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An Empirical Evaluation of Using Large
Language Models for Automated Unit Test

Generation
Max Schäfer, Sarah Nadi, Aryaz Eghbali, Frank Tip

Abstract—Unit tests play a key role in ensuring the correctness of software. However, manually creating unit tests is a laborious task,
motivating the need for automation. Large Language Models (LLMs) have recently been applied to various aspects of software
development, including their suggested use for automated generation of unit tests, but while requiring additional training or few-shot
learning on examples of existing tests. This paper presents a large-scale empirical evaluation on the effectiveness of LLMs for
automated unit test generation without requiring additional training or manual effort. Concretely, we consider an approach where the
LLM is provided with prompts that include the signature and implementation of a function under test, along with usage examples
extracted from documentation. Furthermore, if a generated test fails, our approach attempts to generate a new test that fixes the
problem by re-prompting the model with the failing test and error message. We implement our approach in TESTPILOT, an adaptive
LLM-based test generation tool for JavaScript that automatically generates unit tests for the methods in a given project’s API.
We evaluate TESTPILOT using OpenAI’s gpt3.5-turbo LLM on 25 npm packages with a total of 1,684 API functions. The generated
tests achieve a median statement coverage of 70.2% and branch coverage of 52.8%. In contrast, the state-of-the feedback-directed
JavaScript test generation technique, Nessie, achieves only 51.3% statement coverage and 25.6% branch coverage. Furthermore,
experiments with excluding parts of the information included in the prompts show that all components contribute towards the
generation of effective test suites. We also find that 92.8% of TESTPILOT’s generated tests have ≤ 50% similarity with existing tests (as
measured by normalized edit distance), with none of them being exact copies. Finally, we run TESTPILOT with two additional LLMs,
OpenAI’s older code-cushman-002 LLM and StarCoder , an LLM for which the training process is publicly documented. Overall, we
observed similar results with the former (68.2% median statement coverage), and somewhat worse results with the latter (54.0%
median statement coverage), suggesting that the effectiveness of the approach is influenced by the size and training set of the LLM,
but does not fundamentally depend on the specific model.

Index Terms—test generation, JavaScript, language models

✦

1 INTRODUCTION

Unit tests check the correctness of individual functions or
other units of source code, and play a key role in modern
software development [1]–[3]. However, creating unit tests
by hand is labor-intensive and tedious, causing some devel-
opers to skip writing tests altogether [4].

This fact has inspired extensive research on techniques
for automated test generation including fuzzing [5], [6],
feedback-directed random test generation [7]–[11], dynamic
symbolic execution [12]–[15], and search-based and evolu-
tionary techniques [16], [17]. At a high level, most of these
techniques use static or dynamic analysis techniques to ex-
plore control and data flow paths in the program, and then
attempt to generate tests that maximize coverage. While
they are often successful in generating tests that expose
faults, these techniques have two major shortcomings. First,
the generated tests are typically less readable and under-
standable than manually written tests [18], [19], especially
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due to the use of unintuitive variable names [20]. Second,
the generated tests often lack assertions [21], or only contain
very generic assertions (e.g., that a dereferenced variable
must not be null), or too many spurious assertions [22].
While such tests can provide inspiration for manually craft-
ing high-coverage test suites, they do not look natural and
generally cannot be used verbatim.

Given these disadvantages, there has recently been in-
creasing interest in utilizing machine learning-based code-
generation techniques to produce better unit tests [23]–
[29]. Specifically, these research efforts leverage LLMs that
have been trained on large corpora of natural-language text
and source code. We are specifically interested in generative
transformer models that, when given a snippet of text or
source code (referred to as the prompt), will predict text
that is likely to follow it (henceforth referred to as the
completion). It turns out that LLMs are good at producing
natural-looking completions for both natural language and
source code, and to some extent “understand” the seman-
tics of natural language and code, based on the statistical
relationships on the likelihood of seeing a particular word
in a given context. Some LLMs such as BERT [30] or GPT-
3 [31] are trained purely on text extracted from books and
other public sources, while others like OpenAI Codex [32]
and AlphaCode [33] are put through additional training on
publicly available source code to make them better suited
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for software development tasks [34]–[43].
Given the properties of LLMs, it is reasonable to expect

that they may be able to generate natural-looking tests. Not
only are they likely to produce code that resembles what
a human developer would write (including, for example,
sensible variable names), but LLMs are also likely to pro-
duce tests containing assertions, simply because most tests
in their training set do. Thus, by leveraging LLMs, one
might hope to simultaneously address the two shortcom-
ings of traditional test-generation techniques. On the other
hand, one would perhaps not expect LLMs to produce tests
that cover complex edge cases or exercise unusual function
inputs, as these will be rare in the training data, making
LLMs more suitable for generating regression tests than for
bug finding.

There has been some exploratory work on using LLMs
for test generation. For example, Bareiß et al. [25] evaluate
the performance of Codex for test generation. They follow
a few-shot learning paradigm where their prompt includes
the function to be tested along with an example of another
function and an accompanying test to give the model an
idea of what a test should look like. In a limited evaluation
on 18 Java methods, they find that this approach compares
favorably to feedback-directed test generation [8]. Similarly,
Tufano et al.’s ATHENATEST [26] generates tests using a
BART transformer model [44] fine-tuned on a training set
of functions and their corresponding tests. They evaluate
on five Java projects, achieving comparable coverage to
EvoSuite [17]. While these are promising early results, these
approaches, as well as others [29], [45], [46], rely on a
training corpus of functions and their corresponding tests,
which is expensive to curate and maintain.

In this paper, we explore the feasibility of automatically
generating unit tests using off-the-shelf LLMs, with no
additional training and as little pre-processing as possible.
Following Reynolds and McDonell [47], we posit that pro-
viding the model with input-output examples or performing
additional training is not necessary and that careful prompt
crafting is sufficient. Specifically, apart from test scaffolding
code, our prompts contain (1) the signature of the function
under test; (2) its documentation comment, if any; (3) us-
age examples for the function mined from documentation,
if available; (4) its source code. Finally, we consider an
adaptive component to our technique: each generated test
is executed, and if it fails, the LLM is prompted again with
a special prompt including (5) the failing test and the error
message it produced, which often allows the model to fix
the test and make it pass.

To conduct experiments, we have implemented these
techniques in a system called TESTPILOT, an LLM-based
test generator for JavaScript. We chose JavaScript as an
example of a popular language for which test generation
using traditional methods is challenging due to the absence
of static type information and its permissive runtime seman-
tics [11]. We evaluate our approach on 25 npm packages
from various domains hosted on both GitHub and GitLab,
with varying levels of popularity and amounts of available
documentation. These packages have a total of 1,684 API
functions that we attempt to generate tests for. We inves-
tigate the coverage achieved by the generated tests and
their quality in terms of success rate, reasons for failure,

and whether or not they contain assertions that actually
exercise functionality from the target package (non-trivial
assertions). We also empirically evaluate the effect of the
various components of our prompt-crafting strategy as well
as whether TESTPILOT is generating previously memorized
tests from the LLM’s training data.

Using OpenAI’s current most capable and cost-effective
model gpt3.5-turbo,1 TESTPILOT’s generated tests achieve a
median statement coverage of 70.2%, and branch coverage
of 52.8%. We find that a median 61.4% of the generated
tests contain non-trivial assertions, and that these non-trivial
tests alone achieve a median 61.6% coverage, indicating
that the generated tests contain meaningful oracles that
exercise functionality from the target package. Upon deeper
examination, we find that the most common reason for the
generated tests to fail is exceeding the two-second timeout
we enforce, usually because of a failure to communicate
test completion to the testing framework. We find that,
on average, the adaptive approach is able to fix 15.6%
of failing tests. Our empirical evaluation also shows that
all five components included in the prompts are essential
for generating meaningful test suites with high coverage.
Excluding any of these components results in either a higher
proportion of failing tests or in reduced coverage. On the
other hand, while excluding usage examples from prompts
reduces effectiveness of the approach, it does not render it
obsolete, suggesting that the LLM is able to learn from the
presence of similar test code in its training set.

Finally, from experiments conducted with the gpt3.5-
turbo LLM, we note that high coverage is still achieved on
packages whose source code is hosted on GitLab (and thus
has not been part of the LLM’s training data). Moreover,
we find that 60.0% of the tests generated using the gpt3.5-
turbo LLM have ≤ 40% similarity to existing tests and 92.8%
have ≤ 50% similarity, with none of the tests being exact
copies. This suggests that the generated tests are not copied
verbatim from the LLM’s training set.

In principle, the test generation approach under consid-
eration can be used with any LLM. However, the effective-
ness of the approach is likely to depend on the LLM’s size
and training set. To explore this factor, we further conducted
experiments with two additional LLMs: the previous pro-
prietary code-cushman-002 [48] model developed by OpenAI
and StarCoder [49], an LLM for which the training process
is publicly documented. We observed qualitatively similar
results using code-cushman-002 (median coverage of 68.2%
for statements, 51.2% for branches), and somewhat worse
results using StarCoder (54.0% and 37.5%).

In summary, this paper makes the following contribu-
tions:

• A simple test generation technique where unit tests are
generated by iteratively querying an LLM with a prompt
containing signatures of API functions under test and,
optionally, the bodies, documentation, and usage exam-
ples associated with such functions. The technique also
features an adaptive component that includes in a prompt
error messages observed when executing previously gen-
erated tests.

1. https://platform.openai.com/docs/models/gpt-3-5

https://platform.openai.com/docs/models/gpt-3-5
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1 let mocha = require('mocha');

2 let assert = require('assert');

3 let pkg = require('package-under-test');

4

5 // function metadata, including signature of f

6

7 describe('test pkg', function() {

8 it('test f', function(done) {

9 // test code, terminated by done()

10 })

11 })

Fig. 1: Illustration of the structure of prompts and tests.

• An implementation of this technique for JavaScript in a
tool called TESTPILOT, which is available as open-source
software at https://github.com/githubnext/testpilot.

• An extensive empirical evaluation of TESTPILOT on 25
npm packages, demonstrating its effectiveness in gen-
erating test suites with high coverage. Our evaluation
explores the following aspects:
– Quality of the generated tests in terms of the assertions

they contain, and coverage of tests that include non-
trivial assertions.

– Effect of excluding various prompt components.
– Similarity of generated tests to existing tests.
– Comparison against Nessie [11], a state-of-the-art

feedback-directed random test generation technique for
JavaScript.

– Comparison of the effect of the underlying LLM on
TESTPILOT’s generated tests.

The raw data and analysis for all our experiments can be
found at https://doi.org/10.6084/m9.figshare.23653371.

2 APPROACH

TESTPILOT generates tests using the popular JavaScript
testing framework Mocha [50] with its BDD-style syntax in
which tests are implemented as callback functions that are
passed to the it function. Test suites consist of one or more
calls to it that occur in a callback function that is passed
to the describe function. Assertions are checked using the
built-in Node.js assert module.

Figure 1 illustrates the structure of generated tests for a
function f . Here, lines 1–3 are boilerplate code for importing
the testing libraries and the Package under Test (PUT). These
are followed by one or more commented-out lines contain-
ing function metadata included in the prompt, as we explain
shortly. Lines 7–8 begin the definition of a test suite using
describe with a single test defined as a callback function
accepting a parameter done passed to the it function. The
test code uses assert to check its assertions, and finally
invokes done() to signal completion. This is necessary for
asynchronous tests that may take multiple iterations of the
JavaScript event loop to finish. Calling done() more than once
results in a runtime error, while not calling it at all causes
the test to fail with a timeout error.

The basic idea of our approach is to send the initial part
of the above test skeleton up to (but not including) the
start of the actual test code on Line 9 (highlighted above
in blue) as a prompt to the LLM. Since LLMs are trained

to complete a given code fragment, one might therefore
expect it to generate the rest of the test for us. Comments
can be included in the test skeleton to provide additional
information about the function that may be useful to guide
the LLM towards generating better tests.

2.1 TESTPILOT Architecture
Figure 2 presents the high-level architecture of TESTPILOT,
which consists of five main components: Given a PUT
as input, the API explorer identifies functions to test; the
documentation miner extracts metadata about them; and the
prompt generator, test validator, and prompt refiner collaborate
to construct prompts for test generation, assemble complete
tests from the LLM’s response, run them to determine
whether they pass, and construct further prompts to gen-
erate more tests. We now discuss each of these components
in more detail.

