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Abstract—Front-running attacks have been a major concern on the blockchain. Attackers launch front-running attacks by inserting
additional transactions before upcoming victim transactions to manipulate victim transaction executions and make profits. Recent
studies have shown that front-running attacks are prevalent on the Ethereum blockchain and have caused millions of US dollars loss. It
is the vulnerabilities in smart contracts, which are blockchain programs invoked by transactions, that enable the front-running attack
opportunities. Although techniques to detect front-running vulnerabilities have been proposed, their performance on real-world
vulnerable contracts is unclear. There is no large-scale benchmark based on real attacks to evaluate their capabilities. We make four
contributions in this paper. First, we design an effective algorithm to mine real-world attacks in the blockchain history. The evaluation
shows that our mining algorithm is more effective and comprehensive, achieving higher recall in finding real attacks than the previous
study. Second, we propose an automated and scalable vulnerability localization approach to localize code snippets in smart contracts
that enable front-running attacks. The evaluation also shows that our localization approaches are effective in achieving higher precision
in pinpointing vulnerabilities compared to the baseline technique. Third, we build a benchmark consisting of 513 real-world attacks with
vulnerable code labeled in 235 distinct smart contracts, which is useful to help understand the nature of front-running attacks,
vulnerabilities in smart contracts, and evaluate vulnerability detection techniques. Last but not least, we conduct an empirical evaluation
of seven state-of-the-art vulnerability detection techniques on our benchmark. The evaluation experiment reveals the inadequacy of
existing techniques in detecting front-running vulnerabilities, with a low recall of < 6.04%. Our further analysis identifies four common
limitations in existing techniques: lack of support for inter-contract analysis, inefficient constraint solving for cryptographic operations,

improper vulnerability patterns, and lack of token support.
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1 INTRODUCTION

Ront-running [1] attacks in financial markets refer to
Fthe practice of leveraging the knowledge of future
transactions and trading before them to make profits.
Front-running attacks also occur in blockchain systems
like Ethereum [2], where transactions are published be-
fore execution. Upcoming transactions are available to all
blockchain users, including potential attackers. By adjust-
ing transaction execution orders with miners [3], malicious
attackers can attack victims by executing transactions be-
fore victim ones so that the victim transactions would be
executed on different blockchain states from what was ex-
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pected. As a result, the attackers can make profits from the
attack and cause financial losses to the victims.

Smart contracts, the programs invoked by transactions
to perform actions on the blockchain, could make front-
running profitable for attackers. Fig. 1 shows an example
smart contract vulnerable to front-running attacks. A relayer
(msg.sender) provides a relay service for off-chain users,
who may not have enough Ethers to pay for transaction fees,
to perform on-chain operations. The relayer calls function
relayOperation to execute user operations (Line 15) and
charges ERC20 [4] tokens (line 18) as the profits of providing
the service. Front-running attacks may occur since the users’
operations and signatures used to invoke this contract are
publicly available once the relayer submits the transaction.
One attacker can invoke this contract before the relayer and
take the profits, which should have been given to the relayer.
As a consequence, the relayer’s transaction fails since each
user operation can only be executed once (line 9). The profits
are taken by the attacker even if it is the relayer who makes
efforts to provide the relay service (e.g., maintaining an
easy-to-use interface like Web Apps).

Recent studies have revealed the prevalence and sever-
ity of front-running attacks on Ethereum by conducting
measurement studies [3], [6], [7]. Torres et al. [7] found
that front-running attacks are prevalent on the Ethereum
blockchain and have caused a total loss of over 18.41M USD.



1 contract TransferManager {

2 function relayOperation (

3 ERC20 token, address user,

4 bytes operation, bytes signature
5 ) |

6 if (verifySignature (

7 user, operation, signature

8 )) |

9 require (

10 checkUniqueness (

11 user, operations, signature
12 ),

13 "RM: Duplicate request"

14 ) i

15 executeOperation (operation);
16 // tarnsfer relay f to relayer
17 uint relayFee = getFee();

18 token.transferFrom (

19 user, msg.sender, relayFee

20 ) i

21 }}}

Fig. 1. Simplified version of TransferManager contract [5] on Ethereum.
Attackers attack by invoking relayoOperation function before victim
transactions.

Daian et al. [3] pointed out that front-running attacks also
pose a major threat to the ecosystem of blockchain since
the profits of front-running attacks could be larger than the
cost of forking the blockchain. Attackers could share part of
the profits to attract miners to fork the blockchain. Given
the great impact, many researchers aimed to curb front-
running in smart contracts. Vulnerabilities under front-
running attacks have been named in different ways, such as
transaction order dependency [8], event ordering bugs [9],
and state inconsistency bugs [10]. In this paper, we refer
to them generally as front-running vulnerabilities. Various
techniques [8], [9], [10], [11], [12], [13] have been proposed
to detect such vulnerabilities in smart contracts. However,
these techniques are usually evaluated in terms of detection
precision on real-world smart contracts. The recall rate is
hard to evaluate due to the lack of ground truth. Ghaleb
and Pattabiraman [14] propose to inject vulnerable code
into contracts to evaluate the vulnerability detection recall
of contract analyzers. However, the front-running vulner-
abilities injected are limited to a few rigid code snippets
and cannot represent vulnerabilities in real-world contracts.
There still lacks a large-scale systematic study to evaluate
and understand the performance of these detection tech-
niques on real-world front-running vulnerabilities.

To address the research gap and evaluate the detection
techniques, the major challenge is how to build a large-
scale and representative benchmark with ground truth of
vulnerabilities. Existing studies cannot fill the gap due
to two major limitations. On the one hand, the existing
benchmark is neither large-scale nor contains representative
contracts to evaluate front-running vulnerability detection
tools. An existing empirical study [15] offers a benchmark
with only four simple vulnerable contracts, with 33.75 lines
of code in each on average. On the other hand, datasets
of real-world attacks built by the previous measurement
studies [3], [7] cannot be used as benchmarks for the eval-
uation of vulnerability detection techniques. There are two
main reasons. First, the measurement studies rely on several
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predefined patterns and heuristic rules to match attacks in
history, which may not be comprehensive and potentially
miss many attacks. As to be shown in Section 4.4, the ap-
proach proposed by our study is able to identify 24.42x time
attacks than the existing dataset [7] with 98.69% precision,
indicating that many attacks are actually missed by the
existing work. Second and most importantly, none of the
measurement studies can localize vulnerabilities in smart
contracts. Only attacks, each consisting of several transac-
tions, are identified, while it is still unknown which code
in the underlying smart contracts enables the possibility of
front-running attacks.

To tackle the limitations of previous studies, we first
propose a general attack model and mine historical front-
running attacks using the model. The mined attacks serve as
ground truth, from which we propose a novel technique to
localize front-running vulnerabilities in smart contracts and
build a benchmark. To demonstrate the usefulness of our
approach, we systematically evaluate seven state-of-the-art
tools and investigate the limitations in their techniques.

Our attack mining algorithm enumerates all transactions
in history with efficient pruning strategies and a generic
attack model. Previous works [3], [7] rely on a limited
number of predefined patterns to find historical attacks,
which can miss many attacks. Our evaluation results show
that our algorithm can achieve 90.19% recall on a baseline
dataset [7] and find 24.42x more attacks than the state-of-
the-art technique. It also has precision as high as 98.69%
since we strictly follow the definition of front-running in the
attack model. We mine historical attacks in the latest 800,000
blocks on the Ethereum mainnet and collect 188,700 attacks
in total.

With a large-scale dataset of real attacks, we localize vul-
nerable code in smart contracts. For each attack, we consider
the blockchain shared data manipulated by the attacker as
taint sources and perform dynamic taint analysis with the
victim transaction. We consider the program location where
victim profits are directly affected as the taint sink. Then
we mark the contract code executed along the taint flow
trace from source to sink as vulnerable. Our manual analysis
among three authors on a sample of attacks shows that
the code localized by our approach can cover the exploited
vulnerable contract logic in all attacks. In addition, we also
find that our approach is precise and marks 99.66% less code
than the baseline. In the end, we build a benchmark with
513 real-world attacks and identify the vulnerabilities in 235
contracts whose source code is available.

Based on the benchmark, we perform an empirical study
to evaluate existing techniques. We aimed to answer the
following research questions.

« How many vulnerabilities can existing tools detect in our
benchmark?

o What are the limitations of existing tools in detecting
front-running vulnerabilities?

We conduct a systematic literature review on state-of-the-

art works and select seven tools that implement techniques

supporting front-running vulnerability detection. We use

these tools to detect vulnerabilities in our benchmark. Our

results show that existing tools have poor performance and

can only detect vulnerabilities exploited by at most 6.04% at-

tacks. We then investigate the limitations of the underlying



techniques of each tool through manual analysis of samples
of missed vulnerabilities. Our major findings include:

o Existing techniques can hardly perform precise inter-
contract analysis, failing to capture many vulnerabilities
involving cross-contract invocations.

o The wide use of cryptographic operations in contracts
makes it difficult to generate concrete transactions using
SMT solvers, limiting the capability of the techniques in
exploring transaction executions.

