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Abstract—Search-based software testing (SBST) is now a mature area,
with numerous techniques developed to tackle the challenging task of
software testing. SBST techniques have shown promising results and
have been successfully applied in the industry to automatically generate
test cases for large and complex software systems. Their effectiveness,
however, has been shown to be problem dependent. In this paper,
we revisit the problem of objective performance evaluation of SBST
techniques in light of recent methodological advances – in the form of
Instance Space Analysis (ISA) – enabling the strengths and weaknesses
of SBST techniques to be visualised and assessed across the broadest
possible space of problem instances (software classes) from common
benchmark datasets. We identify features of SBST problems that explain
why a particular instance is hard for an SBST technique, reveal areas
of hard and easy problems in the instance space of existing benchmark
datasets, and identify the strengths and weaknesses of state-of-the-art
SBST techniques. In addition, we examine the diversity and quality of
common benchmark datasets used in experimental evaluations.

Index Terms—Automated Software Testing, Algorithm Selection, In-
stance Space Analysis

1 INTRODUCTION

One of the most critical steps in software development is
testing [1], which is also one of the most resource-intensive
tasks and accounts for about 50% of the project cost [2], [3].
Among testing activities, test case generation is the most
challenging and at the same time has the most impact
on the efficiency and effectiveness of the whole testing
process [4]. Hence, it is no surprise that automated testing
techniques, and in particular Search-Based Software Testing
(SBST) have gained increasing attention from researchers and
even attracted the creation of testing tool competitions [5],
[6], [7], [8], [9], [10], [11]. Recent progress in the area has
resulted in numerous tools and techniques being proposed
and used both in academia and industry [12], which fall
across the spectrum of white-box testing (structural), black-
box testing (functional), and grey-box testing (a combination
of structural and functional).

Multiple comparative studies have reported the effec-
tiveness of various SBST techniques in terms of average
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coverage or other performance criteria over a suite of
benchmarks, demonstrating the superiority of one technique
over others [13], [14], [15], [16], [17], [18], [19]. However,
considering the No-Free-Lunch (NFL) theorems [20], [21], we
should be cautious about expecting any single technique to
outperform all others across all diverse instances of a given
problem, considering the same amount of computational
resources. Many open-source software classes are trivially
simple for many testing techniques [22], [23]. However,
for more challenging classes, the performance of the SBST
technique is likely to be affected by the features of the
class under test (CUT), requiring deeper insights into the
relationship between performance and the features to justify
choosing one technique over another. To seek such insights,
the choice of benchmark CUTs is critical: they must be
diverse, discriminating of the performance of different SBST
techniques, unbiased and challenging enough to provide
sufficient evidence to support trust in the selection of a
technique [24]. To gain the necessary insights, we investigate
the following research questions:

1) RQ1: How adequate are the commonly used benchmarks to
assess the performance of SBST techniques? - We investigate
the suitability of the benchmark datasets commonly
used to assess the performance of SBST techniques. An
adequate benchmark is one that challenges the perfor-
mance (hard) and enables not only the strengths but
also weaknesses of different techniques to be assessed
(unbiased) and diverse.

2) RQ2: What influences the effectiveness of SBST techniques?
- The superior performance of a technique on standard
benchmarks inherited from literature cannot be gen-
eralised to untested instances. Ideally, the conditions
under which a testing technique succeeds/fails must be
presented along with the evaluation results; however,
this is rarely the case. We aim to bridge this gap by
investigating the effectiveness of SBST techniques by
exploring their suitability according to the software
features.

3) RQ3: What are the strengths and weaknesses of existing
SBST techniques? - The common practice of reporting the
performance of SBST techniques on an “on average”
basis gives little insight into their relative strengths
and weaknesses for particular types of instances. For
example, irrespective of comparatively low average
performance, a technique can perform better in some in-
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stances where even the best-performing technique gives
unsatisfactory results, which reveals its unique strength.
Here, we are interested in exploring the strengths and
weaknesses of existing SBST techniques and finding how
these strengths and weaknesses make them similar or
different from each other.

These research questions can be framed within the context
of the Algorithm Selection Problem (ASP), which corresponds
to the challenge of selecting the best technique for a given
set of instances. Rice proposed a framework to address the
ASP in the 1970s [25] that uses measurable features of a
set of problem instances to predict the performance of a
technique on unseen instances. In recent years, a method-
ology known as Instance Space Analysis (ISA) has been
developed by Smith-Miles et al. [26], [27], [28] that extends
Rice’s framework to gain more insights into a technique’s
strengths and weaknesses, and assesses the adequacy of the
chosen test instances. ISA constructs a two-dimensional space
based on measurable instance features, which provides visual
insights into the strengths and weaknesses of techniques.
Moreover, ISA provides a visual analysis of the benchmark
instances showing their difficulty, discriminating capabilities
and adequacy for building trust in the technique’s selection.
Such insights are impossible or very hard to obtain by
reporting merely the average performance across all the
instances.

ISA was originally proposed for combinatorial optimisa-
tion problems [28], but has since been applied in other areas
such as time series forecasting [26], continuous black-box
optimisation [27] and regression [29]. Taking some elements
from an earlier version of the ISA methodology, Oliveira et
al. performed an initial study focused on three automated
software test generation techniques, i.e., Random testing,
WSA and MOSA [30].

In this paper, we extend the work from Oliveira et
al. [30] with the complete ISA methodology to investigate
different research questions, by using a larger set of features,
a larger set of benchmark instances and a larger portfolio
of testing techniques. The contributions of this work can be
summarised as follows:

• We compile a set of 76 features extracted from code,
control-flow graph (CFG) and software metrics pro-
posed to evaluate the quality of Object-Oriented (OO)
software [31]. Compared to [30], this is an extended set
of features that are compiled from various studies in
automated testing. The features are selected considering
their impact on software testing either intuitively, or
based on experimental or theoretical evidence.

• We study the impact of these features on the per-
formance of six widely used automated testing tech-
niques. Compared to [30], this is an extended set of
techniques, covering a wide range of search strategies
(single-objective, multi-objective, multi-population) and
Random testing.

• We employ a larger and more comprehensive set of
benchmarks compared to [30]. Our dataset consists of
over a thousand CUTs, 211 of which are taken from the
previous study. The CUTs included here are not only
larger, but they are also more diverse in terms of the
features defining them. As the insights we gain through

ISA are highly dependent on the test instances and
features used, the results we obtain using our generated
instance space contain many new interesting findings.

• We evaluate the relative strengths and weaknesses of
SBST techniques in terms of their footprint. A technique’s
footprint is defined as the area of the instance space
where we expect a technique to perform well, depending
on a chosen definition of good. We report the footprint of
a technique in a quantitative way in terms of its area α
(the size of the footprint), density d (number of instances
enclosed by the footprint) and purity p (percentage of
good instances included in the footprint), to provide an
objective measure of a technique’s strength.

• We provide a visual representation of the distribution of
features of instances and the performance of the portfolio
techniques across the instance space. It allows mapping
the impact of features on the effectiveness of testing
techniques.

In summary, we explore the suitability of testing tech-
niques on software programs according to their features. The
results of our experiments suggest that irrespective of the
similar average performance of software testing techniques
(evaluated on the basis of branch coverage), they have their
unique strengths and weaknesses. Furthermore, we find that
the commonly used benchmark datasets in the field of search-
based testing must be further improved by adding more
diverse and challenging CUTs to make these benchmarks
suitable to stress test the performance of testing techniques.
We discuss these findings in detail in Section 4.

The findings from this study can help developers of
search-based testing techniques to gain deeper insights into
why some techniques are less or more suited to test certain
programs, which can help develop better techniques to
address challenging areas. Furthermore, it will help testers to
select the most effective testing technique for their program-
under-test.

2 INSTANCE SPACE ANALYSIS FOR SBST
Search-based software testing is the application of meta-
heuristic search techniques to generate test cases for software
systems [17]. It is based on the satisfaction of some test ade-
quacy criteria like branch coverage [32], mutation score [33],
statement coverage [23], etc., that are encoded as a fitness
function. Fitness functions are designed to measure how
far a given test case is from covering the test targets. We
use branch coverage as a test target in this study. Two well-
known heuristics for branch coverage are approach level and
branch distance [34]. The former measures the number of
control-dependent nodes which are not yet encountered in
the path executed by the test. The test that executes more
control dependencies is closer to reaching the test target.
The latter is computed using the values of the variables
at the conditional expressions where the control flow went
wrong. Guided by the fitness function, a search-based testing
technique generates test cases by minimising the fitness
values.

