
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Safety and Performance, Why Not Both?
Bi-Objective Optimized Model Compression

against Heterogeneous Attacks
Toward AI Software Deployment
Jie Zhu, Leye Wang, Xiao Han, Anmin Liu, and Tao Xie, Fellow, IEEE

Abstract—The size of deep learning models in artificial intelligence (AI) software is increasing rapidly, hindering the large-scale
deployment on resource-restricted devices (e.g., smartphones). To mitigate this issue, AI software compression plays a crucial role, which
aims to compress model size while keeping high performance. However, the intrinsic defects in a big model may be inherited by the
compressed one. Such defects may be easily leveraged by adversaries, since a compressed model is usually deployed in a large number
of devices without adequate protection. In this article, we aim to address the safe model compression problem from the perspective of
safety-performance co-optimization. Specifically, inspired by the test-driven development (TDD) paradigm in software engineering, we
propose a test-driven sparse training framework called SafeCompress. By simulating the attack mechanism as safety testing,
SafeCompress can automatically compress a big model to a small one following the dynamic sparse training paradigm. Then, considering
two kinds of representative and heterogeneous attack mechanisms, i.e., black-box membership inference attack and white-box
membership inference attack, we develop two concrete instances called BMIA-SafeCompress and WMIA-SafeCompress. Further, we
implement another instance called MMIA-SafeCompress by extending SafeCompress to defend against the occasion when adversaries
conduct black-box and white-box membership inference attacks simultaneously. We conduct extensive experiments on five datasets for
both computer vision and natural language processing tasks. The results show the effectiveness and generalizability of our framework.
We also discuss how to adapt SafeCompress to other attacks besides membership inference attack, demonstrating the flexibility of
SafeCompress.

Index Terms—AI software safe compression, test-driven development, heterogeneous membership inference attack.

✦

1 INTRODUCTION

IN the last decade, artificial intelligence (AI) software,
especially software based on deep neural networks (DNN),

has attracted much attention and made a significant influ-
ence [1]. Currently, AI software, with DNN as representatives,
is recognized as an emerging type of software artifact
(sometimes known as “software 2.0” [2]). Notably, the size
of DNN-based AI software has increased rapidly in recent
years (mostly because of a trained deep neural network
model). For instance, a state-of-the-art model of computer
vision contains more than 15 billion parameters [3]. A recent
natural language model, GPT-3, is even bigger, surpassing
175 billion parameters; this situation requires nearly 1TB of
space to store only the model [4]. Such a big model hinders
realistic applications such as autonomous driving when the
software is required to be deployed in resource-restricted
devices such as wearable devices or edge nodes. To this end,
a new branch is derived from the traditional area of software

• Jie Zhu, Leye Wang, Anmin Liu, and Tao Xie are with Key Lab of
High Confidence Software Technologies (Peking University), Ministry of
Education, China, and School of Computer Science, Peking University,
China.
E-mail: zhujie@stu.pku.edu.cn, leyewang@pku.edu.cn, anmin-
liu@stu.pku.edu.cn, taoxie@pku.edu.cn

• Xiao Han is with Shanghai University of Finance and Economics, China.
E-mail: xiaohan@shufe.edu.cn
Corresponding author: Leye Wang and Xiao Han.

Manuscript received April 19, 2005; revised August 26, 2015.

compression [5], [6], called AI software compression (especially
DNN model compression1), and has attracted a lot of research
interest.

Model compression aims to compress a big DNN model
to a smaller one given specific requirements, e.g., parameter
numbers, model sparsity, and compression rate. Rashly
compressing a model may lead to severe degeneration in the
AI software’s task performance such as classification accuracy.
To balance memory storage and task performance, many com-
pression approaches have been proposed and deployed [7],
[8]. For example, Han et al. [8] prune AlexNet [1] and reduce
its size by 9 times while losing only 0.01% accuracy in image
classification. Jiao et al. [7] reduce the size of BERT [9] by
about 2 times via knowledge distillation while losing 0.10%
average score in the GLUE [10] official benchmark.

While a compressed model aims to mimic the original
model’s behavior, its defects may also be inherited. As a
representative case, big deep models are verified to be able
to memorize training data [11], thus leading to private data
leakage when facing threats such as membership inference
attack [12]; such a vulnerability would probably remain in
the compressed model. More seriously, model compression is
often used for AI software deployment on a large number of

1. In the rest of the article, without incurring ambiguity, we use ‘model
compression’ to indicate ‘DNN model compression in AI software’ for
brevity.

ar
X

iv
:2

40
1.

00
99

6v
1

 [
cs

.A
I]

 2
 J

an
 2

02
4

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

edge devices (smartphones, wearable devices, etc.) [13], [14];
compared to big models (often stored in a well-maintained
server), an adversary2 thereby has much more opportunities
to gain access to compressed models and attack them.
For example, an adversary may act as a normal user to
download a compressed model on her/his own device. A
typical scenario is using a virtual shopping assistant in a
smartphone. If software developers neglect the privacy risk
brought by the AI model in the virtual shopping assistant
and directly deploy the assistant, when an adversary obtains
a victim’s smartphone, the adversary could attack the AI
model in a certain way and analyze the output to acquire the
victim’s purchase preference and financial status. In a word,
a compressed model inherits the vulnerabilities of the original big
model, while facing even higher risks of being attacked3. Hence,
studying how to conduct safe model compression is urgently
required.

An intuitive solution to safe model compression is directly
combining two streams of techniques, forming a two-step
solution: (i) model compression and (ii) model protection.
For instance, we can first obtain a small model using
existing compression techniques, and then apply protection
techniques (e.g., differential privacy [15] and knowledge
distillation [16]) to improve the model safety against certain
attacks. However, the two-step solution may suffer from poor
model performance4 and low safety because protection techniques
could fail to consider the potential variability introduced by model
compression. For example, Yuan and Zhang [17] find that
pruning makes the divergence of prediction confidence and
sensitivity increase and vary widely among different classes
under prediction. This phenomenon may not be sensed by
defenders due to lack of interaction but can be manipulated
by adversaries.

In this article, we aim to address the problem of safe
model compression from the perspective of performance-
safety co-optimization. Specifically, inspired by test-driven
development [18] and dynamic sparse training [19], we propose
a framework of test-driven sparse training for safe model
compression, called SafeCompress. By simulating the attack
mechanism to defend, SafeCompress can automatically com-
press a big model into a small one (with required sparsity) to
optimize both model performance and safety. SafeCompress
generally follows an iterative optimization mechanism. For
initialization, SafeCompress randomly prunes a big model
to a sparse one, which serves as the input of the first
iteration. In each iteration, SafeCompress applies various
compression strategies to the input model to derive more
sparse models. Then SafeCompress launches a performance-
safety co-optimization mechanism that applies both task-
performance evaluation and simulated-attack-based safety

2. Without incurring ambiguity, we use ‘adversary’ to indicate a person
who conducts the attack and use ‘attacker’ to indicate the attack model
an adversary utilizes.

3. On one hand, accessing a compressed model is easier for adver-
saries. On the other hand, in our experiments, we observe that some
compressed models, e.g., ones compressed by knowledge distillation
(KD-AdvReg, Sparsity=0.2) in Figure 1, suffer higher attack accuracy
(75.54%) than uncompressed ones (67.33%), indicating that compression
could potentially result in a more vulnerable model.

4. We use ‘performance’ as a general term to describe any specific
task-dependent metric. For instance, if a model is developed for
image classification, the model performance can be measured by the
classification accuracy metric.

testing on the derived sparse models to select the best com-
pression strategy. Then, the sparse model with the selected
(best) strategy becomes the input of the next iteration. The
iterative process will terminate after a predefined maximum
number of iterations or a new model has little improvement
in performance evaluation and safety testing.

Utilizing the SafeCompress framework, our work ad-
dresses the challenge of safeguarding compressed AI models
in software against heterogeneous attacks that frequently
occur in reality. Specifically, in this work, we first consider
a single attack and then extend to multiple heterogeneous
attacks. In the case of a single attack, we specifically consider
two representative privacy attacks, namely, black-box [12]
and white-box membership inference attacks (MIAs) [20],
and implement two concrete safe model compression mech-
anisms against them, denoted as BMIA-SafeCompress and
WMIA-SafeCompress, respectively, which effectively mit-
igate the risks associated with the respective MIA. Note
that we choose MIA as the attack example because MIA
is representative of evaluating AI model safety, especially
from the aspect of privacy leakage [21], [22]. For multiple
heterogeneous attacks, our experiments (Section 6) show that
our SafeCompress framework is highly flexible and gener-
alizable, naturally supporting extensions to defend against
multiple heterogeneous attacks. Specifically, we incorporate
additional attack simulation techniques to SafeCompress and
implement a concrete instance called MMIA-SafeCompress to
defend against heterogeneous black-box and white-box MIAs5

concurrently. Furthermore, we integrate adversarial training
into SafeCompress by including attack models in the training
process to enhance a compressed model’s defense capability.

This article makes the following main contribution:
• To the best of our knowledge, this work is the first effort

toward the problem of safe model compression, which is
critical for today’s large-scale AI software deployment on
edge devices such as smartphones.

• To address the problem of safe model compression, we
propose a general framework called SafeCompress, which
can be configured to protect against a pre-specified attack
mechanism. SafeCompress adopts a test-driven process
to iteratively update model compression strategies to co-
optimize model performance and safety.

• We take into account a single attack and multiple
heterogeneous attacks, and choose representative MIAs as
attack mechanisms [24]. For a single attack, we develop two
concrete instances of SafeCompress, i.e., BMIA-SafeCompress
and WMIA-SafeCompress. For multiple heterogeneous at-
tacks, we extend SafeCompress and implement MMIA-
SafeCompress. Additionally, we integrate adversarial train-
ing into SafeCompress to further enhance a compressed
model’s defense capability. We also discuss how to adapt
SafeCompress to other attacks.

• Using BMIA-SafeCompress, WMIA-SafeCompress, and
MMIA-SafeCompress as showcases of SafeCompress, we

5. Heterogeneous black-box and white-box MIAs are those that
construct attack models with different structures [22], [23] (as illustrated
in Figure 2) so as to operate under varying degrees of knowledge
about a target model. Specifically, the black-box setting posits that only
model outputs are available to the adversary while in the white-box
setting, besides model outputs, extra knowledge about the target model
(e.g., hidden layer parameters [20] and gradient descents in training
epochs [22]) is also obtainable.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

conduct extensive experiments on five datasets of two
domains (three tasks of computer vision and two tasks
of natural language processing). The experimental results
show that our framework6 significantly outperforms baseline
solutions that integrate state-of-the-art compression and MIA
defense approaches. The code of the three SafeCompress
instances is available as open source at https://github.com/
JiePKU/SafeCompress.

This article is an extension of a previous conference
edition [25]. Compared to the conference edition, this article
includes six main improvements: (1) configuring Safecom-
press to defend against white-box membership inference
attack, (2) extending SafeCompress to handle multiple het-
erogeneous attacks, (3) incorporating adversarial training
into SafeCompress, (4) performing robustness analyses on
the safety and performance trade-off metric, (5) adding a
new baseline called KL-Div, and (6) involving more recent
work discussed in the related work.

2 BACKGROUND

In this section, we briefly introduce contextual knowledge
related to our work

2.1 Test-Driven Development

Test-driven development (TDD) [18] is a programming
paradigm where test code plays a vital role during the
whole software development process. With TDD, before
writing code for software functionality, programmers could
write the corresponding test suite in advance; then, the
test suite can justify whether the software functionality is
implemented properly or not. In general, TDD leads to an
iterative coding-testing process to improve the correctness
and robustness of the software; TDD has become a widely
adopted practice in software development (e.g., SciPy [26]).
Inspired by TDD, we develop a test-driven framework of
safe model compression called SafeCompress. Similar to
the iterative coding-testing process in TDD, SafeCompress
adopts an iterative compressing-testing process. In particular,
by specifying the attacks to fight against, SafeCompress can
automatically update the compression strategies step by step
to optimize model performance and safety simultaneously.

2.2 Dynamic Sparse Training

Dynamic sparse training (DST) is a sparse-to-sparse training
paradigm to learn a sparse (small) DNN model based on a
dense (big) one [19], [27]. Specifically, DST starts training with
a sparse model structure initialized from a dense model. As
training progresses, it modifies the architecture iteratively by
pruning some neural network connections and growing new
connections based on certain strategies. This manner enables
neural networks to explore self-structure until finding the
most suitable one for training data. SafeCompress’s itera-
tive updating strategy for optimizing a compressed model
structure is inspired by the DST paradigm.

6. Without incurring ambiguity, we use ‘framework’ to indicate
‘general framework’ and ‘approach’ to indicate ‘constructed instance
based on SafeCompress or other specific approaches’.

2.3 Membership Inference Attack

Prior research has extensively shown that DNN models
often exhibit different behaviors on training data records
(i.e., members) versus test data records (i.e., non-members);
the main reason is that models can memorize training data
during the repeated training process lasting for a large
number of epochs [11], [22]. For instance, a DNN model
can generally give a higher prediction confidence score
to a training data record than a test one, as the model
may remember the training data’s labels. Based on such
observations, membership inference attack (MIA) [12] is
proposed to build attack model to infer whether one data
record belongs to training data or not. When it comes to
sensitive data, personal privacy is exposed to a great risk.
For example, if MIA learns that a target user’s electronic
health record (EHR) data is used to train a model related to a
specific disease (e.g., to predict the length of stay in ICU [28]),
then the adversary knows that the target user has the disease.
In this work, we use MIA to empirically demonstrate the
feasibility and effectiveness of SafeCompress, because MIA
has become one of the representative attacks to evaluate the
safety of DNN models both theoretically and empirically [21],
[22]. Moreover, compressed models in edge devices are easily
accessible, e.g., by downloading, allowing adversaries to
snoop and collect more model information. Hence, when
compressed models are deployed in edge devices, MIA could
inflict great harm to personal privacy.

