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Containerisation for High Performance
Computing Systems: Survey and Prospects

Naweiluo Zhou, Huan Zhou, Dennis Hoppe

Abstract—Containers improve the efficiency in application deployment and thus have been widely utilised on Cloud and lately in High
Performance Computing (HPC) environments. Containers encapsulate complex programs with their dependencies in isolated
environments making applications more compatible and portable. Often HPC systems have higher security levels compared to Cloud
systems, which restrict users’ ability to customise environments. Therefore, containers on HPC need to include a heavy package of
libraries making their size relatively large. These libraries usually are specifically optimised for the hardware, which compromises
portability of containers. Per contra, a Cloud container has smaller volume and is more portable. Furthermore, containers would benefit
from orchestrators that facilitate deployment and management of containers at a large scale. Cloud systems in practice usually
incorporate sophisticated container orchestration mechanisms as opposed to HPC systems. Nevertheless, some solutions to enable
container orchestration on HPC systems have been proposed in state of the art. This paper gives a survey and taxonomy of efforts in
both containerisation and its orchestration strategies on HPC systems. It highlights differences thereof between Cloud and HPC. Lastly,
challenges are discussed and the potentials for research and engineering are envisioned.

Index Terms—HPC, Container, Orchestration, Resource Management, Job Scheduling, Cloud Computing, AI
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1 INTRODUCTION

CONTAINERS have been widely adopted on Cloud sys-
tems. Applications together with their dependencies

are encapsulated into containers [1], which can ensure
environment compatibility and enable users to move and
deploy programs easily among clusters. Containerisation
is a virtualisation technology [2]. Rather than creating an
entire operating system (called guest OS) on top of a host
OS as in a Virtual Machine (VM), containers only share the
host kernel, which makes containers more lightweight than
VMs. Containers on Cloud are often dedicated to run micro-
services [3] and one container mostly hosts one application
or a part of it.

High Performance Computing (HPC) systems are tra-
ditionally employed to perform large-scale financial, en-
gineering and scientific simulations [4] that demand low
latency (e.g. interconnect) and high throughput (e.g. the
number of jobs completed over a specific time). To satisfy
different user requirements, HPC systems normally provide
predefined modules with specific software versions that
users can switch by loading or unloading the modules with
the desired packages [5]. This approach requires assistance
of system administrators and therefore limits increasing
user demands for environment customisation. On a multi-
tenant environment as on HPC systems, especially HPC
production systems, installation of new software packages
on-demand by users is restricted, as it may alter the work-
ing environments of existing users and even raise security
risks. Module-enabled software environments are also in-
convenient for dynamic Artificial Intelligence (AI) software
stacks [6]. Big Data Analytics hosted on Cloud are compute-
intensive or data-intensive, mainly due to deployments
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of AI or Machine Learning (ML) applications, which de-
mand extremely fast knowledge extraction in order to make
rapid and accurate decisions. HPC-enabled AI can offer
optimisation of supply chains, complex logics, manufactur-
ing, simulation and underpin modelling to solve complex
problems [7]. Typically, AI applications have sophisticated
requirements of software stacks and configurations. Con-
tainerisation not only enables customised environments on
HPC systems, but also brings research reproducibility into
practice.

Containerised applications can become complex, e.g.
thousands of separate containers may be required in pro-
duction, and containers may require network isolation
among each other for security reasons. Sophisticated strate-
gies for container orchestration [8] have been developed on
Cloud or big-data clusters to meet such requirements. HPC
systems, per contra, lack features of efficiency in container
scheduling and management (e.g. load balancing and auto
container scaling), and often provide no integrated support
for environment provisioning (i.e. infrastructure, configura-
tions and dependencies).

There have been numerous studies on containerisation
and container orchestration on Cloud [2], [9], [10], [11], [12],
[13], [14], [15], however, there is no comprehensive survey
on these technologies and techniques for HPC systems
existing as of yet. This article:

• Investigates state-of-the-art works in containerisa-
tion on HPC systems and underscores their differ-
ences with respect to the Cloud;

• Introduces the representative orchestration frame-
works on both HPC and Cloud environments, and
highlights their feature differences;

• Gathers the related studies in the integration of con-
tainer orchestration strategies on Cloud into HPC
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environments;
• Discusses the challenges and envisions the potential

directions for research and engineering.

The rest of the paper is organised as follows. First, Sec-
tion 2 introduces the background on containerisation tech-
nologies and techniques. Key technologies of state-of-the-
art container engines (Section 3) and orchestration strategies
(Section 4) are presented, and the feature differences thereof
between HPC and Cloud systems are discussed. Next, Sec-
tion 5 describes research challenges and the vision. Lastly,
Section 6 concludes this paper.

2 CONCEPTS AND TECHNOLOGIES FOR CON-
TAINERISATION

The main differences between containerisation technologies
on Cloud and HPC systems are in terms of security and
the types of workloads. The HPC applications tend to
require more resources as to not only CPUs, but also the
amount of memory and network speed. HPC communities
have, therefore, developed sophisticated workload man-
agers to leverage hardware resources and optimise appli-
cation scheduling. Since the typical applications on Cloud
differ significantly from those in HPC centres with respect to
the sizes, execution time and requirements of the availability
of hardware resources [16], the management systems on
Cloud are evolved to include architectures different from
those on HPC systems.

Research and engineering on containerisation technolo-
gies and techniques for HPC systems can be classified into
two broad categories:

1) Container engines/runtimes;
2) Container orchestration.

In the first category, various architectures of container en-
gines have been developed which vary in usage of names-
paces (see Section 2.1), image formats and programming
languages. The research in the latter category is still in its
primitive stage, which will be discussed in Section 4.

2.1 Containerisation Concepts
Containerisation is an OS-level virtualisation technology
[17] that provides separation of application execution envi-
ronments. A container is a runnable instance of an image
that encapsulates a program together with its libraries,
data, configuration files, etc. [1] in an isolated environment,
hence it can ensure library compatibility and enables users
to move and deploy programs easily among clusters. A
container utilises the dependencies in its host kernel. The
host merely needs to start a new process that is isolated
from the host itself to boot a new container [18], thus making
container start-up time comparable to that of a native appli-
cation. In contrary, a traditional VM loads an entire guest
kernel (simulated OS) into memory, which can occupy giga-
bytes of storage space on the host and requires a significant
fraction of system resources to run. VMs are managed by
hypervisor which is also known as Virtual Machine Monitor
(VMM) that partitions and provisions VMs with hardware
resources (e.g. CPU and memory). The hypervisor gives the
hardware-level virtualisation [19], [20]. Fig. 1 highlights the

Apps
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Host OS

Hardware

Host OS

Guest OS

Virtualisation layer
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Fig. 1. Structure comparison of VMs and containers. On the VM side, the
virtualisation layer often appears to be hypervisor while on the container
side it is the container runtimes.

architecture distinction of VMs and containers. It is worth
noting that containers can also run inside VMs [21]. Besides
portability, containers also enable reproducibility, i.e. once a
program has been defined inside the container, its included
working environment remains unchanged regardless of its
running occurrences. Nevertheless, the shared kernel strat-
egy presents an obvious pitfall: a Windows containerised
application cannot execute on Unix kernels. Obviously, this
should not become an impediment to its usage as Unix-like
OS are often the preference for HPC systems.

HPC applications are often highly optimised for proces-
sor architectures, interconnects, accelerators and other hard-
ware aspects. Containerised applications, therefore, need
to compromise between performance and portability. The
studies have shown that containers can often achieve near-
native performance [18], [22], [23], [24], [25], [26], [27] (see
Section 3.2).

Linux has several namespaces [28] that isolate various
kernel resources: mount (file system tree and mounts), PID
(process ID), UTS (hostname and domain name), network
(e.g. network devices, ports, routing tables and firewall
rules), IPC (inter-process communication resources) and
user. The last namespace is an unprivileged namespace
that grants the unprivileged process access to traditional
privileged functionalities under a safe context. More specif-
ically, the user namespace allows to map user ID (UID)
and group ID (GID) from hosts to containers, meaning
that a user having UID 0 (root) inside a container can be
mapped to a non-root ID (e.g. 100000) outside the container.
Cgroups (Control Groups) is another namespace that is
targeted to limit, isolate and measure resource consumption
of processes. Cgroups is useful for a multi-tenant setting as
excess resource consumption of certain users will be only
adverse to themselves. One application of Linux names-
paces is the implementation of containers, e.g. Docker, the
most widely-used container engine, uses namespaces to pro-
vide the isolated workspace that is called container. When a
container executes, Docker creates a set of namespaces for
that container.

2.2 Docker
There are multiple techniques that realise the concept of
containers. Docker is among the most popular ones [27].
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After its appearance in 2013, various container solutions
aimed for HPC have emerged [22]. Docker, initially based
on LXC [29], is a container engine that supports multiple
platforms, i.e. Linux, OSX and Windows. A Docker container
image is composed of a readable/writable layer above a
series of read-only layers. A new writable layer is added
to the underlying layers when a new Docker container is
created. All changes that are made to the running container,
such as writing new files, modifying or deleting existing
files, are written to this thin writable container layer. Docker
adopts namespaces including Cgroups to provide resource
isolation and resource limitation, respectively. Table 1 high-
lights the usage of namespaces with respect to Docker and
a list of container engines targeted for HPC environments.

Docker provides network isolation and communication
by creating three types of networks: host, bridge and none.
The bridge network is the default Docker network. The
Docker engine creates a subset or gateway to the bridged
network. This software bridge allows Docker containers to
communicate within the same bridged network; meanwhile,
isolates the containers from a different bridged network.
Containers in the same host can communicate via the
default network by the host IP address. To communicate
with the containers located on a different host, the host
needs to allocate ports on its IP address. Managing ports
brings overhead which can intensify at scale. Dynamically
managing ports can solve this issue which is better handled
by orchestration platforms as introduced in Section 4.2.