2.1 Instance Space Analysis
Instance Space Analysis (ISA) maps the features of a given
program instance to the performance of SBST techniques,
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Figure 1: Instance Space Analysis for Search-Based Software Testing

such that the strengths and weaknesses of the different
techniques can be revealed. For this mapping, four types
of spaces are required [35]:

• Program Space (P) contains all the relevant instances
of a problem in an application domain. For example,
for SBST, P contains all the possible CUTs which can
be tested by search-based testing techniques. From P , a
subset of program instances (I) is extracted for which
the computational results are available;

• Feature Space (F ) is defined by a vector of measurable
features that describe the characteristics of a program
instance;

• Technique Space (T ) is composed of a group of SBST
techniques used for generating test cases for I ; and

• Performance Space (Y) that requires a user-defined
measure of “goodness”, such as the percentage of code
covered by a testing technique (code coverage).

Figure 1 summarises the ISA Framework with the four
spaces. The CUTs in I are defined in terms of feature vectors
that create a feature space (F ). The features included in
(F ) should be diverse and predictive of the performance
of at least one portfolio technique. Features are domain-
specific, and thus developing F requires significant domain
knowledge. In addition, features should be highly correlated
with the technique’s performance, uncorrelated with other
features, cheaper to compute, and capable of explaining the
similarities and differences between instances [24], [29].

The technique space is created by selecting a set of SBST
techniques, each one with its weaknesses and strengths,
capable of generating test cases for the program subset. The
more diverse the technique space, the higher the chance of
finding the best technique for a given instance would be.

The performance space Y includes the metrics to report
the performance of the SBST techniques and the criteria
of “good” performance. Common performance metrics for
automated testing are coverage, length/size of the test suite
and mutation score [36]. Any of the performance metrics

can be used for instance space analysis, however, only one
can be used at a time. Furthermore, using different metrics
might require a different set of features to find a meaningful
relationship with the performance. For instance, replacing
“mutation score” with “code coverage” as a performance
measure might need to further enhance the feature space by
adding more features that would make a CUT easy/hard for
mutation tools.

In order to generate the instance space of automated
testing and investigate the research questions formulated in
Section 1, the following steps are required [24], [37]:

1) Collection of the meta-data, which is composed of two
matrices {F,Y} ,F ∈ Rf×i,Y ∈ Rt×i, which contain
the values of f features in F and performance results
for t techniques in T , for i instances in I .

2) Selection of a subset of n relevant features, which are
predictive of the technique’s performance and expose
its strength and weaknesses.

3) Projection from n-dimensional feature space to a 2-
dimensional instance space.

4) Measurement of the footprint for each technique, where
a footprint is the region of the instance space where a
technique is expected to perform well.

The following sections describe each one of these steps in
more detail in the context of SBST.

2.2 Program Space (P)

P includes all the software classes that can be tested
using SBST techniques. From P , we extract I that contains
Classes Under Test (CUTs) extracted from two benchmark
sets: SF110 corpus [38] and commons-collections [39]. SF110
is a collection of 110 open-source software projects from
sourceforge.net the repository and has been widely used in
the evaluation of SBST techniques [23], [17], [30], [38], [40],
[41], [42]. Here, we use a subset of CUTs from this data
source because the computational time needed to evaluate

sourceforge.net
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the complete SF110 corpus is high due to the: (a) huge
number of CUTs (23,886 Java classes in total); (b) multiple
repetitions of test generation are needed to account for the
stochastic nature of evolutionary algorithms; and (c) process
having to be repeated for all the portfolio techniques.

We, therefore, filtered the CUTs to be used in our
evaluation based on Mc-Cabe’s cyclomatic complexity (cc)
that measures the number of independent paths in a Java
method’s control flow graph. Selection of CUTs based on
cc is a common practice in literature [7], [23]. A CUT
having cc = 1 is considered trivial and does not require
sophisticated search-based testing techniques [22]. Many
studies recommend using CUTs having cc > 5 to evaluate
the performance of techniques [7], [23], [30], but this reduces
the size of the benchmark tremendously (211 CUTs only) [30].
However, as we are interested in defining both easy and
hard instances for test generation techniques, we also include
CUTs having cc values in the range [3,5). It is important to
note here that Evosuite fails to generate test cases for classes
containing methods having environmental dependencies
like file I/O or database connection, using any testing
technique [43], [44], [33]. Therefore, we excluded such classes
from our study irrespective of their cc values. This resulted
in 832 CUTs from SF110.

commons-collections is a Java API containing the imple-
mentation of various data structures, also known as container
classes. Containers have widely been used as a benchmark
in automated testing literature [45], [46], [47], [48], [49], [39],
[50] because they are usually free of complex environmental
dependencies and can be tested easily without complex
inputs. Furthermore, the concept of data structures is generic,
and the results achieved for containers implemented in
one language can easily be carried over to others [51]. As
commons-collections contains a much smaller number of
classes compared to SF110, we haven’t applied any cc-based
filter on this dataset and included all the classes for which
the testing tool generated test cases without reporting any
error. There are 266 CUTs from commons-collections that are
included in our study.

2.3 Technique Space T
Automated test generation has been studied for decades, and
a plethora of techniques and algorithms are proposed. We
selected a portfolio of 6 search-based testing techniques for
analysis in our study. A brief explanation of these techniques
is given below:

2.3.1 Random Testing
Random search is a simple search strategy that, unlike
sophisticated search algorithms, does not use mutation,
crossover, or selection. It repeatedly samples the candidates
from the search space and replaces the previous candidate if
the fitness of the newly sampled individual is better.

Random testing is the derivative of random search that
generate test cases incrementally by producing random
inputs. If a randomly-generated test case improves coverage
by covering not-yet-covered branches, it is added to the test
suite. Otherwise, the test case is discarded. Random testing
is a widely used testing method and has been shown to
perform at least as well as more sophisticated search-based
techniques on container classes [22].

2.3.2 Single-Objective Genetic Algorithm
In a single-objective strategy, one target (branch, statement,
etc.) is considered to be covered at a time [52], [53]. The
search budget is divided equally among all the test targets.
For each target, a GA is executed for its assigned budget in an
attempt to cover the target. In each search iteration, test cases
are evolved using genetic operators, i.e., selection, mutation
and crossover. The search is stopped once the current target
is covered (i.e., zero-fitness value) or the local search budget
is consumed. The final test suite is thus the collection of
test cases that come from different independent searches.
Within EvoSuite, the implementation of single-objective GA
is named Monotonic GA. We, therefore, use the terms single-
objective GA and Monotonic GA interchangeably.

The single-target approach has a severe limitation, i.e., not
all the targets are equally difficult to cover, with some being
too easy that the local budget is excessive; some others being
too difficult, requiring higher local budgets; and others being
infeasible (due to environmental dependencies), making
them impossible to cover even with the highest budget. As
a result, an equal search budget for each target results in
resource misallocation. However, it is impossible to know
a priori if a target is easy or infeasible; hence, targets are
randomly shuffled in an attempt to minimise this limitation.

2.3.3 Whole-suite approach with archive
An alternative to the single-target approach is the Whole-
Suite (WS) approach proposed by Fraser and Arcuri [44]. WS
evolves a whole test suite instead of an individual test case
using a GA. The fitness value of the entire suite is evaluated
by adding the fitness value of each individual case for each
target. As the whole test suite evolves in each iteration of the
GA, the mutation is applied both at case and suite levels. At
the case level, the mutation is applied by adding, removing or
changing a statement. Whereas, at the suite level, a complete
case may be added, removed or changed depending on the
mutation probability.

A recent variant of WS is proposed by Rojas et al., known
as Whole-Suite with Archive (WSA) [54]. Like WS, WSA uses
a GA to evolve a test suite iteratively and a single fitness
function that sums up the individual fitness values of all the
cases. However, unlike WS, this approach uses an archive
to store the best test cases covering one or more targets in
each iteration of the GA. The set of test cases in the archive
becomes the final test suite. Unlike WS, WSA computes the
fitness score by considering only uncovered targets. Rojas
et al. empirically show that, on average, WSA outperforms
WS [54].

2.3.4 Many-Objective Sorting Algorithm
Panichella et al. introduced a multiple-objective GA strategy
that aims to cover all targets simultaneously [55]. The Many-
Objective Sorting Algorithm (MOSA) uses preference sorting, a
technique that gives a higher chance of survival to those test
cases with the highest fitness, i.e., the lowest branch distance
and lowest approach level, for each uncovered branch.
Similar to WSA, only uncovered targets are considered as
objectives and, in each generation of the GA, the number of
objectives changes. MOSA uses an archive to store the best
test cases in each GA iteration, which becomes the final test
suite.
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On average, MOSA achieves higher branch coverage than
WS [55]. For the classes where WS and MOSA achieve the
same coverage, MOSA usually converges more quickly than
WS.

2.3.5 Dynamic Many-Objective Sorting Algorithm
Dynamic Many-Objective Sorting Algorithm (Dy-
naMOSA) [23] is a variant of MOSA. While MOSA
uses the complete set of targets simultaneously as the search
objectives, which are removed during the search once they
are covered, DynaMOSA selects a subset of targets by using
the information about the structural dependency among
the targets to decide which targets to optimise first. Using a
Control Dependency Graph, DynaMOSA determines which
targets are independent of any other targets and which
ones can only be covered after covering their parents. Like
MOSA, DynaMOSA uses preference sorting, an archive
and considers only uncovered targets during the search.
Panichella et al. [23] report that DynaMOSA achieves higher
or equal branch coverage as compared to WSA and MOSA,
and also is faster than these two techniques.