« Vulnerability detection patterns of existing techniques are
weak in capturing many front-running vulnerabilities.

e Many vulnerabilities are missed due to the negligence of
profit-making in tokens instead of Ethers.

To sum up, we make the following contributions in this
work.

o We design an effective algorithm to comprehensively
mine front-running attacks in the Ethereum transaction
history.

« We propose a novel approach to automatically localize
vulnerable code from a historical attack.

o We build a benchmark consisting of 513 real-world attacks
with vulnerable code localized in 235 distinct contracts,
which can be used to evaluate existing vulnerability de-
tection techniques.

e We conduct an empirical evaluation on seven state-of-
the-art vulnerability detection tools and find that none of
them are effective, only with a low recall < 6.04%. We in-
vestigate and summarize four common limitations of the
techniques, providing insights for future improvements of
front-running vulnerability detection.

The implementation of our attack mining and vulnera-
bility localization, our benchmark, as well as the results of
our evaluations of existing tools, are made publicly available
on GitHub: https:/ /github.com/Troublor/erebus-redgiant.

The following of this paper is organized as follows:
Section 2 introduces the background knowledge of front-
running on the blockchain. Section 3 discusses literature
related to front-running attacks and vulnerabilities in smart
contracts. Section 4 aims to build a high-quality dataset
of historical front-running attacks. Section 5 is meant to
build a front-running vulnerability benchmark by localizing
vulnerabilities from the attack dataset built in Section 4.
Section 6 evaluates state-of-the-art contract analyzers using
the benchmark built in Section 5 and discusses the limitation
of these analyzers.

2 BACKGROUND

This section introduces the background knowledge of the
Ethereum blockchain and front-running attacks. We base
our presentation on Ethereum since it is the most popular
blockchain that supports Turing-complete smart contracts.
In this paper, blockchain refers to the Ethereum blockchain
unless otherwise specified.

2.1 Ethereum State Transition Model

Ethereum blockchain can be considered a state machine [2].
State transitions occur when transactions get executed in
new blocks mined by miners. A global state called world
state is maintained by Ethereum. The blockchain world
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state comprises account cryptocurrency balances (in Ethers),
smart contract code, and key-value mapping storage for
each smart contract. Every executed transaction modifies
the world state by performing a simple cryptocurrency
transfer or invoking a smart contract, which is the program
stored on the blockchain specifying the logic of world state
modification. In order to achieve the consensus of state
transitions across all blockchain miners, the execution of
a transaction is deterministic given a pre-execution world
state, and transactions are executed sequentially according
to an order determined by miners.

2.2 Transaction Order in Blocks

The order transactions executed in each block are deter-
mined by miners to enlarge their profits. Miners make
profits by charging execution fees for each transaction [16].
The execution fee is calculated by the multiplication of
gas, which measures the amount of computing resource
consumed in the execution, and the gas price. To maximize
profits, miners usually prioritize transactions that specify
higher gas prices [3]. Users of Ethereum can set a relatively
higher gas price to prioritize the transaction execution. Note
that executing transactions in descending order of gas price
is not a must. Miners are free to order transactions to their
interest.

2.3 Front-Running Attacks

Front-running attacks have been clearly defined by sev-
eral Ethereum vulnerability taxonomies [17], [18]. Attackers
leverage the information revealed by future transactions,
execute attack transactions in advance to make profits, and
result in unexpected behavior in the victim transactions. On
Ethereum, before execution, pending transactions are stored
in a pool, broadcast to all miners, and known to attackers.
Attackers can easily obtain the information revealed by the
pending transactions and construct attack transactions to
perform front-running attacks. To execute attack transac-
tions before the victim, the attacker can either set a higher
gas price or mine blocks themselves, as mentioned in Sec-
tion 2.2. As a result, the victim transaction has an execution
outcome different from that without the attack transaction
executed, causing loss to the victim transaction user.
Front-running can occur in traditional financial markets.
For instance, in foreign exchange markets [20], malicious
traders can leverage internal information about upcoming
large EUR purchase orders, buy EUR using USD in advance
at a lower price, and sell them back to USD afterward at
a much higher price. As a result, the upcoming (victim)
transaction buys EUR at a higher price, while the malicious
traders (attackers) obtain profits from the price difference.
Such markets are also implemented on the blockchain.
Fig. 2 shows the simplified logic of a popular token ex-
change market, Uniswap [19], which contains front-running
vulnerabilities and enables attacks similar to those in foreign
exchange markets. The contract Pair holds the reserves
of two tokens to swap (token0O and tokenl) in variables
reserve0 and reservel, respectively. The exchange rate
between these two tokens is determined by the ratio of
reserves held by contract Pair. The swap function swaps
the given amount of token0 (amount0) to tokenl. The
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contract Swap {
Pair pair;
function swap (uint amountO) public {
// Charge constant swap f

1
2
3
4
B
6 pair.tokenO.transferFrom (
7
8
9
0

amount0 = amountO - 100gwei; // swap fees
msg.sender, this, 100gwei
)i
// Calculate the amount of tokenl swapped to
1 uint amountl = pair.reserveOx*pair.reservel

/ (pair.reserveO+amount0) -pair.reservel;

11 // Log the swap event

12 logSwap (msg.sender, amountO, amountl);
13 // Swap the tokens

14 pair.doSwap (amount0, amountl) ;

5 1}

16 function logSwap (

17 address u, uint amountIn, uint amountOut
18 ) f

19 // log the swap event

20 ...

21}

22}

23 contract Pair {

24 uint public reserve0O, reservel;

25 ERC20 public tokenO, tokenl;

26 function doSwap (uint amount0O, uint amountl)

public {

27 // Update the reserve of the token pair

28 reserve(O += amount0; reservel —-= amountl;

29 // Transfer the swapped tokens

30 tokenO.transferFrom(tx.origin, this,
amountQ) ;

31 tokenl.transferFrom(this, msg.sender,
amountl) ;

32}

33 }

Fig. 2. Simplified version of UniswapV2 [19] contract. Attackers invoke
function swap before victims. Attackers can buy tokenl with token0
at a lower price, and sell tokenl afterward at a higher price to make
arbitrage.

swapped amount1 is calculated using reserves of contract
Pair at line 10. The victim transaction swapping token0
for tokenl can be attacked if the attacker invokes function
swap in advance. The attacker’s transaction will modify the
values in variables reserve0 and reservel at line 28,
changing the ratio of two tokens’ reserves. As a result, the
victim receives less tokenl, according to the calculation of
amount1 at line 10, i.e., the victim buys tokenl at a higher
price. The attacker can later sell tokenl at a much higher
price after the victim transaction to make profits.

Front-running is illegal in traditional markets regulated
by the government. However, there is no similar gover-
nance on the blockchain. Attacks are much easier to launch
since malicious users can easily know upcoming transac-
tions from the public pool of pending transactions. Insert-
ing attack transactions before victims is possible since the
execution orders are determined by miners without any
restrictions. Therefore, front-running attacks are prevalent
on the blockchain and cause much damage [7].

3 LITERATURE REVIEW
3.1 Smart Contract Vulnerability and Detection

Researchers have identified many different types of vul-
nerabilities in smart contracts [17], including integer over-
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flow /underflow, reentrancy, denial of service, and etc. Var-
ious techniques have been proposed to detect these vulner-
abilities [8], [9], [10], [11], [12], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41]. Among them, we focus on those
techniques capable of detecting front-running vulnerabili-
ties in smart contracts. Such vulnerability captures the key
of front-running attacks: transaction order could influence
the execution results. The authors then proposed Oyente [8]
the first one detecting front-running vulnerabilities, by-
checkingE whether there are different ther transfer flows
in different execution paths using symbolic execution [42].
Following Oyente, many other vulnerability analyzers sup-
port transaction order dependency detection using various
techniques. Ethracer [9] adopts dynamic symbolic execution
to generate concrete transactions and checks whether the
resulting blockchain world state is sensitive to the execution
orders of these transactions. Mythril [12] and Conkas [43]
leverage symbolic execution and static taint analysis [44]
to detect front-running vulnerabilities by checking whether
there are feasible execution paths where Ether transfers are
affected by taint sources, which are contract storage that
another transaction can modify. Securify [11] uses abstract
intepretation [45] to match contract with security property
patterns, i.e., the receiver, amount, and path conditions of
Ether transfers should not depend on variables that another
transaction can manipulate. Similarly, Sailfish [10] builds the
smart contract state dependency graph, summarizing the
read-write dependencies between different public functions,
which different transactions invoke. Then, the same security
patterns of Securify are applied to the state dependency
graph to detect vulnerabilities.

