- RQ1
Technique quirement TD (over-engineering, Not specified), Architectural TD (Architecture
smells, Violations of good practices, Architectural compliance issues, System-
level structure quality issues), among others.
Pr13 Automation Level 1to 10 RQ2
Pri4 Point of Application Product, Process, Runtime RQ2
Pr15 Level of Explanation Symbolist, Connectionist, Evolutionary, Bayesians, Analogizers RQ2
Prl6 Empirical Research Type Experiment, Observational study, Experience Report, and Case study RQ3
Pr17 Research Contribution Procedure or technique, Report, Qualitative model, Analytic model, Tool or RQ3
notation, Specific solution prototype, and Empirical Model
Pri8 Validation Strategy Analysis, Evaluation, Experience, Example, Persuasion, Blatant Assertion RQ3
Pr19 Type of Artifact used for validating the  Source code, Documentation, Test artifacts, Bug report, Architecture Specifica- RQ3
study tion, Backlogs, Change Report, Requirement Specification, Other
Pr20 Validation Environment Open source, Industrial, Not Specified RQ3
of the proposed solutions as being for open source projects
B Conference Journal M Total 25 25

(i.e., users and stakeholders can adapt and modify them
even for commercial purposes) , as part of an initiative with
industrial goals (i.e., sale, modification, distribution, and
adaptation of them must be authorized by the respective
creator, being subject to legal punishment to break these
rules), or not specified (i.e., the study did not provide
enough data to classify the validation environment).

5 RESULTS AND DISCUSSIONS

This section presents the gathered data and discusses the
study’s RQs. Section 5.1 summarizes demographic informa-
tion of the primary studies. The following sections describe
the results and discussions about the study’s RQs. Due to
space limitations, we provided a Supplementary Material
containing the results not included herein (see Appendixes
A to I [37]).

5.1 Demographic Information

Figure [3| illustrates the number of primary studies re-
lated to this study’s topic from 2012 to 2021, showing an
increasing trend. The number of studies on the topic has
increased significantly in the past three years, indicating that
it is becoming a hot research topic.

Further, 25% of the primary studies from conferences
were published on MTD, TechDebt, and ICSE. Moreover,
30% of the primary studies from journals were published
on TSE and JSS. Finally, eleven researchers were involved
in more than four primary studies each, of which five
of the most active authors are actively investigating the
intersection of Intelligent Techniques and TDM since 43 of
the 150 primary studies had at least one of these authors
involved.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Figure 3. Frequency of primary studies published between 2012 and
2021.

5.2 Intersection Between TDM and Intelligent Tech-
niques (RQ1)

Next, Sections [5.2.1} 5.2.2] and [5.2.3| summarize the data
gathered for RQ1.1, RQ1.2, and RQ1.3, respectively. Finally,
Section[p.24]analyses the results of RQ1.1, RQ1.2, and RQ1.3
in combination to address RQ1.

5.2.1 Intelligent Techniques Employed to Support TDM
(RQ 1.1)

Figure [4 presents the frequency in which the Intelligent
Techniques were used in the primary studies. The first paper
on the topic of this study was published in 2012 and the
most popularly applied Intelligent Technique for TDM is
Machine Learning, identified in 47% of the primary studies.
Out of these studies, approximately 60% of the Machine
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learning-based solutions were classified as Supervised Learn-
ing techniques such as Neural Networks (28%), Regression
Analysis (23%), and Support Vector Machine (about 8%).
Further, approximately 40% of the studies used Tree-based
techniques such as Decision Tree (about 21%) and Random
Forest (14%).

Machine Learning 7

Reasoning under uncertainty

Natural Language processing

I
—

Mathematical moce! [N
—
_—

Rules

Search and optimization

Multiple criteria decision - 9
analysis
semantic network [} 3
Recommender sysleml 2
Mult-agent system ] 2

Cognitive simulation 0

e K

Figure 4. Distribution of primary studies by Intelligent Technique.

The second most frequently applied Intelligent Tech-
nique is Reasoning Under Uncertainty, identified in 13% of
the studies. Out of these studies, approximately 75% of the
solutions used Statistical Model, 35% used Bayesian Network,
and 10% used Fuzzy logic.

The third most applied Intelligent Technique for TDM
is Natural Language Processing, used by 12% of the pri-
mary studies, which was used to process artifacts produced
during software development automatically. Next, we had
Mathematical Models that was used for two main purposes.
First, along with Rules, it was used to propose parameters
and heuristics to detect data patterns in the software devel-
opment artifacts [41]], [42], [43]. Second, along with Search
and optimization, Mathematical Models was applied to provide
mechanisms for optimizing values for a given set of data or
make predictions [44], [45], [46].

In summary, most of the Intelligent Techniques-based
solutions for TDM focus on minimizing the effort of ana-
lyzing software development artifacts to detect trends and
patterns. Such a motivation justifies the prominence of the
use of Machine Learning, Statistical Model, and Natural Lan-
guage Processing over techniques such as Bayesian networks,
which, in software engineering, are mainly constructed with
the assistance of domain experts [47], [48].

5.2.2 TDM Activities Supported by Intelligent Techniques
(RQ1.2)

Table 4| shows the TDM activities that are supported by
Intelligent Techniques-based solutions. Note that the total
can exceed 100% since the same study can provide support
to more than one TDM activity. The results show that
most studies investigated TD identification, TD measurement
and TD monitoring, which corresponds to a distribution of
65%, 26%, and 25% of the primary studies, respectively.
Moreover, since the artifacts used for these TDM activities
are formed mostly by (semi-) structured documents (e.g.,
source code, requirements, and architecture specification),

the Intelligent Technique can be readily applied to gather
important information for decision making. In contrast,
TD representation/documentation and TD communication have
received the least attention of primary studies, with only 3%
and 2%, respectively.

Comparing these results with the findings of Li et al. [10],
where the authors explored the most recurrent research top-
ics in TDM, it is worth observing that they pointed out TD
repayment (63%) as the hottest topic. However, by analyzing
our results, only 11.3% of the Intelligent Techniques-based
solutions focus on TD repayment, which does not follow
this trend pointed out by the authors. Conversely, they also
pointed out TD identification (54%) and TD measurement
(52%) as the following hottest TDM activities, and they are
the two most popular applications of Intelligent Techniques-
based solutions.

Thus, we noticed that most studies that applied Intelli-
gent Techniques-based solutions for TDM focused on the
initial stages of the management process (e.g., TD iden-
tification and measurement). The infancy of the research
topic can justify this trend. As the research area matures,
it is expected to have more studies focusing on subsequent
phases of the TDM process, including TD prevention.

Table 4
TDM activities and the numbers of studies.

TDM activity No. of studies %
TD identification 98 65,3
TD measurement 39 26
TD monitoring 37 24,7
TD repayment 17 11,3
TD prioritization 13 8,7
TD prevention 11 7,3
TD representation/documentation 5 3,3
TD communication 2 14

Finally, approximately 94 studies (about 65%) provided
support for only one TDM activity, 43 studies (28%) provided
support for fwo TDM activities. Less than 10% of studies
provided support for three or more TDM activities. Therefore,
it is still challenging to automate decision-making, consid-
ering the interconnection between all TDM activities in real-
world software projects.

