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Automatic Commit Message Generation: A
Critical Review and Directions for Future Work

Yuxia Zhang, Zhiqing Qiu, Klaas-Jan Stol, Wenhui Zhu, Jiaxin Zhu, Yingchen Tian, and Hui Liu

Abstract—Commit messages are critical for code comprehension and software maintenance. Writing a high-quality message requires
skill and effort. To support developers and reduce their effort on this task, several approaches have been proposed to automatically
generate commit messages. Despite the promising performance reported, we have identified three significant and prevalent threats in
these automated approaches: 1) the datasets used to train and evaluate these approaches contain a considerable amount of ‘noise’; 2)
current approaches only consider commits of a limited diff size; and 3) current approaches can only generate the subject of a commit
message, not the message body. The first limitation may let the models ‘learn’ inappropriate messages in the training stage, and also lead
to inflated performance results in their evaluation. The other two threats can considerably weaken the practical usability of these
approaches. Further, with the rapid emergence of large language models (LLMs) that show superior performance in many software
engineering tasks, it is worth asking: can LLMs address the challenge of long diffs and whole message generation? This article first
reports the results of an empirical study to assess the impact of these three threats on the performance of the state-of-the-art auto
generators of commit messages. We collected commit data of the Top 1,000 most-starred Java projects in GitHub and systematically
removed noisy commits with bot-submitted and meaningless messages. We then compared the performance of four approaches
representative of the state-of-the-art before and after the removal of noisy messages, or with different lengths of commit diffs. We also
conducted a qualitative survey with developers to investigate their perspectives on simply generating message subjects. Finally, we
evaluate the performance of two representative LLMs, namely UniXcoder and ChatGPT, in generating more practical commit messages.
The results demonstrate that generating commit messages is of great practical value, considerable work is needed to mature the current
state-of-the-art, and LLMs can be an avenue worth trying to address the current limitations. Our analyses provide insights for future work
to achieve better performance in practice.

Index Terms—Commit-based software development, open collaboration, commit message generation, benchmark
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1 INTRODUCTION

V ERSION control systems, such as Git, are widely used
to track changes in software repositories. Developers

commonly write a message for every set of changes they
make when collaborating via version control systems. The
combination of a code change and its corresponding text
is called a commit. The change itself is called a diff, which
records which lines of content (code, documentation, etc.)
were added or removed [1]. The descriptive text is known
as a commit message; a good commit message describes what
was changed, and why the change was made [2]. Commit
messages play an important role in understanding and
communicating code changes and software maintenance.
Thus, writing high-quality commit messages is important for
any type of software project, whether it be commercial or
open-source.

Unfortunately, commit messages are frequently empty
or of low quality, so their potential value is lost [2]. A
recent study showed that 44% of commit messages lack
essential information when compared with the recognized
expectation of commit messages [2]. Another study of 23,000

• Yuxia Zhang, ZhiQing Qiu, Wenhui Zhu, and Hui Liu are with the School
of Computer Science and Technology, Beijing Institute of Technology,
Beijing, China. E-mail: yuxiazh@bit.edu.cn

• Klaas-Jan Stol is with Lero, the Science Foundation Ireland Research Centre
for Software and the School of Computer Science and IT, University College
Cork, Ireland.

• Jiaxin Zhu is with the Institute of Software, Chinese Academy of Sciences,
Beijing, China.

• Yingchen Tian is with Tmall Technology Co., Zhejiang, China.

projects showed that about 14% of commit messages were
empty [3]. These results are problematic, because commit
messages play an important role in communicating to others
what changes were made, and why. Without making this
information explicit in the form of a commit message, this
information remains tacit, and thus may disappear when
contributors leave a team or community [4].

To support developers and reduce the effort involved in
writing commit messages, multiple approaches have been
proposed that can generate commit messages automatically
[1, 5–10]. These approaches can be organized into four
categories based on the way they work: rule-based, retrieval-
based, learning-based, and hybrid approaches [10]. Rule-
based approaches are proposed to generate messages by
summarizing code changes such as method additions based
on specific pre-defined rules or templates [5–7]. However,
rule-based approaches are considered outdated because
their generated messages tend to be very long and cannot
generate the rationale for a code change [1]. Retrieval-based
approaches leverage information retrieval techniques to
select existing commit messages from similar code changes
[1, 11]. More recently, several studies have applied neural
machine translation algorithms to translate diffs into commit
messages [10]. Hybrid approaches [12] generate commit
messages by combining both information retrieval techniques
with neural machine translation algorithms [9, 13].

Except for the now considered outdated rule-based ap-
proaches, more recent approaches have achieved promising
results. However, we have identified three common threats in
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these automated approaches to generating commit messages.
The impact of these three threats on the performance and
practical utility of these state-of-the-art commit message
generation approaches has remained unstudied as of yet.

First, these approaches are trained and evaluated us-
ing datasets that contain ‘noisy’ data, including commits
made by bots or messages that contain limited informa-
tion [2, 14]. For example, consider the message “Update
dependency com.puppycrawl.tools: checkstyle to v10.2” generated
by renovate-bot; messages such as these follow simple
patterns and do not convey much information. Using such
low-quality messages to train and evaluate generators may
let the models ‘learn’ inappropriate messages and also lead
to inflated performance evaluation results. Thus, the first
research question we address in this article is:

RQ1. To what extent do noisy messages affect the per-
formance of existing automated approaches for commit
message generation?

Second, due to the constraints of translation models,
learning-based approaches can only deal with diffs with
a length of no more than 100 tokens (200 for AST-based
approaches [10, 15]). Retrieval-based approaches also have
these constraints as they reuse the same dataset used
for learning-based approaches [8]. However, there are no
empirical studies that present the size distribution of commit
messages, which means that cut-offs of 100 or 200 tokens
are arbitrary, nor are there any studies that investigate the
impact of such arbitrary cut-offs. Measuring the impact of
this constraint on the performance of current approaches
is important given that many code changes in production
settings are considerably larger than 100 tokens. Thus, the
second question we address in this article is:

RQ2. Given that a commit’s diff is usually longer than 100 or
200 tokens, is the performance of existing approaches as
promising when considering commits that capture longer
code changes?

Third, both retrieval- and generation-based methods can
only generate the first sentence of a commit message; in most
cases, this is the ‘subject’ of a commit message. However, a
commit message also has a ‘body’ (see Figure 1), in which
developers can provide further details about the context,
background, or reasons for making changes [16]. Compared
to a message’s subject, the body is usually considerably
longer and contains more information. Whether simply
generating commit message subjects can satisfy developers’
practical needs remains an open question. To that end, we
ask the following research question:

RQ3. Do developers think generating commit message
subjects is useful?

The first three questions consider the current state-of-
the-art approaches dedicated to commit message generation.
At the time of writing, large language models (LLMs) have
gained rapidly increasing popularity within the software
engineering field, which demonstrates promising results for
a wide variety of tasks [17]. It is therefore very timely to
also consider the use of LLMs in the task of automatically
generating commit messages. Thus, the fourth research
question we address in this article is:

RQ4. How do LLMs perform in more real-world commit

Change MediaType's failure mode to not crash on charset 
problems.

As-is it throws unchecked exceptions on unexpected charsets.
This is a problem because it can cause a misbehaving webserver
to crash the client.

I don't expect this to break existing clients; returning 'null' has
always been a possibility; it's just returned in more cases.

Subject

Body

Fig. 1: Example commit message from the Okhttp project (https://github.
com/square/okhttp/)

message generation?
To answer these four questions, we conducted a multi-

method study. We first selected three approaches for our
evaluation, one from each of the three categories mentioned
earlier: retrieval-based, combining both retrieval and learning
(also noted as ’hybrid’), and learning-based approaches.1

Besides, pre-trained models [e.g., 18, 19], which are designed
for encoding diff, are also evaluated in generating commit
messages, and achieved notable performance. Therefore, we
also considered one state-of-the-art pre-trained model for our
evaluation. Prior evaluations of the four selected approaches
have used a dataset that was limited (i.e., commits with
diff length of no more than 100 or 200 tokens); further, this
dataset was created in 2017, over six years before the current
study. For those reasons, we created a new dataset containing
the commits of the top 1,000 most-starred Java repositories
on GitHub. We then compared the performance of the four
selected approaches before and after the removal of the
commits submitted by bots, or that have uninformative
messages. We find that the performance of the learning-
based approach remains stable, while the performance of
the other three approaches degrades considerably. Moreover,
the performance of all four approaches degrades in our
human evaluation. After an investigation of the distribution
of diffs in the new dataset, we find that only 5% of the
commits contain changes with no more than 100 tokens,
and the median number of tokens in the new dataset is 632,
considerably more than the limit of 100 that has been used
in previous evaluations. When we replace the constraint
of a diff length of 100 with larger sizes, the performance
of the four selected approaches degrades significantly. We
also surveyed developers to capture their perspectives on
generating message subjects only. Most developers indicated
that writing a message subject is difficult, and can be time-
consuming because they need to summarize the change-
related information into a short but meaningful sentence.
Overall, the feedback from developers highlights the use-
fulness of generating commit messages automatically. In
the last, we investigated the performance of large modes
on commit message generation with long commit diffs. We
chose UniXcoder and ChatGPT as representatives of LLMs
and evaluated their performance in generating messages for
diffs with larger lengths. The results revealed that although
LLMs can be input larger diffs, their performance needs
considerable improvement.

This study conducts a comprehensive reassessment of the
state-of-the-art retrieval-, learning-, hybrid-, pre-trained-, and

1. We did not consider rule-based approaches because none of the
state-of-the-art approaches rely on this approach.
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LLM-based commit message generation, resulting in several
practical and theoretical contributions to the literature. In
sum, this article:

• Identifies and demonstrates the degree of performance
degradation of state-of-the-art automated approaches
when removing noisy data, and highlights the necessity
of doing complementary data cleaning.

• Identifies and demonstrates the limited effectiveness of
state-of-the-art commit message generating approaches
to a larger and more realistic scenario.