API Explorer: This component analyzes the PUT to
determine its API, i.e., the set of functions, methods, con-
stants, etc. that the package exposes to clients. In JavaScript,
it is very difficult to determine the API statically due to the
highly dynamic nature of the language. Therefore, similar to
other JavaScript test-generation work [10], [11], we pursue
an approach based on dynamic analysis. In particular, we
load the application’s main package and apply introspection
to traverse the resulting object graph and identify properties
that are bound to functions. For each function, we record its
access path (that is, the sequence of properties that must be
traversed to reach it from the main module), its signature
(which in the absence of static type information is simply a
list of parameter names), and its definition (that is, its source
code). The output of the API Explorer is a list of functions
described by their access paths, signatures, and definitions;
other API elements are ignored.

Documentation Miner: This component extracts
code snippets and comments from documentation included
with the PUT, and associates them with the API functions
they pertain to. The aim is to collect, for each API func-
tion, comments and examples describing its purpose and
intended usage. In JavaScript code bases, documentation is
typically provided in the form of Markdown (.md) files, in
which code snippets are embedded as fenced code blocks
(i.e., blocks surrounded by triple backticks). We find all such
blocks in all Markdown files in the code base, and associate
with each function the set of all code snippets that textually
contain the function’s name. While this is a simple heuristic,
code examples may not be complete or syntactically correct,
so a more sophisticated approach relying on parsing or
static analysis is not likely to work well. We also associate
each API function with the doc comment (/**. . . */) that
immediately precedes it, if any.

The remaining three components are the prompt gener-
ator, the test validator, and the prompt refiner, which work
together to generate and validate tests for all API func-
tions identified by the API Explorer, using the information
provided by the Documentation Miner. Functions are pro-
cessed one at a time, and for each function only one test
is generated at a time (as opposed to generating an entire
test suite at once). This is to enable us to validate each test
individually without interference from other tests.

https://github.com/githubnext/testpilot
https://doi.org/10.6084/m9.figshare.23653371
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Fig. 2: Overview of the adaptive test generation technique we use in TESTPILOT.
1 let mocha = require('mocha');

2 let assert = require('assert');

3 let countries_and_timezones = require('countries-and-timezones');

4 // countries-and-timezones.getCountry(id)

5 describe('test countries_and_timezones', function() {

6 it('test countries-and-timezones.getCountry', function(done) {

7 let country = countries_and_timezones.getCountry('US');

8 assert.equal(country.name, 'United States'); // fails

9 assert.equal(country.timezones.length, 2);

10 assert.equal(country.timezones[0], 'America/New_York');

11 assert.equal(country.timezones[1], 'America/Chicago');

12 done();

13 })

14 })

1 let mocha = require('mocha');

2 let assert = require('assert');

3 let countries_and_timezones = require('countries-and-timezones');

4 // usage #1

5 // const ct = require('countries-and-timezones');

6 //

7 // const country = ct.getCountry('DE');

8 // console.log(country);

9 //

10 // /*

11 // Prints:

12 //

13 // {

14 // id: 'DE',

15 // name: 'Germany',

16 // timezones: [ 'Europe/Berlin', 'Europe/Zurich' ]

17 // }

18 //

19 // */

20 // countries-and-timezones.getCountry(id)

21 describe('test countries_and_timezones', function() {

22 it('test countries-and-timezones.getCountry', function(done) {

23 let country = countries_and_timezones.getCountry('DE');

24 assert.equal(country.id, 'DE');

25 assert.equal(country.name, 'Germany');

26 assert.equal(country.timezones[0], 'Europe/Berlin');

27 assert.equal(country.timezones[1], 'Europe/Zurich');

28 done();

29 })

30 })

(a) (b)

Fig. 3: Examples of prompts (highlighted) and the completions provided by the LLM, comprising complete tests. Prompt (a)
contains no snippets and the test generated from it fails. Prompt (b) contains one snippet and the generated test passes.

Prompt Generator: This component constructs the
initial prompt to send to the LLM for generating a test
for a given function f . As mentioned above, we initially
have (at most) four pieces of information about f at our
disposal: its signature, its definition, its doc comment, and
its usage snippets extracted from documentation. While it
might seem natural to construct a prompt containing all of
this information, in practice it can sometimes happen that
more complex prompts lead to worse completions as the
LLM gets confused by the additional information. There-
fore, we follow a different strategy: we start with a very
simple initial prompt that includes no metadata except the
function signature, and then let the prompt refiner extend it
step by step with additional information.

Test Validator: Next, we send the generated prompts
to LLM and wait for completions. We only consume as many
tokens as are needed to form a syntactically valid test. Since
there is no guarantee that the completions suggested by the
model are syntactically valid, the test validator tries to fix
simple syntactic errors such as missing brackets, and then
parses the resulting code to check whether it is syntactically
valid. If not, the test is immediately marked as failed.
Otherwise it is run using the Mocha test runner to determine
whether it passes or fails (either due to an assertion error or
some other runtime error).

Each returned completion can be concatenated with the
prompt to yield a candidate test. However, to allow us to
eliminate duplicate tests generated from different prompts,
we post-process the candidate tests as follows: we strip



5

Algorithm 1 Pseudo-code for API exploration.
1: function exploreAPI(pkgName)
2: modObj← object created by importing pkgName
3: seen← ∅
4: return explore(pkgName,modObj, seen)
5: function explore(accessPath, obj, seen)
6: apis← ∅
7: if obj ̸∈ seen then
8: seen← seen ∪ { obj }
9: if obj is a function with signature sig then

10: apis← apis ∪ { ⟨accessPath, sig⟩ }
11: else if obj is an object then
12: props← { prop | obj has a property prop }
13: for prop in props do
14: apis← apis ∪
15: explore(extend(accessPath, prop),obj[prop], seen)
16: else if obj is an array then
17: for each index i in the array do
18: apis← apis ∪
19: explore(extend(accessPath, prop),obj[i], seen)
20: return apis
21: function extend(accessPath, component)
22: if component is numeric then
23: return accessPath[component ]
24: else
25: return accessPath.component

out the comment containing the function metadata in the
prompt and replace the descriptions in the describe and it

calls with the generic strings 'test suite' and 'test case',
respectively.

Prompt Refiner: The Prompt Refiner applies a num-
ber of strategies to generate additional prompts to use
for querying the model. Overall, we employ four prompt
refiners as follows:
1) FnBodyIncluder: If p did not contain the definition of f , a

prompt is created that includes it.
2) DocCommentIncluder: If f has a doc comment but p did

not include it, a prompt with the doc comment is created.
3) SnippetIncluder: If usage snippets for f are available but p

did not include them, a prompt with snippets is created.
4) RetryWithError: If t failed with error message e, a prompt

is constructed that consists of: the text of the failing test
t followed by a comment // the test above fails with

the following error: e, followed by a comment // fixed

test. This strategy is only applied once per prompt, so it
is not attempted if p itself was already generated by this
strategy.
The refined prompt is then used to construct a test in

the same way as the original prompt. All strategies are
applied independently and in all possible combinations, but
note that the first three will only apply at most once and
the fourth will never apply twice in a row, thus ensuring
termination.

2.2 Algorithm Details

We now provide additional detail on the two key steps of
our approach: API exploration and test generation.

API Exploration: Algorithm 1 shows pseudocode
that illustrates how the set of functions that constitute the
API for a package is identified. The algorithm takes a
package under test, pkgName, and produces a list of pairs
⟨a, sig⟩ representing its API. Here, a is an access path that

uniquely represents an API method, and sig is the signature
of a function. Our notion of an access path takes a somewhat
simplified form compared to the original concept proposed
by Mezzetti et al. [51], and consists of a package name
followed by a sequence of property names.

We rely on a dynamic approach to explore the API
of a package pkgName, by creating a small program that
imports the package (line 2), and relying on JavaScript’s
introspective capabilities to determine which properties are
present in the package root object modObj that is created by
importing pkgName and what types these properties have.
Exploration of modObj’s properties is handled by a recursive
function explore that begins at the access path representing
the package root and that traverses this object recursively,
calling another auxiliary function extend to extend the access
path as the traversal descends into the object’s structure.

During exploration, if an object is encountered at access
path a whose type is a function with signature sig, then a
pair ⟨a, sig⟩ is recorded (line 10). If the type of p is an object,
then the objects referenced by its properties are recursively
explored (lines 15–15), and if the type of p is an array, then
p’s properties are explored recursively as well (lines 17–19).

Test Generation: Algorithm 2 shows pseudo-code
for the test generation step. The algorithm begins by ini-
tializing the set prompts of generated prompts, the set tests
of generated passing tests, and the set seen containing all
generated tests to the empty set and by using Algorithm 1
to obtain the set apis of (access path, signature) pairs that
constitute the package’s API (lines 2–5). Then, on lines 6–7,
for each such pair, a base prompt is constructed and added
to prompts, containing only the access path and signature,
using the template illustrated in Figure 1. Next, lines 9–
27 create additional prompts by adding the function body,
example usage snippets, and documentation comments ex-
tracted from the code to previously generated prompts.
Here, the refine function extends a previously generated
prompt by adding the function body, example snippets, or
doc comment. The order in which each type of information,
if included, appears in prompts is fixed as follows: example
snippets, error message from previously generated test, doc
comments, function body, signature.

The while loop on lines 29–44 describes an iterative pro-
cess for generating tests that continues as long as prompts
remain that have not been processed. In each iteration, a
prompt is selected and removed from prompts, and the LLM
is queried for completions (line 31). For each completion that
was received, a test is constructed by concatenating the
prompt and the completion (line 33) and minor syntactic
problems are fixed such as adding missing ‘}’ characters at
the end of the test (line 34). Moreover, we remove comments
from the test to enable deduplication of tests that only differ
in their comments (line 35).

If the resulting test is syntactically valid and the same
test was not encountered previously, it is executed (line 38).
Otherwise, we do not re-execute it but still link the prompt
to the previously seen test. If the test executed successfully,
we add it to tests (line 40). If it failed (due to an assertion
failure, nontermination, or because of an uncaught excep-
tion), and if the test was not derived from a prompt that
was constructed from a previous failing test (line 42), then
we create a new prompt containing the failed test and the
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Algorithm 2 Pseudo-code for test generation.
1: function generateTests(pkgName, LLM)
2: prompts← ∅
3: tests← ∅
4: seen← ∅
5: apis← exploreAPI(pkgName) ▷ See Algorithm 1
6: for api ∈ apis do
7: prompts← prompts ∪ { createBasePrompt(api) } ▷ create base prompts containing only the signature, see Figure 1
8:
9: promptsWithFnBody← ∅ ▷ refine prompts by adding function body

10: for prompt ∈ prompts do
11: body ∈ findFnBody(prompt.api.accessPath, prompt.api.sig)
12: promptsWithFnBody← promptsWithFnBody ∪ refine(prompt, body)
13: prompts← prompts ∪ promptsWithFnBody
14:
15: promptsWithExamples← ∅ ▷ refine prompts in cases where example snippets are available
16: for prompt ∈ prompts do
17: snippets← findExamples(prompt.api.accessPath, prompt.api.sig)
18: if snippets ̸= ∅ then
19: promptsWithExamples← promptsWithExamples ∪ refine(prompt, snippets)
20: prompts← prompts ∪ promptsWithExamples
21:
22: promptsWithDocComments← ∅ ▷ refine prompts in cases where doc comments are available
23: for prompt ∈ prompts do
24: docComment← findDocComments(prompt.api.accessPath, prompt.api.sig)
25: if docComment ̸= ∅ then
26: promptsWithDocComments← promptsWithDocComments ∪ refine(prompt, docComment)
27: prompts← prompts ∪ promptsWithDocComments
28:
29: while prompts ̸= ∅ do
30: select and remove prompt from prompts
31: completions← getCompletions(LLM, prompt.text) ▷ request completions from the LLM
32: for completion ∈ completions do
33: test← concatenate(prompt, completion)
34: test← fixMinorSyntaxIssues(test) ▷ e.g., add missing close parentheses
35: test← removeComments(test)
36: if test is syntactically valid and test ̸∈ seen then
37: seen← seen ∪ { test }
38: result← executeTest(test) ▷ execute the test
39: if result.status = ok then ▷ add successful test to tests
40: tests← tests ∪ { test }
41: else ▷ result.status = assertionFailure or result.status = crash or result.status = nonTermination
42: if prompt was not constructed from a previous failed test then ▷ apply error retry refiner
43: prompt′ ← refineFromError(test, result.errorMessage)
44: prompts← prompts ∪ { prompt′ }
45: return tests

error message and add it to prompts.
When the iterative process concludes, the set tests is

returned (line 45).