2.3.6 Many Independent Objects (MIO)
MIO uses a multi-population evolutionary search [56] to
address the scalability issues of multi-objective techniques
such as MOSA and WSA for very complex classes having a
huge number of test goals. It maintains an archive of tests
and keeps a different population of tests of size st for each
target in that archive. Therefore, considering nt number of
targets in the class, there can be up to st × nt tests in the
archive.

Two novel features of MIO are feedback-directed sam-
pling and a gradual reduction in the amount of exploration
as the search progresses (just like Simulated Annealing).
Feedback-directed sampling helps focus the sampling on
the populations for which recent improvements in the
fitness value are noticed. A population, where there is no
improvement in fitness value, may represent an infeasible
target. Feedback-directed sampling is effective in saving
significant search time that gets wasted on infeasible targets.
Whereas, a reduction in the exploration rate maintains a
balance between exploration and exploitation. Exploration
is required at the beginning of the search, however, as the
search progresses, more focused exploitation brings better
results.

MIO is compared with RT, MOSA and WS using arti-
ficial problems and numerical functions [56]. The artificial
problems are generated by introducing a varying number
of branches and a varying number of infeasible branches in
the class. Study shows that MIO gives better coverage than
the other compared techniques on these problem instances.
However, in another comparison study by Panichella et
al., MIO is reported to be equally or less effective than
DynaMOSA on average [17].

2.4 Performance Space Y
In automated testing, widely used performance metrics are
code coverage, mutation score, diversity of test cases and
length/size of the resulting test suite [36]. We chose to use
branch coverage to assess the performance of techniques

as it is one of the most widely used metrics due to its
low execution overhead and ease of implementation [57].
Furthermore, the performance of many of the portfolio
techniques is reported in terms of branch coverage in their
respective studies [17], [55], [23], [44], [56]. Therefore, using
the same metric would give us more confidence in our
implementation and results if the performance pattern of
the techniques is consistent with the available literature.

The definition of good exerts a significant impact on the
final results; if we change it, different features might get
selected, and thus the axes of the instance space system
might change. The good performance can be attributed either
in absolute terms, e.g. coverage above 80%, or relatively,
e.g., coverage value within ϵ% of the coverage achieved
by the best performing technique. As there is no absolute
definition of what percentage of coverage would be con-
sidered good [58], we compare the performance of portfolio
techniques relatively.

2.5 Significant Features Extraction and Instance Space
Generation

Identification of the program features that have an impact on
the effectiveness of testing techniques is the most critical step
in the generation of instance space. Features are extracted
based on how they expose the varying complexities of the
software programs, capture the structural properties of the
software systems, and are related to the known strengths
and limitations of the portfolio techniques.

Features have been widely used in software engineering
literature to measure the quality, complexity, testability and
other properties of software. However, it is possible that
not all these features are helpful to separate hard and easy
software instances. Furthermore, many of these features may
be redundant and evaluate the same property of a program.
Therefore, it is important to select a smaller set of relevant
features.

Learning significant features for the generation of
instance-space is a two-step process: Firstly, the measure of
defining the quality of a particular set of features is decided,
and secondly, using machine learning methods, a set of
features that maximise this measure is selected.

For this study, a feature set is considered of high quality
if, when projected to 2-dimensional instance-space, best
separates easy and hard instances in such a way that
instances that show similar performance of testing techniques
stay closer to each other. Therefore, features that create a clear
separation of the problem instances, such that the clusters of
programs where each testing technique is effective is clearly
visible, are selected.

Next, based on the above-defined quality measure, the
features are selected. For this, the clusters of similar features
are identified using k-means clustering and one feature from
each cluster is taken to generate a temporary feature space.
These spaces are created using all the feature combinations
from the clusters. The temporary feature spaces are then
projected to temporary 2D instance spaces using Principal
Component Analysis [59]. The resulting coordinates of the
temporary instance spaces then become the inputs to a set
of Random Forest (RF) models, which learn the feature
combination giving the lowest predictive error to predict
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the performance of techniques according to the “definition
of good”.

Now that the set of most effective features has been
identified, we need to project nD feature space to a 2D
coordinate system that places the instances in a way that
the relationship between the features of the instance and the
performance of techniques can easily be identified. This can
be achieved by creating a projection such that the low values
of features/performance lie at one end of a straight line and
high values at the other, i.e, linear trends of distribution
of features and performance. Furthermore, the instances,
which are neighbours in high dimensional feature space,
remain as neighbours in the 2D instance space (topological
preservation). This is achieved by the Projecting Instances
with Linearly Observable Trends (PILOT) [24] method, which
would seek to fit a linear model for each feature and each
technique’s performance, based on the instance location
in the 2D plane. Mathematically, this requires solving the
following optimisation problem:

min
∥∥∥F̃−BrZ

∥∥∥2
F
+ ∥Y −CrZ∥2F (1)

s.t. Z = ArF̃

where F̃ is the matrix containing the n features, Y is the
matrix containing the results from t techniques, Z ∈ Ri×2

is the matrix of instance coordinates in the 2D space for
i instances, Ar ∈ R2×n is a matrix that takes the feature
values and projects them in 2D, Br ∈ Rn×2 is a matrix that
takes the 2D coordinates and produces an estimation of the
feature values, and Cr ∈ Rt×2 is a matrix that takes the
2D coordinates and makes an estimation of the technique’s
performance. In short, Equation 1 is finding the difference
between the actual values of the features and performances
in a higher dimension and the estimation of these values
in 2D. The lower the difference in values, the higher the
topological preservation.

We theoretically demonstrated in our previous work that
this optimisation problem has an infinite number of optimal
solutions [24]. Therefore, to determine the best possible
projection, PILOT obtains 30 solutions from which it selects
the one with the highest topological preservation, defined as
the correlation between high- and low-dimensional distances,
i.e., the instances which are closer to each other in the high-
dimensional features space, should stay close in the 2D
instance space.

Unlike other dimensionality reduction algorithms that
could be considered unsupervised, such as PCA, PILOT uses
the technique’s performance to determine the projection.
Moreover, PCA is a proven suboptimal solution to the under-
lying optimisation problem that PILOT solves. Mathematical
proofs and additional technical details of PILOT are available
in our previous work [24].

2.6 Footprint Analysis

The practice of reporting on-average performance is a standard
way of comparison, however, it offers little insight into
the relative strengths and weaknesses of the techniques
for different types of instances. Therefore, a metric for
objective assessment of the relative power of techniques is

required, that can reveal the insightful relationship between
the structural properties of test instances and their impact on
the performance of techniques, thus, can explain the average
performance.

To fill this gap, we propose to measure the effectiveness of
a testing technique in terms of its footprint: the region of the
instance space where a technique is expected to perform well,
or even the best, depending on the definition of good used
for analysis. Here, we define a technique to perform well if it
gives coverage equal to or within 5% of the best-performing
portfolio technique.

A footprint is characterised by its location (l), area (α),
density (d) and purity (p). Location determines the type
of instances where the good/bad performance of a tech-
nique is expected, e.g. commons-collections, SF110 etc.; area
measures the part of the instance space where a technique
performs well according to the definition of good. The good
performance of a technique over a larger area of the space,
occupying a diverse set of instances, is evidence that the
technique generally performs well, and its good performance
is not specific to the particular type of instances. On the other
hand, the smaller but unique footprint is also evidence of
the strength of the technique, irrespective of its probable low
average performance, showing that it gives good coverage
for the instances where none of the other techniques performs
well. The area is calculated by clustering the good instances
for a technique together and calculating the area of the
concave hull of each cluster; density is the number of instances
in a footprint divided by the area. A denser footprint means
that the good performance of the technique is supported by
more examples, thus providing evidence of the strength of a
technique statistically. Low density indicates a lack of enough
samples to support the results, thus reducing the confidence
in the performance of the technique, and purity is a measure
of conflicting evidence (i.e. another technique is equally good
in the same area), and it is calculated by dividing the number
of good instances over the number of all instances in the
footprint. We compute the area (α), density (d) and purity (p)
of footprint based on good, as well as the best performance
of a technique. For example, purity good (PN,G) is calculated
by dividing the number of good instances over the number
of all instances in the footprint. Whereas, purity best (PN,B)
accounts only for the instances for which the technique has
given the best coverage among all the portfolio techniques.

Footprint generation follows three core steps: (a) area (αs)
and density (ds) estimation of the convex hull containing all
instances in the generated instance space. These parameters
are used as baseline metrics to normalise each technique’s
footprint as a percentage of the instance space; (b) building
the good and best footprints for each portfolio technique;
and (c) comparing the footprints to remove the overlapping
regions having low purity.

