
1

Answering Uncertain, Under-Specified API
Queries Assisted by Knowledge-Aware

Human-AI Dialogue
Qing Huang, Zishuai Li, Zhenchang Xing, Zhengkang Zuo, Xin Peng, Xiwei Xu, Qinghua Lu

Abstract—Developers’ API needs should be more pragmatic, such as seeking suggestive, explainable, and extensible APIs rather
than the so-called best result. Existing API search research cannot meet these pragmatic needs because they are solely concerned
with query-API relevance. This necessitates a focus on enhancing the entire query process, from query definition to query refinement
through intent clarification to query results promoting divergent thinking about results. This paper designs a novel Knowledge-Aware
Human-AI Dialog agent (KAHAID) which guides the developer to clarify the uncertain, under-specified query through multi-round
question answering and recommends APIs for the clarified query with relevance explanation and extended suggestions (e.g.,
alternative, collaborating or opposite-function APIs). We systematically evaluate KAHAID. In terms of human-AI dialogue efficiency, it
achieves a high diversity of question options and the ability to guide developers to find APIs using fewer dialogue rounds. For API
recommendation, KAHAID achieves an MRR and MAP of 0.769 and 0.794, outperforming state-of-the-art methods BIKER and CLEAR
by at least 47% in MRR and 226.7% in MAP. For knowledge extension, KAHAID obtains an MRR and MAP of 0.815 and 0.864,
surpassing ZaCQ by at least 42% in MRR and 45.2% in MAP. Furthermore, we conduct a user study. It shows that explainable API
recommendations, as implemented by KAHAID, can help developers identify the best API approach more easily or confidently,
improving inspiration of clarification question options by at least 20.83% and the extensibility of extended APIs by at least 12.5%.

Index Terms—Developers’ API Need, Knowledge Graph, Human-AI Dialogue, API Recommendation, Multi-Round Question
Answering.

F

1 INTRODUCTION

D EVELOPERS’ API (short for Application Programming
Interface) needs are no longer just a matter of finding

so-called best API for certain programming tasks. To mini-
mize API misuse, they must consider several aspects such
as the API’s specific usage context, relations to cooperative
APIs, and confusing APIs with subtle differences. [1]. As a
result, it is desirable that API search methods should guide
developers to clarify the vague question intent, provide
diverse and suggestive APIs for different needs, interpret
the search results, and extend other potentially useful API
knowledge [2]. This expectation reveals some pragmatic API
needs, which seek suggestive, explainable, and extensible
API recommendation and knowledge discovery rather than
simply presenting so-called best APIs. Meeting these prag-
matic API needs not only helps developers select the ideal
APIs for their needs, but it also inspires and broadens their
thinking, such as exploring alternative or better solutions,
discovering previously unknown API knowledge.

Existing API search methods, however, are incapable of
meeting the above-mentioned pragmatic API needs. Given
an API query, they measure query-API relevance based on
keyword matching [3], [4], [5] or embedding similarity [6],
[7], and return the top-k related APIs as a list of “best”

• Q. Huang, Z. Li, Z. Zuo are with School of Computer Information
Engineering, Jiangxi Normal University, China.

• Q. Huang and Z. Li are co-first authors, Z. Zuo is the corresponding
author(zuo803@jxnu.edu.cn).

• Z. Xing, X. Xu and Q. Lu are with the CSIRO’s Data61, Australia.
• X. Peng is with the School of Computer Science and Shanghai Key

Laboratory of Data Science, Fudan University.

answers. These answers are only useful if the API query
can clearly describe the actual query intent, but even then,
they fall far short of the pragmatic API needs because the
answers are viewed as independent of each other with little
or no explanation. Furthermore, an API query in the real
world is highly likely uncertain and under-specified. In
order to clarify the query intent, the query can be extended
based on word co-occurrence [8]. However, without any
human intervention, the extended words are very likely
irrelevant and may potentially introduce noise that blur the
query intent [9], [10]. It follows that API search should shift
from its current narrow focus on query-API relevance to
enhancing the entire search process, from query definition
to query refinement through intent clarification, to query
results promoting divergent thinking about the results.

This query process is vividly reflected in the social-
technical information seeking on online forums. For ex-
ample, on Stack Overflow, a question-answering (Q&A)
thread usually includes a number of comments that help
clarify uncertain and under-specified API questions and
discuss technical details and trade-offs [11], [12], in which
the developer often gains more than just a single API, but
becomes familiar with various APIs’ specific usage contexts
and their cooperation and differences [13]. Although social-
technical information seeking aligns well with the pragmatic
API needs and supports much better question clarification,
intent understanding and answer explanation through de-
veloper interactions and knowledge sharing, the question-
answering process relies on human interaction and engage-
ment, which cannot immediately respond to the developers’

ar
X

iv
:2

30
4.

14
16

3v
1

 [
cs

.S
E

]
 2

7
A

pr
 2

02
3

needs.
In this work, we design a novel Knowledge-Aware

Human-AI dialogue agent (KAHAID) as the first step to-
wards integrating the immediate response capability of API
research and the interaction, clarification, explanation, and
extensibility capability of social-technical information seek-
ing. Given an uncertain, under-specified query, KAHAID
interacts with the developer to clarify the query intent
through multi-round question answering and returns APIs
with relevance explanation and extended knowledge for the
clarified query.

Each dialogue round clarifies a certain aspect of the
query by asking a question with a list of options. To auto-
matically generate meaningful clarification questions with
diverse options, we construct an API behavior knowledge
graph (KG) that extracts API actions, objects, constraints
and diverse functional and semantic relations from API
documentation. To support efficient dialogue process, we
design an information-gain based decision tree algorithm
over the underlying knowledge graph to prioritize the
questions posted to the developer and minimize dialogue
rounds. Finally, KAHAID identifies APIs in the knowledge
graph based on the developer’s answers to its clarification
questions, and present not only the most relevant API but
also extended suggestions (e.g., alternative, cooperating or
opposite-function APIs). All recommended APIs come with
the explanation of how they are related to the query and
other APIs. This result explanation can enhance the devel-
oper’s trust in the recommended APIs and allow them to
make informed choice among APIs.

We have implemented KAHAID for Java SDK APIs.
To evaluate the effectiveness of human-AI dialogue and

the quality of API recommendations by KAHAID, we have
developed three test sets for testing. The first is the dataset
we reused from BIKER’s manually created test dataset, the
second is randomly selected 1k sample SO posts to alleviate
potential human bias. To simulate questions and answers
in real situations, we added a third test dataset, which
contains manually selected 60 questions with ground-truth
APIs from SO. In terms of dialogue efficiency, KAHAID
achieves high semantically diversity of question options (the
average diversity between any two options is 74.9%) and
the ability to guide developers using fewer dialogue rounds
to find APIs (the average number of rounds required for
a query to find an answer is no more than three). Our
evaluation confirms that KAHAID has a strong ability for
API recommendation and knowledge extension. For API
recommendation, KAHAID achieves a mean reciprocal rank
(MRR) and mean average precision (MAP) of 0.769 and
0.794 respectively, and this outperforms the two state-of-the-
art API search approaches BIKER and CLEAR by at least
47% in MRR and 226.7% in MAP. In terms of knowledge
extension, KAHAID achieves an MRR and MAP of 0.815
and 0.864 respectively, which surpasses the state-of-the-art
conversation-based code search method, ZaCQ, by at least
42% in MRR and 45.2% in MAP.

Furthermore, we conducted a user study in which 12
Java developers were divided into two groups using differ-
ent tools to find APIs for 8 programming tasks (derived from
the selected 60 SO questions) using KAHAID and ZaCQ,
respectively. Using KAHAID improves the inspiration of

clarification question options by at least 20.83% and the
extensibility of extended APIs by at least 12.5%. These
results also confirm that explainable API recommendation
can assist developers in selecting the best API method more
easily and confidently.

Overall, this paper makes the following contributions:
1) Conceptually, we are aware of pragmatic API needs,

which include suggestive, explainable, and extensible API
recommendation and knowledge discovery. We believe that
API search should shift from only finding the best APIs to
enhancing the entire query process by providing a variety
of potentially useful and enlightening knowledge. Driven
by this conception, we design KAHAID to achieve an inter-
active, illuminating, explainable, and extensible exploratory
discovery.

2) We create an API behavior knowledge graph that in-
cludes API actions, objects, constraints, functional relations
and semantic relations to generate clarification questions
with multiple options. These questions can prompt develop-
ers to discover better options or help them determine their
actual needs.

3) Over the underlying knowledge graph, we design an
information-gain based decision tree algorithm to prioritize
the questions posted to the developer, minimize question
answering rounds, and guide the developer gradually clar-
ify the vague question intent.

4) We evaluate KAHAID’s ability to meet pragmatic
API needs in terms of variety, guidance, extensibility, and
interpretability. Our data package can be found here 1.

2 MOTIVATING EXAMPLE
2.1 API Search Status
In order to find the APIs for developers’ needs, a common
solution is to use the natural language description of the API
need as a query, and use API search approaches to obtain
some candidate APIs whose documentation is similar to
the query. During the search process, developers may seek
diverse, explainable, guided, and extensible API recommen-
dations, rather than just a single API.

Consider a Stack Overflow question where a developer
needs a Java API to get the current working directory.
Let us consider how to satisfy this API need using API
search over API documentation (assume that the answers
like this SO post do not exist). If the search query is
specific, the API search will be able to find the most rel-
evant API, but it likely loses extensibility and miss other
potentially useful APIs. For example, assume the developer
issues a specific query “get absolute path string of current
working directory in Java”, BIKER [8] (a query expansion
API search tool) can find the most relevant API directly
(i.e., java.io.File.getAbsolutePath) by matching the query with
the API description. However, its results does not include
java.nio.file.Path.toAbsolutePath, a Java new IO API which
may also satisfy the need “get the current work directory”.
But the description “Returns a Path object representing
the absolute path” of java.nio.file.Path.toAbsolutePath is not
similar to the very specific query, so it will not be returned.
As a result, the developer may miss the opportunity to use
a new API based on the API search results.

1. https://github.com/Answering-uncertain-under-specified-API-
query-assisted-by-knowledge-aware-human-AI-dialogue

2

https://stackoverflow.com/questions/4871051/how-to-get-the-current-working-directory-in-java
https://github.com/Codeshuai/Answering-uncertain-under-specified-API-query-assisted-by-knowledge-aware-human-AI-dialogue
https://github.com/Codeshuai/Answering-uncertain-under-specified-API-query-assisted-by-knowledge-aware-human-AI-dialogue

Note: The red text and lines in the Subgraph indicate the critical path necessary for obtaining the best API.