3.2 Vulnerability Empirical Studies and Benchmarks

In addition to various vulnerability detection techniques
proposed, researchers have made efforts to evaluate the ca-
pability of these techniques from different aspects. Durieux
et al. [15] collect two datasets of smart contracts. One
dataset has vulnerabilities labeled, which can be used to
evaluate the vulnerability detection recall rate. However,
this dataset is small-scale, only containing four simple
contracts suffering from front-running vulnerabilities, with
33.75 lines of code on average. The other dataset built by
Durieux et al. [15] is large-scale, containing 47,518 contracts.
However, this dataset does not have the ground truth of
the vulnerabilities. Ghaleb and Pattabiraman [14] propose
to inject vulnerabilities into real-world smart contracts to
obtain the ground truth of vulnerabilities for detection
technique evaluation. However, However, their approach
can only inject a few rigid vulnerable code snippets in
smart contracts, which may not be the real vulnerable code
exploited in real-world attacks. In addition, in our study,
we find that sometimes the front-running vulnerability re-
sides in the business logic of interaction among multiple
contracts, e.g., the example in Fig. 2. Such cross-contract
vulnerability is closely coupled with the semantics of the
underlying contracts and can not be injected with the pro-
posed injection approach. Our study is meant to build a
large-scale benchmark with vulnerability ground truth in
real-world contracts, which significantly differs from the



previous studies. As shown in Section 6, our benchmark is
able to reveal the performance of various contract analyzers
in real-world contracts. Perez and Livshits [46] conduct
an empirical study on the contracts that are reported as
vulnerable by various analyzers. Their results show that
most front-running vulnerabilities reported by analyzers are
benign and have not been exploited in history. Their study
focuses on the exploitability of the vulnerabilities reported
by analyzers and only mines attacks on those reported
contracts. However, as shown in our study (Section 6),
state-of-the-art analyzers miss a large number of vulnerable
contracts that suffer from front-running attacks. As a result,
most of the front-running attacks are not included in the
dataset collected by Perez and Livshits [46]. Besides, their
study has different objectives from ours. Their objective is
to study the precision of analyzers in terms of exploitability
while ours is meant to build a benchmark and evaluate the
detection recall rate in real-world contracts.

3.3 Real-World Attacks and Measurement Study

Although researchers have identified front-running attacks
for years, such attacks have always been prevalent in
real-world smart contracts. Daian et al. [3] analyzed the
transaction traffic on the Ethereum blockchain, showing
that many arbitrage bots are competing with each other
to perform front-running attacks on transactions submit-
ted by ordinary users automatically. Eskandari et al. [6]
conducted a case study on four categories of smart con-
tracts and found that front-running attacks could happen
in contracts designed for cryptocurrency exchange mar-
kets, crypto-collectible games, gambling, and name services.
From the case study, the authors identified three attack
patterns, i.e., displacement, insertion, and suppression. Dis-
placement attacks usually observe the input of the victim
transaction, invoke the contract in advance as the victim
would do, and obtain any profit that would be given to the
victim transaction sender. The example contract in Fig. 1
is vulnerable to displacement attacks. An insertion attack
is performed by inserting a transaction before the victim
transaction, altering the state that the victim transaction will
executethe based on, and then executing another transac-
tion after the victim to collect profits. The example attack
in financial market mentioned in Section 2.3 is a typical
insertion attack. A suppression attack is meant to attack
time-sensitive transactions by filling the current block and
delaying the victim transaction. Based on the findings from
Eskandari et al., Torres et al. [7] took the first step to measure
the real-world front-running attacks on Ethereum. They
identified around 200 thousand attacks from the blockchain
transaction history and found that displacement and inser-
tion attacks take the majority, obtaining an accumulated
profit of 18.41M USD. Qin et al. [47] also conducted a
similar measurement study on the Ethereum blockchain,
also showing that front-running attacks are prevalent and
causing considerable financial loss.

4 ATTACK MINING AND DATASET

We aim to build a benchmark of vulnerable contracts from
real-world front-running attacks. However, it is non-trivial
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to mine historical attacks given the large search space,
and there exists no generic attack model to identify front-
running attacks. This section introduces our attack model,
based on which we propose an algorithm to effectively and
comprehensively mine attacks in the blockchain transaction
history.

4.1 Attack Model

We model one front-running attack in blockchain transac-
tion history with a tuple of transactions: (T, T,, T?), where
T, is the victim transaction being attacked, and 7, and 7?7
are transactions from the attacker. We define two transaction
execution scenarios:

Definition 1 (Attack Scenario) The tuple of transactions are
executed in the order Ty, — T, — TP.

Definition 2 (Attack-Free Scenario) The tuple of transactions
are executed in the order T,, — T, — TP.

The attack scenario refers to the execution order in the
blockchain history where the attack occurred. The attack-
free scenario refers to the execution order without interfer-
ence from attackers, which was intended by the victim.

We consider A = (T,,T,,TP) as a front-running attack
if it satisfies two properties:

Property 1 (Attacker Gain) The attacker obtains financial gain
in the attack scenario compared with the attack-free scenario.

Property 2 (Victim Loss) The victim suffers from financial loss
in the attack scenario compared with the attack-free scenario.

The financial gain and loss of attackers and victims are
measured by the amount of cryptocurrency and tokens that
attackers and victims receive in the transactions. We con-
sider Ether, the native cryptocurrency on Ethereum, as well
as four popular token standards as quantitative financial
profits, namely ERC20 [4], ERC721 [48], ERC777 [49], and
ERC1155 [50], which are all the token standards’ listed in
the official documentation of Ethereum [52]. It is possible
that in some specific contracts, the attacker may target other
forms of assets besides the standard cryptocurrency and
tokens. We do not include non-standard assets since our
attack model is designed to be general and not limited
to specific contracts. If necessary, our attack model can be
easily extended to support other non-standard forms of
assets. One only needs to define profit gain or loss on the
non-standard asset, and our approach will work seamlessly.

The intuition of our attack model is that the attacker
should steal benefits from the victim by inserting 77, and
manipulating the world state on which T,, executes. The
Attacker Gain property specifies that the attacker benefits
from front-running victim transactions. If not, the attacker
has no incentive to front-run the victim transaction since
prioritizing the execution of transactions requires extra costs
(Section 2.2). The Victim Loss property specifies that the
victim is harmed due to the attack transaction executed in
the front. The Victim Loss property is designed to exclude
the case where some transactions can gain more profits
without harming other transactions. Without considering

1. We do not include ERC4626 [51] here since it is an extension of
ERC20. Supporting ERC20 will support ERC4626 tokens intrinsically.



the Victim Loss property, it is hard to validate whether such
a case is a real attack since there is no victim. To minimize
the possibility of including a false attack, we require that
there must be a victim who loses profits in the attack-free
scenario.

TP is optional to perform an attack. Eskandari et al. [6]

found that attackers may or may not need to execute another
transaction after T, to collect profits® (Section 2.3). If (T, T,,)
already satisfies the above attack properties, it is considered
as an attack without 7.
Discussion: Our attack model is designed to capture tuples
of transactions indicating that the underlying smart con-
tracts contain front-running vulnerabilities, i.e., allow some
users front-run other users’ transactions to make profits.
Tuples of transactions identified by our attack model serve
as poofs of concepts [53] for front-running vulnerabilities in
the underlying smart contracts. In other words, transactions
identified by our attack model demonstrate the feasibility of
attacking T, by inserting T, and T? before and after T, to
obtain financial profits. In blockchain history, the submitter
of T, may not deliberately manipulate the transaction orders
to make profits, though T, is accidentally executed before
T, causing financial loss to the victim. However, T, is still
a valid attack to 7} and will be identified by our attack
model. What is captured by our attack model is the de-facto
attack based on the transaction execution result instead of
the intention of the attackers.

Our attack model may also miss some attacks. The
purpose of attackers may not be to obtain financial profits
as captured by our two attack properties. However, such
incentives are hard to validate. Therefore, we limit our scope
to attacks that make financial profits. In addition, attackers
may also insert multiple transactions before and after T;,
to perform an attack, but there is no evidence that such a
scenario is common. In the measurement study conducted
by Torres et al. [7], only 0.025% of front-running attacks
they found involved multiple attack transactions before and
after T,,. This is because blockchain users need to pay extra
fees for each separate transaction. Rational attackers will
merge multiple attack transactions into an atomic one to
reduce costs. Therefore, we limit our scope to those attacks
involving only one attack transaction before and after 7T;, for
the sake of scalability. The search space will otherwise grow
exponentially if we consider multiple attack transactions,
while there may not be many more attacks to be mined.

Popular front-running attack cases well-known to the
blockchain community are in line with our attack model.
Maximum Extractable Value (MEV) [3] is a well-known
concept in the Ethereum community, which refers to the
digital assets that can be withdrawn from contracts permis-
sionlessly. Assets cumulatively worth more than 696M US
dollars have been withdrawn by March 2023 [54]. Daian et
al. [3] have shown that MEV withdrawal transactions are
generally subject to front-running attacks, and the attacks
prevalently occur on the blockchain. Any blockchain user
is qualified to withdraw the MEV. Only the first of many
transactions withdrawing the same MEV will successfully
obtain the MEV as profits, while others will end up with no
profits but still paying transaction fees. Therefore, different

2. The superscript p in T4 means profit collection.

Algorithm 1: Mine attacks in transaction history.

