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Abstract—Context: Machine learning software can generate models that inappropriately discriminate against specific protected social groups (e.g.,
groups based on gender, ethnicity, etc.). Motivated by those results, software engineering researchers have proposed many methods for mitigating those
discriminatory effects. While those methods are effective in mitigating bias, few of them can provide explanations on what is the root cause of bias.
Objective: We aim to better detect and mitigate algorithmic discrimination in machine learning software problems.
Method: Here we propose FairMask, a model-based extrapolation method that is capable of both mitigating bias and explaining the cause. In our
FairMask approach, protected attributes are represented by models learned from the other independent variables (and these models offer extrapolations
over the space between existing examples). We then use the extrapolation models to relabel protected attributes later seen in testing data or deployment
time. Our approach aims to offset the biased predictions of the classification model via rebalancing the distribution of protected attributes.
Results:The experiments of this paper show that, without compromising (original) model performance, FairMask can achieve significantly better group and
individual fairness (as measured in different metrics) than benchmark methods. Moreover, compared to another instance-based rebalancing method, our
model-based approach shows faster runtime and thus better scalability.
Conclusion: Algorithmic decision bias can be removed via extrapolation that smooths away outlier points. As evidence for this, our proposed FairMask is
not only performance-wise better (measured by fairness and performance metrics) than two state-of-the-art fairness algorithms.
Reproduction Package:In order to better support open science, all scripts and data used in this study are available on-line at
https://github.com/anonymous12138/biasmitigation.
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1 INTRODUCTION

Increasingly, machine learning (ML) algorithms are applied
in software engineering (SE) to assist decision-making, and
some of the decisions take private information (e.g., race,
gender, age) of human individuals into consideration. For
example, ML models are used in software to assist deter-
mine which loan applications should get approved; which
citizens should get bail; which patients can be released
from the hospital. From an ethical perspective, using private
information also puts such software under the exposure
to unintentionally algorithmic discrimination, where the
benefits of certain social groups are compromised. Many
prior cases have shown the existence of such flaws: Google’s
sentimental analysis model was found to assign negative
scores to homosexual or Jewish attributes in a sentence;
In machine translation, translators wrongly relabel doctors
as male and nurses as female; In credit card applications,
applicants with similar conditions are receiving significantly
different credit lines based on their genders [1].

Many researchers are endeavoring to resolve the dis-
crimination issue in ML software. Recent success with the
Fair-SMOTE [2] of Chakraborty et al. shows that it is pos-
sible to carefully rebalance the training data in order to
mitigate bias in the data. Chakraborty et al. conjectured that
models are unfair when the training data does not equally
represent all social groups. Fair-SMOTE uses a rebalancing
method that adjusts the training data such that all values of
”protected attributes” are equally represented in the training
data (and by “protected attributes” we mean information
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about age, gender, racial origins, veteran status, etc. that
is used to identify a person as belonging to corresponding
groups, some of which have suffered from social injustice in
history).

While a successful system in its test domain, Fair-
SMOTE has problems with procedural justice. By defini-
tion [3], [4], procedural justice requires not only fair results
but also transparency of the decision-making process such
that ones can verify whether the procedure guarantees
fairness. One way to demonstrate procedural justice to a
group of users is to ensure that an AI system never asks
about protected attributes. Note that this is not the case
with Fair-SMOTE since when its models are deployed, all
the new examples must have the same format as the data
seen during training. Therefore, the protected attributes data
must be collected from users. Consequently, users can grow
concerned that the model will not mitigate against bias
(since it has access to the protected information).

Accordingly, this paper explores an alternative that, once
developed, no longer needs to access protected attributes
during real-time deployment. In our concept of operation,
our method only collects and uses those protected attributes
to initially build its model (which are assessed using widely
accepted fairness metrics, see Table 2). After that, during de-
ployment, our method does not demand access to protected
attributes in subsequent test data.

Removing protected attributes must be done carefully.
Prior research has shown that it is insufficient to just remove
projected attributes from data. If a model merely ignores
the protected attributes, then that can either (a) harm the
performance of the prediction model due to information
loss [5], [6], or (b) have a trivial influence on improving
group fairness due to proxy discrimination [7], [8], [9]. Bias
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can persist due to the correlations between variables. Such
correlations indicate that an unwanted bias can persist (even
though the protected attribute is removed). For an example
of proxy discrimination, consider how residential zip codes
can be used to make biased decisions such as granting
loans since zip codes might correlate to race given historical
causes. [10].

To address these issues, our FairMask works as follows:
• The algorithm will avoid inferring protected attributes

after a model is initially built.
• For new incoming data instances, it then artificially

masks those protected attributes via an extrapolation model
learned from other non-protected attributes.

As shown by the results of this paper, FairMask shows on-
par or superior performance compared to the prior state-of-
the art (Reweighing and Fair-SMOTE):
• FairMask provided better bias reduction with as good or

better predictive performance;
• FairMask runs much faster (up to 600%) than Fair-SMOTE;
• FairMask scales better to larger data sets;
• FairMask handles multiple protected attributes very well

(and the Fair-SMOTE paper notes that managing multiple
attributes is an Achilles’s heel of that algorithm).

Importantly, FairMask ensures procedural justice. FairMask
needs to access protected attributes during the initial com-
mission stage, but not during deployment. As a result, when
this system is placed into production, it needs no access to
users’ private information when making a prediction.

The rest of this paper is structured as follows. §2 pro-
vides a road-map of background knowledge and related
work concerning fairness in ML software. §3 describes the
motivation and methodology of our approach in this paper.
§4 illustrates the experiment setup used to evaluate our ap-
proach along with other benchmarks. §5 shows experiment
results. §6 lists external and internal threats to validity in
this paper. In §7, we elaborate the reasons why FairMask
should be promoted. Finally, §8 presents our conclusions.

2 BACKGROUND AND RELATED WORK

In this section, we introduce fundamental theories about
software fairness, metrics to measure it, and related works
that attempt to mitigate bias.

2.1 Why Software Engineers Care About Fairness

The rapid development of ML has greatly benefited SE
practitioners, and examples of ML-assisted software can
be found everywhere: defect prediction models used to
locate the most error-prone code files in the upcoming re-
leases; effort estimations tools used to better manage human
and capital resources; multi-objective optimizers used to
generate configuration solutions for system of enormous
configurable options. Meanwhile, ethical concerns have also
drawn increasing attention in the ML and SE communities.

While in many scenarios, the only utility needed to be
optimized is the performance of the models (in tasks about
prediction, classification, ranking, etc.), other cases where
private information of human beings is collected need to
be handled more carefully. ML software systems have been
deployed in many areas to assist make decisions that affect

human individuals: Courts and corrections departments
in the US use software to determine sentence length for
defendants [17]; algorithms are used to predict the default
payments from credit card users [18]. During such proce-
dures, private information such as age, ethnicity, and gender
are collected. Moreover, it has been revealed in prior studies
that models learned from such data may contain algorithmic
bias toward certain social groups.

