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Abstract— Malicious attacks against power systems are inves-

tigated, in which an adversary controls a set of meters and is
able to alter the measurements from those meters. Two reginse
of attacks are considered. The strong attack regime is where
the adversary attacks a sufficient number of meters so that té
network state becomes unobservable by the control center.df
attacks in this regime, the smallest set of attacked metersapable
of causing network unobservability is characterized using graph
theoretic approach. By casting the problem as one of miniming
a supermodular graph functional, the problem of identifying the
smallest set of vulnerable meters is shown to have polynoniia
complexity. For the weak attack regime where the adversary
controls only a small number of meters, the problem is examiad
from a decision theoretic perspective for both the control enter
and the adversary. For the control center, a generalized liklihood
ratio detector is proposed that incorporates historical daa. For
the adversary, the tradeoff between maximizing estimatiorerror
at the control center and minimizing detection probability of
the launched attack is examined. An optimal attack based on
minimum energy leakage is proposed.

Index Terms—Power system state estimation, false data attack,

bad data detection, power network observability, smart grd
security.

I. INTRODUCTION

detection. The problem of detecting malicious data attaak c
be viewed as a form of classical bad data detection. It is
however important to note that, because the adversary can
choose the site of attack judiciously and design attack data
carefully, it is far more difficult to detect malicious dateerks

than to detect random errors in the power systems. We will
examine attacks with different degrees of sophistication.

The problem of malicious data attack on the power grid
was first studied in [4], in which it was observed that there
exist cooperative attacks on meters that all known bad data
techniques will fail to detect. The authors of [4] gave a meth
to adjust measurements at a few meters in the grid in such a
way that bad data detector will fail to perceive the corroipti
of the data and the estimate of network state can be perturbed
arbitrarily in certain subspace.

We view the existence of these “unobservable” attacks as
a fundamental limit on the detectability of malicious data
attacks. Given that this fundamental limit depends on the
number of meters that can be corrupted by the adversary, it is
therefore natural to divide the attack into two differergines.

The strong attack regime is when the adversary is able to
access a sufficient number of meters to launch an unobservabl
attack. Attacks in this regime cannot be detected by therabnt

Future smart grids will likely to be more tightly irVEeQratedcenter (even if there is no measurement error). ek attack

with the cyber infrastructure for sensing, control, scHidy)
dispatch, and billing. Already the current power grid rela

regime, on the other hand, is when the adversary does not have
access to a sufficient number of meters; their attacks can be

computer and communication networks to manage generatﬁ)é}ected, though imperfectly due to measurement errors.

and facilitate communications between users and suppliers

While such integration is essential for a future “smart’dgri

it also makes the power grid more vulnerable to cybe
attacks by adversaries around the globe. It has already b
widely reported that the United State electrical grid hasrbe

penetrated by cyber spies [1].

We consider in this paper strategies of covert attack t%
adversaries on meters of the smart grid by injecting malio
data with the goal of biasing power system state estimalfon.
successful, such attacks may mislead the control centakéo t

The strong and weak regimes are divided by the smallest
numbery* of meters to which the adversary must have access
iri order to launch an unobservable attack. The gquagtitgan

B defined as gecurity index for the power network. As we

will see, in a network with a more connected topology, or more
redundant meters, the adversary must compromise a larger
mber of meters to perform this attack, and therefore the
network is more secure. Thus quantifyirg is of theoretical

and practical importance.

erroneous actions, or at the minimum, make the control cente

distrust the state estimate. Since some real-time marleets
state estimation to determine location marginal prices PisM

A. Summary of Results and Contributions
The main results in the study of malicious data attack

[2], [3], malicious attacks also have impacts on real-img e sirong attack regime are the characterization of the

electricity markets.

smallest numbex* of adversarily-controlled meters such that

Also considered in this paper are counter measures Ao nonservable attack exists and obtaining this smaitest s

malicious data attack at the control center in the form afckit
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attack. In Sec. Ill, we show a connection between the claksic
notion of unobservability and the attack discovered in {dis
justifies our use of the termanobservable to describe these
attacks. This insight transforms the problem of finding the
smallest unobservable attack into the problem of finding the
smallest set of meters that, if removed, renders the network
unobservable. We tackle this problem in a strictly graph
theoretic manner, relying only on the network topology€lin



diagram) without making use of specific network parametergduces to an eigenvalue problem that can be solved off line.
By exploiting the submodularity of certain graph functima We also present a proof-of-concept analysis of the effect of
we show that smallest size unobservable attack can be {deatimalicious data attack on the electricity market. In Seon¥|
fied in polynomial time. describe how the locational marginal price (LMP) is calteda