Docker is widely adopted in Cloud where users often
have root privileges. The root privilege is required to ex-
ecute the Docker application and its Daemon process that
provides the essential services. Originally running Docker
with root permission brings some advantages to Cloud
users. For instance, users can run their applications and
alternative security modules to provide separation among
different allocations [30]; users can also mount host filesys-
tems to their containers. Root privilege can cause security
issues. Therefore, the latest updates of Docker engine start
to support rootless daemon and enable users to execute
containers without root. Nevertheless, other security con-
cerns still persist. For instance, usage of Unix socket can
be changed to TCP socket which will grant an attacker a
remote control to execute any containers in the privileged
mode. Additionally, rootless Docker does not run out of box,
system administrators need to carefully set the namespaces
of hosts to separate resources and user groups in order to
guarantee security. Hence HPC centres that typically have
high security requirements are still reluctant to enable the
Docker support on their systems.

3 CONTAINER ENGINES AND RUNTIMES FOR HPC
SYSTEMS

This section first reviews the state-of-the-art container en-
gines/runtimes designed for HPC systems and compares
the major differences with the mainstream Cloud container
engine, i.e. Docker. Next, Section 3.2 shows the performance
evaluation of the reviewed HPC container engines.

3.1 State-of-the-Art Container Engines and Runtimes

A list of representative container engines and runtimes
for HPC systems is given in this section. They differ in
functional extent and implementation, however, also hold
some similarities. Table 1 and Table 2 summarise the feature
differences and similarities between Docker and a list of
main HPC container engines.

3.1.1 Shifter
Shifter [31] is a prototypical implementation of container
engine for HPC developed by NERSC. It utilises Docker
for image building workflow. Once an image is built, users
can submit it to an unprivileged gateway which injects
configurations and binaries, flattens it to an ext4 file system
image, and then compresses to squashfs images that are
copied to a parallel filesystem on the nodes. In this way,
Shifter insulates the network filesystem from image meta-
data traffic. Root permission of Docker is naturally deprived
from Shifter that only grant user-level privileges. Existing
directories can be also mounted inside Shifter image by
passing certain flags.

As an HPC container engine, Shifter supports MPICH
that is an implementation of the Message Passing Interface
(MPI) [32], [33] standard. To enable accelerator supports
such as GPU without compromising container portability,
Shifter runtime swaps the built-in GPU driver of a Shifter
container with an ABI (Application Binary Interface) com-
patible version at the container start-up time.

3.1.2 Charliecloud
Charliecloud [28] runs containers without privileged opera-
tions or daemons. Charlicloud can convert a Docker image
into a tar file and unpacks it on the HPC nodes. Installation
of Charliecloud does not require root permission. Such non-
intrusive mechanisms are ideal for HPC systems. Char-
liecloud is considered to be secure against shenanigans, such
as chroot escape, bypass of file and directory permission,
privileged ports bound to all host IP addresses or UID set to
an unmapped UID [15].

MPI is supported by Charliecloud. Injecting host files
into images is used by Charliecloud to solve library com-
patibility issues, such as GPU libraries that may be tied to
specific kernel versions.

3.1.3 Singularity
Singularity is the most-widely used HPC container engine
in academia and industry. Singularity [34] was specifically
designed from the outset for HPC systems. Contrasting with
Docker, it gives the following merits [23]:

• Running with user privileges and no daemon pro-
cess. Only user privileges are required to execute Sin-
gularity applications. Acquisition of root permission
is only necessary when users want to build or rebuild
images, which can be performed on their own work-
ing computers. Unprivileged users can also build an
image from a definition file with a few restrictions by
”fake root” in Singularity, however, some methods
requiring to create block devices (e.g. /dev/null)
may not always work correctly in this way;
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TABLE 1
Linux namespace supports for HPC-targeted container engines (Section 3) and Docker in the year of 2022.
Note that without certain namespaces, containers may still operate however with restricted functionalities.

Namespaces Singularity Shifter Charliecloud UDocker SARUS Docker

mount 3 3 3 3 3 3

PID 3 7 7 7 7 3

UTS 7 7 7 7 7 3

network 7 7 7 7 7 3

IPC 7 7 7 7 7 3

user 3 3 3 3 3 3

Cgroup 3 3 7 7 3 3

TABLE 2
Comparison of Docker with the list of container engines for HPC systems.

WLM: workload manager. Orchestration is described in Section 4.1 and Section 4.2.

.
Container engines Docker Singularity Shifter Charliecloud SARUS UDocker

Usage of namespaces 3 3 3 3 3 3

MPI support 3 3 3 3 3 3

GPU support 3 3 3 3 3 3

Network support Pluggable net-
work driver (e.g.
bridge)

Host network Host network Host network Host network Host network

Image format Layers of files Single image
file, Filesystem
bundle

squashfs layers Filesystem bun-
dle

Filesystem bun-
dle

layers of files

Access to host filesystems 3 3 3 3 3 3

Escalation of permission 3 7 7 7 7 7

Privileged daemon* 3 7 7 7 7 7

Orchestration Docker Swarm HPC WLM HPC WLM HPC WLM HPC WLM HPC WLM
Programming languages Go Go C C C++ Python

*Starting from v19.03, Docker also provides options to change its daemon to be rootless.

• Seamless integration with HPC systems. Singularity
natively supports GPU, MPI and InfiniBand [16]. No
additional network configurations are expected in
contrast with Docker containers;

• Portable via a single image file (SIF format). On the
contrary, Docker is built up on top of layers of files.

Two approaches are often used to execute MPI applica-
tions using Singularity, i.e. hybrid model and bind model.
The former compiles MPI binaries, libraries and the MPI
application into a Singularity image. The latter binds the
container on a host location where the container utilises the
MPI libraries and binaries on the host. The latter model has a
smaller image size since it does not include compiled MPI li-
braries and binaries in the image. Utilising the host libraries
is also beneficial to application performance, however, the
version of MPI implementation that is used to compile the
application inside the container must be compatible with
the version available on the host. The hybrid model is
recommended, as mounting storage volumes on the host
often require privileged operations.

Most Docker images can be converted to singularity im-
ages directly via simple command lines (e.g. docker save,
singularity build). Singularity has quickly become the
ipso facto standard container engine for HPC systems.

3.1.4 SARUS
SARUS [35] is another container engine targeted for HPC
systems. SARUS relies on runc1 to instantiate containers.
runc is a CLI (Command-Line Interface) tool for spawning
and running containers according to the OCI (Open Con-
tainer Initiative) specification. Different from the aforemen-
tioned engines, the internal structure of SARUS is based on
the OCI standard (see Section 5.1.2). As shown in Fig. 2,
the CLI component takes the command lines which either
invoke the image manager component or the runtime com-
ponent. The latter instantiates and executes containers by
creating a bundle that comprises a root filesystem directory
and a JSON configuration file. The runtime component then
calls runc that will spawn the container processes. It is
worth noting that functionalities of SARUS can be extended
by calling customised OCI hooks, e.g. MPI hook.

3.1.5 UDocker
UDocker2 is a Python wrapper for the Docker container,
which executes only simple Docker containers in user space
without the acquisition of root privileges. UDocker provides

1. https://github.com/opencontainers/runc
2. https://github.com/indigo-dc/udocker

https://github.com/opencontainers/runc
https://github.com/indigo-dc/udocker
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Fig. 2. The internal structure of SARUS. OCI hooks include MPI hook.

a Docker-like CLI and only supports a subset of Docker
commands, i.e. search, pull, import, export, load,
save, create and run. It is worth noting that UDocker
neither makes use of Docker nor requires its presence on the
host. It executes containers by simply providing a chroot-
like environment over the extracted container.

3.1.6 Other HPC Container Engines
More and more HPC container engines are being developed,
this section gives an overview of some that are targeted for
special use cases.

Podman [36] makes use of the user namespace to ex-
ecute containers without privilege escalation. A Podman
container image comprises layers of read-write files as
Docker. It adopts the same runtime runc as in SARUS and
Docker. The runtime crun, which is faster than runc, is
also supported. A notable feature of Podman is as its name
denotes: the concept of pod. A pod groups a set of containers
that collectively implements a complex application to share
namespaces and simplify communication. This feature en-
ables the convergence with the Kubernetes [37] environment
(Section 4.2.1), however, requires advanced kernel features
(e.g. version 2 Cgroups and user-space FUSE). These kernel
features are not yet compatible with network filesystems
to make full use of the rootless capabilities of Podman
and consequently restrains its usage from HPC production
systems [38] .

Similar to UDocker, Socker [39] is a simple secure wrap-
per to run Docker in HPC environments, more specifi-
cally SLURM (Section 4.1.2). It does not support the user
namespace, however, it takes the resource limits imposed by
SLURM.

Enroot3 from NVIDIA can be considered as an enhanced
unprivileged chroot. It removes much of the isolation that
the other container engines normally provide but preserves
filesystem separation. Enroot makes use of user and mount
namespaces.

3.2 Performance Evaluation for HPC Container En-
gines
This section only selects the representative works as given
in Table 3, rather than exhausting the literature, to show the

3. https://github.com/NVIDIA/enroot

performance of containers that are specifically targeted for
HPC systems in terms of CPU, memory, disk (I/O), network
and GPU. Table 4 lists the benchmarks utilised in these
work. Overall, the container startup latency can be high
on the Cloud. This startup overhead is caused by building
containers from multiple image layers, setting read-write
layers and monitoring containers [27]. An HPC container
is composed of a single image or directory (with exception
to Podman) and monitoring is performed by HPC systems.