523 TD Types Supported by Intelligent Techniques
(RQ1.3)

We decomposed the TD types given the root causes [10].
For the sake of consistency, we used the same classification
mentioned in Section When classifying the TD sub-
types based on the causes of TD, if no reasons for a TD
type were explicitly specified in a study, we classified the
corresponding TD sub-type as “not specified”. Figure [§
shows the resulting classification tree.

Design TD is the most popular TD type, being the target
of about 53% of the primary studies. Following it, Code TD,
Architectural TD, and Defect TD are explored in 33%, 21%,
and 19% of the primary studies, respectively. On the other
hand, Requirement TD, Infrastructure TD, and Build TD were
the less mentioned TD types. Note that the total can exceed
100% since the same study can provide support to more
than one TD type. Furthermore, it is important to mention
that a few studies [49], [50], [51]] did not clearly describe the
TD type they were targeting.
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Figure 5. TD classification tree.

By comparing these results against other secondary stud-
ies, we can obtain an important comparative reference on
the present research findings. First, Alves et al. [22] pointed
out Design TD, Architectural TD, and Documentation TD
showed up 20%, 24%, and 13%, respectively. Similarly, Li
et al. [10] showed Code TD, Architectural TD, and Design
TD with 80%, 65%, and 60%, being their results aligned
with this SMS. Regarding the most studied TD types (top-
3), these results are similar to previous studies reported
in the literature. However, when analyzing the top-5 most
studied TD types, we noticed differences compared to these
aforementioned secondary studies. For instance, Test TD
and Documentation TD received great attention, mainly in
the last four years, representing about 20% of the primary
studies considered in this SMS.

Another perspective concerns the TD type and its tempo-
ral progression. By analyzing the most consistently studied
TD types are Design TD and Code TD, showing up 100% and
80% of the considered time-frame, respectively. Similarly,
Architectural TD, Defect TD, Requirement TD, and Test TD
appeared in 70% of the years. We also observed that the fo-
cus on Design TD and Defect TD has significantly increased
over the years.

An essential finding of this study is that 64% of the
studies provide support for only one TD type. Moreover,
around 19% of the studies provide support for the two TD
types, while about 17% of the studies provide support for
three or more TD types simultaneously. Therefore, we noticed
that the academic community lacks systematic awareness
to deal with several TD types through well-defined and
interconnected activities. As previously mentioned, most
research was limited to applying Intelligent Techniques to
address only one TDM activity. One possible reason may be
the complexity of collecting information on certain TD types
and automating decision-making for more than one TDM
activity. As illustrated in Figure [p} the most supported TD
types are Design TD, Code TD, and architectural TD. These
types are already widely covered and mapped by metrics
that can support decision-making more assertively.

Total of
Ocurrences

X X

Ocurrences

5.2.4 Joint Analysis - Intelligent Techniques for TDM (RQ1).

Figure [f] illustrates the intersection between how Intelli-
gent Techniques have been applied for TDM. As previously
discussed, TD identification was the TDM activity with the
most research effort. By analyzing Figure 6] we can see that
this activity was targeted along with all TD types, being
Design TD, Code TD, and Architectural TD the most re-
current ones. In addition, all types of Intelligent Techniques
explored herein were applied to TD identification.

Analyzing from the point of view of Intelligent Tech-
niques, we noticed that Machine Learning and Mathematical
model were employed to support all the TDM activities.
Similarly, Design TD and Code TD were the TD types in
the spotlight. They received at least one type of Intelligent
Technique to support all TDM activities. Finally, we identi-
fied clusters between TD identification and Design TD (76
occurrences) and TD identification and Machine Learning
(78 occurrences), indicating the most recurrently used com-
binations between (i) TDM activity vs. TD type, and (ii)
TDM activity vs. Intelligent Technique. These combinations
were used by about 35% of the solutions based on Intelligent
techniques to support TDM activities considered in this
SMS.

Knowing that the main aims of applying Intelligent
Techniques to TDM have been to identify, measure, and
monitor TD explains why data analytics techniques such
as Machine Learning, Statistical Models, and Natural Lan-
guage Processing have been heavily used in this research
field. This aspect is specific to this field, given that other
techniques such as Bayesian networks and Search and Opti-
mization are widely used in Software Engineering [52], [5].
In general, Bayesian networks have been primarily used
for managing software risks and Search and Optimization
techniques for prioritization and estimation purposes. Thus,
as research efforts focus more on applying Intelligent Tech-
niques to other TDM activities, which include TD repay-
ment, TD prioritization, and TD prevention, such techniques
are expected to receive more attention from researchers.
Table 5| summarizes the main findings associated with RQ1.
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Figure 6. Relationship between TDM activities, TD types, and Intelligent Techniques.

Table 5
Takeaway Points - Intelligent Techniques for TDM (RQ1).
No. Finding description
1 Machine Learning, Reason Under Uncertainty, and Natural

Language Processing correspond to more than 70\% of the
primary studies.

2 Around 85\% were concerned about presenting and validat-
ing a unique Intelligent Technique to support TDM activities.

3 The majority of the studies focused on TD identifica-
tion (65\%), TD measurement (26\%), and TD monitoring
(24\%).

4 No emphasis has been given to TD prevention and TD com-
munication, which are crucial activities to avoid incurring
TD.

5 The main TD types studied are Design TD (53\%), Code TD
(33\%), and Architectural TD (21\%).

6 Most studies provided support for only one TD type (around
65\%). We also noticed a growing interest in using Intelligent
Techniques that address two or more TD types, correspond-
ing to 35\% of the studies.

7 Code TD and Design TD were explored considering all
TDM activities, while other TD types were investigated for a
maximum of four TDM activities.

8 Making a joint analysis of TDM activities, TD types, and
Intelligent techniques, about 35% of the solutions provided
support to TD identification for Design TD by using Machine
Learning.

5.3 Risk Level Associated with the
Techniques-Based Solutions for TDM (RQ2)

Next, Sections[5.3.1}[5.3.2] and [5.3.3|summarizes the data
gathered for RQ2.1, RQ2.2, and RQ2.3, respectively. Finally,
Section 5.3.4]analyses the results of RQ2.1, RQ2.2, and RQ2.3
in combination to address RQ2.

Intelligent

5.3.1 Automation Level of the Intelligent Techniques-Based
Solutions (RQ2.1)

Figure |Z| illustrates the automation level (AL) of the
Intelligent Techniques-based solutions for TDM. Notice that
a few studies have achieved different levels of automation,
depending on the targeted TDM activities and the employed

Intelligent Techniques. The TDM activities targeted by the
primary studies explain the distribution of automation lev-
els shown in Figure[7}
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Figure 7. Automation Level of the Intelligent Techniques-based solutions
for TDM based on the classification scheme proposed by Sheridan [38].

About 75% of the primary studies provided low levels
(i.e., 1 and 2). The data indicate that most solutions focus
on supporting decision-making by offering humans a set of
alternatives. This result aligns with the fact that most studies
targeted TD identification, TD measurement, and TD monitor-
ing, which focus on gathering insights from the artifacts and
not necessarily performing actions on them.