2.3 Examples

To make the discussion more concrete, we will now show
two examples of how TESTPILOT generates tests.

As the first example, we consider the npm package
countries-and-timezones.2 API exploration reveals that this
package exports a function getCountry with a single pa-
rameter id and the project’s README.md file provides a usage
example.

Figure 3(a) shows a test for this function generated from
the initial highlighted prompt that only includes the func-
tion signature, but no other metadata. This test fails when
execution reaches the assertion on line 8 because the ex-
pression country.name evaluates to "United States of America",
which differs from the value "United States" expected by the
assertion.

2. See https://www.npmjs.com/package/countries-and-timezones.

Next, we refine this prompt to include the usage snippet
as shown in the highlighted part of Figure 3(b). This enables
the LLM to generate a test incorporating the information
provided in this snippet, which passes when executed.

We show another example in Figure 4 from quill-delta,3

a package for representing and manipulating changes to
documents. As before, Figure 4(a) shows the initial prompt
for quill-delta’s concat method, which concatenates two
change sets, and a test that was generated from this prompt.
It is noteworthy that the LLM was able to generate a
syntactically correct test for quill-delta, where arguments
such as
1 [{ insert: 'Hello' },

2 { insert: ' ', attributes: { bold: true } },

3 { insert: 'World!' }]

are passed to the constructor even in the absence of any usage
examples. Most likely, this is because quill-delta is a popular
package with more than 1.2 million weekly downloads,
which means that the LLM is likely to have seen examples
of its use in its training set.

3. See https://github.com/quilljs/delta.

https://www.npmjs.com/package/countries-and-timezones
https://github.com/quilljs/delta
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1 let mocha = require('mocha');

2 let assert = require('assert');

3 let quill_delta = require('quill-delta');

4 // quill-delta.prototype.concat(other)

5 describe('test quill_delta', function() {

6 it('test quill-delta.prototype.concat', function(done) {

7 let delta1 = new quill_delta([{ insert: 'Hello' },

8 { insert: ' ',

9 attributes: { bold: true } },

10 { insert: 'World!' }]);

11 let delta2 = new quill_delta([{ insert: 'Hello' },

12 { insert: ' ',

13 attributes: { bold: true } },

14 { insert: 'World!' }]);

15 let delta3 = delta1.concat(delta2);

16 assert.equal(delta3.ops.length, 6); // fails

17 done();

18 })

19 })

1 let mocha = require('mocha');

2 let assert = require('assert');

3 let quill_delta = require('quill-delta');

4 // quill-delta.prototype.concat(other)

5 describe('test quill_delta', function() {

6 it('test quill-delta.prototype.concat', function(done) {

7 let delta1 = new quill_delta([{ insert: 'Hello' },

8 { insert: ' ',

9 attributes: { bold: true } },

10 { insert: 'World!' }]);

11 let delta2 = new quill_delta([{ insert: 'Hello' },

12 { insert: ' ',

13 attributes: { bold: true } },

14 { insert: 'World!' }]);

15 let delta3 = delta1.concat(delta2);

16 assert.equal(delta3.ops.length, 6);

17 done();

18 })

19

20 // the test above fails with the following error:

21 // expected 5 to equal 6

22 // fixed test:

23 it('test quill_delta', function(done) {

24 let delta1 = new quill_delta([{ insert: 'Hello' },

25 { insert: ' ',

26 attributes: { bold: true } },

27 { insert: 'World!' }]);

28 let delta2 = new quill_delta([{ insert: 'Hello' },

29 { insert: ' ',

30 attributes: { bold: true } },

31 { insert: 'World!' }]);

32 let delta3 = delta1.concat(delta2);

33 assert.equal(delta3.ops.length, 5);

34 done();

35 })

36 }

(a) (b)

Fig. 4: Example illustrating how a prompt is refined in response to the failure of a previously generated test. Prompt (a)
contains no information except the method signature, and the test generated from it fails. Prompt (b) adds information
about the test failure, and the generated test passes.

Nevertheless, the test in Figure 4(a) fails because when
reaching the assertion on line 16 delta3.ops.length has the
value 5, whereas the assertion expects the value 6. The
reason for the assertion’s failure is the fact that the concat

method merges adjacent elements if they have the same
attributes. Therefore, when execution reaches line 16, the
array delta3.ops will hold the following value:
1 [

2 { insert: 'Hello' },

3 { insert: ' ', attributes: { bold: true } },

4 { insert: 'World!Hello' },

5 { insert: ' ', attributes: { bold: true } },

6 { insert: 'World!' }

7 ]

and therefore delta3.ops.length will have the value 5.
In response to this failure, the Prompt Refiner will create

the prompt shown in Figure 4(b) from which a passing test
is generated. In this test, the expected value in the assertion
has been updated to 5, as per the assertion error message.

Note that all these tests look quite natural and similar
to tests that a human developer might write, and they
exercise typical usage scenarios (rather than edge cases) of
the functions under test.

3 RESEARCH QUESTIONS & EVALUATION SETUP

3.1 Research Questions
Our evaluation aims to answer the following research ques-
tions.

RQ1 How much statement coverage and branch coverage do tests
generated by TESTPILOT achieve? Ideally, the generated
tests would achieve high coverage to ensure that most
of the API’s functionality is exercised. Given that our
goal is to generate complete unit test suites (as op-
posed to bug finding), we measure statement coverage
for passing tests only. We report coverage on both the
package level and function level.

RQ2 How does TESTPILOT’s coverage compare to Nessie [11]?
We compare TESTPILOT’s coverage to the state-of-
the-art JavaScript test generator, Nessie, which uses
a feedback-directed approach.

RQ3 How many of TESTPILOT’s generated tests contain non-
trivial assertions? A test with no assertions or with
trivial assertions such as assert.equal(true, true) may
still achieve high coverage. However, such tests do not
provide useful oracles. We examine the generated tests
and measure the prevalence of non-trivial assertions.

RQ4 What are the characteristics of TESTPILOT’s failing tests?
We investigate the reasons behind any failing gener-
ated test.

RQ5 How does each of the different types of information included
in prompts contribute to the effectiveness of TESTPILOT’s
generated tests? To investigate if all the information
included in prompts through the refiners is necessary
to generate effective tests, we disable each refiner and
report how it affects the results.
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TABLE 1: Overview of npm packages used for evaluation, ordered by descending popularity in terms of downloads/wk.
The top 10 packages correspond to the Nessie benchmark, the next 10 are additional GitHub-hosted packages we include,
while the last 5 are GitLab-hosted packages.

Package Domain LOC Existing
Tests

Weekly
Downloads

API functions Total
Examples# # (%) w/ examples # (%) w/ comment

glob file system 314 22 103M 21 2 (9.5%) 0 (0.0%) 4
fs-extra file system 822 417 79M 172 23 (13.4%) 0 (0.0%) 27
graceful-fs file system 208 11 48M 137 1 (0.7%) 0 (0.0%) 1
jsonfile file system 46 43 48M 4 4 (100.0%) 0 (0.0%) 14
bluebird promises 3.1K 238 26M 115 59 (51.3%) 0 (0.0%) 248
q promises 736 214 14M 98 29 (29.6%) 15 (15.3%) 64
rsvp promises 565 171 8.6M 29 11 (37.9%) 16 (55.2%) 15
memfs file system 2.2K 265 13M 376 21 (5.6%) 7 (1.9%) 26
node-dir file system 244 55 6M 6 6 (100.0%) 5 (83.3%) 8
zip-a-folder file system 25 5 95K 3 2 (66.7%) 0 (0.0%) 2

js-sdsl data structures 1.5K 88 9.7M 133 3 (2.3%) 0 (0.0%) 1
quill-delta document changes 395 180 1.6M 36 17 (47.2%) 0 (0.0%) 17
complex.js numbers/arithmetic 393 21 497K 52 7 (13.5%) 52 (100.0%) 5
pull-stream streams 308 31 78K 24 7 (29.2%) 0 (0.0%) 7
countries-and-timezones date & timezones 78 31 115K 7 7 (100.0%) 0 (0.0%) 7
simple-statistics statistics 917 307 103K 89 3 (3.4%) 88 (98.9%) 3
plural text processing 53 14 18K 4 3 (75.0%) 0 (0.0%) 3
dirty key-value store 89 24 9.7K 27 5 (18.5%) 0 (0.0%) 2
geo-point geographical coordinates 76 10 1.1K 19 10 (52.6%) 0 (0.0%) 11
uneval serialization 31 3 417 1 1 (100.0%) 0 (0.0%) 1

image-downloader image handling 32 12 23K 1 1 (100.0%) 0 (0.0%) 3
crawler-url-parser URL parser 100 185 5 3 3 (100.0%) 0 (0.0%) 4
gitlab-js API wrapper 205 14 184 37 4 (10.8%) 2 (5.4%) 7
core access control 136 16 1 20 6 (30.0%) 0 (0.0%) 2
omnitool utility library 1.6K 420 1 270 15 (5.6%) 80 (29.6%) 9

RQ6 Are TESTPILOT’s generated tests copied from existing
tests? Since gpt3.5-turbo is trained on GitHub code, it
is likely that the LLM has already seen the tests of
our evaluation packages before and may simply be
producing copies of tests it “memorized”. We inves-
tigate the similarity between the generated tests and
any existing tests in our evaluation packages.

RQ7 How much does the coverage of TESTPILOT’s generated
tests rely on the underlying LLM? To understand the
generalizability of an LLM-based test generation ap-
proach and the effect of the underlying LLM TESTPI-
LOT relies on, we compare coverage we obtain using
gpt3.5-turbo with two other LLMs: (1) OpenAI’s code-
cushman-002 model [48], one of gpt3.5-turbo’s prede-
cessors which is part of the Codex suite of LLMs [52]
and which served as the main model behind the first
release of GitHub Copilot [38], and (2) StarCoder [49], a
publicly available LLM for which the training process
is fully documented.

3.2 Evaluation Setup

To answer the above research questions, we use a bench-
mark of 25 npm packages. Table 1 shows the size and
number of downloads (popularity) of each of these pack-
ages. The first 10 packages shown in the table are the same
GitHub-hosted packages used for evaluating Nessie [11],
a recent feedback-directed test-generation technique for
JavaScript. However, we notice that these 10 packages
primarily focus on popular I/O-related libraries with a
callback-heavy style, so we add 10 new packages from dif-
ferent domains (e.g., document processing and data struc-
tures), programming styles (primarily object-oriented), as
well as less popular packages. Since gpt3.5-turbo (as well as
the other LLMs we experiment with in RQ7) was trained
on GitHub repositories, we have to assume that all our
subject packages (and in particular their tests) were part of
the model’s training set. For this reason, we also include

an additional 5 packages whose source code is hosted on
GitLab.4

Table 1 shows that the 25 packages vary in terms of
popularity (downloads/week) and size (LOC), as well as
in terms of the number of API functions they offer and the
extent of the available documentation. The “API functions”
columns show the number of available API functions; the
number and proportion of API functions that have at least
one example code snippet in the documentation (“w/ ex-
amples”); and the number and proportion of API functions
that have a documentation comment (“w/ comment”). We
also show the total number of example snippets available in
the documentation of each package.

To answer RQ1–RQ6, we run TESTPILOT using the
gpt3.5-turbo LLM (version gpt-3.5-turbo-0301), sampling five
completions of up to 100 tokens at temperature zero,5 with
all other options at their default values. In RQ7, we use
the same settings for code-cushman-002 and StarCoder, except
that the sampling temperature for the latter is 0.01 since it
does not support a temperature of zero.