To construct the technique’s footprint, we use DB-
SCAN [60] for the identification of high-density clus-
ters of good instances. DBSCAN generates a vector c ∈
{−1, 1, . . . , Nc} with one element per good instance. −1
represents an outlier and [1, Nc] corresponds to the index of
the identifier cluster. DBSCAN takes two parameters {k, ε} as
input, where k marks the minimum number of neighbouring
instances required to be considered as a cluster, and ε
represents the distance that will be used to consider instances
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as neighbours. The distance measure used is Euclidean. The
values for these parameters are chosen automatically as
recommended in [61], using Equations 2 and 3.

k ← max (min (⌈r/20⌉ , 50) , 3) (2)

ε← kΓ (2)√
rπ

(range (z1)× range (z2)) (3)

Where r is the number of unique instances with good
performance, Γ (·) is the Gamma function and z1, z2 are
the coordinates of the 2D instance space. The footprint is
constructed using an α-shape that is a generalization of the
concept of the convex hull from computational geometry [62].
It corresponds to a polygon that tightly encloses all the points
within a cloud. An α-shape is constructed for each cluster,
and all shapes are bounded together as a MATLAB polygon
structure.

Two algorithms can simultaneously claim to be the best
in an area. In the case of such conflicting footprints, the
one having the higher purity is selected. If the purity of the
conflicting footprints is the same, the overlapping section is
kept, as there is not enough evidence of the dominance of
either technique.

3 EXPERIMENTAL DESIGN

The previous section explains the process of instance space
generation in general. This section details the steps taken to
generate the instance space for search-based software testing
in particular.

3.1 Program Features
We extracted a set of 76 features from the CUTs to evaluate
their impact on making a CUT easy or hard to get teste by a
SBST technique. These features can be categorised into three
classes: (a) Object-Oriented metrics; (b) Code-based features;
and (c) Graph-based features.

The Object-Oriented (OO) metrics are quantitative mea-
sures used to access the quality of OO software [63]. There
are several OO metrics proposed in the literature [64], [65],
[66], [67], however, Chidamber and Kemmerer metrics (CK) [64]
are some of the most widely used and cited [65]. As we are
using CUTs from Java projects, which is an OO programming
language, we include these metrics as features in our F . A
complete list of all the OO metrics we included in our feature
space is given in Table 1. We used CKJM, an open-source tool
for the extraction of this metric suite [68].

A test case covers a testing target by calling the methods
of the CUT in a particular sequence and passing data
as method arguments. Thus, intuitively, CUTs containing
methods having deeply nested branches, complex objects as
method parameters, static modifiers etc. are harder to cover
or require more number of test cases. Therefore, such features
would be useful in defining a CUT and explaining the
performance of test generation method on it. We categorise
all such features under the broader category of Code-based
Features. A comprehensive list of all the code-based features
we used in this study is given in Table 2. These features are
extracted using a Java-based tool CK [69] and an open-source
library Java Parser [70].

Table 1: Features extracted from Object-Oriented Metrics

F1 Depth of inheritance tree: measures how deep a class
is in the inheritance hierarchy

F2 Number of children: the number of sub-classes which
inherit methods from the current class

F3 Coupling between object classes: the number of classes
which are coupled to a given class through field
accesses, method calls, return types etc.

F4 Response for a class: number of unique method invo-
cations in a class

F5 Lack of cohesion in methods: the set of methods in a
class which do not share any of the class’s fields.

F6 Mc-Cabe’s cyclomatic complexity (cc): counts the num-
ber of independent paths in a CFG of a method. For
class level, we use the average McCabe’s cyclomatic
complexity (F6) and standard deviation McCabe’s
cyclomatic complexity (F7).

F8 Afferent coupling: the number of classes which are
dependent on the given class

F9 Efferent coupling: the umber of classes on which the
given class depends

F10 Data access metric: the ratio of the number of private
fields to the total number of fields in a class

F11 Measure of aggregation: the number of attributes in
the class whose datatype is user defined classes

F12 Measure of functional abstraction: the ratio of the
number of methods inherited by a class to the total
number of methods accessible by member methods of
the class

F13 Cohesion among methods of classes: computes how
related the methods of class are based on their param-
eter list

F14 Inheritance coupling: the number of parent classes to
which a class is coupled

F15 Coupling between methods: the number of redefined
methods to which all the inherited methods are cou-
pled

F16 Tight class cohesion: measures the cohesion of a class
through direct connections among visible methods.

F17 Loose class cohesion: measures the cohesion of a class
through indirect connections among visible methods.

Control Flow Graphs (CFG) have been widely used in the
analysis of software [71], [72], [64] and test case generation in
automated testing tools [43]. The nodes of the CFG represent
program statements, while edges represent the flow of control
between the statements. We extracted CFG for each method
of CUT and used its properties (defined by graph theory) as
features. CFGs are extracted using EvoSuite [43] while their
properties are extracted using NetworkX [73]. A complete list
of CFG-based features used in this study is given in Table 3.

3.2 Test Generation and Performance Assessment

We use EvoSuite as a test generation tool [74]. EvoSuite
facilitates an unbiased comparison of test generation tech-
niques, as the underlying implementation is the same for
all the implemented techniques. Each technique is given
a search budget of 120 seconds, which is reported as a
reasonable compromise between time and coverage [17].
All the experiments are repeated 10 times to account for
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Table 2: Code-based features

F18 Number of methods
F19 Number of public methods
F20 Number of private methods
F21 Number of protected methods
F22 Number of default methods
F23 Number of static methods
F24 Number of public static methods
F25 Number of protected static methods
F26 Number of private static methods
F27 Number of default static methods
F28 Number of methods with reference datatype as parame-

ters
F29 Number of methods with primitive datatype as parame-

ters
F30 Number of invocations to static methods
F31 Number of fields in a class
F32 Number of fields with static modifier
F33 Number of fields with public modifier
F34 Number of fields with private modifier
F35 Number of fields with protected modifier
F36 Number of fields with primitive datatype
F37 Number of fields with reference datatype
F38 Number of default fields in a class
F39 Number of return instructions
F40 Number of loops: for, while, do while, enhanced for
F41 Number of lines of code, ignoring comments and empty

lines
F42 Number of try/catch blocks
F43 Number of expressions inside parenthesis
F44 Number of expressions having logical AND or OR
F45 Number of string literals in a class.
F46 Number of int, long, double and float literals
F47 Nesting depth: number of blocks nested together
F48 Number of anonymous classes in a class, if any
F49 Number of inner classes in a class, if any
F50 Number of assignments in a class
F51 Number of mathematics operators in a class
F52 Number of equalities: number of times == appear in the

atomic conditions of a program
F53 Number of inequalities: number of times ! = appear in

the atomic conditions of a program
F54 Number of decision branches: number of target branches

in a class
F55 Average method complexity: measures the average

method size in terms of the number of java binary codes
of the method.

F56 Number of gradient branches: branches having predicate
that can guide the search techniques [22]

F57 Number of plateau branches: branches having predicate
that can only evaluate to either true or false [22]

the stochastic nature of EvoSuite. The results presented in
Section 4 are based on averages of these 10 repetitions.

We use Branch Coverage for performance evaluation of
test generation techniques. The performance of a technique
is considered good for a particular instance if the coverage
achieved by the technique is within n% of the best coverage
achieved by any portfolio technique on that instance. We
experimented with 1%, 3% and 5% as the definition of good,
and found that the Random Forests’ average predictive error
to predict the performance of algorithms is lowest with 5%
relative value in the feature clustering process (Section 2).

Table 3: Features extracted from the Control Flow Graph

F58 Number of vertices in the CFG
F59 Minimum number of vertices in CFG
F60 Maximum number of vertices in CFG
F61 The number of edges in CFG
F62 The minimum number of edges in CFG
F63 The maximum number of edges in CFG
F64 Radius: the minimum eccentricity of the CFG. The average

is calculated for all the CFGs in a class.
F65 Diameter: the maximum eccentricity of the CFG. The

average is calculated for all the CFGs in a class.
F66 Center size: the set of nodes with eccentricity equal to

the radius. The average is calculated for all the CFGs in a
class.

F67 Periphery size: the set of nodes with eccentricity equal to
the diameter. The average is calculated for all the CFGs in
a class

F68 Average shortest path length: the sum of path length
d(u, v) between all node pairs, normalized by n× (n− 1).
n is the total number of nodes in the CFG.

F69 Algebraic connectivity: measure of how well connected a
graph is

F70 Average graph degree: the average of average node
degrees of all CFGs in a class

F71 Standard deviation graph degree: The standard deviation
of average node degrees of all CFGs in a class

F72 Average density: measures how many edges are in a graph
compared to the maximum possible edges

F73 Vertex connectivity: the minimum number of vertices that
must be removed to disconnect the graph

F74 Average edge connectivity: the minimum number of
nodes that must be removed to disconnect the graph

F75 Transitivity: the fraction of possible triangles present in
the CFG

F76 Percentage of methods having cc > 10: measures the
percentage of methods in a class having Mc-Cabe’s
cyclomatic complexity greater than 10.

