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Challenging Machine Learning-based Clone
Detectors via Semantic-preserving Code
Transformations
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Abstract—Software clone detection identifies similar or identical code snippets. It has been an active research topic that attracts
extensive attention over the last two decades. In recent years, machine learning (ML) based detectors, especially deep learning-based
ones, have demonstrated impressive capability on clone detection. It seems that this longstanding problem has already been tamed
owing to the advances in ML techniques. In this work, we would like to challenge the robustness of the recent ML-based clone detectors
through code semantic-preserving transformations. We first utilize fifteen simple code transformation operators combined with
commonly-used heuristics (i.e., Random Search, Genetic Algorithm, and Markov Chain Monte Carlo) to perform equivalent program
transformation. Furthermore, we propose a deep reinforcement learning-based sequence generation (DRLSG) strategy to effectively
guide the search process of generating clones that could escape from the detection. We then evaluate the ML-based detectors with the
pairs of original and generated clones. We realize our method in a framework named CLONEGEN (stands for Clone Generator). In
evaluation, we challenge the two state-of-the-art ML-based detectors and four traditional detectors with the code clones after
semantic-preserving transformations via the aid of CLONEGEN. Surprisingly, our experiments show that, despite the notable successes
achieved by existing clone detectors, the ML models inside these detectors still cannot distinguish numerous clones produced by the
code transformations in CLONEGEN. In addition, adversarial training of ML-based clone detectors using clones generated by CLONEGEN
can improve their robustness and accuracy. Meanwhile, compared with the commonly-used heuristics, the DRLSG strategy has shown
the best effectiveness in generating code clones to decrease the detection accuracy of the ML-based detectors. Our investigation reveals

an explicable but always ignored robustness issue of the latest ML-based detectors. Therefore, we call for more attention to the

robustness of these new ML-based detectors.

Index Terms—Clone Detection, Code Transformaiton, Semantic Clone, Machinae Learning

1 INTRODUCTION

C ODE reuse via copy-and-paste actions is common in
software development. Such practice typically generates
a large amount of similar code, which is often called code
clones. According to the large-scale study conducted by
Mockus [1], more than 50% of files were reused in some open-
source projects. Though code cloning may be helpful under
proper utilization [2], it can also become bad programming
practice because of the painful maintenance costs [3]. For
example, Li et al. [4] reported that 22.3% of operating systems’
defects were introduced by code cloning. Moreover, code
cloning also brings intelligence property violations [5], [6],
[7] and security problems [4], [8].

In retrospect, source code clone detection is an active
research domain that attracts extensive attentions. Multiple
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clone detectors have been proposed based on various types
of code representations, including Textual- or Token-based [9],
[10], Ast-based [11], PDG-based [12], etc. These traditional
detectors are primarily designed for syntax-based clone
detection (clones with syntactic similarity). Besides, many of
them are of limited capability (e.g., specialized for a certain
type of clones) and low-efficiency [13], [14].

Recently, the latest machine learning (ML) methods
have been significantly enhancing the capabilities of clone
detectors. For example, FCDETECTOR [15] trains a DNN
network to detect clones of functions by capturing code
syntax and semantic information through AST (abstract
syntax tree) and CFG (control flow graph). ASTNN [16]
maintains an AST-based neural source code representation
that utilizes a bidirectional model to exploit the naturalness
of source code statements for clone detection. TBCCD [17]
obtains structural information of code fragments from AST
and lexical information from code tokens and adopts a
tree-based traditional approach to detect semantic clones.
CCLEARNER [18] extracts tokens from source code to train a
DNN-based classifier and then uses the classifier to detect
clones in a codebase. These new ML-based approaches fuse
the latest ML techniques with the code features extracted
from clones, thus achieving highly accurate results. Usually,
they can detect most semantic clones with accuracy over
95% [15], [16], [17].

Though the new ML-based clone detectors have shown
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impressive accomplishments, their effectiveness heavily
relies on well-labeled training data [19]. The performance of
a detector trained with one dataset can be less effective in
detecting code clones in another dataset. Unlike simple texts,
source code contains both textual and structural information,
which makes ground-truth clone pairs more versatile. Hence,
building a robust prediction model for code clone detection
is inherently challenging. For example, code fragments int
b=0; and int b;b=0; have the same semantics, but their
CFG and AST slightly differ. Hence, rather than applying
heavy code obfuscations and compiler optimizations, can
we merely generate light-weight source code variations at
some program locations to effectively lower the accuracy
of a ML-based detector? From this point, we investigate
and observe that adopting semantic-preserving transformation
of a code fragment is of practical importance in validating the
robustness of ML-based clone detectors.

Specifically, we present a framework, named CLONEGEN,
that performs semantic-preserving code transformations to
challenge ML-based clone detectors. In CLONEGEN, we
have developed 15 lightweight and semantic-preserving
code transformations (e.g., variable renaming, for-loop
to while-loop conversion, code order swapping, etc.). In
general, CLONEGEN targets the cheap yet effective transfor-
mation (or a combination of transformations) on a given code
snippet to evade the clone detection. To effectively guide
the combinations of the 15 atomic transformations, CLO-
NEGEN supports various heuristic strategies (i.e., Random
Search, Genetic Algorithm, and Markov Chain Monte Carlo).
Essentially, to quickly find the (near-) optimal solutions
for evading clone detection is an optimization problem of
how to combine multiple transformations. To address this,
we design a deep reinforcement learning (DRL) sequence
generation model (called DRLSG), which uses a Proximal
Policy Optimization (PPO) strategy neural network [20] to
guide the search process.

With CLONEGEN, we select unique code snippets from
the widely used OJClone datasets [21]. Given a selected code
snippet 2, we generate semantic-preserved variants and pair
2 with each of them. Then, we feed the formed clone pairs
to the ML-based detectors to challenge whether they can still
determine these code clones produced by our framework.

To evaluate the effectiveness of CLONEGEN, clone pairs
generated by CLONEGEN are provided to the two state-of-
the-art open-source ML-based detectors (namely, ASTNN
and TBCCD), as well as a baseline detector TEXTLSTM [22].
We find that 40.1%, 32.9% and 44.2% of the clone pairs
supplied by CLONEGEN can successfully evade the detection
of ASTNN, TBCCD, and TEXTLSTM, respectively. Consider-
ing the original accuracy of these detectors (more than 95%)
on the OJClone datasets, experimental results prove that
CLONEGEN is notably effective in lowering the accuracy
of the ML-based clone detectors via the DRLSG-guided
lightweight code transformations. Meanwhile, we further
evaluate the effectiveness of CLONEGEN in improving the
robustness of ML-based clone detectors via adversarial
training. In the best case, adversarial training improved
the f-measure of the model by 43.9%. We find among the
clone pairs provided by DRLSG, 13.2% and 15.8% can
still successfully escape from the detection of ASTNN and
TBCCD after adversarial training.

To summarize, we made the following contributions:

e The design and implementation of CLONEGEN, which
supports various heuristic strategies to guide the code
transformations and generate semantic-preserving code
clones to challenge the clone detectors.

o The proposal of a new DRL-based strategy that dispatches
multiple lightweight yet effective code transformation
operators at different program locations.

o The evaluation of CLONEGEN upon the ML-based de-
tectors (ASTNN, TBCCD, and TEXTLSTM) and the
traditional detectors (NICAD and DECKARD). Results show
CLONEGEN can sharply decrease the detection accuracy of
these detectors.

o A further adversarial training of ML-based detectors using
the clones produced by CLONEGEN, which can improve
the robustness of the assessed ML-based detectors. Notably,
the DRL-based strategy is most effective in lowering the
detection accuracy of the adversarial trained detectors.

2 PRELIMINARIES
2.1

Definition 1. (Clone Types) According to [23], code clones
are generally categorized into four types, namely Type
I, II, III, and IV, which represent the degrees of code
similarity between an original code piece and a new one,
respectively.

Types of Clones and Clone Detection Methods

o Type I: The two code snippets are mostly identical except
for the comments, indentation, and layout.

o Type II: The differences between two code snippets are
limited in variable names, function names, types, etc, in
addition to differences due to Type L

« Type III: The two code snippets have slight modifications
such as changed, added, removed, or reordered statements,
in addition to differences due to Type I and II.

o Type IV: Type IV only preserves semantic similarity. Thus,
the two code snippets may have similar functionality but
different structural patterns.

Type I-1II code clones are usually referred to as syntactic
clone, which copies the code fragments and retains a large
body of textual similarity. By In contrast, if the copied code
merely exposes functional similarity, such as cloning presents
a Type IV clone, a so-called semantic clone.

Over years, various clone detectors have appeared in the
literature [13]], [14]. Typically, they convert software code
under detection into specific representations and develop
methods to distinguish the similarities against the generated
representations. Before the emergence of ML-based detectors,
traditional detectors (e.g., CCALIGNER [10], DECKARD [11],
CCGRAPH [12]) mainly rely on Token-, AST-, or PDG-
representation to measure the code similarity. Usually, they
can successfully detect Type I-III syntactic clones, but fail
to match Type IV semantic clones. ASTNN [16] splits the
whole AST into small statement trees for the finger-grained
encoding of the program lexical and syntactic information.
FCDETECTOR [15] adopts a joint code representation of
syntactic and semantic features generated from fusion em-
bedding. TBCCD [17] applies a tree-based convolution for
semantic clone detection, which leverages both the structural
information from AST and the lexical information from code
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1| // #1 Original code 1| // #2 Type IV clone code
2| int main(){ 2| int main()

3 int a [6]={100,50,20,10,5,1}, b[6]; 314

4 int n,ik; 4 int n,a[6],i;

5 scanf("%d",&n);/ /input 5 int b [6]={100,50,20,10,5,1};
6 for(i=0; i<6; i++){ 6 scanf("%d",&n);

7 b[i]=0;} 7| for(i=0;i<6;i++)

8 for (k=0; k<6; k++){ 8

9 for(i=0; n>=alk]; i++){ 9 ali]=n/bli];
10 n=n-a[k]; 10 n=n-a[i]«b[i];

11 blk]+=1;}} 11 printf ("%d\n",a[i]);
12 for(i=0; i<6; i++){ 12 }
13 printf ("%d\n",b[i]);} 13 return 0;

14 return 0; } 14] }

15 15

3
1| // #3 Code after equivalent transformation
2| int main(){
3 int n, i, kl1;
4 int a[(3 +2 +1)] = {100, 50, 20, (6 + 25 +25), (25 +1.25

+1.25), (05 +0.25 + 0.25)};

5 int b[6];scanf("%d", &n);{ i = (0 +0 +0);
6 while (i < 6) {b[i] = (0 +0 + 0);

7 i=i+1; )}

8 {k1 = 0;while(kl < 6) {{i=0;

9 while(a[kl] <= n){i++;n =n — a[kl];

10 blkl] += L;};} k1 =k1 + 1;};
11 Hi = 0;while(i < 6) {

12 printf ("%d\n", b[i]); i++;};
13| } return 0;}
14

Figure 1: Motivating example of code clone at different levels. All the clone instances are of the same semantics.

tokens. These ML-based detectors all achieve a stunningly
high detection accuracy on the experimental datasets, often
with the detection accuracy of more than 95% [15], [16], [17].