The work in [24], utilising the IMB [42] benchmark suite
and HPCG [43] benchmarks, proved that little overhead
of network bandwidth and CPU computing overhead is
caused by Singularity when dynamically linking vendor
MPI libraries in order to efficiently leverage advanced
hardware resources. With the Cray MPI library, Singularity
container achieved 99.4% efficiency of native bandwidth
on a Cray XC [44] HPC testbed when running the IMB
benchmark suite. However, the efficacy drastically drops to
39.5% with Intel MPI. Execution time evaluated with the
HPCG benchmarks, indicated that the performance penalty
caused by Singularity is negligible with Cray MPI, though
the overhead can reach 18.1% with Intel MPI. The perfor-
mance degradation with Intel MPI is mostly because of the
vendor-tuned MPI library which does not leverage hard-
ware resources from a different vendor, e.g. interconnect.

Hu et al. [23] evaluated the Singularity performance in
terms of CPU capacity, memory, network bandwidth and
GPU with Linpack benchmarks [45] and four typical HPC
applications (i.e. NAMD [46], VASP [47], WRF [48] and
AMBER [49]). Singularity provides close to native perfor-
mance on CPU, memory and network bandwidth. A slight
overhead (4.135%) is shown on NVIDIA GPU.

Muscianisi et al. [41] illustrated the performance impact
of Singularity with the increasing number of GPU nodes.
The evaluation was carried out on CINECA’s GALILEO sys-
tems with TensorFlow [50] applications. The results again
demonstrated that the container environments caused neg-
ligible performance overhead.

The work by Hale et al. [18] presented the CPU perfor-
mance of Shifter with HPGMG-FE (MPI implementation)
benchmarks [51] on Cray XC30 (192 cores, 24 cores per
compute node) where the performance margin between
Shifter container and bare metal is unnoticeable. Compar-
ison is also given for MPI with implementation in C++ and
Python using a custom benchmark. The authors observed
that it could take over 30 minutes to import the Python
modules when running natively with 1,000 processes. Each
process of a Python application imports modules from the
filesystem on each node. Accesses to many small files on
an HPC filesystem using many processes can be extremely
slow comparing with the accesses to a few large files.
The containerised benchmark has already included all the
modules in its image that is mounted as a single file on each
node, therefore, Shifter container outperforms the native
execution in this case. Bahls [40] also evaluated the execu-
tion time of Shifter on Cray XC and Cray XE/XK systems
exploiting Cray HSN (High Performance Network). Their
results showed that Shifter gave comparable performance
to bare metal.

The study in [22] compared the performance of Shifter
and Singularity against bare metal in terms of computation

https://github.com/NVIDIA/enroot
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TABLE 3
Overview of the related work on container performance evaluation in terms of CPU, memory, disk, network and GPU on HPC systems.

Metrics Performance Overhead Work Container engines HPC vendors

CPU time Often negligible. Large
overhead caused by
vendor-tuned libraries
and dynamically linking
libraries; better performance
in many-process Python
programs

[18], [22], [23], [24], [27], [40] Singularity, Shifter, Char-
liecloud, Podman, SARUS

Cray XC, Cray XE/XK

Memory usage Negligible [23], [27] Singularity, Charliecloud,
Podman

-

Disk usage Negligible [27] Singularity, Charliecloud,
Podman

-

Network Negligible or slight over-
head. Overhead happens at
start-up time because of the
single file/bundle structure

[23], [24], [27] Singularity, Charliecloud,
Podman

Cray XC

GPU A slight overhead [23], [41] Singularity IBM

TABLE 4
The list of HPC benchmarks mentioned in Section 3.2.

Benchmarks Description

IMB Intel MPI Benchmark
HPCG A complement to the LINPACK

Linpack Measure floating-point computing power

NAMD Simulation for molecular dynamics

VASP Atomic scale materials modelling

WRF Weather Research and Forecasting Model

AMBER Assisted Model Building with Energy Refinement

HPGMG-FE High-Performance Geometric Multigrid, Finite Ele-
ment

time using two biological use cases on three types of super-
computer CPU architectures: Intel Skylake, IBM Power9 and
Arm-v8. Containerised applications can scale at the same
rate as the bare-metal counterparts. However, the authors
also observed that with a small number of MPI ranks,
containers should be built as generic as possible, per contra,
when it comes to a large number of cores, containers need
to be tuned for the hosts.

Without performance comparison with bare-metal appli-
cations, the work in [27] studied the CPU, memory, network
and I/O performance of Charliecloud, Podman and Singu-
larity. All the containers behave similarly with respect to the
CPU and memory usage. Charliecloud and Singularity have
comparable I/O performance. Charliecloud incurs large
overhead on Lustre’s MDS (Metadata Server) and OSS (Ob-
ject Storage Server) due to its bare tree structure. Comparing
with the structures of shared layers (as in Docker), this
structure needs to access a large number of individual files
from the image tree from Lustre. Consequently, it causes
network overhead when data is transmitted from the client
node over the network at container start-up time. Similarly,
as Singularity is stored as a single file on Lustre, a large
amount of data needs to be loaded at starting point resulting
in a data transmission spike on network.

SARUS has shown strong scaling capability on Cray
XC systems with hybrid GPU and CPU nodes [35]. The
performance difference between SARUS and bare metal is
less than 0.5% up to 8 nodes and 6.2% up to 256 nodes. No
specific metrics are given in terms of GPU, though GPU has
been used as accelerators.

3.3 Section Highlights

Containers are introduced to HPC systems, as they enable
environment customisation for users, which offers the solu-
tions to application compatibility issues. This is particularly
important on HPC systems that are typically inflexible for
environment modifications. Notably, HPC container engines
are designed to meet the high-security requirements on HPC
systems. Multiple prevailing engines have been described in
this section, they share some common features:

• Non-root privileges;
• Often can convert Docker images to their own image

formats;
• Supports of MPI that are typical HPC applications;
• Use host network rather than pluggable network

drivers.

Yet differences exist in their image formats. Layered image
format is seen in Docker (UDocker wraps Docker image
layers to a local directory), which is executed by pulling
the image layers that have not been previously downloaded
on the host. HPC container images are stored in a single
directory or file which can be transferred to the compute
nodes easily avoiding the pulling operations that require
network access. HPC container engines show various ways
to incorporate well-tuned libraries targeting for the hosts
in order to achieve optimised performance, e.g. OCI hooks
(SARUS), injecting host files into images (Charliecloud).

Section 3.2 aims to give examples that can provide
general advices on how to build the container images to
maximise performance. Clearly, performance loss can occur
in certain cases which are summarised in the second column
of Table 3.



JOURNAL OF SOFTWARE ENGINEERING, VOL. X, NO. X, MAY 2022 (THIS IS THE AUTHORS’ VERSION) 8

4 CONTAINER ORCHESTRATION

Orchestration under the context herein means automated
configuration, coordination and management of Cloud or
HPC systems. In theory, HPC workload manager can be
also addressed as orchestrator, however, this article takes
the former term as it is the custom terminology that has
been long-used and widely understood in the HPC area.
The driving factors that push HPC workload managers
and Cloud orchestrators to be developed in different di-
rections can be multiple. This will be discussed at the end
of this section (Section 4.4). However, first it is important
to understand the mechanisms of HPC workload managers
(Section 4.1) and Cloud orchestrators (Section 4.2). Mostly,
container orchestration for HPC systems either relies on the
orchestration strategies of the existing Cloud orchestrators
or exploits the mechanisms of current HPC workload man-
agers or software tools. This point will be depicted in Section
4.3.

4.1 Workload Managers for HPC Systems
Cloud aims to exploit economy of scale by consolidating
applications into the same hardware [16] and the hardware
resources can be easily extended based on user demands. In
contrast, HPC centres have large-scale hardware resources
available and reserve computing resources exclusively for
users. Table 5 underscores the main differences between
HPC workload managers and Cloud orchestrators. A typical
HPC system is managed by a workload manager. A workload
manager comprises a resource manager and a job scheduler.
A resource manager [52] allocates resources (e.g. CPU and
memory), schedules jobs and guarantees no interference
from other user processes. A job scheduler determines the
job priorities, enforces resource limits and dispatches jobs to
available nodes [53].

HPC workload managers incorporate a big family, such
as PBS [54], Spectrum LSF [55], Grid Engine [56], OAR
[57] and Slurm [58]. Slurm and PBS are two main-stream
workload managers. The workload managers shares some
common features: a centralised scheduling system, a queu-
ing system and static resource management mechanisms,
which will be detailed in this section.

4.1.1 PBS
PBS stands for Portable Batch System which includes three
versions: OpenPBS, PBS Pro and TORQUE. OpenPBS is
open-source and TORQUE is a fork of OpenPBS. PBS Pro is
dual-licensed under an open-source and commercial license.
The structure of a TORQUE-managed cluster consists of a
head node and many compute nodes as illustrated in Fig. 3
where only three compute nodes are shown. The head node
(coloured in blue in Fig. 3) controls the entire TORQUE
system. A pbs server daemon and a job scheduler daemon
are located on the head node. The batch job is submitted to
the head node (in some cases, the job is first submitted to a
login node and then transferred to the head node). A node
list that records the configured compute nodes is maintained
on the head node. The architecture of this kind as shown
in Fig 3 represents the fundamental cluster structure of
main-stream HPC workload managers. The procedure of job
submission on TORQUE is briefly described as follows:

pbs_server
scheduler

head node

job submission

mother superior 

(qsub)

pbs_mom

pbs_mom sister MOM 

pbs_mom sister MOM

compute nodes

Fig. 3. TORQUE structure. pbs server, scheduler and pbs mom are the
daemons running on the nodes. Mother Superior is the first node on the
node list (on step4).

1) The job is submitted to the head node by the com-
mand qsub. A job is normally written in the format
of a PBS script. A job ID is returned to the user as
the standard output of qsub.

2) The job record, which incorporates a job ID and
the job attributes, is generated and passed to
pbs server.