Note that LLM-based test generation does not have a
test-generation budget per se since it is not an infinite
process. Instead, we ask the LLM for at most five comple-
tions for every prompt (but the model may return less). We
deduplicate the returned tests to avoid inflating the number
of generated tests. For example, if two prompts return the
same test (modulo comments), we only record this test once
but keep track of which prompt(s) resulted in its generation.

While we set the sampling temperature as low as pos-
sible, there is still some nondeterminism in the received
responses. Accordingly, we run all experiments 10 times.
All the per-package data points reported in Section 4 are

4. We checked similarly-named repos to ensure that they are not
mirrored on GitHub.

5. Intuitively speaking, the sampling temperature controls the ran-
domness of the generated completions, with lower temperatures mean-
ing less non-determinism. Language models encode their input and
output using a vocabulary of tokens, with commonly occurring se-
quences of characters (such as require, but also contiguous runs of
space characters) represented by a single token.

https://github.com/isaacs/node-glob/commit/8315c2d576f9f3092cdc2f2cc41a398bc656035a
https://github.com/jprichardson/node-fs-extra/commit/6bffcd81881ae474d3d1765be7dd389b5edfd0e0
https://github.com/isaacs/node-graceful-fs/commit/c1b377782112ae0f25b2abe561fbbea6cfb6f876
https://github.com/jprichardson/node-jsonfile/commit/9c6478a85899a9318547a6e9514b0403166d8c5c
https://github.com/petkaantonov/bluebird/commit/6c8c069c34829557abfaca66d7f22383b389a4b5
https://github.com/kriskowal/q/commit/6bc7f524eb104aca8bffde95f180b5210eb8dd4b
https://github.com/tildeio/rsvp.js/commit/21e0c9720e08ffa53d597c54fed17119899a9a83
https://github.com/streamich/memfs/commit/ec83e6fe1f57432eac2ab61c5367ba9ec3a775a1
https://github.com/fshost/node-dir/commit/a57c3b1b571dd91f464ae398090ba40f64ba38a2
https://github.com/maugenst/zip-a-folder/commit/5089113647753d5086ea20f052f9d29840866ee1
https://github.com/js-sdsl/js-sdsl/commit/055866ad5515037c724a529fecb2d3c2b35b2075
https://github.com/quilljs/delta/commit/5ffb853d645aa5b4c93e42aa52697e2824afc869
https://github.com/infusion/Complex.js/commit/d995ca105e8adef4c38d0ace50643daf84e0dd1c
https://github.com/pull-stream/pull-stream/commit/29b4868bb3864c427c3988855c5d65ad5cb2cb1c
https://github.com/manuelmhtr/countries-and-timezones/commit/e34cb4b6832795cbac8d44f6f9c97eb1038b831b
https://github.com/simple-statistics/simple-statistics/commit/31f037dd5550d554c4a96c3ee35b12e10a1c9cb7
https://github.com/swang/plural/commit/f0027d66ecb37ce0108c8bcb4a6a448d1bf64047
https://github.com/felixge/node-dirty/commit/d7fb4d4ecf0cce144efa21b674965631a7955e61
https://github.com/rainder/node-geo-point/commit/c839d477ff7a48d1fc6574495cbbc6196161f494
https://github.com/chakrit/node-uneval/commit/7578dc67090f650a171610a08ea529eba9d27438
https://gitlab.com/demsking/image-downloader/commit/19a53f652824bd0c612cc5bcd3a2eb173a16f938
https://gitlab.com/autokent/crawler-url-parser/commit/202c5b25ad693d284804261e2b3815fe66e0723e
https://gitlab.com/nerd-vision/opensource/gitlab-js/commit/c2c9ef54b1ea0fc82b284bc72dc2ff0935983f4c
https://gitlab.com/cptpackrat/spacl-core/commit/fcb8511a0d01bdc206582cfacb3e2b01a0288f6a
https://gitlab.com/comfort-stereo/omnitool/commit/0edf7d148337051c7c2307738423f0ff3db494c7
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TABLE 2: Statement and branch coverage for TESTPILOT’s passing tests, generated using gpt3.5-turbo. We also show passing
tests that uniquely cover a statement. The last two columns show Nessie’s statement and branch coverage for each package.
Note that Nessie generates 1000 tests per package and the reported coverage is for all generated tests.

Project Loading Coverage TESTPILOT Nessie 1000 Tests

Stmt Cov Branch Cov Total Tests Passing Tests (%) Stmt Cov Branch Cov Uniquely Contr. (%) Stmt Cov Branch Cov

glob 7.0% 0.4% 68 18 (26.5%) 71.3% 66.3% 4 (22.2%) 39.7% 14.8%
fs-extra 16.8% 0.9% 471 277 (58.8%) 58.8% 38.9% 17 (6.1%) 38.0% 24.9%
graceful-fs 28.6% 9.8% 345 177 (51.4%) 49.3% 33.3% 1 (0.6%) 49.8% 34.9%
jsonfile 19.1% 0.0% 13 6 (48.0%) 38.3% 29.4% 0 (0.0%) 91.5% 81.0%
bluebird 23.7% 7.8% 370 204 (55.2%) 68.0% 50.0% 26 (12.5%) 43.8% 24.6%
q 22.4% 9.1% 323 186 (57.6%) 70.4% 53.7% 20 (10.5%) 66.8% 54.4%
rsvp 16.4% 12.6% 109 70 (64.2%) 70.1% 55.3% 6 (7.9%) 52.8% 47.0%
memfs 29.3% 7.2% 1037 471 (45.4%) 81.1% 58.9% 40 (8.5%) 64.6% 36.2%
node-dir 5.9% 0.0% 40 19 (48.1%) 64.3% 50.8% 4 (21.1%) 65.4% 54.3%
zip-a-folder 16.0% 0.0% 11 6 (54.5%) 84.0% 50.0% 0 (0.0%) 88.0% 100.0%

js-sdsl 7.9% 3.7% 409 46 (11.3%) 33.9% 24.3% 18 (39.1%) 8.5% 4.8%
quill-delta 8.1% 1.6% 152 33 (21.7%) 73.0% 64.3% 8 (24.2%) 9.6% 2.5%
complex.js 8.4% 4.6% 209 121 (58.0%) 70.2% 46.5% 10 (8.3%) 8.6% 5.4%
pull-stream 18.1% 0.0% 83 34 (41.0%) 69.1% 52.8% 11 (32.4%) 38.5% 23.8%
countries-and-timezones 4.9% 0.0% 28 13 (46.4%) 93.1% 69.1% 2 (15.4%) 96.0% 80.8%
simple-statistics 2.6% 0.0% 353 250 (70.9%) 87.8% 71.3% 14 (5.4%) 57.8% 66.0%
plural 53.8% 0.0% 13 8 (61.5%) 73.8% 59.1% 1 (12.5%) 59.2% 9.1%
dirty 4.7% 0.0% 70 32 (45.3%) 74.5% 65.4% 2 (6.3%) 4.7% 0.0%
geo-point 12.2% 0.0% 76 50 (65.8%) 87.8% 70.6% 1 (2.0%) 13.3% 0.0%
uneval 9.4% 0.0% 7 2 (28.6%) 68.8% 58.3% 0 (0.0%) – –

image-downloader 24.2% 0.0% 5 4 (80.0%) 63.6% 50.0% 0 (0.0%) 30.3% 22.2%
crawler-url-parser 7.2% 1.3% 14 2 (14.3%) 51.4% 35.0% 2 (100.0%) 73.9% 64.1%
gitlab-js 26.9% 0.6% 141 14 (9.9%) 51.7% 16.5% 7 (46.4%) 55.3% 26.4%
core 16.1% 0.0% 85 13 (15.3%) 78.3% 50.0% 5 (38.5%) 18.9% 0.0%
omnitool 19.2% 0.6% 1033 330 (31.9%) 74.2% 55.2% 90 (27.2%) 56.0% 28.3%

Median 16.1% 0.4% 48.0% 70.2% 52.8% 10.5% 51.3% 25.6%

median values over these 10 runs, except for integer-typed
data such as number of tests where we use the ceiling of
the median value. For RQ6, without loss of generality, we
present the similarity numbers based on the first run only.

We use Istanbul/nyc [53] to measure statement and
branch coverage and use Mocha’s default time limit of 2s
per test.

4 EVALUATION RESULTS

4.1 RQ1: TESTPILOT’s Coverage

Table 2 shows the number of tests TESTPILOT generates
for each package, the number (and proportion) of passing
tests, and the corresponding coverage achieved by the pass-
ing tests. The first two columns of Table 2 also show the
coverage obtained by simply loading the package (loading
coverage). This is the coverage we get “for free” without
having any test suite, which we provide as a point of
reference for interpreting our results. Overall, 9.9%–80.0%
of the tests generated by TESTPILOT are passing tests, with
a median of 48.0% across all packages. We now discuss the
different coverage measurements of these passing tests.

Statement Coverage: The statement coverage per
package achieved by the passing tests ranges between 33.9%
and 93.1%, with a median of 70.2%. We note that across all
packages, the achieved statement coverage is much higher
than the loading coverage with a difference of 19.1%– 88.2%
and a median difference of 53.7%.6

The lowest statement coverage TESTPILOT achieves is on
js-sdsl, at 33.9%. Upon further investigation of this package,
we find that it maintains the documentation examples that
appear on its website as markdown files in a separate

6. For some of the projects we share with Nessie, our loading cov-
erage differs from the one reported in their paper. We contacted the
authors, who confirmed that with recent versions of Istanbul/nyc they
obtained the same numbers as we did, except for a very small difference
on memfs (29.1% vs 29.3%), which may be due to platform differences.

repository.7 Including the extracted example snippets from
this external repository increases the achieved coverage to
43.6%, which suggests the importance of including usage
examples in the prompts. We examine the effect of the infor-
mation included in prompts in detail in RQ5 (Section 4.5).

It is worth noting that TESTPILOT’s coverage for the
GitLab projects listed in the bottom 5 rows of Table 2 ranges
from 51.4% to 78.3%. This demonstrates that TESTPILOT is
effective at generating high-coverage unit tests for packages
it has not seen in its training set.

Branch Coverage: We also show the branch coverage
achieved by the passing tests in Table 2. We find that the
branch coverage per package is between 16.5% and 71.3%,
with a median of 52.8%. Similar to statement coverage, the
achieved branch coverage is also much higher than the
loading coverage with a difference of 15.9%– 71.3% and a
median difference of 50.0%.

Since achieving branch coverage is generally harder than
achieving statement coverage, it is expected that the branch
coverage for the generated tests is lower than the statement
coverage. However, we note an interesting case in gitlab-js

where this difference seems more pronounced (51.7% vs.
16.5%). Upon further investigation of its source code and
documentation, we find that gitlab-js offers various config-
uration options and parameters to specify the GitLab reposi-
tory to connect to and use/query (e.g., its url, authentication
token, search parameters to use for a query). The processing
of these options is reflected in the main branching logic
in the code. While TESTPILOT does attempt to generate
reasonable tests that call different endpoints with different
options, it sometimes struggles to find the correct function
call to use, resulting in type errors. In general, a large
proportion of the tests TESTPILOT generates for this package
fail, and thus do not contribute to our coverage numbers. It
is also worth noting that properly testing such a package
would require mocking, but we did not observe any of

7. https://github.com/js-sdsl/js-sdsl.github.io/tree/main/start
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the generated tests to use mocking. In the future, it would
be interesting to investigate if including mocking libraries
in the prompt, or other mocking related information, may
result in the model using mocking when needed.

Coverage per function: Figure 5 shows the distribu-
tion of statement coverage per function for each package.
Each box corresponds to one of our benchmark packages
and each data point in a box represents the statement cov-
erage for a function in that package. The median statement
coverage per function for each package is shown in red.