2.4 Adversarial Training

Adversarial training [24], [29] is a competitive learning ap-
proach that involves a target model and adversarial models
with the aim of equipping the target model with the ability
to withstand adversarial attacks. To achieve this ability, this
training approach typically incorporates weighted objective
terms of adversarial models into the loss function of the
target model. Throughout the training process, the goal is
to optimize the objective terms of the adversarial models
while simultaneously minimizing the overall loss including
both the target and adversarial objectives. More generally,
this approach is essentially a min-max game [30] that has
been widely used in computer vision [29], [31] and natural
language processing [32], [33]. In this work, this useful skill
is combined with our SafeCompress framework to further
help improve a compressed model’s defense ability.

3 PROBLEM FORMULATION

Given a big model F(; θ) parameterized by θ, we aim to
find a sparse model F(; θ̂) (most elements in θ̂ are zero)
under certain memory restriction Ω and the sparse one can
defend against a pre-specified attack mechanism fA. We
use GfA to denote the attack gain of fA. We restrict the
compression ratio, also named as model sparsity, below Ω
(i.e., the percentage of non-zero parameters in the sparse
model over the original model). We aim to minimize both the

https://github.com/JiePKU/SafeCompress
https://github.com/JiePKU/SafeCompress

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

task performance loss L and the attack gain GfA over the
sparse model F(; θ̂):

min
θ̂

∑
x,y

L(F(x; θ̂), y) (1)

min
θ̂

GfA(F(; θ̂)) (2)

s. t.
∥θ̂∥0
∥θ∥

≤ Ω, (3)

where x is a sample and y is the corresponding label, and
L represents a task-dependent loss function. ∥·∥0 counts the
number of non-zero elements, and ∥·∥ calculates the number
of all the elements. This formulation is a general one without
specifying the attack mechanism fA and is a bi-objective
optimization problem regarding both model performance
(Eq. 1) and safety (Eq. 2) when compressing big models.

Threat Model. We take MIA, being the representative
privacy attack, as a threat model to evaluate a victim model
(i.e., a compressed model) about its leaked privacy. MIA
usually trains a binary classification model fA. In this work,
we use a neural network classifier as fA.

MIA Gain. The gain GfA for MIA is then formulated
as follows. Given training samples (Dtr) and non-training
samples (D ¬tr), the expected gain of the threat model fA is

GfA(F(; θ̂)) =
∑
x,y

(1(x ∈ Dtr) log(fA(F(x; θ̂), y))+

1(x ∈ D¬tr) log(1− (fA(F(x; θ̂), y)))),

(4)

where 1(x ∈ Z) is 1 if sample x belongs to Z ; otherwise 0.

4 APPROACH

In this section, we first describe our design principles. Then
we present our SafeCompress framework. Finally, we show
how to use our framework to defend against a single attack
and multiple heterogeneous attacks, respectively.

4.1 Key Design Principles

We illustrate two key principles driving our design, i.e.,
attack configurability and task adaptability before elaborating
on design details.

Attack Configurability. In reality, adversaries may con-
duct various types of attacks [34]. Hence, a practical solution
should be able to do safe compression against an arbitrary
pre-specified attack mechanism. In other words, the proposed
solution should be easily configured to fight against a given
attack mechanism.

Task Adaptability. AI (especially deep learning) tech-
niques have been applied to various task domains including
computer vision (CV), natural language processing (NLP),
etc. To this end, a useful solution is desired to be able to adapt
to heterogeneous AI tasks (e.g., CV or NLP) very easily.

Our design of SafeCompress just follows these two
principles, thus ensuring practicality in various scenarios
of AI software deployment. Next, we describe the design
details.

4.2 SafeCompress: A General Framework for Safe Model
Compression
Figure 1 presents an overview of SafeCompress, which
contains three stages. We describe each below.

Stage 1. Sparsity-Aware Model Initialization. During
this stage, we follow the paradigm of dynamic sparse training
to prioritize meeting the goal of sparsity (i.e., compression
ratio). Specifically, based on a given big model (an arbitrary
deep model for various tasks such as CV or NLP), we
initialize a sparser version of the model to align with specific
memory requirements. After initialization, the sparse model
is sent to Stage 2.

Stage 2. Candidate Sparse Model and Simulated-
attacker Generation. During this stage, the sparse model
is first trained until reaching the stopping criteria. Then, the
trained model is fed to two branches. The first branch is
called dynamic sparse update where different combinations
of pruning and growth strategies are performed on the
input model, producing new candidate model variants with
diverse sparse architectures. To ensure that the derived model
always meets the given sparsity requirement, we keep the
number of removed connections and reactivated ones the
same in each update. The second branch is called attack
mechanism simulation. In this branch, we simulate an external
attacker that aims to attack candidate sparse models. The
simulated attacker and candidate sparse models are sent to
Stage 3.

Stage 3. Safety Test-driven Model Selection. A safety
testing is performed on these input sparse models using the
simulated attacker. The candidate model that performs the
best in this testing process will be selected and sent back
to Stage 2, starting a new iteration. The whole process will
terminate after running for a predefined number of iterations.

Algorithm 1 SafeCompress Framework Procedure
Input: A big model ML; a sparsity requirement Ω; a set of

update strategies U whose size is N ; training stopping
criteria for a sparse model T ; total epochs for termination
Eps;

Output: A well-trained sparse modelMS ;
1: InitializeML as a sparse one to meet the sparsity require-

ment Ω; we denote this sparse model asMS

2: TrainMS until condition T is satisfied then do:
3: for each Ui in U do:
4: UpdateMS via Ui denoted asMi

S

5: end for
6: Obtain a candidate sparse model set C={M1

S ...MN
S }

7: Simulate an external attacker as A (with the help ofMS)
8: Mbest

S ← Pick the best from {safety testing(C, A)}
9: MS ←Mbest

S

10: if not achieve total epochs Eps:
11: go to 2
12: return MS

The pseudo-code of SafeCompress is in Algorithm 1. Note
that we do not restrict the type of attacks in SafeCompress.
It thus has the potential to prevent various attacks toward
AI software and models.

4.3 Defense against Single Attack
We consider scenarios where defenses are mounted against
black-box MIA and white-box MIA, respectively.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Prune Grow

Update × N

Dynamic sparse update

 Safety Test-driven

Model Selection

Sparse Model Training

Sparsity-Aware

Model Initialization

Sparsity-Aware

Model Initialization

Retrain

1) ……

2) ……

Select

Safety & Perfor-

mance Tests

Safety & Perfor-

mance Tests

Record

... ...

Model Flow Merge Flow Update Strategy Simulation Method

InitializeInitialize

Strategy NStrategy NStrategy N

Strategy 1Strategy 1Strategy 1

Attack mechanism simulation

Attacker (1)Attacker (1)
Simulate Method 1

Attacker (k)Attacker (k)Simulate Method k

...

Attacker (1)

Attacker (k)

...

Attacker (1)

Attacker (k)

...

Adversarial

Training
Extend simulation for heterogeneous attacks

Candidate Sparse Model and Simulated-attacker Generation

Fig. 1. An overview of our SafeCompress framework.

4.3.1 BMIA-SafeCompress: Defending Black-box Member-
ship Inference Attack based on SafeCompress

We implement a concrete mechanism of safe model compres-
sion against black-box MIA7, called BMIA-SafeCompress
based on SafeCompress.

Stage 1. Sparsity-Aware Model Initialization. Given
a big model, we adopt the Erdös–Rényi [35] initialization
approach to reach a predefined sparsity requirement, i.e.,
removing a number of model connections (assigning zeros
to the connection weights). Specifically, for the k-th layer
with nk neurons, we collect them in a vector and denote it
as V k = [vk1 , v

k
2 , v

k
3 ,v

k
nk
]. Usually, V k in the k-th layer is

connected with the previous layer V k−1 via a weight matrix
W k ∈ Rnk×nk−1 . In the sparse setting, the matrix degenerates
to a Erdös–Rényi random graph, where the probability of
connection between neuron V k and V k−1 is decided by

P (Wij) =
ϵ× (nk + nk−1)

nk × nk−1
, (5)

where ϵ is a coefficient that is adjusted to meet a target
sparsity. In general, this distribution is inclined to allocate
higher sparsity (more zeros) to layers with more parameters
as the probability tends to decline while the quantity of
parameters increases8.

Stage 2. Candidate Sparse Model and Simulated-
attacker Generation. During this stage, we train the input
sparse model for a predefined number of iterations (follow-
ing the setting in previous work [36], the number of iterations
is set to 4,000). We can use a vanilla training strategy or adopt
advanced adversarial training (we introduce it later in the

7. The black-box setting assumes that only model outputs are available
to an adversary.

8. For the weights of remaining connections, we can keep those of the
big model, or simply do random initialization. In our experiments,
we find that keeping big model weights performs not better than
random initialization. Hence, we adopt random initialization in our
implementation.

end of this subsection). Once finished, the well-trained sparse
model, denoted as MS , is fed into the two branches.

Branch 1. Dynamic sparse update. In the first branch, i.e., the
branch of dynamic sparse update, we apply two state-of-the-
art pruning strategies and two growth strategies to operate
on MS , leading to four (2 ∗ 2) different sparse typologies.
The two pruning strategies are magnitude-based pruning [37]
and threshold-based pruning [8]. Magnitude-based pruning
removes connections with the smallest weight magnitudes
(weight values); threshold-based pruning removes connec-
tions whose weight magnitudes are below a given threshold.
The two pruning strategies are effective as small weight
magnitudes often contribute little to the final output. The two
growing strategies are gradient-based growth [38] and random-
based growth [19]. The gradient-based growth reactivates a
connection (weight) that has a large gradient | ∂L∂w |, which
indicates that the weight is extremely eager to be updated.
The random-based growth randomly reactivates connections.
This manner may help prevent the sparse model from getting
stuck in a local optimum. Afterward, we fine-tune these
derived sparse models and generate four candidate sparse
models M1

S , ...,M4
S

9.
Branch 2. Attack mechanism simulation. We try to simulate

an external attacker in preparation for safety testing in
the second branch. Specifically, we follow previous MIA
work [24] and simulate a black-box MIA attacker with a fully
connected neural network, as depicted in Figure 2 (a). The
simulated attacker contains three parts: probability stream, label
stream, and fusion stream. The probability stream processes
the output probability from the target sparse model MS(x).
The label stream deals with the label y of the sample x.
Then, the fusion stream fuses the features extracted from the
two preceding streams and outputs a probability to indicate
whether a sample is used in training or not. To improve the

9. As more advanced pruning or growth strategies may be proposed
in the future, SafeCompress is easy to incorporate them by adding
to/replacing existing strategies.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

·

Cat

FC

FC

FC

FC

FC

FC

FC

FC

FC

FC

Prob Stream
Label Stream

F
u

si
o
n

S
tr

ea
m

FC

FC

FC

FC F
C

F
C

F
C

F
C

FC

FC

FC

FC

FC

FC

FC

FC

Conv

FC

FC

FC

Conv

FC

FC

FC

F
C

F
C

F
C

F
C

F
C

F
C

F
C

F
C

P
ro

b
 S

tr
ea

m
L

o
ss

 S
tr

ea
m

L
a
b

el
 S

tr
ea

m

G
ra

d
ie

n
t

S
tr

ea
m

F
u

si
o
n

 S
tr

ea
m

C
a

t

F
C

F
C

FC

FC

FC

FC

Conv

FC

FC

FC

F
C

F
C

F
C

F
C

P
ro

b
 S

tr
ea

m
L

o
ss

 S
tr

ea
m

L
a
b

el
 S

tr
ea

m

G
ra

d
ie

n
t

S
tr

ea
m

F
u

si
o
n

 S
tr

ea
m

C
a

t

(a) (b)

Fig. 2. The architecture of the simulated black-box MIA network model
(a) and white-box one (b). FC is a fully connection layer. Conv is a
convolution layer.

efficiency of attacker simulation, we do not independently
train an attacker for each candidate sparse model Mi

s in
Branch 1. Instead, we first train a simulated attacker A based
on MS ; then, for each Mi

s, we fine-tune A for multiple
epochs to ensure its attack effectiveness toward Mi

s. This
strategy of training acceleration is sensible as Mi

s often
deviates from Ms marginally.

Finally, four sparse model variants (Branch 1) and cor-
responding well-trained simulated attackers (Branch 2) are
sent to the next stage for safety testing.

Stage 3. Safety Test-driven Model Selection. Safety
test-driven model selection aims to choose a candidate
sparse model with the best trade-off in task performance
and safety protection. Specifically, we employ the simulated
attacker to conduct safety testing of black-box MIA on four
candidate sparse models and then record the attack accuracy.
Subsequently, we can simply select the one whose attack
accuracy is the lowest (strongest defense ability). However,
this manner ignores the task performance, thereby missing a
comprehensive consideration. Hence, we also conduct task-
performance evaluation on four sparse models (e.g., image
classification accuracy for CV tasks). Then, by considering the
attack accuracy (safety) and task performance together, we
can select the best candidate model. In our implementation,
we use a newly defined TM-score (i.e., Task performance
divided by MIA attack accuracy, with details illustrated later)
for model selection. The candidate sparse model with the
highest TM-score is selected. The selected model is then
sent back to Stage 2 and a new iteration starts. The whole
process will terminate after repeating a predefined number
of iterations.

Metric. For performance, we evaluate model accuracy
on classification tasks, represented by Task Acc. The higher
the Task Acc is, the better the model performs. For safety, we
adopt the accuracy of membership inference attacks, denoted
as MIA Acc, to reflect defense ability. The lower the MIA Acc
is, the stronger the model’s defense ability is. Besides, we
take both performance and safety into consideration, and
design a metric called TM-score that aims to directly evaluate
the performance-safety trade-off:

TM -score =
(Task Acc)

λ

MIA Acc
, (6)

where λ is a coefficient to control this trade-off and we set
λ = 1 in our approach for simplicity if not specified. If a
model keeps high Task Acc and low MIA Acc, the TM-score
will be high. In brief, this metric is in line with our goal to
seek a model with both good performance and strong safety.