In response to the above raising issues, IEEE has pro-
voked ethical designs of AI-assisted systems [19] and the
European Union also announced the ethics guidelines for
building trustworthy AI [20]. Fairness has been emphasized
in both documents. Big industrial companies such as Face-
book [21], Microsoft [22], and Google [23] also have begun
to invest effort in ensuring fairness of their products. In
academia, IEEE and ACM have set specific tracks [24], [25]
for papers studying fairness problems.

2.2 Fairness in ML Software

In this work, we study binary classification problems. We
define some terms specific to the fairness of binary classifi-
cation.
• A favorable label in a binary classification task is the label

that grants the instance (usually human individuals) with
privilege such as a job offer or being accepted for a loan.

• A protected/sensitive attribute reveals the social groups to
which data instances belong, such as gender, race, and
age. A binary protected attribute will divide the whole
population into privileged and unprivileged groups in terms
of the difference in receiving the favorable label.

The notion of bias rises if the outcome of the classification
model gets significantly affected by protected/protected
attributes. Table 1 shows seven fairness datasets used in
this work. These datasets are very popular in the fair-
ness domain and have been widely used by many prior
researchers [26], [2], [27], [28], [29]. All of these datasets
contain at least one protected attribute. Depending on that,
the population is divided into two groups getting different
benefits. For example, in the Adult [11] dataset, there are
two protected attributes. Based on “sex”, “male” is privi-
leged; Based on “race”, “white” is privileged.

The concept of fairness is complicated and very domain-
specific. Narayanan [30] has defined 21 different versions of
fairness. Based on prior literature [29], [26], [2], among these
21 versions, two specific versions of fairness are widely
explored and given most importance. We have decided to
explore the same two versions and chose different metrics
to evaluate them.
• Group fairness requires the approximate equalization of

certain statistical property across groups divided by the
protected attribute. In this paper, we use 4 group fairness
metrics that were widely used in prior research [7], [31],
[26], [2], [29].

• Individual fairness requires that similar individuals should
receive similar prediction outcomes by the ML model. The
usual metric for measuring individual fairness is “consis-
tency”. But “consistency” is a collective metric based on
nearest neighbors. That means it can be calculated for a
set of data points, not for a single point. Chakraborty et
al. [26] introduced a new metric for measuring individual
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TABLE 1: Description of datasets used in this paper.

Dataset #Features #Rows Domain Protected Attribute Favorable Label

Adult Census [11] 14 48,842 U.S. census information from 1994 to predict personal income Sex, Race Income > $50,000
Compas [12] 28 7,214 Criminal history of defendants to predict re-offending Sex, Race Re-offend = false

German Credit [13] 20 1,000 Personal information to predict good or bad credit Sex Credit = good
Bank Marketing [14] 16 45,211 Marketing data of a Portuguese bank to predict term deposit Age Subscription = yes

Heart Health [15] 14 297 Patient information from Cleveland DB to predict heart disease Age Diagnose = yes
Default Credit [1] 23 30,000 Customer information in Taiwan to predict default payment Sex Payment = yes

MEPS15 [16] 1831 4,870 Surveys of household members and their medical providers Race Utilization >= 10

TABLE 2: Definitions and descriptions of fairness metrics used in this paper.

Metric Definition Description

Average Odds Difference (AOD) TPR = TP/(TP + FN), FPR = FP/(FP + TN)
AOD= ((FPRU − FPRP ) + (TPRU − TPRP ))/2

Average of difference in False Positive Rates(FPR) and True
Positive Rates(TPR) for unprivileged and privileged groups

Equal Opportunity Difference (EOD) EOD = TPRU − TPRP
Difference of True Positive Rates(TPR) for unprivileged and
privileged groups

Statistical Parity Difference (SPD) SPD = P (Y = 1|PA = 0) − P (Y = 1|PA = 1)

Difference between probability of unprivileged group
(protected attribute PA = 0) gets favorable prediction (Y = 1)
& probability of privileged group (protected attribute PA = 1)
gets favorable prediction (Y = 1)

Disparate Impact (DI) DI = P (Y = 1—PA = 0]/P [Y = 1—PA = 1) Similar to SPD but measuring ratio rather than the probability

Flip Rate (FR) FR = Σ(L|L[PA=0] 6= L[PA=1])/total The ratio of instances whose predicted label (L) will change
when flipping their protected attributes (e.g., PA=1 to PA=0)

fairness where they measured the ratio of the population
whose prediction outcomes are flipped (e.g., accepted to
rejected) when reversing their protected attributes. We
decided to use the same metric called Flip Rate (FR).

Table 2 contains mathematical definitions of all 5 fairness
metrics. All the group fairness metrics are calculated based
on the confusion matrix of binary classification, which is
consisted of four parts: true positive (TP), true negative
(TN), false positive (FP), and false negative (FN).

2.3 Bias Mitigation

Many researchers endeavor to ensure fairness within their
AI decision-making software. From the literature, one can
categorize bias mitigation methods into three major groups,
depending on when the mitigation procedure is performed.

Pre-processing: Pre-processing algorithms attempt to
mitigate the bias of the classification model by pre-
processing the training data that a model learns from.
Reweighing was proposed by Kamiran et al. [7] to learn
a probabilistic threshold that can generate weights to
different instances in training samples according to the
(protected and class attributes) combination that each of
them belongs to. Fair-SMOTE [2] proposed by Chakraborty
et al. re-samples and generates synthetic instances among
the training data so that the training data can reach equal
distributions not only between different target labels but
also among different protected attributes. SRCVAE, a
more recent algorithm by Grari et al., uses auto-encoding
to generate a sensitive information proxy such that the
protected attribute will not be required when training a
model [32].

In-processing: In-processing methods generally take
the optimization approach to mitigate bias. The dataset is
typically divided into three parts: training, validation, and
testing set. The learner is fitted on the training set and then
optimized on the validation set using both performance
and fairness metrics as the objectives. Kamishima et al. [33]

developed Prejudice Remover which adds a discrimination-
aware regularization to the learning objective of the model.
Other recent works also attempt using ensemble learning
or multi-task learning to tackle the fairness-performance
optimization problem [34], [35].

Post-processing: This category of approaches generally
believe that bias can be removed by identifying and then
reversing the biased outcomes from the classification
model, which means that such methods typically only
modify outcomes of the model rather than the model itself.
The “reject option classification” (ROC) approach was
proposed by Kamiran et al. [36], [37] to identify the model’s
decision boundary with the highest uncertainty. Within that
region, the method will separately adjust the classification
thresholds for (a) favorable labels on unprivileged groups
and (b) unfavorable labels on privileged groups.