• Demonstrates the practical value of generating commit
message subjects from developers’ perspectives.

• Demonstrates that commit messages generated by two
popular LLMs (ChatGPT 3.5 and UniXcoder) are not
satisfactory.

• Provides a new dataset for commit message generation,
which can assist researchers in obtaining more reliable
results in future evaluations.

Together, these results suggest a number of avenues for future
research on automatically generating commit messages.

In the remainder of this article, we review related work in
Sec. 2, outline our multi-method research approach in Sec. 3,
and present the results of our study in Sec. 4. We discuss the
implications for research and practice and the limitations of
our study in Sec. 5. We conclude in Sec. 6.

2 RELATED WORK

We review approaches of automated commit message gener-
ation, followed by a discussion of commit message quality.
We then consider bots that generate messages, the quality
of the datasets that have been used to evaluate prior
approaches, and also discuss the emergence of LLMs in
software engineering.

2.1 Automated Commit Message Generation

Prior work on commit message generation can be categorized
into rule-based or template-based, information retrieval-
based, learning-based techniques, and hybrid methods [12].
Table 1 presents an overview.

A straightforward way to generate commit messages
automatically is using predefined rules or templates [5–7,
20]. For example, DeltaDoc is based on symbolic execution
to describe what a code change does [5]. Two approaches,
ChangeScribe [6, 20] and AutoSumCC [7] summarize code
changes, such as method additions, based on pre-defined
rules or templates. However, as briefly mentioned, these
rule-based approaches are only effective in generating text
about what was changed and are not well able to provide
the reasons behind code changes [1, 9], which is important
information in a commit message [2].

A second category of approaches leverages information
retrieval techniques to suggest commit messages from similar
code changes [1, 21]. For example, the NNGen approach
[1] leverages the Nearest Neighbor algorithm to generate
commit messages from diffs. For a given new diff, NNGen
first selects the most similar diff from the training data by
calculating the cosine similarity and the BLEU score (see
Sec. 3.3), then outputs the message from the selected diff
as the generated one. Different from NNGen which treats

each code change as a bag of words, LogGen (a retrieval-
based approach [21]) uses code change vectors generated
by CC2Vec as a novel form of diff. It is easy to imagine
the challenges of these retrieval-based approaches when no
similar diffs can be found in the corpus.

A third category of approaches uses learning-based
techniques. These approaches present commit message gen-
eration as a translation problem and use neural machine
translation models to translate code differences into commit
messages [8–10, 13, 15, 22–25]. The most recently proposed
approach within this category is FIRA [10]. Instead of
directly feeding old-version and new-version code into
translation models, FIRA represents code changes not as
an abstract syntax tree, but as more fine-grained graphs by
considering edit operations and sub-tokens in code changes.
FIRA currently outperforms other techniques and could be
considered the state-of-the-art of automatic commit message
generation.

Two studies have combined information retrieval and
neural machine translation techniques to generate commit
messages [9, 13]. For example, CoRec [9] utilizes an informa-
tion retrieval technique to address the word frequency issue,
i.e., learning-based methods tend to generate high-frequency
words but ignore low-frequency ones. As reported, CoRec
achieves better performance than retrieval-based approaches
[9]. There are also some pre-trained models designed for
encoding diff, such as [18, 26], which are usually evaluated
in the task of commit message generation.

Recently, Tao et al. [12] conducted an empirical study of
the latest models of commit message generation. Different
from our study, they primarily focused on how current
approaches perform when evaluating them with alternative
metrics, multiple programming languages, and dataset-
splitting strategies. They found that these aspects have
a considerable impact on the evaluation performance of
existing models. Dong et al. explored the generated commit
messages by learning-based approaches through the lens of
patterns (i.e., frequent sequences) [27]. They found that the
majority of generated messages belong to simple patterns
[27]. Different from our study, Dong et al. focused on the
output of these learning-based approaches, while this study
explores the rationale of how we should design models to
tackle the real problem of automatically generating commit
messages.

2.2 Quality of Commit Messages
A well-crafted commit message is of great importance for
understanding and communicating code changes [2]. Prior
work suggests that the quality of commit messages needs
improvements in most open source projects [2, 3, 28]. For
example, Dyer et al. observed that approximately 14% of
commit messages in over 23,000 open source projects were
empty, and 66% of messages contained only a few words. On
the basis of 11 syntactical measures, Chahal and Saini [28]
constructed a model that can judge the quality of commit
messages. In a recent study, Tian et al. [2] investigated the
distribution, taxonomy, and classification of high-quality
commit messages in five open source projects. They found
that 44% of commit messages need further improvement.
They also developed a taxonomy that describes how devel-
opers express ‘why’ and ‘what’ information. Of particular
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TABLE 1
Overview of approaches for automated commit message generation

Category Approach Year Evaluation Diff filtering criteria1 Message filtering rules1

Rule-
based
approaches

DeltaDoc [5] 2010 Human NA NA

ChangeScribe [20] 2014 Human NA NA

AutoSumCC [7] 2016 Human NA NA

Retrieval-
based
approaches

NNGen [1] 2018 BLEU
Human

◦ diff length > 100 tokens
◦ merge and rollback commits
◦ larger than 1MB

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern
• submitted by bot liferaycontinuous-integration
• update changelog/gitignore/readme [md/file]
• prepare version [version number]
• bump version [version number]
• modify dockerfile/makefile
• update submodule

LogGen [21] 2020 BLEU
◦ diff length > 100 tokens
◦ merge and rollback commits
◦ larger than 1MB

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern
◦ submitted by bot liferaycontinuous-integration
◦ update changelog/gitignore/readme [md/file]
◦ prepare version [version number]
◦ bump version [version number]
◦ modify dockerfile/makefile
◦ update submodule

Learning-
based
approaches

CmtGen [8] 2017 BLEU
Human

• diff length > 100 tokens
• merge and rollback commits
• larger than 1MB

• message length > 30 tokens
• message of non-Verb-Direct Object pattern

NMT [22] 2017 BLEU ◦ diff length > 100 tokens • message length > 20 tokens

ContextNMT [23] 2018
BLEU
METEOR
Human

◦ diff length > 100 tokens
◦ message length > 20 tokens
• certain repetitive patterns, such as
the phrase merge pull request

CODISUM [15] 2019 BLEU
METEOR

• diff length > 200 tokens
• diff files contain no .java files
• duplicated diffs

◦ message length > 20 tokens
• contain less than three words

PtrGNCMsg [24] 2019 BLEU
ROUGE

◦ diff length > 100 tokens
◦ merge and rollback commits

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern

CoreGen [25] 2021
BLEU
ROUGE
METEOR

◦ diff length > 100 tokens
◦ merge and rollback commits
◦ larger than 1MB

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern
◦ submitted by bot liferaycontinuous-integration
◦ update changelog/gitignore/readme [md/file]
◦ prepare version [version number]
◦ bump version [version number]
◦ modify dockerfile/makefile
◦ update submodule

FIRA [10] 2022

BLEU2

ROUGE
METEOR
Human

◦ diff files contain no .java files
◦ duplicated diffs
◦ diff length > 200 tokens

◦ message length > 20 tokens
◦ contain less than three words

Hybrid
approaches

ATOM [13] 2020

BLEU
ROUGE
METEOR
Human

◦ diff files contain no .java files
◦ merge or rollback commits
• project initialization commits
• fundamental updating

◦ message length > 20 tokens
• empty or contain non-ASCII messages

CoRec [9] 2021

BLEU
ROUGE
METEOR
Human

◦ diff length > 100 tokens
◦ merge and rollback commits
◦ larger than 1MB

◦ message length > 30 tokens
◦ message of non-Verb-Direct Object pattern
• keywords: changelog, gitignore, readme,
release, version
• ignore update [*]
• modify dockerfile/makefile
• update submodule(s)

1 For each study cited in column 2, the table indicates whether that study proposed and applied new or additional data filtering conditions, marked
as • in columns 5 (filtering criteria) and 6 (filtering rules); if a study applied previous filtering conditions, these are itemized with ◦ .

2 FIRA was evaluated using a variant of BLEU, called B-Norm BLEU.

relevance to the current study, Tian et al. [2] identified five
types of trivial messages, i.e., single-word messages, submit-

centered messages, scope-centered messages, redundant mes-
sages, and irrelevant messages. They also proposed several
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classification models that can be used to identify commit
messages with high (or low) quality. Based on Tian et al. [2],
Li and Ahmed [29] designed a more advanced classification
model, which particularly considers the contents of the
links attached in commit messages. They also conducted
an empirical study of the classified commits and found that
the overall quality of the commit messages decreases over
time, while developers believe they are writing better commit
messages.

2.3 Bot-Generated Messages
A bot refers to a software agent that integrates its work
with human tasks [30, 31], to support developers and
increase their productivity by assisting in repetitive tasks [32].
Bots are now widely applied to support a wide variety of
tasks in software engineering, including refactoring [33, 34],
issue and pull request (PR) management [35, 36], auto-
mated generation of answer summaries [37]. For example,
Dependabot2 can automatically generate commits that fix
security issues in a project’s dependencies. It can also
automatically generate messages to describe the changes.
Figure 2 shows commit #3ac5b0e3 in the okhttp project4,
which is generated by renovate-bot. This message tells
that it bumps com.puppycrawl.tools:checkstyle to version 10.2.
Commit messages generated by bots always have the same
pattern which can be configured by rules.5 There are two
reasons why using such bot-generated commit messages in
the evaluation of automatic commit message generators is
of little use. First, these messages are already automatically
produced by bots. Second, this type of message is simple and
template- or pattern-driven, based on predefined ‘structures’,
which can be easily learned by these automatic approaches
and generated perfectly. Including these could lead to an
overestimated performance of these approaches of commit
message generation in practical scenarios, for example when
generating messages for human-made (as opposed to bot-
generated) code changes.