In the weak attack regime, the adversary has access to todhe day-ahead and real-time power markets. In particular
few meters to perform an unobservable attack; therefore,ttie real-time price is determined based on the state estimat
is possible to detect its presence. In Sec. IV, we invesigatutput, therefore it is vulnerable to malicious data attack
the problem in this regime, developing strategies to detectFinally, in Sec. VIl we conduct numerical simulations on
and localize malicious attacks. Under a classical decisiansmall scale example using the IEEE 14-bus network. For
theoretic detection formulation, we investigate the tadfle the control center, we present simulation results that @mp
between detection probability and false alarm. Because tiifferent detection schemes based on Reeeiver Operating
adversary can choose where to attack the network and desigharacteristics (ROC) that characterize the tradeoff between
the injected data, the problem of detecting malicious daliae probability of attack detection vs. the probability of
cannot be formulated as a simple hypothesis test, and fatse alarm. We show that there is a substantial difference
uniformly most power test does not exist in general. Weetween the problem of detecting randomly appearing bad
propose a detector based on the generalized likelihood rafiata from detecting malicious data injected by an adversary
test (GLRT). The GLRT is not optimal in general, but it ifNext we compare the GLRT detector with two classical de-
known to perform well in practice and it has well establishetction schemes: thé(x) detector and the (Bayesian) largest
asymptotic optimality [5], [6], [7]. In other words, if the normalized residue (LNR) detector [8], [9]. Our test shows
detector has many data samples, the detection performéncénprovement over the two well established detection sclseme
GLRT is close to optimal. The GLRT itself requires solving &rom the adversary perspective, we compare Afiecker
combinatorial optimization problem. This makes it infédxesi Operating Characteristics (AOC). Our result shows again that
to use to detect a large number of corrupted meters. We thetee GLRT detector gives higher probability of detectionrtha
fore also study a detector using a convex regularizatiohef tthat those of conventional detectors for the same amount MSE
optimization problem, based oh; norm minimization. The increase at the state estimator. We also provide simulation
convexity makes the optimization much easier to compute, besults on the electricity market, illustrating that evem a
with potential sacrifices in performance. We provide nueadri attack in the weak attack regime can affect prices with a low
results for the true GLRT itself when it is feasible to use ifprobability of being detected.
and the convex relaxation for larger scale problems.

We note that the proposed detector has a different structfeRelated Work
from those used in conventional bad data detectors whichThe study of malicious data attack is fairly recent. Liu,
usually employ a test on the state estimator residues €B8prs Ning, and Reiter was the first to address cyber-attack on powe
[9], [10]. The proposed the GLRT detector does not compusgstem state estimation in [4] where the authors obtained an
explicitly the residue error. We show, however, that wheareh algebraic condition for the existence of unobservableck#ta
is at most one attacked meter (a single attacked data), Teey also found that, for many standard networks, unobserv-
GLRT is identical to the classical largest normalized resid able attack can be launched using only a limited number of
(LNR) test using the residue error from the minimum meameters.
square error (MMSE) state estimator. In the strong attack regime, a fundamental problem is

Next we investigate malicious data attack from the pete characterizey*—the smallest number of meters required
spective of an adversary who must make a tradeoff betwefen unobservable attack [11], [12], [13]. Sandberg, Tegi
inflicting the maximum damage and being detected by tlend Johansson are the first to introduce the measure of the
control center. We define in Sec. V the notion Attacker vulnerability of a network to malicious data attack [14] by
Operating Characteristic (AOC) that characterizes the tradeoffdefining a security index as the minimum number of meters
between the probability of being detected vs. resultingrédx to perform an unobservable attack including a given meter.
mean-square error at the state estimator. We consider ti&2 AGuch an index is a function of the included meter, and finding
to be dual to the classic&teceiver Operating Characteristic such an index is difficult in general though [12] provided a
(ROC), which characterizes the control center’s trade®. lower bound; see [13] for a specific algorithm. The security
formulate the problem of optimal attack as minimizing théndex x* considered in [11] and in this paper does not impose
probability of being detected subject to causing the meaastrictions on which meter to include in the set of attagkin
square error (MSE) to increase beyond a predetermined levakters and is a function of the network topology only. The
Unlike the strong attack regime, in which an unobservabigaph theoretic approach to finding security index has i$ ro
attack is always the most damaging action for the adversairythe classical work of Clements, Krumpholz and Davis [15]
in the weak attack regime, it is much less clear what theho established the relation of network observability amal t
adversary should do. In particular, finding the attack wiitl t graph theoretic notion of spanning tree. It is this relatioat
optimal AOC is intractable. We present a heuristic thatvedlo allows us to formulate an optimization involving a submaatul
us to obtain attacks with minimum attack power leakage to thgnction.
detector while increasing the mean square error at the staténtroducing redundant and, more importantly, trustworthy
estimator beyond a predetermined objective. This hearistneasurements is the key to defending malicious data attack.