The studies that achieved higher levels of automation
primarily focused on TD prioritization (40%) and TD re-
payment (30%). Logically, focusing on these TDM activities
brings the opportunity to achieve high automation levels
since they require actions to be taken.

Moreover, we noted that the solutions presented by the
primary studies included in this SMS tend to have high
AL when combining two or more Intelligent Techniques.
The combined use of various Intelligent Techniques can
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take advantage of the best features of each technique. For
instance, a solution based on two Intelligent Techniques
might use the first one (e.g., Natural Language Processing)
to determine the number of options/actions and the second
one (e.g., Machine Learning) to select the options/actions
based on a set of criteria previously defined [53], [54].

5.3.2 Point of Application of the Intelligent Techniques-
Based Solutions (RQ2.2)

Regarding the Point of Application (PA), most of the
Intelligent Techniques-based solutions for TDM focus on the
process (e.g., [55]], [56], and [57]). By contrast, the smallest
part of the Intelligent Techniques in the primary studies pro-
vides support to Product (8%) and Runtime (3%) PA facets.
Note that the total can exceed 100% since the same solution
can provide more than one PA simultaneously. This result
can be explained by the nature of TDM, which is a manage-
ment activity, and the TDM activities mostly targeted by the
primary studies: TD identification, TD measurement, and TD
monitoring, which do not necessarily include changing the
source code or deployed software.

5.3.3 Explanation Level of the Intelligent Techniques-
Based Solutions (RQ2.3)

The Explanation Level (EL) of the Intelligent Techniques-
based solutions for TDM has the following frequency: Sym-
bolist (about 37%), Analogizers (about 35%), Connection-
ist (about 17%), Bayesians (about 10%), and Evolutionary
(about 6%). Note that the total can exceed 100% since a
few primary studies reported using multiple Intelligent
Techniques simultaneously.

Notice that only 17% of the proposed solutions used
Connectionist techniques such as neural nets, which are
hard to be analyzed and tested. The remaining solutions
used techniques that can, at some level, have their logic
analyzed before deployment, reducing their risks.

5.3.4 Joint Analysis - Risk Level Associated with Intelligent
Techniques-based Solutions for TDM (RQ2)

Discussing the risks of deploying an Intelligent
Techniques-based solution by analyzing each of the three
facets individually can lead to erroneous conclusions. Thus,
this section discusses such risks by combining the previ-
ously discussed insights for each facet.

Table [6] shows a three-faceted analysis between the PA,
AL, and EL. By combining the data of all facets, we can
conclude that most of the Intelligent Techniques-based solu-
tions for TDM focused on the process, low AL, and high EL
(i.e., solutions that are easy to be analyzed and tested). In
conclusion, most of the identified solutions have low risk.

However, it is worth mentioning that risk assessment
also depends on the context of the adopting organization.
For example, in general, using a Connectionist technique
for high AL is risky. Still, such risks might be reduced
depending on the adopting organization’s know-how and
experience and the risk-reduction strategies adopted to
trust the solutions. As another example, for certain well-
understood domains, having higher levels of automation
might be less risky than trusting humans to do the job.
Table [/ summarizes the main findings associated with RQ2.

5.4 Maturity of the Intelligent Techniques-Based Solu-
tions to Support TDM activities (RQ3)

Next, Sections[5.4.1} [5.4.2] and [5.4.3|summarizes the data
gathered for RQ3.1, RQ3.2, and RQ3.3, respectively. Finally,
Section[5.4.4)analyses the results of RQ3.1, RQ3.2, and RQ3.3
in combination to address RQ3.

5.4.1 Empirical Research Type of the

Techniques-Based Solutions(RQ3.1)

Figure [8|shows the distribution of the empirical research
types employed by the primary studies, which influences
the strength of the evidence. The most employed empirical
research type was Experiment, used by around 40% of the
primary studies. Next, Case study and Experience report were
employed by, respectively, 28% and 23% of the primary
studies. Finally, only 9% of the primary studies conducted
Observational studies.

Intelligent

Experiment

Case study

Experience
Report

Observational
study

0 20 40 60 80
Figure 8. Publication distribution by Empirical Research types.

Having most of the studies focusing on Experiments and
Case studies is a positive indicator of the strength of the
evidence. However, given the scarcity of available Intel-
ligent Techniques-based solutions for TDM, most of the
Experiments focused on comparing the proposed Intelligent
Techniques-based solution to conventional solutions. Fur-
ther, most of the Case studies focused on evaluating the
practical utility of a proposed solution without worrying
about comparing it with competing solutions.

This information indicates that this area of research is
still in its infancy. Ideally, for a scientific field to develop,
researchers need to make their data and solutions available,
enabling others to perform comparative studies [58].

5.4.2 Research Contribution of the Intelligent Techniques-
Based Solutions (RQ3.2)

Figure [ illustrates the distribution of the research con-
tribution types of the primary studies. The most popular re-
search contribution type is Procedure or technique, developed
by around 35% of the primary studies, followed by Analytic
model (25%), Tool or notation (13%), and Specific solution (10%).

We highlight the scarce availability of tools developed,
which, as previously discussed, might hinder the scientific
development of the field. A similar phenomenon was ob-
served by Perkusich et a. [5] while exploring the use of
Intelligent Techniques-based solutions for agile software de-
velopment. However, the expectation is that as the research
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Table 6
Automation Level vs. Point of Application (PA) vs. Explanation Level (EL).
Automation Level
1 2 3 4 5
FL PA Pc | Pd | Rt | Pc Pd | Rt | Pc | Pd | Rt | Pc | Pd | Rt | Pc | Pd | Rt | Total
Analogizers 11 38 2 1 16 1 5 1 75
Bayesians 2 8 2 1 17
Connectionist 4 19 1 1 1 35
Evolutionaries 1 4 2 1 1 11
Symbolist 15 1 1 38 3 3 1 2 1 74
Total 33 1 1 107 8 1 40 5 0 10 2 3 1 0 0 220
Legend: Pc - Process, Pd - Product and Rt - Runtime
Table 7 Evaluation, and Examples used by 37%, 24%, and 21% of the
Takeaway Points - Risks of Using Intelligent Techniques to Support primary studies, respectively.
TDM Activities (RQ2). !
No. Finding description

1 About 88\% of the studies were categorized at AL 1 and 2.
By contrast, about 29\% of studies had AL 3 and 4. Finally,
only one study had AL 5.

2 Regarding PA, most studies were interested in Process (about
93\%). The smallest part of the studies was interested in
Product (8\%) and Runtime (about 3\ %).

3 Symbolist and Analogizers were the EL in the spotlight,
showing up 37\ % and 35\ %, respectively. Less than 20\ % of
the primary studies used Bayesian and Evolutionary strate-
gies.

4 Making a joint analysis of automation level, point of appli-
cation, and level of explanation, about 35% of solutions pre-
sented 2 as AL, process as PA, and Symbolist or Analogizer
as EL, respectively.

5 Using the AL, PA, and EL provides a basis for software engi-
neers to consider the risks of applying Intelligent Techniques
to support TDM activities.