Fig. 2: Example of a commit message submitted by a bot

2.4 Quality of Datasets
Learning-based models require datasets of sufficient quality.
In recent years, researchers have raised concerns about
the reliability of datasets that have been used to construct
models for diverse software engineering tasks. For example,

2. https://docs.github.com/en/codesecurity/dependabot
3. https://github.com/square/okhttp/commit/

3ac5b0ed7627f23695cb12f18260165c46a33c5d
4. https://github.com/square/okhttp
5. https://docs.renovatebot.com/configuration-options

Kim et al. [38] measured the noise-resistant ability of two
commonly used defect prediction algorithms and found that
the prediction performance significantly decreased when the
dataset contained 20% to 35% noise. Zhu et al. [39] applied
noise handling techniques to enhance the accuracy of logging
suggestions. Their results showed that removing noise data
can effectively enhance a model’s ability to learn common
logging knowledge. For another example, Wu et al. [40]
examined the impact of mislabeled instances on security
bug report (SBR) prediction, and found that the performance
of three baseline approaches consistently achieved better
performance on clean datasets when compared to uncleaned
(noisy) datasets.

In the context of commit message generation, researchers
[1, 9] have repeatedly pointed out the presence of ques-
tionable data in the widely-used dataset collected by Jiang
and McMillan [41], which we refer to as the J-M dataset
(see Sec. 3.2). Although Liu et al. found that around 16%
of the commit messages in the J-M dataset are already
generated by bots, or describe repetitive trivial changes [1],
which we consider ‘noisy data’ too, they did not remove
such commits systematically: they only found one bot
account (i.e., liferay-continuous-integration) and
five trivial message patterns (see Table 1). Wang et al. [9]
extended these patterns to filter out noisy commits but
did not identify any more bot accounts. In this article, we
report on a more thorough data cleaning procedure (see
Sections 3.2.3 and 3.2.4).

2.5 Large Language Models

Large language models (LLMs) have garnered significant
attention and adoption in both academic and industrial do-
mains [42], including Software Engineering (SE) [17, 43, 44],
due to their exceptional performance across a wide range
of applications. For example, UniXcoder [45] has been used
in the code summarization task, which is highly relevant to
commit message generation. Additionally, ChatGPT’s ability
to answer questions in a conversational manner [46] allows
it to generate commit messages by answering a diff-related
prompt. To the best of our knowledge, the use of LLMs for
commit message generation has not received much attention,
and yet this appears a promising avenue. Thus, in this article,
we also consider two popular LLMs.

3 STUDY DESIGN

To address the four research questions we pose in this article
(see Sec. 1), we conducted a mixed-methods study using
both quantitative and qualitative data. We selected four
representative approaches for automatic commit message
generation. Further, we collected and preprocessed commit
data from the Top 1,000 most-starred Java repositories on
GitHub, creating a new benchmark. We then evaluated the
four approaches on the new benchmark, and evaluated their
performance. Qualitatively, we surveyed developers to gain
practical insights into commit message generation. Finally,
we evaluated the performance of two LLMs to automatically
generate commit messages. Figure 3 presents an overview of
our approach.
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Fig. 3: Overview of our approach

3.1 Evaluated Approaches

3.1.1 Approaches of Commit Message Generation
We evaluated four prominent approaches for automatic
commit message generation. As pointed out earlier, rule-
based approaches suffer from generalization issues because
the generated output tends to be very long and cannot
generate a rationale for code changes [9, 10], which is
why did not include a rule-based approach in this study.
The other three categories of approaches have become the
primary approaches for generating commit messages. For
this study, we selected one approach that achieves the best
performance from each of these three categories. The goal
of this study is not to evaluate all these approaches, but
rather to demonstrate the key shortcomings in the way they
have been evaluated previously. The selected approaches are
representative of the current state-of-the-art in automated
commit message generation.

We selected NNGen as a representative of retrieval-based
approaches,6 FIRA [10] as a representative of learning-based
approaches, and CoRec [9] as a representative of hybrid
approaches with consideration of their performance and
difficulty of reproduction. We briefly describe these.

NNGen [1] relies on the Nearest Neighbor algorithm to
select a message from the training dataset. It first represents
the diffs of all the commits as vectors by leveraging the “bags
of words” representation that is widely used in information
retrieval [47]. NNGen calculates the cosine similarity for a
given diff and each diff in the training dataset and selects the
top k training diffs with the highest similarity scores. After
that, NNGen computes the BLEU-4 score based on the input
diff and the selected diffs, and outputs the message of the
selected diff with the highest BLEU-4 score.

FIRA [10] first represents code changes via an abstract
syntax tree (AST) based fine-grained graph, which allows
the consideration of code edit operations in diff and code
tokens at sub-tokens and integral granularities. Then, FIRA
implements a graph-based encoder and a transformer-based
decoder to generate commit messages.

6. Although LogGen [21] reported slightly better performance than
NNGen, Tao et al. [12] identified major implementation flaws, which is
why we did not select LogGen.

CoRec [9] combines the advantages of both information
retrieval and neural machine translation by building a
context-aware encoder-decoder model and a sophisticated
vocabulary. For a certain diff, CoRec first retrieves the most
similar diff from the training set, and then uses the retrieved
diff to enhance the performance of the final generated
vocabulary.

In addition to the three selected approaches that are
specifically designed for automatically generating commit
messages, we also considered one pre-trained diff encoding
model, i.e., CCRep [18], which can be used to generate
commit messages and achieved the best performance when
compared with other pre-trained models [18]. CCRep [18]
first splits a given code change into the before-change
code and the after-change code, leverages the pre-trained
CodeBERT [48] to obtain the code embeddings, and uses a
query back mechanism to extract and encode the changed
code fragments and make them explicitly interact with the
whole code change.

3.1.2 Large Language Models
Numerous LLMs have been released in recent years with
great promise for a wide variety of software engineering
tasks [17, 43, 44]. For this study, we selected two: UniXcoder
[45], which is specific to code-related tasks, and ChatGPT
[46], a well-known general-purpose LLM.

UniXcoder [45] is designed to handle code-related tasks.
It is based on the capability to simultaneously pre-train
both the encoder and decoder, enabling it to benefit from
pre-training data for code-related understanding and gen-
eration tasks. UniXcoder utilizes a multi-layer transformer
and incorporates multi-modal contents such as code, code
comments, and abstract syntax tree (AST) to enhance code
representation. The maximum input length for UniXcoder is
1,024 tokens.

ChatGPT [46] is a general-purpose LLM from OpenAI. It
has a large number of network parameters and has shown
excellent performance in many tasks [49, 50]. In this study
we selected ChatGPT 3.5, since it is free to use and offers an
open API interface. The maximum input size of ChatGPT
based on gpt-3.5-turbo-1106 is 16,385 tokens. Our
objective is to establish a reasonable baseline for the potential
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performance of LLMs in commit message generation. We
defer experiments with the more sophisticated GPT-4 model
to future research.

3.2 Data Collection and Preprocessing
The following describes the datasets and their corresponding
cleaning steps.

3.2.1 The Jiang-McMillan (J-M) Dataset
Most approaches for automatically generating commit mes-
sages are based on a widely used dataset collected and
processed by Jiang and McMillan in 2017 [41]. This dataset
extracts the first sentence from the original commit messages
contained in the Top 1,000 Java projects (as measured by
‘stars’) hosted on GitHub, excluding rollback/merge commits,
commits with empty or non-English messages, duplicated
code changes, and diff files that are larger than 1MB or
containing non-ASCII codes. The dataset only retains the
Verb-Direct Object (V-DO) messages, e.g., “update a method,”
because Jiang and McMillan argued such messages have
better quality. The filtered dataset contains 509k diff files and
corresponding commit messages. We label this dataset the
“J-M” (for Jiang and McMillan) dataset.

Before using the J-M dataset to automatically generate
commit messages, the three evaluated approaches also each
have their own data preprocessing steps because of noisy
data or specific requirements of the respective approaches.
Table 1 shows the filtering rules for each approach, where
these filtering conditions proposed by each approach are
itemized using a black circle (•), and inherited preprocessing
rules followed by previous studies are itemized using an
open circle (◦). CoRec has been evaluated on the same dataset
processed by Liu et al. [1] and used by NNGen [9]. After
cleaning, approximately 26k remaining commits were used
to train and test NNGen and CoRec [1, 9], and 90k commits
were used to evaluate FIRA [10]. Restricting messages or diffs
can greatly reduce the size of the dataset, i.e., from 509k to 26k
or 90k respectively. Further, bot-generated and uninformative
commits also represent a negligible proportion.

3.2.2 Data Collection
While the J-M dataset and its various derivations have been
widely used to automatically generate commit messages
[1, 9], these datasets still contain noisy messages. Since the
J-M dataset along with its filtered version only retains the
anonymized message and diff of each commit and lacks key
information such as the commit ID that is required for further
processing, we decided to create a new dataset.

We re-collected commits from the Top 1,000 Java projects
(as measured by Stars) hosted on GitHub, not counting
projects that were not software projects, such as Java inter-
views or training documents; such projects were ignored. We
initially obtained 2.5 million commits from the collected Java
projects. We followed Jiang and McMillan [41] to filter the
dataset (see Sec. 3.2.1 for details). Our final dataset contained
889,329 commits, which we refer to as the “New J-M Dataset.”

Liu et al. observed that approximately 16% of commit
messages in the J-M dataset are noisy, as they were auto-
matically generated or described repetitive, trivial changes
[1]. However, as briefly mentioned they did not conduct a

thorough data cleaning: they only found one bot account
(i.e., liferay-continuous-integration) and five ‘triv-
ial message’ patterns; this is shown in Table 1. With the
increasing popularity of bots and the potential existence of
other trivial messages, we conducted a thorough cleaning
of noisy messages in our dataset. Sec. 3.2.3 and Sec. 3.2.4
describe these steps in detail.