2.2 An Example of Clone Detection

Fig.[T]displays a code snippet S and the Type IV and Mutated
of clones on S. Code S come from the OJClone [21] database.
It is to find the minimum number of notes of different
currency denominations (e.g., {100, 50,20,10,5,1}) that
sum up to the given amount (i.e., the input variable n). All
the clones in Fig. (1| are solutions to the same problem, but
with different levels of syntactic changes. Specifically, Type
IV instance is more compact — it uses division instead of
continuous subtraction to obtain integer quotients at line 11,
and finish the calculation and printing in one for a loop.
For this motivating example, the well-trained ASTNN,
TEXTLSTM, and TBCCD can all correctly match the Type
IV code (ref. code snippets #2 in Figll) with the original
code (ref. code #1 in Fig[T) — ML-based detector success in
identifying the syntactic and semantic clones. By far, these
ML-based detectors seem to be quite effective, but can they
thoroughly address the semantic clone detection problem?

2.3 Motivation

With the above question, we manually create a clone code
by applying several lightweight code transformations. Given
the code snippet #1 in Fig. [1} after changing the variable
name k at line 4, splitting large constants into smaller ones
at line 3, swapping the code order at lines 3,4, removing part
of the code comments at line 5, and converting a for-loop to
while-loop at lines 7,8,9,12, we generate the code snippet #3 in
Fig.[T).

Then, we construct two clone instances as {#1, #3} and {#2,
#3} from pairing the new code #3 with existing code pieces
in Fig. (I} Now, we run ASTNN, TEXTLSTM, and TBCCD
on these new clone instances. We are curious to see whether
a few uncomplicated code variants could lead to some
different findings. Surprisingly, experimental results show
that all three detectors failed to classify all two code pairs
to be code clones. This interesting result implies that some
cheap code-level changes could indeed nullify the DNNs
in these detectors, without using dedicated adversarial
samples or heavy code obfuscation (e.g., obfuscation based
on encoding [24], [25], [26] and CFG-flattening [27], [28]).
This observation motivates us to investigate the following
questions to facilitate the automation of adversarial code
clone generation:

DRLSG, RS,GA,
MCMC
l Select

Lightweight Transformation

Code Pair(S,S’
( ) Clone Generation Phase

l Test  Detector Evaluation Phase

Report

ASTNN,
=P (Clone?

TBCCD,

Figure 2: CLONEGEN system overview

o Can code clones from lightweight semantic-preserving
transformations steadily invalidate the detection of ML-
based detectors?

o What kind of transformation strategy is needed to guide the
effective searching process of combining these semantic-
preserving transformations?

o Can we leverage the new clone instances from the semantic-
preserving transformations to improve the ML-based detec-
tors and would the improvements be explicitly beneficial?

To answer these questions, we propose and implement
the clone generation framework CLONEGEN.

3 CLONEGEN: AN OVERVIEW

In this section, we describe the overall workflow for evalu-
ating ML-based clone detectors, explain the three technical
challenges we must address.

3.1

Fig. [2| illustrates the overview of CLONEGEN. In general,
CLONEGEN consists of two phases: the clone generation
phase and the detector evaluation phase. The former takes
a source code snippet as input, performs code equivalence
transformations, and outputs the mutated code snippets.
The latter evaluation phase feeds the original code snippets

The Overview of CLONEGEN
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together with the newly generated ones to a set of state-of-
the-art clone detectors and outputs whether the new clone
pairs could be detected by these detectors.

For example, given code #1 in Fig. [1} the steps of
producing code snippet #3 by CLONEGEN are as follows.
First, it extracts features of code snippet #1 and searches for
the locations where code transformation could be applied
(see §f.2). Second, it adopts the predefined 15 atomic transfor-
mation operators to make sure that all the performed changes
preserve the semantics of the original code (see § f.I). Third,
CLONEGEN also adopts a certain transformation strategy that
properly adjusts the probability of activating an individual
transformation operator (see § 4.3). Finally, by applying the
transformation operators in the order determined by the
searching strategy, new code that is more likely to escape
from existing detectors can be generated (see §[4.4). Till now,
the clone generation phase is finished.

3.2 Technical Challenges

While the high-level idea appears to be straightforward, there

are three challenges to address for realizing CLONEGEN:

o Transformation Operator. In this work, we require equiv-
alence transformations, which slightly modify the code
syntactic but leave the code semantics intact. Therefore,
the operators in this study are different from mutation
operators in mutation testing [29]. Mutation testing mutates
source code for inserting small faults into programs to
measure the effectiveness of a test suite. So mutators in
mutation testing usually change code semantics during
generating new code. However, we aim to achieve semantic
equivalence transformations. Towards this goal, we adopt
many transformation operators proposed in [30] and [31].
In total, CLONEGEN supports 15 unique transformation
operators, including variable renaming, changing syntax
structures with equivalent semantic, adding junk code,
deleting irrelevant code, reordering independent code, etc.
Details and examples can be found in §

o Encoding Schema. Before applying transformation op-
erators, it is required to localize potential code places
applicable to proper operators. For example, we must
locate all the for-loop in code before we can decide
whether to execute the operator of Op2 (see Op2 in Tab. [I).
Thus, the code fragments that satisfy the transformation
conditions are abstracted to execute the encoding. The
abstraction needs to be fast and scalable as we target
the large codebase in evaluation. To address this issue,
CLONEGEN develops a compact bitvector-based represen-
tation for encoding the search space of changing a program
function. Specifically, suppose a function owns n,, variables
(i.e., function name, function arguments, local variables
and used global variables), ny for-loop statements,
N, while-loop statements, ng, do-while statements,
N 1f-elseif statements, n; if-else statements, n,
switch statements, n, relational expressions, 1., unary
operations (e.g., i++), ns. self-changing operations (e.g.,
i+=1), n. constant values, ny times of variable definition,
ny, code blocks ({...}), n;s blocks of isomorphic statements
that have no dependency in the control flow, and n, print
and comment statements. The length of the encoded bit

vectors would be the sum of these values:

lb = Sum(ny,nf,nw,ndo7nie7ni,n57

Ny Mgy Mscy Mey Ndy Ny Niss np) 1)

During the generation phase, if a binary bit is enabled to be
1, CLONEGEN will apply the corresponding transformation
operator to the code location. However, it is still a difficult
problem to have an optimal strategy of applying operators
that match specific code structure for an equivalence
transformation — generating semantic clones with various
optimization goals. Thus, we need a transformation strategy.
Transformation Strategy. As mentioned above, after defin-
ing transformation operators and encoding the search
space, there is another challenge: how should we decide the
chance of being enabled (i.e., 1) for each bit after encoding,
to maximize the diversity of the generated semantic clones
— to challenge the existing ML-based clone detectors?
Generally, it appears to be a combinatorial optimization
problem with a huge search space (for example, it is 24°
for the code snippet #1 in Fig. [1) that could be addressed
by commonly-used heuristic strategies, such as Random-
Search (RS), Genetic Algorithm (GA) [32], Markov chain
Monte Carlo (MCMC) [33], and the recently popular
Deep Reinforcement Learning (DRL), etc. These strategies
usually need some goals or objective functions (e.g., the
fitness function in GA). Regarding this challenge, in §
for the commonly-used strategies (RS, GA and MCMC),
we implement these strategies to guide the transformation
based on some existent studies [34], [35], [36]]. However,
it is not straightforward to leverage DRL for this problem,
for which we propose the DRLSG model in §

4 CLONEGEN: TECHNICAL APPROACH
In this section, we elaborate on major steps of CLONEGEN.

4.1

CLONEGEN transforms the given program source code by a
set of atomic operations. These code transformations must
not change the semantic of a program. Thus, we formally
define these operations as equivalence transformations.

Transformation Operator

Definition 2. Equivalence Transformation. Let C' — C’ be
a transformation (7) of a code snippet C into a code
snippet C’ based on the combinations of a set of atomic
code transformation operators S,, so C and C’ form a
pair of semantic clones.

Tab. [[[summarizes all the atomic transformation operators
in CLONEGEN. The first column lists the operator names, the
second column briefly describes how each atomic operation
takes effect, the third column shows a simple code example
before equivalence transformation and the last column gives
the transformed code after the transformation. Fig. [3| Repre-
sentation of successive formulations of code transformations.
We have implemented these operators based on TXLB

Transformations based on these 15 operators defined in
Tab. [1)is lightweight, as only lexical analysis in TXL is adopted.
Since there are no complicated operations on CFG, PDG, or

1. TxI: a programming language that converts input to output by a set
of conversion rules, https://www.txl.ca/txl-abouttxl.html,
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Table 1: The descriptions and examples of 15 atomic transformation operators in CLONEGEN

Transformation Operator Description Original Changed
Op1-ChRename Function name and variable name renaming. int i; intil;
for(i=0;i<10;i++){ i=0; while(i<10){
Op2-ChFor The for-loop is transformed into a while-loop. BodyA BodyA
} i++; )
Op3-ChWhile The while-loop is transformed into a for-loop. W}E(lid(;i?)[ fogg;;%;)l{
dof BodyA
Op4-ChDo The do-loop is transformed into a while-loop. BodyA while(i<10){
}while(i<10); BodyA}

Op5-ChlfElselF Transformation of if elseif to if else.