Enhancement with Adversarial Training. A target model
and adversarial models (both usually involved in adversarial
training) compete mutually during training. In this way, the
target model can improve its capability against adversarial
models. Following this idea, we regard the external attacker
as the adversarial model and leverage adversarial training
based on BMIA-SafeCompress to further improve the target
model’s defense ability. Specifically, we additionally con-
struct an adversarial model, i.e., a black-box MIA model
fB
A following the structure of Figure 2 (a). The attack gains

are denoted as GfB
A

. Thus, we formalize joint membership
privacy attack (gain) and performance objectives in the
following min-max optimization problem:

min
F

{
L(F) + β ∗max

fB
A

GfB
A
(F)

}
(7)

L(F) is our performance objective of BMIA-
SafeCompress, where F is our target sparse model. β
is a weighted coefficient. We set it to 0.1 by default.

Finally, we may need to point out the difference between
the adversarial model and the simulated attacker in Stage 2 of
BMIA-SafeCompress to remove possibly caused confusion. The
simulated attacker in Stage 2 of BMIA-SafeCompress is
used for safety testing. They are trained offline and thereby
cannot impact the gradient backpropagation when training
the target model. In contrast, the adversarial model is trained
together with the target model. This process influences the
gradient backpropagation and regularizes the target model.

4.3.2 WMIA-SafeCompress: Defending White-box Member-
ship Inference Attack based on SafeCompress
Different from black-box MIA, white-box MIA assumes that
an adversary has extra knowledge about a target model
beyond outputs (e.g., hidden layer parameters [20] and
gradient descents in training epochs [22]). Hence, white-
box MIA could be regarded as a stronger attack manner. In
this part, we aim to configure SafeCompress to white-box
MIA. We name this instance of SafeCompress framework as
WMIA-SafeCompress.

Configuration. To implement WMIA-SafeCompress, con-
cretely, we include the extra information as inputs to
simulate a white-box attacker mechanism A proposed in
previous work [22], [39] while maintaining other processes of
BMIA-SafeCompress. In other words, the main adjustment
is to replace the simulated black-box attacker in BMIA-
SafeCompress with a white-box one to participate in the
safety testing. This alteration offers a notable advantage in
terms of ease and convenience. As illustrated in Figure 2 (b),
the simulated attacker contains five parts: probability stream,
loss stream, gradient stream, label stream, and fusion stream.
The first four streams are designed to process four different
inputs, respectively. They are a target sample’s predicted
probability, loss value (e.g., classification loss), gradients of
the parameters of the target model’s previous layer, and
one-hot encoding of the target sample’s true label. The fifth

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

part, as the name suggests, fuses the extracted features from
the first four streams and outputs a probability to indicate
whether the sample is used in training or not.

Metric. We simply follow the same metric, i.e., TM-score,
in BMIA-SafeCompress.

We also discuss how to configure SafeCompress for
other attacks including attribute inference attack and model
inversion attack (attack configurability) and task adaptability
using semantic segmentation [40] as illustrated in Appendix
A.

4.4 Defense against Multiple Heterogeneous Attacks
In a more practical sense, besides a single attack, AI software
could face multiple heterogeneous attacks, which can exacer-
bate privacy leakage. For example, a potential adversary may
employ black-box and/or white-box MIAs. In such scenarios,
it becomes difficult for a defender to predict the attack that
the adversary may adopt, being black-box, white-box, or
both. This situation is more intractable than a single attack
stated earlier. To alleviate this issue, we are supposed to take
into account all possible attacks, namely, both black-box and
white-box MIAs in this context, and introduce our solution
below.

4.4.1 MMIA-SafeCompress: Extend SafeCompress against
Multiple Heterogeneous Membership Inference Attacks
To defend against multiple heterogeneous attacks, we extend
our SafeCompress framework. We list two reasons to support
its feasibility. (1) The first branch of Stage 2 in SafeCompress,
i.e., dynamic sparse update, is independent as it does not
rely on the second branch, i.e., attack mechanism simulation10.
This characteristic enables us to add additional attack
mechanisms to simulate while causing little influence on
the dynamic sparse update branch. (2) Our SafeCompress
framework strictly follows the attack configurability principle.
In other words, the branch of attack mechanism simulation
can be configured with various attacks. Hence, our Safe-
Compress framework exhibits high flexibility to seamlessly
accommodate multiple heterogeneous attacks through the
incorporation of additional simulated attack mechanisms in
Stage 2, as well as corresponding safety testing in Stage 3.
Further, based on the extension, we can implement various
instances against different combinations of attacks toward
AI software. Below, we implement a concrete instance called
MMIA-SafeCompress to defend against black-box and white-
box MIAs simultaneously.

Configuration. To implement MMIA-SafeCompress, the
key is to add simulated black-box and white-box attack
mechanisms. In fact, we can build MMIA-SafeCompress
based on BMIA-SafeCompress or WMIA-SafeCompress as
they already have one simulated attack mechanism. Here, to
ease illustration, we choose to build MMIA-SafeCompress
based on BMIA-SafeCompress. An extra simulated white-
box attacker illustrated in Figure 2 (b) is first added in Stage
2, in parallel with the simulated black-box attacker. Then,
corresponding white-box MIA testing is added in Stage 3.
Consequently, we shall perform two kinds of safety testing,

10. The second branch may need candidate models derived from the
first branch to help implementation, e.g., our BMIA-SafeCompress and
WMIA-SafeCompress. Safety interaction is performed in Stage 3.

i.e., black-box and white-box MIA testing, to select the best
candidate model that will be sent back to Stage 2, starting a
new iteration.

Metric. We leverage a straightforward manner by using
the weighted sum to combine two metrics11:

TM -scoreM = α∗TM -scoreB+(1−α)∗TM -scoreW (8)

TM -scoreB is the score of black-box safety testing while
TM -scoreW is the score of white-box safety testing. α is a
coefficient to balance the two metrics. We set α to 0.5 as we
deem that these two metrics are equally important.

5 EXPERIMENTAL SETUP

In this section, we present an overview of five used datasets,
five used models, and eight baselines compared in our work.

5.1 Datasets and Models

We conduct experiments on five datasets that are representa-
tive with high citation count according to Google Scholar and
widely used for membership inference in previous work [12],
[41], [42]. The partition setting of training/test data follows
the previous work that proposed the respective datasets. For
each dataset, we select as the original big model one model
that is famous and highly cited in the domain of computer
vision or natural language processing.

CIFAR10 and CIFAR100 [43] are two benchmark datasets
for image classification. Both of them have 50, 000 training
images and 10, 000 test images. CIFAR10 has 10 categories
while CIFAR100 has 100 categories. The size of every image is
32× 32 pixels. We adopt the AlexNet model [1] for CIFAR10
and the VGG16 model [44] for CIFAR100.

Tiny ImageNet [45] is an image dataset that contains 200
categories. Each category includes 500 training images and
50 test images. The size of each image is 64× 64 pixels. We
adopt the ResNet18 model [46] for Tiny ImageNet.

AG News [47] is a topic classification dataset that
has 4 categories. For each category, AG News contains
30,000 training and 1,900 test texts. We adopt the RoBERTa
model [48] for AG News.

Yelp-5 [49] is a review dataset for sentiment classification
(5 categories). Yelp-5 includes 130, 000 training and 10, 000
test texts per category. We adopt the BERT model [50] for
Yelp-5.

AlexNet [1], VGG16 [44], and ResNet18 [46] are convolu-
tion neural networks (CNN). BERT [50] and RoBERTa [48]
are transformer-based neural networks.

Dataset Splits for Attacker Simulation. We split ex-
perimental datasets as shown in Table 1 to evaluate a
model’s defense ability. Following previous work [16], [51],
we assume that a simulated attacker knows 50% of a (target)
model’s training data and 50% of test data (non-training
data). These known data are used for training the attack
model. The other data are adopted for evaluation. We put
more details of training in Appendix B.

11. More advanced strategies, such as bootstrapping according to
different attacks’ severity and commonality [34], may deserve future
research.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 1
Number of samples in dataset splits.

Datasets Attack Training Attack Evaluation

Dknown
train Dknown

test Dunknown
train Dunknown

test

CIFAR10 25,000 5,000 25,000 5,000
CIFAR100 25,000 5,000 25,000 5,000
Tiny ImageNet 50,000 5,000 50,000 5,000

AG News 60,000 3,800 60,000 3,800
Yelp-5 325,000 25,000 325,000 25,000

TABLE 2
Two-step baseline approaches.

Baselines Model Compression MIA Defense

Pruning KD DP AdvReg DMP

Pr-DP ! !

Pr-AdvReg ! !

Pr-DMP ! !

KD-DP ! !

KD-AdvReg ! !

KD-DMP ! !

5.2 Baselines
Given that no existing studies focus on safe model compres-
sion, we formulate multiple two-step baseline approaches
by combining state-of-the-art model compression and MIA
defense techniques.

In the first step, we choose one compression technique C.
We consider two widely used and effective choices to com-
press big models, i.e., pruning [37] and knowledge distillation
(KD) [52]. For pruning, we adopt the ‘pretrain→prune→fine-
tune’ paradigm. We first pretrain a big model from scratch.
Afterward, we leverage magnitude-based pruning and com-
press this full model to a certain sparsity. Finally, we fine-tune
the pruned model to recover model performance. For KD,
we design a small dense model as a student model given the
sparsity requirement. Then, we use a well trained big model
as a teacher model to help the student model’s training.

In the second step, we select one MIA defense technique
D. We test three defense techniques including differential
privacy (DP) [15], adversary regularization (AdvReg) [24], and
distillation for membership privacy (DMP) [16]. DP adds noise
to gradients while training a target model. AdvRes adds
membership inference gain GA of an attacker to the loss
function of a target model as a regularization term, forming
a min-max game. DMP first trains an unprotected (vanilla)
teacher model. Then, DMP utilizes extra unlabeled data and
adopts knowledge distillation to force a student model i.e., a
target model, to simulate the output of the teacher.

Finally, we group two-step techniques by enhancing
the training or fine-tuning process in C with the defense
technique in D. For example, the Pr-DP baseline adopts the
‘pretrain→prune→DP-based fine-tune’ process; KD-AdvReg
trains a student (a compressed model) with the help of a
big teacher model in a min-max game manner. All the six
two-step baseline approaches are listed in Table 2.

Baseline 7 (MIA-Pr). MIA-Pr is originally proposed by
previous work [51] to defend MIA, and its main technique
is pruning. Hence, although the previous work [51] does
not specify the usage for model compression, MIA-Pr can
naturally reduce a model’s size. We use MIA-Pr as a baseline

31.55

80.02

67.96
62.6563.53

57.78

36.74

77.96

64.1

56.61

62.92

68.9768.73

62.8863.97

55.05

69.52

51.75

69.82

51.75

Task Acc % MIAs Acc %

VGG16 on CIFAR100 with Sparsity 0.05

Pr-DP Pr-AdvReg Pr-DMP KD-DP KD-AdvReg KD-DMP MIA-Pr KL-Div BS BS+AT

72.6472.64
67.33

Fig. 3. Results on CIFAR100 with sparsity 0.05 (BS: BMIA-SafeCompress,
AT: Adversarial Training, dash line: uncompressed VGG16).

to prune a big model until satisfying a given sparsity
requirement. Note that when pruning the big model, MIA-
Pr optimizes the defense effect of MIA, while the two-step
baseline Pr-X (the first step is pruning) optimizes the task
performance (e.g., classification accuracy).

Baseline 8 (KL-Div [17]). KL-Div is initially proposed
by previous work [17] to defend against a special attacker
that leverages potential defects in pruning. The main idea
is to use KL-divergence to align the posterior predictions of
different input samples, aiming at improving a compressed
model’s defense ability. However, this approach does not
consider optimizing model performance. In this work, we
also regard this approach as our baseline and follow the
setting stated in the previous work [17].

6 EXPERIMENTAL RESULTS

In this section, we present the results of our BMIA-
SafeCompress, WMIA-SafeCompress, and MMIA-
SafeCompress, respectively, to show the effectiveness
of our SafeCompress framework.

6.1 Experimental Results on BMIA-SafeCompress

To show the effectiveness of BMIA-SafeCompress, we con-
duct experiments on CV and NLP datasets, respectively.

6.1.1 Results on CV Datasets
CIFAR100 (VGG16). We first report Task Acc and MIA Acc
on CIFAR100 with sparsity 0.05 using VGG16. As illustrated
in Figure 3, the results indicate that BMIA-SafeCompress
outperforms eight baselines in Task Acc while alleviating
MIA risks remarkably. Specifically, BMIA-SafeCompress
produces 51.75% for MIA Acc (just a bit higher than random
guess), decreasing by 28.27%, 10.9%, 6.03%, 26.21%, 4.86%,
17.22%, 11.13%, and 3.30% compared with eight baselines,
respectively. Moreover, equipping BMIA-SafeCompress with
Adversarial Training leads to an additional improvement
of 0.30% in Task Acc while not increasing privacy risk.
Interestingly, when compared to the uncompressed VGG16,
SafeCompress reduces MIA risks to a large extent while
sacrificing Task Acc only a little. This result highlights the
practicality of SafeCompress in generating a small and safe
model with competitive task performance.

Further, to validate the effectiveness on different sparsity
requirements, we report the results in Figure 4 with sparsity
0.1 and 0.2. Consistent with the results of sparsity 0.05,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

39.87

85

70.73
66.5267.73

55.99

38.36

79.73

68.25

75.54

67.31

80.16

69.17
65.9964.77

55.58

71.96

58.85

70.68

55.72

Task Acc % MIAs Acc %

VGG16 on CIFAR100 with Sparsity 0.2

34.99

84.4

68.85 69.46
65.81

53.84

37.25

79.71

65.66

58.11

64.55
69.7269.89

65.7463.89

57.14

71.67

53.13

70.99

51.51

Task Acc % MIA Acc %

VGG16 on CIFAR100 with Sparsity 0.1

72.6472.64 72.6472.64

67.3367.33 67.3367.33

Fig. 4. Results on CIFAR100 with sparsity 0.1 and 0.2 (BS: BMIA-SafeCompress, AT: Adversarial Training, dash line: uncompressed VGG16).