3) pbs server transfers the job record to the job sched-
uler daemon. The job scheduler daemon adds the
job into a job queue and applies a scheduling algo-
rithm to it (e.g. FIFO: First In First Out) which deter-
mines the job priority and its resource assignment.

4) When the scheduler finds the list of nodes for the
job, it returns the job information to pbs server. The
first node on this list becomes the Mother superior
and the rest are called sister MOMs or sister nodes.
pbs server allocates the resources and passes the
job control as well as execution information to the
pbs mom daemon installed on the mom superior
node instructing to launch the job on the assigned
compute nodes.

5) The pbs mom daemons on the compute nodes man-
age the execution of jobs and monitor resource
usage. pbs mom will capture all the outputs and
direct them to stdout and stderr which are written
into the output and error files and are copied to
the designated location when the job completes suc-
cessfully. The job status (completed or terminated)
will be passed to pbs server by pbs mom. The job
information will be updated.

In TORQUE, nodes are partitioned into different groups
called queues. In each queue, the administrator sets limits
for resources such as walltime and job size. This feature can
be useful for job scheduling in a large HPC cluster where
nodes are heterogeneous or certain nodes are reserved for
special users. This feature is commonly seen in HPC work-
load managers.

TORQUE has a default scheduler FIFO, and is often
integrated with a more sophisticated job scheduler, such as
Maui [59]. Maui is an open source job scheduler that pro-
vides advanced features such as dynamic job prioritisation,
configurable parameters, extensive fair share capabilities
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TABLE 5
Comparison of HPC workload managers (Section 4.1) and cloud orchestrators (Section 4.2).

HPC workload manager Cloud orchestrator

Deployment Batch queue (queueing time from seconds to
days)

Often immediate

Workload type Binary Container, pod

Supports of Parallel and Array Jobs Both Array*

Resource unit Bare-metal nodes Pods, VM nodes
Resource elasticity No Yes

Application execution length Long duration & Run to completion Continuously running or short duration†

Application specifics Distributed memory jobs (e.g. MPI) Often micro-services

DevOps environment provision No Yes

API supports No (or very weak) Yes

Job scheduling Backfilling On-demand scheduling

Centralised scheduling system Yes Not always

Job submission scripts batch scripts Declarative files, typically yaml scripts

Checkpointing Yes No. Containers are relaunched upon failure

Support of multiple resource managers No Often yes

Exceptions: *Mesos can support parallel jobs (Section 4.2.3); †YARN targets for long-running batch jobs (Section 4.2.3)

and backfill scheduling. Maui functions in an iterative man-
ner like most job schedulers. It starts a new iteration when
one of the following conditions is met: (1) a job or resource
state alters; (2) a reservation boundary event occurs; (3) an
external command to resume scheduling is issued; (4) a
configuration timer expires. In each iteration, Maui follows
the below steps [60]:

1) Obtain resource records from TORQUE;
2) Fetch workload information from TORQUE;
3) Update statistics;
4) Refresh reservations;
5) Select jobs that are eligible for priority scheduling;
6) Prioritise eligible jobs;
7) Schedule jobs by priority and create reservations;
8) Backfill jobs.

Despite an abundance of algorithms, only a few scheduling
strategies are practically in use by job schedulers. Backfilling
scheduling [61] allows jobs to take the reserved job slots
if this action does not delay the start of other jobs having
reserved the resources, thus allowing large parallel jobs to
execute and avoiding resource underutilisation. Differently,
Gang scheduling [62] attempts to take care of the situations
when the runtime of a job is unknown, allowing smaller
jobs to get fairer access to the resources. Both scheduling
strategies are also seen in SLURM and backfilling can be
also found in LSF.

4.1.2 SLURM
The structure of a SLURM (Simple Linux Utility for Re-
source Management) [58] managed cluster is composed of
one or two SLURM servers and many compute nodes. Its
procedure of job submission is similar to that of TORQUE.
Fig. 4 illustrates the structure of SLURM. Its server hosts
the slurmctld daemon which is responsible for cluster
resource and job management. SLURM servers and the
corresponding slurmctld daemons can be deployed in an

controller daemons

slurmctld
(optional)

srun

sinfo

scontrol

squeue

sacct

sancel
database

slurmctld
(primary)

slurmctld
(backup)

SLURM commands

other 

compute node daemons

slurmd

slurmd slurmd slurmd...

clusters 

Fig. 4. SLURM structure.

active/passive mode in order to provide services of high
reliability for computing clusters. Each compute node hosts
one instance of the slurmd daemon, which is responsible
for job staging and execution. There are additional daemons,
e.g. slurmdbd which allows to collect and record account-
ing information for multiple SLURM-managed clusters and
slurmrestd that can be used to interact with SLURM
through a REST API (RESTful Application Programming
Interface). The SLURM resource list is held as a part of the
slurm.conf file located on SLURM server nodes, which
contains a list of nodes including features (e.g. CPU speed
and model, amount of memory) and configured partitions
(named queue in PBS) including partition names, list of
associated nodes and job priority.

Both PBS and SLURM have little (if at all) dedicated sup-
ports for container workloads. Containers are only sched-
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session scheduler  
(optional)

license scheduler  
(optional)

        resource 
management application

API

LSF

platform
application center

command line 
interface

Fig. 5. Spectrum LSF structure.

uled as conventional HPC workloads, e.g lacking of load-
balancing supports.

4.1.3 Spectrum LSF
IBM platform Load Sharing Facility (LSF), targeted for enter-
prises, is designed for distributed HPC deployments. LSF is
based on the Utopia job scheduler [55] developed at the Uni-
versity of Toronto. Its Session Scheduler runs and manages
short-duration batch jobs, which enables users to submit
multiple tasks as a single LSF job, consequently reduces
the number of job scheduling decisions. Session Scheduler
can efficiently share resources regardless of job execution
time and can make thousands of scheduling decisions per
second. These capabilities create a focus on throughput
which is often critical for HPC workloads. Fig. 5 illustrates
the structure of LSF. Its license scheduler allows to make
policies that control the way software licenses are shared
among users within an organisation. Jobs are submitted via
the command line interface, API or IBM platform applica-
tion centre. Job submission carries similar procedure as in
TORQUE.

LSF supports container workloads: Docker, Singularity
and Shifter. LSF configures container runtime control in the
application profile4 that is managed by the system adminis-
trator. Users do not need to consider which containers are
used for their jobs, instead only need to submit their jobs
to the application profile and LSF automatically manages
the container runtime control. Section 4.3.3 elaborates this
feature in more details.

4.2 Orchestration Frameworks on Cloud
Cloud clusters often include orchestration mechanisms
to coordinate tasks and hardware resources. Cloud has
evolved mature orchestrators to manage containers effi-
ciently. Container orchestrators can offer [11], [15], [37]:

• Resource limit control. Reserve a specific amount of
CPUs and memory for a container, which restrains
interference from other containers and provides in-
formation for scheduling decisions;

• Scheduling. It determines the policies that optimise
the placement of containers on nodes;

• Load balancing. It distributes workloads among con-
tainer instances;

• Health check. It verifies if a faulty container needs to
be destroyed or replaced;

4. LSF application profile: it is used to refine queue-level settings, or
to exclude some jobs from queue-level parameters.

• Fault tolerance. It allows to maintain a desired num-
ber of containers;

• Auto-scaling. It automatically adds and removes
containers.

Additionally, a container orchestrator should also sim-
plify networking, enable service discovery and support
continuous deployment [63].

4.2.1 Kubernetes

Kubernetes originally developed by Google is among the
most popular open-source container orchestrators, which
has a rapidly growing community and ecosystem with
numerous platforms being developed upon it. The archi-
tecture of Kubernetes comprises a master node and a set
of worker nodes. Kubernetes runs containers inside pods
that are scheduled to run either on master or worker nodes.
A pod can include one or multiple containers. Kubernetes
provides its services via deployments that are created by
submission of yaml files. Inside a yaml file, users can specify
services and computation to perform on the cluster. A user
deployment can be performed either on the master node or
the worker nodes.

Kubernetes is based on a highly modular architecture
which abstracts the underlying infrastructure and allows
internal customisation, such as the deployment of software-
defined networks or storage solutions. It also supports
various big-data frameworks, such as Hadoop MapReduce
[64], Spark [65] and Kafka [66]. Kubernetes incorporates a
powerful set of tools to control the life cycle of applications,
e.g. parameterised redeployment in case of failures and state
management. Furthermore, it supports software-defined in-
frastructures5 [67] and resource disaggregation [68] by lever-
aging container-based deployments and particular drivers
(e.g. Container Runtime Interface driver, Container Storage
Interface driver and Container Network Interface driver)
based on standardised interfaces. These interfaces enable
the definition of abstractions for fine-grain control of com-
putation, states and communication in multi-tenant Cloud
environments along with optimal usage of the underlying
hardware resources.

Kubernetes incorporates a scheduling system that per-
mits users to specify different schedulers for each job. The
scheduling system makes the decisions based on two steps
before the actual scheduling operations:

1) Node filtering. The scheduler locates the node(s)
that fit(s) the workload, e.g. a pod is specified with
node affinity, therefore, only certain nodes can meet
the affinity requirements or some nodes may not
include enough CPU resources to serve the request.
Normally the scheduler does not traverse the entire
node list, instead it selects the one/ones detected
first.

2) Node priority calculation. The scheduler calculates
a score for each node, and the highest scoring node
will run that pod.

5. Software-defined infrastructure (SDI) is the definition of comput-
ing infrastructure entirely under the control of software with no oper-
ator or human intervention. It operates independent of any hardware-
specific dependencies and is programmatically extensible.
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Kubernetes has started being utilised to assist HPC sys-
tems in container orchestration (Section 4.3).