Fig. 1: An Example of API Recommendation with the help of Query-Related API Behavior Subgraph and Human-AI
Dialogue

On the other hand, if the search query is too broad,
the API search tool very likely cannot find the relevant
APIs. For example, using the SO question title “how to
get the current working directory in Java” as a query,
BIKER returns a chaotic set of APIs. In top 10, only one
API java.io.File.getCanonicalPath (returns the canonical path
string of the current directory) is relevant but this API
is ranked seventh. The poor search results actually reveal
another issue of API search, i.e., lack of interpretability,
making it difficult for the developers to interpret the search
results and determine their relevance and trustworthiness.
For example, the top-1 ranking API is java.io.File.list, but it
is difficult to understand how java.io.File.list could be used
to get the current working directory, as it only lists all
files in the current working directory. It is also difficult to
understand why this irrelevant API is ranked first while the
relevant API java.io.File.getCanonicalPath is ranked seventh.

2.2 API Knowledge Seeking on Stack Overflow

Different from API search, question-answering process on
Stack Overflow offers a completely different experience. The
Stack Overflow question “How to get the current working
directory in Java2” received 70 comments, many of which
help to clarify the vague question intent. For example, one
comment asks “What is it you’re trying to accomplish by
accessing the working directory? Could it be done by using
the class path instead?”. This comment clarifies the action
is “accomplish”, the object of this action is “what”, and

2. https://stackoverflow.com/questions/4871051/

whether or not the constraint on this event is “by using
the class path”. Another comment says “Knowledge of
the current working directory is important for all relative
paths. If you think that is irrelevant make sure you always
access files via some absolute path.” This comment clarifies
whether the constraint on the object “path” is “all relative”
or “some absolute”.

The question receives diverse answers, including di-
rectly relevant APIs such as java.io.File.getAbsolutePath and
java.io.File.getCanonicalPath, as well as extended APIs like
java.nio.File.toAbsolutePath with similar functionality, and
java.nio.File.Paths.get as a cooperative API that converts the
path string from java.io.File.getAbsolutePath to a path object.
Meanwhile, these answers and comments on Stack Over-
flow also provide explanation of the recommended APIs,
drawn from the API documentation. As a result, these
explanations reinforce the developer’s understanding and
trust of the recommended APIs in the answers. However,
as the Q&A process relies on human inputs, those diverse
answers were provided across 4 years.

2.3 API Search Assisted by Human-AI Dialogue

In this work, we aim to assist API search with human-
AI dialogue which simulates the capability of intent clari-
fication and result explanation and extension as the Q&A
process on Stack Overflow, and meanwhile can provide the
immediate response to the search query. The Q&A process
on Stack Overflow is underpinned by human knowledge
of API behaviors and relations. In the same vein, API

3

https://stackoverflow.com/questions/4871051/how-to-get-the-current-working-directory-in-java

search with human-AI dialogue needs to be supported by
a knowledge graph of API behaviors which represents API
actions, objects, constraints and various API functional and
semantic relations in a graph like the example shown in
Fig. 1. Given a search query, the agent interacts with the
developer to clarify the query intent until it finds some APIs.
It presents the found APIs with the explanation how they
are related to the clarified query and each other.

Fig. 1 illustrates an example of this knowledge-graph
supported human-AI dialogue process for API search. The
developer Jack initially asks an under-specified question
“How to get the current working directory in Java”, for
which the current API search tool (e.g., BIKER [8]) returns
poor results. However, the agent KAHAID, based on the
API behavior knowledge graph, determines it needs some
clarification of actions first, because several different actions
are somewhat related to “get working directory”. It asks
“what do you want to do?” with a list of options extracted
from the knowledge graph, such as “return path”, “return
filesystem”, “return codesource” or “convert path string to
path”. Jack replies “return path”. With the clarified action,
KAHAID determines it needs some further clarification
about the type of path to be returned, either “path object”
or “path string”, again based on the knowledge graph.
Jack replies “path string”, which triggers another round of
clarification “which kind of path string”, either absolute or
canonical. Jack replies “absolute”. Through three rounds of
human-AI dialogue, the intent of the initial under-specified
question becomes clear, which leads KAHAID to an API
java.io.File.getAbsolutionPath.

KAHAID goes beyond java.io.File.getAbsolutionPath to
identify other relevant APIs using semantic relations in the
knowledge graph. Specifically, KAHAID locates two func-
tionally similar APIs, namely java.io.File.getCanonicalPath
and java.nio.file.Path.toAbsolutePath, as well as two func-
tionally cooperative APIs, namely java.nio.file.Paths.get and
java.nio.file.FileSystem.getPath. Instead of simply presenting
some APIs, KAHAID provides a concise explanation for
each recommended API. First, it shows the API’s func-
tionality description and highlights the keywords that it
uses as clarification options. This helps Jack determine why
these APIs are recommended and how they are relevant to
his question. Second, KAHAID shows the relations of the
extended APIs and the most relevant API, such as function
similarity and function cooperation.

To sum up, API search assisted by knowledge-aware
human-AI dialogue will create an exploratory search pro-
cess that is suggestive, explainable, and extensible. It can
lead to effective and serendipitous API recommendation
and knowledge discovery.

3 APPROACH
Fig. 2 depicts the three stages of KAHAID design: API
Behavior KG Construction, Human-AI Dialogue, and Ex-
plainable and Extensible API Recommendation.

In the first stage, we extract API entities (such as API
actions, objects, events and constraints) and diverse func-
tional relations from API documents using natural language
processing (NLP) techniques, and then enrich the various
semantic relations of API entities. Finally, the API behavior
KG is constructed.

In the second stage, given an under-specified API query,
KAHAID uses the subgraph search method to retrieve the
Query-related API behavior subgraph containing various
functional relations from KG. Based on the subgraph, KA-
HAID builds a decision tree using the information-gain
based decision tree algorithm, and initiates a dialogue based
on this tree. If the user don‘t decide to continue the dialogue,
KAHAID generates the result APIs directly and proceeds to
the third stage; otherwise, KAHAID generates a clarification
question with a variety of options to assist the user in
clarifying the uncertain aspects of the query. After the user
selects an option that represents a specific branch of the
decision tree, KAHAID updates the decision tree based on
the user’s choice by merging and pruning the decision tree.

In the third stage, KAHAID returns the explainable
result API and any extended APIs that have API semantic
relations with the result API.

3.1 API Behavior KG Design and Construction

As stated in Section 2.3, API search with Human-AI dialog
need to be supported by a knowledge graph of API behav-
iors which represents API actions, objects, constraints and
various API functional and semantic relations in a graph.
The following section describes how to design and build
the API behavior knowledge graph.

3.1.1 API Knowledge Source
The API documentation contains a wealth of knowledge
about API behavior, typically documented in API descrip-
tions. These descriptions are frequently used to answer
questions on Stack Overflow. For example, a question titled
“How to get the path of a running JAR file?”3 is posted.
The sixth respondent endorsed API “java.nio.file.Paths.get()”
by referencing the functional event mentioned in the API
description4, thereby supporting the recommendation.

In this work, we download the JDK 1.8 API reference
documentation 5 and parse each API class’s HTML file
to extract API methods and their descriptions following
the method mentioned in [14], resulting in API method-
description pairs. Finally, we build a Java API dictionary
with 30,200 API method-description pairs.

3.1.2 KG Design
Our KG design is driven by two types of knowledge: clar-
ification question related knowledge and result extension
related knowledge.
Clarification question related knowledge: our KG includes
the API behavior knowledge necessary for clarifying the
following three types of questions in the under-specified
queries.

The first type of question is event-oriented and serves
to clarify the user’s goals. For example, given a question
“What do you want to do?”, we can derive the Event
entity (“convert a path string to a path”), and further divide
the Event entity into the Action entity (“convert”) and the
Object entity (“path string” or “path”) because the event

3. https://stackoverflow.com/questions/320542/
4. https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths-

.html#get-java.lang.String-java.lang.String...
5. https://docs.oracle.com/javase/8/docs/api

4

https://stackoverflow.com/questions/320542/
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html#get-java.lang.String-java.lang.String...-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html#get-java.lang.String-java.lang.String...-
https://docs.oracle.com/javase/8/docs/api

Fig. 2: Overall Framework of KAHAID

is composed of the action and the object. As a result, the
Act Has Event relation naturally arises between the entities
Action and Event, while the Has Direct Object and Has
Preposition Object relations naturally arises between the en-
tities Event and the Object. For example, “path string” and
“path” are the direct and prepositional objects of “convert”.

The second type of question is object constraint-oriented
and serves to clarify the type or statue of object. For ex-
ample, given a question “What type of the path string
do you convert?”, we can derive the Object Constraint
entity, despite the fact that there is no modifier for “path
string” in this real API description. The Object Constraint
relation will naturally arise between the Object and the
Object Constraint entities. However, this relation can be
refined into two relations based on object modifiers. The def-
initions and examples for two relationships are listed, with
the type of relation underlined and the Object Constraint
entity italicized. The one is the Has Status relation when the
object modifiers are adjectives (ADJ), verbs (VERB), quanti-
fiers (NUM) or adverbs (ADV). For example, “absolute path
string” and “canonical path string”. The another is the Has
Type relation when the object modifiers are noun (NOUN)
or proper noun (PROPN), such as java built-in data types
[“byte”,“int/integer”, “float”, “char”, “boolean”, “double”,
“long”, “short”]. For example, “writes a double value, which
is comprised of four bytes, to the output stream.”

The third type of question is event constraint-oriented
and serves to clarify the type or statue of event. For example,
given a question “What is the condition under which a
path string is converted to a path?” from this question,
we can derive the Event Constraint entity (“when joined
form a path string”). To be converted into “a path”, “the
sequence of strings” must meet this constraint. The Event
Constraint relation naturally arises between the Event entity
and the Event Constraint entity. And this relation can be
refined into nine types based on the semantic roles (such as
Locatives, Directional, Manner, Extent, Temporal, Goal, Pur-
pose Clauses, Secondary Predication, Adverbials) proposed

by PropBank [15]. Each relation’s definitions and examples
are listed, with the underlined part representing the type
of relation and the italicized part representing the Event
Constraint entity.

• Has Location relation (Location of event occurrence),
for example, “finds all the keys of the streams in this
applet context.”

• Has Direction relation (Direction of event occur-
rence), for example, “moves the focus down one focus
traversal cycle.”

• Has Manner relation (Manner of event executed),
for example, “adds the specified component to the
layout, using the specified constraint object.”

• Has Extent relation (Scope of event), for example,
“fully parses the text producing a temporal object.”