The use of PMUs, for example, will in general reduce th TRANSTORMER 'EQUVACENT
vulnerability of the network, provided that PMU measure (©) snerators ?
ments themselves are secure. The authors of [16] foundthat © sicrmonous
order to protect a network against all unobservable atteacks
minimum size set of measurements that by themselves ens
observability need to be included. This result is corrobeta
and enhanced by the graph theoretic techniques preser
in this paper. We note that the use of PMUs does n
fundamentally change the formulation of the problem.

In the weak attack regime, the problem of detecting mi
licious attack was first considered in the precursors of tt
current paper in [17], [18], [11]. There is a natural coniaatt
between the problem studied here and the classical bad c
detection as part of the original formulation of state eation
[8]. See [19] for an earlier comparison study. Maliciousadal
attack can be viewed as therst interacting bad data injected
by an adversary. To this end, very little is known about thFei 1 IEEE 14 bus test svstem
worst case scenario although the detection of interactady b g & ystem.
data has been considered [9], [20], [21], [22].

Finally, the impact of attack on real-time market is studied
in [23], [24]. The influence of false data attacks on elediric
markets is studied in [24]. A method is given to find attac
that influence LMPs at certain buses, which could be employ: ormation as follows. Supposé, j) € E; that is, buses

by a malicious intruder to turn a profit. In this paper, we fmuandj are connected by a transmission line. The DC power

on the effect on the LMP prices through the attacks on stgig through this line from bus o j is By, (x; — z;), where
estimation. See Sec. VI. AP

B;; is the susceptance of the lirfé, j). We may also write
this power flow ash;;x, where

The measurement matrBd depends on the topology of the
network, the susceptance of each transmission line, and the
f.?]I(icement of the meters. The mattkikis generated from this

Il. THE NETWORK AND ATTACK MODELS
. [0---0 B;; 0---0 —-B;; 0---0 1.
We adopt a graph-theoretic model for the power system; = N ——

with an undirected graptV, E'), whereV represents the set ith element jth element
of buses, andt' is the set of transmission lines. Each Iinel_ : N
: herefore, if a meter measures the flow through ljngj),
connects two meters, so each elemert £ is an unordered ! N S
the associated row dH is given byh; ;. A bus injection

air of buses inV. Fig 1 shows the graph structure of the . S
P V. Fig grap meter measures the total power flow on all lines incident to

IEEE 14-bus test system, which we use in our simulations. articular node. Therefore the row Bf associated with a
The control center receives measurements from variousrmetae P R
eter on bug is given by

deployed throughout the system, from which it performs;estartn
estimation. Meters come in two varieties: transmissio® lin Z hij. 3)
flow meters, which measure the power flow through a single
transmission line, and bus injection meters, which measure
the total outgoing flow on all transmission lines connected t In the presence of malicious data attack, the data collected
a single bus. Therefore each meter is associated with eitheat the control center satisfy

businV or aline inE. We allow for the possibility of multiple
meters on the same bus or line. Indeed, in our simulations, we

assume that a meter is placed in every bus, and two metersiyre vector is malicious data injected by an adversary. The
every line, one in each direction. injected vecton is sparse with respect to the meters controlled

We assume a standard DC power flow model from By the adversary. That is;; # 0 only if the ith meter is
linearized version of the AC power flow model. In the absenggntrolled by the adversary. In general, we assume that the
of attack, the control center obtains meter measurements adversary may control any set of up tometers. Therefore

z=Hx+e, e~N(0,3.), L we impose the constraiat Ak ={a: |la]jo =k}, vv_hich is
the set of sparse vectors with at méshonzero entries.

wherez € R™ is the vector of power flow measurements, We assume that the adversary has access to network parame-
x € R" is the system state, ards the Gaussian measurementersH and is able to coordinate attacks from different meters.
noise with zero mean and diagonal covariance maigixNote These assumptions, and that the adversary may choose any
we are assuming the measurement noise to be zero-mearsetf of k. meters it likes, give the adversary more power than
this were not the case, as long as the mean is known, it garhaps possible in practice, which is a well adopted practi
simply be subtracted off with no impact on our results, but wehen analyzing security. Thus the results we obtain are in
make this assumption for convenience. general conservative.