Overall, the median statement coverage per function for
a given project ranges from 0.0%–100.0%, with a median
of 77.1%. To ensure that TESTPILOT is not generating high
coverage tests only for smaller functions, we run a Pearson’s
correlation test between the statement coverage per function
and the corresponding function size (in statements). We find
no statistically significant correlation between coverage and
size, indicating that TESTPILOT is not only doing well for
smaller functions.8

As expected, Figure 5 shows that for most packages,
TESTPILOT does well for some functions while achieving
low coverage for others. Let us take jsonfile as an example.
In Table 2, we saw that its statement coverage at the package
level is 38.3%. From Figure 5, we see that statement coverage
per function ranges from 0% to 100%, with a median of
almost 50%. Diving into the data, we find that there are
two functions that TESTPILOT cannot cover, because their
corresponding generated tests fail either due to references to
non-existent files TESTPILOT includes in the tests or because
they time out. However, the functions that TESTPILOT is
able to cover have statement coverage ranging from 58%-
100%. We can observe similar behavior with other file sys-
tem dependent packages, such as graceful-fs or fs-extra. At
the other end of the spectrum, we see zip-a-folder where
TESTPILOT achieves both high statement coverage at the
package level (84%) as well as high statement coverage
at the function level in Figure 5 where the minimum per
function coverage is 75%.

Uniquely Contributing Tests: To further understand
the diversity of the generated tests, Table 2 also shows
how many of the tests TESTPILOT generates are uniquely
contributing, meaning that they cover at least one statement
that no other tests cover. A median of 10.5% of the pass-
ing tests are of this kind, with some packages as high as
100.0%. These results are promising because they show that
TESTPILOT can generate tests that cover edge cases, but
there is clearly some redundancy among the generated tests.
Of course, we cannot simply exclude all 89.5% remaining
tests without losing coverage, since some statements may
be covered by multiple tests non-uniquely. Exploring test
suite minimization techniques [54] to reduce the size of the
generated test suite is an interesting avenue for future work.

4.2 RQ2 TESTPILOT vs. Nessie

We compare TESTPILOT’s coverage to the state-of-the-art
JavaScript test generator Nessie [11], which uses a tra-

8. Exact correlation coefficients and p-values are provided in our
artifact.
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Fig. 5: Distribution of statement coverage per function for
TESTPILOT’s generated tests using gpt3.5-turbo.

ditional feedback-directed approach.9 For each package,
Nessie generates 1000 tests, for which we measure statement
and branch coverage in the same way as for TESTPILOT.
We then repeat these measurements 10 times and take the
median coverage across the 10 runs to follow a similar setup
to TESTPILOT’s evaluation. We use a Wilcoxon paired rank-
sum test to determine if there are statistically significant
differences between the coverage achieved by both tools.

The last two columns of Table 2 show statement and
branch coverage for Nessie. We note that Nessie could
not run on uneval, because the module’s only export is a
function, which Nessie does not support. For the remaining
24 packages, Nessie achieved 4.7%– 96.0% statement cov-
erage, with a median of 51.3%. In contrast, as shown in
Table 2, TESTPILOT’s median statement coverage is much
higher at 70.2%. The difference in branch coverage is even
higher, with 52.8% for TESTPILOT vs 25.6% for Nessie. Both
these differences are statistically significant (p-values 0.002
and 0.027 respectively) with a large effect size, measured
by Cliff’s delta [55], of 0.493 for statement coverage and
a medium one (0.431) for branch coverage.10 Note that
Nessie always generates 1000 tests per package, while TEST-
PILOT usually generates far fewer tests, except on memfs

and omnitool. It is also worth emphasizing that Nessie (and
other test-generation techniques such as LambdaTester [56])
report coverage of all generated tests, regardless of whether
they pass or fail while our reported coverage numbers are
for passing tests only.

We now dive into the results at the package level.
For each package, Table 2 highlights the higher coverage
from the two techniques in bold. TESTPILOT outperforms
Nessie on 17 of the 24 packages (glob, fs-extra, blue-
bird, q, rsvp, memfs, js-sdsl, quill-delta, complex.js, pull-
stream, simple-statistics, plural, dirty, geo-point, image-
downloader, core, omnitool), increasing coverage by 3.6%–
74.5%, with a median 30.0% increase. For 7 of the re-
maining packages (graceful-fs, jsonfile, node-dir, zip-a-
folder, countries-and-timezones, crawler-url-parser, gitlab-

9. Note that Nessie’s implementation has been refactored and im-
proved after the publication of the original paper, which is why
some of the values in this table differ slightly from the pub-
lished numbers. Nessie’s first author has kindly helped us run the
improved version (specifically, https://github.com/emarteca/nessie/
tree/86e48f1d038d98dcd2663d6d36a58a70c4666b1b) on all 25 packages.
We include the Nessie results in our artifact

10. All effect sizes for all statistical tests are available in our artifact.

https://github.com/emarteca/nessie/tree/86e48f1d038d98dcd2663d6d36a58a70c4666b1b
https://github.com/emarteca/nessie/tree/86e48f1d038d98dcd2663d6d36a58a70c4666b1b
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1 let manuelmhtr_countries_and_timezones = require("../../TEST_REPO_manuelmhtr_countries_and_timezones");

2 module.exports = function() {

3 let ret_val_manuelmhtr_countries_and_timezones_1;

4 try {

5 ret_val_manuelmhtr_countries_and_timezones_1 = manuelmhtr_countries_and_timezones.getAllCountries();

6 Promise.resolve(ret_val_manuelmhtr_countries_and_timezones_1).catch(e => { console.log({"error_1": true}); });

7 } catch(e) {

8 console.log({"error_1": true});
9 }

10 let ret_val_manuelmhtr_countries_and_timezones_2;

11 try {

12 ret_val_manuelmhtr_countries_and_timezones_2 =

13 manuelmhtr_countries_and_timezones.getCountry({"k": -293.76984807333383,

14 "rHMR": -17.71151399309167,

15 "vSF6": 721.0602634375625,

16 "l": 497.17371230897766,

17 "EnL": -611.9090030925536});

18 Promise.resolve(ret_val_manuelmhtr_countries_and_timezones_2).catch(e => { console.log({"error_2": true}); });

19 } catch(e) {

20 console.log({"error_2": true});
21 }

22 }

Fig. 6: Example of a test generated by Nessie. Highlighted lines are for debugging purposes only and do not contribute to
the testing of the package under test.

js), TESTPILOT achieves lower coverage than Nessie. For
these packages, it reduces coverage by 0.5%– 53.2%, with
a median 3.6% decrease. We also note that Nessie fails to
achieve any branch coverage on 3 projects (dirty, geo-point,
core), while the statement coverage for these projects is non-
zero. Upon further examination, and after consulting the
Nessie authors, we found that Nessie cannot generate tests
that instantiate classes, meaning that statement coverage is
barely above loading coverage for packages with a class-
based API, while the branch coverage is zero.

Aside from the difference in coverage achieved by
Nessie and TESTPILOT, tests generated by Nessie tend
to look quite different from the ones generated by TEST-
PILOT, which stems from Nessie’s random approach to
test generation. To illustrate this, Figure 6 shows an ex-
ample of a test generated by Nessie that exercises the
getCountry function of countries-and-timezones. As can be seen
in the figure, the test uses long variable names such as
ret_val_manuelmhtr_countries_and_timezones_1 that hamper read-
ability. Moreover, the test invokes getCountry on lines 13–17
with an object literal that binds random values to some ran-
domly named properties, which does not reflect intended
use of the API. Moreover, tests generated by Nessie do
not contain any assertions. By contrast, tests generated by
TESTPILOT for the same package (see Figure 3) typically
use variable names that are similar to those chosen by
programmers, invoke APIs with sensible values, and often
contain assertions.

4.3 RQ3: Non-trivial Assertions

We define a non-trivial assertion as an assertion that depends
on at least one function from the package under test. To
identify non-trivial assertions, we first use CodeQL [57] to
compute a backwards program slice from each assertion
in the generated tests. We consider assertions whose back-
wards slice contains an import of the package under test as
non-trivial assertions. We then report generated tests that
contain at least one non-trivial assertion.

Table 3 shows the number of tests with non-trivial as-
sertions (non-trivial test for short) and their proportion w.r.t
all generated tests from Table 2. The table also shows the
number and proportion of these tests that pass, along with
the statement coverage they achieve.

We observe that there is only one package,
image-downloader where TESTPILOT generates only trivial
tests. While the generated tests for image-downloader did
include calls to its API, they were all missing assert
statements. Across the remaining packages, a median of
9.1% – 94.6% of TESTPILOT’s generated tests per package
are non-trivial. A median of 61.4% of the generated tests
for a given package are non-trivial. When compared to
all generated tests, we can also see that only a slightly
lower proportion of non-trivial tests pass (median 48.0% for
overall passing tests from Table 2 vs. 43.7% for non-trivial
passing tests from Table 3). Both these results show that
TESTPILOT typically generates tests with assertions that
exercise functionality from the target package.

The coverage achieved by the non-trivial tests also sup-
ports this finding. Specifically, when comparing the state-
ment coverage for all the generated tests in Table 2 to
that for non-trivial tests in Table 3, we find that the dif-
ference ranges from 0.0%–84.0%, with a median difference
of only 7.5%. This means that the achieved coverage for
most packages mainly comes from exercising API func-
tionality that is tested by the generated oracles. We note
however that there are 4 packages (jsonfile, node-dir, zip-
a-folder, image-downloader) where non-trivial tests achieve
0% statement coverage, causing the larger differences. Apart
from image-downloader discussed above, the three remaining
packages do not have any passing non-trivial tests. Since we
calculate coverage for passing tests only, this results in the
0% statement coverage for the non-trivial tests.

4.4 RQ4: Characteristics of Failing Tests

Figure 7 shows the number of failing tests for each package,
along with the breakdown of the reasons behind the failure.
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TABLE 3: Number (%) of non-trivial TESTPILOT tests gener-
ated using gpt3.5-turbo and the resulting statement coverage
from the passing non-trivial tests.

Project Non-trivial
Tests (%)

Passing Non-trivial Tests

Tests (%) Stmt Cov

glob 37 (54.4%) 3 (8.1%) 50.1%
fs-extra 142 (30.1%) 70 (49.5%) 28.0%
graceful-fs 64 (18.4%) 27 (42.5%) 41.5%
jsonfile 4 (32.0%) 0 (0.0%) 0.0%
bluebird 227 (61.4%) 137 (60.4%) 61.6%
q 235 (72.6%) 136 (58.0%) 66.4%
rsvp 68 (62.4%) 48 (70.6%) 67.6%
memfs 758 (73.1%) 356 (47.0%) 77.4%
node-dir 7 (16.5%) 0 (0.0%) 0.0%
zip-a-folder 1 (9.1%) 0 (0.0%) 0.0%

js-sdsl 349 (85.3%) 44 (12.6%) 33.9%
quill-delta 92 (60.5%) 27 (28.8%) 59.7%
complex.js 190 (90.9%) 104 (54.6%) 62.7%
pull-stream 60 (72.3%) 29 (47.5%) 64.7%
countries-and-timezones 22 (78.6%) 7 (31.8%) 73.5%
simple-statistics 189 (53.6%) 115 (60.6%) 46.9%
plural 12 (92.3%) 8 (66.7%) 73.8%
dirty 29 (41.7%) 13 (44.8%) 66.0%
geo-point 60 (78.9%) 34 (56.7%) 64.6%
uneval 4 (57.1%) 2 (50.0%) 68.8%

image-downloader 0 (0.0%) – 0.0%
crawler-url-parser 6 (42.9%) 1 (16.7%) 49.5%
gitlab-js 104 (73.8%) 12 (11.5%) 49.3%
core 64 (74.7%) 12 (18.9%) 75.5%
omnitool 977 (94.6%) 319 (32.6%) 73.8%

Median 61.4% 43.7% 61.6%
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Fig. 7: Types of errors in the failed tests generated by
TESTPILOT, using gpt3.5-turbo.

Assertion errors occur when the expected value in an as-
sertion does not match the actual value from executing the
code. File-system errors include errors such as files or direc-
tories not being found, which we identify by checking for
file-system related error codes [58] in the error stack trace.
Correctness errors include all type errors, syntax errors,
reference errors, incorrect invocations of done, and infinite
recursion/call stack errors. Timeout errors occur when tests
exceed the maximum running time we allow them (2s/test).
Finally, we group all other application-specific errors we
observe under Other.