• Has Temporal relation (Temporal of event occur-
rence), for example, “converts a path string, or a
sequence of strings that when joined form a path string,
to a path.”

• Has Goal relation (Target object of event), for exam-
ple, “fetches the command list for the editor.”

• Has Purpose relation (The effect event can achieve),
for example, “destroys the orb so that its resources can
be reclaimed.”

• Has Result relation (The form of the event outcome),
for example, “gets a representation of the current
choice as a string.”

• Has Condition relation (Condition of event occur-
rence), for example, “returns the window object rep-
resenting the full-screen window if the device is in full-
screen mode.”

As for the other semantic roles in PropBank, we do not
consider any of them for three reasons. First, not all those
semantic roles are Event constraints, for example, the use
of Adjectival (ADJ) is limited to noun annotations. Second,
Some semantic roles have no practical meaning, such as
Discourse (DIS), which is a token (such as ”however,” ”to,”
”as well as,”) that connects one sentence with the previous

5

sentence. Third, some semantic roles, such as Cause Clauses
(CAU), which are used to explain causes, are not part of the
API’s behavior.

Furthermore, the API entity is derived because all
of the entities mentioned above are related to the API
“java.nio.file.Paths.get()”. As a result, the API Has Event
relation will naturally emerge between the API and the
Event entities.

So far, we’ve deduced API entities, event relations, event
constraint relations, and object constraint relations. And we
summarize these three types of relations as the functional
relation (also known as intra-relation), which describes the
API’s functionality from fourteen aspects.

Result extension related knowledge: In addition to the
API behavior knowledge, our KG also needs the API seman-
tic knowledge necessary for clarifying the relationship be-
tween the result API and other APIs. As a result, we employ
seven types of API semantic relations proposed by Yuan
et al.[16], namely, Function Similarity, Function Opposite,
Function Replace, Function Collaboration, Logic Constraint,
Behavior Difference, Efficiency Comparison. Here we only
consider these seven method-level API semantic relations
and ignore the other non-method-level API semantic rela-
tions mentioned in Yuan’s work[16] because the Human-AI
dialogue we propose is focused on API methods.

3.1.3 KG Construction
Following KG design, we extract API entities and relations
required for KG from API descriptions based on semantic
and syntactic roles.

Step 1: Semantic and Syntactic Role Annotation. Given
a specific API and its description, we annotate the sen-
tence with semantic roles using the natural language tool
AllenNLP[17], and obtain the functional parts with func-
tional semantic roles and the constraint parts with constraint
semantic roles. The functional parts are then assembled into
a functional statement in the correct order, and it is part-
of-speech tagged to yield grammatical parts with six differ-
ent syntactic roles, such as verb, direct object, preposition,
preposition object, direct object’s modifier, and preposition
object’s modifier.

Step 2: Entity and Functional Relation Extraction based
on Annotation. We organize these grammatical parts and
constraint parts into six entities and fourteen functional
relations based on the following rules:

(1) The API entity is the qualified name of a API method
that corresponds to the API description.

(2) The Event entity is made up of grammatical parts
with the syntactic roles “verb + direct object” or “verb +
preposition + preposition object”.

(3) The Action entity is the grammatical part with the
syntactic role “verb”.

(4) The Object entity is the grammatical part with the
syntactic role “direct object” or “preposition object”.

(5) Along with the formation of four entities (API, Event,
Action, Object), the four event relations (API Has Event, Act
Has Event, Has Direct Object, Has Preposition Object) are
formed naturally.

(6) The Object Constraint entity is the grammatical part
with the syntactic role “direct object’s modifier” or “prepo-
sition object’s modifier”; its object modifier determines the

type of object constraint relation which it forms with the
Object entity. If the object’s modifier is an adjective (ADJ),
verb (VERB), quantifier (NUM) or adverb (ADV), the object
constraint relation is the Has Status relation; otherwise, it is
the Has Type relation.

(7) The Event Constraint entity is the constraint part
with constraint semantic roles; its semantic role determines
the type of event constraint relation which it forms with
the Event entity. One constraint semantic role corresponds
to one event constraint relation, that is, ARGM-LOC cor-
responds to Has Location, ARGM-DIR to Has Direction,
ARGM-MNR to Has Manner, ARGM-EXT to Has Extent,
ARGM-TMP to Has Temporal, ARGM-GOL to Has Goal,
ARGM-PRP to Has Purpose, ARGM-PRD to Has Result, and
ARGM-ADV to Has Condition.

So far, six types of entities and fourteen kinds of func-
tional relations (known as intra-relation) have been ex-
tracted from an API and its description. To help accurately
retrieving functional relations related to a specific API in
subsequent sections, we have set up a FUNCTION property
for each API entity and stored the extracted functional
relations from the API description in this property, as shown
in Fig.3-a.

Step 3: Semantic Relation Extraction. As for the seven
types of API semantic relations (known as inter-relation), we
refer to the API-Task knowledge graph proposed by Yuan et
al.[16], which consists of many API relation triples, each of
which is of the form 〈API name, semantic relation Name,
API name〉. If the API names of two API method entities
match two API names in a triple, this triple’s semantic
relation becomes the relation between these two entities.
Despite the fact that the API name in our API entity is a
full qualified name (FQN) while the API name in the triple
of API-Task KG is a simple name, we can successfully match
because the simple name can be converted to the FQN based
on the three points listed below.

(1) the method-level APIs to match all have parentheses,
a key distinguishing symbol, for example, “update()”.

(2) For the simple method name made up of two or
more tokens, one token represents a method and the other
represents a class. The package can be reasoned out from
the method and the class, and then we combine method,
class, and package to get FQN. For example, we can infer
the “java.io” package from the “InputStream” class and the
“read()” method of “InputStream.read()”.

(3) Even if two simple method names have only one
token, they belong to the same class if they appear to-
gether. As a result, we can reason class, then package
from the class and the method, and finally FQN. For
example, for the triple 〈update(), Function Similarity, do-
Final()〉, since two methods “update” and “doFinal” ap-
pear together, we can infer two classes “javax.crypto.Cipher”
and “java.crypto.Mac”, and further two triples with FQNs,
namely, 〈javax.crypto.Cipher.update(), Function Similarity,
javax.crypto.Cipher.doFinal()〉 and 〈java.crypto.Mac.update(),
Function Similarity, java.crypto.Mac.doFinal()〉.

3.2 Human-AI Dialogue Process

The Human-AI dialogue process is underpinned by Sub-
graph Search and Clarification Question Generation, which

6

Note: Figure (a), (b), and (c) illustrate the step-by-step generation of clarifying dialogues in Figure (d) through KAHAID, with emphasis on the
blue partition.

Fig. 3: Clarification Question Generation Process

makes KAHAID to generate clarification questions along-
side diverse options in each round of dialogue, assisting
users in clarifying their under-specified API query intent.

3.2.1 Subgraph Search

KAHAID, with the help of the API behavior KG, can gen-
erate a subgraph for each query. This subgraph contains ex-
tensive API function knowledge, allowing multiple rounds
of human-AI dialogue from fourteen aspects (technically,
fourteen different types of functional relations) to clarify
ambiguous queries and recommend appropriate APIs.

Given an under-specified API query, KAHAID searches
for the top-N candidate APIs using established API search
models (such as DeepAPI [9], BIKER [8], and RreMA
[10]). The API search model is set up on the same data
source as our KG (Java SE 8 API document) for key-
word matching, enabling alignment of candidate APIs
with at least N API entities in our KG. It should be
noted that a single candidate API may correspond to
multiple API entities in our KG, as candidate API names
lack parameters while API entities in our KG include
them. For example, the candidate API “java.nio.file.paths.get”
can match multiple APIs with different arguments in
our KG, such as “java.nio.file.paths.get(java.net.URI)” and
“java.nio.file.paths.get(java.lang.string, java.lang.string)”.

KAHAID extends the matched APIs to gather more
query-related API entities by fetching API Has Event rela-
tions from the FUNCTION property of matched API entities
and searching our KG for entities with these relations.

Finally, KAHAID considers the retrieved API entities
and their functional relations in FUNCTION properties as a
query-related API behavior subgraph, similar to the exam-
ple in Fig. 1 (left). The functional relations are represented as
〈e1, r, e2〉, indicating a relation called r between API entities
e1 and e2. Note that the API Has Event relation is excluded

of the subgraph as it has been used to extend the API (as
mentioned above).

3.2.2 Clarification Question Generation

In this process, we use the subgraph built-in 3.2.1 to gener-
ate clarification questions and a variety of options for each
round of the dialogue process. For each functional relation
〈e1, r, e2〉 in the subgraph, e1 and r form a specific aspect
(a aspect that under-specified query needs to clarify), and
e2 is the option of that aspect. This means that we can
generate clarification questions and options by selecting the
best aspect from the subgraph.

To generate clarification questions (CQs) from the sub-
graph, we refer two types of CQ generation approaches:
the task extraction approach[18] and the decision tree-
based approach[19]. The task extraction approach identifies
grammatical roles from the comment and selects the most
frequent ones as aspects to clarify. The templates are then
created based on the aspects to generate the CQs. However,
this approach lacks guidance as it does not consider aspect
priorities. In contrast, the decision tree-based approach can
classify function aspects with uncertain options by estimat-
ing probabilities of candidate APIs[20], providing better
guidance. In our current work, we employ the decision
tree-based approach. This approach comprises four steps,
with the first three involving the construction of a complete
decision tree, and the fourth step entailing the generation of
CQs based on the decision tree.

Step 1: Organize each API and functional relation into
an attribute table. Constructing an attribute table is a piv-
otal step in the construction of a decision tree, where APIs
and functional relations are organized in a two-dimensional
format. The attribute table facilitates convenient comparison
of different aspects, aiding in the identification of the most
critical aspect that requires clarification in a query. We refer

7

to API entities and their functional relations as API{〈e1, r,
e2〉,...} (as shown in 3-a), which are then converted to the
attribute table with one API column and multiple aspect
columns. This process is depicted in the progression from
Fig. 3-a to b.

As shown in Fig. 3-b, the first column is API column,
which contains all API number in Fig.3-a. Columns after
first column are aspect columns. For a functional relation
〈e1, r, e2〉 in Fig.3-a, we use its aspect “e1#r” as the column
name and option “e2” as the column value. Note that if r in
〈e1, r, e2〉 is an Action Has Event relation, we use “action#Has
Event” directly as the column name (rather than “e1#r”). For
example, in Fig.3-a, the APIs enclosed in blue boxes all have
the same functional relationship 〈15, Has Event, 7824〉. We
use ”action#Has Event” (instead of ”15#Has Event”) as the
second column name in Fig.3-b.