Input :a sequence of transactions executed in history T
Output: a set of historical attacks A

1 A+ g
2 foriq < Oto |T| —1 do

3 Ts <+ getTransactionAtIndex (T, iq);

4 fori, < ia+1to |T|—1 do

5 Ty < getTransactionAtIndex (T, iy);

6 if shouldPrune (Ty, T,) then continue;

7 if satisfyProperties (Ty, Ty) then

8 A< (Ta,Ty);

9 continue;

10 end

1 forip < iy +1to |T| —1 do

12 TP + getTransactionAtIndex (T, ip);
13 if shouldPrune (T,, Ty, TY) then continue;
14 if satisfyProperties (Ty, Ty, TY) then
15 A (To, Ty, TE);

16 continue;

17 end

18 end
19 end
20 end

users compete for the same MEV, and the first executed
transaction is attacking others for grabbing the limited num-
ber of MEV as profits. The front-running attacks on MEV
transactions satisfy our attack properties, and they can be
captured by our attack model.

4.2 Attack Mining

Existing measurement studies attempt to mine attacks using
predefined patterns of transaction data or execution traces
to characterize attacks [3], [7]. For instance, they consider
transactions that copy the data of another transaction as
attacks or search for transactions swapping tokens in the
same way as described in Fig. 2 in a limited number of
already known vulnerable token exchange contracts. As
proposed below, we do not rely on any predefined patterns
and mine attacks comprehensively in the transaction history
by enumerating all possible transaction combinations and
identifying attacks based on our attack model.

Algorithm 1 shows the attack mining procedure in a
transaction history, which is represented as a sequence of
transactions T. It searches for the combinations of historical
transactions that satisfy the attack model. The key idea of
the mining algorithm is that a successful front-running at-
tack must result in a transaction sequence in the transaction
history matching the attack scenario (I, — 1T, — TP).
We can then simulate its corresponding attack-free scenario
T, — T, — TP) to validate whether the transaction
sequence satisfies our two attack properties defined in Sec-
tion 4.1. We consider every transaction in the history as a
potential T}, (line 2) and then search for any subsequent
transaction 7}, (line 4) that was successfully attacked by T5,.
Function satisfyProperties executes the given trans-
actions in the attack and attack-free scenarios and checks
whether the execution result satisfies the two properties.
As explained, an attack can be accomplished by two or
three transactions. If the attack properties based on the
two execution scenarios can be satisfied by 7, and T, it
is an attack by two transactions. Otherwise, the algorithm
continues to search in subsequent transactions for the third



transaction TP (line 11) such that (T,,T,,7?) forms an
attack.

In satisfyProperties function, we consider the
transaction sender of T, and T, as the attacker and victim,
respectively. Given that many attackers use bot contracts [7]
to perform attacks, we also consider the first contract that T,
invokes as the attacker. Financial gain or loss is determined
using the difference in the amount of digital assets (Ether,
ERC20 [4], ERC721 [48], ERC777 [49], and ERC1155 [50]) that
the attacker or victim receives in two transaction execution
scenarios.

When checking whether the transactions satisfy the
properties, we consider the existing execution in the
blockchain history as the attack scenario and aggregate the
total profits of attackers and victims. For the attack-free
scenario, we simulate the execution of T, based on the
blockchain world state in history before T,,. Then, T;, and
TP are simulated after 7). Profits of attackers and victims
in the attack-free scenario are collected from the execution
result of this simulation.

Executing transactions in attack and attack-free scenarios
is expensive, especially when we aim to enumerate all possi-
ble combinations of transactions to mine attacks. The worst
case time complexity of Algorithm 1 is O(¢|T|?), where ¢
is the average execution time of a transaction. We make
improvements to the algorithm efficiency without missing
attacks. We verify the necessary conditions of the attack
properties in the shouldPrune function and prune the
search space early if the conditions are not satisfied without
missing any attacks. The primary necessary condition is
that T,, and T, must have read-write conflicts [55] on some
shared data in the blockchain world state [56], i.e., the ac-
count balance, contract code, and contract storage. Inferring
from the execution trace in the blockchain history, we con-
sider T, and T, have read-write conflicts if T,, modifies the
same shared data that 7}, performs a def-clear [57] read. Def-
clear reads refer to those read operations the variables read
by which are not written previously in the execution trace
of the same transaction. Otherwise, the execution outcome
of T, and T, is irrelevant to the order between them, and
the attack properties will not be satisfied. In addition, we
also prune the search space if T,, and T, are submitted by
the same account.

4.3 Front-Running Attack Dataset

We use our attack mining algorithm to mine front-running
attacks in the block range 13,000,000-13,800,000, which are
the latest 800,000 blocks when this study is conducted. We
split the entire blockchain history into windows of three
blocks and slide the window with an offset of one block.
In the range of history that we are about to analyze, there
are 799,998 block windows. In each window, transactions in
the consecutive blocks are concatenated into one sequence
and we mine attacks in this sequence with Algorithm 1.
We analyze 16 block windows in parallel, and the min-
ing timeout in each block window is 60s. The mining is
performed on a CentOS 8 machine with an AMD Ryzen
3975WX CPU and 512GB RAM. It takes in total 69.54 days
to finish the mining in all block windows, 7.51s for each
block window on average. We do not mine attacks in the

TABLE 1
Number of attacks in baseline dataset that can be found by our attack
mining algorithm.

Displacement  Insertion  Suppression
Baseline 2,983 196,691
Ours 2,910 177,222 0

entire blockchain history because the contracts exploited by
older attacks may no longer be active. Although the average
mining time of each block window is only around half of
the average Ethereum block interval (15s) [58], it is also
impractical to mine the entire Ethereum history. In the end,
we obtain the dataset D#, comprising 188,700 attacks, from
the attack mining.

4.4 Attack Mining Evaluation

To ensure the quality of dataset D“, we evaluate our attack
mining algorithm by answering RQ1:
¢ RQ1: Is our mining algorithm effective in finding attacks?

- RQ1-1: Can our algorithm effectively find real attacks?

- RQ1-2: Can our attack model effectively characterize

attacks?
— RQ1-3: Can our algorithm outperform the state-of-the-
art attack mining technique in finding attacks?

Methodology: To evaluate the algorithm’s precision in RQ1-
1, we manually analyze 383 attacks (D°), which are ran-
domly sampled among all attacks (D*) to achieve 95%
confidence level and 5% confidence interval. To facilitate
manual analysis, we only sample those attacks whose in-
voked smart contracts have source code available. Three
authors individually analyze the execution traces of each
transaction in each sampled attack, interpret the semantics
of underlying smart contracts, and check whether each
attack found by our algorithm is an actual front-running at-
tack according to the attack definition [17], [18], which states
that attackers leverage the knowledge of future transactions
to make profits. If the three authors have different opinions,
which cannot be solved after discussions, we will consider
the attack as a false positive. In the manual check, we check
whether the attacker leverages the knowledge of the future
victim transaction by checking whether the attacker can still
obtain profits if no victim transaction is submitted. If the
attacker can no longer get profits, then it means the attacker
does leverage the knowledge of the future transaction and
we will consider the attack as a real front-running attack.
For instance, in Fig. 1, if the victim transaction that reveals
the user’s signature is not submitted, the attack transaction
will have no way to pass a valid signature argument to the
relayOperation function. Similarly, in Fig. 2, if the victim
transaction that swaps tokenO to tokenl is never submit-
ted, the exchange rate will not change after the attack trans-
action, and the attacker will not make profits from the price
difference. To answer RQ1-2 and RQ1-3, we consider the
measurement study conducted by Torres [7] as the baseline,
which proposes an approach mining historical attacks using
predefined transaction patterns for displacement, insertion,
and suppression attacks, respectively (Section 3.3). Baseline
offers a dataset of three categories of attacks, as shown
in the first row of Table 4.4. To answer RQ1-2, we apply



our attack algorithm to mine all the attacks in the baseline
dataset and check if our model can capture those attacks.
For RQ1-3, we apply our algorithm to mine attacks in
the latest 1,000 blocks (block number 11,299,000-11,300,000,
containing 175,552 transactions) that the baseline mined and
check whether our algorithm can find more attacks.
Results: For RQ1-1, there are only five falsely reported
attacks, giving 98.69% precision. All of them are caused by
inappropriate attack-free scenario execution. In blockchain
history, there could be many other transactions between
T,, T, and T?. When we change the transaction orders to
mimic attack-free scenarios, the relative orders between T,
(or T,) and other transactions are also changed. Financial
profits of the attack or victim could be affected by such
relative orders. As a result, the financial profits in the attack-
free scenario could be incorrectly calculated, and false-
positively reported attacks may be induced, but our manual
check shows that such cases are rare.