Procedure or
technique

Analytic model 37
Tool or notation 20
Specific solution 15
Empirical Model 10

Report 8

Qualitative or 8
descriptive

Figure 9. Publication distribution by Research Contribution types.

area matures, many of the procedures or techniques and the
Analytic Models evolve into tools and are made available for
the research community to validate.

5.4.3 Research validation of the Intelligent Techniques-
Based Solutions (RQ3.3)

This section discusses the research validation strate-
gies employed by the primary studies by focusing on the
validation strategies [32], validation environment, and the
artifacts used to validate the solutions. Figure [10]illustrates
the distribution regarding the research strategies employed
to validate the Intelligent Techniques-based solutions for
TDM. The most common validation strategies were Analysis,

Analysis
Evaluation
Example
Experience
Persuasion
Blatant Assertion

0 20 40 60

Figure 10. Publication distribution by Validation Strategies.

Regarding the validation environment, we observed the
following distribution: industrial 20%, open-source 72%, and
not specified 16%. The total exceeds 100% since the same
study can use more than one validation environment. The
data show the most studies focused on analyzing open-
source projects, which has the advantage of eases data
sharing.

Regarding the artifacts, we observed that the most used
artifacts were source-code and its derived metrics (81%),
software architecture (13%), and software documentation (13%).
Combining these artifacts represents 95% of the artifacts
used by the primary studies. Note that the total can exceed
100% since the same study can use more than one artifact.

Most studies (73%) used only one type of artifact; even
though, in some cases, additional information is derived
for TDM activities. Similarly, we observed that 22% of the
analyzed studies made combined use of two artifacts (e.g.,
source code and architecture specification). In 5% of the
cases, the authors used three or more artifacts.

5.4.4 Joint Analysis - Maturity of the Intelligent Techniques-
based Solutions for TDM (RQ3)

Figure [11] illustrates the intersection between Empirical
Research Type, Research Contribution, and the Validation Strate-
gies. By analyzing it, we noted that the Empirical Research
Type classified as Experiment was the most recurrent among
the Research Contribution (6 out of 7) and Validation Strate-
gies (4 out of 6) in quantitative terms. However, we can note
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that the Empirical Research Type classified as Experience
Report was used in all types of contribution (7 out of 7) and
validated by all strategies (6 out of 6) considered in this
study.

Further, we identified clusters between Experiment vs.
Analysis (30 occurrences) and Experiment vs. procedure or
techniques (32 occurrences), indicating the most recurrently
used combinations between (i) Empirical Research Type vs.
Research Contribution, and (ii) Empirical Research Type
vs. Validation Strategies. These combinations were used by
about 40% of the studies considered in this SMS. Table
summarizes the main findings associated with RQ3.

Table 8
Takeaway Points - Maturity of solutions (RQ3).
No. Finding description
1 Experiment and Case study were the most recurrent Empir-

ical Research types showing, respectively, up to 41\% and
27\% of the primary studies.

2 Procedure or technique, analytic model, and tool or notation
were the most recurrent Research Contributions, showing up
35\%, 25\%, and 13\ %, respectively, of the primary studies.

3 The most common Validation Strategies used in the primary
studies were analysis, examples, and evaluation showing up
37%, 24%, and 21%, respectively.

4 Around 20\% of the primary studies were validated in
an industrial environment. In contrast, most studies (about
72\%) used open-source projects to perform validation of
their solutions.

5 Source code was the most common artifact used (81\%),
followed by Software Architecture (13\%). About 73\% of
the primary studies have used only one type of artifact to
validate their solutions.

6 Making a joint analysis of solutions based on intelligent
techniques, they used more recurrently Experiment (as Em-
pirical Research Type), Procedure or technique (as a Research
Contribution), and Analysis (as a Validation Strategy).

6 IMPLICATIONS

This section discusses the implications for the research
community (Section and industrial practitioners (Sec-

tion[6.2).

6.1 Implications for researchers

For researchers, this study’s findings point to the follow-
ing implications:

— research on the application of Intelligent Techniques
to support TDM activities is highly concentrated on a
few TD types (e.g., design TD, architecture TD, code
TD, and defect) while other types are currently under-
investigated. This result shows a clear gap that could be
explored in the coming years. A possible explanation
for this is that a plethora of tools perform source code
analysis and can be used to support the detection of TD
from the source code. Moreover, it can be seen that the
TD types have expanded with time, indicating that new
fields are being included, such as infrastructure, build,
and versioning.

— similar analysis can be done in research on TDM ac-
tivities. We noticed that most primary studies concen-
trated on using Intelligent Techniques to support a few

TDM activities (e.g., TD identification, TD measure-
ment, and TD Monitoring), while other TDM activi-
ties are under-investigated, demonstrating the need for
future investigations. For instance, although TD repre-
sentation/documentation has been shown to benefit the
process of software understanding, there is still little in-
vestigation relating to this activity. The researchers can
investigate using Intelligent Techniques (e.g., Natural
Language Processing and Repository Miner) to support
these activities.

there are different TD types and some indicators for
each of them, but we have not identified any evidence
on how to use this set of information to guide initiatives
of TD management in real settings. Despite progress
in different areas of TD, there is still a need to look
at the big picture and investigate holistic strategies
for managing TD effectively in the software industry.
Investigating Intelligent Techniques in this context can
be a promising alternative to automate and support
decision-making on TDM activities.

few empirical studies have been performed in an indus-
trial environment. This result indicates that, for some
areas, we still do not fully understand all the costs or
benefits of the proposed TD indicators and manage-
ment strategies. Many of these proposals require deep
investigation. Some of them were just cited in some
papers.

there are four categories of Intelligent Techniques re-
sponsible for more than 70% of the primary studies:
Machine Learning, Reasoning under uncertainty, Natu-
ral Language Processing, and Mathematical Models. On
the other hand, no robust empirical evidence demon-
strates the ineffectiveness of other intelligent techniques
to support TDM activities. We highlight that, to ad-
vance this research area, there is a need to increase the
research effort in other Intelligent Techniques types.

the quality assessment also revealed that the average
evidence level of the claims related to the application
of Intelligent Techniques on TDM activities is only 0.60.
This result means that we lack empirical studies with a
high level of evidence, which could give TD stakehold-
ers (e.g., architects, developers, and managers) more
confidence in applying Intelligent Techniques-based so-
lutions to various TDM activities.

the notions of “TD types”, “TDM activities” and “In-
telligent Techniques” mean different things to different
research communities, including Software Engineering,
Artificial Intelligence, and others. This aspect was no-
torious mainly in studies published before 2015, repre-
senting a big challenge for our study. In the case of TD
and TDM activities, there are some proposed classifica-
tions that we have noticed as being comprehensive and
descriptive [10][3]. However, not all primary studies
included adequately use such classifications. In the case
of intelligent techniques, only recently the use of this
term has been proposed in the sense of encompassing
a set of techniques with similar characteristics (see
Section 2.2). From this, we can conclude that researchers
still struggle to establish a single taxonomy to clas-
sify the previously described items. With the growing
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Figure 11. Empirical research type vs. Research contribution vs. Validation strategies.

number of secondary and tertiary studies, this gap is
expected to be resolved soon.