4.2.2 Docker Swarm

Docker Swarm [69] is built for the Docker engine. It is a
much simpler orchestrator comparing with Kubernetes, e.g.
it offers less rich functionalities, limited customisations and
extensions. Docker Swarm is hence lightweight and suitable
for small workloads. In contrast, Kubernetes is heavyweight
for individual developers who may only want to set up
an orchestrator for simplistic applications and perform in-
frequent deployments. Nevertheless, Docker Swarm still
has its own API, and provides filtering, scheduling and
load-balancing. API is a strong feature commonly used in
Cloud orchestrators, as it enables applications or services
to talk to each other and provides connections with other
orchestrators.

The functionalities of Docker Swarm may be applied to
perform container orchestration on HPC systems as detailed
in Section 4.3.3.

4.2.3 Apache Mesos and YARN

Apache Mesos [70] is a cluster manager that provides
efficient resource isolation and sharing across distributed
applications or frameworks. Mesos removes the centralised
scheduling model that would otherwise require to compute
global schedules for all the tasks running on the different
frameworks connected to Mesos. Instead, each framework
on a Mesos cluster can define its own scheduling strate-
gies. For instance, Mesos can be connected with MPI or
Hadoop [71]. Mesos utilises a master process to manage
slave daemons running on each node. A typical Mesos
cluster includes 3 ∼ 5 masters with one acting as the leader
and the rest on standby. The master controls scheduling
across frameworks through resource offers that provide re-
source availability of the cluster to slaves. However, the
master process only suggests the amount of resources that
can be given to each framework according to the policies of
organisations, e.g fair sharing. Each framework rules which
resources or tasks to accept. Once a resource offer is accepted
by a framework, the framework passes Mesos a description
of the tasks. The slave comprises two components, i.e. a
scheduler registered to the master to receive resources and
an executor process to run tasks from the frameworks.

Mesos is a non-monolithic scheduler which acts as an
arbiter that allocates resources across multiple schedulers,
resolves conflicts, and ensures fair distribution of resources.
Apache YARN (Yet Another Resource Negotiator) [72] is
a monolithic scheduler which was developed in the first
place to schedule Hadoop jobs. YARN is designed for long-
running batch jobs and is unsuitable for long-running ser-
vices and short-lived interactive queries.

Mesosphere Marathon6 is a container orchestration
framework for Apache Mesos. Literature has seen the usage
of Mesos together with Marathon in container orchestration
on HPC systems as detailed in Section 4.3.3.

6. https://mesosphere.github.io/marathon/

4.2.4 Ansible
Ansible [73] is a popular software orchestration tool. More
specifically, it handles configuration management, applica-
tion deployment, cloud provisioning, ad-hoc task execu-
tion, network automation and multi-node orchestration. The
architecture of Ansible is simple and flexible, i.e. it does
not require a special server or daemons running on the
nodes. Configurations are set by playbooks that utilise yaml
to describe the automation jobs, and connections to other
nodes are via ssh. Nodes managed by Ansible are grouped
into inventories that can be defined by users or drawn from
different Cloud environments.

Ansible is adopted by the SODALITE framework (Sec-
tion 4.3.4) as a key component to automatically build con-
tainer images.

4.2.5 OpenStack
OpenStack [74] is mostly deployed as infrastructure-as-a-
service (IaaS)7 [75] on Cloud. It can be utilised to deploy and
manage cloud-based infrastructures that support various
use cases, such as web hosting, big data projects, software
as a service (SaaS) [76] delivery and deployment of contain-
ers, VMs or bare-metal. It presents a scalable and highly
adaptive open source architecture for Cloud solutions and
helps to leverage hardware resources [77]. It also manages
heterogeneous compute, storage and network resources.

Together with its support of containers, container or-
chestrators such as Docker Swarm, Kubernetes and Mesos,
Openstack enables the possibilities to quickly deploy, main-
tain, and upgrade complex and highly available infras-
tructures. OpenStack is also used in HPC communities to
provide IaaS to end-users, enabling them to dynamically
create isolated HPC environments.

Academia and industry have developed a plethora of
Cloud orchestrators. This article only reviews the ones that
are mostly relevant to the HPC communities and the ones
that have seen their usage in container orchestration for
HPC systems, and the rest is out of the scope herein.

4.3 Bridge Orchestration Strategies Between HPC and
Cloud
There are numerous works in literature [11], [78], [79], [80]
on container orchestration for Cloud clusters, however, they
are herein out of the scope. This section reviews the works
that have been performed on the general issues of bridging
the gap between conventional HPC and service-oriented
infrastructures (Cloud). Overall, the state-of-the-art works
on container orchestration for HPC systems fall into four
categories as illustrated in Fig. 6.

1) Added functionalities to HPC workload managers.
It relies on workload managers for resource man-
agement and scheduling; meanwhile adopts addi-
tional software such as MPI for container orchestra-
tion.

2) Connector between Cloud and HPC. Containers are
scheduled from Cloud clusters to HPC clusters. This
architecture isolates the HPC resources from Cloud

7. IaaS offers resources such as compute, storage and network as
services to users based on demand.

https://mesosphere.github.io/marathon/
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so as to ensure HPC environment security; mean-
while offers application developments with flexible
environments and powerful computing resources.

3) Cohabitation. Workload managers and Cloud or-
chestrators co-exist on an HPC cluster, such as IBM
LSF-Kubernetes. This gives a direction for the pro-
vision of HPC resources as services. In practice, the
HPC workload managers and Cloud orchestrators
do not coexist in one cluster.

4) Meta-orchestration. An additional orchestrator is
implemented on top of the Cloud orchestrator and
HPC workload manager.

There are pros and cons of the above four categories,
which are outlined in Table 6. In addition, a research and
engineering trend [12], [30], [81], [82], [83] is to move
HPC applications to Cloud, as Cloud provides flexible
and cost-effective services which are favoured by small-
sized or middle-sized business. Beltre etal. [84] proposed
to manage HPC applications by Kubernetes on a Cloud
cluster with powerful computing resources, e.g. InfiniBand,
which demonstrated comparable performance in container-
ised and bare-metal environments. The approach of this
kind may be extended to HPC systems, however, remains
unpractical for HPC centres to completely substitute their
existing workload managers.

4.3.1 Added Functionalities to WLM
A potential research direction is to complement workload
managers with container orchestration or make use of the
existing HPC software stacks. Wofford et al. [85] simply
adopt Open Runtime Environment (orted) reference imple-
mentation from Open MPI to orchestrate container launch
suitable for arbitrary batch schedulers.

Julian et al. [86] proposed their prototype for container
orchestration in an HPC environment. A PBS-based HPC
cluster can automatically scale up and down as load de-
mands by launching Docker containers using the job sched-
uler Moab [98]. Three containers serve as the front-end
system, scheduler (it runs PBS and Moab inside) and com-
pute node (launches pbs mom daemon, see Section 4.1.1).
More compute node containers are scheduled when there
is no sufficient number of physical nodes. Unused contain-
ers are destroyed via external Python scripts when jobs
complete. This approach may offer a solution for resource
elasticity on HPC systems (Section 5.2.6). Similarly, an early
study [87] described two models that can orchestrate Docker
containers using an HPC workload manager. The former
model launches a container to behave as one compute node
which holds all assigned processes, whilst the latter boots
a container per process by MPI launchers. The latter work
seems to be outdated as to MPI applications which can be
now automatically scaled with Singularity support.

4.3.2 Connector between Cloud and HPC
Cloud technologies are evolving to be able to support com-
plex applications of HPC, big data and AI. Nevertheless,
the applications with intensive computation and high inter-
processor communication could not scale well, particularly
due to the lack of low latency networks (e.g. InfiniBand) and
the usage of network virtualisation for network isolation.

A research and development trend is to converge HPC and
Cloud in order to take advantage of the resource manage-
ment and scheduling of both HPC and Cloud infrastructures
with minimal intrusion to HPC environments. Furthermore,
the software stack and workflows in Cloud and HPC are
usually developed and maintained by different organisa-
tions and users with various goals and methodologies,
hence a connector between HPC and Cloud systems would
bridge the gap and solve compatibility problems.

Zhou et al. [88], [89], [90], [91] described the design of a
plugin named Torque-Operator that serves as the key com-
ponent to its proposed hybrid architecture. The container-
ised AI applications are scheduled from the Kubernetes-
managed Cloud cluster to the TORQUE-managed HPC
cluster where the performance of the compute-intensive or
data-demanding applications can be significantly enhanced.
This approach is less intrusive to HPC systems, however, its
architecture shows one drawback: the latency of the network
bridging the Cloud and HPC clusters can be high, when a
large amount of data needs to be transferred in-between.

DKube8 is a commercial software that is able to execute
a wide range of AI/ML components scheduled from Ku-
bernetes to SLURM. The software comprises a Kubernetes
plugin and a SLURM Plugin. The former is represented
as a hub that runs MLOps (Machine Learning Operations)
management and associated Kubernetes workloads, while
the latter connects to SLURM.

4.3.3 Cohabitation
Liu et al. [92] showed how to dynamically migrate comput-
ing resources between HPC and OpenStack clusters based
on demands. At a higher level, IBM has demonstrated the
ability to run Kubernetes pods on Spectrum LSF where
LSF acts as a scheduler for Kubernetes. An additional
Kubernetes scheduler daemon needs to be installed into
the LSF cluster, which acts as a bridge between LSF and
the Kuberentes server. Kubelet will execute and manage
pod lifecycle on target nodes in the normal fashion. IBM
released LSF connector to Kubernetes, which makes use
of the core LSF scheduling technologies and Kubernetes
API functionalities. Kubernetes needs to be installed in a
subset of the LSF managed HPC cluster. This architecture
allows users to run Kubernetes and HPC batch jobs on
the same infrastructure. The LSF scheduler is packed into
containers and users submit jobs via kubectl. The LSF
scheduler listens to the Kubernetes API server and translates
pod requests into jobs for the LSF scheduler. This approach
can add additional heavy workloads to HPC systems, as
Kubernetes relies deployments of services across clusters to
perform load balancing, scheduling, auto scheduling, etc.