Step 2: Select critical aspect based on the attribute table
and split the subgraph to get sub-datasets. When construct
a decision tree, it is necessary to the critical aspect(the first
line of aspect column) from the attribute table. A critical
aspect assists in minimizing the height of a decision tree,
resulting in improved efficiency in the question-answering
process. Two decision tree strategies, ID3 [21] and C4.5[22],
are available for selecting aspect. C4.5 employs information
gain ratio for aspect dialogue round selection, but increases
average dialogue rounds compared to ID3, which may not
expedite user intention clarification. In our current imple-
mentation, we use ID3 to generate the CQ by selecting the
aspect column with the highest information gain. Higher
information gain corresponds to more options or APIs as-
sociated with the question, which helps reduce dialogue
rounds and guide users to clarify their intentions quickly.

The information gain of the aspect column is calculated
by Eq.1, which is the difference between the information
entropy of all candidate APIs and the information entropy
of the current aspect column. Entropy measures the uncer-
tainty of a random variable and characterizes the impurity
of examples. Higher entropy indicates more information
content [21].

The information entropy of all candidate APIs is calcu-
lated by Eq.2 where m is the number of candidate APIs and
Pi is the likelihood that the i-th API appears in all candidate
APIs. The information entropy of current aspect column is
calculated by Eq.3, where k is the type of column values in
the aspect column, “API1j , ..., APImj” represents m APIs
associated with the j-th column value.

Gain(aspect) = I(API1, ..., APIm)− E(aspect) (1)

I(API1, ..., APIm) = −
m∑
i=1

Pi log2 Pi (2)

E(aspect) =
k∑

j=1

[
|API1j , ..., APImj |

|API|
×I(API1j , ..., APImj)]

(3)
Based on the calculation, we identify the aspect column

with the highest information gain from the attribute table.
We refer the aspect of this column as the current node in
the decision tree, with the different column values serving

as edges connecting to current node (including null values).
In order to generate child nodes for each edge, it‘s need

to partition the subgraph. We group API{〈e1, r, e2〉,...} with
the same column value together to form sub-datasets. For
example, the three API{〈e1, r, e2〉,...} enclosed in the blue
box in Graph A form a sub-dataset, which grouped together
based on the column value 7824. At this point, we have
completed the construction of one layer of nodes and edges
in the decision tree.

Step 3: Recursively repeat Step 1 and Step 2 to con-
struct a complete decision tree that supports dialogue. In
order to construct a complete decision tree, for each sub-
dataset, we repeat the Step 1 and Step 2 recursively to build
child nodes until the following stopping criteria are met. 1)
The sub-dataset only contains one API. 2) The sub-dataset
contains multiple APIs with identical functionalities. When
the stopping criteria are met, we refer all APIs in current
sub-dataset as the current node, which is set as a leaf node
in the decision tree. It’s worth noting that when building a
new attribute table, we remove the aspects that have already
been selected to prevent generating redundant clarification
questions.

Step 4: After building the decision tree, KAHAID
generates the human-AI dialogue process. Specifically, we
generate the CQ and diversity options by using the decision
tree’s current node and all of its edges. Based on different
aspect of the current node, CQ can be generated in the
following templates:

• action#Act Has Event: What do you want to do?
• object#Has Status: What kind of the {object} do you

want?
• object#Has Type: Which type of the {object} do you

want?
• event#Has Location: Where the {event} will be done?
• event#Has Direction: Where is the direction of
{event}?

• event#Has Manner: How would you prefer to
{event}?

• event#Has Extent: How far would you want to
{event}?

• event#Has Temporal: When do you have to {event}?
• event#Has Goal: Which object do you want to serve

by {event}?
• event#Has Purpose: Which purpose do you want to

satisfy by {event}?
• event#Has Result: What is the form of the results of
{event}?

• event#Has Constraint: Under which condition can
{event}?

Following the user’s selection of options, the decision
tree is pruned, leaving only the user-selected branch’s sub-
tree. If the sub-tree has only one node, the answer will
be recommended directly. Otherwise, a new round of CQ
and options will be generated. During the dialogue process,
users can manually stop generating new round of CQ and
options at any point. In such cases, we consider all APIs
included in the sub-tree as the recommend API sequence.

Fig. 3-c to d illustrates how CQs are generated for the
query ”get the current working directory?” based on the
decision tree. KAHAID generates two rounds of dialogue

8

to clarify events and objects separately. Two round of CQ
are generated by two node (action#Act Has Even, 7823#Has
Status), and options for CQ are generated by node‘s edge.

3.3 Result Extension and Interpretation

After multiple dialogue rounds, KAHAID would fur-
ther extend the result APIs and interpret all result APIs.
Specifically, KAHAID locates the corresponding API en-
tity in the sub-graph for each result API and searches
for the semantic relations (e.g., Function Similarity, Func-
tion Collaboration) that contain this API from KG. The
extended API is then the API corresponding to an-
other entity in these semantic relations. For example, in
Fig. 1 (left), the result API java.io.File.getAbsolutePath ex-
ists in a semantic relation 〈java.io.File.getAbsolutePath,
Function Similarity, java.io.File.getCanonicalPath〉, where
java.io.File.getCanonicalPath serves as the extended API. Note
that duplicate APIs, whether among the extended APIs or
with the result APIs, are removed. These extended APIs
enable users to be inspired to find new ways to solve
problems and meet their API needs more comprehensively.

Meanwhile, KAHAID provides API descriptions and
highlights keywords to make the result APIs more inter-
pretable. There are two types of highlighted keywords. The
first type includes semantic relation names between result
APIs and extended APIs, which explain how the result
APIs are related to each other. These keywords appear after
the extended API. For example, ”Function Similarity” ap-
pears after the extended API java.nio.file.Path.toAbsolutePath,
indicating that it implements functionality similar to API
java.io.File.getAbsolutePat. The second type of highlighted
keywords come from functional aspects with various op-
tions that were clarified during the dialogue process. KA-
HAID searches the decision tree for the path that includes
the API in question and other nodes and edges in between.
It then obtains keywords from this path and highlights
them in the API description. For example, if the query is
”How to get the current working directory in Java?” and
the API java.io.File.getAbsolutePat is included in the path,
KAHAID obtains keywords such as ”returns”, ”absolute”,
and ”path string” from this path and highlights them in the
API description. This result explanation helps increase user
trust in the result APIs and enables informed API selections.

4 EVALUATION DESIGN

4.1 Research Questions

To evaluate the performance of KAHAID, we conduct a
series of experiments to answer the following research ques-
tions:

RQ1: How Performance is KAHAID compare with Ex-
isting API Search Approaches [8], [23]

RQ2: How Performance is KAHAID compare with Ex-
isting Human-AI Dialogue Approach [23]

RQ3: How semantically diverse are the question options
generated during the Human-AI Dialogue?

RQ4: What factors can improve the dialogue efficiency?

4.2 API Behavior Knowledge Graph Building
We collect data from JAVA API documentation to construct
an API Behavior KG in order to evaluate KAHAID. First, we
download the JDK 1.8 API reference documentation 6 and
parse each API class’s web page to extract API methods and
their descriptions, yielding 30,200 API method-description
pairs for building a Java API dictionary.

Second, following the knowledge graph construction
method described in Section 3.1, we extract 48,420 entities
(which includes 25,020 API entities and 23,400 other enti-
ties such as Action, Event, Object, Object Constraint and
Event Constraint) and 89,160 relations from the 30,200 API
method-description pairs, and save 25,020 API descriptions.
Note that if an event entity cannot be extracted from a
description for each API method-description pair, we do
not treat this API method as an API entity and do not
save this description or any other entities extracted from
this description. For a more in-depth discussion, see Section
6’s threat analysis.

Finally, we group these extracted entities and relations
into an API Behavior KG, which was stored in Neo4j7.

4.3 Dataset
To comprehensively evaluate the performance of KAHAID,
we obtained two types of data from Stack Overflow (SO)
to gather experimental queries and ground-truth APIs. The
first type of data consists of queries paired with a single
ground-truth API for each query, allowing us to assess KA-
HAID’s ability to recommend the most appropriate API. The
second type of data comprises queries paired with multiple
ground-truth APIs, including the best one and related ones,
which enables us to evaluate KAHAID’s effectiveness in
knowledge expansion.

4.3.1 Dataset with Single ground-truth API
For dataset with single ground-truth API, we reuse SO data
from the state-of-the-art approach BIKER [8], which were
collected from the official data dump of SO by following
criteria: 1) the question is related to Java JDK programming,
2) the question should have a positive score, and 3) at
least 1 answer to the question contains API entities and the
answer’s score should be positive.

The APIs were extracted from the code snippets in mark-
down scripts of the accepted answers in SO. In a markdown
script, code snippets are wrapped by 〈code〉 tags. One can
use regular expressions to localize the code snippets and
further extract the APIs. BIKER also provided a test dataset
for evaluating its performance. The test data contains 413
questions along with their ground-truth APIs. We use the
title of these 413 questions as the query for evaluation. Since
the ground-truth APIs only have a single API, we refer it as
a best API.

Note that, BIKER’s test dataset mainly contains SO posts
with high quality, which cannot reflect the overall quality of
SO posts. Thus, we have also created a random test datasets
which contain randomly selected SO posts for removing
human bias (the same dataset creat manner has also been
used in the comparison of CLEAR and BIKER in CLEAR’s
paper [23]).

6. https://docs.oracle.com/javase/8/docs/api
7. https://neo4j.com/

9

https://docs.oracle.com/javase/8/docs/api
https://neo4j.com/

4.3.2 Dataset with Multiple ground-truth API
For dataset with Multiple ground-truth API, we manually
collect 60 API-related questions with multiple ground-truth
APIs from 60 SO posts following BIKER‘s criteria [8].

The questions posted on Stack Overflow typically re-
ceive answers and comments. To assess KAHAID’s knowl-
edge expansion ability, ground-truth APIs must include the
best API and extended APIs with seven semantic relations
to best API. These relations, Function Similarity, Function
Opposite, Function Replace, Function Collaboration, Logic
Constraint, Behavior Difference, and Efficiency Comparison,
are described in Section 3.1.3. Unlike BIKER, we consider
APIs from all positively-scored answers and comments, not
only from accepted answers. This is because the accepted
answer often only includes a single API, while non-accepted
answers and comments often provide more extended APIs.