This paper works under the same assumptions claimed
by Chakraborty et al [2]. That is, one of the major root
causes of bias is imbalanced training data. However, dif-
ferent from Fair-SMOTE, which is a pre-processing method,
we approach the problem via a hybrid of pre-processing
and post-processing methods. Our advantages over a pre-
processing method are: (a) Because FairMask does not pre-
process the training data, it does not require re-training an
already-built model; (b) Hence FairMask can be added to a
model during deployment with little effort and cost.

3 METHODOLOGY

This section illustrates the designs of FairMask. Before intro-
ducing our approach, we present two essential conjectures
made in this paper and the follow-up discussion. Our design
of FairMask is based on these conjectures.

3.1 Explaining Bias
Much prior work has searched for a root cause of bias.
Creager et al. [39] proposed to use disentangled represen-
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tation learning to identify potential bias-introducing latent
in training data that contains mutual information of both
targets and protected attributes. They then add regulariza-
tion on the mutual information while also optimizing for
the predictive power. Similarly, Park et al. [40] proposed
to disentangle information of the target attribute and pro-
tected attribute such that target-related information is pre-
served while protected-related information is removed. It is
noteworthy that while both works were empirically tested
effective in bias mitigation, the neural-network-based disen-
tanglement approach is barely interpretable, which means
the internal disentanglement process cannot be presented
to users in a comprehensible manner. We view this as a
transparency issue and propose an alternative approach.
One of the most crucial presumptions in this paper (as well
as the fairness domain) is that

Conjecture I: The protected attribute itself is essen-
tially irrelevant to the classification problem, yet it
may indicate a latent correlation with other non-
protected attributes.

For example, in an ideal case, the gender of an individual
should not affect the result of the loan application. Based
on this presumption, we can deduce that the protected
attributes in the training data of some classification prob-
lems are informative only because it is a proxy for other
relevant information. In support of our conjecture, prior
studies believe that one cause of bias is the negative legacy
which means the training data previously collected is either
wrongly labeled or it reflects some discriminatory practices
in the past [41]. Either way, when the classification model is
trained on such data and negative legacy disappears in data
collected later (either because the data is correctly labeled or
the discriminatory practices are eliminated), the model will
generate biased outcomes that favor the privileged groups.
In other words, due to data mislabeling or imbalance among
groups, protected attributes can become a proxy that repre-
sents the latent correlation of other really informative (non-
protected) attributes [32].

Therefore, to further verify our conjecture, we investi-
gate the negative legacy potentially embedded in the train-

ing data. To achieve this, we decided to explore whether we
could ”reverse engineer” the proxy, which is represented by
the protected attribute. Here the base assumption is:
• All the informative attributes are included in the dataset;
• Thus, we can infer the protected attributes into some

combinations of other non-protected attributes.
As shown in Figure 1, we used linear regression (middle
figure) and decision tree (right-hand-side figure) to extrapo-
late the correlation between the protected and non-protected
attributes. In both models, we use the protected attribute
(sex) as the dependent feature and other non-protected ones
as independent features. For example, as shown on the
right-hand side of Figure 1, the rule list provided in the
Adult income problem reveals that the privileged group
(male) is more like to possess higher capital gain and
working hours within training data. Therefore, it is possible
that the classification model values the protected attribute
only because it has a positive correlation with ”high capital
balance” and ”more stable job”. That means the protected
attribute is simply a kernel of a more profound relationship
of several actually informative attributes. In that case, we
could mitigate bias by decomposing the ”proxy” and re-
emphasizing the importance of those attributes represented
by the proxy.

Admittedly, our approach cannot guarantee the success
of explaining bias (e.g., protected attributes show weak cor-
relations with all non-protected attributes). In such a case,
we believe that the protected attribute may contain some
information that the dataset has not collected so far. That
is, the trade-off between fairness and model performance
can be insolvable in that scenario. However, within the
scope of the empirical study conducted in this paper, our
approach is proven to be generally effective as supported
by the experiment results.

3.2 Using Explanations for Bias Mitigation

Now as we can extrapolate the cause of bias in terms of
the relationship between the protected and non-protected
attributes, we seek for means to mitigate such bias. Our
intuition is simple: If the prediction model exhibits bias that
comes from data imbalance among protected attributes, we

Fig. 1: Example based on the Adult Income dataset. The left side is the explanation on the dependent attribute, in form
of SHAP explanations [38] of the classification model. The middle and right blocks show two approaches (logistic
regression and decision tree, respectively) applied in FairMask to explain the influence of other independent attributes
on the protected attribute.
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should offset such bias by relabeling the protected attributes
(either assigned instances from privileged group to unprivi-
leged group or vice versa) on certain instances. In summary,
the second conjecture in this paper is:

Conjecture II: If we can foresee which instances
are more likely to be discriminated based on their
protected attributes, we can try to offset such bias
by masking their actual protected attributes when
inferring to a biased model.

To identify the subset of testing instances that require
relabelling on protected attributes, we use the extrapolation
model trained on the imbalanced training data. Using the
Adult dataset as shown in Figure 1 as an example, we
find that one of the specific causes of bias here is that the
imbalanced data shows a strong correlation between the
privileged group (sex=male) and the number of working
hours per week (hours-per-week), which is also positively
related to the favorable class label. Now assume a new data
instance in testing data possesses high hours-per-week yet
an unprivileged protected attribute (sex=female). While a
high hours-per-week attribute value increases the probability
of a favorable label, the unprivileged protected attribute
will conversely increase the probability of receiving an
unfavorable label. Thus, as we can foresee that this new
instance is likely to be discriminated despite a high hours-
per-week attribute, we could mask its gender into the privi-
leged group (from female to male), which will increase the
probability of favorable label. It is noteworthy that similar

conjecture was also mentioned in prior study. Zliobaite et
al. introduced the concept of conditional discrimination in
their paper, where they argue that if certain decision-making
differences across the protected attributes are explainable,
that such differences are tolerable [42]. By distinguishing
conditional discrimination, their approach can remove only
the bad discrimination while allowing explainable non-
discriminatory differences.