Our results clearly show an active and fruitful area of
investigation that is continuing to grow and still needs mat-
uration in terms of consolidating concepts and empirically
validating new solutions. For this body of work to present
a valuable contribution to practice, the research community
must find ways to guide practitioners to those Intelligent
Techniques most likely helpful in a particular context and
adapt those to a given situation.

6.2 Implications for practitioners

This study has primarily focused on facilitating and
guiding future research in the application of Intelligent
Techniques to support TDM activities. However, our results
have important implications for industrial practitioners as
well, particularly those looking to the literature for guidance
on how to properly manage TD on real-world projects:

— this study lists innovative and promising studies that
investigated applying Intelligent Techniques for TDM.
It can be seen as a starting point for practitioners to
analyze the available solutions and kick-start initiatives
for using and evolving them.

— most of the existing solutions focused on the initial
stages of the management process (e.g., TD identifica-
tion and measurement). Thus, if practitioners wish to
carry out a complete Intelligent Techniques-based TDM
process, there is currently a lack of adequate solutions
to support such initiatives.

— even though the risk level of adopting an Intelligent
Technique-based solution depends on the context of
the adoptee organization, the transparency in which
we assessed the risks by considering AL, PA, and EL

is an indicator to support practitioners in assessing the
feasibility of adopting them.

— in general, if the Intelligent Techniques-based solution
is new to the organization, we suggest that practi-
tioners should start at low AL to allow more human
intervention and at a “lower” PA, where potential
issues with introducing the technique will not be di-
rectly introduced to the source-code. Similarly, it can
be preferred to use Symbolist and Analogizers “EL
classifications” since it is easier to understand the ratio-
nale of the results from these classifications compared
to Bayesian, Evolutionaries, and Connectionist. Then, by
building more experience, these solutions can expand
to explore higher automation levels, new points of ap-
plication, and a more complex level of explanations of
the Intelligent Technique to support some TDM activity.

Our study indicates a need for a common research
agenda for the field to progress and increase the impact
on industrial practitioners. It is beyond the scope of this
article to suggest such an agenda. However, since the field
requires a plethora of skills, there is a need for researchers
from different communities (e.g., TD, Machine Learning,
Search and Optimization, Reasoning Under Uncertainty,
Knowledge Management, Data Analytics, Software Metrics,
and Decision-Support Systems) to define the basis from
which the field can evolve. Furthermore, a more significant
portion of solutions based on Intelligent Techniques for
supporting TDM activities must be evaluated and validated
in an industrial environment. This aspect could contribute to
a greater understanding of the industrial practitioners’ real
needs and facilitate technology transfer from the academic
community.
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7 LIMITATIONS AND THREATS TO VALIDITY

The results of this study may have been impacted by the
coverage of the search method (Section [7.I), bias on study
selection (Section , inaccuracy of data extraction (Section
[7.3), and bias on the data synthesis (Section [7.4).

7.1 Incompleteness of the search method

We aimed to retrieve as many relevant primary studies
with the database search. We faced a challenge in deter-
mining the scope of our study as the notion of “TD types”,
“TDM activities” and “Intelligent Techniques” mean dif-
ferent things to different research communities, including
Software Engineering, Artificial Intelligence, and others.
Therefore, to cover them all and avoid bias, we searched
the literature based on relevant terms, including secondary
studies, and combined them in our search string (Figure .

We used TD types in the search string instead of specify-
ing its subtype. This initiative would have led to a consid-
erable increase in studies, making the process of extraction
and selection of studies more complex and costly in terms
of time and effort. For instance, if we added the term “code
smell” to our string, thousands of studies associated with
this TD subtype would have been retrieved, which could
bias the selection process.

Another threat is related to missing relevant primary
studies. By applying the search string, we obtained 2.445
different studies. Due to this large number of retrieved
studies, we spent significant time and effort in the filtering
and selection processes. After carrying out these processes,
we obtained 133 primary studies. We also performed a
snowballing search and identified additional 17 primary
studies.

However, we highlight that it is unfeasible to completely
eliminate the threat of missing relevant studies because of
the broadness and immaturity of the area, which includes
the use of inconsistent terminology, mainly when dealing
with Intelligent Techniques.

We consider our sample relevant and representative of
our study’s aims as it provided an overview of application
Intelligent techniques to support TDM activities. We seek
to maximize the amount of work by choosing four relevant
databases for research. The rationale behind selecting these
databases was an extensive list of articles, journals, and
conference proceedings related to Software Engineering and
the Intelligent Techniques they provide. Additionally, these
databases were widely used in secondary studies related to
our study. These databases proved effective because they
returned all the studies identified in the pilot study.

7.2 Bias in the study selection process

We mitigated the bias in the study selection by having
each paper analyzed by at least two researchers following
the adaptive reading approach. It is essential to mention that
whenever there was a disagreement between two reviewers
regarding the criteria for selecting/extracting the studies, a
third reviewer was triggered to resolve such disagreement.

Further, we defined unambiguous inclusion and ex-
clusion criteria for study selection. However, different re-
searchers are prone to have different understandings of

these criteria, so the selection results tend to be varied. We
mitigated this threat by conducting a pilot study to ensure
that the researchers reached a consensus on understanding
the inclusion and exclusion criteria.

7.3 Inaccuracy of data extraction

We have adopted three measures to mitigate inaccura-
cies and bias in the data extraction and synthesis. First,
the data items to be extracted were discussed among the
researchers, and agreement on the meaning of each data
item was achieved. Second, a pilot data extraction was
performed among three researchers, and disagreements on
the results of the pilot data extraction were discussed to
reach a consensus. Third, at least two researchers checked
the data extraction results to mitigate any discordance.

7.4 Bias on data synthesis

Further, we observed that not all papers sufficiently
described the details of information (e.g., TD type, TDM
activity, Intelligent Techniques) that we aimed to extract.
Therefore, we had to infer certain pieces of information from
data items during data synthesis. In other cases, the stud-
ies used different terminology. For example, some studies
interchangeably used “quantifying” meaning “measuring”
and “monitoring”. We reduced the bias in the synthesis
by using readily available classification schemes whenever
possible (e.g., the TDM activities scheme proposed by Li et
al. [10]) and by holding meetings whenever difficulties were
encountered to elucidate these issues.

Finally, we mitigated bias on data synthesis by holding
discussion and peer review of the extracted data by the
researchers, having a structured template for data synthe-
sis, and several steps where the scheme and process were
refined and evaluated.

8 FINAL REMARKS

This study provides a comprehensive view of research
on Intelligent Techniques to support Technical debt Man-
agement (TDM) activities. It identifies, analyzes and clas-
sifies the published studies (between 2012 and 2021) in
four electronic databases: IEEE Xplore, ACM, Scopus, and
Engineering village. As a result, we identified 2,445 different
studies, out of which we selected 133 primary studies.
Later, we performed a snowballing search and identified
additional 17 primary studies, totaling 150 primary stud-
ies.By analyzing the extracted data from these studies, we
got a comprehensive understanding of the application of
Intelligent Techniques to support TDM activities and an
overview of the current state of the research in this area.