To obtain the best API and extended APIs, we asked an
expert and two external annotators (two master students
familiar with Java but unaffiliated with this work) to review
all answers and comments in specific question posts. After a
30-minute training on classifying non-best API methods, the
two annotators reviewed the API methods separately. The
expert made the final decision if there was disagreement.
Finally, we obtained 60 queries and 298 ground-truth API
methods, including 60 best API methods and 238 extended
API methods with varying semantic relations.

4.3.3 Evaluation Datasets
In summary, we adopt three test datasets covering three
different scenarios, i.e., high-quality dataset with single
ground-truth API (i.e., BIKER’s test dataset), real-wold ran-
dom dataset with single ground-truth API, and 60 manual
SO dataset with multiple ground-truth API.

• BIKER test dataset: is the evaluation dataset of
BIKER, which contains 413 manually selected and
verified SO queries with API answers.

• Random test dataset: contains 1K random selected
SO queries with API answers from BIKER’s training
dataset.

• Multi-API SO test dataset: contains 60 manually se-
lected SO queries with multiple relevant APIs.

4.4 Baselines
We compared KAHAID with BIKER [8], CLEAR [23], ZaCQ
[18], which are three state-of-the-art API recommendation
techniques.

Baseline1 (BIKER) [8]: is an API search approach that
uses a word-embedding model to calculate the semantic
similarity between a query and each API description, re-
turning the top-N API methods with similarity scores. Ad-
ditionally, BIKER calculates the similarity score between the
given query and other queries on Stack Overflow, enabling
it to return similar queries and extend the given query with
other related queries. By doing so, BIKER is capable of
returning a broad range of API methods. Its source code
can be downloaded on Github8.

Baseline2 (CLEAR) [23]: is a API search approach based
on BERT sentence embedding and contrastive learning.

8. https://github.com/tkdsheep/BIKER-ASE2018

CLEAR selects a set of candidate Stack Overflow posts
based on BERT sentence embedding similarity and reranks
them using a BERT-based classification model to recom-
mend the top-N APIs. Two different models were trained
in CLEAR for recommending class-level APIs and method-
level APIs. Our evaluation in this work focuses solely on
the performance of the API recommendation at the method-
level model. Therefore, we solely utilize the method-level
model for our experiments. Its data and source code can be
downloaded on9.

Baseline3 (ZaCQ) [18]: is a source code search method
that re-ranks code snippets by interactively refining queries
with multiple rounds of clarifying questions. Following ref
[18], we select ZaCQ’s Top-3 code snippets after the first
round of question clarification, in which we collect all API
methods as the result API methods. Its data and source code
can be downloaded on Github10.

4.5 Performance Measures
Following existing studies [23], we use Mean reciprocal rank
(MRR) [24], Mean average precision (MAP) [25], Precision,
and Recall to evaluate the performance of API recommen-
dation approaches. MRR and MAP are the widely accepted
measurements for information retrieval. MRR measures the
effort needed to find the first correct answer in the recom-
mended list and MAP considers the ranks of all correct
answers. We also evaluate the performance with Precision
and Recall, which can be defined as follows:

Precision =
recommendedAPI ∩ ground− truthAPI

recommendedAPI
(4)

Recall =
recommendedAPI ∩ ground− truthAPI

ground− truthAPI
(5)

5 RESULT ANALYSIS
5.1 RQ1: How Performance is KAHAID compare with
the Existing API Search Approaches [8], [23]?
5.1.1 Method
We compared KAHAID with two existing API search base-
lines, BIKER [8] and CLEAR [23], on three different test
datasets (see section 4.3.3). As the authors of BIKER and
CLEAR have provided replication packages, we used these
to conduct experiments and compare the results.

KAHAID generates CQs with options for each dialogue
round, which are utilized to recommend different API se-
quences depending on the selected options. To simulate
user behavior, we device an option selection strategy based
on the assumption that the user always select the option
that leads to the best API for their query. This strategy
selects an option only if the resulting API sequence includes
the ground-truth’s best API; otherwise, KAHAID’s recom-
mended API sequence is considered empty. To conduct a
fair and objective comparison between KAHAID and the
baselines, we assess their top-5 API in recommended API
sequence for each query. We consider a API is correct if it is
the best API in the ground-truth APIs.

9. https://github.com/Moshiii/CLEAR-replication
10. https://github.com/Zeberhart/ZaCQ

10

https://github.com/tkdsheep/BIKER-ASE2018
https://github.com/Moshiii/CLEAR-replication
https://github.com/Zeberhart/ZaCQ

5.1.2 Result

TABLE 1: Performance Comparison of API Search Ap-
proach.

Dataset Metric BIKER CLEAR KAHAID

BIKER test dataset

MRR 0.614 0.755 0.610
MAP 0.143 0.765 0.503

Precision 0.249 0.550 0.693
Recall 0.714 0.764 0.853

Random test dataset

MRR 0.253 0.413 0.428
MAP 0.096 0.366 0.365

Precision 0.110 0.293 0.639
Recall 0.301 0.397 0.516

Multi-API SO
test dataset

MRR 0.359 0.523 0.769
MAP 0.219 0.243 0.794

Precision 0.152 0.353 0.839
Recall 0.733 0.251 0.867

Table 1 shows the result of KAHAID compared with
the other baselines. For dataset with single ground-truth
API (BIKER test dataset and Random test dataset), overall
KAHAID outperforms both BIKER and CLEAR. Especially
on the BIKER test data, KAHAID achieved a high recall
of 0.853, which is an improvement of 19.5% and 11.6%
over BIKER and CLEAR, respectively. This indicates that
KAHAID can accurately recommend the most appropriate
API for 85.3% of query. Note that, Both BIKER and CLEAR
have the same performance reported in this work and
CLEAR‘s paper. However, different from the comparison
reported in BIKER’s paper, the performance of BIKER and
CLEAR was worse, especially on the Random test data.
The four metrics (MRR, MAP, Precision, Recall) of BIKER
are all below 0.301, and the four metrics of CLEAR are all
below 0.413. This is because we used the same random
method to get dataset as the CLEAR paper, but it may
not coincide with the random test dataset in CLEAR‘s
paper. Additionally, BIKER and CLEAR focus on accepted
answers, which are not always the best APIs. On the
contrary, KAHAID guides users to clarify their intentions
through dialogue and accurately recommend APIs that
match their intentions, not just limited to accepted answers.
For example, given the question “Getting the name of t he
currently executing method 11”, KAHAID recommends the
method java.lang.Class.getEnclosingMethod() as the best API,
which is present in the comment section of the highest-
scoring answer rather than the accepted answer. Instead,
both BIKER and CLEAR recommend the accepted answer,
i.e., java.lang.Thread.getStackTrace(), which has a flaw as it
may occasionally return a zero-length array, as described
in the API documentation12.

For the Muti-API SO test data, KAHAID outperforms
BIKER (by 114.2%, 262.6%, 452%, and 18.3% improvement)
and CLEAR (by 47%, 226.7%, 137.7%, and 245.4% improve-
ment) on all four evaluation metrics (MRR, MAP, Preci-
sion, Recall). This indicates that compared to existing API
search approaches, KAHAID has strong knowledge expan-
sion ability. Meanwhile, we noticed that BIKER achieves a
recall of 0.733, 192% higher than CLEAR and only 15.5%
lower than KAHAID. This is because BIKER’s method of
calculating similarity between SO posts and APIs is more

11. https://stackoverflow.com/questions/442747/
12. https://docs.oracle.com/en/java/javase/11/docs/api/java.base-

/java/lang/Thread.html#getStackTrace()

tolerant to variations in questions compared to CLEAR.
However, we do not consider this as a form of knowledge
expansion, as the API sequence recommended by BIKER
contains many APIs that are not related to the query, which
is also the reason for its low precision.

In comparison to existing API search methods BIKER and
CLEAR, the human-AI dialogue method KAHAID has a strong
ability for API recommendation and knowledge extension.

5.2 RQ2: How Performance is KAHAID compare with
Existing Human-AI Dialogue Approach [23]

5.2.1 Method
Real-world queries often have multiple correct answers that
are semantically related, such as through Function Similar-
ity or Function Collaboration. To address this, human-AI di-
alogue approaches recommend different APIs from various
aspects, while also using knowledge expansion to identify
APIs with semantic relations. To compare KAHAID with the
existing human-AI dialogue approach, ZaCQ, we utilize the
Multi-API SO test dataset described in section 4.3.2. This
dataset includes both the best API and other APIs with
semantic relations to the best API. We employ the same
option selection strategy as mentioned in section 5.1.1 to
simulate user behavior for both KAHAID and ZaCQ. Then,
we calculate metrics (MRR, MAP, Precision, Recall) for the
API sequences recommended by KAHAID and ZaCQ from
the first round of dialogue to the third. This enables us to
evaluate and compare the performance of both human-AI
dialogue approaches in recommending semantically related
APIs.

5.2.2 Result

TABLE 2: Performance Comparison of query clarification
Approach.

Metrics Approaches round 1 round 2 round 3

MRR KAHAID 0.506 0.769 0.815
ZaCQ 0.524 0.542 0.574

MAP KAHAID 0.508 0.794 0.845
ZaCQ 0.521 0.576 0.582

Precision KAHAID 0.654 0.839 0.842
ZaCQ 0.500 0.615 0.615

Recall KAHAID 0.721 0.867 0.875
ZaCQ 0.633 0.628 0.638

Table 1 shows the result of KAHAID compared with
ZaCQ. KAHAID demonstrated a significant improvement
from the first to the second round of dialogue, with increases
of 52%, 56.3%, 28.2%, and 21.8% in MRR, MAP, Precision,
and Recall, respectively. The third round showed the highest
values with MRR, MAP, Precision, and Recall of 0.815, 0.845,
0.842, and 0.875, which ourperfors the ZaCQ by 42%, 45.2%,
36.9%, and 37.1%. This demonstrates that KAHAID has a
strong capability for knowledge extension and can meet the
diverse needs of developers. To our surprise, ZaCQ has a
poor knowledge extension, as indicated by its low MRR
and MAP scores, which did not exceed 0.582. Additionally,
its Precision and Recall scores were no higher than 0.638.
This is because ZaCQ is merely a tool for re-ranking initial
search results through multiple rounds of clarifying conver-
sations. If the best API is not found in the initial search

11

https://stackoverflow.com/questions/442747/
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.html#getStackTrace()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.html#getStackTrace()

results, ZaCQ fails to obtain the best API no matter how
many rounds of re-ranking are performed. KAHAID, on the
other hand, can obtain the best API via semantic relation
extension even if it is not found in the initial search results.
For example, Given a query “How do I remove repeated
elements from ArrayList?”, ZaCQ cannot recommend the
best API “java.util.stream.Stream.distinct”, either in the initial
results or in any subsequent rounds of re-ranked results.
Given the same query, KAHAID could not find the best API
in the initial results either. However, by extending the API
“java.util.stream.Stream.collect” in the initial results, the best
API can be found in the extended APIs.