To examine the applicability of our tactic, we conducted
experiments that lead to preliminary results shown in Fig-
ure 2 and Figure 3. Figure 2 plots, within testing data
of each dataset, the ratio of unprivileged over privileged
groups in receiving favorable labels; Figure 3 plots the ratio
of the same two groups in receiving unfavorable labels.
The ideal equilibrium is ratio = 1, where privileged and
unprivileged groups are evenly distributed in both classes.
However, as revealed in Figure 2, the unprivileged group is
highly under-represented in 6 out of 9 cases. For the other
3 cases (Compas and Default datasets), Figure 3 shows that
the unprivileged group suffers from an extremely higher
probability of receiving unfavorable labels than the privi-
leged group does. Fortunately, such an imbalanced ratio is
diminished within the group of instances whose protected
attributes are flipped by our extrapolation model (repre-
sented as green bars). Presented by both figures, the flipped
group shows either (a) an increased ratio of an unprivileged
group receiving favorable labels, or (b) a decreased ratio
of an unprivileged group receiving unfavorable labels in
each dataset. It is especially noteworthy that in certain
datasets (Bank and MEPS) where the ratio is below 1 in both

Fig. 2: Ratio for favorable labels. The gray bar shows the ratio of unprivileged instances receiving favorable labels
among all testing data; The green bar shows the same ratio, but only among instances whose protected attribute values
are flipped.

Fig. 3: Ratio for unfavorable labels. The gray bar shows the ratio of unprivileged instances receiving unfavorable labels
among all testing data; The green bar shows the same ratio, but only among instances whose protected attribute values
are mutated using our extrapolation model.
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scenarios, the flipped group constantly shows a tendency of
moving towards the ideal equilibrium. This indicates that
our tactic is self-adaptive for efficiently handling various
types of imbalance.

3.3 FairMask Implementation
FairMask algorithm is a hybrid method of pre-processing
and post-processing. Traditional pre-processing methods are
usually used to modify the training data such that a fairer
model can be trained on the cleaned data. This process
usually takes place before the training stage. Post-processing
methods, on the other hand, are usually used after the
inference stage. Given the prediction outcome from the
model, a post-processing method then selectively changes
the final predictions on certain instances. However, unlike
either genre, FairMask is designed to be applied after the
training stage1, and before the inference stage. Specifically,
FairMask follows the steps below:

1) FairMask initiates an extrapolation model which is
trained on non-protected attributes and uses the pro-
tected attribute as the dependent feature.

2) FairMask uses the extrapolation model to predict on the
new incoming data (e.g., testing data).

3) Then, if the predictions disagree with the original value,
we claim that the new data instance is more likely to be
discriminated by the prediction model.

4) Finally, when passing this new instance to the classifi-
cation model, we mask its original protected attributes
by the predicted values from FairMask.

The first step is based on our first conjecture, that the
cause of bias within a model can be explained, in forms of
the latent correlation between protected and non-protected
attributes. The second and third steps are based on our
second conjecture. These steps aim to forecast, based on the
results of explaining bias, which new instances are more
likely to suffer from such bias. The difference between the
original testing data Ttest and the testing data T ′test masked
by FairMask is that T ′test only contains synthetic protected
attributes P ′test, which do not require access of the original
and real protected attributes Ptest. However, Ptest can still
be kept for fairness evaluation purposes.

The overview of the proposed approach is shown in Fig-
ure 4. Algorithm 1 describes the pseudocode of FairMask.
Please not that the actual protected attributes in testing
data remain unknown to the prediction model, which as
discussed later, ensures procedural justice.

The advantages of our approach over prior methods are
obvious. By deploying an extrapolation model to both ex-
plain and mitigate bias, FairMask can offer concise insights
on the potential cause of bias. As provided in Figure 1, either
linear coefficients or rule-based summaries can be used to
interpret how the protected attribute “misleads” the clas-
sification model into algorithmic discrimination. Moreover,
since FairMask does not require generating additional syn-
thetic data samples to distort the original training samples,
its runtime is much faster than the benchmark methods.
Note that FairMask only uses SMOTE [43] when training the

1. In fact, FairMask can be applied parallel to the training phase in deployment
since it won’t modify the training data. From our implementation, we put
FairMask process after the training phase

Algorithm 1: FairMask pseudocode
Data: Ttrain contains training data without dependent

attributes; Ttest contains testing data without
dependent attributes; budget is the number of
extrapolation models that can be used for
weighted-vote the synthetic values

Result: Testing data with synthetic protected attribute
values T ′

test

begin
Ptrain , NP train ← Ttrain // Divide independent

attributes into protected and non-protected
attributes

M ← InitializeModels(budget)
for i← 0 to budget do

(P ′
train , NP ′

train ← SMOTE(Ptrain , NPtrain )
Mi ← FitModel(P ′

train , NP ′
train )

Ptest , NPtest ← Ttest

P ′
test ←M.weightedVote(NPtest )

T ′
test ← Append(P ′

test , NPtest)
return T ′

test

Fig. 4: An overview of FairMask and the experiment
rig in this paper. Note that the synthesized protected
attributes are only used for model prediction whereas the
actual protected attributes are used in computing fairness
metrics.

extrapolation model (to better predict protected attributes),
and will not affect the training data of the model.

4 EXPERIMENT SETUP

In this section, we describe the data preparation for the
experiment as well as the general experiment setup.

4.1 Data
This paper uses collected datasets that are widely used in
prior related research (see Table 1). After data collection, we
first need to pre-process the data. For most of the datasets
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TABLE 3: Performance metrics used in this paper.

Metrics Definition
Accuray (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)

Recall TP/(TP+FN)
F1 score 2 × (Precision × Recall)/(Precision + Recall)

used in this paper (German, Bank, Heart, Default, and
MEPS15), no feature engineering is required because either
the features are all numerical or a standard procedure is
adopted by all prior practitioners. For Adult and Compas
datasets, there are some variants of pre-processing being
proposed by past researchers. Here we did not follow the
pre-processing steps mentioned in AIF360 [44], which in-
cludes one-hot encoding of non-ordinal categorical features.
This is because much prior work, including Fair-SMOTE [2]
the benchmark method used in this paper, is only applicable
to numerical and ordinal categorical features. For example,
Fair-SMOTE applies deferential evolutionary algorithms to
generate mutants for the purpose of over-sampling. Such
methods cannot cope with the restraints from one-hot en-
coded features and, therefore, may generate invalid mu-
tants. In short, we removed all non-ordinal categorical fea-
tures in these two datasets. Similar approaches can also be
found in many other previous works [2], [31], [45], [46].

Finally, we apply min-max scaling (scale numerical val-
ues to the range of [0, 1] by the minimum and maximum
values in each feature) to transform each dataset. For each
experiment trial, we split the data into 80% training data
and 20% testing data, using the same set of random seeds
on all methods to control the variable of comparison. We
repeat this procedure 20 times for statistical analysis.