68.5 69.0 69.5 70.0 70.5
Task Acc

50.5
51.0
51.5
52.0
52.5

M
IA

 A
cc

=0.8
=0.9

=1.0
=1.1

=1.2
Different Coefficient of TM-score

Fig. 5. Different coefficient λ on BMIA-SafeCompress with sparsity=0.05.

BMIA-SafeCompress still beats all the baselines by achieving
higher Task Acc and lower MIA Acc. We also observe
that when sparsity increases (i.e., the number of non-zero
parameters increases), Task Acc of BMIA-SafeCompress
increases from 69.52% (sparsity 0.05) to 71.96% (sparsity 0.2);
meanwhile, MIA Acc also goes up from 51.75% (sparsity 0.05)
to 58.85% (sparsity 0.2), indicating that the compressed model
becomes more vulnerable with increasing sparsity. Such
a phenomenon may be incurred by the extra information
(i.e., more parameters) kept in the compressed model when
sparsity rises — some of the extra information may be
generalizable so that task performance is enhanced; other
information might be specific to training data, thus leading
to higher MIA risks.

Finally, to gain insight into the performance-safety trade-
off in one shot, we report TM-score (Task Acc divided by MIA
Acc, Eq. (6)) in Table 3. BMIA-SafeCompress (+ Adversarial
Training) outperforms all the baselines significantly and
consistently under three sparsity settings by making a better
trade-off between performance and safety.

In practice, users may have different requirements for
safety and performance. Fortunately, it can be easily achieved
in our approach by adjusting the coefficient λ of TM-score.
For example, a user may think that safety is more important
than performance, and therefore she can decrease λ to a
smaller value (e.g., 0.9 or 0.8); otherwise, she can increase
λ to a bigger value (e.g., 1.1 or 1.2). We illustrate how the
coefficient λ controls the trade-off in Figure 5. It is seen
that a larger λ (performance is important) results in higher
performance while a smaller λ results in stronger defense
capability.

We also explore six other aspects of our framework based
on BMIA-SafeCompress in Appendix C.1.1. The first is
time consumption where the time consumption of BMIA-

TABLE 3
Defend against black-box MIA. TM-scoreB on CIFAR100. The best

results are marked in bold.

Approach Sparsity

0.05 0.1 0.2

VGG16 (uncompressed) 1.08 1.08 1.08

Pr-DP 0.39 0.41 0.47
Pr-AdvReg 1.08 0.99 1.06
Pr-DMP 1.10 1.22 1.21
KD-DP 0.47 0.47 0.48
KD-AdvReg 1.13 1.13 0.90
KD-DMP 0.91 0.93 0.84
MIA-Pr 1.09 1.06 1.05
KL-Div 1.16 1.12 1.17

BMIA-SafeCompress 1.34 1.35 1.22
+ Adversarial Training 1.35 1.38 1.27

SafeCompress is comparable to that of other baselines. We
further find that, in BMIA-SafeCompress, attack mechanism
simulation consumes more time than that of sparse model
training. The second is the rationality of selecting the candi-
date sparse model that performs the best in the safety testing.
We empirically demonstrate that compared to enumerating
all candidate sparse models, this strategy in SafeCompress
is reasonable in light of the performance and significantly
reduces time consumption. The third is the flexibility of
SafeCompress to incorporate other training tricks where we
show that SafeCompress is compatible with most training
tricks including dropout, data augmentation, adversary
regularization, etc. The fourth is to perform SafeCompress on
a bigger model (e.g., ResNet50 [46]) and a larger dataset (e.g.,
ImageNet [53]). The result indicates that our framework
is scalable. The fifth is the comparison between BMIA-
SafeCompress and baselines on TM-scores with different
λ where SafeCompress is shown to be robust against metric
alteration. The last is a statistical analysis with multiple
runs, showing that our approach is statistically superior to
others. Besides, we conduct experiments on CIFAR10 and
Tiny ImageNet in Appendix C.1.2 where the superior results
over other baselines further show the effectiveness of BMIA-
SafeCompress.

6.1.2 Results on NLP Datasets
AG News (RoBERTa). To validate the effectiveness and gen-
eralization of BMIA-SafeCompress, we conduct experiments
on AG News. As indicated in Table 4, BMIA-SafeCompress
achieves 87.50% for Task Acc, slightly inferior to the highest
88.10% (KD-AdvReg). However, our approach decreases MIA

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 4
Defend against black-box MIA. Task Acc (performance), MIA Acc

(safety), and TM-scoreB on AG News.

Approach Sparsity=0.5

Task Acc MIA Acc TM-score

RoBERTa (Uncompressed) 89.20% 57.59% 1.55

Pr-DP 87.28% 56.07% 1.56
Pr-AdvReg 87.24% 57.58% 1.52
Pr-DMP 86.38% 56.31% 1.53
KD-DP 82.64% 56.13% 1.47
KD-AdvReg 88.10% 56.56% 1.56
KD-DMP 87.24% 56.64% 1.54
MIA-Pr 87.91% 57.04% 1.54
KL-Div 83.26% 54.09% 1.54

BMIA-SafeCompress 87.50% 55.28% 1.58
+ Adversarial Training 87.63% 54.77% 1.60

Acc to 55.28%, much lower than KD-AdvReg (56.56%). BMIA-
SafeCompress outperforms all the baselines in MIA Acc,
resulting in a high TM-score (1.58). Moreover, incorporating
BMIA-SafeCompress with Adversarial Training leads to a
further enhancement in all the metrics. The results on Yelp
dataset in Appendix C.1.3 further show the superiority of
BMIA-SafeCompress over other baselines and demonstrate
its effectiveness.

6.2 Experimental Results on WMIA-SafeCompress
CIFAR100 (VGG16). The results are reported in Table 5.
When model sparsity is set to 0.05, our approach, namely
WMIA-Safecompress, produces 67.51% for Task Acc, achiev-
ing a competitive classification accuracy among all the
baselines. In addition, our approach also decreases MIA Acc
by 15.36% compared to the uncompressed VGG16. Although
it is a little bit inferior (2.21% lower) in MIA Acc than Pr-
DMP, our approach maintains higher performance (3.98%
higher) than Pr-DMP. We also calculate the TM-score for each
approach to show its trade-off degree. It is observed that our
approach obtains the highest TM-score (1.20). Similar results
can be observed for sparsity 0.1 where WMIA-Safecompress
also achieves the highest TM-score (1.32). In total, this result
is reasonable as our framework, SafeCompress, targets a
bi-objective (safety and performance) optimization process.
Simultaneously, this result indicates that our framework
can be flexibly configured for other, even stronger attacks.
Leveraging Adversarial Training leads to a further descent
in privacy risk, especially for sparsity 0.05.

Besides CIFAR100, the experimental results on CIFAR10
and Tiny ImageNet (CV) in Appendix C.2.1 and AG News
(NLP) in Appendix C.2.2 show the effectiveness of WMIA-
SafeCompress.

6.3 Experimental Results on MMIA-SafeCompress
CIFAR100 (VGG16). As shown in Table 6, our approach,
namely MMIA-SafeCompress, achieves the most compet-
itive classification performance in both sparsity settings.
Specifically, it produces 68.13% (sparsity=0.05) for Task Acc,
just 0.60% lower than MIA-Pr (68.73%). When sparsity is
0.1, it obtains 70.48%, outperforming all the baselines in
Task Acc. At the same time, it holds the lowest MIA AccB
among all the approaches under comparison. For MIA AccW ,
although our approach is a little bit inferior to Pr-DMP,

our approach obtains relatively low MIA AccW in both
sparsity settings compared to the defense effects of the
baselines. Finally, our approach produces 1.23 (sparsity=0.05)
and 1.25 (sparsity=0.1) for TM-score, outperforming all the
baselines. The results indicate that our approach is able to
handle heterogeneous membership inference attacks and
make the performance-safety trade-off, demonstrating the
feasibility of extending our SafeCompress framework against
heterogeneous attacks.

When our approach is equipped with Adversarial Train-
ing, MIA AccB further decreases in both sparsity settings.
We also observe that Adversarial Training has an inconsistent
influence on Task Acc and MIA AccW for different sparsity
settings. Specifically, Adversarial Training improves Task
Acc when sparsity is 0.05 and brings a slight descent
when sparsity is 0.1. With Adversarial Training, MIA AccW
increases when sparsity is 0.05 and decreases when sparsity
is 0.1. This phenomenon is interesting. Since it is not our
main interest, we leave it for future exploration. Adversarial
Training further brings improvements to TM-Score for both
sparsity settings, showing its effectiveness.

Another observation is that our approach seems to pay
more attention to defending against black-box MIA than
white-box MIA. We speculate that white-box MIA is harder to
defend against than black-box one as white-box MIA involves
more information (e.g., hidden layer parameters [20] and
gradient descents in training epochs [22]). So when the two
heterogeneous attackers attack our model simultaneously,
our approach is inclined to defend against the black-box
attacker more. It could be an advantage to some extent as
the black-box attack is easier to perform compared to the
white-box one, which needs to collect extra information.
Similar situations can be seen in some baselines such as KD-
AdvReg and MIA-Pr. We consider that this phenomenon may
be general and it is interesting to find the potential reason
behind it in the future.

Besides CIFAR100, in Appendix C.3.1 and Appendix
C.3.2, we also show the performance of our approach on
CIFAR10, Tiny ImageNet, and AG News, respectively. These
results further indicate the effectiveness and generalization of
SafeCompress in defending against multiple heterogeneous
attacks.

7 RELATED WORK

In this section, we discuss related work from three aspects in-
cluding membership inference attack, membership inference
defense, and model compression.

7.1 Membership Inference Attack

Membership inference attack (MIA) [12], [20], which aims
to infer whether a data record is used to train a model
or not, has the potential to raise severe privacy risks to
individuals. A prevalent attack fashion is to train a neural
network via multiple shadow training [12], converting the
task of recognizing member and non-member of training
datasets to a binary classification problem. Unlike binary
classifier-based MIA, another attack form, metric-based MIA
that just computes metrics (e.g., prediction correctness [21]
or confidence [54], and entropy [55]) is simpler and less

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 5
Defend against white-box MIA. Task Acc (performance), MIA Acc (safety) and TM-scoreW results on CIFAR100. The best results are marked in bold.

Approach Sparsity=0.05 Sparsity=0.1

Task Acc MIA Acc TM-score Task Acc MIA Acc TM-score

VGG16 (uncompressed) 72.64% 71.58% 1.01 72.64% 71.58% 1.01

Pr-DP 31.55% 84.18% 0.37 34.99% 82.73% 0.42
Pr-AdvReg 67.96% 67.05% 1.01 68.85% 70.65% 0.97
Pr-DMP 63.53% 54.01% 1.18 65.81% 52.28% 1.26
KD-DP 36.74% 77.40% 0.47 37.25% 78.17% 0.48
KD-AdvReg 64.10% 61.27% 1.05 65.66% 63.87% 1.03
KD-DMP 62.92% 63.30% 0.99 64.55% 61.67% 1.05
MIA-Pr 68.73% 66.77% 1.03 69.89% 68.59% 1.02
KL-Div 63.97% 56.54% 1.13 63.89% 57.73% 1.11

WMIA-SafeCompress 67.51% 56.22% 1.20 70.53% 53.44% 1.32
+ Adversarial Training 68.73% 55.63% 1.24 70.51% 53.25% 1.32

TABLE 6
Defend against black-box and white-box MIAs. Task Acc (performance), MIA Acc (safety) and TM-scoreM results on CIFAR100. The best results are

marked in bold.

Approach Sparsity=0.05 Sparsity=0.1

Task Acc MIA AccB MIA AccW TM-score Task Acc MIA AccB MIA AccW TM-score

VGG16 (uncompressed) 72.64% 67.33% 71.58% 1.05 72.64% 67.33% 71.58% 1.05

Pr-DP 31.55% 80.02% 84.18% 0.38 34.99% 84.40% 82.73% 0.42
Pr-AdvReg 67.96% 62.65% 67.05% 1.05 68.85% 69.46% 70.65% 0.98
Pr-DMP 63.53% 57.78% 54.01% 1.14 65.81% 53.84% 52.28% 1.24
KD-DP 36.74% 77.96% 77.40% 0.47 37.25% 79.71% 78.17% 0.47
KD-AdvReg 64.10% 56.61% 61.27% 1.09 65.66% 58.11% 63.87% 1.08
KD-DMP 62.92% 68.97% 63.30% 0.95 64.55% 69.72% 61.67% 0.99
MIA-Pr 68.73% 62.88% 66.77% 1.06 69.89% 65.74% 68.59% 1.04
KL-Div 63.97% 55.05% 56.54% 1.15 63.89% 57.14% 57.73% 1.11

MMIA-SafeCompress 68.13% 52.32% 59.01% 1.23 70.48% 51.79% 61.60% 1.25
+ Adversarial Training 69.17% 51.23% 61.17% 1.24 70.31% 51.66% 58.66% 1.28

computational. However, the performance of metric-based
attacks is inferior to that of classifier-based attacks. Liu et
al. [56] exploit membership information from the whole
training process of a target model for improving attack
performance. Recently, membership inference attack has
been widely extended to more fields. For example, MIA
is investigated on generative models [57] and mainly focuses
on GANs [29]. Song and Raghunathan [58] introduce the first
MIA on word embedding and sentence embedding models
that map raw objects (e.g., words, sentences, and graphs)
to real-valued vectors. Duddu et al. [59] introduce the first
MIA on graph embedding models. Tseng et al. [60] present
the first MIA on self-supervised speech models under black-
box access. M4I [61] is the first to investigate membership
inference on multi-modal models. Liu et al. [42] propose the
first membership inference approach called EncoderMI for
contrastive-learning based models.