In comparison to existing human-AI dialogue baseline ZaCQ,
KAHAID has a strong ability for knowledge extension; it works
well even when faced with an uncertain and under-specified
API query.

5.3 RQ3: How Semantically Diverse are the Question
Options Generated during the Human-AI Dialogue?

A variety of options can provide users with additional
references and inspiration. In this section, we measure the
diversity of CQ options in each human-AI dialogue round.

5.3.1 Method
For 60 experimental queries in the test set, we use KAHAID
to generate multiple rounds of human-AI dialogue for each
query. Each round of dialogue includes a clarification ques-
tion and question options. We select every option and allow
KAHAID to generate different clarification questions and
question options for the next round of dialogue depending
on the option selected. In this way, we can explore all
possible selection path.

We invite two participants (two master students who are
unaffiliated with this work but are familiar with Java) to
rate the semantic diversity between two options from 0 to
1. Score 0 indicates that there is no diversity and that the
semantics of the two options are extremely similar. Score
0.5 indicates that the two options have moderate diversity
and roughly similar semantics, for example, the semantics
of option B is just one of many semantics of option A.
Score 1 denotes a high degree of diversity, indicating that
the semantics of the two options are completely different.

There are four types of options available: Event, Ob-
ject, Object Constraint, and Event Constraint. The types of
options for the same clarification question are the same.
We score the Object, Object Constraint, or Event Constraint
options according to the semantic diversity scoring criteria
described above. We don‘t judge diversity solely on lexical
differences, as some options have different words but have
same semantics (e.g., “path” and “path object”). That is also
why we manually assess diversity.

The Event option consists of verbs and objects. The
diversity score between two such options is rated based on
two conditions: the verbs in options are diverse, and the two
objects in options are diverse. If two conditions are met, the
diversity score is 1; if neither condition is met, the score is
0; and if only one condition is met, the score is 0.5. We score
semantic diversity of objects in the same way that we score
Object options. To score the diversity of verbs, we refer to
the 87 verb classes summarized by Xie et al [10] who group
verbs that have the same function into a single class. Two

Fig. 4: Diversity of Question Options in Each Round

verbs are diverse if they do not belong to the same class in
function.

We calculate the semantic diversity of a related option
in a clarification question by averaging the Semantic di-
versity of each related option and the other options in the
clarification question. Then, for each clarification question
in a dialogue round, we average the semantic diversity of
question options to obtain the Semantic diversity of question
options in this dialogue round. To obtain the diversity of
question options in the entire query dialogue, we average
the diversity of question options across multiple rounds of
human-AI dialogue. Finally, we compute the overall diver-
sity of question options in human-AI dialogue by averaging
the diversity of question options across 60 query dialogues.

5.3.2 Result

Fig. 4 depicts, around the 60 questions, the diversity of
question options generated in each round of human-AI
dialogue (such as 0.751 in the first round, 0.719 in the second
round, and 0.761 in the third round), as well as the overall
diversity of question options for the 60 questions (0.749)
. Note that not every human-AI dialogue includes three
dialogue rounds; some have fewer than three rounds, while
others have more than three rounds. It is only counted to
the rounds that the dialogue should have for less than three
rounds, and it does not participate in the average calculation
in the subsequent round. When there are more than three
rounds, we only count up to the third round.

Diverse question options may encourage divergent
thinking and help developers clarify what they really want..
As shown in Fig. 1, in the second CQ round, two different
options (path string, path object) are generated, causing the
user to realize that the initial question “How to get the cur-
rent working directory?” is very vague and that he should
rewrite the initial question more specifically into “How to
get the path object of current working directory?” using the
knowledge “path object” obtained from the options.

During the dialogue process, KAHAID can generate a wide
variety of options for each clarification question, encouraging
divergent thinking and assisting developers in clarifying what
he truly desires.

5.4 RQ4: What Factors can Improve Human-AI Dia-
logue Efficiency?

Human-AI dialogue efficiency is determined by the number
of its rounds, which is affected by both external and internal
factors.

12

5.4.1 Method
The uncertainty of the API query is the external factor. The
more uncertain the query, the more rounds of dialogue are
required to gradually clarify the query. To confirm this, we
create three types of uncertain and under-specified queries.
These queries are made up of four syntactic roles (verb,
direct object, preposition, and preposition object) that are
derived from the 25,020 API descriptions mentioned in the
KG construction process.

These three types of queries are listed as follows:
(1) 18,683 “V-DO” queries, each with a verb (V) and a di-

rect object (DO). For example, “obtain (V) data time (DO).”
(2) 6,543 “V-PO” queries, each with a verb (V), a preposition
and a preposition object (PO). For example, “obtain (V) in
chronology (PO).” (3) 6,132 “V-DO-PO” queries, each with a
verb, a direct object, a preposition and a preposition object.
For example, “obtain (V) date time (DO) in chronology
(PO).” This type of queries are less uncertain than the “V-
DO” queries and “V-PO” queries.

In addition, we also adopt the real-world queries, i.e., 60
queries collect from SO as depict in section 4.3.2.

The decision tree strategy is the internal factor, because
the underlying decision tree determines each round of
questions and options, as well as what the next round of
questions ask. We employ these two decision tree strategies
(ID3 and C4.5) to support human-AI dialogue around those
three types of queries and compute the average rounds of
human-AI dialogue (HAR) by Eq. 6.

HAR =

∑n
i=0 |Leafi| ×Depthi

|API|
(6)

where |Leafi| refers to the number of APIs contained in the
i-th leaf node of this decision tree; Depthi refers to the depth
of the i-th leaf node; and |API| refers to the number of APIs
contained in all leaf nodes of a decision tree. In the decision
tree, because the dialogue ends when receiving any API
from the i-th leaf node, the dialogue clarification questions
and options are generated based on non-leaf nodes (and
their edges) from the root node to the leaf node. As a result,
the depth of a leaf node Depthi in the decision tree can be
used to represent the number of dialogue rounds required
to obtain any API in the leaf node. Specifically, we use∑n

i=0 |Leafi| × Depthi to compute the sum of the number
of human-AI dialogue rounds required to obtain each API
in a decision tree, and then make it divide the number of
all APIs in the decision tree to calculate HAR. The fewer
rounds of dialogue there are on average, the more efficient
the human-AI dialogue.

5.4.2 Result
As shown in Fig. 5-a, regardless of the query, ID3’s HAR
is always lower than C4.5’s and is no more than 3, which
suggests that ID3 is more efficient than C4.5. This is because
C4.5 calculates an information gain ratio based on ID3 and
then selects the aspect dialogue round. This type of CQ
has fewer options, which reduces the difficulty of making
decisions per dialogue round. However, it increases the av-
erage number of dialogue rounds, which is not conducive to
guiding users to quickly clarify their intentions. As a result,
we do not use C4.5. Furthermore, when compared with “V-
DO-PO” queries, “V-DO” queries and “V-PO” queries have

Fig. 5: Internal and External Factors Influencing the Human-
AI dialogue Efficiency

greater uncertainty, resulting in a much larger proportion of
HAR greater than 0, as shown in Fig. 5-b. This shows that
the more uncertain the API query, the more dialogue rounds
are required. It also implies that our method can assist users
in clarifying questions through multiple dialogue rounds.

The ID3 decision tree strategy improves the efficiency of ques-
tion clarification and reduces the number of human-AI dialogue
rounds.

6 USER STUDY
6.1 Study Design

6.1.1 Test Set
8 questions and their ground-truth API methods are chosen
at random from the test set described in Section 4.3.2 for the
user study, as shown in Table 3.

6.1.2 Participants
We recruited 12 participants from both university and IT
companies. Six of them (6 graduate students) are from the
first author’s university, and six of them are from two IT
companies. All of them have Java developing experience in
either commercial or open source projects, and the years of
their developing experience vary from 1 year to 5 years,
with an average of 2.9 years.

Through a pre-study survey, we ensure that none of
these students had encountered the experimental questions
before. We divided the 12 participants into two groups, with
each group containing three graduate students and three
participants from IT companies. GroupZ used ZaCQ and
GroupK used KAHAID. Each group member was asked to
answer 8 questions using the specific tool.

6.1.3 Study Setup
We gave all group members a 20-minute training session to
teach them how to use the specific tool because they were
expected to use it to answer 8 questions.

Given the goal of this user study is to investigate the
user experience with the tool rather than whether the user
can use the tool to obtain the ground-truth API method,
we set up the following scenario: If the result API is the
ground-truth API method, the tool tells the user that he
succeeded and allows the user to answer the next question;
otherwise, the tool encourages the user to interact with the
tool again until the ground-truth API method is found. If
the user cannot find the ground-truth API method within 5
minutes, he will be informed that he has failed and will be
permitted to answer the next question.

13

TABLE 3: Eight Real Queries for User Study

PID StackOverflow ID Query Best API
Q1 153724 How to round a number to n decimal places in Java? java.text.DecimalFormat.format
Q2 4871051 How to get the current working directory in Java? java.io.File.getAbsolutePath
Q3 5868369 How can I read a large text file line by line using Java? java.io.BufferedReader.readLine
Q4 2860943 How can I hash a password in Java? javax.crypto.SecretKeyFactory.generateSecret
Q5 1069066 Convert Date to String? java.lang.Thread.getStackTrace
Q6 428918 How can I increment a date by one day in Java? java.time.LocalDate.plusDays
Q7 35842 How can a Java program get its own process ID? java.lang.management.ManagementFactory.getRuntimeMXBean
Q8 9481865 Getting the IP address of the current machine using Java? java.net.InetAddress.getLocalHost

Note that the percentages of people who scored 2, 1, and 0 are represented by yellow, blue, and green, respectively.
Gk refers to the group using KAHAID; Gz refers to the group using ZaCQ.

Fig. 6: The Proportion of Ratings Given to Each of the Six Indicators.

While answering 8 questions with the tool, we ask each
group member to rate the process of answering each ques-
tion in terms of the following 6 indicators:

• Syntax, which measures the syntactic correctness of
the generated clarification questions.

• Logic, which assesses the logical correctness of the
generated clarification questions.

• Relevance, which measures the relationship between
the generated clarification questions and the query.

• Inspiration, which assesses how well the clarification
question options generated enlighten the user.

• Extensibility, which measures how well the extended
API meets the query.