3.2.3 Removing Commits Submitted by Bots
To remove commits submitted by bots, we must establish a
list of bot accounts that is as complete as possible. To this
end, we conducted a systematic literature review (SLR) to
identify bot accounts. We followed widely-used guidelines
for conducting SLRs [51] to identify and filter related papers
in four steps:

1) Define the search scope. We selected three digital li-
braries, ACM Digital Library, IEEE Xplore Digital Li-
brary, and Springer Link, which are commonly included
in SLRs in software engineering.

2) Define the search rules. Based on the goal of our SLR,
namely, to identify bot accounts, the search keywords
are variants of ’bot,’ such as “non-human.” We also
considered the plural form of each search keyword.
To ensure the identified bots were related to software
development, we also identified keywords capturing
the context in which the bot accounts were applied.
Table 2 lists the keywords in the search target and context
categories. When forming the search queries, we selected
one keyword from each category and joined them using
the ‘AND’ operator. After applying these search queries
in the digital libraries listed above, we initially obtained
213 publications.

3) Manual Selection. We manually read the title, abstract,
and keywords of each of the 213 papers, and selected
the papers that sought to identify bot accounts and
identified bot lists for further analysis. After this step,
we identified 21 papers.

4) Forward and backward snowballing. Using forward
snowballing, we inspected the publications that cited the
selected studies and found two additional papers. Using
backward snowballing, we inspected the references
of the selected studies and identified three additional
studies. After this step, we identified a total of 26 studies.

5) Bot account listing. We reviewed the 26 relevant studies,
mainly focusing on collecting bot accounts identified
in these studies and their associated datasets that list
bot accounts. After removing duplicated accounts, we
obtained a staggering number of 5,229 bot accounts that
were identified or built by previous studies. The full
papers and bot accounts are listed in our appendix [52].

After obtaining the list of 5,229 distinct bot accounts,
we removed all commits submitted by these accounts by
comparing the author name of a commit to all bots in the
list. We found that in the “New J-M Dataset” dataset, we
identified 374 bot accounts that collectively made 21,656
commits (2.4%). Table 3 lists the commit distribution of
the top five bots ranked by their submitted commits. We
excluded these bot-generated commits from “New J-M
Dataset” dataset, and labeled this cleaned dataset without
bot messages the “No-bots dataset,” which contains 867,673
commits.
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TABLE 2
Systematic review search keywords

Category Keywords1

Target “bot*”, “automated commit*”, “non-human account*”,
“bot commit*”, “bot identification”, “devbot*”

Context “commit*”, “software development*”, “collaborative
software development”, “open source”, “OSS”, “FOSS”,
“FLOSS”

1 ‘*’ means plural forms are included.

TABLE 3
Commit distribution of the top 5 bots

Bot Commit count

dependabot-preview[bot] 3,585
dependabot[bot] 2,847
Renovate Bot 409
nextcloud-android-bot 242
Gary Bot 212

3.2.4 Removing Commits with Non-informative Messages
Except for the five trivial commit message patterns identified
by Liu et al. [1], the dataset may still contain other types
of non-informative messages. For example, some commit
messages contain only a single token which cannot express
accurate information, such as “Readme.” A good commit
message should explain what changes were made, and why
[2, 53, 54]. In this article, we follow Tian et al. [2] and
deem messages that neither explain what was changed, nor
why those changes were made, as uninformative messages
or trivial messages, which can reduce data quality for
generating commit messages and should be removed. There
are two advanced commit classifiers [2, 29]. Although the
classifier proposed by Li and Ahmed [29] has a higher F1
score than Tian et al.’s [2], their method requires manually
examining the content of the links contained in commit
messages, which would not be feasible to apply in our large-
scale dataset. Thus, we used Tian et al.’s Bi-LSTM-based
classifier which can identify well-written messages with a
precision of ca. 81% [2]. By leveraging the classifier in the
No-bots dataset, we identified 39,144 (4.5%) trivial messages.
We labeled this dataset, which excludes trivial messages,
the “New Benchmark,” which contains 828,539 commits.
We conducted validation of whether the performance of
the classifier can still hold in our dataset. Specifically, we
randomly selected a dataset of size 384 (with an error margin
of 5% and a confidence level of 95%) from the “No-bots
dataset” constructed in Sec. 3.2.3. Two authors manually
classified the messages as informative or non-informative
(with a 0.66 kappa coefficient). Conflict annotations were
solved by face-to-face meetings. When compared with the
results classified by Tian et al.’s approach, we found 351
commits (91.4%) have the same labels, which indicates that
the performance of Tian et al.’s classifier is kind of stable in
our dataset.

3.3 Evaluation Metrics
To compare the performance of the four selected approaches
on the dataset with different configurations, we adopted the

widely-used metrics BLEU, ROUGE-L, and METEOR [12, 55].
We describe the three metrics’ rationale and computation
details next.

1) BLEU (Bilingual Evaluation Understudy) calculates the
modified n-gram (for BLEU-4, n=1, 2, 3, 4) precision
of a generated message to the reference message, then
measures the average modified n-gram precision with a
penalty for overly short sentences [56]. The BLEU value
ranges from 0 to 1. A value of 1 indicates the generated
message is identical to the reference one. BLEU can be
calculated by the following formula:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(1)

where wn is the weight of n-gram with a value of 1/N .
Normally, N = 4. pn is n-gram precision, which can be
obtained as follows:

pn =
cn
ln

(2)

where cn represents the count of correctly predicted n-
grams between the generated message to the reference
message, and ln represents the total number of n-grams
in the generated message. BP is the brevity penalty
factor:

BP =

{
1, if lengen > lenref
e1−lenref/lengen, if lengen ≤ lenref

(3)

where lengen is the length of the generated message and
lenref is the length of the reference message.

2) ROUGE-L measures the F-score of precision and recall
on the basis of the longest common subsequence (LCS)
between a generated message and a reference message
[57]. Its value is calculated as follows:

Flcs =

(
1 + β2

)
RlcsPlcs

Rlcs + β2Plcs
(4)

where Flcs is the ROUGE-L score of the generated
message and the reference one. LCS(ref, gen) is the
longest common subsequence (LCS) between the two
sentences, and β is a hyperparameter commonly as-
signed a relatively large value. LCS considers sentence-
level structure similarity and automatically identifies the
longest co-occurring in-sequence n-grams. Plcs and Rlcs

represent the precision and recall, respectively, of LCS
between a generated message and a reference message;
these are calculated as follows:

Plcs =
LCS(ref, gen)

lengen
(5)

Rlcs =
LCS(ref, gen)

lenref
(6)

3) METEOR is based on a generalized concept of 1-
gram matching between machine-produced and human-
produced reference messages [58], 1-gram can be
matched based on their surface forms, stemmed forms,
and meanings. METEOR computes a score for this
matching using a combination of 1-gram precision,
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1-gram recall, and a measure of fragmentation that
considers the order of the matched words in the gener-
ated messages in relation to the reference. METEOR is
calculated as:

METEOR = Fmean(1− Penalty) (7)

where Fmean is computed with 1-gram precision (P) and
1-gram recall (R), and Penalty represents the penalty
factor applied to fragmentary matches:

Fmean =
10PR

R+ 9P
(8)

Penalty = 0.5 ∗ ( #chunks

#unigrams−matched
)3 (9)

where #chunks is the number of matched chunk and
#unigrams−matched is the number of matched uni-
gram (1-gram).

Originally, NNGen was only evaluated with BLEU to
evaluate its performance (see Table 1), while CoRec, FIRA,
and CCRep were all evaluated using all three metrics listed
above. To keep the comparison as comprehensive as possible,
we applied all three metrics to evaluate the performance of
the four selected approaches. Further, different from NNGen
and CoRec, the evaluation of FIRA was done using a variant
of BLEU, i.e., B-Norm BLEU [10], which is insensitive to the
character case. To retain consistency with [10], we also used
B-Norm BLEU to evaluate the performance of FIRA. CCRep
is evaluated by both the two types of BLEU scores in [18]. In
this study, we chose B-Norm BLEU to evaluate CCRep.

3.4 Developer Survey
Developers are recommended to summarize the changes
they made in a short sentence (the subject), and add a more
extensive description (the body) to provide additional details
explaining what was changed, and why [2]. While not every
commit requires both a subject and a body, current learning-
based or retrieving-based approaches are only aimed at gen-
erating the subject. To investigate the perceived importance
and effectiveness of this, we conducted a qualitative survey
to solicit opinions from experienced software developers.
We selected the Top 10 most active developers (ranked by
the number of commits they contributed) from the Top 200
Java projects. We identified 1,782 survey candidates from the
200 projects (157 developers participated in more than one
project, resulting in 218 duplicated accounts), and invited
them to fill out a short questionnaire (see appendix [52]).

The questionnaire started with a background question
regarding the respondent’s tenure as a contributor to open
source projects, to ensure that respondents have a meaningful
experience in collaborative software development, and thus
could better appreciate the importance of commit messages.
We then asked respondents to select the most difficult aspect
and the most time-consuming aspect separately when writing
commit messages with the following options: (1) writing the
message subject; (2) writing the message body; or (3) other.
We also invited respondents to explain their choices. We
further asked respondents what they usually write on the
message subject. Finally, we asked for respondents’ opinions
on the effectiveness of automatically generating message

subjects, and solicited any further advice on commit message
generation.

Thirty-five emails could not be delivered. We received
72 responses, resulting in a response rate of approximately
4.1% ( 72

1,782−35 ). This response rate is comparable to other
research surveys in software engineering [cf. 59–61]. We
used open coding [62] to analyze the responses to these
three open questions, assigning codes to specific phrases
of interest. We then sorted the codes, and merged them
where appropriate. During the sorting process, we grouped
related codes into categories. All codes and categories were
reviewed, discussed, and validated by two authors of this
article. During this process, we resolved any disagreements
by elaborating our rationale for specific codes.