4.2 Model Selection
In FairMask. we must select a classification model and an
extrapolation model: The classification model is used to pre-
dict the dependent variable in the task using independent
variables. The extrapolation model is used by FairMask to
explain and mitigate the bias of the classification model. In
Table 4, we explore the interplay of different classification
models and extrapolation models in three of the datasets
used in this paper. Our initial choices of classification mod-
els include random forest (RF), 2-layer neural network (as
known as multi-layer perceptron, MLP), and naive Bayes
(NB). As for the extrapolation model, we include two highly
interpretable models: logistic regression (LR) and classifi-
cation and regression tree (CART). Indicated by the result,
we cannot find an absolute winner among the classification
models, which can outperform others in all cases. Moreover,
the choice of the extrapolation model has a trivial influence
on the final result. In short, our general insight from Table 4
is that (a) the choice of the classification model varies among
different datasets, and (b) the performance of FairMask
is robust regardless of the choice of extrapolation model.
Hence, in the following experiment, we will use RF as the
classification model and CART as the extrapolation model.

4.3 Evaluation Criteria
To evaluate the predictive performance of each method, we
use metrics computed by the confusion matrix of binary

classification: accuracy, precision, recall, and F1 score. These
criteria are selected since (a) they are widely used in both
software analytics [47], [48] and fairness literature [28], [29],
[49], [50], [51] and (b) the latest benchmark method in our
experiment, Fair-SMOTE, uses the exact same set of criteria.
The definitions of performance metrics are shown in Table 3.

To assess the effectiveness of mitigating bias, we use fair-
ness metrics as introduced in Table 2, some of which are also
computed based on the confusion matrix of binary classifi-
cation. The group fairness metrics aim to evaluate whether
different social groups, as identified by their protected
attributes, receive statistically similar prediction outcomes
by the classification model. The individual fairness metric,
denoted as Flip Rate, is designed based on the intuition
of procedural justice. By definition, when individuals that
are similar to each other regardless the protected attributes,
they shall receive similar prediction outcomes (in this case
of binary classification, the same outcome). To assess this
criterion, we use the following situation testing tactic:
• For each instance in testing data, flip the protected at-

tribute.
• Pass the edited data instances into the classification model
• Record the times where the new prediction outcome dif-

fers from the original one.
It is noteworthy that the situation testing is also used in
prior work [2]. The major difference is that Fair-SMOTE uses
situation testing as a technique to identify and remove bias-
introducing instances whereas in this paper we only use it
to assess the extent of individual fairness for all the methods
examined in the experiment.

4.4 Statistical Analysis
To compare the predictive performance and ability in mit-
igating bias among all algorithms on every dataset, we
use a non-parametric significance test along with a non-
parametric effect size test. Specifically, we use the Scott-
Knott test [52] that sorts the list of treatments (in this case,
the benchmark bias-mitigation methods and our approach)
by their median scores. After the sorting, it then splits the
list into two sub-lists. The objective for such a split is to
maximize the expected value of differences E(∆) in the
observed performances before and after division [53]:

E(∆) =
|l1|
|l|

abs(E(l1)−E(l))2+
|l2|
|l|

abs(E(l2)−E(l))2 (1)

where |l1| means the size of list l1.
The Scott-Knott test assigns ranks to each result set; the

higher the rank, the better the result. Two results will be
ranked the same if the difference between the distributions
is not significant. In this expression, Cliff’s Delta estimates
the probability that a value in list A is greater than a value in
list B, minus the reverse probability [54]. A division passes
this hypothesis test if it is not a “small” effect (Delta ≥
0.147). This hypothesis test and its effect sizes are supported
by Hess and Kromery [55].

5 RESULTS

To assess the effectiveness of our proposed approach as
compared to other benchmark methods, we design the
experiment evaluation around 4 research questions (RQs).
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TABLE 4: Preliminary result on choice of the extrapolation model in FairMask. Here, cells marked in darker colors are
better than those marked in lighter colors within the same dataset block. For each dataset, we repeat the experiment
for 20 runs and report the median values. The ranks indicated by colors are determined by the Scott-Knott test as
described in §4.4.

Dataset:
Protected Attribute

Classification
Model

Extrapolation
Model Accuracy Precision Recall F1 AOD EOD SPD DI

CART 83 68 56 61 2 6 11 46RF LR 83 68 53 59 2 6 11 47
CART 82 65 51 57 3 6 10 48MLP LR 82 66 48 55 3 7 11 5
CART 80 67 30 42 2 1 6 47

Adult: Sex

NB LR 80 66 31 42 2 1 6 47
CART 82 72 53 61 0 3 7 36RF LR 83 71 53 61 1 2 7 35
CART 83 71 48 57 0 2 6 37MLP LR 83 71 49 58 0 2 6 35
CART 80 67 3 42 2 1 3 28

Adult: Race

NB LR 80 67 31 42 2 1 3 3
CART 65 66 72 69 0 5 8 12RF LR 64 66 74 7 0 3 6 1
CART 67 67 79 73 2 6 11 16MLP LR 68 68 79 73 1 6 11 16
CART 67 66 82 73 3 8 14 17

Compass: Sex

NB LR 68 67 81 73 1 8 13 17
CART 64 66 73 69 2 9 13 19RF LR 64 66 72 69 2 9 13 19
CART 69 70 76 73 3 12 18 25MLP LR 69 70 76 73 3 12 18 25
CART 68 68 79 73 4 11 18 24

Compass: Race

NB LR 68 68 78 73 4 11 18 24
CART 70 73 92 81 5 4 8 9RF LR 69 71 92 80 5 6 9 10
CART 69 71 93 81 6 4 8 9MLP LR 69 71 92 80 6 4 9 9
CART 60 79 59 67 2 11 11 18

German: Sex

NB LR 60 79 59 67 2 11 11 18

RQ1: Does FairMask succeed in rebalancing the pro-
tected attributes?

Before assessing the performance of FairMask, we would
like to firstly check whether our method actually changes
the distribution of protected attributes within the testing
data. Figure 2 and Figure 3 have shown the preliminary
results, where the unprivileged group among the relabeled
testing data has an increased possibility of receiving a
favorable label, and the gap of the favorable label rates
between the privileged and unprivileged group is reduced.
Furthermore, in Figure 5, we compare the percentages of the
privileged and unprivileged groups before/after FairMask
being applied. The results are twofold:
• FairMask does change the distribution of protected at-

tributes significantly2.
• Even if the unprivileged group is not the (quantitatively)

minority group, FairMask still achieves the rebalancing
by shifting the percentage toward 50. In other words,
FairMask is flexible and self-adaptive to various scenarios
of unprivileged groups.

Our answer to RQ1 is: Yes, FairMask is not only effective
but also adaptive in rebalancing the protected attributes.

RQ2: How is the performance of our approach com-
pared to other benchmarks, including state-of-the-art
algorithms?

2. The percentages in the figure are mean values from 20 random repeats where
the 2-tail paired t-test scores < 0.05 in all cases.

Fig. 5: Result for RQ1. The ratio in percentage between
the privileged and unprivileged groups before and after
FairMask being applied.