if(grad<60) BodyA
else if(grad<80) BodyB
else BodyC

if(grad<60) BodyA
else{ if(grad<80) BodyB
else BodyC }

if(grad<60) BodyA if(grad<60) BodyA

Op6-Chlf Transformation of if else to if elseif. else{ if(grad<80) BodyB else if(grad<80) BodyB
else BodyC } else BodyC
switch(a){ case 60: BodyA if(a==60) BodyA
Op7-ChSwitch Transformation of the Switch statement to the case 70: BodyB else if(a==70) BodyB
if elseif statement. default: BodyC } else BodyC
Op8-ChRelation Transformation of relational expressions. a<b b>a
Op9-ChUnary Modifications to unary operations. i++; i=i+1;
Op10-ChIncrement Modifications to incremental operations. i+=1; i=i+1;
Op11-ChConstant Modifying constants. 8 (a-b) //8=a-b
Op12-ChDefine Modifications to variable definitions. int b=0; int b;b=0;
Op13-ChAddJunk Adding junk codes. iHa)l dyA) lf(*i‘f)((‘))]iﬂg o)
Op14-ChExchange Change the order of the statements in a block a:‘éw—igt C:ﬁ?gf
without data and control dependency. c=ar a=br 1l
Op15-ChDeleteComments Deleting statements that print debuggin, printf("test"); 77 printiiest);
P & p 88ME  //comments //eomments

hints and comment.

call graph (CG), the transformation only works at the syntax
level. Meanwhile, the transformation manages to make
semantic equivalence — all the operators guarantee to have the
same semantics before and after the transformation. Even
for Op4 that changes a do-while-loop statement into a
while-loop, the body statement inside the do-while-loop
will be executed once before entering the transformed
while-loop. For Opl4, we only reorder the statements
without any data- or control-dependency, as such analysis
is fast and easy. For Op15, we only delete comments or the
statements that print debugging hints or intermediate results.
For the rest of the operators, it is straightforward that these
operators would not change code semantics (see operational
semantics defined for these operators in Fig. [3).

4.2 Encoding

Before code transformation, it is required to identify syntactic
features, the places of code fragments applicable to an atomic
operation in Tab. 1} We use the term feature count to represent
the number of code fragments on which CLONEGEN per-
forms the corresponding atomic operations. Tab. [2]illustrates
the feature and its feature count of code #1 in Fig. 1| The first
and second column corresponds to the atomic operations
and the denoting variables in Tab.[I|and the third column
corresponds to their values. The last column lists the bitvector
after encoding code #1 in Fig.[1| For example, if there are 4
for-loop in a source code snippet, then the feature count
of the syntactic feature for-loop is ny = 4. In the third
column, the value 0 means that there are no places applicable
to the corresponding atomic operation. For example, no
while-loop in code #1, and hence its value n,, is 0. There
are b variables {a, b, n, i, k}in code #1, so the feature
count for n, is 5. Note that the main function cannot be
renamed, so it is excluded from the feature count of the

Table 2: Syntatic features and encoding of code #1 in Figure

Operator Count value Bitvector Encoding
Opl Ny 5 001000

Op2 ny 4 1111

Op3 Naw 0 n.a.

Op4 Ndo 0 n.a.

Op5 Nie 0 n.a.

Op6 n; 0 n.a.

Op7 Ns 0 n.a.

Op8 Ny 4 0001

Op9 N4 4 0110

Opl10 Nse 1 0

Opll Ne 18 100011000000001011
Opl2 ng 2 01

Op13 np 5 00000

Opl4 Nis 2 10

Opl5 np 0 n.a

feature n,. Hence, for code snippet #1 in Fig. [1} its bit-vector
length I, is 45 (the sum of column “value” in Tab. 2).

After we encode the transformation search space using
the bit vector, the length of the bit vector equals the feature
count in the second column, where an atomic operation
would take effect on the features (i.e., applicable places) for
bit value 1, and no effect for 0. The symbol "n.a." means there
are no available features that match the corresponding atomic
operation, and the feature count must be 0. We explain how
to fill the bit vector with various strategies in the next section.

4.3 Transformation Strategy

After the encoding step, CLONEGEN needs a transformation
strategy to generate the semantic clones of diversity.

As discussed earlier, the search problem of finding an
optimal sequence of applying the atomic operations can
be treated as a combinatorial optimization problem. Thus,
we may achieve different solutions by exploring existing
optimization algorithms. In CLONEGEN, we have already im-
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Symbols : — means syntax transformation, || means evaluation operation, Change function is a bijection function,

Dependency is a data and control dependency statements set in a block, Comments is a comment statement set, Printf

is a printf call statements set with constant arguments.

E—-E S-S5

S1— 8]

E—)El SQ—>Sé S3—>Sé

for(S1; E; S2) Ss —{S1};

while(EN){S%; 55} (Op2-ChFor)

E—-E S—5

doS while(E) — S;while(E") S (Op4-ChDo)
/
E+=1 f _>E]’E 7 (Op10-ChIncrement)

S—S E—FE

if (B) {S} — if (E")
S €Comments V F € Printf

i (0) retrn oy (OP13-ChAddJunk)

(Op3-ChWhile)

(Op15-ChDeleteComments)

while(E) S —=  forGE;) S S—{} F(E) -—{}
) id N 10..1 Ni,N2, N3 € Z N2-Ni |} N:

— :EE_’ i Zit_; df,di ——— (Op12-ChDefine) —~-= [10 00%3 SO )E 2N ¥ N3 (p11-ChConstant)
B\ — B E» — Ej ! , By E Si— S E2—E S—S S35 ]
B < B o B> B, (OPSChRelation) o else (1/(B2) 52 else 55} = if ()5, elseif(E}) 5 else 55 (OPE-ChID

E—FE Ei - E, S =8 E;—FE; S;—5S5 S3— 5%
E++ -oE'= E'+1 (Op9-ChUnary) if(E1) St elseif(E2) Sz else S3 — if(E1)S] else {if(E3) S5 else S5} (Op5-ChlfElself)
- g/ . / !
id Gidcia?dg/e(zd) (Op1-ChRename) S1 ¢ Dependency Sz ¢ Depenféeﬁ;'y — 55167 S1 82— S (Op14-ChExchange)

1; 52 2551
E—-E S —8 8 —8, S3—5% .

switc case N1 : S1 case Ny : S2 efault : S3} —1 == N;) 51 elset == 2) So else S3 )

W(E NS No: S defaull: S3¥ —if(E == N1) S, else if(E' N2) S clse 55 (OP7-ChSwitch)

Figure 3: Operational semantics for the atomic code transformation operators.

plemented three commonly-used heuristic strategies, namely
Random-Search (RS), Genetic Algorithm (GA), Markov Chain
Monte Carlo (MCMC). Details of each strategy are as follows:

Random-Search: The RS strategy fills the bits in a bit
vector with random values 0 or 1, with equal probability.
Hence, this strategy does not take into account the source
code structure under detection and the features employed
by different clone detectors. Hence, the RS strategy favors
generating semantic clones whose equivalent code changes
are attributed to randomness [37]].

Genetic Algorithm: The GA [38] strategy computes the
similarity between the original code and the generated new
code after each random generation. The idea is to generate
the code that exhibits the most textual differences from
the original code. Here we convert both code versions into
strings and then calculate the string editing distance [39]
between them to obtain the code similarity. An editing
distance reflects how many modification steps it needs to
convert one string into another, and it is used as the fitness
function in GA. Hence, the GA strategy favors generating
semantic clones with big gaps (large editing distance) [35],
[36].

Markov Chain Monte Carlo: The MCMC strategy uses
the n-gram algorithm to calculate the probability that
determines how likely a sub-sequence follows its prefix.
It is observed that software programs have probabilistic
natures, which assign probabilities to different sequences
of words [34], [40]]. For a given sequence of code snippet
$ = 8182+ Sp, we define P (s, | Sp—k+1, " ,Sn—1) tO
approximate the probability of code statement s,, occurring
after statements s,_jy1 to s,—1. Inspired by [41], we
also adopt the indicator perplexity [41], to measure the
probability magnitude of code occurrence. According to
n-gram (n = k), the formula corresponds to:

1 — .
Hp(s) = - Z logpa (8i | Si—kt1 - - si—1) (Perplexity)
1

According to the above formula, this strategy guides code
transformations through several iterations and outputs the
generated clones satisfying the above perplexity condition.
Hence, the MCMC strategy favors generating semantic
clones hard to understand (being high perplexing) [34].
Though the above three strategies are in general effective,
they would not take into consideration the feedback (e.g.,
detection results) of the assessed clone detectors. To mitigate
this limitation, we specially design and implement a DRL-
based method, named DRLSG, to interactively incorporate
the detectors’ results for generating further complicated
semantic clones (see §[5).

4.4 Clone Generation

As shown in Fig. 2 CLONEGEN performs a lightweight
transformation phase guided by different strategies. For
example, there are four for-loop in the original code of
Fig.[1] The last column of Tab.[2]shows the bit vectors from
the RS strategy. As stated in § 4.2} Bit value 1 in a bit vector
means that CLONEGEN must execute the code mutation
operation at the corresponding code fragment, while bit
value 0 means CLONEGEN should keep the original code
piece unchanged. Since all bits for operator, Op2 have the
value of 1, CLONEGEN transforms the four for-loop into
semantics preserving while-1loop, as shown by code #3 in
Fig.[I} Due to the randomness of these strategies, we could
obtain a large number of code variants (e.g., code #3 to code
#1 in Fig.[I). For the strategies other than RS (i.e., GA, MCMC,
and DRLSG), not all code variants will be retained — for
effectiveness, only those satisfying certain optimization goals
(e.g., perplexity) will be retained.
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Notably, our atomic operations are lightweight: according
to our experiments (as described in §[f), the transformation
operations can be completed within a relatively short time.

5 DRLSG: THEORY AND DESIGN

In this section, we introduce the background knowledge of re-
inforcement learning and our proposed Deep Reinforcement
Learning Sequence Generation (DRLSG) strategy.

5.1

In recent years, deep reinforcement learning (DRL) algo-
rithms have been used in a variety of fields [42], [43],
[44], most notably AlphaGo [45] to defeat the best human
players in Go, and DRL has quickly become the focus of the
artificial intelligence community. This paper is based on deep
reinforcement learning to generate high-quality source code
for transformation sequences. Before we start presenting our
approach, we briefly introduce background knowledge about
DRL. The following formulation of a typical DRL process is
related to the presentation given in [46]

We briefly introduce the terms commonly used in DRL:
Agent: The role of a learner and decision-maker. Environ-
ment: Everything that is composed of and interacts with
something other than the agent. Action: The behavioral
representation of the agent body. State: The information that
the capable body obtains from the environment. Reward:
Feedback from the environment about the action. Strategy:
The function of the next action performed by the agent based
on the state. on-policy: The policy that corresponds when
the agent learns and the agent interacts with the environment
are the same. off-policy: The policy when the agent to be
learned and the agent interacting with the environment are
not the same.