Therefore, we selected 5% as the definition of good in this
study.

3.3 Generation of Input Data

For each CUT, we extract feature values and create a vector
where each dimension corresponds to a particular feature.
The branch coverage of SBST techniques is added as an
additional dimension. A snapshot of the dataset is shown in
Table 4 for 4 features and 2 techniques.

The input data is first pre-processed. As the methods that
we are using are linear (Equation 1), outliers would have
high leverage on the results (i.e., have excessive influence on
the generation of the linear models). We bound the outliers
to minimise this effect. For this, each feature is first bounded
between its median plus or minus five times its interquartile
range. IQR range of median plus or minus five is larger than
5σ, which, if the distribution is normal, should cover 99.9%
of the data. Feature values are then normalised using one
parameter Box-Cox transformation. Box-cox transformation
attempts to eliminate heavy-tailed distributions [75].

Once data is pre-processed, the feature set is further
refined by correlation analysis using Spearman’s rank cor-
relation coefficient [76]. The strongly correlated features
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Table 4: A snapshot of the dataset containing 3 CUTs from SF110. Columns 2 – 4 report the feature values of efferent
coupling, average cyclomatic complexity, lines of code and number of try/catch blocks respectively, while columns 5 – 6
report coverage achieved by MOSA and DynaMOSA on the instances labelled in column 1.

Instances ec avg cc loc num tc MOSA DynaMOSA

a4j net.kencochrane.a4j.DAO.Cart 5 3.7 185 6 0.23 0.24
a4j net.kencochrane.a4j.DAO.Product 8 5.5 80 1 0.09 0.08
a4j net.kencochrane.a4j.file.FileUtil 2 3.4 613 19 0.53 0.54

Table 5: Correlation between Features and Average Coverage Achieved by the Portfolio Algorithms Using Spearman’s Rank
Correlation Coefficient

Features MOSA DynaMOSA Monotonic GA Random testing MIO WSA

ec -0.54 -0.54 -0.56 -0.57 -0.54 -0.53
avg cc -0.35 -0.35 -0.32 -0.34 -0.36 -0.28
loc -0.42 -0.42 -0.47 -0.49 -0.42 -0.40
num tc -0.44 -0.44 -0.42 -0.42 -0.44 -0.40
nd -0.43 -0.43 -0.42 -0.45 -0.44 -0.38
avg rad -0.33 -0.33 -0.30 -0.32 -0.33 -0.27
avg spl -0.44 -0.44 -0.40 -0.42 -0.44 -0.37
std cc -0.40 -0.39 -0.39 -0.42 -0.41 -0.34
per cc10 -0.33 -0.33 -0.32 -0.34 -0.34 -0.29

indicate nearly-redundant information and can cause PCA
to overemphasise their contribution. Therefore, such features
are removed from the feature set. We further remove the fea-
tures showing a very weak correlation with the technique’s
performance. These features provide little information on
why a given instance is difficult/easy for a particular SBST
technique. Therefore, only the features that have a correlation
value of 0.3 or higher with at least one of the techniques are
retained [77].

3.4 Generation of the Instance Space
For the generation of the instance space, the features are
selected through the feature selection process discussed in
Section 2 and projected to 2D instance space. The list of
features selected in our experiments are discussed below
and their correlation with the technique’s performance is
reported in Table 5.

• Efferent Coupling (ec) measures the external dependencies
of a CUT and its high value relates to high test effort [78].

• Lines of code (loc) measures the total lines of code in
a class, excluding blank lines and comments. It is a
common metric used for the assessment of the testability
of a class [79].

• Nesting depth (nd) and number of try/catch blocks (num tc)
measure the number of blocks nested together (e.g.
inside if/else, loops, try/catch etc.).

• Average shortest path length (avg spl) measures the effi-
ciency of test data transport to the target branch and is
extracted from the CFG.

• Mc-Cabe’s cyclomatic complexity (cc) counts the number of
independent paths in a CFG of a method. For class level,
we use the average and standard deviation (avg cc,
std cc) of this feature for all the methods in the class.

• Percentage of methods having cc > 10 (per cc10) counts
the percentage of complex methods in a class that would
make it harder for testing.

• Radius is the minimum eccentricity of the graph, which
is defined as a maximum distance of a vertex v and any
other vertex u. We use the average radius (avg rad) for
all the CFGs generated for each method of a class.

Once the instance space is created, we can use it to check
the appropriateness of the benchmark used for the evaluation
of the performance of the SBST techniques (RQ1). For this,
we are interested in exploring the instance space from three
perspectives: diversity, potential bias, and the presence of
challenging CUTs.

Diversity: Ideally, the benchmark chosen for the perfor-
mance assessment of testing techniques should contain suffi-
ciently diverse structural properties to enable the strengths
and weaknesses of techniques to be exposed. Without
such diversity, the trustworthiness of techniques for future
untested instances is necessarily limited. To anticipate the
diversity of instances in the selected benchmark, we create
an expanded boundary that encloses all the test instances
which can empirically exist, though, might be missing from
the current instance space.

We perform boundary analysis of the generated instance
space as follows: Let Rn×n be the correlation matrix of n
features. We define two vectors fU =

[
fU,1 · · · fU,n

]T and
fL =

[
fL,1 · · · fL,n

]T containing the upper and lower bounds
of feature values. From these vectors, we define a vertex
vector containing a combination of values from fU and fL
such that only the upper or lower bound of a feature is
included. For instance, v1 =

[
fU,1fL,2 · · · fL,n

]T represents
a vertex vector containing the maximum value of feature
1 and minimum values of all the other features. We define
a matrix V =

[
v1 · · ·vq

]
∈ Rn×q, q = 2n containing all

possible vertices created by the feature combinations. The
vertices in metric V, connected by edges, define a hyper-cube
that encloses all the instances in the instance space.

Some of the vectors in V represent feature combinations
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that are unlikely to coexist. For example, if features 1 and
2 are strongly positively correlated, it is unlikely to find in-
stances that have a high value of feature 1 and a low value of
feature 2. Therefore, a vertex vector v =

[
fU,1fL,2 · · · fL,n

]T
would be unlikely to be near any true instance. Similarly, a
vertex vector cannot simultaneously contain {fU,1, fU,2} or
{fL,1, fL,2} if feature 1 and feature 2 are strongly negatively
correlated. All such unlikely vertex vectors are eliminated
from V. The edges connecting the remaining vertex vectors
are then projected into 2D instance space using Ar from
Equation 1, resulting in a matrix Z, whose convex hull now
represents the mathematical boundary of the instance space.
The empty regions of the instance space – within the defined
boundaries – represent the instances that exist theoretically
but missing from the current analysis, thus compromising
the diversity of the used benchmark.

Bias: The possible bias of the datasets can also be picked
by carefully visualising the instance space. The regions of the
instance space where the majority of the techniques perform
well represent easy instances. Reporting the performance of
any newly developed technique using such instances only
would not be valid evidence of its effective performance. Fur-
thermore, evaluating a technique using a benchmark dataset
containing the majority of instances having the favourable
features for that technique would represent a biased analysis.
Instance space analysis is an effective framework to identify
such biases in benchmark datasets.

Challenging: A CUT is considered challenging if it is
hard to cover by the majority of the portfolio techniques.
A testing benchmark containing all the trivial CUTs would
make all or majority of the techniques perform well, and thus
unable to reveal their relative strengths or weaknesses. On
the other hand, hard and challenging CUTs would unfold
what makes an instance hard for testing techniques and
would motivate the researchers to devise new and better
techniques to address the challenging areas.

4 EXPERIMENTAL RESULTS

This section presents experimental results based on the
methodology discussed in the previous section. We present
our 2D instance space and analyse the distribution of
instances in the generated space from the perspective of
diversity, bias and the challenge they pose for testing
techniques. By superimposing the distribution of a tech-
nique’s performance on features’ distribution, we identify the
features which make an instance hard/easy for a technique
to test. We then examine the footprints of the portfolio
techniques to gain insights into their relative strengths and
weaknesses.

4.1 RQ1: How adequate are the commonly used bench-
marks to assess the performance of SBST techniques?

This section explores if the benchmark datasets commonly
used in SBST research are adequate for the performance
assessment of SBST techniques. For this study, the CUTs
are extracted from two widely used benchmark datasets:
SF110 Corpus [80] and commons-collections [81]. As con-
tainer classes have been widely used due to their unique
properties [39], [48], [50], [47], and SF110 is a state-of-the-art

Figure 2: Instance Space for SBST techniques showing sources
of CUTs. z1 and z2 are the coordinates in the 2D space as
shown in Equation 1.

benchmark dataset in SBST [17], [23], [30], [38], [40], [41],
[42], the results obtained by using these two benchmarks can
be generalised for commonly used benchmarks in SBST.