We find that the most common failure reason is timeouts
with a median 22.7% of failing tests, followed by correctness
errors (particularly type errors) with a median of 20.0% of
failing tests. The majority of timeouts are due to missing
calls to done, causing Mocha to keep waiting for the call.
We note that on average, the RetryWithError refiner was able
to fix 15.4% of such timeout errors, with the model often

% passing
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Fig. 8: Effect of disabling prompt refiners in TESTPILOT,
using gpt3.5-turbo. Full considers all refiners while Base
includes only the function signature and Mocha scaffolding.

simply adding a call to done11.
We find that a median 19.2% of failures are assertion

errors, indicating that in some cases gpt3.5-turbo is not able
to figure out the correct expected value for the test oracle.
This is especially true when the package under test is not
widely used and none of the information we provide the
model can help it in figuring out the correct values. For
example, in one of the tests for geo-point, TESTPILOT was
able to use coordinates in the provided example snippet to
correctly construct two geographical coordinates as input
for the calculateDistance function, which computes the dis-
tance between the two coordinates. However, TESTPILOT
incorrectly generated 131.4158102876726 as the expected
value for the distance between these two points, while the
correct expected value is 130584.05017990958; this caused
the test to fail with an assertion error. We note that in
this specific case, when TESTPILOT re-prompted the model
with the failing test and error message, it was then able to
produce a passing test with the corrected oracle. On average
across the packages, we find that the RetryWithError refiner
was able to fix 11.1% of assertion errors.

Finally, we note that file-system errors are domain spe-
cific. The generated tests for packages in the file system
domain, such as fs-extra or memfs, have a high proportion of
failing tests due to such errors. This is not surprising given
that these tests may rely on files that may be non-existent
or require containing specific content. Packages in the other
domains do not face this problem.

Overall, we find that re-prompting the model with the
error message of failing tests (regardless of the failure rea-
son) allows TESTPILOT to produce a consequent passing test
in 15.6% of the cases.

4.5 RQ5: Effect of Prompt Refiners
Our results so far include tests generated with all four
prompt refiners discussed in Section 2. In this RQ, we
investigate the effect of each of these refiners on the quality
of the generated tests. Specifically, we conduct an ablation
study where we disable one refiner at a time. Disabling

11. While the insertion of missing calls to done may seem straight-
forward and therefore be amenable to automated repair, it can be
surprisingly tricky to find the correct locations where to insert such
calls, and handling this correctly would require applying static analysis
to the generated test. We therefore opted for an automated approach
that relies solely on the LLM but will consider the use of static analysis
to repair generated tests as future work.



13

1 let mocha = require('mocha');

2 let assert = require('assert');

3 let complex_js = require('complex.js');

4 // complex.js.ZERO.valueOf()

5 describe('test suite', function() {

6 it('test case', function(done) {

7 assert.equal(complex_js.ZERO.valueOf(), 0);

8 done();

9 })

10 })

1 let mocha = require('mocha');

2 let assert = require('assert');

3 let complex_js = require('complex.js');

4 // complex.js.ZERO.valueOf()

5 // function() {

6 // if (this['im'] === 0) {

7 // return this['re'];

8 // }

9 // return null;

10 // }

11 describe('test complex_js', function() {

12 it('test complex.js.ZERO.valueOf', function(done) {

13 assert.equal(complex_js.ZERO.valueOf(), null);
14 done();

15 })

16 })

(a) (b)

Fig. 9: Example of a refinement negatively influencing test generation. Prompt (a) contains no information except the
method signature, and the generated test passes. Prompt (b) adds the body of the method, but the generated test fails.

a refiner means that we no longer generate prompts that
include the information it provides. For example, disabling
DocCommentIncluder means that none of the prompts we
generate would contain documentation comments. We then
compare the percentage of passing tests, the achieved cov-
erage, as well as the coverage by non-trivial tests (non-trivial
coverage).

Figure 8 shows our results. The x-axis shows the metrics
we compare across the different configurations shown in
the legend. The y-axis shows the values for each metric
(all percentages). Each data point in a boxplot represents
the results of the specific metric for a given package, using
the corresponding refiner configuration. The black line in
the middle of each box represents the median value for
each metric across all packages. The full configuration is the
configuration we presented so far (i.e., all refiners enabled).
The other configurations show the results of excluding
only one of the refiners. For example, the red box plot
shows the results when disabling the SnippetIncluder (i.e.,
Without Example Snippets). The base prompt configuration
contains only the function signature and test scaffolding
(i.e., disabling all refiners). Note, however, that only 8
of the packages in our evaluation contain documentation
comments. It does not make sense to compare the effect of
disabling the DocCommentIncluder on packages that do not
contain doc comments in the first place. Therefore, while the
distributions shown in all boxplots represent 25 packages,
the Without Doc Comments configuration contains data for
only 8 packages.

Overall, we can see that the full configuration out-
performs all other configurations, across all three metrics,
implying that all the prompt information we include con-
tributes to generating more effective tests. We find that
there was not a single package where disabling a refiner
led to better results on any metric. With the exception of 4
packages where disabling one of the refiners did not affect
the results (SnippetIncluder on crawler-url-parser and dirty;
and RetryWithError on gitlab-js and zip-a-folder), disabling
a refiner always resulted in lower values in at least one
metric.

The contributions of the refiners are especially notable
for the percentage of passing tests where disabling any of
the refiners (e.g., FnBodyIncluder or SnippetIncluder) results

in a large drop in the percentage of passing tests. This
suggests that the refiners are effective in guiding the model
towards generating more passing tests, even if this does
not necessarily result in additional coverage. We find that
across all packages, a full configuration always leads to a
higher percentage of passing tests for a given API, while
maintaining high coverage.

To understand if the differences between the distribu-
tions we observe in Figure 8 are statistically significant, we
compare the results of each pair of configurations for all
three metrics using a Wilcoxon matched pairs signed rank
tests. Note that when comparing against DocCommentIn-
cluder, we compare distributions for only the 8 packages
that contain doc comments.

We find a statistically significant difference between the
full configuration and each configuration that disables any
refiner as well as between the base configuration and each
of the other configurations. Compared to the full configu-
ration, the largest effect size we observed for disabling a
refiner was on passing tests when either FnBodyIncluder or
DocCommentIncluder were disabled (Cliff’s delta 0.582 and
0.531 respectively).

Apart from differences with the full and base configura-
tion, we find no statistically significant differences between
the pairs of other configurations except for the following
cases: We find that for both passing tests and coverage,
there is a statistically significant difference between the
configuration that disables FnBodyIncluder and that which
disables RetryWithError (medium and negligible effect sizes,
respectively). For passing tests, we also find a statistically
significant difference between disabling FnBodyIncluder and
disabling each of SnippetIncluder and DocCommentIncluder
(small and medium effect sizes, respectively). However, we
note that a sample size of 8 is too small to draw any
valid conclusions for DocCommentIncluder. It is particularly
interesting to see that there was no statistically significant
difference between disabling SnippetIncluder and disabling
any of the other refiners. This suggests that the absence of
example snippets does not necessarily affect the metrics any
more than the absence of any of the information provided by
the other refiners. Since Figure 8 shows that we still obtain a
high median coverage even when disabling SnippetIncluder,
this suggests that the presence of examples snippets is
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Fig. 10: Cumulative percent of TESTPILOT generated test
cases, using gpt3.5-turbo, with maximum similarity less than
the similarity value shown on the x-axis.

not essential for generating effective test suites with high
coverage, and that TESTPILOT is applicable even in cases
where no documentation examples are present.

Finally, we note that while the overall results across a
given package show that the refiners always improve, or
at least maintain, coverage and percentage of passing tests,
this does not mean that a refiner always improves the results
for an individual API function. We have observed situations
where adding information such as the function implemen-
tation to a prompt that does not include it confuses the
model, resulting in the generation of a failing test. Figure 9
shows an example for the complex.js package: given the base
prompt on the left, gpt3.5-turbo is able to produce a (very
simple) passing test for the valueOf method of the constant
ZERO exported by the package; adding the function body
yields the prompt on the right, which seems to confuse the
model, resulting in the generation of a failing test. Across all
packages, 5,367 prompts were generated by applying one of
the refiners, and in only 394 cases (7.3%) the refined prompt
was less effective than the original prompt in the sense that
a passing test was generated from the original prompt, but
not from the refined prompt.

4.6 RQ6: Memorization
Since gpt3.5-turbo was trained on GitHub code, some of the
existing tests included in our benchmarks may have been
part of its training set. This raises the concern that TESTPI-
LOT may be memorizing existing tests, rather than generat-
ing new ones, limiting its usefulness for packages it was not
trained on. To investigate potential effects of memorization,
we measure the similarity between each generated test and
the existing tests in the benchmarks (number of existing
tests shown in Table 1). Recently, Lemieux et al. [27] reported
that code plagiarism or clone detection [59] techniques
are not effective at identifying LLM code memorization.
Instead, they find that measuring similarity through edit
distance [60] produces more meaningful results. They define
maximum similarity as a metric that measures the normalized
highest similarity between a given generated test and all ex-
isting tests as follows: maxtp∈TP

(
1− dist(t∗,tp)

max(len(t∗),len(tp))

)
,

where TP is the set of existing test functions in a package,

it('test case', function(done) {

bluebird.resolve().then(function() {

throw new Error('test');
}).catchThrow().catch(function(err) {

assert.equal(err.message, 'test');

}).finally(done);
});

(a)

it("1 level", function() {

return Promise.resolve().then(function() {

throw new Error();
}).then(assert.fail, function(e) {

assertLongTrace(e, 1 + 1, [1]);

});

});

(b)

Fig. 11: Example of a TESTPILOT-generated test case for
bluebird (a), and an existing test case (b) with similarity 0.62.

t∗ is a given generated test, and dist is the edit distance
between a generated test and an existing test. We follow the
same method for calculating maximum similarity for each
generated test, using the npm Levenstein package [61] to
calculate dist .

Figure 10 shows the cumulative percentage of generated
tests cases for each project where the maximum similarity is
less than the value on the x-axis. We also show this cumula-
tive percentage for all generated test cases across all projects.
We find that 6.2% of TESTPILOT’s generated test cases have
less than ≤ 0.3% maximum similarity to an existing test,
60.0% have ≤ 0.4 similarity, 92.8% have ≤ 0.5, 99.6% have
≤ 0.6 while 100.0% of the generated tests cases have ≤ 0.7.
This means that TESTPILOT never generates exact copies of
existing tests. In contrast, while 90% of Lemieux et al. [27]’s
generated Python tests have ≤ 0.4 similarity, 2% of their
test cases are exact copies. That said, given the differences
between testing frameworks in Python and JavaScript (e.g.,
Mocha requires more boilerplate code than pytest), similar-
ity numbers cannot be directly compared between the two
languages.

To further illustrate the resulting similarity numbers,
Figure 11 shows an example of a test case from bluebird

with 0.62 similarity to an existing test case. While the edit
distance here is low, resulting in the high similarity, we can
see that the tests have semantic differences. For example, the
generated test simply checks that the thrown exception is a
type error, while the existing test checks for certain values
in the trace. Thus, the 7.2% of test cases we generate with
> 0.5 similarity do not pose a concern that TESTPILOT is
generating memorized test cases. Finally, we would expect
the generated tests for GitLab-hosted projects to have a
lower similarity to existing tests since, as far as we know, the
training set for OpenAI’s models only includes projects from
GitHub, so the model is less likely to have seen the existing
tests during training. Our results do indeed show that three
out of the five projects have a maximum similarity of ≤ 0.4,
with the remaining two having maximum similarity of 0.5.
This gives us confidence that the similarity metric we use
provides meaningful results.
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TABLE 4: A comparison of statement coverage of TESTPILOT’s generated tests using three LLMs. For each project, we show
the number of generated tests, the number (%) of passing tests, and the statement coverage achieved by these passing tests.