In reinforcement learning, a policy indicates what action
should be taken in a given state and is denoted by 7. If we
use deep learning techniques to do reinforcement learning,
the strategy is a network. Inside the network, there is a set
of parameters, and we use 6 to represent the parameters of
m [47]. We take the environment output state (s) and the
agent output action (a), and string s and a all together, called
a Trajectory (7), as shown in the following equation:7 =
{s1,0a1, 82,02, , 8, a;} You can calculate the probability
of each trajectory occurring;:

Deep Reinforcement Learning

@)

=

po(T) =p(s1) po (ar | 5t)p (5e41 | 8¢, a1)

t=1

The reward function determines how many points are
available for said action now based on a certain action taken
in a certain state. What we have to do is to adjust the parame-
ter 0 inside the actor so that the value of Ry = >~ R(7)py(7)
is as large as possible. We use gradient ascent because we
want it to be as large as possible. We take a gradient for R,
where only py is related to 6, so the gradient is placed at py.

0 < 0+nVRy €
VRy = Erpo(r) [R(7)V log po(7)] )

Proximal policy optimization(PPO) [20] is a variant of
policy gradient. Using g to collect data, we have to sample
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Figure 4: Deep reinforcement learning model

the training data again when 6 is updated. So we want to
go from on-policy to off-policy. We change on-policy to off-
policy by importance sampling, from 6 to ¢’. So now the
data is sampled with ¢, but the parameter to be adjusted for
training is the model 6.

VRo = Erp, (r) pL(T)R(T)VInge(T)

por () ©

5.2 DESIGN OF DRLSG

As shown in Fig. [ our DRLSG model has two main com-
ponents: agent and environment. The agent mainly consists
of a neural network, and here we choose the openAl open
source PPqﬂ model as our agent. The input to the agent is
the encoding vector (state) of the code, and we train the agent
to choose the corresponding transformation operator § .1}
to maximize the reward value. The environment consists of
three main parts: the code transformation according to the
action chosen by the agent, the code is encoded to obtain
the vector as the state of the environment, and the reward
is calculated for the current decision. Next, we describe the
specific design of the DRLSG.

5.2.1 Action Space

In our DRLSG task, the agent is trained to select the action
to be performed from the action space given a state. We use
the 15 transformations designed as the action space of the
model, and in our task, the goal of the model is to select a
set of operations from the 15 transformations to transform
the source code. These transformations are shown in Tab.
where we give descriptions of the specific operations and
simple examples, and in Fig. B, where we give formal
definitions of the corresponding equivalent transformations.

5.2.2 Reward

The reward function is designed to guide the overall actions
of the agent and reward is the key to the DRL, we need to
maximize the cumulative gain of the agent. The main goal
of our agent is to produce variant codes that can escape
detection by Ml-based clone tools. For this purpose, our
reward function for each step is formalized as Algorithm [}

2. Stable Baselines3 is a set of reliable implementations of rein-
forcement learning algorithms in PyTorch, https://stable-baselines3
readthedocs.io/en/master/modules/ppo.html.
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Algorithm 1: Reward Algorithm

Input:
action: The current action performed by the agent.
codeo: The original code.
codey: The current action gets the code snippet.
codey—1:The code snippet of the previous state.
Output:
reward
if Iclone( code,,codet) then
| reward=ncloner
end
else
\ reward=-clonegr * codeTextSim(codet,codes—1)
end
if action==0p13 then
reward=reward- Opl3_count * Opl3_penalty
Opl3_count++
end

© ® N U AW N =

=
5}

As shown in Fig.[dOur reward has two main components
that make up the current action to get the edit distance
between code; and code;_;, and the current action to get
the clone detection result between code; and code,. They
constitute our reward, and we are considering a long-term
reward. We implement a text-based Siamese network source
code clone detection model, using two identical bidirectional
LSTM (BiLSTM) networks in Siamese’s architecture. The
code, and code; are converted into text sequences and fed
into BiLSTM to obtain a representation of the code. If the
TEXTLSTM identifies the code; and the code, as non-clones,
we assign a large positive reward (Line 1-3 in Algorithm
and abort the current learning, indicating that we have
obtained a transformed sequence of the current code.

The edit distance indicates the minimum number of
single-character editing operations required to convert from
one word to another. There are three types of editing opera-
tions: insert, delete, and replace. For example, for the words
"kitten" and "sitting", the minimum single-character editing
operations required to convert from "kitten" to "sitting" are:
substitution of "s" for "k", the substitution of "i" for "e", and
insertion of "g" at the end, so the edit distance between these
two words is 3 . We implemented a text sequence-based code
text similarity based on edit distance Code Text Similarity
(codeTextSim), defined as follows:

codeTertSim — 1 — editDistance(codey, codes_1)

max(len(codey), len(codes_1))

where len denotes the length of the code sequence, and if
the edit distance between two codes is 0, then their similarity
is codeT extSim = 1.0, which means there is no difference
between the two codes. If the action executed by the current
state model yields code; that does not change relative to the
code;_ of the previous state, then their codeTextSim = 0.
We give it a negative penalty of cloner * codeT extSim (Line
4-6 in Algorithm [I). This is designed to avoid the rewards
in the environment being too sparse, to help improve their
learning efficiency and converge as quickly as possible [48].
since there is no limit to the amount of garbage code that can
be inserted. To control the code complexity, we use Opl3count
to count the number of times op13 is used in the current
round and give an additional negative penalty Opl3,cnatity *
Opl3penality (Line 7-10 in Algorithm if the action selected

Table 3: The code generation time

Time RS GA MCMC DRLSG

T(h) 0.88 4.33 20.70 168

by the current agent is op13. In our implementation, we
set ncloneg, cloner, and Opl3,enairy to 10, 0.5, and 0.5
empirically.

5.2.3 state

In DRL state represents the current state of the environment.
In our model, the transformation code obtained from the
current action represents our current state, which can be
represented by the encoding vector of the code. For a given
source code we convert it into a sequence of texts sequence
and then encode it with a bidirectional LSTM model, which
is the same as the clone detection model mentioned in §[5.2.2]

6 EVALUATION

In this section, we aim to investigate the following four re-

search questions (RQs) through the experimental evaluation:

« RQ1: How effective are the different transformation strate-
gies? How robustness are the existing ML-based detectors
in detecting the semantic clones generated by CLONEGEN?

« RQ2: How effective is our proposed DRLSG when detec-
tion results are available? Can the ML-based detectors be
enhanced by adversarial training with CLONEGEN?

o RQ3: How effective are different types of atomic transfor-
mation operators?

e RQ4: How accurate are the traditional clone detectors in
detecting the semantic clones produced by CLONEGEN?

6.1 Implementation and experimental setup
6.1.1 Datasets for CLONEGEN

In our evaluation, we use OJClone [21], a widely used
database in source code study [[15], [16], [17], [21], [49], [50].
OJClone consists of 104 folders, each of which contains 500
solutions (clones) to the same problem. The code from each
OJClone folder to form an initial dataset D;, and apply
the four strategies (RS, GA, MCMC and DRLSG) to Dy to
construct four new datasets, denoted as Dgrs, Daa, Dyvoyvice
and Dppry,, respectively.

Tab. [3 shows the time consumed to transform 52,000
source code snippets in the OJClone dataset by four
transformation strategies. For each code snippet in the
52,000, we apply the four different strategies to generate
code pairs. Notably, the RS strategy generates one code
variant for each snippet, while the other three strategies
would generate many clone candidates and then use the
corresponding optimization goal to retain the best one.
Finally, we have the same size for these generated datasets:
|Dr| = |Drs| = |Dcal = |Dyucmc| = |Dprel-

The RS strategy takes only 0.88 hours, which is the fastest.
The GA and MCMC strategies need to do some code syntax
analysis when transforming the code, so they are slower
than the RS strategy. The DRLSG strategy requires an ML-
based encoder to encode the source code and an ML-based
detector to perform similarity analysis, and only one operator
is selected for each transformation, so it is much slower.
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Table 4: Detection accuracy of the ML-based detectors on
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Table 6: Results of the ML-based detectors in detecting clone

OJClone pairs generated by CLONEGEN
Tools P R F1 TEXTLSTM ASTNN TBCCD
TEXTLSTM 0.991 0.991 0.991 TestData P R F1 P R F1 P R F1
ASTNN 0.996 0.960 0.977 Dgrs 0.891 0.882 0.882 0.803 0.721 0.701 0.929 0.855 0.891
TBCCD 0.987 0.994 0.990 Daa 0.713 0.679 0.666 0.770 0.641 0.592 0.822 0.671 0.739

Table 5: Time consumption of the ML-based clone detectors

Tools Pre-processing(s)  Training & Testing(s)
TEXTLSTM 656 21963

ASTNN 2412 7419

TBCCD 4991 187467

6.1.2 Assessed Clone Detectors

There are many ML-based C++ source code clone detectors,
including [15], [16], [17], [21], [49], [50], [50], [51], [52], [53] etc.
However, some of them are not open source, and some others
have implementation issues when handling our dataset (e.g.,
FCDETECTOR [15]]) . Finally, we adopt two open-source
detectors ASTNN [16] and TBCCD [17]. We also apply
the TEXTLSTM [22] model on the OJClone dataset. In the
training/testing steps, we follow the guidelines provided
in their GitHub pages, and use the suggested parameters
in their papers [16]], [17] to make fair comparisons. Here,
TEXTLSTM is a model with a text embedding size of 300
and a BiLSTM hidden layer size of 256. During the training
process we divided the dataset into training, validation, and
test sets according to 80%, 10%, and 10%, and we used
the Adam optimizer with a learning rate of 0.001 to train
20 epochs and save the model with the best F1 during
the training. The above hyperparameters are empirically
determined according to our experiments.