()

J:(i.j)eE

z=Hx+a+e (4)



I1l. THE STRONG ATTACK REGIME network, thus making the network not observable. With this

We consider in this section the case when the advers&§FSPective, it is in some sense not surprising that such an
is able to launch an attack from a sufficiently large numb@ftack exists: if an adversary controls a set of meters whose
of well chosen meters. Attacks in the so-called strong kttafPSence makes the system unobservable, then there must be
regime are defined by the attack given in [4]. In particular, 50Me aspect of the system state that can only be learned

attack vectom belongs to the strong attack regimeait= He through those meters. Thus, the adversary has completetont
for somec. Eor such an attack. we have over what the control center learns about this aspect of the

state.

z=Hx+a+e=H(x+c)+e. We further note that even though an unobservable attack
is equivalent to the network being made unobservable, the
0afdversarial attack is still much more destructive. When the
network is unobservable because there are insufficientrajete
the control center knows; it knows exactly what aspects bou
the system state it can gather information about, and which i
cannot. However, in the case of an unobservable adversarial
attack, the control center does not know it is under attack, n

e which of several possible attacks is being executed. Theref
hereafter an attack vectarunobservableif it has the forma = . SO .
the situation is much more precarious, because the control

Hc. Note that it is unlikely that random bad datavill satisfy )
" enter does not even know what it does not know.
a = Hc. An adversary, on the other hand, can synthesize ftS
attack vector to satisfy the unobservable condition.
The attacks in the strong attack regime is defined by tfle Unobservable Attacks on AC Power Flow

algebraic condition that &-sparse vector satisfying = Hc Our primary focus on this paper is on the DC power

for some vectore. Given a network and the correspondingiow model, but we briefly note here that because of the
factor matrixH, we definex” as the smallest: such that connection made by Theorem 1 between unobservable attacks

Thereforex is indistinguishable fromx + c. If both x and
x + ¢ are valid network states, the adversary’s injection
dataa when the true state g will lead the control center to
believe that the true network statesist c. Because vectoe
can be scaled arbitrarily, the adversary can perturb thearkt
state (in the view of control center) arbitrarily.

Since no detector can distinguish from x + ¢, we call

a = Hc € A, for somec. Equivalent,x* is given by and classical unobservability, unobservable attacks aan b
Y* = min [|allo 5 constructed even under the more realistic, and nonline@r, A
@ia=te ®) power flow model. In particular, observability is the same

. . for both models, so if the adversary controls enough meters
where||a||o is the number of non-zero entries in . .
the absence of which makes the system unobservable, it

In this section, we characterize* and find the corre- o . ) .
. . . can similarly manipulate the control center’'s estimate s t
sponding attaclka. It is interesting to note that, although the :
I : : unobservable part of the state, even under the nonlineaeimod
definition given in (5) seems to suggest thdt depends on

H, our result shows thag* depends only on the topology of To be more precise, we may write the AC power flow model

the network. not on specific values of the maiki as follows. The state of each busis given by its voltage
’ P magnitude|V;| and its phase);. The statex is the vector

composed of all voltages and all phases. A meter sitting at
A. Unobservable Attacks and Network Observability busi and measuring the flow through lifg j) € E measures

We establish first a connection between the unobservaB)e real and reactive power flows through this line. We denote
attack and the classical notion of network observabilitg][2 this %i;(x), which can be written
The following theorem shows that the algebraic conditicat th
defines the unobservable attack is equivalent to the chdssic hij(x) = { i ]
network unobservability condition [25]. Qij
Theorem 1: A k-sparse attack vectar comprises an unob- _ { \Vil(1V;|Gij cos b5 + |V;| Bij sin 6 — |Vi|Gij; ] )
servable attack if and only if the network becomes unobserv- | |Vi|(|V;|Gi; sin6;; — |V;|B;j cos6;; + |Vi|B;;
able when thek meters associated with the nonzero entri%hereo-

f df h K- that i i i = 0; —0;, and B;; and(;; are the susceptance and
Of a are removed from the network; that is, the ).X " conductance of lingi, j) respectively. Note that (6) is the AC
submatrix ofH taken from the rows oH corresponding to

. equivalent of (2). A meter measuring the total power flow at
the zero entries oh does not have full column rank. q (2) 9 P

i X " busi measures
Proof: Without loss of generality, leH be partitioned Z
hij (X)

into H' = [H] | HJ], and submatrixHH; does not have

full column rank, i.e. there exists a vector# 0 such that

H;c=0. We now havea = Hc € Ay, which is unobservable Again, (7) is the AC equivalent of (3). Lefi(x) be the

by definition. Conversely, consider an unobservabie Hc € complete vector of measurements given the statéor a set of

Ar. Without loss of generality, we can assume that the firstetersA, let h4(x) be the subvector of measurements taken

m—k entries ofa are zero. We therefore ha¥#, c = 0 where by just these meters.