4 RESULTS

We now present the results of the four research questions
outlined in Sec. 1. We first demonstrate the impact on the
performance of the four selected approaches when noisy
commit messages are excluded from datasets (RQ1, Sec. 4.1).
We then demonstrate the impact of changing the size of
the maximum commit’s diff (the number of changes to
contents) on the four approaches in Sec. 4.2 (RQ2). Sec. 4.3
presents developers’ perspectives on the effectiveness of
generating message subjects (RQ3). Finally, Sec. 4.4 presents
the performance of UniXcoder and ChatGPT on commit
message generation in a more real-world scenario (RQ4).

4.1 The Impact of Noise on Performance of Commit
Message Generation Approaches

4.1.1 Procedure and Metric Evaluation
To investigate the impact of noisy commit messages (those
submitted by bots and uninformative messages) we evalu-
ated the performance of four representative approaches of
the state-of-the-art (i.e., NNGen [1], CoRec [9], FIRA [10],
and CCRep [18]), before and after removing these noisy
messages. Each of these approaches may have different data
requirements (see Table 1). For example, NNGen requires that
messages should have no more than 30 tokens. We applied
the filtering rules of NNGen [1] and FIRA [10] on “New
J-M Dataset” and “New Benchmark” to prepare the datasets.
Following the original evaluation design of CoRec [9] and
CCRep [18], we evaluate the two approaches on the datasets
prepared for NNGen. Table 4 shows the size of the processed
datasets, where the training set, testing set, and validation set
are divided following the settings of the four approaches. We
then re-trained and tested the four approaches based on their
replication packages. We calculated the BLEU, ROUGE-L,
and METEOR metrics to evaluate the impact of removing
noisy commit messages on their performance.

Table 5 shows the results of the four approaches running
on the corresponding datasets before and after removing
noisy commits, and column “Delta” presents the perfor-
mance change after removing noisy commits in terms of
the three metrics. The performance of NNGen, CoRec,
and CCRep is considerably worse after removing the bot-
submitted and uninformative messages from the evaluation
results of all three metrics. For example, the BLEU score of
NNGen on ‘New Benchmark’ is 46% (36% for CoRec and
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TABLE 4
Statistics of RQ1’s benchmark datasets.

Training Validation Testing

Before After Before After Before After

NNGen 41.5k 30.3k 2.3k 1.7k 2.3k 1.7k
CoRec 41.5k 30.3k 2.3k 1.7k 2.3k 1.7k
FIRA 41.2k 39.0k 5.2k 4.9k 5.2k 4.9k
CCRep 41.5k 30.3k 2.3k 1.7k 2.3k 1.7k

TABLE 5
Performance of the four approaches before and after removing noisy

commits

Metrics Before1 After2 Delta %

NNGen [1]
BLEU 39.43 21.41 −18.02 −45.7%
ROUGE-L 47.25 36.01 −11.24 −23.8%
METEOR 26.19 18.25 −7.94 −30.3%

CoRec [9]
BLEU 47.89 30.77 −17.12 −35.7%
ROUGE-L 51.03 39.04 −11.99 −23.5%
METEOR 29.60 20.85 −8.75 −29.6%

FIRA [10]
BLEU 15.43 15.75 0.32 2.1%
ROUGE-L 19.90 20.11 0.21 1.1%
METEOR 14.01 14.04 0.03 0.2%

CCRep [63]
BLEU 49.27 37.43 −11.84 −24.0%
ROUGE-L 54.40 42.90 −11.50 −21.1%
METEOR 33.44 22.10 −11.34 −33.9%

1 Using the dataset ‘New J-M dataset’
2 Using the dataset ‘New Benchmark’

24% for CCRep) lower than its performance on ‘New J-M
Dataset.’ Such a high degree of degradation suggests that the
high performance of the three approaches can be ascribed, at
least in part, to the presence of noisy commits in the original
J-M dataset. In contrast, the performance of FIRA remains
largely the same in terms of the three metrics, and is slightly,
though not statistically, higher. This indicates that removing
noisy data has only a limited impact on the performance
of FIRA, which is learning- and AST-based techniques, and
mainly focuses on generating messages for code changes,
e.g., changes happening in ‘.java’ files. This sort of message
can rarely be generated by bot accounts and usually has
informative text because of the greater complexity of code
changes when compared with updating documentation or
configuration files. Specifically, we only found 2,841 (5.5%)
noisy messages in the commits happening in Java files (i.e.,
a ‘.java’ extension), which is considerably smaller than the
percentage (27.3%) of noisy messages filtered out in the
datasets for NNGen, CoRec, and CCRep.

TABLE 6
Statistical difference of the four approaches’ results before and after

removing noisy commits

Metric NNGen CoRec FIRA CCRep

BLUE 0.12* 0.15* n/a1 0.16*

ROUGE-L 0.17* 0.17* n/a1 0.16*

METEOR 0.16* 0.16* n/a1 0.16*

* p-value < 0.001.
1 Results for FIRA were not statistically significant.

To assess whether the observed performance change of
the four approaches is statistically significant, we conducted
a Mann–Whitney U test [64] on the value distribution of
the three metrics of each evaluated approach before and
after removing noisy commits, respectively. If a statistically
significant difference (p < .05) was found, we also calculated
the effect size, which provides a measure of how large the
difference is [65].7 Table 6 presents the results; for NNGen,
CoRec, and CCRep, we observe that the differences between
before and after removing noisy commits are statistically
significant for all three metrics, though with small to medium
effect sizes. This indicates that the performance of NNGen,
CoRec, and CCRep decreases significantly when filtering out
the commits with bot-submitted and uninformative messages.
For FIRA, we found no statistical differences (and thus no
effect size), meaning that the performance of FIRA is stable
and not affected by the presence of noisy commit messages.

4.1.2 Human Evaluation: Evaluating Practical Impact
The three metrics (BLEU, ROUGE-L, and METEOR) afford
a quantitative assessment of performance changes based on
a numeric analysis of the overlap of tokens. However, such
evaluations are rigid and lack subtlety. Generated messages
may have only little overlap with ground truth messages, and
yet convey a very similar meaning. Thus, we also conducted
a qualitative assessment to complement the quantitative
assessment to develop a more intuitive impression of the
performance change.

We sampled 60 commits at random from the test sets
of the four approaches, before and after removing bot-
submitted and uninformative messages (8 × 60 = 480
commits in total).8 Each sampled commit has a generated
message and a ground truth message. Two authors indepen-
dently followed a scoring scheme based on previous studies
[1, 9, 10] to manually score the generated message. The two
raters did not know which of the approaches generated
the messages, and whether these were based on datasets
before or after removal of noisy messages, to reduce any
potential threat to validity involved in the manual labeling
process. Table 7 shows the scoring rules with five levels,
ranging from 0 to 4; a higher score means better similarity
between the generated commit message and the ground
truth. We calculated the kappa coefficient (κ) between the
two authors, which was 0.71 indicating a substantial level
of consistency [66]. When the two raters differed in their
scores, these differences were resolved through discussion
leading to a consensus on the final scores. The difference
in scoring was mostly only 1, meaning that the two raters
varied in their judgment only by a small degree. During the
discussion, we adjusted the scores of approximately 22.3%
(#107) of the messages.

We followed prior work [10] in defining the scores 0 and
1 as low-quality, 2 as medium-quality, and 3 and 4 as high-
quality. Table 8 presents the results of this human evaluation.
The portion of messages with low scores (0-1, indicating
irrelevance or no relation) increased for NNGen, CoRec,
FIRA, and CCRep, with 25, 16.7, 15, and 6.67 percentage

7. Effect size ≥ 0.1, effect size ≥ 0.3, and effect size ≥ 0.5 represent
small, medium, and large differences, respectively [65].

8. The reason for sampling 60 commits in each case is to ensure the
overall sample size (480) is feasible for manual analysis.
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TABLE 7
Scoring criteria

Score Definition

0 Entirely irrelevant, and no tokens are shared.
1 Unrelated, but there is some token overlap.
2 Somewhat related, but the generated message includes

redundant or missing information.
3 Similar, with mostly identical tokens, but variations in detail

lead to inconsistent semantics.
4 Semantic consistency.

points, after removing noisy messages respectively. However,
the portions of generated messages with high scores (3-
4, indicating messages are deemed similar or semantically
consistent) decreased for NNGen, CoRec, and CCRep after
removing bot-submitted and uninformative messages; the
drop was considerable at 16.7, 25, and 16.7 percentage points,
respectively. For FIRA, there was a small but insignificant
increase. We explored the reasons for these drops in per-
formance and found that most well-generated messages
(i.e. with high scores, 3-4) in the New J-M dataset have
simple patterns, such as “update <file_name>,” “bump
<version_number>,” and “added <version_number>,” which
are either generated by bots, or uninformative and are
removed in our New Benchmark. We also observe that the
average scores of all four evaluated approaches are close to 1:
the generated messages are “unrelated, but there is some token
overlap” (Table 7), after removing these noisy messages.

Both the quantitative and qualitative evaluation results
suggest that including noisy data has a serious impact on
the current approaches’ performance. Considerable work is
needed to filter noisy data well and automatically generate
high-quality commit messages that are of practical value.

TABLE 8
Results of the qualitative evaluation

Approach Score1 New J-M
Dataset

New
Benchmark Delta2

NNGen [1]

Low Score 36.67% 61.67% 25.00
Medium Score 15.00% 6.67% −8.33
High Score 48.33% 31.67% −16.66
Average Score 1.97 1.33 −0.64

CoRec [9]

Low Score 38.33% 55.00% 16.67
Medium Score 8.33% 16.67% 8.34
High Score 53.33% 28.33% −25.00
Average Score 2.17 1.48 −0.69

FIRA [10]

Low Score 58.33% 73.33% 15.00
Medium Score 31.67% 15.00% −16.67
High Score 10.00% 11.67% 1.67
Average Score 1.23 1.00 −0.23

CCRep [18]

Low Score 35.00% 41.67% 6.67
Medium Score 8.33% 6.67% −1.66
High Score 45.00% 28.33% −16.67
Average Score 1.94 1.6 −0.34

1 Low scores 0-1, Medium score: 2, High scores: 3-4
2 The delta numbers are percentage points
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Fig. 4: Distribution of token numbers contained in diffs

Summary for RQ1: After removing bot-generated and
uninformative commit messages from the training and
testing datasets, the performance of NNGen, CoRec, and
CCRep greatly declines in comparison to the original
evaluations, in terms of BLEU, ROUGE-L, and METEOR
metrics, while the performance of FIRA remains stable.
The qualitative evaluation suggests that the performance
of all four approaches declines after removing bot-
generated and uninformative commit messages.