7.2 Membership Inference Defense
Considering that membership inference attack has the po-
tential to raise severe privacy risks to individuals, studying
how to defend against it becomes important. For example,
differential privacy [15], [62] (known as DP) interrupts an
attack model by adding noise to the learning object or output
of a target model. But the cost between utilization and
defense is unacceptable [63]. To improve the model utility,
Jia et al. [64] introduce Memguard, which adds carefully
computed noise to the output of a target model, aiming to
defend an attack model while keeping performance. How-
ever, Memguard is vulnerable to threshold-based attack [55].

Adversarial regularization [24], known as AdvReg, combines
a target model’s training process with that of an attack model,
formulating a min-max game. Yang et al. [65] propose Purifier
to defend inference attacks via transforming the vectors
of confidence score predicted by a target classifier. More
recently, model compression technologies (e.g., knowledge
distillation [52] and pruning [37]) have been employed to
protect member privacy. Based on knowledge distillation,
Shejwalkar and Houmansadr [16] propose Distillation For
Membership Privacy (DMP) defense, where a teacher is
trained to label an unlabeled reference dataset, and those
with low prediction entropy are selected to train a target
model. Further, Zheng et al. [66] propose complementary
knowledge distillation (CKD) and pseudo-complementary
knowledge distillation (PCKD). Tang et al. [67] propose to
leverage distillation to distill a training dataset via a novel
ensemble architecture. However, as knowledge distillation is
an indirect learning strategy [68], some critical information
may be lost while mimicking the teacher. In more recent
work [51], pruning is adopted to mitigate MIA while re-
ducing model size simultaneously. But that work mainly
focuses on preventing membership inference attack without
explicitly considering the memory restriction.

Our work aims to address the problem of safe model
compression, being different from the preceding previous
work, which mainly focuses on defending against MIA. More
specifically, our work aims to decrease the risk of privacy
attacks (e.g., MIA) and keep excellent performance when
compressing a deep neural model (e.g., DNN). Essentially,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

the target problem in our work is a bi-objective optimization
problem.

7.3 Model Compression

Due to limited memory and computation resources, model
compression [37] plays a crucial role, especially when
transformer-based big models [50], [69] become the main-
stream. To alleviate the issue, various approaches have been
proposed. For example, pruning [37], as a direct and effective
approach, removes unimportant weights or structures accord-
ing to certain criteria (e.g., weight magnitude). Knowledge
distillation [52], known as KD, transforms knowledge from
a big model (named as a teacher) to a small model (named
as a student) during training. Quantification [8] converts
a long storage width in memory to a shorter one, e.g.,
converting float (64 bit) to 8-bit integer [70], even to binary (1
bit) [71]. In addition, dynamic sparse training [19] (denoted
as DST) is proposed as a new compression approach, and
achieves surprising performance, attracting much attention
from researchers. Follow-up work further introduces weight
redistribution [72], [73], gradient-based weight growth [38],
[72], and extra weights update in the backward pass [74],
[75] to improve the sparse training performance. More
recently, the DST [76] paradigm has shown great potential to
deploy neural network models into edge devices at a large
scale. Lin et al. [77] design an algorithm-system co-design
framework to make on-device training possible with only
256KB of memory. While there exists numerous work in
model compression to balance size and performance, privacy
safety is not well considered. Differing from the preceding
work, our work considers both safety and performance
during model compression.

8 LIMITATIONS AND FUTURE WORK

As a study toward safe model compression, we have also
identified a number of possibilities of future work that may
attract more effort to this direction.

Extending SafeCompress to more heterogeneous attacks.
In practice, AI software could face various types of attacks
and even their combinations. The SafeCompress framework
follows the attack configurability principle to be able to be
configured against different attacks and has the potential to
be extended to defend against heterogeneous attacks. In this
work, we consider black-box MIA and white-box MIA, two
heterogeneous attacks, to conduct experiments across com-
puter vision and natural language processing. It is interesting
and worth expecting to include more heterogeneous attacks
in more domains as the SafeCompress framework is flexible
and easily extensible.

Benchmarking performance-safety trade-offs between
models. In this work, for any dataset, we use only one state-
of-the-art model as the original big model. Prior research [22]
has pointed out that, when two models do the same task with
similar performance, the model with more parameters may
face higher MIA risks. Then, if we compress the two models
with the same sparsity restrictions, could the statement still
stand or be overturned? Addressing this question could
significantly help the model selection process in AI software
deployment.

9 CONCLUSION

In this article, we have presented a performance-safety co-
optimization framework, called SafeCompress, to address
the problem of safe model compression, as it is critical for
current large-scale AI software deployment. SafeCompress
is a test-driven sparse training framework, which can be
easily configured to fight against pre-specified attack mech-
anisms. Specifically, by simulating the attack mechanisms,
SafeCompress performs both safety testing and performance
evaluation and iteratively updates the compressed sparse
model. Based on SafeCompress, we have implemented three
concrete instances called the BMIA-SafeCompress, WMIA-
SafeCompress, and MMIA-SafeCompress approaches against
heterogeneous membership inference attacks. Extensive
experiments have been conducted on five datasets including
three computer vision tasks and two natural language
processing tasks. The results demonstrate the effectiveness
and generalization of our framework. We have also elab-
orated on how to adopt SafeCompress to other attacks,
incorporate other training tricks into BMIA-SafeCompress,
perform SafeCompress on a bigger model and a larger
dataset, and conduct robustness analysis on the metric of
TM-score, showing the flexibility, scalability, and robustness
of SafeCompress. As a study toward safe model compression,
we expect that our work can attract more effort to this
promising direction in the new era when AI software is
increasingly prevalent.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments. This work is supported by the NSFC Grants no.
61972008, 72031001, 72071125, and 62161146003, along with
the Tencent Foundation/XPLORER PRIZE.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

APPENDIX A
A.1 Configuring SafeCompress to Other Attacks
To adapt BMIA-SafeCompress (or WMIA-SafeCompress)
to other attacks, the main modification is using another
attack mechanism instead of black-box (or white-box) MIA
in Branch 2 of Stage 2. Two examples are listed as follows.

Attribute Inference Attack. Attribute inference attack
(AIA) aims to infer private information of a user (sample),
such as age and location [34]. Suppose that a big model (e.g.,
auto-encoder [78]) is trained to obtain a representation from
a user’s movie ratings to serve downstream tasks such as
recommendation; this representation may leak the user’s
private information [79]. Then, we can simulate an attacker
A as a specific AIA approach (e.g., logistic regression [79]), or
a basket of multiple AIA approaches [34]. Note that the safety
and performance metrics also need to be modified. For safety,
the metric depends on the private attribute — e.g., to protect
age inference, the metric could be set to mean absolute error.
For performance, we can list several downstream tasks and
evaluate the learned representations’ effects on these tasks.

Model Inversion Attack. ModInv [80], [81] aims to
reconstruct data samples from a target ML model. In other
words, they allow an adversary to directly learn information
about a training dataset. For example, a ModInv adversary
could perform such an attack in a facial recognition system,
aiming to learn the facial data of a victim whose data is used
to train the model in the system. Then, we can simulate an
attacker A as a specific ModInv approach (e.g., to synthesize
the training dataset relying on GANs [29], [81]). Also, the
safety and performance metrics need to be modified.

A.2 Task Adaptability
SafeCompress can work not only for classification tasks.
While classification models are widely used as targets in
membership inference attack [42], [82], [83], [84], we adopt
classification task in our work following them. Nevertheless,
it is worth emphasizing that SafeCompress can be utilized for
other tasks as long as those tasks meet two specific criteria:
1) Big models are built by deep neural networks, e.g., DNN,
CNN, RNN, LSTM, Transformer, etc., to enable dynamic
sparse training that is operated on the neural network
connection (model weight). 2) The attack mechanism can
be simulated by a defender as SafeCompress needs to use the
simulated attacker to perform a safety testing. We conduct
a preliminary experiment by taking a medical segmentation
task for example. We use a representative UNet [85] model
to perform segmentation on Breast Ultrasound Images
Dataset [86]. We set sparsity to 0.1 with a black-box setting
and adopt segmentation membership inference [87] in our
experiment. BMIA-SafeCompress obtains 64.67% Task Acc
(mIoU) and 52.83% MIA Acc, resulting in 1.22 of TM-score
which is superior to UNet (uncompressed) under the same
100 training epochs whose TM-score is 1.20 (68.24% Task
Acc and 56.66% MIA Acc). The result indicates that our
framework also can be extended to other tasks.

APPENDIX B
B.1 Implementation Details
We perform all the experiments using Pytorch 1.8. on Ubuntu
20.04. For CV tasks, we use NVIDIA 1080Ti with the CPU of

Intel Xeon Gold 5118 (4 cores, 2.3GHz) and 16GB memory.
We train big models with batch size 128 for 200 epochs. For
NLP tasks, we use NVIDIA 3090 with the CPU of Intel Xeon
Gold 5218 (6 cores, 2.3GHz) and 40 GB memory. The batch
size is 256 and the training lasts for 10 epochs.

In SafeCompress, for dynamic sparse training, we simply
follow previous work [36] and use its default hyperparam-
eters, e.g., SGD optimizer, learning rate 0.1, and multi-step
decay strategy for the learning rate. We only prolong the
training epochs from 250 to 300 to help a sparse model
enumerate more sparse topology structures. In the fine-
tuning process, we set the batch size to 128 with Adam
optimizer whose weight decay is set to 0.05 and betas is set
to (0.9, 0.999) by default. We leverage a small learning rate
5e− 4 and train until it is converged (usually 5 ∼ 10 epochs).
To simulate the attacker, following previous work [20],
[24], [39], we adopt ReLu as the activation function in our
attack neural network models. All the network weights are
initialized with normal distribution, and all biases are set to 0
by default. The batch size is 128. We use the Adam optimizer
with a learning rate of 0.001 and we train the attack models
100 epochs. During the training process, we ensure that every
training batch contains the same number of member and non-
member data samples, aiming to prevent the attack model
from being biased toward either side.

APPENDIX C
C.1 Experimental Results on BMIA-SafeCompress
C.1.1 Potential Tapping
We also explore other six aspects of our framework based on
BMIA-SafeCompress. Time Consumption. Table 7 reports
the time consumption for each approach to get a compressed
model (sparsity = 0.05) on CIFAR100. In general, almost all
the approaches (except Pr-DP) can finish compression in 1–5
hours, and the time consumption of BMIA-SafeCompress
is comparable to that of others. Considering that BMIA-
SafeCompress can achieve the best performance-safety bal-
ance (from our previous experiment results), the time con-
sumption of BMIA-SafeCompress is generally acceptable in
practice. Note that we only need to run BMIA-SafeCompress
once to get a compressed model, and the model can then be
deployed in hundreds of thousands of devices repeatedly.

Further, we provide a detailed analysis of training over-
head below. In our framework, we only perform Stage 1 once,
which requires little time (around 2s for VGG16) and thereby
can be ignored. Stage 3 is simply about testing and also does
not need much time. Hence, almost the whole training time
is occupied by Stage 2 including sparse model training and
attack mechanism simulation. Here, the time consumption
of dynamic sparse update could be incorporated into sparse
model training as the two steps are close: dynamic sparse
update is triggered when the pre-defined iteration of sparse
model training is over. We take VGG16 on CIFAR100 in
Table 7 for example to illustrate the constitution of time
consumption for each part. In our experiment, we find
attack mechanism simulation consumes 2.8 hours (70%). This
consumption is more than 1.2 hours (30%) of sparse model
training. This result could be reasonable as attack mechanism
simulation is reemployed for each update. It could be helpful
to design new strategies of attack mechanism simulation to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 7
Time consumption on CIFAR100. VGG16 is the uncompressed model. Others are compressed with sparsity 0.05.

Approach VGG16 (uncompressed) Pr-DP Pr-AdvReg Pr-DMP KD-DP KD-AdvReg KD-DMP MIA-Pr KL-Div BMIA-SafeCompress

Time (h) 1.05 16.90 2.92 4.75 4.89 2.22 1.42 2.37 2.27 3.98

TABLE 8
Using other training tricks in BMIA-SafeCompress.

Trick Vanilla Dropout Aug AdvReg BigPara KD

Task Acc 69.52% 69.43% 62.03% 68.86% 68.52% 70.02%
MIA Acc 51.75% 53.94% 65.46% 52.96% 52.05% 53.10%

TM-score 1.35 1.29 0.95 1.30 1.32 1.32

TABLE 9
Different settings of λ for TM-scoreB on CIFAR100.

Approach Coefficient λ

0.8 0.9 1 1.1 1.2

VGG16 (uncompressed) 0.46 0.70 1.08 1.66 2.54

Pr-DP 0.20 0.28 0.39 0.56 0.79
Pr-AdvReg 0.47 0.71 1.08 1.65 2.52
Pr-DMP 0.48 0.73 1.10 1.67 2.52
KD-DP 0.23 0.33 0.47 0.68 0.97
KD-AdvReg 0.49 0.75 1.13 1.72 2.60
KD-DMP 0.40 0.60 0.91 1.38 2.09
MIA-Pr 0.47 0.72 1.09 1.67 2.55
KL-Div 0.51 0.77 1.16 1.76 2.67

BMIA-SafeCompress 0.58 0.88 1.34 2.05 3.14

alleviate this issue. Since it is not our main focus, we will
leave it as future work.

Best-performing Selection Strategy in Safety Test. In
SafeCompress, we only keep the best-performing model in
the safety testing due to time consumption. Given that we
keep two models each time, the number of models sent
back to “Stage 2” will be double, e.g., 2, 4, 8, 16, and
the time consumption for training will be exponentially
growing. The cost is unbearable as the whole training
process involves about 30 times of updates, resulting in
230 models left. Hence, we keep only the best-performing
model. This choice will potentially result in the local optima.
Nevertheless, considering the saved time consumption and
that our approach performs the best among all solutions
in various experiments, it is bearable for possibly being
local optima. We also conduct an experiment by keeping no
more than 4 candidate models after the safety testing using
VGG16 in CIFAR100 with sparsity set to 0.05. The whole time
consumption is 15.36 hours, more than 4 times of our default
setting (3.98 h). For the performance, this strategy produces
69.65% for Task Acc and 51.72% for MIA Acc. Compared to
our default setting (69.52% Task Acc and 51.75% MIA Acc),
the improvement is marginal, empirically demonstrating that
the best-performing selection strategy in SafeCompress is
more reasonable in light of the performance and significantly
saved time consumption.