Table 4.4 shows the experiment results for RQ1-2. Out of
the total 199,724 attacks in the baseline, our attack model can
identify 90.19% (180,125), indicating the generality of our
attack model. We further investigate the reasons for missed
attacks. Among the three types of front-running attacks
collected by the baseline, all the suppression attacks involve
multiple attack transactions before the victim transaction,
which do not fit our attack model. This is not a significant
flaw in our attack model since suppression attacks only
comprise a tiny portion (0.03%) of all attacks. We sample
61 out of 73 and 377 out of 19,469 (95% confidence level,
5% confidence interval) missed displacement attacks and
insertion attacks to analyze the reason, respectively. We find
that 215 attacks are missed because our model is more
conservative and stricter than the patterns used by the
baseline. For instance, two transactions compete to buy the
same NFT [59] with ERC20 tokens, and only one of them
will succeed. The baseline considers such a case as an attack.
However, it is unknown whether the NFT is worth more
than the paid ERC20 tokens, so our model does not consider
it an attack. In 160 cases, the attacker obtains zero profits or
loses profits in the attack scenario. For 19 missed attacks, we
cannot re-execute the transactions in the attack-free scenario
due to a violation of blockchain protocol (e.g., transaction
nonce, block limit, etc.). Thus our algorithm does not report
these attacks. The rest 44 missed cases are caused by the
inappropriate attack-free scenario execution as described in
the previous paragraph.

In the experiment for RQ1-3, the baseline is able to find
277 attacks in the block range, while our algorithm is able to
find 6,765 attacks, 24.42x more. All the attacks found by the
baseline can be found by our algorithm. This result shows
that our algorithm has a much higher recall rate in finding
attacks. This is because our algorithm comprehensively
enumerates transactions in the blockchain history instead
of relying on the heuristic patterns like the baseline.

Answer to RQ1: Our attack mining algorithm can effec-
tively find 24.42x more attacks than those by baseline
with 98.69% precision. The effectiveness of our mining
algorithm ensures the quality of dataset D#, which serves
as a basis for the following study.
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5 VULNERABILITY LOCALIZATION AND BENCH-
MARK

While Section 4.3 describes the construction of the dataset
D4 for front-running attacks, the dataset cannot be used
directly to evaluate various techniques’ performance in
front-running vulnerability detection. Each entry in D4 is
an attack consisting of two or three transactions but it
does not pinpoint the vulnerable code snippet(s), which
provide essential information to validate if vulnerabilities
are correctly detected. In this section, we present our ap-
proach to localizing the vulnerable code snippets from the
transactions.

5.1 General Ideas in a Nutshell

Pinpointing the vulnerable code snippet(s) responsible for
an attack is an open problem. In many cases, it could be the
overall logic design of the vulnerable contract instead of a
single line of code or a function. For instance, in Fig. 2, it is
the algorithm design, which calculates the exchange rate of
tokens, that enables front-running transactions. None of the
functions alone is vulnerable without considering the logic
of others. In this example, the attack transaction 7 calls
the swap function (Line 3) before the victim transaction T,
reducing the amount of swapped tokens obtained by 7),. A
naive approach is to consider all the code in Fig. 2 executed
by T, in an attack scenario to be vulnerable. However, this
approach is too coarse and may falsely consider a large
portion of code as vulnerable. The code at Line 5-6 to pay
a constant swap fee, and the body of function logSwap
invoked at Line 12 are falsely marked vulnerable, although
they are unrelated to the vulnerable logic to compute the
amount of swapped tokens.

This motivates us to devise a more accurate mechanism
that can scale to the large dataset D to localize vulnerable
code. In a nutshell, our approach identifies the blockchain
data accessed by the victim transaction T, but altered by
the attack transaction Ty, (attack altered data), and performs
a dynamic taint analysis [44] with T, using attack altered
data as taint sources. We consider taint sinks the program
location where profits earned by the victim are directly
affected. We extract the taint flow trace from source to sink
and consider the contract code executed along this trace as
vulnerable. Specifically, the attack altered data of an attack
is defined as follows:

Definition 3 (Attack Altered Data) The attack altered data in
an attack A = (T,,T,,TP) is the blockchain data that T,
performs a def-clear read after the data has been stored by T,
in the attack scenario.

In Fig 2, both T}, and T, invokes function swap. T,, modi-
fies contract variables at line 28, which are later loaded by T},
at line 10. We consider these two variables (reserve0 and
reservel) as taint sources in the dynamic taint analysis of
T,. Profits earned by the victim are transferred at line 31,
whose amount is decreased because of the attack. We thus
consider line 31 as the taint sink. We then compute the
vulnerable code snippet by extracting the flow from source
to sink, i.e., line 10 — 14 — 31. The vulnerable logic that
computes the token exchange rates using attack altered data
is identified, while contract code at line 5-6 and logSwap



function are excluded. Compared with the naive approach,
which marks all lines of code, we only mark three lines in
function swap and doSwap as vulnerable.

5.2 Localize Vulnerability with Influence Trace

Now we present how to mechanically localize vulnerable
code snippet(s) from an attack A = (Ty, Ty, TP?). First, we
localize the taint sources by identifying attack altered data
in the attack scenario. Blockchain shared data, i.e., account
balances, contract code, and contract storage, which are
modified in T;, and read without preceding writes (def-
clear [57] reads) in T,, is considered as attack altered data.
Those operations in T, that perform def-clear reads on
attack shared data are considered taint sources. Second, we
localize the taint sink that is held responsible for the loss
of victim’s financial profits. We conduct a manual analysis
on the same set of attack samples D* as in Section 4.4 and
check how victims’ financial profits are influenced by attack
altered data. We make an interesting finding that all attacks
can be summarized into three attack patterns based on how the
attack altered data influences victim transactions, namely
Path Condition Alteration, Computation Alteration, and
Gas Estimation Griefing. Taint sinks are defined accordingly
for different attack patterns.
Path Condition Alteration:

1 if (altered(sharedData)) {

2 uint profit = computeProfit ();
3 victim.transfer (profit);

4

}

The above code snippet shows the first attack pattern. The
victim’s profit depends on a path condition evaluated using
attack altered data. The example shown in Fig. 1 falls into
this pattern. In this pattern, the root cause is that the path
condition is manipulatable by attackers, while the computa-
tion of profits is not. We consider the conditional statement
as the taint sink. Note that we cannot use the profit transfer
operations as taint sinks since they do not necessarily data-
depend on the attack altered data.
Computation Alteration:

1 uint profit = calculateProfits/(
2 altered(sharedData)
3

4 victim.transfer (profit);

The above code snippet shows the computation alteration
pattern. The computation of the victim’s financial profit is
manipulated without changing the execution path. Attacks
on the example exchange contract in Fig. 2 falls into this
pattern. We consider the statement that transfers profits to
the victim as the taint sink.

Gas Estimation Griefing:

1 parameterizedExpensiveOperation (
2 altered(sharedData)

3

4 victim.transfer (profit);

Gas estimation griefing is different from the previous two
patterns. Instead of manipulating the execution path or
computation outputs, the attacker attacks by leveraging the
gas model of Ethereum.Blockchain users need to estimate

9

and specify a sufficient gas limit before submitting trans-
actions, otherwise the execution fails. The gas consumption
of transactions may depend on the attack altered data, in
which case attackers can make the actual gas consumed by
the victim transaction larger than the user-specified limit.
As a result, attackers could make victim transaction fail to
their own benefit. Note that the underlying smart contracts
may not contain vulnerabilities because the attack will not
succeed if the victim transactions are equipped with suffi-
cient gas. Therefore, we do not define taint sink or localize
vulnerabilities for gas estimation griefing attacks.

We classify the attack A into attack patterns by inspect-
ing the execution traces of T}, in the two execution scenarios,
and identify the taint sink & accordingly. Let 7 and 7/ denote
the two execution traces of T, in the attack and attack-free
scenarios, respectively. If 7 throws an out-of-gas exception
while 7/ does not, A is considered a gas estimation griefing
attack and excluded from our vulnerability localization. To
classify the attack into the other two patterns, we first extract
the sequences of program locations performing digital asset
transfers in 7 and 7/, and denote them as [ro, 71, ..., 7]
and [7f, 7, ..., 7J], respectively. We distinguish the attack
patterns of an attack by checking the proper prefix of 7 and
7.

Case 1 (Path condition alteration): 3i,0 < i < max(p, q)
such that 7; # Tif and Vj,0 < j <iAT; = T]f . We categorize
attack A as a path condition alteration attack, and consider
the first divergence point between 7 and 7/ as § for this
attack, where 7; and Tlf control-depend on 6.

Case 2 (Computation alteration): Vi,0 < ¢ < max(p,q) A
T, = Tif . We categorize attack A as a computation alteration
attack. Note that there must exist j, 0 < j < max(p, ¢), such
that the transfer operation at program location 7; (or ij )
transfers a different amount of digital assets. We consider
the program location 7; as ¢ for this attack.

Finally, we extract the flow trace from the taint source
to the sink. We call this flow trace influence trace, cov-
ering the code that depends on attack altered data and
influences the victim’s financial profits. Note that for one
attack, there can be multiple taint sources and thus multiple
influence traces since the attack altered data may be loaded
as tainted values in different places. We use influence traces
to over-approximate the vulnerability location of an attack
by considering all code executed in an influence trace as
vulnerable. It is a trade-off between localizing a smaller
range of vulnerable code and ensuring the vulnerability is
covered by the marked code, because it is hard to precisely
and correctly localize without contract specifications from
developers.