The detailed results are shown in Tab. [ ASTNN and
TBCCD are tested by our replication. They both perform
well on OJClone with F'1 greater than 0.96. OJClone has a
big difference and belongs to type IV clone, which means
that the existing ML-based clone detectors have achieved
good results, here the TEXTLSTM F'1 (0.991) is the best.
Tab. 5| summarizes the time spent on setting up the three
ML-based detectors. TEXTLSTM spends the least time on
data pre-processing and ASTNN spends the least time on
training and testing. TBCCD takes the maximum time, about
1.38 hours, in pre-processing and 52 hours in training and
testing.

6.1.3 Baseline Transformation Strategies

As introduced in the search problem can be treated
as a combinatorial optimization problem. Thus, we may
achieve different solutions by exploring various optimization
algorithms. In this paper, we also compare our proposed
DRLSG with the commonly-used heuristic strategies such
as RS, GA, and MCMC. We have derived the parameters for
GA from the related work of [35], [36], [38]]. For MCMC, we
have referblack to [34], [54] for the parameter setup.

6.1.4 Evaluation Metrics

After obtaining the four new datasets, we feed them to clone
detectors under test. Notably, to evaluate the robustness of

Dpyreme 0888 0.878 0.877 0.800 0.703 0.676 0.873 0.947 0.908

DpRrL 0.607 0.558 0.502 0.739 0.599 0.530 0.854 0.871 0.863

the ML models inside the detectors, the instances in our
dataset have two types of labels: clone and non-clone. For
example, in the generated dataset Dgg, it consists of 52,000
clone pairs (each one from the original D; and the other one
generated by the RS strategy) and also 52,000 non-clone pairs
(code pairs from different folders transformed after the RS
strategy).

We use Precision (P), Recall (R) and F1-Measure (F})
Score to measure the performance of the ML-based detector.
Let T'P pblackict positive class as positive, F'N pblackict
positive class as negative, F'P pblackict negative class as
positive, and T'N pblackict negative class as negative, we
compute P, R, and F} as follows:

TP TP 2PR
P=7pvrp "= TP1rFN “pir ©
We use Recall (R) to measure the performance of tradi-

tional tools on detecting code clones. Recall is an evaluation
indicator commonly used by these detectors (e.g., [10], [55]).

1

6.1.5 Environment

We conduct all the experiments on an AMAX computing
server. It has two 2.1GHz 24-core CPUs, four NVIDIA
GeForce RTX 3090 GPUs, and 384G memory.

6.2 RQ1: ML-based Detectors vs. CLONEGEN

In this section, we answer the RQ1, the effectiveness of
CLONEGEN on bypassing the ML-based clone detectors.
Towards this goal, we use the initial datasets D; as the
training dataset for three assessed detectors. Then, for
each different strategy, we use the corresponding generated
dataset (Dgrs, Dga, Dyconme, Dprr) as the testing dataset.

Next, we evaluate the robustness of these detectors
against the code pairs generated by CLONEGEN. Tab.
shows the accuracy of the three detectors. Generally, these
ML-based detectors have varying accuracy regarding the
four transformation strategies.

TEXTLSTM directly converts the code into a sequence of
texts, and then feeds the code into an LSTM neural network
to obtain the embedding vector of the code, and then feeds
the vector into a shallow feedforward neural network to
make a binary classification judgment, TEXTLSTM has the
best clone detection performance on the D; with an F; of
0.991 in Tab. [} The Fy of TEXTLSTM ranges from 0.502
to 0.882 for four different strategies, all of which affect
TEXTLSTM compablack to the F; on the original dataset
(0.991). Among the four strategies, DRLSG (0.502) is the
best in bypassing TEXTLSTM detection, while RS (0.882) is
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Table 7: Results of the ML-based detectors with adversarial
training in detecting clone pairs generated by CLONEGEN

TEXTLSTM ASTNN TBCCD
TestData P R F1 P R F1 P R F1
Dy 0.995 0.995 0.995 0.994 0.965 0.979 0.981 0.984 0.983
Drs 0.989 0.989 0.989 0.922 0.920 0.920 0.948 0.974 0.961
Dga 0.954 0.952 0.952 0.891 0.880 0.879 0.928 0.971 0.949
Dyeme 0989 0989 0.989 0.901 0.897 0.897 0.921 0.976 0.961
DpRrr 0.943 0.941 0.941 0.881 0.868 0.867 0.903 0.842 0.872

the worst, indicating that random transformations are more
easily detected by TEXTLSTM.

ASTNN is a neural network built upon the AST of a
program. The F; of ASTNN ranges from 0.530 to 0.701. In
all four code transformation strategies, the DRLSG strategy
performs the best and the RS strategy performs the worst.
The result shows that different strategies can extensively
bypass the AST-based detection in ASTNN.

TBCCD uses structural AST and token lexical informa-
tion to generate a tree-based convolutional neural network.
According to Tab. [ff TBCCD has better robustness than
ASTNN and TEXTLSTM, with an average F} value of 0.850.
TBCCD performs best against MCMC with an F; of 0.908,
indicating that TBCCD is relatively insensitive to MCMC-
guided transformation. The code clone pairs generated from
the GA strategy achieve F'1=0.739 on TBCCD, followed by
DRLSG (0.863) and RS (0.891). This result indicates that
the token information increases the resilience of ML-based
detectors against code transformation.

In summary, from Tab. [f| we observe that the pure Text-
based detector (TEXTLSTM) can be easily bypassed with a
high possibility. The models based on hybrid abstractions
of source code do achieve better resilience, especially the
TBCCD model which relies on both Token and AST. From the
CLONEGEN perspective, the DRLSG strategy has shown the
best effectiveness since it performs best in testing TEXTLSTM
and ASTNN.

Now, we answer the RQ1: the code pairs generated
by CLONEGEN can effectively bypass the detection of the
state-of-the-art ML-based detectors, sharply dropping I}
of these detectors from 90+% to as low as 50%-70% in
many cases. TEXTLSTM, being most efficient, is the most
fragile one with a low F} of 0.421, TBCCD has the best
robustness against CLONEGEN, but it relies on very costly
pre-processing and training. Last, ASTNN seems to strike
a balance in efficiency and robustness, as clone detection is
just one of the applications ASTNN supports.

6.3 RQ2: Adversarial Training with CLONEGEN

In this section, we try to answer the RQ2 with the experimen-
tal results. That is, whether or not augmenting the training
of ML-based detectors with adversarial samples can defend
CLONEGEN. The answer to RQ1 reveals the robustness issues
of the ML-based detectors. A common idea of reinforcing
such detectors is to fuse the spear into the shield, which
means we can convert the code clone pairs from CLONEGEN
to be adversarial samples to re-train the ML models.

It is believed that training data significantly affects
the performance of deep learning models [19)]. In gen-
eral, the more complete the training data is, the better
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Figure 5: F-measure before and after adversarial training

performance the model achieves. Towards this goal, we
enhance the original dataset D; with the generated adver-
sarial samples by four different strategies. Consequently,
we use the following datasets as the training dataset:
D[+ 250/°D;%S+ 250/0D/GA+250/0 ?\/[C’MC’+250/°DIDRL' Here,
D, Des, Divioare and D are the new generated
datasets by applying the four different strategies on Dj
again ( |D| = [Dys| = [Dgal = [Dyencl = [Pprelb-
Then, we use the following datasets as the testing dataset
(Drs,Dca, Dyvievie, Dpri), which are the same as those
used in Due to randomness of these strategies, the new
generated datasets (e.g., Dy ) will not be identical to the
testing datasets (e.g., Drgs). We re-train the models of the
ML-based detectors without altering any parameters.

We also re-generate the P,R,F; values of each detector
against the transformation strategies in Tab. [/} For example,
the row D; in Tab. [7]represents the accuracy of the retained
models on the test dataset D;. Compablack with the row Dy
in Tab. [4} for TEXTLSTM, the adversarial learning improves
P, R, Fi from 0.991 to 0.995. For ASTNN, adversarial
training slightly improves its accuracy, increasing F; from
0.977 t0 0.979. For TBCCD, the new training results in a slight
decrease in P and F'1 to 0.981 and 0.983, R slight increase to
0.984. The results are reasonable, as the adversarial samples
are quite different from the original samples. Besides, the
accuracy in Tab. [@] is very high, we cannot expect much
improvement via the adversarial training.

Regarding the effectiveness of different strategies in
escaping from the detection, the dataset of clone pairs
generated by the DRLSG strategy (i.e., Dprr) achieves the
worst detection accuracy among the last four rows in Tab.[7]—
this result clearly shows clone pairs generated by the DRLSG
strategy are least detectable, and at least 13% of its generated
clone pairs cannot be detected by ASTNN and TBCCD.
On the other side, the RS strategy (i.e., Drg) seems to be
the least effective among the four strategies, generating the
most detectable clone pairs and resulting in high detection
accuracy. Last, the strategies GA (i.e., Dg4) and MCMC (i.e.,
Dyrc ) show similar effectiveness, achieving the accuracy
somewhere in between Dpgy, and Dgg.

Regarding the robustness of different ML-based detectors
in capturing various generated clones, we find that the
accuracy of these detectors is generally satisfactory after
adversarial training. As shown in Fig. 5| in general, adversarial
training improves the robustness of these ML-based detectors by
increasing their P,R, I values. To be specific, the I value of
TEXTLSTM has improved by 0.236 on average among all the
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Table 8: The effectiveness of the transformation operator.

TEXTLSTM

ASTNN TBCCD

Original Adversial Original

Adversial Original Adversial

TestData P R F1 P R F1 P R

F1 P R F1 P R F1 P R F1

Dy 0991 0991 0.991 0.995 0.995 0.995
Dsem 0.899 0.891 0.890 0.995 0.995 0.995 | 0.856 0.817 0.811
Doyy 0.730 0.701 0.691 0.969 0.969 0.969

0996 0960 0.977 0.994 0.965 0.979

0.787 0.700 0.675 0.905 0.901

0.987 0994 0.990 0.983 0.983 0.983
0941 0918 0.929 0.957 0.971 0.964
0.864 0.856 0.860 0.940 0.989 0.964

0927 0927 0.927
0.901

Table 9: The Recall values of traditional clone detectors

Table 10: Time consumption of the traditional clone detectors

TestData ~ SOURCERERCC NICAD CCALIGNER DECKARD Detector Processing Number Times(m)
Dprs 0.006 0.027 0.100 0.110 SOURCERERCC 104 118

Dga 0.004 0.026 0.076 0.101 NICAD 104 0.16
Dyemce 0.008 0.046 0.083 0.100 CCALIGNER 104 12
DpRrr 0.001 0.027 0.070 0.099 DECKARD 104 221

strategies. In the best case, it increase the F; by 0.439 on the
Dprr dataset. For ASTNN, the average increase of F is
0.266, and it achieves a maximum increase of 0.337 on the
Dpprr dataset. The last detector, TBCCD, and it achieves
an increase of only 0.085 on average, maximum increase of
0.210 on the D 4 dataset.