Our study findings can be summarized as follows:

— RQ1. Regarding the intersection of Intelligent Tech-
niques and TDM, about 35% of the solutions focused
on TD identification for Design TD using Machine
Learning techniques. This Intelligent Technique was
widely employed in all TDM activities. Similarly, De-
sign TD and Code TD were explored considering all
TDM activities, while other TD types were investigated
for a maximum of four TDM activities. Most of the
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presented solutions (about 90%) primarily support one
or two TDM activities, denoting the lack of a more
global vision of the TD management process. Besides,
around 85% presented solutions using only one type
of Intelligent Technique. Future research can explore
other alternatives or combine intelligent techniques to
compare results. Additionally, most solutions described
in primary studies provided support for only one TD
type (64%). We also noticed a growing interest in using
Intelligent Techniques to address two or more TD types;

— RQ2. About 40% of solutions presented 2 as AL, being
applied in the Process PA, and presented Analogizer
as EL, respectively. We noticed that most Intelligent
Techniques AL 1 and 2 supported TD identification
(about 60%). This TDM activity requires a low level
of automation since the task of inferring the existence
(or not) of TD instances does not imply a high set of
options. Regarding PA, this indicates that Intelligent
Techniques were mainly applied in the software devel-
opment process and did not necessarily directly affect
the source code already deployed. Regarding EL, we
note that the studies mostly used simpler techniques
to analyze and test (e.g., Analogizers and Symbolists)
compared to others (e.g., Connectonists). Finally, using
the EL in combination with the AL and PA provides
a basis for software engineers to consider the risks
of applying Intelligent Techniques to support TDM
activities; and

— RQ3. Regarding the maturity of the existing solu-
tions, about 25% of the solutions were of the type
Procedure or technique, used Experiment as the empiri-
cal research type, and validated their results through
Analysis. Around 20% of the primary studies were
validated in an industrial environment. In contrast,
most studies (about 72%) used open-source projects
to perform validation of their solutions. Source code
was the most common artifact used (81%), followed by
Software Architecture (13%). About 73% of the primary
studies have used only one type of artifact to validate
their solutions.

The results of the study can benefit researchers and
practitioners. For researchers, our study provides a struc-
tured understanding of the state of the art of Intelligent
Techniques within the context of TDM activities. They can
base their studies on the topic and recognize research gaps
that require further investigation. For practitioners, our re-
search findings can better understand the use of Intelligent
Techniques in the context of TDM activities. Furthermore,
practitioners can use the mapping presented herein of how
Intelligent Techniques have been used to support TDM
activity as a starting point for improvement initiatives to
automate their TDM decision-making processes. Moreover,
there is a need for more empirical studies with high-quality
evidence on the entire TDM process and applying specific
Intelligent Techniques in industrial settings. Finally, more
sophisticated and dedicated solutions based on Intelligent
Techniques are needed for managing various TD types in
the whole TDM process.

ACKNOWLEDGMENTS

This research is supported in part by the IFPB employee
qualification incentive program (PIQIFPB) - Public Notice
Nr 21/2021/PRPIPG.

REFERENCES

[1] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),”
in Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[2] A. Martini, T. Besker, and ]. Bosch, “Technical debt tracking:
Current state of practice: A survey and multiple case study in
15 large organizations,” Science of Computer Programming, vol. 163,
pp- 42-61, 2018.

[3] W.N. Behutiye, P. Rodriguez, M. Oivo, and A. Tosun, “Analyzing
the concept of technical debt in the context of agile software devel-
opment: A systematic literature review,” Information and Software
Technology, vol. 82, pp. 139-158, 2017.

[4] C.Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, and
A. Vetro, “Using technical debt data in decision making: Poten-
tial decision approaches,” in 2012 Third International Workshop on
Managing Technical Debt (MTD). 1EEE, 2012, pp. 45-48.

[5] M. Perkusich, L. C. e Silva, A. Costa, F. Ramos, R. Saraiva,
A. Freire, E. Dilorenzo, E. Dantas, D. Santos, K. Gorgoénio et al.,
“Intelligent software engineering in the context of agile software
development: A systematic literature review,” Information and Soft-
ware Technology, vol. 119, p. 106241, 2020.

[6] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for
conducting systematic mapping studies in software engineering:
An update,” Information and software technology, vol. 64, pp. 1-18,
2015.

[7] D. Albuquerque, E. Guimaraes, G. Tonin, M. Perkusich,
H. Almeida, and A. Perkusich, “Comprehending the use of in-
telligent techniques to support technical debt management,” in
International Conference on Technical Debt (TechDebt’22), 2022.

[8] W. Cunningham, “The wycash portfolio management system,”
SIGPLAN OOPS Mess., vol. 4, no. 2, p. 29-30, Dec. 1992. [Online].
Available: https://doi.org/10.1145/157710.157715

[9] V. M. Silva, H. J. Junior, and G. H. Travassos, “A taste of the soft-
ware industry perception of technical debt and its management
in brazil,” Journal of Software Engineering Research and Development,
vol. 7, pp. 1-1, 2019.

[10] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study
on technical debt and its management,” Journal of Systems and
Software, vol. 101, pp. 193-220, 2015.

[11] T. Das and D. Bebarta, “Intelligent techniques: An overview,”
Intelligent Systems: Advances in Biometric Systems, Soft Computing,
Image Processing, and Data Analytics, p. 1, 2019.

[12] P. Kumar and S. Singh, “An emerging approach to intelligent
techniques—soft computing and its application,” in Internet of
Things and Big Data Applications. Springer, 2020, pp. 171-182.

[13] E. Alpaydin, Introduction to Machine Learning, 3rd ed., ser. Adaptive
Computation and Machine Learning. Cambridge, MA: MIT Press,
2014.

[14] D. L. Poole and A. K. Mackworth, Artificial Intelligence: foundations
of computational agents. Cambridge University Press, 2010.

[15] A. Kumar, R. Nagar, and A. S. Baghel, “A genetic algorithm
approach to release planning in agile environment,” in 2014 In-
ternational Conference on Information Systems and Computer Networks
(ISCON). 1IEEE, 2014, pp. 118-122.

[16] E.da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted techni-
cal debt,” IEEE Transactions on Software Engineering, vol. 43, no. 11,
pp- 1044-1062, 2017.

[17] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence
for decision making in the era of big data—evolution, challenges
and research agenda,” International Journal of Information Manage-
ment, vol. 48, pp. 63-71, 2019.

[18] J. E Sowa, Ed., Principles of Semantic Networks - Explorations
in the Representation of Knowledge, ser. The Morgan Kaufmann
Series in representation and reasoning. Morgan Kaufmann, 1991.
[Online]. Available: https://doi.org/10.1016/C2013-0-08297-7


https://doi.org/10.1145/157710.157715
https://doi.org/10.1016/C2013-0-08297-7

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, OCTOBER 2022 18

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

E. M. Roth, D. D. Woods, and H. E. POPLE Jr, “Cognitive sim-
ulation as a tool for cognitive task analysis,” Ergonomics, vol. 35,
no. 10, pp. 1163-1198, 1992.

E. Tom, A. Aurum, and R. T. Vidgen, “A consolidated
understanding of technical debt,” in 20th European Conference on
Information Systems, ECIS 2012, Barcelona, Spain, June 10-13, 2012,
2012, p. 16. [Online]. Available: http://aisel.aisnet.org/ecis2012/
16

A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and
P. Avgeriou, “The financial aspect of managing technical debt: A
systematic literature review,” Information and Software Technology,
vol. 64, pp. 52-73, 2015.