Piras et al. [93] implemented a method that expanded
Kubernetes clusters with HPC clusters through Grid Engine.
Submission is performed by PBS jobs to launch Kubernetes
jobs. Therefore, HPC nodes are added to Kubernetes clusters
by installing Kubernetes core components (i.e. kubeadm
and Kubelet) and Docker container engine. On HPC, es-
pecially HPC production systems in HPC centres, adding
new software packages that require using root privileges can
cause security risks and alter the working environments of

8. https://www.dkube.io/products/datascience/hpc-slurm.php

https://www.dkube.io/products/datascience/hpc-slurm.php
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TABLE 6
A list of the related work on container orchestration for HPC systems.

Orchestration approaches Advantages Disadvantages

Added functionalities to WLM [85], [86], [87] Less intrusive Limited functionalities, security issues for us-
age of Docker on HPC

Connector between Cloud and HPC [88],
[89], [90], [91]

Non-intrusive; flexible environments mean-
while powerful computing resources; exploit
orchestration strategies of orchestration plat-
forms

High network latency between Cloud and
HPC

Cohabitation [1], [84], [86], [87], [92], [93],
[94], [94]

Fully exploit the functionalities of orches-
tration platforms; flexible execution environ-
ments; enable HPC as services

Intrusive, security issues

Meta-orchestration [95], [96], [97] Less-intrusive; flexible environments mean-
while powerful computing resources; con-
tainer orchestration strategies in addition to
the ones given by Cloud orchestrator

Increase architecture complexity; increase
maintenance efforts

ConnectorAdded functionalities

HPC WLM
MPI or Docker 

HPC WLM
Cloud orchestrator

orchestrator

Cloud
HPC WLM

orchestrator

Additional

Meta-orchestrationCohabitation

orchestrator

Cloud
HPC WLM plugins

Fig. 6. The four types of container orchestration on HPC systems.

current users. The security issues will be further elaborated
in Section 5.1.4.

Khan et al. [1] proposed to containerise HPC workloads
and install Mesos and Marathon (Section 4.2.3) on HPC
clusters for resource management and container orchestra-
tion. Its orchestration system can obtain the appropriate
resources satisfying the needs of requested services within
defined Quality-of-Service (QoS) parameters, which is con-
sidered to be self-organised and self-managed meaning that
users do not need to specifically request resource reserva-
tion. Nevertheless, this study has not shown insight into
novel strategies of container orchestration for HPC systems.

Wrede et al. [94] performed their experiments on HPC
clusters using Docker Swarm as the container orchestra-
tor for automatic node scaling and using C++ algorithmic
skeleton library Muesli [99] for load balance. Its proposed
working environment is targeted for Cloud clusters. Usage
of Docker cannot be easily extended to HPC infrastructures
especially to HPC production systems due to the security
risks.

4.3.4 Meta-Orchestration
Croupier [95] is a plugin implemented on Cloudify9 server
that is located at a separate node in addition to the nodes
that are managed by an HPC workload manager and a
Cloud orchestrator. Croupier establishes a monitor to collect
the status of every infrastructure and the operations (e.g.
status of the HPC batch queue). Croupier together with
Cloudify, can orchestrate batch applications in both HPC

9. https://cloudify.co/

and Cloud environments. Similarly, Di Nitto et al. [96] pre-
sented the SODALITE10 framework by utilising XOpera11

to manage the application deployment in heterogeneous
infrastructures.

Colonnelli et al. [97] presented a proof-of-concept frame-
work (i.e. Streamflow) to execute workflows on top of
the hybrid architecture consisting of Kubernetes-managed
Cloud and OCCAM [100] HPC cluster.

4.4 Section Highlights
HPC workload managers and Cloud orchestrators have
distinct ways to manage clusters mainly because of their
types of workloads and hardware resource availabilities.
Table 5 summaries the differences of key features between
HPC workload managers and Cloud Orchestrators. Typical
HPC jobs are large workloads with long but ascertainable
execution time and large throughput. HPC jobs are often
submitted to a batch queue within a workload manager
where jobs wait to be scheduled from minutes to days. Per
contra, job requests can be granted immediately on Cloud as
resources are available on demand. Batch-queuing is insuffi-
cient to satisfy the needs of Cloud communities: most of jobs
are short in duration and the Cloud services are persistently
long-running programs. Most of the HPC workload man-
agers support Checkpointing that allows applications to save
the execution states of a running job and restart the job from
the checkpointing when a crash happens. This feature is

10. SODALITE: SOftware-Defined AppLication Infrastructures man-
agemenT and Engineering. https://www.sodalite.eu/

11. https://github.com/xlab-si/xopera-opera.

https://cloudify.co/
https://www.sodalite.eu/
https://github.com/xlab-si/xopera-opera
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critical for an HPC application with execution time typically
from hours to months. Because it enables the application to
recover from error states or resume from the state when it
was previously terminated by the workload manager when
its walltime limit had been reached or resource allocation
had been exceeded. In contrary, jobs on Cloud, which are
often micro-service programs, are usually relaunched in
case of failures [101]. A container orchestrator offers an
important property, i.e. container status monitoring. This is
practical for long-running Cloud services, as it can monitor
and replace unhealthy containers per desired configuration.
HPC systems do not offer the equivalence of container pod
which bundle performance monitoring services with the
application itself as in Cloud systems [13]. Additionally,
HPC workload managers often do not provide capabilities
of application elasticity or necessary API at execution time,
however, these capabilities are important for task migration
and resource allocation changes at runtime on Cloud [102].

Section 4.3 has reviewed the approaches to address the
issues of container orchestration on HPC systems, which
are summarised in Table 6. Overall, a container orchestrator
on its own does not address all the requirements of HPC
systems [3], as a result cannot replace existing workload
managers in HPC centres. An HPC workload manager
lacks micro-service support and deeply-integrated container
management capabilities in which container orchestrators
manifest their efficiency.

5 RESEARCH CHALLENGES AND VISION

The distinctions between Cloud and HPC clusters are di-
minishing, especially with the trend of HPC Clouds in
industry [103]. HPC Cloud is becoming an alternative to
on-premise HPC clusters for executing scientific applica-
tions and business analytics models [16]. Containerisation
technologies help to ease the efforts of moving applications
between Cloud and HPC. Nevertheless, not all applications
are suitable for containerisation. For instance, in the typical
HPC applications such as weather forecast or modelling of
computational fluid dynamics, any virtualisation or high-
latency networks can become the bottlenecks for perfor-
mance. Containerisation in HPC still faces challenges of
different folds (Section 5.1).

Interest in using containers on HPC systems is mainly
due to the encapsulation and portability that yet may trade
off with performance. In practice, containers deployed on
HPC clusters often have large image size and as a result
each HPC node can only host a few containers that are
CPU-intensive and memory-demanding. In addition, im-
plementation of AI frameworks such as TensorFlow and
PyTorch [104] typically also have large container image size.
Architecture of HPC containers should be able to easily
integrate seamlessly with HPC workload managers. The
research directions (Section 5.2) which can be envisioned
are not only to adapt the existing functionalities from Cloud
to HPC, but to also explore the potentials of containerisation
so as to improve the current HPC systems and applications.

5.1 Challenges and Open Issues
Although containerisation enables compatibility, portability
and reproducibility, containerised environments still need

to match the host architecture and exploit the underlying
hardware. The challenges that containerisation faces on
HPC systems are in three-fold: compatibility, security and
performance. Some issues still remain as open questions.
Table 7 summarises the potential solutions to the research
challenges and the open questions that will be discussed in
this section.

5.1.1 Library Compatibility Issues
Mapping container libraries and their dependencies to the
host libraries can cause incompatibility. Glibc [105], which is
an implementation of C standard library that provides core
supports and interfaces to kernel features, can be a common
library dependency. The version of Glibc on the host may
be older or newer than the one in the container image,
consequently introducing symbol mismatches. Additionally,
when the container OS (e.g. Ubuntu 18.04) and the host OS
are different (e.g. CentOS 7), it is likely that some kernel
ABI are incompatible, which may lead to container crashes
or abnormal behaviours. This issue can also occur to MPI
applications. As a result users must either build an exact
version of the host MPI or have the privilege to mount the
host MPI dependency path into the container.

A research direction to handle library mismatches be-
tween container images and hosts is to implement a con-
tainer runtime library at a lower level. For instance, Nvidia
implemented the library libnvidia-container12 that
manages driver or library matching at container runtime, i.e.
using a hook interface to inject and/or activate the correct
library versions. However, the libnvidia-container li-
brary can be only applied to Nividia GPUs. A significant
modification of this library code is likely to be needed in
order to be adapted for other GPU suppliers. In practice,
such a compatibility layer would also require supports from
different HPC interconnect and accelerator vendors.

5.1.2 Compatibility Issues of Container Engines and Im-
ages
Not all Docker images can be converted by HPC container
engines to their own formats. Moreover, to reuse HPC
container implementations between container engines, users
need to learn different container command lines to build the
corresponding images, which further complicates adoption
of containers for HPC applications.

This issue calls for container standardisation. OCI is
a Linux foundation project that designs open standards
for container image formats (a filesystem bundle or
rootfs) and multiple data volume [106]. Some guidelines
were proposed in [63] , i.e. a container should be:

• Not bound to higher-level frameworks, e.g. an or-
chestration stack;

• Not tightly associated with any particular vendor or
project;

• Portable across a wide variety of OSs, hardware,
CPUs, clusters, etc.

Unfortunately, this standard cannot guarantee that the run-
time hooks built for one runtime can be used by another. For
example, container privileges (e.g. mount host filesystems)

12. https://github.com/NVIDIA/libnvidia-container

https://github.com/NVIDIA/libnvidia-container
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TABLE 7
Overview of research challenges and potential solutions.