Table 5 compares FairMask against other baselines.
Reweighing [7] is proposed by Kamiran et al. (introduced
in §2.3) to mitigating bias via adjusting the instance weights
for training samples in different groups (as determined by
both their labels and protected attributes). Fair-SMOTE [2]
is proposed by Chakraborty et al. to reduce bias by not
only handling the data imbalance between target labels
but also imbalanced distribution among different protected
attributes. Reject Option based Classification (ROC) [36] is
a post-processing method that optimizes for fairness by
adjusting the classification threshold for the privileged and
unprivileged group separately. We chose them as our bench-
mark methods because (a) as a hybrid of pre-processing
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TABLE 5: Results for RQ2. RF denotes the default random forest learner. For all performance metrics, greater is better;
for all fairness metrics, smaller is better. Here, cells marked in darker colors are better than those marked in lighter
colors within the same dataset block. For each dataset, we repeat the experiment for 20 runs and report the median
values in percentage. The ranks indicated by colors are determined by the Scott-Knott test as described in §4.4.

Dataset: Protected Attribute Method Accuracy Precision Recall F1 score AOD EOD SPD DI FR
RF 83 72 53 61 8 24 18 78 20

RF+Random 83 75 48 57 1 4 11 52 7
RF+Reweighing 75 48 71 57 1 7 15 37 2
RF+Fair-SMOTE 79 54 71 61 6 22 20 54 18

RF+ROC 75 49 76 60 2 11 18 40 24
Adult: Sex

RF+FairMask 83 67 56 61 2 6 10 46 0
RF 84 73 53 61 3 10 9 49 9

RF+Random 83 70 51 59 0 3 8 43 8
RF+Reweighing 76 49 72 59 3 5 5 12 4
RF+Fair-SMOTE 79 54 72 62 2 7 11 37 16

RF+ROC 73 45 82 59 2 5 11 25 28
Adult: Race

RF+FairMask 82 72 53 61 0 3 7 36 0
RF 65 67 73 70 5 10 14 19 28

RF+Random 64 66 71 68 0 8 11 16 27
RF+Reweighing 62 64 67 66 3 7 12 18 30
RF+Fair-SMOTE 65 67 70 68 0 6 9 17 21

RF+ROC 65 66 74 70 1 6 3 4 36
Compas: Sex

RF+FairMask 65 66 72 69 0 6 8 12 0
RF 65 67 73 70 2 10 14 20 24

RF+Random 64 66 73 69 2 10 14 20 26
RF+Reweighing 63 66 66 66 1 2 5 9 19
RF+Fair-SMOTE 65 68 70 69 3 4 13 15 18

RF+ROC 79 54 72 68 1 5 7 12 34
Compas: Race

RF+FairMask 64 67 73 69 2 8 13 19 0
RF 70 72 93 81 5 7 11 11 14

RF+Random 67 71 90 79 2 1 8 9 13
RF+Reweighing 64 77 71 73 8 0 15 26 8
RF+Fair-SMOTE 58 79 55 65 6 6 9 18 18

RF+ROC 60 77 56 65 5 4 8 10 44
German: Sex

RF+FairMask 70 73 92 81 5 4 8 9 0
RF 80 78 82 80 6 9 26 55 31

RF+Random 80 77 81 79 7 10 10 21 0
RF+Reweighing 77 74 79 76 4 2 20 40 3
RF+Fair-SMOTE 80 77 82 80 2 6 22 44 13

RF+ROC 78 80 73 77 4 4 25 59 69
Bank: Age

RF+FairMask 80 78 81 80 5 7 11 22 0
RF 83 86 78 81 10 6 32 55 7

RF+Random 83 85 78 81 8 2 24 44 3
RF+Reweighing 76 71 82 75 11 11 38 54 2
RF+Fair-SMOTE 84 86 79 82 8 4 28 48 3

RF+ROC 75 69 77 73 10 2 23 41 97
Health: Age

RF+FairMask 84 86 79 82 5 4 24 43 0
RF 82 66 37 47 1 2 2 20 3

RF+Random 81 65 37 47 1 2 2 18 2
RF+Reweighing 42 26 88 40 0 0 2 3 0
RF+Fair-SMOTE 82 62 42 50 0 2 3 15 2

RF+ROC 77 49 57 51 0 1 3 13 23
Default: Sex

RF+FairMask 82 65 37 47 0 0 2 16 0
RF 87 66 39 49 2 7 4 33 1

RF+Random 86 65 39 49 1 3 2 23 1
RF+Reweighing 76 40 76 52 1 5 5 14 0
RF+Fair-SMOTE 87 64 47 54 2 5 4 30 2

RF+ROC 71 35 84 49 1 5 4 13 86
MEPS: Race

RF+FairMask 87 67 39 49 1 3 3 25 0

TABLE 6: Summarized result of RQ2. Each cell is the mean rank across all datasets. Lower ranks are better and
highlighted in darker colors. FairMask constantly obtains top ranks in all metrics.

Accuracy Precision Recall F1 Score AOD EOD SPD DI FR
RF 1.1 1.2 1.9 1.2 2.3 2.8 2.6 3.0 2.9

RF+Random 1.2 1.2 2.2 1.6 1.6 1.7 1.6 2.3 2.4
RF+Reweighing 2.3 2.4 1.8 2.2 1.8 1.6 2.1 2.4 2.7
RF+Fair-SMOTE 1.7 1.6 2.0 1.3 1.7 2.0 2.1 2.4 2.7

RF+ROC 2.1 2.3 1.9 1.9 1.7 1.9 1.9 1.6 3.4
RF+FairMask 1.1 1.3 1.9 1.2 1.3 1.4 1.3 1.8 1.0
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Fig. 6: Result for RQ3. The ratio is calculated by dividing
the runtime of Fair-SMOTE over that of FairMask. A larger
ratio means FairMask is faster. The datasets are sorted by
the size in an ascending order.

and post-processing, FairMask should be compared against
other methods of the same category, and (b) all of them are
supported in open-source packages and do not require any
hyper-parameter tuning. In addition to these state-of-the-
art methods, we also implement a ”naive” baseline in our
experiment, denoted as ”Random”, that randomly shuffles
the protected attributes.

Comparing FairMask against other baselines, we observe
that the result is either (a)FairMask outperforms other meth-
ods in fairness metrics while maintaining the performance
(in most cases, the default learner has top-ranked perfor-
mance), or (b) FairMask reaches on-par fairness measures
with some other baselines but obtains better performance
at the same time. The summarized result is presented
in Table 6, where we can find that FairMask constantly
obtains top ranks in both fairness and performance. It is
also noteworthy that FairMask, by its design choices, can
achieve perfect individual fairness while other baselines fail
to improve it (even worsen in some cases).

Thus, our answer to RQ2 is FairMask performs better
or similar to the two state-of-the-art algorithms in terms
of both fairness and performance.