Flexibility with Other Training Tricks. It is worth
noting that SafeCompress is also flexible to incorporate other
training tricks not mentioned in previous experiments. To

illustrate this flexibility, we try to incorporate five other
widely-used training tricks in BMIA-SafeCompress, includ-
ing dropout [88], data augmentation (Aug, including random
cropping, resizing, and flipping), adversary regularization
(AdvReg), sparse model initialization with the big model’s pa-
rameter values (BigPara), and knowledge distillation (KD) where
the sparse model’s prediction score approximates the big
model’s [52]. Table 8 shows the results of CIFAR100.

Compared to our BMIA-SafeCompress implementation in
main experiments, we find that most training tricks achieve
similar TM-scores. The result indicates that SafeCompress
is compatible with most training tricks. Then, in practice,
given a specific dataset/task, we could enumerate different
combinations of training tricks and find the best one in the
SafeCompress framework.

Another interesting observation is that data augmentation
significantly increases MIA Acc (i.e., reduces safety) for the
final compressed model. The possible reason is that data
augmentation allows training samples to be memorized
more easily, as the variants of original samples (e.g., flipping
and resizing) are also used for training. Notably, while not
focusing on compressed sparse models, Yu et al. also point
out that data augmentation may lead to a significantly higher
MIA risk [89]. Inspired by the work [89], SafeCompress
may also be extended to a useful framework to benchmark
different training tricks’ impacts on compressed models’
safety. This task could be an interesting future direction.

Scale to Big Model and Large Dataset. In SafeCompress,
we use CIFAR10, CIFAR100, and Tiny ImageNet in our
experiment as they are widely used in membership inference
attacks in previous work [42], [82], [83], [84]. To demonstrate
the scalability, we scale model size by using ResNet50 [46]
and train on a large dataset ImageNet [53]. We set sparsity to
0.1 following previous work [36] with a black-box setting. In
our experiment, BMIA-SafeCompress obtains 73.80% Task
Acc and 56.67% MIA Acc, resulting in 1.3 of TM-score which
is superior to ResNet50 (uncompressed) under the same 100
training epochs whose TM-score is 1.16 (76.13% Task Acc
and 65.23% MIA Acc). The result indicates that our approach
is also scalable.

Robustness on Metric Variants over Baselines. We can
achieve different requirements for safety and performance
in our approach by adjusting the coefficient λ (e.g., 0.8, 0.9,
1.0, 1.1, and 1.2) of the TM-score. To show whether our
approach is robust to this situation over the other eight
baselines, we illustrate the results of CIFAR100 in Table 9. It
is observed that BMIA-SafeCompress performs the best over
other baselines among all the settings. This result indicates
that BMIA-SafeCompress is capable of meeting different
degrees of safety and performance balance over baselines.
This result also implies that our SafeCompress may naturally
have the property of robustness against metric alteration to
some extent.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 10
Results on CIFAR100 with sparsity 0.05. We repeat three times and report the mean result and standard error.

Approach Task Acc MIA Acc TM-score

VGG16 (uncompressed) 72.70± 0.06 67.87± 0.52 1.07± 0.0081

Pr-DP 31.64± 0.11 80.14± 0.11 0.39± 0.0014
Pr-AdvReg 67.93± 0.05 62.75± 0.16 1.08± 0.0023
Pr-DMP 63.44± 0.15 57.78± 0.24 1.10± 0.0024
KD-DP 36.81± 0.24 78.08± 0.12 0.47± 0.0025
KD-AdvReg 64.25± 0.14 56.73± 0.14 1.13± 0.0008
KD-DMP 62.98± 0.17 69.08± 0.19 0.91± 0.0003
MIA-Pr 68.75± 0.19 62.84± 0.24 1.09± 0.0014
KL-Div 63.98± 0.10 55.10± 0.32 1.16± 0.0050

BMIA-SafeCompress 69.63± 0.14 52.04± 0.21 1.34± 0.0048

TABLE 11
Defend against black-box MIA. Task Acc (performance), MIA Acc (safety) and TM-scoreB results on CIFAR10. The best results are marked in bold.

Approach Sparsity=0.05 Sparsity=0.1

Task Acc MIA Acc TM-score Task Acc MIA Acc TM-score

AlexNet (uncompressed) 87.41% 58.34% 1.50 87.41% 58.34% 1.50

Pr-DP 54.57% 68.35% 0.80 62.87% 66.49% 0.95
Pr-AdvReg 82.72% 52.74% 1.57 86.19% 54.83% 1.57
Pr-DMP 81.66% 55.63% 1.47 83.73% 54.05% 1.55
KD-DP 72.09% 59.94% 1.20 73.27% 60.42% 1.21
KD-AdvReg 80.47% 54.38% 1.48 86.84% 55.59% 1.56
KD-DMP 82.23% 61.63% 1.33 86.26% 63.45% 1.36
MIA-Pr 82.26% 53.15% 1.55 86.11% 56.12% 1.53
KL-Div 63.89% 52.00% 1.23 72.19% 53.21% 1.36

BMIA-SafeCompress 83.94% 52.97% 1.59 85.31% 52.37% 1.63
+ Adversarial Training 84.20% 53.12% 1.59 85.38% 52.52% 1.63

TABLE 12
Defend against black-box MIA. Task Acc (performance), MIA Acc (safety) and TM-scoreB results on Tiny ImageNet. The best results are marked in

bold.

Approach Sparsity=0.05 Sparsity=0.1

Task Acc MIA Acc TM-score Task Acc MIA Acc TM-score

ResNet18 (uncompressed) 65.48% 69.73% 0.94 65.48% 69.73% 0.94

Pr-DP 19.26% 71.07% 0.27 24.56% 74.17% 0.33
Pr-AdvReg 60.10% 57.62% 1.04 61.16% 63.93% 0.96
Pr-DMP 55.56% 60.03% 0.92 59.61% 64.56% 0.92
KD-DP 17.10% 52.32% 0.33 17.45% 52.44% 0.33
KD-AdvReg 52.34% 53.27% 0.98 54.48% 53.60% 1.02
KD-DMP 53.71% 57.18% 0.94 57.16% 55.65% 1.03
MIA-Pr 58.36% 57.92% 1.01 60.91% 61.03% 1.00
KL-Div 48.22% 55.26% 0.87 56.82% 57.19% 0.99

BMIA-SafeCompress 63.81% 52.46% 1.22 65.15% 52.79% 1.24
+ Adversarial Training 63.12% 51.38% 1.23 64.24% 52.01% 1.24

Statistical Analysis with Multiple Runs. Due to the
stochastic nature of optimization algorithms and DNN
training procedures, we conduct multiple runs in a case
to present a statistical analysis. We use BMIA-Safecompress
using VGG16 on CIFAR100 with sparsity set to 0.05. We run
each approach three times with random seeds and report the
results in Tab 10. One can see that our approach is statistically
superior to others. To further support our conclusion, we
perform a statistical test using the student’s t test (considering
the sample numbers) and compare the P value with that of
the best-performing baseline on each metric. For Task Acc,
we compare BMIA-SafeCompress with MIA-Pr, and the P
value is 0.007, smaller than the default alpha level (0.01). For
MIA Acc, we compare BMIA-SafeCompress with KL-Div,

and the P value is 0.0004 (0.0004 < 0.01). As for TM-Score,
we compare BMIA-SafeCompress with KL-Div. The P value
(1.2e − 5) is also smaller than 0.01. These results show our
conclusion is significant.

C.1.2 Results on CV Datasets

CIFAR10 (AlexNet). The results on CIFAR10 are presented in
Table 11. It can be seen that BMIA-SafeCompress obtains al-
most the best performance in Task Acc and maintains a pretty
strong defensive ability when sparsity is 0.05. Thanks to the
excellent effectiveness in both aspects, BMIA-SafeCompress
produces the highest TM-score, showing its outstanding
ability to make the performance-safety trade-off. When the
sparsity is set to 0.1, our approach produces 85.31% for Task

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

TABLE 13
Defend against black-box MIA. Task Acc, MIA Acc, and TM-scoreB on

Yelp-5.

Approach Sparsity=0.5

Task Acc MIA Acc TM-score

BERT (Uncompressed) 62.21% 71.15% 0.87

Pr-DP 60.77% 64.79% 0.94
Pr-AdvReg 61.17% 73.34% 0.83
Pr-DMP 61.32% 66.41% 0.92
KD-DP 58.21% 65.36% 0.89
KD-AdvReg 61.38% 67.40% 0.91
KD-DMP 59.69% 70.25% 0.85
MIA-Pr 61.80% 73.85% 0.84
KL-Div 60.03% 64.24% 0.93

BMIA-SafeCompress 61.66% 64.37% 0.96
+ Adversarial Training 62.63% 64.90% 0.97

ACC, slightly inferior to the best result (86.84%) produced
by KD-AdvReg. However, BMIA-SafeCompress decreases
MIA Acc to 52.37%, much lower than KD-AdvReg (55.59%),
leading to the highest TM-score again. Finally, leveraging
Adversarial Training leads to further improvement in Task
Acc at the cost of a slight increase in MIA Acc.

Tiny ImageNet (ResNet18). We present the results of
Tiny ImageNet in Table 12. Excitingly, BMIA-SafeCompress
produces the best accuracy for Task Acc in both sparsity
0.05 and 0.1, outperforming all the baselines by a large mar-
gin. In addition, BMIA-SafeCompress obtains competitive
MIA Acc in both sparsity settings compared to the best
defense effects of baselines. Specifically, BMIA-SafeCompress
achieves 52.46% (sparsity 0.05) and 52.79% (sparsity 0.1) in
MIA Acc; The best MIA Acc results among baselines are
52.32% (sparsity 0.05) and 52.44% (sparsity 0.1). The gaps
are tiny (0.14% and 0.35%). Finally, BMIA-SafeCompress (+
Adversarial Training) achieves the best TM-score in both
sparsity settings.

C.1.3 Results on NLP Dataset
Yelp-5 (BERT). The results are reported in Table 13. It can
be seen that BMIA-SafeCompress produces a competitive
Task Acc. At the same time, it decreases MIA Acc by 6.78%
compared to the uncompressed model, outperforming all
the baselines. BMIA-SafeCompress produces 0.96 for the
TM-score, indicating its ability to balance task performance
and safety. Besides, when attaching Adversarial Training
to BMIA-SafeCompress, we further improve the Task Acc,
leading to the highest TM-score.

C.2 Experimental Results on WMIA-SafeCompress

C.2.1 Results on CV Datasets
CIFAR10 (AlexNet). We provide results as shown in Table 14
to further show the effectiveness. It can be seen that WMIA-
SafeCompress obtains a very competitive performance in
Task Acc and maintains a pretty strong defensive ability
when sparsity is 0.05. As a result, WMIA-SafeCompress
produces the highest TM-score, showing its outstanding
ability to make the performance-safety trade-off. When the
sparsity is set to 0.1, our approach produces 83.08% for
Task ACC, inferior to the best result (86.84%) produced

by KD-AdvReg. However, WMIA-SafeCompress decreases
MIA Acc to 52.38%, much lower than KD-AdvReg (56.95%),
leading to the highest TM-score again (the same as KD-DMP).
Finally, incorporating Adversarial Training with WMIA-
SafeCompress leads to a further improvement in Task Acc at
the cost of a relatively slight increase of MIA Acc, especially
for sparsity 0.05.

Tiny ImageNet (ResNet18). The results on Tiny ImageNet
here as shown in Table 15. Excitingly, WMIA-SafeCompress
produces the best accuracy for Task Acc in both sparsity
0.05 and 0.1, outperforming all the baselines by a large
margin. Additionally, WMIA-SafeCompress obtains rela-
tively low MIA Acc in both sparsity settings compared to
the defense effects of baselines. Specifically, the best MIA
Acc results among baselines are 51.09% (sparsity 0.05) and
51.17% (sparsity 0.1) that are both produced by KD-DP
costing at intolerable performance drop; The worst MIA
Acc results among baselines are 63.77% (sparsity 0.05) and
70.37% (sparsity 0.1) that are both produced by Pr-AdvReg;
In contrast, WMIA-SafeCompress performs slightly well,
achieving 53.09% (sparsity 0.05) and 54.23% (sparsity 0.1) in
MIA Acc and obtaining the best TM-score in both sparsity
settings. Finally, equipping with Adversarial Training greatly
decreases privacy risk, especially for sparsity 0.1 where the
TM-score rises to 1.18, outperforming other baselines by a
large margin.

C.2.2 Results on NLP Dataset
AG News (RoBERTa). To further validate the effectiveness
and generalization of WMIA-SafeCompress, we conduct
experiments on AG News. As indicated in Table 16, WMIA-
SafeCompress obtains a competitive performance in Task
Acc achieving 87.31%, slightly inferior to the highest 88.10%
produced by KD-AdvReg. However, our approach decreases
MIA Acc to 55.75%, lower than KD-AdvReg (56.33%).
When comparing with KD-DP, we observe that WMIA-
SafeCompress is a little bit inferior to KD-DP in defense,
but outperforms KL-Div by a large margin in Task Acc. As a
result, WMIA-SafeCompress achieves the highest TM-score,
showing its great trade-off capability. Finally, leveraging
Adversarial Training leads to a further enhancement in all
the metrics.