5.3 Vulnerability Localization Evaluation

We evaluate the effectiveness of our vulnerability localiza-
tion approach with the following research question:

e RQ2: Can our approach precisely identify the exploited

vulnerabilities from real-world attacks?

Methodology: We answer RQ2 from two aspects with the
dataset D° as mentioned in Section 4.4. First, we check
whether the exploited vulnerability can be localized by our
approach, given a real-world attack. We perform a manual
analysis on each attack in D. The five falsely reported
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Fig. 4. The total number of distinct vulnerable functions in top-1200
contracts saturates as more attacks are sampled from D?.

attacks identified previously are excluded. As pointed out
by previous studies [6], [8], [9], [10], [11], [23], [56] and SWC
Registry [17], the root cause of front-running vulnerabil-
ity is the race condition [60] in the smart contract where
the execution result depends on the order of transactions.
Specifically, in the manual check, we consider vulnerability
locations to be the code locations where the victim trans-
action loads the attack altered data modified by the attack
transaction, i.e., locations of the read-write conflicts between
the victim and attack transactions. We do not consider
locations of write-write conflicts as vulnerability locations
since in these cases, the victim transaction’s execution re-
sult is not affected. If the code snippet identified by our
approach includes the vulnerability locations, we consider
our vulnerability localization result as a true positive. Three
authors individually check for each attack, and all dis-
agreements are discussed until they are resolved. Second,
we check whether our approach can precisely pinpoint
vulnerable code without including many unrelated code.
We build a baseline based on the naive approach mentioned
in Section 5.1, i.e., considering all code executed by T, as
vulnerable. We collect and compare the number of EVM [2]
instructions identified as vulnerable code by the baseline
and our approach, respectively. We measure how many
unrelated code our approach can reduce compared to the
baseline.

Results: In our manual inspection, we find that the iden-
tified vulnerable code is able to cover the vulnerable logic
exploited in all 378 attacks of D®. As shown in Fig. 3, on
average, 25.25 EVM instructions are marked vulnerable for
each attack. Compared to the baseline, our approach marks
only 0.34% of those instructions marked by the baseline
as vulnerable, resulting in a 99.66% reduction rate. One
can leverage our approach to construct effective and large
benchmarks on front-running vulnerabilities in the absence
of contract specifications.
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Answer to RQ2: Our localization approach is effective in
pinpointing vulnerable code to a much smaller range than
the baseline without missing any exploited vulnerabilities.

5.4 Benchmark Construction

To build a benchmark for the comparison of vulnerability
detection tools, we extract influence traces for each attack
in dataset D. Attacks that result in multiple influence
traces are excluded to avoid ambiguities in vulnerability
localization. We mark all public contract functions that are
executed in the influence traces as vulnerable. We label vul-
nerable functions because the contract analyzers evaluated
in Section 6 commonly report problems at the function level.

We do not have the ground truth of all vulnerabilities in
each contract. For each contract included in the benchmark,
we are unsure if our benchmark has labeled most of the
vulnerabilities ever exploited in blockchain history, because
we did not mine the entire blockchain history in Section 4.3.
To mitigate this threat, we focus on a set of most popularly
attacked contracts and check if additional vulnerabilities in
these contracts can be labeled when more attacks in the
blockchain history are considered.

The following strategy is adopted for benchmark con-
struction. We select top-N popularly attacked contracts and
only consider vulnerable functions in these contracts in our
benchmark. The popularity is measured by the invocation
frequency of each contract in all the influence traces of
all attacks in dataset D. From D*, we select a subset DY
of attacks whose influence traces only involve contracts in
these top-NN contracts. Then, n% attacks are sampled from
D¥. We increase n from 1 to 100 with step 1 and compute
the number of distinct vulnerable functions localized in each
sample. If the total number of distinct vulnerable functions
saturates as n increases, it indicates that we are unlikely to
find new vulnerable functions in these top-N contracts even
if we keep mining for more attacks in the blockchain history.
In other words, the occurrence of saturation hints that
exploited vulnerable functions in the selected contracts have
been mostly labeled. Intuitively, we want to include more
contracts in the benchmark while saturation is observed. In
our study, we set N to 1200. Fig. 4 shows the total number
of distinct vulnerable functions against the sampling size
of DF. The number of vulnerable functions only increases
by 0.36% (from 1,365 to 1,370) between 90% and 100%
samples. The saturation would gradually disappear when
the number of contracts considered increases beyond 1,200.

Therefore, we build benchmark B4 on the 1,200 selected
contracts by analyzing the attacks in dataset D¥'. Vulnerable
functions in these contracts are labeled with influence traces,
as previously explained for each attack. In addition, we also
use influence traces to remove those attacks that exploited
the same vulnerability. If multiple attacks have the same
influence trace, we consider that they are duplicate exploita-
tion and include only one of them. To facilitate manual
analysis, we include only those attacks occurring at the
functions whose source code is available on Etherscan [61].
As a result, we construct the benchmark B4 consisting of 513



TABLE 2
Vulnerability detection result of each tool on benchmark B4.
Tool Attacks Contracts!

TP FN Recall | N/A? Timeout Failure

Oyente 0 513 0% 0 0 0
Mythril 16 497 3.12% 0 0 20
Conkas 0 513 0% 0 4 205
Securify 31 482  6.04% 0 0 69
Ethracer | 13 500 2.53% 0 1 4
Securify2 0 513 0% 23 0 206
Sailfish 8 505 1.56% 23 1 186

! There are in total 235 distinct contracts involved in all influence
traces of attacks in B“. One distinct contract may be involved in
influence traces of multiple attacks.

2 The contract is not compilable for tools that analyze bytecode, or
not flattenable for tools that analyze source code in single file.

attacks with vulnerable functions localized in 235 distinct
contracts.

6 EVALUATION OF EXISTING TOOLS

In this section, we demonstrate the use of B4 to understand
the status quo of front-running vulnerability detection. We
evaluate tools that implement state-of-the-art vulnerability
detection techniques and answer the following research
question.

« RQ3: How many vulnerabilities can existing tools detect
in our benchmark?

o RQ4: What are the limitations of existing tools in detecting
front-running vulnerabilities?

6.1 Tool Selection

We conduct a systematic literature review to collect tools
that implement representative state-of-the-art smart contract
analysis techniques detecting front-running vulnerabilities.
Based on the guideline from Brereton et al. [62], we search
for related publications in top-tier conferences and journals,
perform a backward snowballing to find more literature,
and collect available tools from them. To largely include
the state-of-the-art tools, we use contract, ethereum as search
keywords and search for publications in all CORE [63]
A/A* ranked venues in software engineering and security
fields with research code: 4612, 4604, and 0803. For each
matching publication, we read the abstract and apply the
following criteria: 1) Empirical studies and literature re-
views are excluded. 2) Only papers about detecting contract
vulnerability without requiring additional information from
developers are included. At this step, we are able to collect
47 publications in 18 venues. We continue to perform a
backward snowballing by searching for related literature in
the references of these publications. In the end, we find 17
additional papers, technical reports, and GitHub reposito-
ries. From these literature, we collect available tools, which
implement the techniques that support the detection front-
running vulnerabilities. In the end, we collect seven tools
suitable for our empirical evaluation, namely Oyente [§],
Securify [11], Ethracer [9], Mythril [12], Conkas [43], Secu-
rify2 [64], and Sailfish [10]. The techniques used in these
tools are discussed in Section 3.1.
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6.2 Experiment Design

For each attack in benchmark B#, we run experiments to
check whether the exploited vulnerability can be detected
by each tool. We use each tool to analyze all contracts
whose code is marked vulnerable in B#. Note that none
of the selected tools support analyzing a group of contracts
together, so we let each tool analyze contracts individually.
Two tools, ie., Securify2 and Sailfish, can only analyze
contracts in source code in a single file. We use Hardhat [65]
toolchain to flatten contract source code into a single file
and let these two tools analyze the flattened source file. For
all other tools that analyze contract bytecode, we compile
the contract source code into Byzantium EVM bytecode [66],
which is the most compatible version supported by all tools.
Different tools may detect various types of vulnerabilities.
However, we are only interested in the result of front-
running vulnerability, i.e., event ordering bugs in Ethracer,
state inconsistency bugs in Sailfish, and transaction order
dependency in all other tools.

We set the analysis timeout of each tool equally to three
hours, which is larger than the longest timeout among the
evaluation experiments of these tools’ original papers. With
benchmark B#, we adopt the following approach to check
whether a vulnerability exploited by an attack is detected by
each tool. In the detection results of one tool, we consider
one attack is true positive (TP) if the tool reports problems in
any of the vulnerable functions localized with this attack
as described in Section 5.4. If none of these functions is
reported vulnerable by the tool, we consider the attack is
false negative (FN). The recall rate of each tool is computed
with the total number of TP attacks divided by the total
number of attacks in B4. Note that our benchmark does
not label vulnerable functions that have not been exploited
in the blockchain history. If one tool reports problems in
other functions outside our benchmark, we cannot conclude
whether they are false alarms or not. Thus, we do not
evaluate the precision of these tools.