H; is the submatrix made of the first — k rows of H. ® Even though the measurement equations for AC power flow
The implication from the above theorem is that the atta@ce nonlinear, it is clear from (6) and (7) that the phaseg onl

discovered in [4] is equivalent to removitigmeters from the enter asf;, — 6; for (i,j) € E. Suppose the true state were

()

J:(1,9)€E



x, and the adversary constructs a vectdrwhich changes the number of connected components in the gfaptE \ A);
only the phases, and moreover has the property that the phiasethe original graph after all lines id have been removed.
differencesd; — 0, do not differ betweenx’ and x except The security index¢* is given by

for lines (i,7) only observed by meters controlled by the . )

adversary. Thus, if the set of adversarial metes iss. (x) = X = T lg(A)| = h(A) +2. (8)
hse(x’), where 8¢ is the set of honest meters. That is, the . o : .
non-adversarial meters cannot distinguisfrom x’, so if the Moreover, this quantity may be calculated in polynomialdim

adversary replacdss (x) with hg(x’), the control center will In \tlce size othr?e netw;)rk._ hL 1and L 2 bel
mistakex for x’. Because the phase differences enter linearl e prove Theorem 2 with Lemma 1 and Lemma 2 below.

into the measurement equations, these phase alteratiorseca Pe_ first _ShOV\_’S that it olls po;smrl]e to remove abset ofb:neterr]s
made arbitrarily large without detection by the controlteen ©' S12€ gIven in (8) and make the system unobservable. The
In this sense, the attack behaves similarly to the unobbmvaSecond allows us to conclude that 't. is impossible to remove
attack for the DC model. Moreover, because the phases eri?é(\’er meters than the quantity given in (8) to make the system
linearly in the measurement equations in exactly the sanye observable.

that the states enter into the linear measurement equations®Mma 1- For all A € E, removing an arbitrary subset of
for the DC model (2), (3), this attack exists exactly when af{A) Of size|g(A)[—h(A)+2 makes the system unobservable.
unobservable attack on the DC model exists. Proof: Let V and E' be the sets of buses and lines respec-

Observe that the attack described to manipulate the phi¥gy With a meter placed on them. Theorem 5 in [15] states
estimates relies on the adversary being able to calculél?gt the power syst(_em given HW’E’V_’ E) 1S observ_able if
hs(x'). Depending on the adversary’s knowledge of the syste#jd Only if there exists & € £ comprising a spanning tree
state, this may be much harder to do than to calculated the t#ld’ @nd an assignment function
data for an unobservable attack in the DC model. Recall that i 6:F - VUE 9)
the DC model, the added vectardepends only on network
characteristics, and not on the current state. To perfoen tatisfying:
attack, the adversary need only add this pre-computed vecto1) If | ¢ E, theng(l) = 1.
to the true measurements. Because of the nonlinearity o) |f #(1) €V, then linel is incident to the bus(l).
the functionh, to perform the attack on the AC model the 3) If 1,1, € F are distinct, ther(l;) # ¢(lo).
adversary would need to know the exact network state, e¥efie principle behind this theorem is that a bus injectionemet
at buses where it controls no meters. However, since the G, simpersonate” a single line meter on a line incident to
model is a linearization of the AC model, small versions & thy " s I1f a bus — ¢(1) for some linel, this represents

DC attack would work approximately on the AC model. It Mayha meter ath impersonating a meter on line The system

be possible for the control center to employ the nonlingarily ;pservable if and only if a spanning tréfeexists made up

of the true system in order to better detect linear attackts, Ryt yransmission lines with either real meters or impersedat
this is beyond the scope of this paper. meters by bus meters.

Not including the lines inA, the network splits intdi(A)
C. Graph-Theoretic Characterization of Minimum Size Unob-  Separate pieces. Therefore, any spanning dreeust include
servable Attacks at leasth(A) — 1 lines in A. Any assignment) satisfying
the conditions above must therefore employ at |édst) — 1
'Reters ing(A). Hence, if any|g(A)| — h(A) + 2 of these

eters are removed from the network, onlid) — 2 remain,
by the smallest number of meters that the network can be m ich is not enough to create a full spanning tree, so the
unobservaple by an adversary. From Theorem 1,_ we kn%\gtwork becomes unobservable. 0
that there is an unobservablesparse attack vecter if and
only if it is possible to remove: rows from H and cause Example 1. Consider the IEEE 14-bus test system, shown
H not to have full column rank. This algebraic conditionin Fig. 1. TakeA = {(7,8)}. Since bus 8 is only connected to
however, is difficult to use to determine the the minimum sizée system through bus 7, removing this line from the network
of an unobservable attack. We develop here a graph theoretits it into two pieces. Therefoig.A) = 2. The set of meters
approach by exploiting the extra structure Hnimposed by ¢(A) consists of meters on the ling,8), and bus injection
the network topology. meters at bus 7 and 8. Theorem 1 states that if we remove
The following theorem exactly characterizes the security(A)| meters from this set—that is, all the metersgifd)—
index x*, the smallest number of meters to make the systeifme system becomes unobservable. In our simulation example
unobservable. The proof builds on the result of [15], whictve assume there are two meters on each line, therefore it
gave an efficient method to determine the observability oftakes 4 meters to execute an unobservable attack. Furthesrmo
network based only on its topology. In the sequel, def@te it is not hard to employ Theorem 1 to find similar 4-sparse
as the number of elements in a Sét unobservable attacks on the 30-bus, 118-bus, and 3004ius te
Theorem 2 (Characterization of security index x*): For a systems.
set of linesA C F, let g(A) be the set of meters either on Lemma 1 shows that the quantity on the right hand side of
lines in A or on buses adjacent to lines #. Let h(A) be (8) is an upper bound og*. We now show that it is a lower