C.3 Experimental Results on MMIA-SafeCompress
C.3.1 Results on CV Datasets
CIFAR10 (AlexNet). We present results on CIFAR10 in
Table 17. It is observed that MMIA-SafeCompress achieves
competitive classification performance among all baselines
in both sparsity. It also decreases MIA AccB and MIA AccW
compared to the uncompressed model, greatly improving
the defense capability of the compressed model. Further,
we can see that MMIA-SafeCompress produces the highest
TM-score, demonstrating its outstanding capability to make
the performance-safety trade-off. Besides, equipping MMIA-
SafeCompress with Adversarial Training leads to great
improvement in Task Acc and generally strengthens model
defense ability. Consequently, these enhancements contribute
to further boosting in TM-score.

Tiny ImageNet (ResNet18). The results on Tiny ImageNet
are presented in Table 18. It is easily seen that MMIA-
SafeCompress produces 62.23% (sparsity=0.05) and 63.53%

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

TABLE 14
Defend against white-box MIA. Task Acc (performance), MIA Acc (safety) and TM-scoreW results on CIFAR10. The best results are marked in bold.

Approach Sparsity=0.05 Sparsity=0.1

Task Acc MIA Acc TM-score Task Acc MIA Acc TM-score

AlexNet (uncompressed) 87.41% 59.13% 1.48 87.41% 59.13% 1.48

Pr-DP 54.57% 52.83% 1.03 62.87% 54.23% 1.16
Pr-AdvReg 82.72% 54.84% 1.51 86.19% 57.82% 1.49
Pr-DMP 81.66% 53.69% 1.52 83.73% 54.84% 1.53
KD-DP 72.09% 50.95% 1.41 73.27% 50.88% 1.44
KD-AdvReg 80.47% 54.91% 1.47 86.84% 56.95% 1.52
KD-DMP 82.23% 54.27% 1.52 86.26% 54.09% 1.59
MIA-Pr 82.26% 55.48% 1.48 86.11% 58.14% 1.48
KL-Div 63.89% 52.32% 1.22 72.19% 53.32% 1.35

WMIA-SafeCompress 81.33% 53.03% 1.53 83.08% 52.38% 1.59
+ Adversarial Training 83.38% 53.32% 1.56 84.70% 53.34% 1.59

TABLE 15
Defend against white-box MIA. Task Acc (performance), MIA Acc (safety) and TM-scoreW results on Tiny ImageNet. The best results are marked in

bold.

Approach Sparsity=0.05 Sparsity=0.1

Task Acc MIA Acc TM-score Task Acc MIA Acc TM-score

ResNet18 (uncompressed) 65.48% 80.15% 0.82 65.48% 80.15% 0.82

Pr-DP 19.26% 60.88% 0.32 24.56% 66.98% 0.37
Pr-AdvReg 60.10% 63.77% 0.94 61.16% 70.37% 0.87
Pr-DMP 55.56% 57.72% 0.96 59.61% 58.72% 1.02
KD-DP 17.10% 51.09% 0.33 17.45% 51.17% 0.34
KD-AdvReg 52.34% 58.08% 0.90 54.48% 54.81% 0.99
KD-DMP 53.71% 55.65% 0.97 57.16% 54.45% 1.05
MIA-Pr 58.36% 58.66% 0.99 60.91% 69.47% 0.88
KL-Div 48.22% 54.78% 0.88 56.82% 54.96% 1.03

WMIA-SafeCompress 60.86% 53.09% 1.15 61.57% 54.23% 1.14
+ Adversarial Training 59.50% 51.85% 1.15 60.81% 51.72% 1.18

TABLE 16
Defend against white-box MIA. Task Acc, MIA Acc, and TM-scoreW on

AG News.

Approach Sparsity=0.5

Task Acc MIA Acc TM-score

RoBERTa (Uncompressed) 89.20% 57.43% 1.55

Pr-DP 87.28% 55.96% 1.56
Pr-AdvReg 87.24% 56.12% 1.55
Pr-DMP 86.38% 55.28% 1.56
KD-DP 82.64% 53.02% 1.56
KD-AdvReg 88.10% 56.33% 1.56
KD-DMP 87.24% 55.95% 1.56
MIA-Pr 87.91% 57.25% 1.54
KL-Div 83.26% 54.18% 1.54

WMIA-SafeCompress 87.31% 55.75% 1.57
+ Adversarial Training 87.63% 55.06% 1.59

(sparsity=0.1) for Task Acc, outperforming all baselines by
a large margin. In addition, MMIA-SafeCompress main-
tains considerable defense capability. For example, it holds
the lowest MIA AccB and the second-lowest MIA AccW
when the sparsity is set to 0.05. Thus, MMIA-SafeCompress
achieves the highest TM-score in both sparsity and even
outperforms the other eight approaches by a large mar-
gin. When combined with Adversarial Training, MMIA-
SafeCompress further enhances defense ability via costing at

a slight performance drop and brings little bad influence to
the final TM-score.

C.3.2 Results on NLP Datasets
AG News (RoBERTa). We further conduct experiments on
AG News to validate the effectiveness and generalization of
MMIA-SafeCompress. The results are reported in Table 19.
It can be seen that MMIA-SafeCompress achieves a com-
petitive performance in Task Acc among all the approaches.
Moreover, MMIA-SafeCompress maintains considerable de-
fense capability. For example, it holds the second-lowest
MIA AccB and the third-lowest MIA AccW . Consequently,
these advantages lead MMIA-SafeCompress to the highest
TM-score. Further, combining MMIA-SafeCompress with
Adversarial Training improves the task performance and
defense ability against the black-box attack while causing
a slightly increased risk for white-box attack. Finally, such
alterations bring little bad influence on TM-score.

APPENDIX D
D.1 Discussion about trade-off between performance,
safety, compressed models, and time costs

First, the size to which a big model should be compressed is
determined by the scenario or the requirements. For example,
to deploy AI software on smartphones, when one hopes the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

TABLE 17
Defend against black-box and white-box MIAs. Task Acc (performance), MIA Acc (safety) and TM-scoreM results on CIFAR10. The best results are

marked in bold.

Approach Sparsity=0.05 Sparsity=0.1

Task Acc MIA AccB MIA AccW TM-score Task Acc MIA AccB MIA AccW TM-score

AlexNet (uncompressed) 87.41% 58.34% 59.13% 1.49 87.41% 58.34% 59.13% 1.49

Pr-DP 54.57% 68.35% 52.83% 0.92 62.87% 66.49% 54.23% 1.05
Pr-AdvReg 82.72% 52.74% 54.84% 1.53 86.19% 54.83% 57.82% 1.53
Pr-DMP 81.66% 55.63% 53.69% 1.49 83.73% 54.05% 54.84% 1.54
KD-DP 72.09% 59.94% 50.95% 1.31 73.27% 60.42% 50.88% 1.33
KD-AdvReg 80.47% 54.38% 54.91% 1.52 86.84% 55.59% 56.95% 1.54
KD-DMP 82.23% 61.63% 54.27% 1.42 86.26% 63.45% 54.09% 1.48
MIA-Pr 82.26% 53.15% 55.48% 1.52 86.11% 56.12% 58.14% 1.51
KL-Div 63.89% 52.00% 52.32% 1.22 72.19% 53.21% 53.32% 1.36

MMIA-SafeCompress 81.64% 51.79% 54.98% 1.53 83.98% 52.81% 55.86% 1.55
+ Adversarial Training 83.29% 50.28% 54.70% 1.59 85.12% 54.21% 54.94% 1.56

TABLE 18
Defend against black-box and white-box MIAs. Task Acc (performance), MIA Acc (safety) and TM-scoreM results on Tiny ImageNet. The best results

are marked in bold.

Approach Sparsity=0.05 Sparsity=0.1

Task Acc MIA AccB MIA AccW TM-score Task Acc MIA AccB MIA AccW TM-score

ResNet18 (uncompressed) 65.48% 69.73% 80.15% 0.88 65.48% 69.73% 80.15% 0.88

Pr-DP 19.26% 71.07% 60.88% 0.29 24.56% 74.17% 66.98% 0.35
Pr-AdvReg 60.10% 57.62% 63.77% 0.99 61.16% 63.93% 70.37% 0.91
Pr-DMP 55.56% 60.30% 57.72% 0.94 59.61% 64.56% 58.72% 0.97
KD-DP 17.10% 52.32% 51.09% 0.33 17.45% 52.44% 51.17% 0.34
KD-AdvReg 52.34% 53.27% 58.08% 0.94 54.48% 53.60% 54.81% 1.01
KD-DMP 53.71% 57.18% 55.65% 0.95 57.16% 55.65% 54.45% 1.04
MIA-Pr 58.36% 57.92% 58.66% 1.00 60.91% 61.03% 69.47% 0.94
KL-Div 48.22% 55.26% 54.78% 0.88 56.82% 57.19% 54.96% 1.01

MMIA-SafeCompress 62.23% 50.59% 54.13% 1.19 63.53% 53.09% 56.34% 1.16
+ Adversarial Training 61.76% 50.28% 53.55% 1.19 62.51% 52.77% 55.94% 1.15

TABLE 19
Defend against black-box and white-box MIAs. Task Acc, MIA AccB , MIA

AccW , and TM-scoreM on AG News.

Approach Sparsity=0.5

Task Acc MIA AccB MIA AccW TM-score

RoBERTa (Uncompressed) 89.20% 57.59% 57.43% 1.55

Pr-DP 87.28% 56.07% 55.96% 1.56
Pr-AdvReg 87.24% 57.58% 56.12% 1.53
Pr-DMP 86.38% 56.31% 55.28% 1.55
KD-DP 82.64% 56.13% 53.02% 1.52
KD-AdvReg 88.10% 56.56% 56.33% 1.56
KD-DMP 87.24% 56.64% 55.95% 1.55
MIA-Pr 87.91% 57.04% 57.25% 1.54
Kl-Div 83.26% 54.09% 54.18% 1.54

MMIA-SafeCompress 87.04% 55.92% 55.04% 1.57
+ Adversarial Training 87.31% 55.45% 55.65% 1.57

deployed size is 10% of an original uncompressed one, the
sparsity is 0.1. Secondly, to balance the trade-off between
performance and safety, we can simply adjust the coefficient
λ of the TM-score in Eq (6). For example, a user may think
safety is more important than performance, and therefore she
can decrease λ to a smaller value; Otherwise, she can increase
λ to a bigger value. In most experiments, we set λ = 1 by
default as we consider performance and safety to be equally

important. We also conduct experiments with different λ
presented in Figure 5 in our article. As for time costs, it is
related to the training times of SafeCompress. Theoretically,
we can stop at any time. In general, the more the training
time is (if we do not consider overfitting), the better the
performance is. Hence, we could predefine a number of
training iterations to balance the time consumption and
performance.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” Advances
in Neural Information Processing Systems (NeurIPS), pp. 1106–1114,
2012.

[2] Z. Zhang, Y. Li, J. Wang, B. Liu, D. Li, X. Chen, Y. Guo, and
Y. Liu, “ReMoS: Reducing Defect Inheritance in Transfer Learning
via Relevant Model Slicing,” in Proceedings of the 44th International
Conference on Software Engineering (ICSE), 2022, pp. 1856–1868.

[3] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton,
A. Susano Pinto, D. Keysers, and N. Houlsby, “Scaling Vision
with Sparse Mixture of Experts,” Advances in Neural Information
Processing Systems (NeurIPS), pp. 8583–8595, 2021.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
Models are Few-Shot Learners,” Advances in Neural Information
Processing Systems (NeurIPS), pp. 1877–1901, 2020.

[5] W. W. Pugh, “Compressing Java Class Files,” in Proceedings of the
1999 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 1999, pp. 247–258.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

[6] M. Drinić, D. Kirovski, and H. Vo, “PPMexe: Program Compres-
sion,” ACM Transactions on Programming Languages and Systems
(TOPLAS), 2007.

[7] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu,
“TinyBERT: Distilling BERT for Natural Language Understanding,”
arXiv preprint arXiv:1909.10351, 2019.

[8] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and
Connections for Efficient Neural Networks,” Advances in Neural
Information Processing Systems (NeurIPS), pp. 1135–1143, 2015.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[10] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding ,” arXiv preprint arXiv:1804.07461, 2018.

[11] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The
Secret Sharer: Evaluating and Testing Unintended Memorization in
Neural Networks,” in 28th USENIX Security Symposium (USENIX
Security), 2019, pp. 267–284.

[12] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” 2017 IEEE
Symposium on Security and Privacy (SP), pp. 3–18, 2017.

[13] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model Compression and
Hardware Acceleration for Neural Networks: A Comprehensive
Survey,” Proceedings of the IEEE, pp. 485–532, 2020.

[14] Y. Liu, S. Gao, A. Huang, J. Zhu, L. Xu, and A. Nathan, “Ensemble
Learning-Based Technique for Force Classifications in Piezoelectric
Touch Panels,” IEEE Sensors Journal, pp. 9540–9549, 2020.

[15] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep Learning with Differential Privacy,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016, pp. 308–318.

[16] V. Shejwalkar and A. Houmansadr, “Membership Privacy for Ma-
chine Learning Models Through Knowledge Transfer,” Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pp. 9549–9557,
2021.

[17] X. Yuan and L. Zhang, “Membership Inference Attacks and
Defenses in Neural Network Pruning,” in 31st USENIX Security
Symposium (USENIX Security), 2022, pp. 4561–4578.

[18] K. L. Beck, “Test-driven Development - By example,” in The Addison-
Wesley Signature Series, 2003.

[19] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu,
and A. Liotta, “Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science,” Nature
Communications, pp. 1–12, 2018.

[20] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou,
“White-box vs Black-box: Bayes Optimal Strategies for Membership
Inference,” in Proceedings of International Conference on Machine
Learning (ICML), 2019, pp. 5558–5567.

[21] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy Risk
in Machine Learning: Analyzing the Connection to Overfitting,”
in Proceedings of the 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), 2018, pp. 268–282.

[22] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy
Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning,” in Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp.
739–753.

[23] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang,
“Membership Inference Attacks on Machine Learning: A Survey,”
ACM Computing Surveys (CSUR), pp. 235:1–235:37, 2022.