Research challenges Potential solutions Open Questions

Compatibility issues

Library compatibility OS updates,low-level container run-
time libraries

Reuse container images across platformsCompatibility of engines and images Container standardisation (e.g. OCI)

Kernel optimisation Using OS kernel to be library OS

Security issues Private container registry, namespace
settings, OS updates, rootless instal-
lation of container engines, avoid
root processes inside containers

Risk of using namespaces

Performance degradation Trade-off between performance and
portability

Leverage hardware resources with-
out losing portability

assumed by one container runtime may not be translated to
unprivileged runtimes (e.g. not all HPC centres have mount
namespace enabled) [107].

5.1.3 Kernel Optimisation
In general, containers are forbidden by the host to install
their own kernel modules for the purpose of application iso-
lation [108]. This is a limitation for the applications requiring
kernel customisation, because the kernels of their HPC hosts
cannot be tuned and optimised. Shen et al. [108] proposed
an Xcontainer to address this issue by tuning the Linux
kernel into library OS that supports binary compatibility.
This functionality is yet to be explored in HPC containers.

5.1.4 Security Issues
Containers face three major threats [109]:

• Privilege Escalation. Attackers gain access to hosts
and other containers by breaking out of their current
containers.

• Denial-of-Service (DoS). An attack causes services
to become inaccessible to users by disruption of a
machine or network resources.

• Information Leak. Confidential details of other con-
tainers are leaked and utilised for further attacks.

Multiple or many containers share a host kernel, there-
fore, one container may infect other containers. In this case,
a container does not reduce attack surfaces, but rather brings
multiple instances of attack surfaces. For example, starting
from version V3.0, Singularity has added Cgroups support
that allows users to limit the resources consumed by con-
tainers without the help from a batch scheduling system (e.g.
TORQUE). This feature helps to prevent DoS attacks when
a container seizes control of all available system resources
which prohibits other containers from operating properly.

Execution of HPC containers (including the Docker En-
gine starting from v19.03) does not require root privileges
on the host. Containers in general adopt namespaces to
isolate resources among users and map a root user inside
a container to a non-root user on the host. The User names-
pace nevertheless is not a panacea to resolve all problems
of resource isolation. User exposes code in the kernel to
non-privileged users, which was previously limited to root
users. A container environment is generated by users, and

it is likely that some software inside a container may be
embedded with security vulnerabilities. Root users inside a
container may escalate their privileges via application level
vulnerability. This can bring security issues to the kernel
that does not account for mapped PIDs/GIDs. This issue
can be addressed in two ways: (1) avoiding root processes
inside HPC containers; (2) installing container engines with
user permission instead of sudo installation. Security issues
of the user namespace continue to be discovered even in
the latest version of Linux kernels. Therefore, many HPC
production centres have disabled the configuration of this
namespace, which prevents usage of almost any state-of-
the-art HPC containers. How to address the risks of using
namespaces still remains an open question.

5.1.5 Performance Degradation
GPU and accelerators often require customised or propri-
etary libraries that need to be bound to container images
so as to leverage performance. This operation is at the
cost of portability [107]. It is de facto standard to utilise
the optimised MPI libraries for HPC interconnects, such
as InfiniBand and Slingshot [110], and it is likely that the
container performance degrades in a different HPC infras-
tructure [22] (see Section 3.2). There is no simple solution to
address this issue.

Another example presented in [111] identified the per-
formance loss due to increasing communication cost of
MPI processes. This occurs when the number of con-
tainers (MPI processes running inside containers) rises
on a single node, e.g. point to point communication
(MPI_Irecv, MPI_Isend), polling of pending asyn-
chronous messages (MPI_Test) and collective communica-
tion (MPI_Allreduce).

5.2 Research and Engineering Opportunities
Research studies should continue working on solutions to
the open question identified in Section 5.1. This section
discusses current research and engineering directions that
are interesting, yet still need further development. This
section also identifies new research opportunities that yet
need to be explored. The presentation of this section is
arranged from short-term vision to long-term efforts. Table 8
summarises the potentials discovered in literature and the
prospects given by the authors.
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TABLE 8
Future directions of research and engineering.

Topics Importance State-of-art trends Prospects given by the authors

Containerisation of AI in HPC Leverage HPC systems
for ML/DL training

Containerised AI
apps & frameworks

Improve scalability;
Enable out-of-box usage

HPC container registry Pre-build images accessible
within HPC centres,
ensure container security

HPC centres set up
private registries

WLMs boot containers from reg-
istries without users awareness

Linux namespace guideline Ensure security HPC centres provide namespace
guidelines

Different user groups to have dif-
ferent set of namespaces enabled

DevOps Research reproducibility Integration of Singularity with
Jenkins

HPC-specific DevOps tools

Middleware system Flexible and easy to plugin
or plugout new components

Transfer Docker to HPC containers
and perform the deployment
onto HPC systems

Enable DevOps on HPC systems

Resource elasticity Flexible usage of hardware
resources

Kubernetes to instantiate the
containerised HPC
schedulers

Integration of containers to intro-
duce resource elasticity to WLM

Moving toward minimal OS Reduce maintenance
efforts

– Maintain minimal OS kernel and
containerised the rest of the HPC
software stack

5.2.1 Containerisation of AI in HPC
Model training of AI/DL applications can immensely ben-
efit from the compute power (GPU or CPU), storage and
security [112] of HPC clusters in addition to the superior
GPU-aware scheduling and features of workflow automa-
tion provided by workload managers. The trained models
are subsequently deployed on Cloud for scalability at low
cost and on HPC for computation speed. Exploiting HPC
infrastructures for ML/DL training is becoming a topic of
increasing importance [113]. For example, Fraunhofer13 has
developed the software framework Carme14 that combines
established open source ML and Data Science tools with
HPC backends. The execution environments of the tools are
provided by predefined Singularity containers.

AI applications are usually developed with high-level
scripting languages or frameworks, e.g. TensorFlow and Py-
Torch, which often require connections to external systems
to download a list of open-source software packages during
execution. For instance, an AI application written in Python
cannot be compiled into an executable that has included all
the dependencies ready for execution as in C/C++. There-
fore, the developers need flexibility to customise the exe-
cution environments. Since HPC environments, especially
on HPC production systems, are often based on closed-
source applications and their users have restricted account
privileges and security restrictions [6], deployment of AI ap-
plications on HPC infrastructures is challenging. Besides the

13. Fraunhofer: A German research organisation. https://www.
fraunhofer.de/

14. https://www.itwm.fraunhofer.de/en/departments/hpc/
data-analysis-and-machine-learning/carme-softwarestack.html

predefined module environments or virtual environments
(such as Anaconda), containerisation can be an alternative
candidate, which enables easy transition of AI workloads to
HPC while fully taking advantage of HPC hardware and the
optimised libraries of AI applications without compromis-
ing security. Huerta et al. [114] recommend three guidelines
for containerisation of AI applications for HPC centres:

• Provide up-to-date documentation and tutorials to
set up or launch containers.

• Maintain versatile and up-to-date base container
images that users can clone and adapt, such as a
container registry (see Section 5.2.2).

• Give instructions on installation or updates of soft-
ware packages into containers. The AI program
depends on distributed training software, such as
Horovod [115], which then depends on system ar-
chitecture and specific versions of software packages
such as MPI.

Increasing amount of new software frameworks are be-
ing developed using containerisation technologies to facili-
tate deployment of AI applications on HPC systems. Further
research is still needed to improve scalability and enable
out-of-box usage.

5.2.2 HPC Container Registry
Container registry is a useful repository to provide pre-built
container images that can be accessed easily either by public
or private users by pulling images to the host directly. It
is portable to deploy applications in this way on Cloud
clusters. Accesses to external networks are often blocked

https://www.fraunhofer.de/
https://www.fraunhofer.de/
https://www.itwm.fraunhofer.de/en/departments/hpc/data-analysis-and-machine-learning/carme-softwarestack.html
https://www.itwm.fraunhofer.de/en/departments/hpc/data-analysis-and-machine-learning/carme-softwarestack.html
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in HPC centres, so users need to upload images onto the
clusters manually. One solution is to set up a private registry
within the HPC centres that offer pre-built images suitable
for the targeted systems and architectures.

A container registry is also a way to ensure container
security. It is a good security practice to ensure that images
executed on the HPC systems are signed and pulled from
a trusted registry. Scanning vulnerabilities on the registry
should be regularly performed.

To simplify usage, the future work can enable HPC
workload managers to boot the default containers on the
compute nodes (by pulling images from the private reg-
istry) which match the environments with all the required
libraries and configuration files of user login nodes where
users implement their own workflows and submit their
jobs. The jobs should be started without user awareness
of the presence of containers and without additional user
intervention.

5.2.3 Linux Namespace Guidelines
The set of Linux namespaces used within an implementa-
tion depends on the policies of HPC centres [116]. HPC cen-
tres should provide clear instructions on the availabilities of
namespaces. For example, different user groups may have
different namespaces enabled or disabled. A minimal set of
namespaces should be enabled for a general user group:
mount and user, which are suitable for node-exclusive
scheduling. PID and Cgroups should be provided to re-
strict resource usage and enforce process privacy, which
are useful for shared-node scheduling. Advanced use cases
may require additional sets of namespaces. When users
submit the container jobs, workload managers can start the
containers with appropriate namespaces enabled.