4.2 The Impact of Small Commit Size on Performance
of Commit Message Generation Approaches

Most automated approaches for generating commit messages
are based on datasets that only include commits with a diff
length of no more than 100 tokens [8, 9], because neural
machine translation techniques usually empirically set the
lengths of source and target sequences between 50 and 100
[8, 67]. A few learning-based approaches (e.g., FIRA [10]),
which can only handle code changes, set the diff length to
no more than 200 tokens to learn more information through
the AST of a diff. Although retrieval-based approaches (e.g.,
NNGen) have no length constraints from the implementation
perspective, these approaches are only evaluated on datasets
containing commits with diffs of no more than 100 tokens.

However, when we consider the distribution of the
commit diff length, this 100-token limitation raises a critical
concern. Figure 4 presents the diff length distribution of
“New Benchmark,” which contains 828k commits after filter-
ing out bot-submitted commit messages and uninformative
messages. The results show that only 5% of diffs have less
than 100 tokens, 22% of diffs have less than 200 tokens, and
39% of diffs have more than 1,000 tokens. Figure 5 presents
a commit with a diff length of 100 tokens; it is intuitively
clear that many commits are, in fact, much larger than 100
tokens. In particular, the number of tokens in our dataset
ranges from 12 to 4,000, with a median length of 632 tokens,
considerably larger than the 100-token limit applied in the
evaluation of almost all automatic approaches (or 200 tokens).
Thus, it is clear that these approaches are not thoroughly
evaluated, casting serious doubt on the practical relevance
of these approaches. To move the field forward, we must
conduct more rigorous evaluations to establish the limits of
the state-of-the-art.
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Fig. 5: A real-world example commit with a diff length of 100 tokens [68]

To investigate the performance of the state-of-the-art
techniques in a more realistic scenario, we changed the diff
length constraints to 632 tokens (the median length) and
evaluated the four representative approaches using the same
three metrics as before (BLEU, ROUGE-L, and METEOR).
We applied the filtering rules of the four approaches listed
but replaced the diff length constraints with 632 tokens on
the dataset ‘New Benchmark’.9 From the filtered dataset,
we further randomly selected 1,000 commits according to
the following range of diff lengths as testing datasets: (0,
100], (100, 200], (200, 300], (300, 400], (400, 500], (500, 632].
For FIRA, the length range of the testing dataset starts with
(0, 200]. Since CCRep is based on CodeBERT [48], which
has a maximum input size of 512 tokens, our experimental
constraint for CCRep is set to a maximum length of 512.

We evaluated the generation performance of the four
approaches in two scenarios. First, we reused the four models
trained on ‘New Benchmark’ in RQ1, i.e., diff lengths of
training commits are limited to (0, 100] (and max. 200 for
FIRA), and then tested their performance with all testing
datasets. This first scenario affords an evaluation of the
performance of the current models, which are trained on
commits with restricted code changes (up to 100 tokens for
NNGen, CoRec, and CCRep; up to 200 for FIRA), when
generating messages for commits that capture larger diffs.
When the performance is not as good as the four approaches’
reported results (i.e., the ‘After’ column in Table 5), one of
the most obvious reasons is that these models did not learn
the characteristics of larger commits. Therefore, we designed
a second scenario to alleviate this concern: we trained the
models with an unsegmented dataset, i.e., a training set of
diff length between (0, 632] (up to 512 for CCRep),10 and
similarly tested their performance with all testing datasets.

Figure 6 shows the performance of the four evaluated
approaches when tested on commits with different diff
lengths. The x-axis represents the diff lengths of commits in
the testing sets. The blue lines represent the performance of
the approaches as trained on datasets with the original diff
length requirements ((0, 100] for NNGen, CoRec, and CCRep,
and (0, 200] for FIRA), whereas the orange lines represent the
performance of the approaches when trained on a dataset
that has a maximum of 632 tokens (512 for CCRep).

9. The reason for not directly deleting the diff restriction is to reduce
the time needed to conduct the evaluation, which can be very time-
consuming.

10. Note: there is no overlap between the training data and these
testing datasets.

The performance of the four approaches degrades con-
siderably when the diff length of the test dataset increases,
regardless of whether they are trained with commits whose
diffs are in their required length range or between (0, 632].
When the diff length of test data continues to grow, the
performance of the four evaluated approaches remains stable.
The extent of degradation of NNGen, CoRec, and CCRep is
greater than FIRA. The performance of NNGen, CoRec, and
CCRep dramatically degrades when the diff length of the
test dataset increases from (0, 100] to (100, 200]. For example,
consider the BLEU metric: the performance of NNGen,
CoRec, and CCRep decreases by 88.7%, 94.3%, and 89.6%
respectively in the first evaluation scenario, and decreases by
28.2%, 65.8%, and 32.9% respectively in the second scenario.
When testing commits with diff lengths belonging to [200,
300) on FIRA in the two training scenarios, the performance
degradation is 12.8% and 16.1%, considerably smaller than
the performance degradation of the rest three approaches.
The relatively small degradation of FIRA’s performance
may be because FIRA filtered out all non-code changes and
its AST-based encoding learned some knowledge between
messages and the corresponding code diffs. At the same
time, complete code changes may also increase the difficulty
of generating messages, because FIRA has achieved the
relatively worst performance when compared with the other
three approaches. When comparing the four approaches’
performance in the two training scenarios, we can see that
training on commits with larger diffs can slightly improve
their performance, but the testing results with larger diffs
are significantly decreased. This indicates that generating
messages for larger code diffs remains a challenge.

We conducted a Mann–Whitney U test [64] to examine
whether the four models’ performance falls between the
original testing set and other testing sets with larger diffs
(see the supplementary appendix for complete results). All
p-values are below .05 with a small or medium effect size,
indicating the performance degradation shown in Fig. 6 is
statistically significant.

Summary for RQ2: The state-of-the-art approaches for
automated commit message generation have limited their
datasets to commits whose diffs have no more than 100
or 200 tokens. However, only 5% of commits have a diff
length of no more than 100 tokens, with an average of
632 tokens in our cleaned dataset, which was created
using a similar procedure as the original J-M dataset.
The performance of four state-of-the-art approaches, i.e.,
NNGen, CoRec, FIRA, and CCRep on commits with larger
diffs degrades significantly, regardless of whether they
were trained with a diff length of up to 100 tokens (200
for FIRA) or up to 632 (512 for CCRep) tokens. When
compared with NNGen, CoRec, and CCRep, diff sizes
have a smaller impact on the performance of FIRA.

4.3 Is Commit Message Generation Helpful?

Current approaches are designed to only generate the subject
of a message, which usually has no more than 30 tokens
(see Table 1). A commit message’s body may contain more
information for developers to understand code changes [2].
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(a) NNGen

(b) CoRec

(c) FIRA

(d) CCRep

Fig. 6: Performance of the four approaches at different lengths of diff.
Blue lines indicate that the diff length of the training sets is between 0
and 100. Orange lines indicate the diff length is no more than 632 (512
for CCRep) in the training sets.

Research Question 3 focuses on the perceived value of the
automated generation of commit messages by developers.
Clearly, these approaches are targeted at developers; if they
do not perceive these approaches to have any value, then as

a field, we should reconsider whether further research into
these approaches is valuable.

We conducted a survey among developers and received
72 responses; 81.9% of the respondents had participated in
OSS projects for more than three years. The two most junior
respondents in our survey had contributed to open source
for more than three months. We present what developers
perceive to be (1) the hardest work and (2) the most time-
consuming part when writing commit messages, and why
they think so. We also present feedback on future commit
message generation.

4.3.1 What Makes Writing Commit Messages Hard?
We asked developers what aspect of writing commit mes-
sages they perceived to be the most challenging. For this
question, we offered three options: the subject of a commit
message, the body of a commit message, or an ‘other’ option,
which invited respondents to provide further details. The
results show that 69.4% (#50) of respondents indicate that
writing the subject of a commit message is the hardest work,
19.4% (#14) of developers think writing the message body
is the hardest work, and two respondents hold the view
that both are difficult. Among the seven ‘Other’ responses,
developers mentioned “keeping commit messages consistent
across time” (#2), “figuring out what to write” (#1), “Writing
meaningful content that will be helpful to future developers.”(#1)
and “keeping things concise/compact” (#1). Besides, two respon-
dents indicated writing commit messages is not difficult.

Since the message body is usually longer than the subject,
it is perhaps surprising that most respondents indicated that
writing the subject is more challenging; understanding why
this is so is worthwhile exploring further. After analysis
of respondents’ reasons for their choice, we identified two
reasons that alone or together make writing the subject of
a commit message difficult. First, it is difficult to create a
good description within a limited space (mentioned by 42
developers). For example, one respondent indicated that:
“Providing a concise and informative subject in less than the
recommended 50 characters is challenging.” Another respondent
commented that “It’s a little hard to summarize what I have
done in this commit.” Three respondents identified a second
reason why writing the subject of a commit message is hard,
namely, community norms: despite the size constraints and
informative requirements, developers also need to tailor their
subjects to a conventional commit standard which makes it
more difficult. For instance, one respondent highlighted the
importance of community norms and expectations regarding
commit messages: “One major issue with open source projects is
the difficulty in unifying and standardizing commit messages.”