RQ3: Is FairMask more scalable than Fair-SMOTE in
terms of runtime complexity?

FairMask is built upon design choices that avoid syn-
thetic data generation. This not only avoids the potential
risk of introducing noise but also makes the whole frame-
work more light-weighted. Figure 6 presents the runtime
of FairMask as compared to that of Fair-SMOTE on every
dataset. While the datasets are sorted by their sizes, we do
not see a proportional relationship between the size and
runtime in either method. This could be because the runtime
of the model is also influenced by the dimensionality of the
training space. Moreover, since Fair-SMOTE requires gener-
ating additional data, its runtime also depends on the extent
of data imbalance: In cases where the data distribution
is severely imbalanced, more synthetic data are required.
Nevertheless, despite the variables described above, we
can still observe apparent domination that FairMask runs
constantly faster than Fair-SMOTE, which aligns with our
design expectation. Thus, our answer to RQ3 is FairMask
has a significantly shorter runtime, and therefore more
scalable than Fair-SMOTE.

RQ4: Can FairMask handle multiple protected at-
tributes?

While under-represented in past research, it is a pos-
sible case scenario that a dataset contains more than one
protected attributes in a dataset (just like Adult and Com-
pas datasets). Fortunately, our design choices of FairMask
makes itself extremely easy to be applied to cases with more
than one protected attribute.

To examine the effectiveness of FairMask, we conducted
experiments on the Adult and Compas datasets, both of
which contain two protected attributes: race and sex. Fol-
lowing our framework described in 4, we now need to
build two extrapolation models for the two protected at-
tributes respectively. After that, we will drop both pro-
tected attributes from the test data. Since Fair-SMOTE is
the only benchmark in this paper that is capable of han-
dling multiple protected attributes, we only compare our
approach against it. As shown in Table 7, compared to
the default benchmark, FairMask can improve fairness in
both protected attributes simultaneously while maintaining
the predictive performance. When compared against Fair-
SMOTE, FairMask still display better fairness while making
less harm to performance.

It is also noteworthy that Fair-SMOTE uses the over-
sampling tactic to reduce bias (in order to achieve balance
among different combinations of protected and target at-
tributes). Consequentially, the number of samples needed
to over-sample explodes exponentially as the dimension-
ality of protected attributes increases, resulting in larger
runtime complexity. FairMask, on the other hand, avoids
this obstacle by introducing an extrapolation model rather
than over-sampling the data. In general, our answer to RQ4
is FairMask shows effectiveness in bias mitigation when
handling multiple protected attributes simultaneously.

6 THREATS TO VALIDITY

Sampling Bias: While experimenting with other datasets
may yield different results, we believe our extensive study
here has shown the constant effectiveness of FairMask in
various cases. Most of the prior works [5], [27], [37], [56],
[57] used one or two datasets where we used seven well-
known datasets in our experiments. We have also observed
other emerging datasets in the fairness fields, and we will
try to extend our research scope once we verify the validity
of the new datasets. In the future, we will explore more
datasets and more learners.
Evaluation Bias: We used the five fairness metrics in this
study, covering both definitions of group and individual
fairness. Prior works [26], [33], [49] used fewer metrics
whereas IBM AIF360 [44] contains more than 50 metrics.
More evaluation criteria will be examined in future work.
Conclusion Validity: Our experiments are based on the
assumption that test data is unbiased and correctly labeled.
Prior fairness studies also made the similar assumption [2],
[29], [27].
Internal Validity: We used random forest model
with mostly off-the-shelf parameters. However, hyper-
parameters play a crucial role in the performance of ML
models. Therefore, we cannot rule out the possibility that
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TABLE 7: Result for RQ4: FairMask is designed to be capable of mitigating bias on multiple protected attributes
simultaneously. Similar to Table 5, here cells with significantly better results are marked in a darker color.

Dataset Method Protected
Attribute Accuracy Precision Recall F1 AOD EOD SPD DI FR

Sex 8 24 18 78 20RF Race 83 72 53 61 3 10 9 49 9
Sex 6 21 21 54 19RF+Fair-SMOTE Race 75 49 71 59 3 8 10 32 16
Sex 2 6 11 49 0Adult

RF+FairMask Race 83 69 52 59 0 2 6 34 0
Sex 5 10 14 19 28RF Race 65 67 73 70 2 10 14 20 24
Sex 1 6 9 18 20RF+Fair-SMOTE Race 65 67 70 68 3 7 13 17 19
Sex 1 5 9 14 0Compas

RF+FairMask Race 65 66 73 69 2 9 13 19 0

other ML models, after fine tuning, can achieve superior
results. In the future, we will endeavor to address hyperpa-
rameter optimization for performance improvement. More-
over, our feature processing step during the experiment
follows procedures found in prior works, especially those
that are compared in this paper only in order to make
a fair comparison. While other benchmark methods may
have certain limitation in selecting features, our approach
is actually applicable to all kinds of features.
External Validity: Our work is limited to binary classi-
fication and tabular data which are very common in AI
software. However, all the methods used in this paper can
easily be extended in case of multi-class classification, and
regression problems. In the future, we will try to extend our
work to other domains of SE and ML.

7 DISCUSSION: WHY FAIRMASK?
In this section, we discuss what makes FairMask novel and
distinguishable from prior works in this domain.

7.1 Procedural Justice

In this paper, our experiment uses different measures to
assess both group fairness (aod, eod, etc.) and individual
fairness (flip rate). From the perspective of law practice,
the notions of group fairness are more likely to reflect
distributive justice, which concerns fairness in terms of the
distribution of rights [58] (in our case, the distribution of
favorable labels among different social groups). On the other
hand, individual fairness tends to emphasize the importance
of procedural justice [3], [59], which requires not only
fair results but also transparency of the decision-making
process such that ones can verify and monitor whether the
procedure constantly guarantees fairness. The notions of
procedural justice have recently gained more attention in
the discussion of building fairer ML software [4], [60].

In this paper, we claim that our design choice of improv-
ing individual fairness has made FairMask a suitable fit to
satisfy procedural justice (as indicated by the flip rates). A
model embedded with FairMask will not access the (actual)
protected attributes during deployment time. However, we
admit that FairMask is still not a perfect match according to
the definition of procedural justice. One of the significant
reasons is model degradation. To prevent a model from
compromised performance caused by distribution drift, ML
models are recommended to be re-fitted periodically to

adopt the updated data distribution. More importantly, in
our case, we also need to update the extrapolation model
within FairMask to better understand if the root cause of
bias has also drifted (in different correlation with non-
protected attributes).

Thus, while FairMask does not use the real protected
attributes to make predictions on new data in deploy-
ment, those protected attributes are still collected in the
background, such that we can still have access to the real
protected attributes when re-training the prediction model.
We notice that our design may not perfectly fulfill the
requirement of procedural justice as we still collect protected
information constantly. We believe FairMask has made a
significant step toward procedural justice while there is still
room for further improvement.