6.3 Evaluation Results

Table 2 shows the vulnerability detection result of each tool.
On the left side, we report the number of TP and FN attacks
for each tool using the criteria mentioned in Section 6.2. For
all tools, the number of missed vulnerabilities is significant.
The best tool, Securify, only has a 6.04% recall rate. The
majority of vulnerabilities are missed by all tools. Our eval-
uation shows the poor performance of state-of-the-art tools
with a large-scale benchmark. A similar conclusion was
drawn by the previous study [15] with a small benchmark
of four contracts, which are not representative since the av-
erage lines of code for each contract is only 33.75, and none
of them is a real-world contract used on the blockchain.
In comparison, our benchmark contains much more repre-
sentative vulnerable contracts and can better reveal the real
performance of vulnerability detection techniques.

We also found that several tools could not successfully
analyze many contracts, as shown on the right side of
Table 2. Some tools timeout on the analysis of a few complex
contracts, as shown in the Timeout column. Securify2 and
Sailfish work on Solidity source code and can only analyze
contracts written in a single file. The source code of 116 out



TABLE 3
Manual analysis results for the limitations of each tool.
FN Attacks Limitation

Tool Total ~Sample CI(():C}E Analy(szlgl IgracleTl Unknown?
Oyente 390 194 | 124 - 65 5 0
Mythril 370 189 | 132 - 52 5 0
Conkas 12 12 7 - 5 0 0
Securify 155 155 0 - 0 155 0
Ethracer 491 216 | 133 31 19 0 33
Securify?2 3 3 0 - 0 3 0
Sailfish 47 47 41 - 0 6 0

LIC, CS, P, and T stand for Lack Support for Inter-Contract Analy-
sis, Constraint Solving for Cryptographic Operations, Weak Detection
Pattern, and Lack of Token Support, respectively.

2 We were unable to identify the limitations resulting in 33 FN attacks for
Ethracer.

of 235 contracts in our benchmark spreads across multiple
files. Although we try to flatten multi-file contracts into a
single file, there are 23 contracts that cannot be flattened due
to cyclic dependencies between source files, as shown in the
N/A column. In addition, we also found that Securify2 and
Sailfish have poor support for contracts written in newer
Solidity versions, resulting in a large amount of analysis
failure. We found that other bytecode analyzers, especially
Conkas, crash on a large portion of contracts. Similar crashes
are encountered by other users according to the tools” issue
tracker and they have not been fixed by developers.

Answer to RQ3: Existing tools detect at most 6.04% of vul-
nerabilities in B#, suggesting their weaknesses in expos-
ing front-running vulnerabilities in real-world contracts.
Effective detection tools are urgently needed.

6.4 Discussion on Limitations of Existing Techniques

We randomly sample FN attacks for each tool with 95%
confidence level and 5% confidence interval and manually
analyze them to understand the reasons behind the poor
performance of existing techniques. We focus only on those
FN attacks whose concerned contracts can all be successfully
analyzed by the tool since we aim to investigate the limita-
tions of each tool’s technique rather than its implementation.
The large second column of Table 3 shows the number of
sampled attacks.

Existing tools commonly detect vulnerabilities in two
phases, namely code analysis and oracle checking. First,
bytecode or source code is analyzed to extract the semantics
of contracts such as control flow and data flow using sym-
bolic execution or static analysis. The extracted semantics
are then examined against predefined vulnerability oracles
to detect the existence of vulnerabilities. A tool can exhibit
limitations in any of the two phases. Table 3 shows the num-
ber of attacks whose vulnerabilities were missed by each
tool due to the limitations in each vulnerability detection
phase. Note that tools may miss some vulnerabilities due to
limitations in both phases. For such cases, we followed the
order of tools” working procedures and categorized them
into the code analysis phase. For the other limitations that
cannot be categorized into the two phases, we put them into
the Unknown column.
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6.4.1

In the code analysis phase, we found two common limi-
tations of existing tools: lack of support for inter-contract
analysis and unavailability of efficient constraint solvers for
non-linear computation such as cryptographic and hashing
operations. Column IC and CS in Table 3 present the number
of attacks whose vulnerabilities are missed due to each
limitation.
Inter-Contract Analysis: We find that existing techniques
lack support for inter-contract analysis of the scenarios
where a contract invokes another contract during its execu-
tion. Existing techniques are designed to analyze contracts
individually, while ignoring their possible interactions with
other contracts. For example, the vulnerability in Fig 2
cannot be detected if each contract is individually ana-
lyzed because the vulnerable exchange rate computation
(line 10) and the loading of attack altered data (reserve0
and reservel) reside in different contracts. In tools based
on symbolic execution, i.e., Oyente, Mythril, Conkas, and
Ethracer, the execution details of the external contract code
are omitted (e.g., line 14 in Fig. 2). In addition, their symbolic
execution does not properly handle the return value of
external calls. The symbolic execution using the return value
will halt because the EVM opcode RETURNDATACOPY is not
properly defined in their implementation. Similarly, Sailfish
also omits external contract invocations during its interpre-
tation of contract semantics. As a result, contract semantics
are not fully analyzed by these tools. To show the impact of
this limitation, we manually inspected the attacks in dataset
DS and found that in 222 out of 383 sampled attacks, the
influence traces span across multiple contracts, i.e., external
contract calls are involved in exploiting the vulnerabilities.
This result shows that the lack of inter-contract analysis
support can lead to many undetected vulnerabilities.
Supporting inter-contract analysis is, however, challeng-
ing. The address of external contracts being invoked is
usually not statically decidable. The address may be stored
in a contract storage variable set by other users or provided
as input by transactions. In other words, any contract on the
blockchain can be a potential callee during analysis. Worse
still, each potential callee contract may have further external
contract invocations, making the size of the contract code
to analyze grow exponentially. Future techniques should
adopt effective strategies to prune irrelevant code so that the
detection is scalable to find inter-contract vulnerabilities.
Securify and Securify2, however, adopt an over-
approximation approach by simply considering that every
external contract call is manipulatable by attackers and the
return value is malicious. Thus they are not subject to this
limitation. Nonetheless, as shown in the study from Durieux
et al. [15], such over-approximation can induce many false
alarms, which, however, is out of the scope of our study.

Two Limitations in Code Analysis

Finding 1 Existing tools cannot properly handle external con-
tract calls to perform precise inter-contract analysis. Such limi-
tations make them miss the detection of many vulnerabilities.
Future detection techniques of front-running vulnerabilities
should include inter-contract analysis.

Constraint Solving: In addition to inter-contract analysis,
Ethracer also suffers from the limitation of constraint solv-



ing in the code analysis phase. Ethracer uses dynamic sym-
bolic execution to generate concrete transactions invoking
functions and covering as many execution paths as possible
for the contract under analysis. Such concrete transactions
are executed in different orders to trigger the front-running
vulnerabilities in a fuzzing process. SMT solver is used to
resolve function inputs. However, it is impossible to solve
constraints involving cryptographic operations. The path
condition at line 8 in Fig 1 involves digital signature ver-
ification. It is impossible for techniques like that of Ethracer
to resolve a valid input to satisfy this path condition using
existing SMT solvers. Another unsolvable operation is the
keccak256 hash operation, which is widely used in smart
contracts, such as computing the address of values in map-
ping or array variables. If such types of variables are used in
path conditions, Etheracer will also fail to generate concrete
transactions to cover some or all execution paths and thus
cannot detect the vulnerabilities in those uncovered paths.
Other symbolic execution-based tools do not suffer from
this limitation since they do not need to generate concrete
inputs for functions. A common workaround solution for
the cryptographic and hashing operations in constraints is to
replace their results with new intermediate symbolic values.

For techniques that need to generate concrete transac-
tions, it may not be feasible to generate inputs that satisfy
various path conditions involving cryptographic operations.
However, the large transaction history can be leveraged
to tackle the issue. In the transaction history, there may
be some transaction inputs that can satisfy the various
constraints that an SMT solver can hardly resolve. Analyzers
can mutate from those inputs to generate concrete transac-
tions to test other contracts.

Finding 2 The widely used cryptographic operations in smart
contracts make it hard for an SMT solver to generate concrete
inputs, weakening the capability of existing tools in explor-
ing transaction executions for attack scenarios. Future studies
should seek better approaches to effectively generate concrete
transactions that satisfy path conditions with cryptographic and
hashing operations.

6.4.2 Two Limitations in Oracle

Limitations of detection oracles occur in two ways. First,
some tools fail to define proper vulnerability patterns for
effective vulnerability detection. Second, many tools only
check whether the vulnerability can cause a loss of Ethers
while lacking the support of digital assets in token standards
(e.g., ERC20, ERC721, ERC777, and ERC1155). As a result,
they fail to detect many vulnerabilities that cause the loss of
these tokens. Table 3 presents the number of attacks whose
vulnerabilities are missed due to each limitation.