4.3.2 What Makes Writing Commit Messages Time-
Consuming?
Since hard things are not always time-consuming, we also
ask developers another question: What is the most time-
consuming part when writing commit messages? Of the
respondents, 37.5% (#27) found that writing the message
subject costs the most time, while 51.4% (#37) of respondents
found the body is the most time-consuming part of commit
messages. Besides, three respondents claimed that both
the subject and body are time-consuming. Among the five
developers who chose the ‘Other’ option, two issues were
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mentioned: first, the complexity of a change to code, and
second, the ability to explain things within the scope of a
message to a reviewer, as one respondent explained: “How to
make the reviewer better understand the meaning of this PR and
make it easier to be accepted.”

After analyzing the reasons behind their choices, we
found most respondents, who indicated writing message
subjects is the most time-consuming, gave the same reasons
as to why they consider subjects the hardest part: difficult
to create a good description within a limited space (#9) and
community norms (#1). For example, one developer indicated
that:

“To make the subject short, I often go through many
versions until I find a subject that fits.”

These results can be easily inferred, i.e., hard things usually
need more time. Respondents also provided extra reasons for
this choice: two held the view that “most commits don’t need
a body, so subjects take more time in total”; two respondents
deem improving the readability of message subjects time-
consuming. As for those who consider writing the message
body to be more time-consuming, the most commonly
mentioned reason is that the body of a message is longer
than the subject and more details are needed. For example,
one respondent said that:

“It typically requires a detailed explanation of what
changes were made and why. This can involve summa-
rizing the context of the changes, the rationale behind
them, and any potential impact they may have.”

Four respondents also indicated that making the message
body easy to understand is time-consuming. One interesting
finding is that the majority of developers perceive writing
message subjects as the hardest while writing message bodies
is the most time-consuming. It means that researchers should
consider generating the body of commit messages for the
sake of improving efficiency.

4.3.3 Suggestions For Generating Commit Messages
Current learning-based, retrieval-based, hybrid, and even diff
pre-trained approaches can only generate one sentence of less
than 30 (or 20) tokens (see Table 1) as the commit message for
a given diff, which are usually the commit message subjects.
A complete commit message is expected to contain two
parts: 1) explain why made this change, and 2) describe
what was changed [2]. To better understand why some
developers find writing message subjects hard and time-
consuming, we asked developers what they usually write
in the subjects. Approximately 80.6% (#58) of respondents
indicated that they usually describe what was changed in
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Fig. 7: Developers’ view towards the effectiveness of generating commit
message.

the subject of a commit message. One acclaimed strength
of non-rule-based approaches is that they can provide the
reasons behind code changes [1, 9]. However, fewer than
20% of developers explain why they made their change in
subjects, and thus evaluating existing retrieval- and learning-
based approaches on message subjects cannot demonstrate
their ability to generate code change reasons.

Next, we asked developers to score the effectiveness of
automatically generating message subjects on reducing their
burden during development. We defined a 5-point scale,
ranging from 0 (useless) to 4 (very effective); the mid-point
(2) indicates ‘neutral.’ As shown in Fig. 7, most develop-
ers (n=27+8, 48.6%) are thinking highly of automatically
generating message subjects. Fourteen respondents held a
neutral attitude toward this task. This indicates that there is
considerable interest in this topic from practitioners, and thus
further work in this area will be very welcome. However,
twenty-three developers did not perceive automatic subject
generation as helpful. Combined with their answers for
the hardest and most time-consuming parts of writing
commit messages, one reason might be the fact that current
approaches do not generate a message body that in their
views seems to be in more urgent need of automated
support. This means future approaches will require further
sophistication before they may be seen as helpful, which
may include the ability to generate longer or even complete
commit messages to fulfill practical requirements.

Finally, we asked respondents to provide further advice
on commit message generation. Their suggestions can be
categorized as follows: 1) Follow common commits message
guidelines for writing generated messages11 (#10); 2) Take
characteristics of different projects into consideration when
generating messages, because message style and background
knowledge can vary among projects (#4); 3) Integrate mes-
sage generation approaches with existing development tools
(#2); 4) Link relevant bug tickets / pull requests that provide
extensive information that is useful to generation (#2); and 5)
Focus on the body of commit messages (#1).

Summary for RQ3: Developers indicate that writing
the subject of a commit message is hard, and approxi-
mately 37% of developers also find writing subjects time-
consuming. Nearly half of the respondents hold a positive
attitude towards automatically generating message sub-
jects, indicating that generating commit messages (even
just the first sentence of a message) is of great practical
value, but needs to consider generating more complete
messages.

4.4 Performance of LLMs in Generating Realistic Com-
mit Messages

We now address RQ4, which seeks to explore the perfor-
mance of LLMs in generating realistic commit messages.
We explore the performance of two representative LLMs,
UniXcoder [45] and ChatGPT [46].

In this study, we employed the pre-trained UniXcoder-
base model and further fine-tuned it for the task of com-

11. For example, https://cbea.ms/git-commit/#seven-rules and https:
//www.conventionalcommits.org/en/v1.0.0/
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mit message generation. Specifically, we reused the code,
hyperparameters, and dataset partitioning strategy of the
UniXcoder-base model for the task of code summarization in
Java, and replaced the “code + summary” dataset with the
paired data “diff + message”, which are selected from the
“New Benchmark” meeting the requirement of diff lengths
not exceeding 896.12

For ChatGPT, we randomly selected 1,000 data samples
from the “New Benchmark” for experimentation. Following
the instructions of White et al. [69], we designed the follow-
ing prompt: ”This is the list of diff(s) for a commit, please generate
the corresponding commit message, and please note providing
the commit message directly without additional statements: <diff
code>”.13 We evaluated the generated messages against the
ground truth using the three metrics introduced in Sec. 3.3.

Table 9 presents the performance of the two LLMs in
terms of BLEU, ROUGE-L, and METEOR. The performance
of UniXcoder on commits with a diff length of no more than
896 tokens is comparable with NNGen and FIRA but less
promising than CoRec and CCRep on small diffs, i.e., a diff
length of no more than 100 tokens for NNGen, CoRec, and
CCRep, and no more than 200 tokens for FIRA, as shown in
the fourth column in Table 5. For example, CCRep achieves
a BLEU score of 37.43 for diffs with lengths in the range of
0-100 tokens, while the BLEU score of UniXcoder is 24.24
with a diff length constraint of 896 tokens. In a more realistic,
we did not manually control the diff lengths of the commits
when testing ChatGPT, and the evaluation results shown in
Table 9 are not ideal. A BLEU score of 10.38 usually indicates
the generated messages are of low quality [10]. Moreover,
as shown in Sec. 4.1.2, human evaluation seems to have
more restrictive standards than quantitative assessment. For
example, the average score of the best-performing approach
(i.e., CCRep) for RQ1 is 1.6, meaning the generated messages
have some token overlap or are somewhat related. Given that
the quantitative evaluation scores of UniXcoder and ChatGPT
are lower than those for CCRep, we can conclude there is
much room for improvement when generating messages for
real-world diffs.

We also explored whether LLMs can generate full com-
mit messages by comparing the length distribution of the
ground truth commit messages and the generated ones; the
distributions are shown in Fig. 8. The results indicate that
commit messages generated by UniXcoder are generally

12. The 1,024 window size of UniXcoder is the sum length of source
(i.e., 896) and target (i.e., 128). It means the maximum length of diff
UniXcoder can handle is 896.

13. We specify “without additional statements” to prevent the gen-
eration of unrelated content, which would significantly decrease its
evaluation score.

TABLE 9
Performance of LLMs: UniXcoder and ChatGPT

UniXcoder [45] ChatGPT [46]
(diff lengths < 896) (diff lengths < 4,000)*

BLUE 24.24 10.38
ROUGE-L 33.03 13.74
METEOR 14.32 9.19
* This is the maximum diff length in our dataset.

Fig. 8: Length distribution of ground truth and two LLMs’ generated
commit messages, excluding outliers for simplicity.

shorter than ground truth messages, implying their inability
to generate realistic messages. As for the messages generated
by ChatGPT, these tend to be longer than the original
(ground truth) ones. After a manual inspection, we found it
predominantly focused on describing what was changed in
the commits in detail, lacking an explanation of why those
changes were made.

Summary for RQ4: Although LLMs can take larger diffs
as input, their performance of generating messages leaves
much to be improved. UniXcoder tends to generate short
messages, while ChatGPT can generate more detailed
messages, which are very different from those written by
developers.

5 DISCUSSION

We summarize the key findings of this study and suggestions
for future work in Table 10. Automated generation of commit
messages is a topic of substantial interest among researchers
and also has practical relevance to software developers
given that these approaches have considerable potential
in reducing developers’ workload. Several approaches to
achieve this have been proposed, which can be organized
into four categories (see Table 1). In this article, we have
critically reviewed the performance of four approaches that
are representative of the current state-of-the-art. The results
demonstrate that the performance as reported in prior work
is based on datasets that contain noisy data, and are limited
in that they contain only commits with a diff length of up to
100 (or 200) tokens. In this article, we demonstrate that this
has led to an overestimation of their performance. Our study
shows that when more realistic datasets are used (commits
with diffs larger than 100 or 200 tokens), without noisy data,
the performance of these approaches degrades significantly.
Based on these findings, we argue that the state-of-the-art
approaches are not yet ready for adoption in the industry.

Several researchers in data-driven software engineering
have pointed out that the appropriate use of data is critical
[70–72]. For this line of work to be relevant and rigorous,
future work must address these limitations. In this section,
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we discuss several implications for future work, after which
we discuss the limitations of this study.

5.1 Implications

5.1.1 Removing Irrelevant Commits

Current commit message generation approaches are trained
and tested with datasets that contain bot-generated and
low-quality messages. Their performance decreased after re-
moving these noisy data. We suggest future work to conduct
thorough data cleaning before evaluating their models. For
bot-generated messages, we realized the limitation that the
bot list we collected can easily become outdated. However,
several studies are dedicated to automatically identifying bot
accounts in OSS repositories, [cf. 14, 73, 74]. Future studies
can select these bot detectors to clean their dataset before
training and testing their commit message generation models.
For low-quality messages, although there are automatic
classifiers [2, 29] that can be leveraged, their accuracy is
around 85% and may be specific to their own manually
labeled datasets. Future studies should manually label a
small set of data and evaluate the usability of the two
classifiers first. Improving the performance of classifying
high-quality commit messages is also an avenue for future
research.