Now, we answer the RQ2: after the adversarial training
with samples from CLONEGEN, the F} values for the ML-
based clone detectors significantly increase, indicating that
the adversarial training has enhanced the robustness of the
ML-based detectors. Meanwhile, the DRLSG strategy has
exhibited the best effectiveness in generating undetectable
clones as it makes TEXTLSTM, ASTNN, and TBCCD
achieve the lowest accuracy among the four strategies.

6.4 RQ3: Effectiveness of Transformation Operators

In this section, we answer the RQ3 about the effectiveness
of these atomic transformation operators. Different from
the previous experiments using all operators, we apply
and assess these operators group by group. In particu-
lar, we divide our operations into two groups [26]: (1)
those highly-relevant to semantic clones (Op1l-ChRename,
Op2-ChFor, Op3-ChWhile, Op4-ChDo, Op5-ChlfElselF, Op6-
Chlf, Op7-ChSwitch, Op8-ChRelation, Op9-ChUnary, Op10-
ChIncrement, Op12-ChDefine and Op14-ChExchange), and
(2) those of simple obfuscations (Op13-ChAddJunk, Op11-
Constant, Op15-ChDelete).

To explore the impact of these operations on the clone
detectors, we generate two new clone datasets: the clone
dataset (Dgenm) that applies only the first group of operators
and the dataset (Doyy) that applies only the second group.
To eliminate possible side-effects of different transformation
strategies, we do not use any above heuristic strategies.
Inside, our method is straightforward in that it aggressively
sets all bits in the bit vectors to be 1 for certain transformation
operators, resulting in the complete set of code transforma-
tions at all qualified code locations.

The column ‘Original’ in Tab. [§|indicates that the model is
trained on the D; dataset, and the column "Adversarial” indi-
cates that the model is trained by adding adversarial samples
(Di+ 25%D'pg+ 25%D¢; 4+25%D’y;c01c+25%D'p g ;). The
Dj row in Tab. [§|shows the accuracy on the original dataset,
and the Dgey, Doyy indicate the accuracy on the dataset
generated by the two types of transformation operations.

In general, the accuracy of the model is significantly
affected by the two groups of transformation operators — no
matter on column ‘Original’ or "Adversarial’, the F; values
of the second row (Dgepn) and third (Doyy) are always
decreased, in contrast with the first row (D). Between
the two different groups of transformation, obfuscation-
like transformations (e.g., Doyy) are better in bypassing the
detection of TEXTLSTM, ASTNN, TBCCD, with average
F1 values of 0.742 and 0.945 in 'Original’ training and
"Adversarial’ training, respectively. Besides, transformations
for semantic clones Dg,,, are also valid in escaping from
the ML-based detection, with the average F1 values of 0.877
and 0.962. Hence, the experiments prove that the obfuscation
transformation operators are in general more effective in
affecting the accuracy of the ML-based clone detectors.

Now, we answer the RQ3: from the experimental results,
both groups of transformation operators are effective in
generating clone pairs that can escape from the ML-based
clone detectors. For these two groups, obfuscation-like
transformation operators are more effective and lower more
detection accuracy of TEXTLSTM and ASTNN.

6.5 RQ4: Traditional Detectors vs. CLONEGEN

In this section, we answer the RQ4, which explores whether
or not traditional clone detectors can defend CLONEGEN.
While ML-based detectors have achieved desirable per-
formance, traditional detectors are still widely used in
practice. According to the previous study [56]], traditional
clone detector DECKARD achieves a poor recall (0.05) on
the original OJClone dataset and SOURCERERCC obtains a
reasonable recall (0.74) on the original OJClone dataset.

To explore to what extent the cloned code from CLONE-
GEN may escape from traditional detectors, we conduct a set
of experiments with four open-source detectors as SOURCER-
ERCC [55], DECKARD [11]], CCALIGNER [10], N1CAD [57].
Tab.[0]shows the experimental results under the four different
strategies. Tab. [10|lists only the detection time of the four
detectors, as traditional clone detectors do not require a
pre-processing or training stage and could perform clone
detection directly. Notably, column "Processing Number’
refers to the number of threads we run each detector in
parallel to speed up the detection. In practice, we run 104
threads (the same as the number of folders in OJClone). If
not using parallel detection, the traditional detectors would
take up to days or even one week to finish the detection.
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Traditional detectors have no embedded ML models.
Instead, they detect upon the recognition of suspicious clone
patterns within the source code representation like token [10],
[55], text [57], tree [11], dependency graph [12] and so on.
We treat them as black boxes, which are fed with the set
of generated code clone pairs from CLONEGEN and output
the "clones or not" decision. Finally, we calculate the overall
Recall values for each detector.

Overall, CLONEGEN makes the majority of the traditional
detectors expose low recall values, with an average value of
0.049 for Dpry,. Besides, the DRLSG strategy is more effective
than other strategies in beating the traditional detectors, since
more code changes bring more code syntactic differences.
This means that, under the DRLSG strategy, CLONEGEN can
quickly generate many code clone pairs that can bypass these
detectors with more than a 90% success rate. We examine the
detectors whose recall values are below 0.10. SOURCERERCC
is a token-based detector that has the lowest recall (0.001) and
can be easily defeated. NICAD uses flexible, pretty-printing,
and code normalization to accurately detect intentional
clones. It has the second-lowest recall (0.026). CCALIGNER
uses a combination of sliding windows and hashes to detect
large-gap type clones. Its recall is 0.07. DECKARD is a tree-
based clone detection tool with a 0.099 recall value.

Now, we answer the RQ4: the traditional clone detectors
have no resistance to the clone pairs generated by CLONE-
GEN, especially to the clone pairs in Dppry,. For the tree-
based detector (i.e., DECKARD) that is believed to be more
robust than token-based ones, its detection recall is also less
than 10% on the datasets CLONEGEN generates.

7 DISCUSSION
7.1 Threats to Validity

Threats to internal validity come from the parameter setup
for the traditional and the ML-based detectors used in this
paper. To address this issue, for the traditional detectors, we
use their default settings. Since traditional detectors usually
have few parameters to tune, their results are quite stable.
For the ML-based detectors, we use the same parameters
as those reported in their papers [16]], [17]. We also fine-
tune the unreported parameters and finally make the trained
models reproduce similar results as those reported in the
corresponding papers. Through this rigorous process, we
believe that we have conducted fair comparisons between
our approach and all the baseline clone detectors in this
study.

Threats to external validity mainly come from two aspects.
First, we just use the OJClone C language dataset to evaluate
the detectors, which is a widely-used open-source benchmark
for large-scale semantic clone detection. Currently, we have
only done evaluations on C/C++ programs, however, like
other high-level languages (e.g., Java) that share similar
language features (e.g., object-orientation), we believe the
evaluation findings could also be generalized to clone
detection for other high-level languages. Second, we evaluate
only three ML-based detectors in this paper due to the tool
availability issue. In the future, we would like to support
more ML-based detectors (e.g., [50], [51] when they are
publicly available) or even code plagiarism tools such as
Moss [58].
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7.2 Impact of Transformation Operators

Table 11: The transformation operators and their impact on
the four commonly-used representations of the code

Operator AST CFG PDG Token
Op1-ChRename O O O O
Op2-ChFor (©) O O ©)
Op3-ChWhile ® ¢ O 5
Op4-ChDo (©) (©) (©) (@)
Op5-ChlfElselF O O O ©)
Op6-Chlf O O O (@)
Op7-ChSwitch (©) (©) Q) ©)
Op8-ChRelation (©) O O ©)
Op9-ChUnary (©) O O ©)
Op10-ChIncrement (©) O O ©)
Op11-ChConstant (©) O O (©)
Op12-ChDefine ©) (©) (©) (©)
Op13-ChAddJunk (O] (©) (©) (©)
Op14-ChExchange @) (O] O O
Op15-ChDeleteC ©) O O (©)

*Note that we use the symbol “@”to denote severe effects, “©”to
denote only minor effects, and “O"to denote no effects.

As shown in Tab. |11} we have analyzed the impact of 15
proposed transformation operators on the four commonly-
used representations of source code. The impact could be
categorized into three levels. Firstly, severe impact (denoted
by @) means that the operator breaks the original structure of
the representation, while minor impact (denoted by ©) means
that it only changes the node properties of the representation
(e.g., changing one node in AST or CFG). Last, no impact
(denoted by O) means that neither the properties nor the
structure of the representation is modified.

Token-based detectors are susceptible to all the changes
bought by the transformation operators, except Op1 (identi-
fier renaming) and Op1l4 (statement exchanging). Hence,
token-based detectors can only detect Type I and Type
II clones, and our operators can easily evade the token-
based detectors (e.g., SOURCERERCC [55], CCALIGNER [10],
CCFINDERX [59]). AST-based detectors (e.g., DECKARD [11]))
perform better than the token-based ones, but the AST
structure is not resilient to control- or data-flow changes
made by operators such as Op2 to Op14. Therefore, AST-
based detectors are good at detecting Type I and II clones and
these detectors could be evaded by our operators. In contrast,
CFG- or PDG-based detectors (e.g.,, CCGRAPH [12]) are more
resilient to the control- or data-flow changes. Especially
for CFG-based detectors, they are more resilient to the
transformation performed by Op8 to Op11 (e.g., changing
while to for-loop). However, the Op4, Op7, Opl2, and
Op13 would have a severe impact on the four representations,
as the transformations brought by these operators belong to
Type-1V clones (i.e., semantic clones).