Patterns: Each technique defines specific patterns to iden-
tify vulnerabilities in smart contracts. Oyente computes the
number of digital assets transferred with symbolic execu-
tion. Oyente reports front-running vulnerabilities if there
exist two execution paths transferring in different symbolic
amounts. However, vulnerable contracts of computation
alteration attacks like Fig. 2 do not fall into this pattern since
the amount of digital assets that the victim obtains in the
attack and attack-free scenarios are symbolically the same.
In addition, some path condition alteration attacks may also
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TABLE 4

The number of attacks in which each type of victim’s financial profits
decreases.

Ether  ERC20 ERC721 ERC777 ERC1155

Attacks in DA | 118,702 184,987 2,931 1,060 537

not fall into the pattern if there is no digital asset transfer in
some execution paths, e.g., Fig. 1.

Mythril and Conkas identify vulnerabilities by checking
if the receiver or amount of digital asset transfers depends
on shared variables modifiable by other transactions. How-
ever, some path condition alteration attacks like Fig. 1 may
be missed since the profit transfer control-depends, instead
of data-depends, on the attack altered data.

Ethracer checks whether different invocation orders of
two different functions result in different blockchain world
states after the execution. However, it does not consider
failed victim transactions as attack consequences. Vulner-
abilities are not reported if one of the functions throws
exceptions in one of the execution orders. In fact, attacks on
contracts may result in failed victim transactions, e.g., Fig. 1.
Thus, Ethracer will also miss this vulnerability.

Securify, Securify2, and Sailfish use a general pat-
tern, checking whether digital asset transfers depend on
blockchain-shared data through either control flow or data
flow. This generic pattern can conceptually capture all vul-
nerabilities in our benchmark. However, these tools lack
the support of tokens, as discussed below, and thus miss
most of the vulnerabilities that result in the loss of tokens.
Another limitation of adopting such a general pattern is that
a lot of false alarms in the reported problems. Durieux et
al. [15] has shown the high false positive rate of Securify.
This is because the dependency on global variables does not
necessarily result in profitable opportunities that attackers
can exploit.

The two attack properties proposed in our attack model
can also serve as a general oracle in front-running vul-
nerability detection techniques. In other words, contract
analyzers can check if there exists a tuple of transactions
invoking the contract under analysis, such that the two
attack properties are satisfied. One major challenge to adopt
this oracle is the large search space for analyzers. Oracles
used by existing tools, except for Ethracer, are based on the
execution of a single transaction. However, checking our
attack properties requires the ordered execution result of
multiple transactions. The complexity of analysis will grow
exponentially as the size of contract code increases. Novel
techniques to reduce the search space during analysis are
desired.

Finding 3 The detection patterns of many tools are weak in
capturing front-running vulnerabilities in real-world smart
contracts. Vulnerability detection tools should be updated with
patterns based on real-world vulnerable contracts.

Token Support: In addition to detection patterns, the neg-
ligence of profit making in tokens by existing techniques
causes many attacks undetected. All tools except Ethracer
support only Ether as digital assets in pattern matching of
vulnerability detection. As a result, the vulnerabilities of
many attacks where victims lose tokens instead of Ethers



are missed. In contracts of Fig. 2 and Fig. 1, attackers and
victims obtain financial profits in terms of ERC20 tokens
instead of Ethers. Tools not supporting ERC20 are not aware
of such attack profits and thus do not report vulnerabilities.
Note that in Table 3, we analyzed the limitation of detection
patterns supposing the tool supports Ethers and all tokens.
We concluded that a vulnerability is missed due to the token
support limitation only when the pattern can capture the
vulnerability and the tool does not support tokens. The
reason is that it is easy to extend the support for tokens.
To identify a token transfer, tool developers only have to
check whether the data of an external call matches the trans-
fer function signature of the standard token interface. We
considered token support as the least impacting limitation.
To show the impact of this limitation, we collect the total
number of attacks in which each type of financial profit
is involved in the attack, as shown in Table 4. Note that
each attack can have more than one type of financial profit,
i.e., there can be overlaps between different types in Table 4.
Tokens are even more prevalent than Ether in the dataset
presented in Section 4.3. The other three types of tokens also
have a non-negligible share in the profits of front-running
attacks. The support of profit analysis in tokens is essential
to vulnerability detection for smart contracts.

Finding 4 Many front-running vulnerabilities are missed by
existing detection tools due to their negligence of profit making
in tokens. The support of profit analysis in tokens is essential
to detect front-running vulnerabilities in real-world smart con-
tracts.

6.5 Other Vulnerabilities Identified by Existing Tools

Given the poor performance of existing tools on our front-
running vulnerability benchmark, one further question is
whether existing tools can detect other front-running vul-
nerabilities that are missed by our benchmark. Therefore,
we inspect the detection results of all seven tools on all 235
contracts in our benchmark B4.

As mentioned before, each tool has named vulnerabili-
ties resulting in front-running attacks in different ways. We
only focus on vulnerability reports related to front-running
attacks, i.e., the event ordering bugs in Ethracer, state incon-
sistency bugs in Sailfish, and transaction order dependency
bugs in all other tools. The seven tools in total report a total
of 293 front-running vulnerable functions, which is much
more than the number of vulnerabilities they can catch in
our benchmark as shown in Table 2. However, as pointed
out by previous studies, existing tools have a high false
positive rate [15], [46]. It is unknown whether these 293
reported vulnerabilities are true positives or not. We do not
have ground truth on the reported vulnerable functions, so
we follow a similar practice of a previous study [15] and
consider a function is truly vulnerable if at least two tools
raise the alarm for this function. The rationale behind this is
that: a vulnerability is more likely a true positive if several
tools have an agreement on it.

As a result, there are only 24 functions that are reported
as vulnerable by at least two tools, indicating that the
majority of reported vulnerabilities are likely to be false
positives. This result aligns with previous studies [15], [46],
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which evaluate the detection precision of existing tools.
Of the 24 vulnerable functions, one is included in our
benchmark, while others are not. We investigate all of the
rest 23 functions and find that they are all false positives.
There are four main reasons that these functions are not
vulnerable. Eight functions are false positives since they
are view functions in smart contracts, which cannot transfer
any assets or modify any blockchain state. Eight functions
are false positives since they can only be called by one
specific account (e.g., admin or owner). Malicious attackers
are not allowed to invoke the functions. Four functions are
false positives since transactions invoking these functions
can only access or update the state space belonging to the
transaction submitter. Different transactions have no shared
data so it is impossible to launch front-running attacks
on another transaction submitted by different users. The
rest three functions are false positives since transactions
invoking these functions can obtain more profits if front-
run by other transactions according to the semantics of the
contracts. We do not consider them exploitable vulnerabil-
ities since victims do not suffer from loss. Therefore, our
investigation shows that existing tools can hardly identify
issues that are not included in our benchmark. They may
report many vulnerabilities, but the majority of them are
false positives.

Nevertheless, it is possible that some vulnerabilities
detected by existing tools are missed by our benchmark
because we do not search the entire blockchain history, and
some vulnerabilities may never be exploited in history. As
mentioned in Section 5.4, for vulnerabilities exploited in the
not-searched history, the number of them in our selected
contracts is likely small. For vulnerabilities never exploited,
our study gives a high priority to the soundness of our
benchmark (i.e., included vulnerabilities are true positives).
Therefore, we only consider exploited vulnerabilities as
ground truth, and those unexploited ones may be missed.

7 THREATS TO VALIDITY

A validity threat in our study is that our analysis is based on
the attacks in 800,000 blocks instead of the entire blockchain
history. We mitigate this threat by using the latest blocks to
improve the representativeness of the attacks in our bench-
mark. We also focus on 1200 popularly attacked contracts,
as discussed in Section 5.4, and show that most exploited
vulnerabilities in these contracts have been identified in our
benchmark. In addition, we may execute existing contract
analyzers improperly. We mitigate this threat by strictly
following the instructions and actively communicating with
the tool authors when encountering issues. Another va-
lidity threat arises from the subjectivity in manual analysis
when evaluating our attack mining algorithm and influence
trace. We mitigate this threat by setting objective criteria
for the ground truth of true front-running attacks and real
vulnerable contract code in manual analysis (Section 4.4
and Section 5.3). In addition, the manual analysis result is
obtained by a consensus among independent manual checks
from three different authors, all of whom have more than
three years of experience in the security analysis of smart
contracts.



8 CONCLUSION

In this paper, we design an algorithm to automatically mine
real-world front-running attacks. We localize vulnerable
contract code using dynamic taint analysis on the found
attacks and build a benchmark of front-running vulnera-
bilities. Based on the benchmark, we perform an empirical
evaluation of seven state-of-the-art vulnerability detection
techniques. We find that the performance of these tech-
niques is still limited and identify four limitations in their
code analysis process and vulnerability detection oracles.
The implementation of our approach, benchmark, and tool
evaluation results are available on GitHub: https://github
.com/Troublor/erebus-redgiant.
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