Given a line diagram of a power network and the locatio
of meters, the vulnerability of the network can be charaoter



Input : A line I* for which adding a meter makes the sysfem 1) Every busy € W is incident to two lines each connected
observable, as well as a spanning teand function¢ to a differentV; set.
certifying this. 2) For every linel € A, if a meter were added th the
Output: A set A C E for which |g(A)| — h(A) +2 <0. system would become observable.
3) There are no line meters in the original network (without
1. B:={l"} a meter on*) on A.
2:m:=1; 4) For eachv € g(A) \ ‘W, there exists a ling’ in F for
3 W= () which ¢(I') = v.
4: LetVy,Vs be split onB in F; Proof at entrance to the loop: Statement (1) holds trivially,
5: Let A be the set of lines joining; to Vs; as'W is empty. At entrance to the loop, the only lines/n
6: while g(A)\'W #£ 0 do are those connectin}j; to V.. If there were a meter on a
7:  Letwv be an element of(A) \ W; line connectingV; to Vs, the network would be observable.
8 W:=Wuv}; This proves statement (2). Similarly, the network would be
9:  Let!’ be the line inJ for which ¢(I") = v; If there is| observable if there were a meter on any line connecingop
no such line, terminate the loop; Vs, which proves statement (3). Sindg = 0, g(A) \ W =
10 B:=BU{l'}; g(A). If the meter at some € g(A) were assigned to no
11: m:=m+1; line in &, then it could be assigned to its incident line/n
12:  Let Vq,...,V,41 be a partition ofV given by the in which case the network would be observable. This proves
connected components aft8ris removed from; statement (4).
13:  Let A be the set of lines joining; to V; for anys, j. Induction step: We assume that statements (1)—(4) hold at
14: end while the start of an iteration of the loop, and show that they hold

Fig. 2. Algorithm to find a set4 satisfying the conditions of Lemma 2. agdain at th? end. o o
When v is chosen in line 7, it is an element @f(A).

Thereforev must be incident to some linee A. Moreover,
bound as well. If it were not, there would exist a set of metegince statement (4) holds at the end of the previous iteratio
of size M that if removed, make the system unobservablthere exists ari’ € F with ¢(I') = v, which must also be
whereL < |g(A)|—h(A)+2 for eachA. Consider the system incident tov. This I’ is added toB in line 10. Note that
after theseM meters have been removed. LgtA) be the because only a single element is adde®@tovhen theV; are
value ofg after removal of these meters. Note thatloes not recalculated in line 12, one set splits into two; the resy s
depend on the meters in the network so it does not changey were previously. Therefore thg set to whichl connects
SinceL meters have been removed in total(A)| > |g(A)|— remains the same, whelfeconnects to a newly creatétj set.
M. Hence Therefore statement (1) holds at the end of the loop iteratio

/ By statement (3), there are no line meters .4n so it
9" (A = A(A) +2 > [g(A)] = h(A) +2 = M > 0. (10) prinZipIe we may( 6)ldd a meter to any line . Take any
This means that for the system after the meters are removed, A and add a meter to it. Liné connects two of thé’;
the quantity in (8) is strictly positive, but the system iobn sets, which were previously connected by some ling.ifwWe
servable. The following lemma states that this is impossiblalter ¥ and ¢ in the following way, to includd and restore
allowing us to conclude that there is a contradiction, and $loeir necessary properties. The bus meter that had prédyious

(8) holds with equality. been assigned to a line bridging the gulf between the same
Lemma 2: If the network is unobservable, then there existsvo V; sets bridged by can instead be assigned to the other
a set of metersi for which |g(A)| — h(A) +2 < 0. incident line to a differen¥; whose existence was proved in