5.1.2 More Realistic Dataset

The sizes of commits vary widely; some commits change only
a single character, whereas others capture very extensive
changes including adding (or deleting) files. As mentioned,
current datasets used are limited in the commits they contain,
filtering out commits with a diff size of more than 100 or
200 tokens. After generating a new dataset according to the
same procedures as those used for a frequently used dataset
(see Sec. 3.2.1), we found that approximately 95% of commits
are larger than 100 tokens, with a median of 632 tokens. In
other words, it is very common in practice that commits
include larger diffs, but current approaches are not trained
or evaluated on these. For example, commit #ccae978 [75]
in the repository spring-data-examples includes 426 changed
files, with 427 additions and 427 deletions. It is necessary
to consider the practicality of generating commit messages.
When testing the four state-of-the-art approaches with larger
commits, their performance significantly decreases. This
indicates that further work is needed to also be able to
handle commits with bigger diffs.

Since the four evaluated approaches in RQ2 can achieve
a relatively promising performance on small diffs, one
suggestion is to shorten the length of long diffs on the
basis of token importance. The importance of tokens can
be measured through Shannon entropy [76], which indicates
the richness and importance of the semantics provided by
the token. Then, the top 100 tokens can be selected to build
and run the models of message generation. We also see great
potential in the use of LLMs such as GPT [77], PaLM [78],
and LLaMA [79] to build message generation models, due
to their ability to take very long input strings. This may be
one avenue to address the current limitation of diff lengths.
However, the performance of two LLMs we evaluated to
address RQ4 (Unixcoder and ChatGPT) is not as promising

as expected: they either generate short messages or long-
winded change descriptions, failing to convey the rationale
for code changes. Further work still is needed to improve
LLMs’ performance in this task.

5.1.3 Generating Subjects of Commit Messages
Although a commit message’s body is often much longer
than the subject, most developers (69.4%) in our survey
indicated that writing the subject is more difficult. This
demonstrates the practical value of having an automated
approach that can generate an appropriate subject for a given
code change. However, in this study, we found that current
approaches are not capable of fulfilling this task, because
their performance decreases significantly when noisy data
and larger, more realistic commits are excluded from datasets
to train these approaches.

As pointed out repeatedly by both industry developers
(see Sect. 4.3.3) and existing research [2, 27], commit messages
may follow some patterns, which are related to project
context, programming languages, maintenance activities,
etc. Besides, the issue reports and pull requests of the
corresponding code changes contain effective information
for generating commit messages. Instead of simply taking
the commit messages and diffs as input, we suggest taking
project-specific characteristics, commit types, and other
sources of information into consideration.

5.1.4 Non-code Commits
In practice, many commits include non-code diffs, e.g., diffs
of text files, configuration files, and data files. Some commit
message generation studies excluded such commits [10, 15].
These commits might be more complex than simple code
changes, involving natural language and implicit context.
When handling such diffs containing natural language, the
problem can be viewed as finding synonyms and generating
summaries. A neural machine translation technique may
also work with some adaptations. To capture an implicit
context, we think that there are many implicit conventions of
commit messages that could be collected. For example, if one
commit change removed a series of outdated configuration
properties, then its message can be: “This commit removes
the following outdated properties: <list of removed items>.”
Rule-based methods are good at extracting such patterns
and filling in key information by scanning commit diffs [7].
To summarize, we suggest a mixed-methods approach to
handle different kinds of commits and different parts of diffs.

5.2 Threats to Validity
We can identify some threats to the validity of this study.

One potential threat relates to the identification of bot-
generated messages. To identify the messages generated
by bots, we first established an extensive list of known bots
through a detailed systematic literature review (see Sec. 3.2.3).
Once we identified a list of bots, we could filter out all
commits made by those bots. However, it is possible that
we missed some bot-generated messages, and thus that our
‘New Benchmark’ dataset also contains some bot-generated
messages. This, however, does not affect the validity of
our conclusions, because the goal of the creation of a new
benchmark dataset is to demonstrate a critical shortcoming in
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TABLE 10
Findings and Implications

Research Question Findings Implications

RQ1. To what extent
do noisy messages af-
fect the performance
of existing automated
approaches for commit
message generation?

The performance of NNGen and CoRec drops
significantly both in the 3 key metrics and human
evaluation when ‘noisy’ messages are removed
from the datasets. The performance of FIRA
remains stable when evaluated by the metrics
but also declined in the human evaluation.

The performance of state-of-the-art approaches as reported in
current literature is over-estimated; the observed performance
degradation suggests that these approaches are not ready for use
in production settings. Future work should rely on more realistic
datasets to evaluate approaches. Considerable opportunities
to investigate how current approaches can be tailored and
customized to understand how they can be improved for use in
practice.

RQ2. Given that a com-
mit’s diff is usually
longer than 100 or 200
tokens, is the perfor-
mance of existing ap-
proaches as promising
when considering com-
mits that capture longer
code changes?

Prior approaches have been tested with datasets
with commits of up to 100 or 200 to-
kens.However, following the same procedures
used for the widely-used J-M dataset, we found
that only 5% of commits have a length of no
more than 100 tokens, and the median diff length
is 632 tokens. After testing three representative
approaches on commits with larger diffs, the
performance of these degrades significantly.

Existing commit message generation models do not appear ready
to meet the needs of realistic development scenarios where
commits are frequently over 100 or 200 tokens. Future work
should consider more varied datasets containing commits of
a more wide-ranging size consideration. Given their ability to
handle large amounts of text, large language models and key
feature extraction of diffs are worth investigating (see also RQ4).

RQ3. Do developers
think generating com-
mit message subjects is
useful?

Writing the subject of a commit message is seen
as the hardest part to write, and in some cases,
it may also be the most time-consuming. 52% of
developers are positive towards automatically
generating message subjects.

Generating commit messages (even just the first sentence of a
message) is of great practical value but has a long way to go
to meet practical needs. Future work can be on improving the
performance of generating subjects for commits. Meanwhile,
automatically generating full commit messages is of practical
importance and a fruitful avenue to investigate.

RQ4. What is the perfor-
mance of LLMs in gen-
erating realistic commit
messages?

Although LLMs can take larger diffs as in-
put, there is a significant gap when leveraging
LLMs to generate messages for real-world code
changes.

LLMs cannot be directly used to address the long diff and full
messages challenges faced by the state-of-the-art approaches
dedicated to generating commit messages. Further work still
needs to improve the performance of LLMs on this task.

the evaluations of the state-of-the-art approaches to generate
messages. If some bot-generated messages are left in our
new dataset, then that would mean that the shortcoming
is even more serious than what we observed. The goal
of the study is not to establish exactly the extent of the
degradation in performance, but only to establish that there
is such a significant drop in performance. A more thorough
data cleaning will be needed if future studies reuse our
New Benchmark dataset because the use of commit bots is
increasing [14]. We also reused a quality-aware classifier to
identify trivial messages without describing the reasons for
changes and what was changed. The reported accuracy of the
classifier we reused is 85% [2], and thus false positives may
be possible. Given the complexity of defining and identifying
trivial messages, we believe such results are sufficient for
our analysis, which was to empirically reveal the impact
of uninformative messages on the performance of the state-
of-the-art in commit message generation. While not ideal,
the incorrect removal of informative messages (i.e., false
positives) would not be overly problematic given that our
dataset is large and the removed non-informative messages
only account for 4.5%.

Another internal threat in our study is the replication
of the four evaluated approaches, i.e., NNGen, CoRec,
FIRA, and CCRep. We carefully read the original papers
[1, 9, 10, 63], focusing on how the original datasets were
prepared, and we reused the implementations of the four
evaluated approaches from their available replication pack-
ages. Notwithstanding, it is not impossible that mistakes
were made.

A threat to external validity is that our conclusions are
based on the evaluations of four approaches, but may not

hold for other approaches; as reported, we identified 14
approaches (see Table 1). We selected these four approaches
because they represent the three primary categories of
techniques, i.e., retrieval-based, learning-based, and hybrid
models. Previous evaluations [1, 10] suggest that they rep-
resent the state-of-the-art. The selection of UniXcoder and
ChatGPT also faces the same issue.

Finally, the findings are based on a dataset that we
prepared, which only includes Java projects hosted on
GitHub. This may influence the generalizability of our find-
ings, because commit messages are the result of developers’
behavior, and the population of developers active on GitHub
is not necessarily representative of all developers worldwide.
Further, while Java is one of the most popular programming
languages, and the evaluation of current approaches to
commit message generation is based on the commit data
from Java projects, how they perform in other programming
languages is one potential strand for future work.

6 CONCLUSION

Commit messages carry important information that is helpful
for developers to understand and improve a code base in
software development. Several automated generation ap-
proaches of commit messages have been proposed. However,
we revealed three significant shortcomings in the area of
commit message generation: their datasets contain noisy
data (commits submitted by bots or with non-informative
messages), the datasets are limited to ‘small’ diffs, i.e. a
maximum of 100 (or 200) tokens; current approaches only
generate the message subject, not the message body. In
this study, we first conduct an empirical investigation on
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the impacts of these three threats on the state-of-the-art
approaches’ performance using three widely-used metrics:
BLEU, ROUGE-L, and METEOR, and developer survey.
In the last, we explored whether LLMs can address the
shortcomings. The study findings emphasize the necessity
of data cleaning before generating commit messages, convey
the extent the state of the art of generating messages can
achieve in a more realistic scenario, can assist researchers in
realizing the needs and expectations of developers towards
commit message generation, and demonstrate considerable
work of leveraging LLMs to address these shortcomings. To
facilitate future investigation towards commit messages, we
open the datasets, scripts, survey, and results in the online
appendix [52].
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