7.2 Ethical Concerns
We can foresee the potential criticism that our approach
might face: does FairMask mitigate bias or merely hide the
bias since while the model no longer has access to protected
attributes (e.g., gender, race), it still retains the influences of
those attributes? We say that this is demonstrably not true,
and we would like to respond from two aspects.

First of all, an important feature of the assessment
methodology in this paper is that:

When we assess the fairness extent of FairMask (in §4),
that assessment uses all the protected attributes from the
unaltered data.

Hence we can assert that our synthesis approach not only
enables the procedural justice but it also reduces (but may
not completely remove) other measurable effects of bias.

Moreover, there are many prior works in the literature
that attempt to mitigate bias through modifying the pro-
tected attributes in their methods [8], [31], [45], [61], [62],
[63]. For example, many pre-processing methods apply data
”distortion/cleaning” on the training data, including the
protected attributes, in order to fit a fairer prediction model
on the modified. Other post-processing methods, which do
not modify the protected attributes, directly change the pre-
diction outcomes to mitigate bias. In short, the motivation
and influence of FairMask and these prior works are essen-
tially the same: Assuming or knowing a prediction model
is unfair toward certain social groups, given an originally
unfair outcome, we want to restore fairness by changing
the undesired outcome. The only difference in FairMask is
that we believe such undesired outcomes can be changed
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via properly modifying the protected attributes even after a
biased model is trained.

7.3 Why Does FairMask Work?
One frequently asked question is as follows. What is won
by removing an attribute, then recreating its values via ex-
trapolation from other attributes? Surely this extrapolation
model just writes back the same values that were removed?

In reply, we argue that the conclusions drawn from the
extrapolated data are actually different, in certain small
but crucial aspects, from the conclusions drawn from the
raw data. In FairMask, the relation between the protected
and non-protected attributes is learned by an extrapolation
model. When new data instances arrive during the testing
or deployment phase, FairMask generates synthetic values
for protected attributes to mask actual values. In that ap-
proach, small variations in local data can be “smoothed out”
by sampling across all the data through the extrapolation
model. In this paper, Figure 2 and Figure 3 show that this
kind of smoothing has a critical and significant effect on
mitigating bias. Specifically, in those two figures, we look at
the unfairness suffered by different social groupings:
• In the test data, unprivileged groups have a much lower

chance of receiving a favorable label while having a much
higher chance of receiving an unfavorable label.

• But when using our synthesized data generated from
FairMask, that bias has been dramatically eliminated,
leading the ratio toward an ideal equilibrium between the
privileged and unprivileged groups.

We argue that biased decisions arise when a model occasion-
ally uses a protected attribute to make a decision while it has
no need to. Our experience suggests that we can remove
those “occasional mistakes”, and thus mitigate bias.

7.4 Does FairMask Handle All Unfairness?
When discussing this work with colleagues, we are often
asked if FairMask can mitigate against all the potential injus-
tices that might be created by AI. In response, we say “no”.
Mitigating the untoward effects of AI is a much broader
problem than just exploring bias in algorithmic decision-
making (as done in this paper). The general problem of fair-
ness is that influential groups in our society might mandate
systems that (deliberately or unintentionally) disadvantage
sub-groups within that society. A software system could
satisfy all the metrics used to evaluate the extent of fairness
(as in Table 2) and still perpetuates social inequities. For
example, (a) software license fees might be so expensive
that only a tiny monitory of organizations can boast they
are “fair”; or (b) the skills required to use a model’s API
might be so elaborate that even if the model is fair, only an
elite group of programmers can use it.

That said, as software developers, we cannot turn a
blind eye to the detrimental social effects of our software.
While no single paper can hope to fix all social inequities,
this paper shows how to improve the model involved in
assessing one particular kind of unfairness (algorithmic
decision-making bias). As to other kinds of fairness, they
need to be explored and, hopefully, research results like this
one will motivate a larger community of researchers to take
on the challenge of fairness.

7.5 Explainable Extrapolation: Future Work

Prior works either (a) do not offer interpretations on the
cause of bias [39], [40], [7], or (b) offer instance-based
summary [2] on the cause of bias. Although the latter
one is human-comprehensible, we aim for generating more
concise and structured interpretations via the extrapolation
model. As shown in §3, we proposed an approach that
explains the cause of bias in training data by extrapolating
the correlation between the protected attributes and non-
protected attributes. The experiment result in this paper has
provided evidence that supports the presumption, which is
that the privileged group may share a similar latent with
the favorable-labeled group [39], [40], as indicated by the
explanations on both the target attribute (label) and the
protected attribute. Such similarity within training data may
mislead the classification model to wrongly emphasize the
importance of the protected attribute, which is essentially a
proxy of a combination of other informative attributes.

For future work, we look forward to formalizing the def-
inition as well measurement for human comprehensibility
level regarding group/individual fairness. For example, to
verify a ML software to be fair in an ”explainable” man-
ner, one may need to provide user-centered experimental
study with software stakeholders/users involved (e.g. Can a
banker distinguish a de-biased mortgage application model
from a biased one?). While this paper lacks the human eval-
uation part to assert that our approach offers explainable
bias mitigation, we believe our conjectures and concepts will
inspire more promising work.

8 CONCLUSION

Fairness in machine learning software has become a seri-
ous concern in the software engineering community. Many
fairness methods synthesize new samples [2], [63], [64] in
order to better balance training data (expecting to remove
certain biases). This paper tested an alternative approach,
which assumes such synthesis might work better if it was
model-based rather than instance-based (since the latter is more
susceptible to minor variations in the data).

We found that we can endorse Chakraborty et al. [2]
findings that bias might come from imbalanced data dis-
tributions. Moreover, instead of generating new data sam-
ples, we proposed FairMask, a better and faster approach
that outperforms Fair-SMOTE. In addition, our approach
also guarantees absolute procedural fairness. By avoiding
using the actual protected attributes and synthesizing our
own ones, our model can ensure that individuals that are
only different in protected attributes will receive the same
predictions. This is a significant improvement because, as
revealed by our situational testing, sometimes such individ-
ual unfairness can exist among up to 20% of the test data.

In experiments, we found that FairMask is performance-
wise better (measured by fairness and performance metrics)
than three state-of-the-art fairness algorithms. When look-
ing at individual fairness (as indicated by the Flip Rates),
FairMask can ensure perfect individual fairness while other
benchmarks cannot. Based on the above, we conclude that:
• We can recommend FairMask for faster and more effective

bias mitigation.
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• FairMask greatly excludes the risk of individual unfair-
ness: Two individuals who only differ in the protected at-
tributes will always receive the same prediction outcomes.
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