Figure 2 shows the location of various CUTs and their
sources within the instance space. The space has been divided
into quadrants for ease of visualisation and reference in the
later sections. SF110 is a collection of 110 open-source projects
having software classes of various size and complexity. For
visualisation purposes, we categorise SF110 CUTs according
to their cyclomatic complexity (cc). The CUTs under SF110-3
have cc value in the range [3,4), SF110-4 contains CUTs in
the range [4,5), while CUTs under the category SF110-5 have
cc ≥ 5. The maximum cc value we observed for any CUT in
our dataset is 34.5, which belongs to the project tullibee. It
should be noted that the sole purpose of categorisation on
the basis of cc is to show the source of instances. The instance
space itself is generated based on the features selected in
Section 3.4 and the techniques’ performance based on these
features.

It can be seen from Figure 2 that the instances from
commons-collections are located mainly in Quadrants 1 and
4, and span only a small area of the instance space. The
small area occupied by commons-collections indicates the
limited diversity in the feature values of these CUTs and
thus using them alone for the evaluation of SBST techniques
would lack confidence in the results. However, most of these
instances are not overlapped by SF110 instances, indicating
their unique nature and different feature values from SF110.
Therefore, it would be interesting to include these CUTs in
the automated testing research along with SF110, which is
the most widely used benchmark.
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On the other hand, SF110 instances cover a wide region
of the instance space and are distributed across all four
quadrants of the space. SF110-5 CUTs tend to cover the left
half of the space, while SF110-3 and SF110-4 are dispersed
across the whole space. Nevertheless, there are sparse
regions of instance space having little to no instances. In
particular, the instances in Quadrants 1 and 3 lack diversity
as well as density. As explained in Section 3.4, the boundary
around the instance space encloses all the possible instances
calculated on the basis of minimum and maximum values
of the features. The empty regions within the boundaries
indicate that test instances are theoretically possible in these
areas, however, are missing in the current analysis, thus
compromising the diversity of the generated instance space.
Albeit being outside the scope of this study, we can identify
the regions of the space where the addition of new test
instances would be valuable to support greater insights.
New test instances with controllable properties can then be
generated and added to the space to fill in the gaps [82].

The visualisation of the distribution of techniques’ per-
formance in the generated instance space could give clues
about the possible bias of the benchmark instances. Figure 3
shows the performance distribution of portfolio techniques
using branch coverage as the performance metric. It can be
seen that most of the instances in the fourth quadrant are
easy to cover by all the testing techniques (represented by
blue colour). Even simple techniques like Random testing
and Monotonic GA are effective for these instances. In our
instance space, these instances mainly belong to commons-
collections and SF110 having very low cc values.

As discussed in Section 2.2, the evaluation of testing
techniques using container classes (e.g. commons-collections)
is common as they are generic in nature, independent of
programming language and free of complex environmental
dependencies [45], [46], [47], [48], [49], [39], [50]. However,
as can be seen in the generated instance space, these
instances are too easy to cover and thus are biased toward
showing good performance of almost every testing technique.
Therefore, these instances alone shouldn’t be relied upon for
the evaluation of a testing technique. Similarly, instances
from SF100 having low cc values are trivial to stress test the
performance of techniques and testing techniques should
not be evaluated on these CUTs alone. The idea of filtering
CUTs on the basis of cc and evaluating the testing technique
only on non-trivial CUTs is already prevailing in the testing
community. In many recent automated testing studies, the
techniques have been evaluated using CUTs having cc >= 5
[30], [23], [7].

The performance distribution across instance space also
shows the regions of the space which are hard to cover by
one or more techniques. The instances residing at the top
of Q2 are the hardest, and none of the portfolio techniques
performs well on them. On the contrary, The instances at
bottom of Q4 are easy for all the testing techniques. For
the remaining instances, portfolio techniques give different
performances. This gives us confidence that the benchmark
used in the current study contains a combination of easy and
hard instances and is capable of revealing the strength and
weaknesses of the portfolio techniques. However, it can be
further improved by adding more instances to fill the empty
gaps and thus introducing more diversity in the space.

In summary, the answer to RQ1 is as follows:

SF110, which is a widely used benchmark for SBST,
contains a combination of easy and hard CUTs,
that are capable of revealing the strength and
weaknesses of the testing techniques. However, it
lacks CUTs having diverse properties and there is
potential to add more instances to this benchmark,
enabling techniques to be comprehensively tested
under all theoretically possible conditions. On the
contrary, Java commons-collections is composed
of CUTs for which all the portfolio techniques
perform well, therefore it is biased towards show-
ing the good performance of almost every testing
technique. Hence, this benchmark should not be
trusted alone and used in combination with other
benchmarks to support the broadest possible con-
clusions.

4.2 RQ2: What influences the effectiveness of SBST
techniques?
We analyse the distribution of the performance of portfolio
techniques and identify the features of the CUTs that make
it easy or hard for a testing technique, thus impacting the
performance.

4.2.1 Distribution of the portfolio techniques in the instance
space
Figure 3 shows the distribution of the coverage achieved
by the portfolio techniques on problem instances. Coverage
values range between 0 and 1; shown as a colour range from
red (minimum) to blue (maximum).

It can be seen that, for most of the instances in Quadrant
1, MOSA, DynaMOSA, WSA and MIO achieve medium to
high coverage. However, Random testing and Monotonic GA
do not perform well in this area of the space.

Quadrant 2 is occupied by the instances which are harder
to cover by any portfolio technique on average. For most of
the instances lying in this quadrant, the coverage achieved
is very low. However, the same techniques which perform
better in Quadrant 1, give comparatively higher coverage
for the instances in this quadrant too. Although the number
of good instances is slightly different for each technique, the
general trend of the performance is the same, i.e., MOSA,
DynaMOSA, WSA and MIO perform comparatively better,
while Monotonic GA and Random testing perform the worst.
Furthermore, the number of good instances for MIO is lower
than the other good-performing techniques.

Quadrant 3 contains a combination of easy and hard
instances, as all the techniques show medium-to-high per-
formance for most of the instances. Random testing and
Monotonic GA are exceptions, as they give reasonable
coverage only on a few of the instances here. The instances
where these techniques perform better lie close to Quadrant
4 (instances having low cc values).

Quadrant 4 is the only part of the space where Random
testing and Monotonic GA give good coverage for the
majority of the instances. This quadrant consists of the
instances where all 6 portfolio techniques achieve high
coverage on average. However, the number of good instances
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Figure 3: Distribution of the performance of SBST techniques, from minimum (red) to maximum (blue) branch coverage.

is lower for Monotonic GA and Random testing compared
to other techniques. If we look more carefully, these two
techniques give better coverage on the part of Quadrant 4
which is occupied by the commons-collections instances.

4.2.2 Distribution of the selected features in the instance
space

Figure 4 shows the distribution of the selected features across
the instance space. The feature values show the following
trends:

• Average shortest path length (avg spl): decreases from
top to bottom (diagonally), showing that commons-
collections have the shortest observed path while the
instances from SF110-5 located in Quadrant 2 have the
largest observed path.

• Standard deviation Mc-Cabe’s cyclomatic complexity (std cc):
shows a decreasing trend from top to bottom. Instances
in the first and fourth quadrants show very low to low
values (the lowest values are at the bottom of Quadrant
4 which are instances from commons-collections) while
these values are medium to high for the instances in
Quadrants 2 and 3.

• Lines of code (loc): has a similar trend as std cc. However,
the number of instances having a high value of this
feature is quite large, while the number of instances
having a very low value is small comparatively.

• Nesting depth (nd): most of the instances have very low to
low values for this feature. It can be seen that commons-
collections have the lowest nesting depth, while most of
the SF110 instances have low to medium values. It can

be noted that the instances which are deeply nested are
rare. Deep nesting makes an instance harder to test as the
code elements deeper in the nesting structure are harder
to reach, depending on how easy/hard the outer targets
are to cover. Therefore, an addition of such instances
in the benchmarks would challenge the performance of
testing techniques [83].

• Number of try/catch blocks (num tc): decreases from top
to bottom, and divides the instance space more or less
horizontally.

• Efferent coupling (ec): This feature shows a decreasing
trend from top to bottom of the instance space diagonally.
The instances in Quadrant 2 have the highest value for
this feature, while first and fourth quadrant got instances
having medium to high efferent coupling. This shows
an interesting fact that although the instances from
commons-collections (located mainly in Quadrant 4) are
easy in terms of avg cc, nd etc., their ec values are still
medium to high. This depicts the fact that these classes
are tightly bound to other classes, the phenomenon that
can make these apparently easy instances (due to low
values of above-mentioned features) hard to cover for
some techniques.

• Percentage of methods having cc > 10 (per cc10): The
instances in the second and third quadrants show
medium to high values, while instances in the right half
contain the majority of methods having low cc values.

• Average Mc-Cabe’s cyclomatic complexity (avg cc):
commons-collections and other instances in the first
and fourth quadrants have low avg cc, while Quadrants
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Figure 4: Distribution of meta-features, from minimum (red) to maximum (blue) values.