N. S. Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola,
F. Shull, and C. Seaman, “Identification and management of tech-
nical debt: A systematic mapping study,” Information and Software
Technology, vol. 70, pp. 100 — 121, 2016.

J. Mostow, “Foreword what is ai? and what does it have to do with
software engineering?” IEEE Transactions on Software Engineering,
no. 11, pp. 1253-1256, 1985.

D. Partridge, Artificial intelligence: applications in the future of soft-
ware engineering. Halsted Press, 1986.

L. Ford, “Artificial intelligence and software engineering: a tutorial
introduction to their relationship,” Artificial intelligence review,
vol. 1, no. 4, pp. 255-273, 1987.

A.-A. Tsintzira, E.-M. Arvanitou, A. Ampatzoglou, and A. Chatzi-
georgiou, “Applying machine learning in technical debt manage-
ment: Future opportunities and challenges,” in International Con-
ference on the Quality of Information and Communications Technology.
Springer, 2020, pp. 53-67.

M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature
review and meta-analysis,” Information and Software Technology,
vol. 108, pp. 115-138, 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950584918302623

W. E. Wong, N. Mittas, E. M. Arvanitou, and Y. Li, “A bibliometric
assessment of software engineering themes, scholars and institu-
tions (2013-2020),” Journal of Systems and Software, p. 111029, 2021.
S. Wang, L. Huang, A. Gao, J. Ge, T. Zhang, H. Feng, 1. Satyarth,
M. Li, H. Zhang, and V. Ng, “Machine/deep learning for software
engineering: A systematic literature review,” IEEE Transactions on
Software Engineering, 2022.

R. Feldt, F. G. de Oliveira Neto, and R. Torkar, “Ways of applying
artificial intelligence in software engineering,” in 2018 IEEE/ACM
6th International Workshop on Realizing Artificial Intelligence Syner-
gies in Software Engineering (RAISE). 1EEE, 2018, pp. 35-41.

P. Tonella, M. Torchiano, B. Du Bois, and T. Systd, “Empirical
studies in reverse engineering: state of the art and future trends,”
Empirical Software Engineering, vol. 12, no. 5, pp. 551-571, 2007.

M. Shaw, “Writing good software engineering research papers,” in
25th International Conference on Software Engineering, 2003. Proceed-
ings. 1EEE, 2003, pp. 726-736.

C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in Proceedings
of the 18th international conference on evaluation and assessment in
software engineering, 2014, pp. 1-10.

B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Information and
software technology, vol. 55, no. 12, pp. 2049-2075, 2013.

S. Fabbri, C. Silva, E. Hernandes, F. Octaviano, A. Di Thommazo,
and A. Belgamo, “Improvements in the start tool to better sup-
port the systematic review process,” in Proceedings of the 20th
International Conference on Evaluation and Assessment in Software
Engineering, 2016, pp. 1-5.

N. B. Ali, K. Petersen, and C. Wohlin, “A systematic literature
review on the industrial use of software process simulation,”
Journal of Systems and Software, vol. 97, pp. 65 — 85, 2014.
Supplementary Material. Managing Technical Debt Using Intelligent
Techniques - A Systematic Literature Review. Figshare, 7
2022. [Online]. Available: https://doi.org/10.6084/m9.figshare.
21215192.v1

T. B. Sheridan, “Computer control and human alienation,” Tech-
nology review, vol. 83, no. 1, pp. 60-73, 1980.

R. Feldt, “Do system test cases grow old?” in 2014 IEEE Seventh In-
ternational Conference on Software Testing, Verification and Validation.
IEEE, 2014, pp. 343-352.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

P. Domingos, The master algorithm: How the quest for the ultimate
learning machine will remake our world. Basic Books, 2015.

A. Martini and J. Bosch, “The magnificent seven: towards a sys-
tematic estimation of technical debt interest,” in Proceedings of the
XP2017 Scientific Workshops, 2017, pp. 1-5.

B. Pérez, “ A semiautomatic approach to identify architectural tech-
nical debt from heterogeneous artifacts,” in European Conference on
Software Architecture. Springer, 2020, pp. 5-16.

R. Marinescu, “Assessing technical debt by identifying design
flaws in software systems,” IBM Journal of Research and Develop-
ment, vol. 56, no. 5, pp. 9:1-9:13, 2012.

A. Martini, E. Sikander, and N. Medlani, “Estimating and quanti-
fying the benefits of refactoring to improve a component modu-
larity: A case study,” in 2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2016, pp. 92-99.

R. Plosch, J. Brauer, M. Saft, and C. Kérner, “Design debt prioriti-
zation: A design best practice-based approach,” in 2018 IEEE/ACM
International Conference on Technical Debt (TechDebt), 2018, pp. 95—
104.

H. Wang, M. Kessentini, W. Grosky, and H. Meddeb, “On the
use of time series and search based software engineering for
refactoring recommendation,” in Proceedings of the 7th International
Conference on Management of computational and collective intElligence
in Digital EcoSystems, 2015, pp. 35-42.

A. T. Misirli and A. B. Bener, “Bayesian networks for evidence-
based decision-making in software engineering,” IEEE Transactions
on Software Engineering, vol. 40, no. 6, pp. 533-554, 2014.

A. Tosun, A. B. Bener, and S. Akbarinasaji, “A systematic litera-
ture review on the applications of bayesian networks to predict
software quality,” Software Quality Journal, vol. 25, no. 1, pp. 273-
305, 2017.

M. V. Kosti, A. Ampatzoglou, A. Chatzigeorgiou, G. Pallas,
I. Stamelos, and L. Angelis, “Technical debt principal assessment
through structural metrics,” in 2017 43rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA).  IEEE,
2017, pp. 329-333.

M. Ciolkowski, L. Guzmén, A. Trendowicz, and F. Salfner,
“Lessons learned from the prodebt research project on planning
technical debt strategically,” in International Conference on Product-
Focused Software Process Improvement. Springer, 2017, pp. 523-534.

J. S. de Jesus and A. C. V. de Melo, “Technical debt and the
software project characteristics. a repository-based exploratory
analysis,” in 2017 IEEE 19th Conference on Business Informatics (CBI),
vol. 1. IEEE, 2017, pp. 444-453.

M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput-
ing Surveys (CSUR), vol. 45, no. 1, pp. 1-61, 2012.

R. M. Santos, M. C. R. Junior, and M. G. d. Mendonga Neto, “Self-
admitted technical debt classification using Istm neural network,”
in 17th International Conference on Information Technology—New Gen-
erations (ITNG 2020). Springer, 2020, pp. 679-685.

I. Sala, A. Tommasel, and F. Arcelli Fontana, “Debthunter: A
machine learning-based approach for detecting self-admitted tech-
nical debt,” in Evaluation and Assessment in Software Engineering,
2021, pp. 278-283.