5.2.4 DevOps
DevOps aims at integrating efforts of development (Dev)
and operations (Ops) to automate fast software delivery
while ensuring correctness and reliability [117], [118]. This
concept is influential in Cloud Computing and has been
widely adopted in industry, as DevOps tools minimise the
overhead of managing a large amount of micro-services. In
HPC environments, typical applications have large work-
loads, hence the usage of DevOps should concentrate on
research reproducibility. Nevertheless, the off-the-shelf De-
vOps tools are not well fitted for HPC environments, e.g.
the dependencies of MPI applications are too foreign for
the state-of-the-art DevOps tools. A potential solution is
to develop HPC-specific DevOps tools for the applications
that are built and executed on on-premise clusters [16].
Unfortunately, HPC environments are known to be inflex-
ible and typical HPC applications are optimised to leverage
resources, thereby generation of DevOps workflows can be
restricted and slow. Such obstacles can be overcome by con-
tainerisation, which may provision DevOps environments.
For instance, Sampedro et al. [119] integrate Singularity with
Jenkins [120] that brings CICD15 practices into HPC work-
flows. Jenkins is an open-source automation platform for
building and deploying software, which has been applied
at some HPC sites as a general-purpose automation tool.

15. CICD: Continuous integration, delivery and deployment. It is
widely used in DevOps communities.

5.2.5 Middleware System

A middleware system, which bridges container building
environments with HPC resource managers and schedulers,
can be flexible. A middleware system can be either located
on an HPC cluster or connect to it with secured authenti-
cation. The main task of the middleware is to perform job
deployment, job management, data staging and generating
non-root container environments [121]. Different container
engines can be swiftly switched, optimisation mechanisms
can be adapted to the targeted HPC systems and workflow
engines [122] can be easily plugged in. Middleware systems
can be a future research direction that provides a portable
way to enable DevOps in HPC centres.

5.2.6 Resource Elasticity

One major difference between resource management on
HPC and Cloud is the elasticity [123], i.e. an HPC workload
manager runs on a fixed set of hardware resources and
the workloads of its jobs at any point can not exceed the
resource capacity, while Cloud orchestrators can scale up
automatically the hardware resources to satisfy user needs
(e.g. AWS spot instances). Static reservation is a limitation
for efficient resource usages on HPC systems [124]. One
future direction of containerisation for HPC systems can
work towards improvement of the elasticity of HPC infras-
tructure, which can be introduced to its workload manager.
In [123], [125], the authors presented a novel architecture
that utilises Kubernetes to instantiate the containerised HPC
workload manager. In this way, the HPC infrastructure is
dynamically instantiated on demand and can be served as a
single-tenant or multi-tenant environment. A complete con-
tainerised environments on HPC system may be impractical
and much more exploration is still needed.

5.2.7 Moving Towards Minimal OS

Containers may be utilised to partially substitute the cur-
rent HPC software stack. Typical compute nodes on HPC
clusters do not contain local storage (e.g. hardware disk),
therefore lose states after reboots. The compute node boots
via a staged approach [116]: (1) a kernel and initial RAM
disk are loaded via a network device; (2) a root filesystem is
mounted via the network. In a monolithic stateless system,
modification of the software components often requires
system rebooting to completely activate the functions of
updates. Using containerised software packages on top of
a minimal OS (base image) on the compute nodes, reduces
the number of components in the kernel image, hence
decreasing the frequency of node reboots. Furthermore, the
base image of reduced size also simplifies the post-boot
configurations that need to run in the OS image itself, conse-
quently the node rebooting time is minimised. Additionally,
when a failure occurs, a containerised service can be quickly
replaced without affecting the entire system. Long-term
research is required on HPC workload managers to control
the software stack and workloads that are partially native
and partially containerised. Moreover, it needs to explored
whether containerisation of the entire OS on HPC systems
is feasible.
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6 CONCLUDING REMARKS

This paper presents a survey and taxonomy for the state-of-
the-art container engines and container orchestration strate-
gies specifically for HPC systems. It underlines differences
of containerisation on Cloud and HPC systems. The research
and engineering challenges are also discussed and the op-
portunities are envisioned.

HPC systems start to utilise containers as thereof reduce
environment complexity. Efforts have been also made to
ameliorate container security on HPC systems. This article
identified three points to increase the security level: (1)
set on-site container registry, (2) give Linux namespaces
guidelines (3) and remove root privilege meanwhile avoid
permission escalation. Ideally, HPC containers should re-
quire no pre-installation of container engines or installation
can be performed without root privileges, which not only
meets the HPC security requirements but also simplifies the
container usability.

Containers will continue to play a role in reducing the
performance gap and deployment complexity between on-
premise HPC clusters and public Clouds. Together with the
advancement of low-latency networks and accelerators (e.g.
GPUs, TPUs [126]), it may eventually reshape the two fields.
Containerised workloads can be moved from HPC to Cloud
so as to temporarily relieve the peak demands and can be
also scheduled from Cloud to HPC in order to exploit the
powerful hardware resources. The research and engineering
trend are working towards implementation of the present
container orchestrators within HPC clusters, which however
still remains experimental. Many studies have been devoted
to container orchestration on Cloud, however, it can be
foreseen that the strategies will be eventually introduced
to HPC workload managers.

In the future, it can be presumed that containerisation
will play an essential role in application development, im-
prove resource elasticity and reduce complexity of HPC
software stacks.
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A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:
An Imperative Style, High-Performance Deep Learning Library,”
in Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada (H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, eds.), pp. 8024–8035, 2019.

[105] B. Gough, GNU Scientific Library Reference Manual - Third Edition.
Network Theory Ltd., 3rd ed., 2009.

[106] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete
Container State Migration,” in 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), pp. 2137–2142,
June 2017.

[107] R. S. Canon and A. Younge, “A Case for Portability and Repro-
ducibility of HPC Containers,” in 2019 IEEE/ACM International
Workshop on Containers and New Orchestration Paradigms for Isolated
Environments in HPC (CANOPIE-HPC), pp. 49–54, Nov 2019.

[108] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou,
R. Van Renesse, and H. Weatherspoon, “X-Containers: Break-
ing Down Barriers to Improve Performance and Isolation of
Cloud-Native Containers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, (New York, NY,
USA), p. 121C135, Association for Computing Machinery, 2019.

[109] H. Gantikow, C. Reich, M. Knahl, and N. Clarke, “Providing Se-
curity in Container-Based HPC Runtime Environments,” in High
Performance Computing (M. Taufer, B. Mohr, and J. M. Kunkel,
eds.), (Cham), pp. 685–695, Springer International Publishing,
2016.

[110] K. Shafie Khorassani, C. C. Chen, B. Ramesh, A. Shafi, H. Subra-
moni, and D. Panda, “High Performance MPI over the Slingshot
Interconnect: Early Experiences,” in Practice and Experience in
Advanced Research Computing, PEARC ’22, (New York, NY, USA),
Association for Computing Machinery, 2022.

[111] J. Zhang, X. Lu, and D. K. Panda, “High Performance MPI Library
for Container-Based HPC Cloud on InfiniBand Clusters,” in 2016
45th International Conference on Parallel Processing (ICPP), pp. 268–
277, Aug 2016.

[112] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid
Computing-Where HPC Meets Grid and Cloud Computing,”
Future Gener. Comput. Syst., vol. 27, p. 440C453, May 2011.

[113] R. Mayer and H.-A. Jacobsen, “Scalable Deep Learning on
Distributed Infrastructures: Challenges, Techniques, and Tools,”
ACM Comput. Surv., vol. 53, Feb. 2020.

[114] E. A. Huerta, A. Khan, E. Davis, C. Bushell, W. D. Gropp, D. S.
Katz, V. Kindratenko, S. Koric, W. T. C. Kramer, B. McGinty, and
et al., “Convergence of artificial intelligence and high perfor-
mance computing on NSF-supported cyberinfrastructure,” Jour-
nal of Big Data, vol. 7, Oct 2020.

[115] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed
deep learning in TensorFlow,” CoRR, vol. abs/1802.05799, 2018.

[116] B. S. Allen, M. A. Ezell, P. Peltz, D. Jacobsen, E. Roman, C. Lu-
eninghoener, and J. L. Wofford, “Modernizing the HPC System
Software Stack,” CoRR, vol. abs/2007.10290, 2020.

[117] M. Hüttermann, DevOps for Developers. Apress, 2012.
[118] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A

Survey of DevOps Concepts and Challenges,” ACM Comput.
Surv., vol. 52, Nov. 2019.

[119] Z. Sampedro, A. Holt, and T. Hauser, “Continuous Integration
and Delivery for HPC: Using Singularity and Jenkins,” in Proceed-

ings of the Practice and Experience on Advanced Research Computing,
PEARC ’18, (New York, NY, USA), Association for Computing
Machinery, 2018.

[120] J. Muli and A. Okoth, Jenkins Fundamentals: Accelerate Deliverables,
Manage Builds, and Automate Pipelines with Jenkins. Packt Publish-
ing, 2018.

[121] M. H02b and D. Kranzlmller, “Enabling EASEY Deployment of
Containerized Applications for Future HPC Systems,” in Lecture
Notes in Computer Science, pp. 206–219, Springer International
Publishing, 2020.

[122] M. Barika, S. Garg, A. Y. Zomaya, L. Wang, A. V. Moorsel,
and R. Ranjan, “Orchestrating Big Data Analysis Workflows in
the Cloud: Research Challenges, Survey, and Future Directions,”
ACM Comput. Surv., vol. 52, Sept. 2019.

[123] C. Crin, N. Greneche, and T. Menouer, “Towards Pervasive Con-
tainerization of HPC Job Schedulers,” in 2020 IEEE 32nd Inter-
national Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pp. 281–288, Sep. 2020.

[124] D. Huber, M. Streubel, I. Comprés, M. Schulz, M. Schreiber, and
H. Pritchard, “Towards Dynamic Resource Management with
MPI Sessions and PMIx,” in Proceedings of the 29th European MPI
Users’ Group Meeting, EuroMPI/USA’22, (New York, NY, USA),
p. 57C67, Association for Computing Machinery, 2022.

[125] N. Greneche, T. Menouer, C. Cérin, and O. Richard, “A methodol-
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