Proof: Assume without loss of generality that adding atatement (1). This frees up a different bus meter, which the
meter to a single line can recover observability. 'ebe such may be assigned to a line bridging another gulf, and so on
a line. Again using the equivalent condition to observapili until reaching a bus meter bridging the gulf originally lgyédl
proved in [15], there must exist a spanning tr&eand a by [*. This connects all th&; sets, and therefore the network
function ¢ satisfying properties (1)—(3) listed above, when would be observable. This proves statement (2).
meter is included on liné&". It must be that* € F, because if  Consider the lines newly added #bin line 13. These lines
not the network would be observable to begin with. Sifids  bridge the same gulf a&. If there were a meter on any of
a spanning tree, removing any line from it splits the netwoitkese lines, then the bus on meteneed not be assigned to
into two connected components. In particular,VYgtandV, [’. By a similar argument as above, it could be reassigned all
be the sets of buses in the two connected components ithethe way back td*, so it may be removed and the network
is removed frontf. Let A; be the set of lines between nodesvould still be observable. This proves statement (3).
in V; and nodes irfV,. Certainly thenh(A;) = 2. Thus if Suppose there were a busc g(A) \ W for which there
g(A1) = 0, then|g(A1)| — h(A1) +2 = 0, so we are done. were no linel’ satisfying¢(!’) = v. Busv must be incident
Otherwise, we claim that the algorithm given in Fig. 2 ousputo a linel € A. By statement (3)] does not have a meter,

a setA for which |g(A)| — h(A) +2 < 0. so the meter on bus could be used to simulate a meter on

To prove correctness of this algorithm, we show the follow- This effectively adds a meter th but by statement (2),
ing loop invariants: adding a meter to a line il brings observability. Since the



network is unobservable, there can be no such 4uShis In the absence of an attack, i.®.= 0 in (4), (z,x) are
proves statement (4). jointly Gaussian. The minimum mean square error (MMSE)

We have established all four loop invariants. In particulaestimator of the state vectaris a linear estimator given by
statement (4) implies that the loop never terminates prema-

turely at line 9, so when the loop concludgéA) = W. x(z) = argmin E(||x — %(2)[|*) = Kz (14)
Note that after every iteration of the loop¥| = m — 1 and *
h(A) = m+ 1. Therefore where

1g(A)] — h(A) +2 = [W| — h(A) + 2 (11) K=3HMHZH +3)7" (15)

=(m—=1)—=(m+1)+2=0. (12) The minimum mean square error, in the absence of attack, is

O given by

All that remains to prove Theorem 2 is to show that the & = minE(||x — %(2)||?) = Tr (2, - KHX,).

guantity on the right hand side of (8) can be calculated in *

polynomial time. We make use of the theory of submodular If an adversary injects malicious datac .A;, but the control

functions. A submodular function is a real-valued functipn center is unaware of it, then the state estimator defined4h (1

defined on the collection of subsets of a Bétsuch that for is no longer the true MMSE estimator (in the presence of

any A, B C W, attack); the estimatox = Kz is a “naive” MMSE estimator

that ignores the possibility of attack, and it will incur ayher

f(AUB) + f(ANB) < f(4) + f(B). (13) mear? square er?or (MSE);. In particular, it is not ha{;?j to see

Moreover, a functionf is supermodular if- f is submodular. that the MSE in the presence afis given by

There are several known techniques to find the et W

minimizing f(A) in time polynomial in the size of¥/ [26],

[27], [28]. It is not hard to see thay(A)| is submodular in .The impact on the estimator from a particular attacks

A, and h(A) is supermodular. Therefore, their difference is. . .
submodu(lar) so it cein be efficiently minimized. This conelsid given by the second term in (16). To increase the MSE at the

state estimator, the adversary necessarily has to incthase
the proof of Theorem 2. N N L - .

energy” of attack, which increases the probability of lgein
detected at the control center.

& + | Kall3. (16)

IV. THE WEAK ATTACK REGIME

In this section, we study the problem in the weak attack o
regime, where the adversary cannot or does not perform BnSatistical Model and Attack Hypotheses

is sometimes possible to detect the adversary’s presende, g the control center. We assume a Bayesian model where
so we study detectors to do so. the state variables are random with a multivariate Gaussian

In our analysis of the weak attack regime, we use meggstributionx ~ (0, ). Our detection model, on the other
square error as our metric for the the amount of damage daqgd, is not Bayesian in the sense that we do not assume any
by an attack. In particular, we will seek strategies by thgrior probability of the attack nor do we assume any statibti
control center that minimize the mean square error for@yit model for the attack vecta.
attacks by the adversary. Mean square error is a very generigjnger the observation model (4), we consider the following
measure that gives a sense of how far the control Cent‘%’f@mposite binary hypothesis:
estimate is from the truth. However, for certain specificsuse
of the state estimate, it may be not give a precise picture Ho:a=0 versus H;:ac Ag\ {0} a7
of the impact of the adversary. For example, in Sec. VI, we
study adversarial attacks on electricity markets, and we uSiven observatiorz € R™, we wish to design a detector:
revenue change as our measure of adversary impact, whiclRf8 — {0, 1} with 6(z) = 1 indicating a detection of attack
more relevant to that application of the state estimateeHe(H;) andd(z) = 0 the null hypothesis.
we want a measure that is more broadly applicable, if pogsibl An alternative formulation, one we will not pursue here, is
less precise, so we adopt mean square error. based on the extra MSEKal||3 at the state estimator. See