T.S. Mendes, D. A. Almeida, N. S. Alves, R. O. Spinola, R. Novais,
and M. Mendonga, “Visminertd-an open source tool to support
the monitoring of the technical debt evolution using software
visualization,” in International Conference on Enterprise Information
Systems, vol. 2. SCITEPRESS, 2015, pp. 457-462.

J. Flisar and V. Podgorelec, “Identification of self-admitted techni-
cal debt using enhanced feature selection based on word embed-
ding,” IEEE Access, vol. 7, pp. 106 475-106 494, 2019.

X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural
network-based detection of self-admitted technical debt: from
performance to explainability,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 28, no. 3, pp. 1-45, 2019.

B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for
method and tool evaluation,” IEEE software, vol. 12, no. 4, pp. 52—
62, 1995.


http://aisel.aisnet.org/ecis2012/16
http://aisel.aisnet.org/ecis2012/16
https://www.sciencedirect.com/science/article/pii/S0950584918302623
https://www.sciencedirect.com/science/article/pii/S0950584918302623
https://doi.org/10.6084/m9.figshare.21215192.v1
https://doi.org/10.6084/m9.figshare.21215192.v1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, OCTOBER 2022 19

Danyllo Albuquerque received the MSc in in-
formatics from Federal University of Paraiba,
Brazil, in 2013. Currently, he is a PhD student
in computer science in the Federal University of
Campina Grande, Brazil. He is also a member of
the Intelligent Software Engineering (ISE/Virtus)
research group. His research interests are in
the application of intelligent techniques to solve
software engineering problems.

Everton Guimaraes is an Assistant Professor
at Penn State University. He has collaborated
with many partners in industry and academia,
both in Brazil and abroad, over the past 9 years.
His most recent research investigates of prob-
lems related to software architecture and source
code, and their impact on the overall software
quality attributes (i.e. maintenance, evolution).
He is also interested in research topics related to
technical debt, architecture recovery techniques,
pattern detection and mobile computing.

Graziela Tonin received the PhD degree in
Computer Science from University of Sdo Paulo
(USP), Brazil, in 2018. She is assistant professor
at the Federal University of Fronteira Sul. Her
current research interests are in technical Debt,
Agile Methods, metrics, experimental Software
Engineering and software evolution.

Pilar Rodriguezs is an Assistant Professor
at Universidad Politécnica de Madrid (Spain).
She received her PhD in Computer Science
(2013) from University of Oulu (Finland). Dr. Ro-
driguez’s research interests focus on software
engineering and empirical software engineering
including software development processes, with
area of interest in value-based decision-making
in software development, Lean and Agile meth-
ods, and software process improvement.

Mirko Perkusich received his PhD degree in
Computer Science in 2018. He is a Research
Manager at VIRTUS, leading the Intelligent Soft-
ware Engineering (ISE/VIRTUS) research group.
His current research interests are in applying in-
telligent techniques, including recommendation
systems and Bayesian networks, to solve com-
plex software engineering problems.

Hyggo Almeida is a professor at the Com-
puter and Systems Department, Federal Univer-
sity of Campina Grande (UFCG) since 2006. Dr.
Almeida has got his Ph.D. in Electrical Engineer-
ing and M.Sc. in Computer Science both from
the Federal University of Campina Grande in
2007 and 2004, respectively. He is currently the
head of Intelligent Software Engineering group,
and Founder and Director of Operations at VIR-
TUS Innovation Center (VIRTUS/UFCG). He is
a researcher at Embedded Systems and Perva-
sive Computing Laboratory (Embedded/UFCG). He is also Executive
Director of EMBRAPII Unit at CEEI-UFCG, with more than 150 RD&I
projects developed in cooperation with industrial companies within the
area of Information, Communication and Automation Technologies. His
current research interest is applying intelligent techniques to solve com-
plex software engineering problems.

Angelo Perkusich (Member |IEEE) is a profes-
sor at the Electrical Engineering Department,
Federal University of Campina Grande (UFCG)
since 2002. Dr. Perkusich got his Ph.D. and Mas-
ter's degrees in Electrical Engineering both from
the Federal University of Paraiba in 1987 and
1994, respectively. He was a visiting researcher
at the Department of Computer Science, Uni-
versity of Pittsburgh, PA, USA, from 1992 to
A 1993. He is currently the principal investigator
' of research projects financed by public institu-
tions such as FINEP (Brazilian Agency for Research and Studies) and
CNPq (Brazilian National Research Council), as well as private com-
panies. He is the founder and Director of VIRTUS Innovation Center
(VIRTUS/UFCG) and Embedded and Pervasive Computing Laboratory
(Embedded/UFCG). He has over 30 years of teaching experience in the
university as well as training courses for industry in the context of soft-
ware for real-time systems, software engineering, embedded systems,
computer networks, mobile pervasive computing, and formal methods.

Ferdinandy Chagas received the MSc degree
in computer science from Federal University
from Semi-Arid Region, Brazil, in 2013. Cur-
rently, he is a PhD student in computer science
in the Federal University of Campina Grande,
Brazil. He is also an assistant professor in the
Federal University of the Semi-Arid Region. His
research focuses on multiagent systems, ontolo-
gies, software process improvement models. He
is a member of the Intelligent Software Engineer-
ing Group (ISE/Virtus).



	Introduction
	Background
	Technical Debt
	Intelligent Techniques

	Related Work
	Technical Debt Management
	TDM supported by Intelligent Techniques
	Our Contribution

	Research Methodology
	Research Questions
	Search Method
	Selection Process
	Data Extraction and Synthesis

	Results and Discussions
	Demographic Information
	Intersection Between TDM and Intelligent Techniques (RQ1)
	Intelligent Techniques Employed to Support TDM (RQ 1.1)
	TDM Activities Supported by Intelligent Techniques (RQ1.2)
	TD Types Supported by Intelligent Techniques (RQ1.3)
	Joint Analysis - Intelligent Techniques for TDM (RQ1).

	Risk Level Associated with the Intelligent Techniques-Based Solutions for TDM (RQ2)
	Automation Level of the Intelligent Techniques-Based Solutions (RQ2.1)
	Point of Application of the Intelligent Techniques-Based Solutions (RQ2.2)
	Explanation Level of the Intelligent Techniques-Based Solutions (RQ2.3)
	Joint Analysis - Risk Level Associated with Intelligent Techniques-based Solutions for TDM (RQ2)

	Maturity of the Intelligent Techniques-Based Solutions to Support TDM activities (RQ3)
	Empirical Research Type of the Intelligent Techniques-Based Solutions(RQ3.1)
	Research Contribution of the Intelligent Techniques-Based Solutions (RQ3.2)
	Research validation of the Intelligent Techniques-Based Solutions (RQ3.3)
	Joint Analysis - Maturity of the Intelligent Techniques-based Solutions for TDM (RQ3)


	Implications
	Implications for researchers
	Implications for practitioners

	Limitations and threats to validity
	Incompleteness of the search method
	Bias in the study selection process
	Inaccuracy of data extraction
	Bias on data synthesis

	Final Remarks
	References
	Biographies
	Danyllo Albuquerque
	Everton Guimarães
	Graziela Tonin
	Pilar Rodríguezs
	Mirko Perkusich
	Hyggo Almeida
	Angelo Perkusich
	Ferdinandy Chagas