7.3 Lightweight Code Transformation or Obfuscators?

In this study, we use transformation operators and strategies
and implement our framework CLONEGEN to perform
the lightweight semantic-preserving transformation. Soft-
ware obfuscators [27], [34], [60]], [61], [62] can also enable
equivalence transformations of source code. The reasons
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why we do not employ existing obfuscators in this work
are threefold: 1) defeating clone detection is essentially a
trade-off problem that strikes the balance between costs in
code transformation and benefits from evasion. Obfuscators
are generally not free of charge and comparatively time-
consuming. Hence, we offer a lightweight yet effective code
transformation approach. 2) Obfuscation is often utilized to
protect the IP (Intellectual Property). Therefore, the code after
obfuscation often has poor readability and maintainability.
For example, for the code int i = 1;, after the encoding
by the obfuscator [62], it will become:

int o_8ffc9%9af5e5913588bc0b7705602caf02=
(0x0000000000000002 + 0x0000000000000201 +
0x0000000000000801 — 0x0000000000000A03) ;

3) More importantly, small rather than complicated
transformations are much easier for algorithm developers
to analyze and debug robustness issues. Hence, simple yet
effective transformations are always favorable to algorithm
developers.

8 RELATED WORK
8.1 Code Clone Detection

Generally, existing clone detectors can be classified as textual-
based, token-based, structural-based code cloning detection
approaches. The textual-based methods [9], [57], [63] repre-
sent code fragments in the form of strings. If the text contents
of the two code fragments are similar, they are considered
clones. The approaches described in [4], [10], [18], [55]], [59]
represent source code as a series of token sequences and
use different similarity detection algorithms on the token
sequences to detect code clones. The approaches described
in [11]], [16], [64], [65] detect code similarity by extracting the
syntax of the code to obtain the semantic features of the code.
Recently, some approaches [6], [51], [66] perform code clone
detection by extracting semantic code features, for example
using hybrid features, such as CFGs and ASTs of a program
[15], [67], [68], or through learning-based approaches [15],
[16]], [17], [18], (491, [51], [65], [67], [69], [70]. Regarding the
assessment of clone detectors, BigCloneBench [71] provide a
clone detection benchmark to evaluate the clone detectors,
and existing studies [13]], [23], [72], [73]], [74], [75] focus on
evaluating traditional detectors in certain aspects, and there
is still a lack of studies that systematically challenge and
assess the robustness of the recent ML-based clone detectors.

8.2 Code Mutation

Code mutations are often used in code testing. Mutation
testing, which generates a large number of mutants that
are automatically embedded in the code to exercise a target
program to detect its bugs [76], [77], [78], [79]. Mutation
testing can also be used to test the effectiveness of code clone
detectors. Roy et al. [57] identified and standardized potential
clones, and then used dynamic clustering to perform simple
text-line comparisons of potential clones. Roy et al. [31]
proposed a mutation insertion method to test code clones.
The idea is to reinsert an artificial piece of code into a piece
of source code so that different types of code clone pairs can
be artificially forged and then tested against the target clone
detectors. Their proposed tool is a random transformation
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of the code, which may change the semantics of the original
code. Svajlenko et al. [80] presented a benchmark framework
based on mutation analysis, which evaluates the recall rate
of clone detection tools for different types of clones and
the editing of specific types of clones does not require
human intervention. Unlike approaches [31], [80] that can
transform code but cannot guarantee semantic preservation,
our approach always generates semantic equivalent clones
for robustness validation. Recently, Zhang et al. [54] only
used one transformation operator (renaming variable), which
is included in this work, to prove that some source code
processing methods (e.g., ASTNN and Token-based LSTM
models) are not sound in the code classification problem. In
this paper, our approach proves that the ML-based clone
detectors are not sound enough in detecting code clones after
simple yet effective equivalent transformations.

8.3 Code Obfuscation

Equivalence transformations are also commonly used in
code obfuscation. Program obfuscation is a set of semantic-
preserving program mutation techniques. It is mainly used
to hide the intent of a program or to protect the intellectual
property of software before its release. Liu et al. [34] proposed
a language-model-based obfuscation framework. It makes
code refactoring tools like JSNice [81] more difficult to
refactor a program. Breanna et al. [35] presented MOSSAD,
a method for making code plagiarism tools by inserting
junk code, which effectively defeats theft detectors such
as Moss [58]. Schulze et al [82] proposed to apply code
obfuscations to evaluate the robustness of some traditional
clone detectors. They applied a few code obfuscations semi-
automatically to source code and did not consider strategies
to guide code mutation. The goal of our work is to conduct
a simple yet effective transformation to generate semantic
clones to evade both learning-based and traditional clone
detectors. Rather than applying a heavy-weight transfor-
mation (encoding [62], CFG flatten [27] or other compiler
optimizations [36]), our lightweight approach makes it easier
for developers to quickly discover and locate robustness
issues in a clone detector.

9 CONCLUSION

This paper presents CLONEGEN, a lightweight yet effec-
tive code transformation framework that can assess the
robustness of ML-based clone detectors by automatically
generating clone pairs. several state-of-the-art ML-based and
traditional clone detectors. The experimental results show
that our lightweight transformations are effective in evalu-
ating the robustness of clone detectors and can significantly
reduce the performance of three recent ML-based detectors,
ie.,, ASTNN, TBCCD, TEXTLSTM. Our study reveals the
robustness implications of the machine learning-based clone
detectors, which calls for more robust and effective meth-
ods for data collection and model training. One possible
solution is to design a hybrid source code representation to
improve the capability of existing ML-based detectors. Our
source code and experimental data are publicly available at
https:/ / github.com /CloneGen/CLONEGEN.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

REFERENCES

(1]

(2]

(3]

(4]

(5]
6]

(7]

(8]

(%1

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

A. Mockus, “Large-scale code reuse in open source software,” in
First International Workshop on Emerging Trends in FLOSS Research
and Development. Minneapolis, MN, USA: IEEE, 2007, pp. 7 - 7.
C. Kapser and M. W. Godfrey, “Cloning considered harmful"
considered harmful: patterns of cloning in software,” Empirical
Software Engineering, vol. 13, no. 6, pp. 645-692, 2008.

B. Lagué, D. Proulx, J. Mayrand, E. Merlo, and J. P. Hudepohl,
“Assessing the benefits of incorporating function clone detection in
a development process,” in 1997 International Conference on Software
Maintenance. Bari, Italy, Italy: IEEE, 1997, pp. 314-321.

Z.Lj, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-
paste and related bugs in large-scale software code.” IEEE Trans.
Software Eng., vol. 32, no. 3, pp. 176-192, 2006.

A. Alex. (2017) Moss, a system for detecting software plagiarism.
[Online]. Available: https://theory.stanford.edu/~aiken/moss/
C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: detection of software
plagiarism by program dependence graph analysis,” in Proceedings
of the Twelfth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006,
pp. 872-881.

X. Wang, Y. chan Jhi, S. Zhu, and P. Liu, “Behavior based software
theft detection,” in Proceedings of the 2009 ACM Conference on
Computer and Communications Security. Chicago, Illinois, USA:
ACM, 2009, pp. 280-290.

J. E Islam, M. Mondal, and C. K. Roy, “Bug replication in code
clones: An empirical study,” in IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering, K. Kontogiannis,
F. Khombh, A. Chatzigeorgiou, M. Fokaefs, and M. Zhou, Eds. Suita,
Japan: IEEE, 2016, pp. 68-78.

S. Lee and L. Jeong, “Sdd: high performance code clone detection
system for large scale source code,” in OOPSLA. San Diego, CA,
USA: ACM, 2005, pp. 140-141.

P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner:
a token based large-gap clone detector,” in Proceedings of the
40th International Conference on Software Engineering, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds.  Gothenburg,
Sweden: ACM, 2018, pp. 1066-1077.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: scalable
and accurate tree-based detection of code clones,” in 29th Interna-
tional Conference on Software Engineering. Minneapolis, MN, USA:
IEEE Computer Society, 2007, pp. 96-105.

Y. Zou, B. Ban, Y. Xue, and Y. Xu, “Ccgraph: a pdg-based code clone
detector with approximate graph matching,” in 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2020,
Melbourne, Australia, September 21-25, 2020. Melbourne, Australia:
IEEE, 2020, pp. 931-942.

C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evalu-
ation of code clone detection techniques and tools: A qualitative
approach,” Science of computer programming, vol. 74, no. 7, pp. 470-
495, 2009.

A. Walker, T. Cerny, and E. Song, “Open-source tools and bench-
marks for code-clone detection: past, present, and future trends,”
ACM SIGAPP Applied Computing Review, vol. 19, no. 4, pp. 28-39,
2020.

C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code
clone detection with syntax and semantics fusion learning,” in
ISSTA "20: 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, S. Khurshid and C. S. Pasareanu, Eds. New
YorkNYUnited States: ACM, 2020, pp. 516-527.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
Proceedings of the 41st International Conference on Software Engineering.
Montreal, QC, Canada: ACM/IEEE, 2019, pp. 783-794.

H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural
detection of semantic code clones via tree-based convolution,” in
Proceedings of the 27th International Conference on Program Compre-
hension, Y. Guéhéneuc, F. Khomh, and F. Sarro, Eds. QC, Canada:
IEEE / ACM, 2019, pp. 70-80.

L. Li, H. Feng, W. Zhuang, N. Meng, and B. G. Ryder, “Cclearner:
A deep learning-based clone detection approach,” in 2017 IEEE
International Conference on Software Maintenance and Evolution.
Shanghai, China: IEEE, 2017, pp. 249-260.

X. Zhu, C. Vondrick, C. C. Fowlkes, and D. Ramanan, “Do we need
more training data?” International Journal of Computer Vision, vol.
119, no. 1, pp. 76-92, 2016.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

14

J. Schulman, FE. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional
neural networks over tree structures for programming language
processing,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, D. Schuurmans and M. P. Wellman, Eds.
Phoenix, Arizona, USA: AAAI Press, 2016, pp. 1287-1293.

S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional Istm network: A machine learning approach
for precipitation nowcasting,” in Advances in neural information
processing systems, 2015, pp. 802-810.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools,” IEEE Trans.
Software Eng., vol. 33, no. 9, pp. 577-591, 2007.

A. Kovacheva, “Efficient code obfuscation for android,” in Interna-
tional Conference on Advances in Information Technology. Springer,
2013, pp. 104-119.

K. Fukushima, S. Kiyomoto, T. Tanaka, and K. Sakurai, “Analysis
of program obfuscation schemes with variable encoding technique,”
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. 91, no. 1, pp. 316-329, 2008.

H. Xu, Y. Zhou, Y. Kang, and M. R. Lyu, “On secure and usable
program obfuscation: A survey,” arXiv preprint arXiv:1710.01139,
2017.