Project gpt3.5-turbo code-cushman-002 StarCoder

Tests Passing Stmt Coverage Branch Coverage Tests Passing Stmt Coverage Branch Coverage Tests Passing Stmt Coverage Branch Coverage

glob 68 18 (26.5%) 71.3% 66.3% 76 31 (40.1%) 61.7% 51.0% 45 10 (22.2%) 64.8% 58.4%
fs-extra 471 277 (58.8%) 58.8% 38.9% 394 254 (64.3%) 41.0% 23.3% 443 163 (36.7%) 43.0% 25.5%
graceful-fs 345 177 (51.4%) 49.3% 33.3% 301 135 (44.9%) 47.5% 30.3% 309 100 (32.4%) 44.7% 22.7%
jsonfile 13 6 (48.0%) 38.3% 29.4% 15 8 (53.3%) 46.8% 44.1% 13 7 (53.8%) 59.6% 47.0%
bluebird 370 204 (55.2%) 68.0% 50.0% 400 211 (52.6%) 68.2% 51.3% 395 130 (32.8%) 55.6% 36.0%
q 323 186 (57.6%) 70.4% 53.7% 356 190 (53.4%) 66.9% 51.2% 348 96 (27.4%) 63.0% 48.1%
rsvp 109 70 (64.2%) 70.1% 55.3% 115 77 (66.5%) 73.3% 60.5% 141 45 (31.9%) 66.8% 53.2%
memfs 1037 471 (45.4%) 81.1% 58.9% 1058 505 (47.7%) 78.9% 54.9% 922 268 (29.0%) 71.9% 49.8%
node-dir 40 19 (48.1%) 64.3% 50.8% 22 16 (74.4%) 52.2% 41.1% 51 17 (33.3%) 54.0% 42.7%
zip-a-folder 11 6 (54.5%) 84.0% 50.0% 10 7 (70.0%) 88.0% 62.5% 11 4 (36.4%) 56.0% 37.5%
js-sdsl 409 46 (11.3%) 33.9% 24.3% 274 63 (23.0%) 36.5% 27.3% 235 21 (8.9%) 26.9% 17.9%
quill-delta 152 33 (21.7%) 73.0% 64.3% 187 50 (26.5%) 74.0% 66.6% 135 7 (5.2%) 31.0% 21.1%
complex.js 209 121 (58.0%) 70.2% 46.5% 221 125 (56.3%) 62.7% 46.2% 178 56 (31.5%) 53.5% 34.9%
pull-stream 83 34 (41.0%) 69.1% 52.8% 76 43 (55.9%) 70.8% 54.7% 69 10 (14.5%) 51.6% 32.7%
countries-and-timezones 28 13 (46.4%) 93.1% 69.1% 41 18 (44.4%) 93.1% 74.4% 33 11 (33.8%) 88.2% 64.9%
simple-statistics 353 250 (70.9%) 87.8% 71.3% 350 213 (60.7%) 80.1% 63.9% 352 164 (46.6%) 69.9% 54.5%
plural 13 8 (61.5%) 73.8% 59.1% 17 8 (47.1%) 75.4% 59.1% 13 5 (38.5%) 73.8% 59.1%
dirty 70 32 (45.3%) 74.5% 65.4% 89 42 (47.5%) 81.1% 69.2% 57 23 (40.4%) 72.6% 61.5%
geo-point 76 50 (65.8%) 87.8% 70.6% 87 35 (40.2%) 61.0% 70.6% 62 16 (25.8%) 46.3% 70.6%
uneval 7 2 (28.6%) 68.8% 58.3% 5 0 (0.0%) 0.0% 0.0% 6 0 (0.0%) 0.0% 0.0%
image-downloader 5 4 (80.0%) 63.6% 50.0% 5 2 (40.0%) 75.8% 50.0% 5 2 (40.0%) 63.6% 50.0%
crawler-url-parser 14 2 (14.3%) 51.4% 35.0% 17 2 (11.8%) 49.5% 31.3% 14 1 (7.1%) 48.6% 32.5%
gitlab-js 141 14 (9.9%) 51.7% 16.5% 116 35 (29.7%) 61.8% 31.8% 117 1 (0.9%) 28.4% 0.6%
core 85 13 (15.3%) 78.3% 50.0% 102 21 (20.7%) 72.7% 47.7% 61 5 (8.2%) 16.1% 0.0%
omnitool 1033 330 (31.9%) 74.2% 55.2% 1029 321 (31.1%) 70.1% 54.2% 812 194 (23.9%) 40.0% 18.1%

Median 48.0% 70.2% 52.8% 47.1% 68.2% 51.2% 31.5% 54.0% 37.5%

4.7 RQ7: Effect of Different LLMs

Table 4 shows the number of generated tests, percent of
generated tests that pass, as well as statement and branch
coverage of TESTPILOT’s generated tests when using three
different LLMs. While the individual coverage per package
varies, we can see that the coverage of tests generated by the
code-cushman-002 model is comparable to those generated
by gpt3.5-turbo, with the latter having a slightly higher
median statement and branch coverage across the pack-
ages. A Wilcoxon matched-pairs signed-rank test shows
no statistically significant differences between gpt3.5-turbo
and code-cushman-002 for either type of coverage. On the
other hand, we do find a statistically significant difference
between StarCoder and each of the OpenAI models (p-value
< 0.05) for both types of coverage. As shown in Table 4,
StarCoder achieves lower median statement (54.0%) and
branch coverage (37.5%) than both other models. Cliff’s
delta [55] shows a large and medium effect size for state-
ment and branch coverage, respectively, between gpt3.5-
turbo and StarCoder and a medium and small effect size for
statement and branch coverage, respectively between code-
cushman-002 and StarCoder.

However, we note that StarCoder’s median statement
coverage and branch coverage are both higher than Nessie
(statement: 54.0% vs. 51.3% and branch: 37.5% vs 25.6%).
While this higher coverage was not statistically significant,
the results show that even LLMs trained with potentially
smaller datasets and/or a different training process than
OpenAI’s models are on par (or even sometimes higher)
than state-of-the-art traditional test-generation techniques,
such as Nessie [11]. Furthermore, in RQ2, we showed
that using gpt3.5-turbo with TESTPILOT resulted in higher
coverage test suites, with statistically significant differences
to Nessie. Overall, these results emphasize the promise of
LLM-based test generation techniques in generating high
coverage test suites.

Finally, we note that the median time for TESTPILOT
to generate tests for a given function using gpt3.5-turbo is
15s, and the median time to generate a complete test suite

for a given package is 6m 55s.12 The bulk of this time is
spent querying the model, so the choice of LLM makes a
big difference. For example, the median time for TESTPILOT
to generate tests for a given function using StarCoder and
code-cushman-002 is 24s and 11s, respectively, and 10m 48s
and 4m 53s, respectively, for a complete test suite. All
these performance numbers suggest that it is feasible to
use TESTPILOT either in an online setting (e.g., in an IDE)
to generate tests for individual functions, or in an offline
setting (e.g., during code review) to generate complete test
suites for an API.

5 THREATS TO VALIDITY

Internal Validity: The extraction of example snippets
from documentation relies on textually matching a func-
tion’s name. Given two functions with the same name but
different access paths, we cannot disambiguate which func-
tion is being used in the example snippet. Accordingly, we
match this snippet to both functions. While this may lead to
inaccuracies, there is unfortunately no precise alternative for
this matching. Any heuristics may cause us to miss snippets
altogether, which may be worse since example snippets help
with increasing the percentage of passing tests as shown
in Figure 8. The overall high coverage and percentage of
passing tests suggest that our matching technique is not a
limiting factor in practice.

Construct Validity: We use the concept of non-trivial
assertions as a proxy for oracle quality in the generated
tests. When determining non-trivial assertions, we search
for any usage of the package under test in the backwards
slice of the assertion. Such usage may be different from the
intended function under test. However, given the dynamic
nature of JavaScript, precisely determining the usage of a
given function, as extracted by the API explorer, and its
occurrence in the backwards slice is difficult. While our
approach does not allow us to precisely determine non-
trivial coverage for a given function, this does not affect the
non-trivial coverage we report for each package’s complete

12. These timings were measured on a standard GitHub Actions
Linux VM with a 2-core CPU, 7GB of RAM, and 14GB of SSD disk
space.
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API. Note that when calculating non-trivial coverage, we
measure the full coverage of tests that contain at least one
non-trivial assertion. There may be other calls in those non-
trivial tests that contribute to coverage but do not contribute
to the assertion. Measuring assertion/checked coverage as
defined by Schuler and Zeller [62] is a possible alternative,
but this is practically difficult to implement precisely for
JavaScript.

Our definition of non-trivial assertions is simple, setting
a low bar for non-triviality. Any assertion classified as trivial
by our criterion is, indeed, not meaningful, but the converse
is not necessarily true. Accordingly, our measure of non-
trivial coverage is a lower bound on the true non-trivial
coverage.

While the examples we show in the paper suggest that
TESTPILOT’s generated tests use variable names that are
similar to those chosen by programmers, we do not formally
assess the readability of these tests. In the future, it would be
interesting to conduct user studies to assess the readability
of tests generated by different techniques.

External Validity: Despite our evaluation scale sig-
nificantly exceeding evaluations of previous test generation
approaches [11], [25], our results are still based on 25
npm packages and may not generalize to other JavaScript
code bases. In particular, TESTPILOT’s performance may not
generalize to proprietary code that was never seen in the
LLM’s training set. We try to mitigate this effect in several
ways: (1) we evaluate on less popular packages that are
likely to have had less impact on the model’s training, (2)
we evaluate on 5 GitLab repositories that have not been
included in the models’ training, and (3) we measure the
similarity of the generated tests to the existing tests. Our
results show that TESTPILOT performs well for both popular
and unpopular packages and that 92.8% of the test cases
have ≤ 50% similarity with existing tests, with no exact
copies. Overall, this reassures us that TESTPILOT is not
producing “memorized” code.

Finally, we note that while our technique is conceptually
language-agnostic, our current implementation of TESTPI-
LOT targets JavaScript, and thus we cannot generalize our
results to other languages.

6 RELATED WORK

TESTPILOT provides an alternative to (and potentially com-
plements) traditional techniques for automated test gener-
ation, including feedback-directed random test generation
[7]–[11], search-based and evolutionary techniques [16], [17],
[63], [64], and dynamic symbolic execution [12]–[15]. This
section reviews neural techniques for test generation, and
previous test generation techniques for JavaScript.

6.1 Neural Techniques
Neural techniques are rapidly being adopted for solving
various Software Engineering problems, with promising
results in several domains including code completion [34]–
[38], program repair [39]–[41], and bug-finding [42], [43].
Pradel and Chandra [65] survey the current state of the
art in this emerging research area. We are aware of several
recent research efforts in which LLMs are used for test gen-
eration [23]–[29]. There are two main differences between

our work and these efforts: (i) the goal and types of tests
generated and (ii) the need for some form of fine-tuning or
additional data. We discuss the details below.

Differing goals: TICODER [24] and CODET [23]
use Codex to generate implementations and test cases
from problem descriptions expressed in natural language.
TICODER relies on a test-driven user-intent formalization
(TDUIF) loop in which the user and model interact to
generate both an implementation matching the user’s intent
and a set of test cases to validate its correctness. CODET, on
the other hand, generates both a set of candidate implemen-
tations and some test cases based on the same prompt, runs
the generated tests on the candidate implementations, and
chooses the best solution based on the test results. Unlike
TESTPILOT, neither of these efforts solves the problem of
automatically generating unit tests for existing code.

Given the characteristics of LLMs in generating natural
looking code, there have been several efforts exploring the
use of LLMs to help [27] or complement [28] traditional
test generation techniques. Most recently, Lemieux et al. [27]
explore using tests generated by Codex as a way to unblock
the search process of test generation using search-based
techniques [64], which often fails when the initial randomly
generated test has meaningless input that cannot be mu-
tated effectively. Their results show that, on most of their
target 27 Python projects, their proposed technique, CO-
DAMOSA, outperforms the baseline search-based technique,
Pynguin’s implementation of MOSA [64], as well as using
only Codex. However, their Codex prompt includes only
the function implementation and an instruction to generate
tests. Since their main goal is to explore whether a test
generated by Codex can improve the search process, they
do not systematically explore the effect of different prompt
components. In fact, they conjecture that further prompt
engineering might improve results, motivating the need for
our work which systematically explores different prompt
components. Additionally, their generated tests are in the
MOSA format [64], which the authors acknowledge could
lose readability, and do not contain assertions. Most of our
tests contain assertions, and we further study the quality of
assertions we generate as well as reasons for test failures.