• Interpretability, which measures how well the re-
sulting API is understood in relation to each other
and to the query based on API descriptions and
highlighted keywords in these descriptions.Note that
only GroupK are required to score this indicator
because only KAHAID can explain why the resulting
API was found.

Each of these indicators has a score between 0 and 2, with
0 indicating dissatisfaction, 1 indicating satisfaction, and 2
indicating extreme satisfaction. Finally, we ask each group
member to write down their feedback, which include both
advantages and disadvantages.

6.2 Participants’ Feedback
Both positive and negative feedback about KAHAID are
posted, respectively.

Advantages:
• The majority of clarification questions were syntacti-

cally and logically correct, as well as closely related
to queries. They were extremely helpful in clarifying
my query requirements.

• I particularly enjoyed the extended APIs because
they could teach me new things. The API with the
efficiency comparison, in particular, surprised me by
responding to the query more quickly.

• Various options presented during the QA process
deeply inspired me to solve problems in previously
unknown ways.

• These API descriptions and highlighted API key-
words were useful. They explained how APIs related
to queries and what APIs could do, giving me more
confidence in my final decision.

Disadvantages:
• Some clarifying questions, while grammatically and

logically correct, are not expressed naturally. This
problem adds some comprehension time to the ques-
tions.

• The presentation of result APIs is a little perplexing.
The layout is clumsy, especially when showing mul-
tiple result APIs at once, which makes my experience
unpleasant.

14

6.3 Indicator Analysis

We collected each group member’s rating results on differ-
ent indicator, and plotted them in Fig 6. This figure shows
that Gk outperforms GZ across the indicators. Although
more than 90% of Gk and GZ gave Syntax, Logic, and
Relevance scores greater than 0, the percentage of Gk with a
score of 2 was higher than GZ (56.3% vs. 41.67%, 54.17%
vs. 47.92%, 50% vs. 33.33%). In terms of Inspiration and
Extensibility, the Gk and GZ score results are significantly
different. Compared to ZaCQ, on scores of 1 and 2, KAHAID
improves by 20.83% Inspiration and by 12.5% Extensibility.
Through analyzing the options participants selected during
human-AI dialogue process as well as the result API they
obtained, we also have the following findings:

First, participants prefer options that inspire them to
think of new ways to answer the questions. For example,
Gk assigned a higher Inspiration score to Q2. This illustrates
that the options generated by KAHAID are more illuminat-
ing than those generated by ZaCQ. Specifically, ZaCQ gen-
erated a clarification question for Q2: “Are you interested
in getting the current working directory for the Default
File System?” with only two options “Yes” or “No.” As a
result, Gz were not inspired beyond the “default file sys-
tem” strategy. In contrast, Gk were inspired by the diverse
options generated by KAHAID in the first round (“return
filesystem”, “return path” and “converting path string to
path Object”). Gk discovered that, in addition to “return
filesystem”, they could get the current working directory
by “returning path” and “converting path string to path
Object”. KAHAID, in particular, employs the “path object”
option to encourage Gk to obtain the current working path
via the Path Object. Finally, 83.33% of Gk participants chose
this option and assigned a score of 2 to Q2.

Second, participants prefer the extended APIs that re-
mind them of implicit knowledge they were previously
unaware of. The Extensibility score for these extended APIs
was frequently higher. For Q5, for example, KAHAID rec-
ommended an extended API “java.text.DateFormat.format”,
which has a Efficiency Comparison relation with the best
API “java.lang.String.format”. This extended API provides
Gk with a faster response to the query, which most par-
ticipants were previously unaware of. As a result, 75% of
Gk gave Q5 a Extensibility score of 2 and 25% gave it a
score of 1. Although the APIs suggested by ZaCQ can also
be used to answer this query, they are all well-known to
GZ participants. Finally, all of the Gz gave Q5 Extensibility
scores of 1.

Third, if the API method is explainable, participants
can find the best API method more easily or with
greater confidence. Q7, for example, received a 100% Inter-
pretability score of 2 from Gk. Both KAHAID and ZaCQ
can find its ground-truth API method “ManagementFac-
tory.getRuntimeMXBean” for Q7. However, due to the API’s
lack of interpretability, half of Gz could not associate it with
the query simply by its name. In contrast, Gk can has access
to the API method interpretation, which includes the API
descriptions and highlighted API keywords. Following that,
Gk understands how this API method relates to the query
through the keyword (“return managed bean” and “runtime
system”), and what it is capable of according to the API

description. Eventually, Gk found this API method and was
convinced that it was the best API method.

KAHAID can provide a good user experience based on user
ratings and feedback in six areas: syntax, logic, relevance,
inspiration, extensibility, and interpretability.

7 THREATS TO VALIDITY
One intrinsic threat is the use of the AllenNLP, a general-
purpose natural language processing library. AllenNLP is
used to parse sentences in both the semantic and syntactic
analyses of the API function descriptions. However, none
of the tools, including AllenNLP, can perfectly parse large
amounts of textual data. Furthermore, AllenNLP is not
specifically designed to parse API function descriptions
containing code elements, incomplete sentences, or common
syntax errors. To mitigate this threat, we devise heuristics
for adapting AllenNLP to parsing API function descriptions.
AllenNLP, for example, has trouble parsing API descriptions
that frequently begin with a verb. As a result, we devise
a heuristic rule: such incomplete sentences are prefixed
with “This method”, which aids AllenNLP in parsing the
sentence components. For another example, the content in
parentheses is useless, which affects AllenNLP’s ability to
parse the sentence. As a result, we device a heuristic rule
that automatically removes the content in parentheses in
the sentence, improving AllenNLP’s ability to parse the
sentence.

One external threat is the generality of our API behavior
KG. Because we built it entirely from official Java API
documentation, the KG cannot play a role in a broader
domain, such as the domain of other languages. In the
future, we plan to expand KG with additional programming
language documentation, allowing it to handle a broader
range of programming issues.

8 RELATED WORK
API search refers to the process of obtaining APIs related
to a search query using various modeling techniques [26]
such as information retrieval models [27], machine learning
models, and deep learning models [28], [8], [29]. If the search
query is too broad, these search models are unlikely to find
the relevant APIs. To make the query more specific, many
query expansion techniques have been proposed, such as
expanding query words with relevant software artifacts
from official API documents [30], [31], code changes [32],
[33], [34], [35], or Stack Overflow posts [31], [36], [37], [38].
While this enables a more specific query and the discovery
of the most relevant API, it lacks interpretation and exten-
sibility, making it difficult for developers to interpret search
results and preventing them from discovering potentially
useful APIs. Furthermore, current API search research is
still a long way from social-technical information seeking on
online forums [11], where pragmatic API needs suggestive,
explainable, and extensible API recommendation, such as
exploring alternative or better solutions, and discovering
previously unknown API knowledge [1], [2].

To meet practical API needs, we propose KAHAID with
intent clarification, result interpretation, and extension capa-
bilities. It differs from current API search research in three
ways. 1) In terms of enlightenment, KAHAID interacts with

15

the developer to clarify actions, objects, or constraints until
it finds some APIs. This may motivate him to seek a better
solution or to determine his true desires and rewrite the
initial vague question, which is not supported by current
query expansion methods. Even though ZaCQ [18] is a
conversational search method, the various aspects of the
clarification questions it generates are limited to only the
syntactic analysis for the tasks associated with the search
results. In contrast, the diverse options for the clarification
questions generated by KAHAID are derived from the API
behavior knowledge graph, which contains rich API actions,
objects, constraints, and various API semantic relations.
Furthermore, ZaCQ is merely a tool for re-ranking the initial
search results. If the initial search results do not contain
the correct API, no matter how many QAs the developer
runs, there is no way to find the correct API. Under such
conditions, KAHAID, on the other hand, can use KG to
extend the correct API by following the relationships be-
tween APIs. 2) In terms of interpretation, KAHAID displays
the discovered APIs along with a concise explanation of
why these APIs are recommended and how they relate
to the clarified query. Specifically, KAHAID displays the
API’s functionality description and highlights the keywords
it uses for clarification, as well as the relations between
the extend APIs and the most relevant API. 3) In terms of
extensibility, KAHAID provides a variety of APIs, including
directly relevant APIs and extended APIs, based on the
knowledge graph’s rich API semantic relations.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose KAHAID as an initial attempt
to combine the immediate responsiveness of API search
technologies with the interaction, clarification, explanation,
and extensibility capability of social-technical information
seeking. The systematic evaluation confirms that KAHAID
implements an illuminating, interpretable, and extensible
exploratory query process.

In the future, in addition to Java SDK APIs, we will
implement KAHAID for more APIs, such as Python APIs,
Ruby APIs and Go APIs. Furthermore, if KAHAID can teach
a user to search an API via Human-KG dialog, we may be
able to teach the LLM (Large pre-trained Language Model)
[39], [40] to adapt the specific downstream task via LLM-KG
dialog. 〈abThis will make KGQA (Knowledge Graph-based
Question Answering) more open and flexible.

ACKNOWLEDGEMENTS

The work is partly supported by the National Natural
Science Foundation of China under Grant (Nos. 61902162,
62262031), the Natural Science Foundation of Jiangxi
Province (20202BAB202015), and the Graduate Innovative
Special Fund Projects of Jiangxi Province(YC2021-S308,
YC2022-s258).

REFERENCES

[1] X. Ren, J. Sun, Z. Xing, X. Xia, and J. Sun, “Demystify official
api usage directives with crowdsourced api misuse scenarios,
erroneous code examples and patches,” 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pp. 925–936,
2020.

[2] Z. Eberhart and C. McMillan, “Dialogue management for inter-
active api search,” 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 274–285, 2021.

[3] S. Haiduc and A. Marcus, “On the effect of the query in ir-
based concept location,” 2011 IEEE 19th International Conference
on Program Comprehension, pp. 234–237, 2011.

[4] F. Thung, S. Wang, D. Lo, and J. L. Lawall, “Automatic recommen-
dation of api methods from feature requests,” 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 290–300, 2013.

[5] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api
recommendation using crowdsourced knowledge,” 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, pp. 349–359, 2016.

[6] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in NIPS, 2013.

[7] X. Ye, H. Shen, X. Ma, R. C. Bunescu, and C. Liu, “From word
embeddings to document similarities for improved information
retrieval in software engineering,” 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE), pp. 404–415, 2016.

[8] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge
gap,” 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 293–304, 2018.

[9] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,”
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016.

[10] W. Xie, X. Peng, M. Liu, C. Treude, Z. Xing, X. Zhang, and
W. Zhao, “Api method recommendation via explicit matching
of functionality verb phrases,” Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020.