2 and 3 contain instances having medium to high avg cc
values.

• Average radius (avg rad): Most of the instances at right
side of the instance space have low value for this feature,
while instances in Quadrant 2 and 3 shows medium to
high values.

By superimposing Figure 3 on Figure 4, we can map
the performance of the techniques to the features of the
instances. The instances in Quadrants 1 and 4 are easy from
a testing perspective as they represent simple CUTs having
lower values for num tc, nd, std cc and per cc10. However,
Quadrant 1 is also characterised by medium to high values of
efferent coupling that make these CUTs dependent on other
CUTs for their effective testing. On the contrary, the efferent
coupling is low for the instances in Quadrant 4.

By scanning the distribution of the above-mentioned
features and techniques’ performance, we can infer that

Random testing and Monotonic GA perform as good as
sophisticated multi-objective and multi-population search
techniques for the simple instances defined in terms of the
features mentioned above. Most of these instances belong
to commons-collections. Thus, our instance space confirms
the findings of Shamshiri et al. [22] that, for the unit test
generation, Random testing is as good as sophisticated
search-based techniques. It is important to mention here
that the testing benchmark used in the study by Shamshiri
et al. [22] consists of container classes from C programming
language, while commons collections contain similar classes
written in Java. As discussed before, container classes are the
implementation of data structures like lists, arrays etc. and
thus their implementation is quite similar across different
languages.

However, even for commons-collections instances, the
performance of these two techniques is badly impacted by
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higher values of efferent coupling. Thus, software classes
that depend on other classes for their proper operation are
harder to cover by these two techniques. Although to a lesser
extent, efferent coupling is a feature that negatively impacts
the performance of all the testing techniques.

All the techniques in quadrant 2 fail to achieve good
coverage on most of the instances located here. As shown
in Figure 4, these instances are characterised by high values
of ec, num tc, avg spl and medium to large loc, which are
the most prominent features which explain what makes
a CUT harder to get covered by search-based software
testing techniques. A closer look at the performance in this
quadrant shows that the coverage achieved by the techniques
is medium to high for a small set of instances that are located
close to the origin. Even Random testing and Monotonic
GA achieve a reasonable coverage for some instances in this
area (the presence of blue, green and yellow points). These
instances are characterised by medium values of loc and very
low num tc. Therefore, even with medium to high ec, smaller
CUTs in terms of size (loc) gain higher coverage. A possible
explanation for this observation is that the smaller CUTs have
lower number of testing goals and thus larger search budget
is available for each target, giving enough time to the testing
techniques to cover even the harder targets (in terms of ec or
avg cc etc.). MOSA, DynaMOSA, and WSA produce the best
performance in this area, followed by MIO that shows good
performance for comparatively lesser number of instances.

The instances in Quadrant 3 are characterised by many
methods having cc > 10. However, this features doesn’t
seem to impact the relative performance of the techniques in
this quadrant. MOSA, DynaMOSA, and WSA give medium
to high coverage, while Random testing and Monotonic Ga
produce mixed coverage (a combination of low, medium
and high values). It is very hard to identify the defining
features of the instances in this quadrant and to map them
to the performance of the techniques. This region of the
generated instance space, therefore, doesn’t provide any
interesting information about the impact of CUTs features on
a technique’s performance.

From all the observations reported in this section we infer
that:

The most salient features which define the degree of
hardness of a CUT from a testing perspective are ec,
num tc, loc and avg spl. Among these features, ec is the
most prominent feature that impacts the performance
of the investigated SBST techniques. Even a simple
CUT, characterised by small size and fewer number of
try/catch blocks, becomes hard to cover if it is tightly
coupled to other classes.

4.3 RQ3: What are the strengths and weaknesses of
existing SBST techniques?

Table 6 reports the footprints of the portfolio techniques
defined by area (αN ), density (dN ) and purity (pN ), along
with the subscripts G or B showing that the technique is
good (as per the definition in Section 3.2) or best (among
all the portfolio techniques). These values are normalised
over the total density (ds) and total area (αs) of the convex

hull containing all instances. The individual footprints of the
portfolio techniques are shown in Figure 5.

Although MOSA, DynaMOSA and WSA show simi-
lar performance in terms of average coverage (Fig. 3),
their footprints reveal their differences. MOSA cov-
ers the largest area with the second-lowest purity
(αN,G = 63.7%, pN,G = 83.9%). DynaMOSA on the other
hand, occupies a smaller region of the space (αN,G = 48.1%),
however, with slightly higher purity (pN,G = 85.0). It is
not surprising that MOSA and DynaMOSA share many
regions of the space under their footprints, as the latter
is an extension of the former that addresses the problem of
dependence of the testing targets on their parent branches
(for instance, in deeply nested loops). As there are very
few instances in our space having deeply nested branches
(Fig. 4d), the performance of DynaMOSA would be very
similar to MOSA. However, the region in Quadrant 4
where instances from commons-collections have higher ec,
illustrates a difference between these two techniques, as it
is covered by MOSA but not by DynaMOSA’s footprint.
Therefore, MOSA is more effective in covering instances with
higher ec compared to DynaMOSA. Furthermore, The area of
the space where MOSA performs the best (αN,B) is also much
higher compared to all other techniques. WSA occupies the
smallest area (43.2%) among MOSA, DynaMOSA, and WSA,
however, the density of its footprint is higher than average
(129.1%). Both area and density for MIO is lesser than MOSA,
DynaMOSA, and WSA (αN,G = 33.5%, dN,G = 89.2%).

Random testing and Monotonic GA cover the smallest
areas of the instance space (1.3% and 3.8% respectively),
however, with high purity. The reason behind their high
purity is the area of these footprints that is very small and
occupies only a few instances which are easy to be covered
by these techniques. Thus, the good performance of these
techniques is limited to very small but pure areas in Quadrant
4. From the above footprint analysis, we infer that:

Multi-objective and multi-population search-based tech-
niques are more effective than Random testing and
single-objective search. Among good performers, MOSA
is the most effective testing technique, as its footprint
occupies the largest area of the space and is reason-
ably dense. MOSA’s footprint also covers the area of
Quadrant 4 having high efferent coupling, where other
portfolio techniques could not perform very well.

These results are in line with the findings of comparative
studies, where MOSA and DynaMOSA are reported to
perform better than other portfolio techniques using ”average
coverage” as a performance metric [55], [23], [17]. However,
footprint analysis provides a deeper understanding of what
makes an instance easy/hard for a technique compared to
others, and thus explains the relative performance of the
testing techniques.

5 THREATS TO VALIDITY

Threats to internal validity concern factors that influence the
presented results. One such threat comes from the choice of
features. The choice of features has a great impact on the final
footprint of techniques. Furthermore, the selection of features
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Table 6: Footprint analysis for the portfolio techniques, including their area (αN ), density (dN ) and purity (pN ), whenever
the technique is good or best, identified with the subscripts G or B respectively.

αN,G(%) dN,G% pN,G% αN,B% dN,B% pN,B%

MOSA 63.7 105.7 83.9 24.9 85.1 86.3
DynaMOSA 48.1 105.3 85.0 1.6 87.8 80
WSA 43.2 129.1 80.9 1.6 87.9 80
MIO 33.5 89.2 84.3 0.3 83.2 100
Monotonic GA 3.8 90.6 97.3 0.0 0.0 0.0
RT 1.3 128.9 94.4 0.0 0.0 0.0

Average 32.2 108.1 87.6 4.7 57.3 57.7

(a) Random testing (b) Monotonic GA (c) MIO

(d) MOSA (e) DynaMOSA (f) WSA

Figure 5: Footprints (regions with blue background) for (a) Random testing, (b) Monotonic GA, (c) MIO, (d) MOSA, (e)
DynaMOSA, and (f) WSA, where good performance represents the coverage achieved by a technique within 5% of the best
coverage value on an instance.

has a significant impact on the general characteristics of the
instance space, e.g. diversity, bias and boundary analysis.
Therefore, feature selection is at the heart of ISA and must
be chosen carefully.

We have mitigated this threat by selecting an extensive set
of features extracted from the control flow graph of the CUT,
software quality metrics and CUT’s static features. These
features are widely and effectively used in automated testing
research for the assessment of testability and other purposes.

Similarly, the choice of the dataset, portfolio techniques

and performance metric have a critical influence on the final
results. For instance, if we change the correlation threshold
to filter the features in the preprocessing stage, or change
the definition of good, different features might get selected,
and thus the axes of the instance space system might change,
resulting in different results. However, comparing different
definitions or configuration parameters is not our focus
in this research and interested user can easily reproduce
our experiments and play around with the configuration
parameters using the code and meta-data available online
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1. Furthermore, we use the Instance Space Analysis to gain
visual insights when considering the settings adapted in Sec-
tion 3, knowing that the methodology is general, scalable and
repeatable, and final results can vary by selecting different
features, techniques, dataset and performance metric.