Similarly, given that it is often difficult for traditional test
generation techniques to generate (useful) assertions [21],
[22], ATLAS [28] uses LLMs to generate an assert statement
for a given (assertion-less) Java test. They position their tech-
nique as a complement to traditional techniques [8], [17].
With the same goal, Mastrapaolo et al. [29], [45] and Tufano
et al. [46] perform follow up work using transfer learning,
while Yu et al. [66] use information retrieval techniques to
further improve the assert statements generated by Atlas.
TOGA [67] uses similar techniques but additionally incor-
porates an exceptional oracle classifier to decide if a given
method requires an assertion to test exceptional behavior. It
then bases the generation of the assertion on a pre-defined
oracle taxonomy created by manually analyzing existing
Java tests and using a neural-based ranking mechanism to
rank candidates with oracles higher. In contrast with these
efforts, our goal is to generate a complete test method without
giving the model any content of the test method (aside
from boilerplate code required by Mocha), which means
that the model needs to generate both any test setup code
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(e.g., initializing objects and populating them) as well as the
assertion. While TOGA can be integrated with EvoSuite [16]
to create an end-to-end test-generation tool, recent work [68]
points out several shortcomings of the evaluation methods,
casting doubt on the validity of the reported results.

Differing Input/Training: Bareiß et al. [25] evaluate
the performance of Codex on three code-generation tasks,
including test generation. Like us, they rely on embedding
contextual information into the prompt to guide the LLM,
though the specific data they embed is different: while
TESTPILOT only includes the signature, definition, docu-
mentation, and usage examples in the prompt, Bareiß et
al. pursue a few-shot learning approach where, in addition
to the definition of a function under test, they include an
example of a different function from the same code base
and its associated test to give the model a hint as to what
it is expected to do, as well as a list of related helper
function signatures that could be useful for test generation.
For a limited list of 18 Java methods, they show that this
approach yields slightly better coverage than Randoop [8],
[9], a popular technique for feedback-directed random test
generation. This is a promising result, but finding suitable
example tests to use in few-shot learning can be difficult,
especially since their evaluation shows that good coverage
crucially depends on the examples being closely related to
the function under test.

Tufano et al. [26] present AthenaTest, an approach for
automated test generation based on a BART transformer
model [44]. For a given test case, they rely on heuristics
to identify the “focal” class and method under test. These
mapped test cases are then used to fine-tune the model
for the task of producing unit tests by representing this
task as a translation task that maps a focal method (along
with the focal class, constructors, and other public methods
and fields in that class) to a test case. In experiments on
5 projects from Defects4J [69], AthenaTest generated 158K
test cases, achieving similar test coverage as EvoSuite [16],
a popular search-based test generation tool, and covering
43% of all focal methods. A significant difference between
their work and ours is that their approach requires training
the model on a large set of test cases whereas TESTPILOT
uses an off-the-shelf LLM. In fact, in addition to the goal
differences with ATLAS [28] and Mastrapaolo et al.’s [29],
[45] work above, both these efforts also require a data set of
test methods (with assertions) and their corresponding focal
methods, whether to use in the main training [28] or in fine
tuning during transfer learning [29], [45], [46].

Unfortunately, the above differences in goals or in the
required data for model training make it meaningless or
impossible to do a direct experimental comparison with
TESTPILOT. Additionally, none of these efforts support
JavaScript or provide JavaScript data sets that can be used
for comparison. In fact, one of our main motivations for
exploring prompt engineering for an off-the-shelf LLM is
to avoid the need to collect test examples for few-shot
learning [25] or test method/focal method pairs required
for training [28] or additional fine tuning [29], [45], [46].

Other techniques: Stallenberg et al. [70] present a
test generation technique for JavaScript based on unsuper-
vised type inference consisting of three phases. First, a static
analysis is performed to deduce relationships between pro-

gram elements such as variables and expressions. Then, a
probabilistic type inference is applied to these relationships
to construct a model. Finally, they show how search-based
techniques can take advantage of the information contained
in such models by proposing two strategies for consulting
these models in the main loop of DynaMOSA [64].

Recently, El Haji [71] presented an empirical study that
explores the effectiveness of GitHub Copilot at generating
tests. In this study, tests are selected from existing test
suites associated with 7 open-source Python projects. After
removing the body of each test function, Copilot is asked
to complete the implementation so that the resulting test
can be executed and compared against the original test.
Two variations of this approach are explored, viz., “with
context” where the other tests in the suite are preserved and
“without context” where other tests are removed. El Haji
also explores the impact of (manually) adding comments
that include descriptions of intended behavior and usage
examples. The results from the study show that 45.28% of
generated test are passing in the “with context” scenario
(the rest are failing, syntactically invalid, or empty) vs
only 7.55% passing generated tests in the “without con-
text” scenario, and that the addition of usage examples
and comments is generally helpful. There are several sig-
nificant differences between our approach and El Haji’s
work: we explore a fully automated technique without any
manual steps, we report on a significantly more extensive
empirical evaluation, we present an adaptive technique in
which prompts are refined in response to the execution
behavior of previously executed tests, we target a different
programming language (JavaScript instead of Python), and
TestPilot interacts directly with an LLM rather than relying
on Copilot, an LLM-based programming assistant.

6.2 Test Generation Techniques for JavaScript

TESTPILOT’s mechanism for refining prompts based on ex-
ecution feedback was inspired by the mechanism employed
by feedback-directed random test generation techniques [7]–
[11], where new tests are generated by extending previ-
ously generated passing tests. As reported in Section 4.2,
TESTPILOT achieves significantly higher statement coverage
and branch coverage than Nessie [11], which represents the
state-of-the-art in feedback-directed random test generation
for JavaScript.

Several previous projects have considered test genera-
tion for JavaScript (see [72] for a survey). Saxena et al. [73]
present Kudzu, a tool that aims to find injection vulnera-
bilities in client-side JavaScript applications by exploring an
application’s input space. They differentiate an application’s
input space into an event space, which concerns the order
in which event handlers execute (e.g., as a result of buttons
being clicked), and a value space which concerns the choice of
values passed to functions or entered into text fields. Kudzu
uses dynamic symbolic execution to explore the value space
systematically, but it relies on a random exploration strategy
to explore the event space. Artemis [74] is a framework for
automated test generation that iteratively generates tests for
client-side JavaScript applications consisting of sequences of
events, using a heuristics-based strategy that considers the
locations read and written by each event handler to focus
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on the generation of tests involving event handlers that
interact with each other. Li et al. [75] extends Artemis with
dynamic symbolic execution to improve its ability to explore
the value space, and Tanida et al. [76] further improve on
this work by augmenting generated test inputs with user-
supplied invariants. Fard et al. [77] present ConFix, a tool
that uses a combination of dynamic analysis and symbolic
execution to automatically generate instances of the Docu-
ment Object Model (DOM) that can serve as test fixtures
in unit tests for client-side JavaScript code. Marchetto and
Tonella [78] present a search-based test generation technique
that constructs tests consisting of sequences of events that
relies on the automatic extraction of a finite state machine
that represents that application’s state. None of these tools
generate tests that contain assertions.

Several test generation tools for JavaScript are capable of
generating tests containing assertions. JSART [79] is a tool
that generates regression tests that contain assertions reflect-
ing likely invariants that are generated using a variation of
the Daikon dynamic invariant generator [80]. Since Daikon
generates assertions that are likely to hold, an additional
step is needed in which invalid assertions are removed
from the generated tests. Mirshokraie et al. [81], [82] present
an approach in which tests are generated for client-side
JavaScript applications consisting of sequences of events.
Then, in an additional step, function-level unit tests are
derived by instrumenting program execution to monitor the
state of parameters, global variables, and the DOM upon
entry and exit to functions to obtain values with which func-
tions are to be invoked. Assertions are added automatically
to the generated tests by: (i) mutating the DOM and the
code of the application under test, (ii) executing generated
tests to determine how application state is impacted by
mutations, and (iii) adding assertions to the tests that reflect
the behavior prior to the mutation. Testilizer [83] is a test
generation tool that aims to enhance an existing human-
written test suite. To this end, Testilizer instruments code to
observe how existing tests access the DOM, and executes
them to obtain a State-Flow Graph in which the nodes
reflect dynamic DOM states and edges reflect the event-
driven transitions between these states. Alternative paths
are explored by exploring previously unexplored events
in each state. Testilizer adds assertions to the generated
tests that are either copied verbatim from existing tests, by
adapting the structure of an existing assertion to a newly
explored state, or by inferring a similar assertion using
machine learning techniques.

These techniques share the limitation that they require
the entire application under the test to be executable, lim-
iting their applicability. Moreover, several of the techniques
discussed above require re-execution of tests (to infer as-
sertions using mutation testing [81], [82], or to filter out
assertions that are invalid [79]), which adds to their cost.
By contrast, TESTPILOT only requires the functions of API
functions under test to be available and executable, and it
executes each test that it generates only once.

7 CONCLUSIONS AND FUTURE WORK

We have presented TESTPILOT, an approach for adaptive
unit-test generation using a large language model. Unlike
previous work in this area, TESTPILOT requires neither fine

tuning nor a parallel corpus of functions and tests. Instead,
we embed contextual information about the function under
test into the prompt, specifically its signature, its attached
documentation comment (if any), any usage examples from
the project documentation, and the source code of the func-
tion. Furthermore, if a generated test fails, we adaptively
create a new prompt embedding this test and the failure
message to guide the model towards fixing the problematic
test. We have implemented our approach for JavaScript
on top of off-the-shelf LLMs, and shown that it achieves
state-of-the art statement coverage on 25 npm packages.
Further evaluation shows that the majority of the generated
tests contain non-trivial assertions, and that all parts of
the information included in the prompt contributes to the
quality of the generated tests. Experiments with three LLMs
(gpt3.5-turbo, code-cushman-002, and StarCoder) demonstrate
that LLM-based test generation already outperforms state-
of-the-art previous test generation methods such as Nessie
on key metrics. We conjecture that the use of more advanced
LLMs will further improve results, though we are reluctant
to speculate by how much.

In future work, we plan to further investigate the quality
of the tests generated by TESTPILOT. While in this paper
we have focused on passing tests and excluded failing
tests from consideration entirely, we have seen examples of
failing tests that are “almost right” and might be interesting
to a developer as a starting point for further refinement.
However, doing this depends on having a good strategy for
telling apart useful failing tests from useless ones. Our ex-
periments have demonstrated that timeout errors, assertion
errors, and correctness errors are key factors that cause tests
to fail. In future work, we plan to apply static and dynamic
program analysis to failing tests in order to determine why
timeout errors and assertion errors occur and how failing
tests could be modified to make them pass.

Further research is needed to determine what factors
prevent the generation of non-trivial assertions. Anecdo-
tally, we have observed that the availability of usage ex-
amples is generally helpful. We envision that the number
of useful assertions could be improved by obtaining usage
examples in other ways, e.g., by interacting with a user, or
by extracting usage examples from clients of the application
under test.

Another fruitful area of experimentation could be vary-
ing the sampling temperature of the LLM. In this work, we
always sample at temperature zero, which has the advan-
tage of providing stable results, but also means that the
model is less likely to offer lower-probability completions
that might result in more interesting tests.

Another area of future work is the development of
hybrid techniques that combine existing feedback-directed
test generation techniques with an LLM-based technique
such as TESTPILOT. For example, one could use an LLM-
based technique to generate an initial set of tests and use
the tests that it generates as a starting point for extension by
a feedback-directed technique such as Nessie, thus enabling
it to uncover edges cases that would be difficult to uncover
using only random values.

In principle, our approach can be adapted to any pro-
gramming language. Practically speaking, this would in-
volve adapting prompts to use the syntax of the language
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under consideration, and to use a testing framework for that
language. In addition, the mining of documentation and
usage examples would need to be adapted to match the
documentation format used for that language. The LLMs
that we used did not language-specific training and could
be used to generate tests for other languages, though the
effectiveness of the approach will depend on the amount
of code written in that language that was included in the
LLM’s training set. One specific question that would be in-
teresting to explore is how well an approach like TESTPILOT
would perform on a statically-typed language.
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