[11] H. Zhang, S. Wang, T.-H. P. Chen, and A. E. Hassan, “Reading
answers on stack overflow: Not enough!” IEEE Transactions on
Software Engineering, vol. 47, pp. 2520–2533, 2021.

[12] X. Ren, Z. Xing, X. Xia, G. Li, and J. Sun, “Discovering, explaining
and summarizing controversial discussions in community q&a
sites,” 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 151–162, 2019.

[13] M. Liu, X. Peng, A. Marcus, S. Xing, C. Treude, and C. Zhao, “Api-
related developer information needs in stack overflow,” IEEE
Transactions on Software Engineering, 2021.

[14] Y. Liu, M. Liu, X. Peng, C. Treude, Z. Xing, and X. Zhang, “Gen-
erating concept based api element comparison using a knowledge
graph,” 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 834–845, 2020.

[15] C. Bonial, O. Babko-Malaya, J. D. Choi, and J. D. Hwang, “Prop-
bank annotation guidelines,” 2010.

[16] Q. Huang, Z. Yuan, Z. Xing, Z. Zuo, C. Wang, and X. Xia,
“1+1¿2: Programming know-what and know-how knowledge fu-
sion, semantic enrichment and coherent application,” ArXiv, vol.
abs/2207.05560, 2022.

[17] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F.
Liu, M. E. Peters, M. Schmitz, and L. Zettlemoyer, “Allennlp: A
deep semantic natural language processing platform,” ArXiv, vol.
abs/1803.07640, 2018.

[18] Z. Eberhart and C. McMillan, “Generating clarifying questions for
query refinement in source code search,” in SANER, 2022.

[19] T. Castle-Green, S. Reeves, J. E. Fischer, and B. Koleva, “Decision
trees as sociotechnical objects in chatbot design,” Proceedings of the
2nd Conference on Conversational User Interfaces, 2020.

[20] B. Hssina, A. Merbouha, H. Ezzikouri, and M. Erritali, “A com-
parative study of decision tree id3 and c4.5,” International Journal
of Advanced Computer Science and Applications, vol. 4, 2014.

[21] J. R. Quinlan, “Induction of decision trees,” Machine Learning,
vol. 1, pp. 81–106, 2004.

[22] J. Ross Quinlan, “C4.5: Programs for machine learning,” 1992.
[23] M. Wei, N. S. Harzevili, Y. Huang, J. Wang, and S. Wang, “Clear:

Contrastive learning for api recommendation,” 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE), pp.
376–387, 2022.

[24] D. R. Radev, H. Qi, H. Wu, and W. Fan, “Evaluating web-based
question answering systems,” in International Conference on Lan-
guage Resources and Evaluation, 2002.

[25] M. Sanderson, “Christopher d. manning, prabhakar raghavan,
hinrich schütze, introduction to information retrieval, cambridge
university press 2008. isbn-13 978-0-521-86571-5, xxi + 482 pages,”
Natural Language Engineering, vol. 16, pp. 100 – 103, 2010.

16

[26] C. Liu, X. Xia, D. Lo, C. Gao, X. Yang, and J. C. Grundy, “Op-
portunities and challenges in code search tools,” ACM Computing
Surveys (CSUR), vol. 54, pp. 1 – 40, 2022.

[27] H. C. Wu, R. W. P. Luk, K.-F. Wong, and K.-L. Kwok, “Interpreting
tf-idf term weights as making relevance decisions,” ACM Trans.
Inf. Syst., vol. 26, pp. 13:1–13:37, 2008.

[28] Q. Huang, A. Qiu, M. Zhong, and Y. Wang, “A code-description
representation learning model based on attention,” 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 447–455, 2020.

[29] F. Cai, C. Wang, Q. Huang, Z. Zuo, and Y. Liao, “Search for
compatible source code,” Int. J. Softw. Eng. Knowl. Eng., vol. 31,
pp. 477–502, 2021.

[30] F. Lv, H. Zhang, J.-G. Lou, S. Wang, D. Zhang, and J. Zhao,
“Codehow: Effective code search based on api understanding and
extended boolean model (e),” 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 260–270,
2015.

[31] G. Hu, M. Peng, Y. Zhang, Q. Xie, W. GAO, and M. Yuan,
“Unsupervised software repositories mining and its application
to code search,” Software: Practice and Experience, vol. 50, pp. 299 –
322, 2020.

[32] Q. Huang and G. Wu, “Enhance code search via reformulating
queries with evolving contexts,” Automated Software Engineering,
vol. 26, pp. 705 – 732, 2019.

[33] Q. Huang and H. Wu, “Qe-integrating framework based on github
knowledge and svm ranking,” Science China Information Sciences,
vol. 62, pp. 1–16, 2019.

[34] Q. Huang, Y. Yang, and M. Cheng, “Deep learning the semantics
of change sequences for query expansion,” Software: Practice and
Experience, vol. 49, pp. 1600 – 1617, 2019.

[35] Q. Huang, Y. Yang, X. Zhan, H. Wan, and G. Wu, “Query expan-
sion based on statistical learning from code changes,” Software:
Practice and Experience, vol. 48, pp. 1333 – 1351, 2018.

[36] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion
based on crowd knowledge for code search,” IEEE Transactions on
Services Computing, vol. 9, pp. 771–783, 2016.

[37] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and
Y. L. Traon, “Augmenting and structuring user queries to support
efficient free-form code search,” Empirical Software Engineering,
vol. 23, pp. 2622–2654, 2018.

[38] F. Zhang, H. Niu, I. Keivanloo, and Y. Zou, “Expanding queries
for code search using semantically related api class-names,” IEEE
Transactions on Software Engineering, vol. 44, pp. 1070–1082, 2018.

[39] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman,
J. Hilton, F. Kelton, L. E. Miller, M. Simens, A. Askell, P. Welinder,
P. F. Christiano, J. Leike, and R. J. Lowe, “Training language
models to follow instructions with human feedback,” ArXiv, vol.
abs/2203.02155, 2022.

[40] I. Solaiman and C. Dennison, “Process for adapting language mod-
els to society (palms) with values-targeted datasets,” in NeurIPS,
2021.

QING HUANG received the M.S degree
in computer application and technology
from Nanchang University, in 2009, and
the PH.D. degree in computer software
and theory from Wuhan University, in
2018. He is currently an Assistant Pro-
fessor with the School of Computer and

Information Engineering, Jiangxi Normal University, China.
His research interests include information security, software
engineering and knowledge graph.

Zishuai Li is a second-year graduate
student in the School of Computer and
Information Engineering, Jiangxi Nor-
mal University, China. His research in-
terests are software engineering, human-
computer interaction and knowledge
graph.

Zhenchang Xing is a Senior Research
Scientist with Data61, CSIRO, Eveleigh,
NSW, Australia. In addition, he is an As-
sociate Professor in the Research School
of Computer Science, Australian Na-
tional University. Previously, he was
an Assistant Professor in the School of

Computer Science and Engineering, Nanyang Technological
University, Singapore, from 2012-2016. His main research
areas are software engineering, applied data analytics, and
human-computer interaction.

ZHENGKANG ZUO received the Ph.D.
degree in computer science and tech-
nology from the Chinese Academy of
Sciences (CAS), Beijing, China. He is cur-
rently a Associate Professor and deputy
director of the Computer Science and
Technology Department of Jiangxi Nor-
mal University, Nanchang, China. His
main research interests include software

formal methods, generic programming, etc.

Xin Peng is a professor with the School
of Computer Science, Fudan Univer-
sity, China. His research interests in-
clude data-driven intelligent software
development, cloud-native software and
AIOps, and software engineering for AI
and cyber-physical-social systems. He
was the recipient of the ICSM 2011 Best
Paper Award, the ACM SIGSOFT Dis-

tinguished Paper Award at ASE 2018, the IEEE TCSE Dis-
tinguished Paper Awards at ICSME 2018,2019,2020, and
IEEE Transactions on Software Engineering 2018 Best Paper
Award.

Xiwei Xu is a Senior Research Scientist
with Architecture& Analytics Platforms
Team, Data61, CSIRO. She is also a Con-
joint Lecturer with UNSW. She started
working on blockchain since 2015. She
is doing research on blockchain from
software architecture perspective, for ex-
ample, tradeoff analysis, and decision
making and evaluation framework. Her
main research interest is software ar-

chitecture. She also does research in the areas of service
computing, business process, and cloud computing and
dependability.

Qinghua Lu is a Senior Research Scien-
tist with Data61, CSIRO, Eveleigh, NSW,
Australia. Before joining Data61, she was
an Associate professor at China Univer-
sity of Petroleum, and she worked as a
researcher at National Information and
Communications Technology Australia.
She has published more than 100 aca-

demic papers in international journals and conferences.
Her research interests include the software architecture,
blockchain, software engineering for AI, and AI ethics.

17

	1 Introduction
	2 MOTIVATING EXAMPLE
	2.1 API Search Status
	2.2 API Knowledge Seeking on Stack Overflow
	2.3 API Search Assisted by Human-AI Dialogue

	3 APPROACH
	3.1 API Behavior KG Design and Construction
	3.1.1 API Knowledge Source
	3.1.2 KG Design
	3.1.3 KG Construction

	3.2 Human-AI Dialogue Process
	3.2.1 Subgraph Search
	3.2.2 Clarification Question Generation

	3.3 Result Extension and Interpretation

	4 EVALUATION DESIGN
	4.1 Research Questions
	4.2 API Behavior Knowledge Graph Building
	4.3 Dataset
	4.3.1 Dataset with Single ground-truth API
	4.3.2 Dataset with Multiple ground-truth API
	4.3.3 Evaluation Datasets

	4.4 Baselines
	4.5 Performance Measures

	5 RESULT ANALYSIS
	5.1 RQ1: How Performance is KAHAID compare with the Existing API Search Approaches Huang2018APIMR, Wei2022CLEARCL?
	5.1.1 Method
	5.1.2 Result

	5.2 RQ2: How Performance is KAHAID compare with Existing Human-AI Dialogue Approach Wei2022CLEARCL
	5.2.1 Method
	5.2.2 Result

	5.3 RQ3: How Semantically Diverse are the Question Options Generated during the Human-AI Dialogue?
	5.3.1 Method
	5.3.2 Result

	5.4 RQ4: What Factors can Improve Human-AI Dialogue Efficiency?
	5.4.1 Method
	5.4.2 Result

	6 USER STUDY
	6.1 Study Design
	6.1.1 Test Set
	6.1.2 Participants
	6.1.3 Study Setup

	6.2 Participants' Feedback
	6.3 Indicator Analysis

	7 THREATS TO VALIDITY
	8 RELATED WORK
	9 Conclusion and Future Work
	References