Threats to external validity affect the generalisation of
the results. We used a benchmark of 1088 classes chosen from
SF110 and commons collections. Both of these datasets have
been widely used in previous work on automated testing.
Furthermore, we also made sure that we use a combination
of easy and hard instances to make the instance space more
diverse.

Threats to construct Validity concern the relation be-
tween experimentation and theory. We have compared the
performance of portfolio techniques based on branch coverage,
which is a widely used performance metric in the literature.
However, the results could be more interesting by evaluating
the performance based on other metrics, e.g. mutation score,
and comparing the footprints of the techniques based on two
or more metrics. We are very interested in such research as
future work.

6 RELATED WORK

Automated testing techniques chosen as portfolio techniques
in our proposed methodology are discussed in detail in
Section 2.3. Below we explore the studies that evaluate the
performance of these techniques and report how the current
study is different from them.

Fitness landscape analysis is performed by analyzing the
distribution of fitness values of candidate solutions in the
search space [84]. The height of each point represents the
fitness value; the highest point represents the best solution to
the problem. The visualisation of the fitness landscape and
understanding the relationship between landscape features
and the performance of optimisation methods can provide
valuable insights as to which method will work best for
the given problem. Examples of landscape features are the
size, number and distribution of the optima, the location
of the global optimum and plateaus. The presence of a
single optimum makes a problem easy to solve by the
deterministic hill climbing method. On the contrary, the
presence of multiple plateaus and local optima make it harder
to be solved by a search algorithm [85]. There are many
studies that perform fitness landscape analysis for search-
based software testing [84], [85], [86], [22], [87]. Unlike fitness
landscape analysis that defines the search problem using
landscape features, our proposed methodology finds the
relationship between software features and the performance
of the test generation techniques. Although some of these
features can be translated to landscape features, for instance,
boolean branches, number of gradients etc., most of the
features are generic and represent the problem instances as
software classes. Furthermore, the proposed technique can
also be applied to testing methods other than search-based
testing.

The performance comparison of automated testing tech-
niques has been the focus of many studies. Ferrer et al. eval-
uated the performance of four multi-objective optimisation

1. https://matilda.unimelb.edu.au/matilda/problems/sbse/ast

techniques, MOCell, NSGA-II, SPEA2, and PAES; two mono-
objective techniques GA and ES; and two random techniques
on the basis of three quality indicators: the HV, the 50% EASs,
and the maximum coverage [88]. In [44], Rojas et al. report
the superiority of evolving a whole test suite (WS) over using
a single test as an individual in the search process, while
the performance of the achieved version of WS is evaluated
in [54]. Panichella et al. propose a multi-objective search
strategy called MOSA (Many-Objective Sorting Algorithm)
and compare its performance with WS on the basis of branch
coverage and search convergence time [55]. A variant of
MOSA called DynaMOSA is proposed by Panichella et
al. [23] and the performance of the proposed technique
is compared with MOSA, WS and WSA on the basis of
the branch, statement and strong mutation coverage. In
order to address the scalability issue of multi-objective search
techniques when the number of targets (branch, statement
etc) are very high, Arcuri et al. present a technique called
Many Independent Objects (MIO) and reported its superior
performance as compared to MOSA, Random testing and
WS based online and statement coverage [56]. Another
detailed comparative study is presented by Panichella et
al. comparing the performance of various multi-objective
and single-objective testing techniques [17]. The study re-
ported that multi-objective techniques are more effective as
compared to single-objective, particularly for complex classes.
Furthermore, among multi-objective techniques, DynaMOSA
performs significantly better than its predecessors (MOSA
and WS). The working and search strategies of all the
techniques mentioned in the above paragraphs are discussed
in detail in Section 2.3.

Comparative studies are also available for automated
test-generation tools. Cseppento et al. evaluated various
Symbolic Execution-based Test Tools [89]. Wang et al. com-
pared Crasher, TestGen4j, and JUB based on their mutation
scores [90]. Chitirala et al. compared the performance of
EvoSuite and Tpalus using code coverage, mutation score
and size of the test suite as performance metric [91]. Päivi and
Mäntylä et al. proposed a 12-step process to choose the right
test automation tool [92]. In [93], manual and tool-assisted
testing is compared and it is reported that automated unit
testing is as effective as manual testing under severe time
conditions. Fraser et al. evaluate the performance of EvoSuite
based on average branch coverage [38].

All the studies mentioned above evaluate testing tech-
niques/tools based on their average performance (average
coverage, average mutation score etc.). Such averages don’t
give much information about what makes a particular
technique perform better on the used dataset. Unlike these
studies, our proposed methodology maps the performance
of techniques to the unique features of the software and
explores how these features impact the performance of one
technique versus others.

There is also rich literature on accessing the testability and
quality of software using software metrics. Lammermann
et al. explore the relationship between software quality
measures and evolutionary testing of procedural code [94].
As the first step, software artefacts are sorted in order of the
code coverage achieved on them. These are then sorted in
order of values of selected software metrics (lines of code,
cyclomatic complexity etc.). The difference in the sorting

https://matilda.unimelb.edu.au/matilda/problems/sbse/ast
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order of code coverage and software metrics is used to
estimate how effective is a particular metric in defining
the testability of software. In [37], the correlation between
CK metrics [64] and line, branch and mutation coverage
is reported using Spearman’s rank order. The impact of
software testability metrics at various stages of the software
development life-cycle is studied in [95].

Unlike the above-mentioned studies on software testa-
bility, which explore what makes software hard to test in
general, this paper focuses on finding program features
that define a CUT in such a way that can explain why
the different testing techniques perform differently on it.
The most closely related studies are Oliveira et al. [30] and
Ferrer et al. [96]. The former is discussed in Section 1 while
later finding the correlation between static features of a
program and techniques’ performance. It uses Spearman’s
rank correlation coefficient to find the correlation between
eight static program features and coverage achieved on these
programs. The CUTs used in the evaluation of the proposed
technique are artificially generated with some specific values
of the feature range within a predefined limit. The generated
benchmark is then divided into sub-benchmarks, each having
CUTs of a specific feature type. Test coverage achieved by
techniques on each sub-benchmark is then used to find
which technique performs better/worst in the presence of
a particular feature. This work, however, cannot scale to a
larger number of features or techniques. Furthermore, the
artificially generated CUTs cannot represent the real software
classes, which are characterised by a diverse set of features.
The study also lacks in providing any insights into the impact
of various features on the strength and weaknesses of a
technique.

7 CONCLUSION AND FUTURE WORK

This paper presents the analysis of the strengths and weak-
nesses of various automated testing techniques using the
Instance Space Analysis framework. A large collection of
instances are compiled from software testing benchmark
repositories, described in terms of meta-features and tested
using 6 unit testing techniques. A subset of features is
selected from the complete feature set, which is then used to
generate a two-dimensional instance space for the visual
analysis of the performance of selected techniques. The
generated instance space shows that the instances from
Quadrant 4, characterised by lower nesting depth, a small
number of try/catch blocks, and fewer methods having
cc > 10 are easy to be covered by all the techniques.
On the contrary, instances in Quadrant 2 are harder to
achieve good coverage by all the techniques due to their
higher efferent coupling and large size (loc). We also notice
that the techniques having similar performance in terms
of average coverage have different footprint areas and
different strengths and weaknesses. Furthermore, it can be
visualised that the benchmarks commonly used in the field
of automated testing cover a smaller region of the complete
instance space and are arguably insufficient to capture the
full diversity of test instances required to comprehensively
expose the strengths and weaknesses of the techniques.

The results shown in this paper are dependent on many
factors including the chosen meta-data, parameter settings,

the definition of good performance etc. Furthermore, the
performance of the portfolio of techniques depends on their
implementation and may also vary by changing the search
budget. However, we use the Instance Space Analysis to gain
visual insights when considering these settings, knowing
that the methodology is general and repeatable, and in the
expectation that the online instance space tool [97] and our
sharing of meta-data [98] will facilitate the reproducibility
and further exploration of this work.

In the future, we plan to include more benchmarks,
including various projects from defects4J [39]. Additional
techniques can also be added, especially those which are
not search based. Another interesting study would be to use
mutation score as a performance metric. This would require
to further enhance the feature space by adding more features
that would make a CUT easy/hard for mutation tool. Lastly,
we plan to analyse the performance of techniques using
different search budgets, as search based techniques may
perform differently given more time to explore the search
space.
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[29] M. A. Muñoz, T. Yan, M. R. Leal, K. A. Smith-Miles, A. C. Lorena,
G. L. Pappa, R. R. M, An instance space analysis of regression
problems, ACM Transactions on Knowledge Discovery from Data.

[30] C. Oliveira, A. Aleti, L. Grunske, K. Smith-Miles, Mapping the
effectiveness of automated test suite generation techniques, IEEE
Transactions on Reliability 67 (3) (2018) 771–785.
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