[24] M. Nasr, R. Shokri, and A. Houmansadr, “Machine Learning with
Membership Privacy using Adversarial Regularization,” Proceed-
ings of the ACM Conference on Computer and Communications Security
(CCS), pp. 634–646, 2018.

[25] J. Zhu, L. Wang, and X. Han, “Safety and Performance, Why
not Both? Bi-Objective Optimized Model Compression toward
AI Software Deployment,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2022, pp. 1–13.

[26] P. V. et al., “Scipy 1.0: fundamental algorithms for scientific
computing in python,” Nature Methods, pp. 261 – 272, 2020.

[27] D. C. Mocanu et al., Network computations in artificial intelligence.
Technische Universiteit Eindhoven, 2017.

[28] L. Ma, X. Ma, J. Gao, X. Jiao, Z. Yu, C. Zhang, W. Ruan, Y. Wang,
W. Tang, and J. Wang, “Distilling Knowledge from Publicly

Available Online EMR Data to Emerging Epidemic for Prognosis,”
in Proceedings of the Web Conference (WWW), 2021, pp. 3558–3568.

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” Communications of the ACM, pp. 139–144, 2020.

[30] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards Deep Learning Models Resistant to Adversarial Attacks,”
arXiv preprint arXiv:1706.06083, 2017.

[31] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks,”
in Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 2223–2232.

[32] T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial Training
Methods for Semi-Supervised Text Classification,” arXiv preprint
arXiv:1605.07725, 2016.

[33] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial Training for
Free!” Advances in Neural Information Processing Systems (NeurIPS),
2019.

[34] X. Han, H. Huang, and L. Wang, “F-PAD: Private Attribute
Disclosure Risk Estimation in Online Social Networks,” IEEE
Transactions on Dependable and Secure Computing (TDSC), pp. 1054–
1069, 2019.

[35] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu,
and A. Liotta, “Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science,” Nature
Communications, pp. 1–12, 2018.

[36] S. Liu, L. Yin, D. C. Mocanu, and M. Pechenizkiy, “Do We
Actually Need Dense Over-Parameterization? In-Time Over-
Parameterization in Sparse Training,” in Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021, pp. 6989–
7000.

[37] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding,” arXiv preprint arXiv:1510.00149, 2015.

[38] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging the
Lottery: Making All Tickets Winners,” in Proceedings of International
Conference on Machine Learning (ICML), 2020, pp. 2943–2952.

[39] Y. Liu, R. Wen, X. He, A. Salem, Z. Zhang, M. Backes, E. De Cristo-
faro, M. Fritz, and Y. Zhang, “ML-Doctor: Holistic Risk Assessment
of Inference Attacks Against Machine Learning Models,” arXiv
preprint arXiv:2102.02551, 2021.

[40] J. Zhu, H. Huang, B. Li, and L. Wang, “E-CRF: Embedded
Conditional Random Field for Boundary-caused Class Weights
Confusion in Semantic Segmentation,” in Proceedings of the Eleventh
International Conference on Learning Representations (ICLR), 2022.

[41] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
Unintended Feature Leakage in Collaborative Learning,” in Pro-
ceedings of the 2019 IEEE Symposium on Security and Privacy (SP),
2019, pp. 691–706.

[42] H. Liu, J. Jia, W. Qu, and N. Z. Gong, “EncoderMI: Membership
Inference against Pre-trained Encoders in Contrastive Learning,”
in Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2021, pp. 2081–2095.

[43] A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of
Features from Tiny Images,” 2009.

[44] K. Simonyan and A. Zisserman, “Very Deep Convolutional Net-
works for Large-Scale Image Recognition,” Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2015.

[45] Y. Le and X. Yang, “Tiny ImageNet Visual Recognition Challenge,”
CS 231N, p. 3, 2015.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[47] G. M. Del Corso, A. Gulli, and F. Romani, “Ranking A Stream of
News,” in Proceedings of the 14th international conference on World
Wide Web (WWW), 2005, pp. 97–106.

[48] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized
BERT Pretraining Approach,” arXiv preprint arXiv:1907.11692, 2019.

[49] X. Zhang, J. Zhao, and Y. LeCun, “Character-level Convolutional
Networks for Text Classification,” Advances in Neural Information
Processing Systems (NeurIPS), pp. 649–657, 2015.

[50] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

[51] Y. Wang, C. Wang, Z. Wang, S. Zhou, H. Liu, J. Bi, C. Ding, and
S. Rajasekaran, “Against Membership Inference Attack: Pruning
is All You Need,” in Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence (IJCAI), 2021, pp. 3141–3147.

[52] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the Knowledge in a
Neural Network,” arXiv preprint arXiv:1503.02531, 2015.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proceedings of the 2009
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009, pp. 248–255.

[54] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models,”
in Proceedings of Network and Distributed Systems Security (NDSS)
Symposium, 2019.

[55] L. Song and P. Mittal, “Systematic Evaluation of Privacy Risks of
Machine Learning Models,” in 30th USENIX Security Symposium
(USENIX Security), 2021, pp. 2615–2632.

[56] Y. Liu, Z. Zhao, M. Backes, and Y. Zhang, “Membership Inference
Attacks by Exploiting Loss Trajectory,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2022, pp. 2085–2098.

[57] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “LOGAN:
Membership Inference Attacks Against Generative Models,” Pro-
ceedings on Privacy Enhancing Technologies Symposium (PoPETs), pp.
133–152, 2019.

[58] C. Song and A. Raghunathan, “Information Leakage in Embedding
Models,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2020, pp. 377–390.

[59] V. Duddu, A. Boutet, and V. Shejwalkar, “Quantifying Privacy
Leakage in Graph Embedding,” in Proceedings of the 17th EAI
International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services (MobiQuitous), 2020, pp. 76–85.

[60] W.-C. Tseng, W.-T. Kao, and H.-y. Lee, “Membership Inference
Attacks Against Self-supervised Speech Models,” arXiv preprint
arXiv:2111.05113, 2021.

[61] P. Hu, Z. Wang, R. Sun, H. Wang, and M. Xue, “M ˆ 4I: Multi-modal
Models Membership Inference,” Advances in Neural Information
Processing Systems, vol. 35, pp. 1867–1882, 2022.

[62] M. A. Rahman, T. Rahman, R. Laganière, N. Mohammed, and
Y. Wang, “Membership Inference Attack against Differentially
Private Deep Learning Model,” Transactions on Data Privacy (TDP),
pp. 61–79, 2018.

[63] B. Jayaraman and D. Evans, “Evaluating Differentially Private
Machine Learning in Practice,” in 28th USENIX Security Symposium
(USENIX Security), 2019, pp. 1895–1912.

[64] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “MemGuard:
Defending against Black-Box Membership Inference Attacks via
Adversarial Examples,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2019, pp.
259–274.

[65] Z. Yang, L. Wang, D. Yang, J. Wan, Z. Zhao, E.-C. Chang, F. Zhang,
and K. Ren, “Purifier: Defending Data Inference Attacks via Trans-
forming Confidence Scores,” in Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 2023, pp. 10 871–10 879.

[66] J. Zheng, Y. Cao, and H. Wang, “Resisting membership inference
attacks through knowledge distillation,” Neurocomputing, pp. 114–
126, 2021.

[67] X. Tang, S. Mahloujifar, L. Song, V. Shejwalkar, M. Nasr,
A. Houmansadr, and P. Mittal, “Mitigating Membership Inference
Attacks by Self-Distillation Through a Novel Ensemble Architec-
ture,” in 31st USENIX Security Symposium (USENIX Security), 2022,
pp. 1433–1450.

[68] E. J. Crowley, G. Gray, and A. J. Storkey, “Moonshine: Distilling with
Cheap Convolutions,” in Advances in Neural Information Processing
Systems (NeurIPS), 2018, pp. 2893–2903.

[69] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale,” Proceedings of
International Conference on Learning Representations (ICLR), 2021.

[70] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and Training of
Neural Networks for Efficient Integer-Arithmetic-Only Inference,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 2704–2713.

[71] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks,” Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[72] T. Dettmers and L. Zettlemoyer, “Sparse Networks from Scratch:
Faster Training without Losing Performance,” arXiv preprint
arXiv:1907.04840, 2019.

[73] H. Mostafa and X. Wang, “Parameter Efficient Training of Deep
Convolutional Neural Networks by Dynamic Sparse Reparameteri-
zation,” in Proceedings of International Conference on Machine Learning
(ICML), 2019, pp. 4646–4655.

[74] S. Jayakumar, R. Pascanu, J. Rae, S. Osindero, and E. Elsen,
“Top-KAST: Top-K Always Sparse Training,” Advances in Neural
Information Processing Systems (NeurIPS), pp. 20 744–20 754, 2020.

[75] M. A. Raihan and T. Aamodt, “Sparse Weight Activation Training,”
Advances in Neural Information Processing Systems (NeurIPS), pp.
15 625–15 638, 2020.

[76] S. Liu, D. C. Mocanu, A. R. R. Matavalam, Y. Pei, and M. Pech-
enizkiy, “Sparse evolutionary deep learning with over one million
artificial neurons on commodity hardware,” Neural Computing and
Applications (NCAA), pp. 2589–2604, 2021.

[77] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han,
“On-device Training under 256KB Memory,” Advances in Neural
Information Processing Systems (NeurIPS), pp. 22 941–22 954, 2022.

[78] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning:
A Review and New Perspectives,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), pp. 1798–1828, 2013.

[79] M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and
attributes are predictable from digital records of human behavior,”
Proceedings of the National Academy of Sciences (PNAS), pp. 5802–5805,
2013.

[80] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks
that Exploit Confidence Information and Basic Countermeasures,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015, pp. 1322–1333.

[81] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The
Secret Revealer: Generative Model-Inversion Attacks Against Deep
Neural Networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 253–261.

[82] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership In-
ference Attacks Against Machine Learning Models,” in Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp.
3–18.

[83] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models,” arXiv
preprint arXiv:1806.01246, 2018.

[84] Y. Kaya and T. Dumitras, “When Does Data Augmentation Help
With Membership Inference Attacks?” in Proceedings of International
Conference on Machine Learning (ICML), 2021, pp. 5345–5355.

[85] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” in International
Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI), 2015, pp. 234–241.

[86] W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of
breast ultrasound images,” Data in Brief, p. 104863, 2020.

[87] Y. He, S. Rahimian, B. Schiele, and M. Fritz, “Segmentations-Leak:
Membership Inference Attacks and Defenses in Semantic Image
Segmentation,” in Proceedings of European Conference on Computer
Vision (ECCV), 2020, pp. 519–535.

[88] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research
(JMLR), pp. 1929–1958, 2014.

[89] D. Yu, H. Zhang, W. Chen, J. Yin, and T.-Y. Liu, “How Does Data
Augmentation Affect Privacy in Machine Learning?” in Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2021, pp.
10 746–10 753.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

Jie Zhu is currently pursuing the Ph.D. degree in
the School of Computer Science, Peking Univer-
sity, China.

Leye Wang received the Ph.D. degree in com-
puter science from TELECOM SudParis and
University Paris 6, France, in 2016. He is cur-
rently an assistant professor with the Key Lab of
High Confidence Software Technologies, Peking
University, MOE, and the School of Computer
Science, Peking University, China. He was a
postdoctoral researcher with the Hong Kong Uni-
versity of Science and Technology. His research
interests include ubiquitous computing, mobile
crowdsensing, and urban computing.

Xiao Han received the Ph.D. degree in computer
science from Pierre and Marie Curie Univer-
sity and the Institut Mines-TELECOM/TELECOM
SudParis in 2015. She is currently a Full Profes-
sor with the Shanghai University of Finance and
Economics, China. Her research interests include
social network analysis, fintech, and privacy pro-
tection.

Anmin Liu is currently pursuing the Ph.D. de-
gree in the School of Computer Science, Peking
University, China.

Tao Xie received the BS degree in computer
science from Fudan University, Shanghai, China,
the MS degree in computer science from Peking
University, Beijing, China, and the PhD degree in
computer science from the University of Wash-
ington at Seattle, WA. He is a Peking University
Chair Professor, where he specializes in software
engineering, system software, software security,
and trustworthy AI. He is a Foreign Member of
Academia Europaea, and a Fellow of ACM, IEEE,
and AAAS.

	Introduction
	Background
	Test-Driven Development
	Dynamic Sparse Training
	Membership Inference Attack
	Adversarial Training

	Problem Formulation
	Approach
	Key Design Principles
	SafeCompress: A General Framework for Safe Model Compression
	Defense against Single Attack
	BMIA-SafeCompress: Defending Black-box Membership Inference Attack based on SafeCompress
	WMIA-SafeCompress: Defending White-box Membership Inference Attack based on SafeCompress

	Defense against Multiple Heterogeneous Attacks
	MMIA-SafeCompress: Extend SafeCompress against Multiple Heterogeneous Membership Inference Attacks

	Experimental Setup
	Datasets and Models
	Baselines

	Experimental Results
	Experimental Results on BMIA-SafeCompress
	Results on CV Datasets
	Results on NLP Datasets

	Experimental Results on WMIA-SafeCompress
	Experimental Results on MMIA-SafeCompress

	Related Work
	Membership Inference Attack
	Membership Inference Defense
	Model Compression

	Limitations and Future Work
	Conclusion
	Appendix A
	Configuring SafeCompress to Other Attacks
	Task Adaptability

	Appendix B
	Implementation Details

	Appendix C
	Experimental Results on BMIA-SafeCompress
	Potential Tapping
	Results on CV Datasets
	Results on NLP Dataset

	Experimental Results on WMIA-SafeCompress
	Results on CV Datasets
	Results on NLP Dataset

	Experimental Results on MMIA-SafeCompress
	Results on CV Datasets
	Results on NLP Datasets

	Appendix D
	Discussion about trade-off between performance, safety, compressed models, and time costs

	References
	Biographies
	Jie Zhu
	Leye Wang
	Xiao Han
	Anmin Liu
	Tao Xie