T. Laszl6 and A. Kiss, “Obfuscating c++ programs via control
flow flattening,” Annales Universitatis Scientarum Budapestinensis de
Rolando Eotvds Nominatae, Sectio Computatorica, vol. 30, no. 1, pp.
3-19, 2009.

C. Wang, J. Hill, J. Knight, and ]. Davidson, “Software tamper
resistance: Obstructing static analysis of programs,” Technical
Report CS-2000-12, University of Virginia, 12 2000, Tech. Rep.,
2000.

G. Petrovic and M. Ivankovic, “State of mutation testing at
google,” in Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, ICSE (SEIP) 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, F. Paulisch and J. Bosch,
Eds. Gothenburg, Sweden: ACM, 2018, pp. 163-171.

S. Danicic. (2007) Lava: A system for mutation testing of
java programs. [Online]. Available: http://www.doc.gold.ac.uk/
~mas01sd/mutants/index.html

C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic
framework for evaluating code clone detection tools,” in Second
International Conference on Software Testing Verification and Validatio.
Denver, Colorado, USA: IEEE Computer Society, 2009, pp. 157-166.
T. Béck, Evolutionary algorithms in theory and practice - evolution
strategies, evolutionary programming, genetic algorithms. — New
York,USA: Oxford University Press, 1996.

M. Richey, “The evolution of markov chain monte carlo methods,
Am. Math. Mon., vol. 117, no. 5, pp. 383-413, 2010.

H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, and J. Sun, “Stochastic
optimization of program obfuscation,” in Proceedings of the 39th
International Conference on Software Engineering. Buenos Aires,
Argentina: IEEE, 2017, pp. 221-231.

B. Devore-McDonald and E. D. Berger, “Mossad: defeating software
plagiarism detection,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1-28, 2020.

X. Ren, M. Ho, J. Ming, Y. Lei, and L. Li, “Unleashing the hidden
power of compiler optimization on binary code difference: an em-
pirical study,” in Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, 2021,
pp- 142-157.

A. C. Florea and R. Andonie, “Weighted random search for
hyperparameter optimization,” International Journal of Computers,
Communications & Control (IICCC), vol. 14, no. 2, pp. 154-169, 2019.
Z. Michalewicz, Genetic algorithms+ data structures= evolution pro-
grams. Springer Science & Business Media, 2013.

G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31-88, 2001.

A. Hindle, E. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” in 34th International Conference on Software
Engineering. Zurich, Switzerland: IEEE, 2012, pp. 837-847.

C. Manning and H. Schutze, Foundations of statistical natural language
processing. MIT press, 1999.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334-1373, 2016.

”


https://theory.stanford.edu/~aiken/moss/
http://www.doc.gold.ac.uk/~mas01sd/mutants/index.html
http://www.doc.gold.ac.uk/~mas01sd/mutants/index.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no.
7676, pp. 354-359, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “"Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot ef al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484489,
2016.

C. Szepesviri, “Algorithms for reinforcement learning,” Synthesis
lectures on artificial intelligence and machine learning, vol. 4, no. 1, pp.
1-103, 2010.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under
reward transformations: Theory and application to reward shaping,”
in Ieml, vol. 99, 1999, pp. 278-287.

H. Wei and M. Li, “Positive and unlabeled learning for detecting
software functional clones with adversarial training.” in IJCAL
Stockholm, Sweden: ijcai.org, 2018, pp. 2840-2846.

Y.-Y. Zhang and M. Li, “Find me if you can: Deep software clone
detection by exploiting the contest between the plagiarist and
the detector,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33. Honolulu, Hawaii, USA: AAAI Press, 2019,
pp. 5813-5820.

G. Zhao and ]. Huang, “Deepsim: deep learning code functional
similarity,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Lake Buena Vista, FL, USA:
ACM, 2018, pp. 141-151.

W. Wang, G. Li, S. Shen, X. Xia, and Z. Jin, “Modular tree network
for source code representation learning,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 29, no. 4, pp.
1-23, 2020.

L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional
neural networks over tree structures for programming language
processing,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

H. Zhang, Z. Li, G. Li, L. Ma, Y. Liu, and Z. Jin, “Generating
adversarial examples for holding robustness of source code pro-
cessing models,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 01, 2020, pp. 1169-1176.

H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: scaling code clone detection to big-code,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
L. K. Dillon, W. Visser, and L. A. Williams, Eds. Austin, TX, USA:
ACM, 2016, pp. 1157-1168.

H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence. Melbourne, Australia: Morgan
Kaufmann, 20017, pp. 3034-3040.

C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code
normalization,” in The 16th IEEE International Conference on Program
Comprehension, R. L. Krikhaar, R. Limmel, and C. Verhoef, Eds.
Amsterdam, The Netherlands: IEEE / ACM, 2008, pp. 172-181.

S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data. San
Diego, California, USA: ACM, 2003, pp. 76-85.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source
code,” IEEE Trans. Software Eng., vol. 28, no. 7, pp. 654-670, 2002.
A. Pawlowski, M. Contag, and T. Holz, “Probfuscation: an obfus-
cation approach using probabilistic control flows,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. San Sebastidn, Spain: Springer, 2016, pp. 165-185.

P. Wang, S. Wang, J. Ming, Y. Jiang, and D. Wu, “Translingual
obfuscation,” in 2016 IEEE European Symposium on Security and

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

(82]

15

Privacy (EuroS&P).
144.

D. Picheta, “Code obfuscation for the c/c++ language,” arXiv
preprint arXiv:2003.03449, 2020.

S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach
for vulnerable code clone discovery,” in 2017 IEEE Symposium on
Security and Privacy (SP). San Jose, CA, USA: IEEE, 2017, pp.
595-614.

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). Bethesda,
MD, USA, USA: IEEE, 1998, pp. 368-377.

H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information
in source code,” in IJCAI. Melbourne, VIC, Australia: Morgan
Kaufmann, 2017, pp. 3034-3040.

M. Wang, P. Wang, and Y. Xu, “Ccsharp: An efficient three-phase
code clone detector using modified pdgs,” in 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). Nanjing, China: IEEE,
2017, pp. 100-109.

A. Sheneamer and J. Kalita, “Semantic clone detection using
machine learning,” in 2016 15th IEEE International Conference on
Machine Learning and Applications. Anaheim, CA, USA: IEEE, 2016,
pp- 1024-1028.

C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of
code similarity analysers,” Empirical Software Engineering, vol. 23,
no. 4, pp. 2464-2519, 2018.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in 2016 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). Singapore, Singapore: IEEE, 2016, pp. 87-98.

W. Hua, Y. Sui, Y. Wan, G. Liu, and G. Xu, “Fcca: Hybrid
code representation for functional clone detection using attention
networks,” IEEE Transactions on Reliability, 2020.

J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2015.

E. Burd and ]. Bailey, “Evaluating clone detection tools for use
during preventative maintenance,” in Proceedings. Second IEEE
International Workshop on Source Code Analysis and Manipulation,
2002, pp. 36-43.

R. Tiarks, R. Koschke, and R. Falke, “An assessment of type-
3 clones as detected by state-of-the-art tools,” in 2009 Ninth
IEEE International Working Conference on Source Code Analysis and
Manipulation, 2009, pp. 67-76.

F. Van Rysselberghe and S. Demeyer, “Evaluating clone detection
techniques from a refactoring perspective,” in Proceedings. 19th
International Conference on Automated Software Engineering, 2004.,
2004, pp. 336-339.

J. Svajlenko and C. K. Roy, “Evaluating modern clone detection
tools,” in 2014 IEEE International Conference on Software Maintenance
and Evolution, 2014, pp. 321-330.

Y. Jia and M. Harman, “An analysis and survey of the development
of mutation testing,” IEEE Trans. Software Eng., vol. 37, no. 5, pp.
649-678, 2011.

X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” in 36th
International Conference on Software Engineering. Hyderabad, India:
ACMY/IEEE, 2014, pp. 919-930.

J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang,
“Predictive mutation testing,” IEEE Trans. Software Eng., vol. 45,
no. 9, pp. 898-918, 2019.

P. McMinn, C. J. Wright, C. J. McCurdy, and G. M. Kapfhammer,
“Automatic detection and removal of ineffective mutants for the mu-
tation analysis of relational database schemas,” IEEE Transactions
on Software Engineering, vol. 45, no. 5, pp. 427-463, 2019.

J. Svajlenko and C. Roy, “The mutation and injection framework:
Evaluating clone detection tools with mutation analysis,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1-1, 2019.
V. Raychev, M. Vechev, and A. Krause, “Predicting program
properties from" big code",” ACM SIGPLAN Notices, vol. 50, no. 1,
pp- 111-124, 2015.

S. Schulze and D. Meyer, “On the robustness of clone detection to
code obfuscation,” in 2013 7th International Workshop on Software
Clones (IWSC).  San Francisco, CA, USA: IEEE, 2013, pp. 62-68.

Saarbrucken, Germany: IEEE, 2016, pp. 128-



	1 Introduction
	2 Preliminaries
	2.1 Types of Clones and Clone Detection Methods
	2.2 An Example of Clone Detection
	2.3 Motivation

	3 CloneGen: An Overview
	3.1 The Overview of CloneGen
	3.2 Technical Challenges

	4 CloneGen: Technical Approach
	4.1 Transformation Operator
	4.2 Encoding
	4.3 Transformation Strategy
	4.4 Clone Generation

	5 DRLSG: Theory and Design
	5.1 Deep Reinforcement Learning
	5.2 DESIGN OF DRLSG
	5.2.1 Action Space
	5.2.2 Reward
	5.2.3 state


	6 Evaluation
	6.1 Implementation and experimental setup
	6.1.1 Datasets for CloneGen
	6.1.2 Assessed Clone Detectors
	6.1.3 Baseline Transformation Strategies
	6.1.4 Evaluation Metrics
	6.1.5 Environment

	6.2 RQ1: ML-based Detectors vs. CloneGen
	6.3 RQ2: Adversarial Training with CloneGen
	6.4 RQ3: Effectiveness of Transformation Operators
	6.5 RQ4: Traditional Detectors vs. CloneGen

	7 Discussion
	7.1 Threats to Validity
	7.2 Impact of Transformation Operators
	7.3 Lightweight Code Transformation or Obfuscators?

	8 Related Work
	8.1 Code Clone Detection
	8.2 Code Mutation
	8.3 Code Obfuscation

	9 Conclusion
	References