(16). In particular, we may want to distinguish, fisi||o < k,

A. A Bayesian Framework and MMSE Estimation M, |Kal2 < C, versus H, : |Kal2 > C. (18)

We consider in this paper a Bayesian framework where the
state variables are random vectors with Gaussian digtribut Here both null and alternative hypotheses are composite and
N(p,,X.). We assume that, in practice, the mean and the problem is more complicated. The operational interpre-
covarianceX, can be estimated from historical data. Byation, however, is significant because one may not care in
subtracting the mean from the data, we can assume withpuactice about small attacks that only marginally incretase
loss of generality thag, = 0. MSE of the state estimator.



C. Generalized Likelihood Ratio Detector with L; Norm The second is the largest normalized residue (LNR) tesihgive
Regularization by

For the hypotheses test given in (17), the uniformly most max i % T, (24)
powerful test does not exist. We propose a detector based b Or T
on the generalized likelihood ratio test (GLRT). We note iwhereo,, is the standard deviation of thgh residual error
particular that, if we have multiple measurements under the We may regard this is a test on tlg-norm of the
samea, the GLRT proposed here is asymptotically optimal imeasurement residual, normalized so that each element has
the sense that it offers the fastest decay rate of miss @mtectunit variance.

probability [29]. The asymptotic optimality of the GLRT detector implies
The distribution of the measurementunder the two hy- a better performance of GLRT over the above two detectors
potheses differ only in their means: when the sample size is large. For the finite sample case,
numerical simulations shown in Sec VIl confirm that the
Ho : z~N(0,%),) GLRT detector improves the performance of thiéx) and
Hy : z~N(aX,), ac A\ {0} LNR detectors. The interesting exception is the case whin on

one meter is under attack, ifallo = 1 andX. = ¢21. In this

N L
where, = HX, H' + .. The GLRT is given by case, the GLRT turns out to be identical to the LNR detector.

max f(z|a) " Therefore, the GLRT can be viewed as a generalization of the
s 8€Ay % . (19) LNR detector, in that it can be tuned to any sparsity level.
f(zla=0) 7% Moreover, this provides some theoretical justification thoe

where f(z|a) is the Gaussian density function with meakNR detector. The equivalence of the two detectors is stated

a and covariance,, and the threshold- is chosen from and proved in the following Proposition. o
considering the null hypothesis at a certain false alarre.rat Proposition 1: Whenk = 1, the GLRT detector given in

This is equivalent to (20) is equivalent to the LNR detector given in (24).
" Proof: If k£ =1, the left hand side of (20) becomes
: Ty —1 T —1 0
;Ielglk a'¥ a—2z'¥"a 7% T. (20) min min(zz_l)iia? _ 2ZT(22_1)iai (25)

Thus the GLRT reduces to solving where(X_1);; is theith diagonal element &', and(3; 1),

minimize ang—la — QZTzz_la is theith row of 3. The second minimization can be solved

subject to ||alp < k. (21) in closed form, so (25) becomes
For a fixed sparsity pattern, i.e. if we know the support but e [2"(=]1))? (26)
not necessarily the actual valuesagthe above optimization is i (=Y

easy to solve. In other words, if we know a small set of suspggk, may therefore write the GLRT as
meters from which malicious may be injected, the above test

is easily computable. The sparsity condition ammakes the max 2" (221l i

above optimization problem non-convex, but for sniail can i (57 %

be solved exactly simply by exhaustively searching thraaitjh =

sparsity patterns. For largér this is not feasible. It is a well The vector of numerators in (27) is given by= > 'z. Note

known technique that (21) can be approximated by a convgt the covariance matrix af is simply X2 '. Therefore we

optimization: may regard (27) as a test on the maximum element ofrthe
after each element is normalized to unit variance.

(22) We now show thatr’ is just a constant multiple of,
meaning that (27) is identical to (24), saving a constartbfac

where theL; norm constraint is a heuristic for the sparsityRecall thatr = (I — HK)z, where

of a. The constant needs to be adjusted until the solution T T 1

involves ana with sparsity k. This requires solving (22) I-HK=1-HEH (HEH" + )

(27)

minimize a'3;'a —2z'%'a
subject to ||alj; <wv

several times. A similar approach was taken in [30]. = H3,H +2. - HY,H)HZ,H + %)
=332 ' =3t
D. Classical Detectors with MMSE State Estimation Thusr = o2r’: the two detectors are identical. -

We will compare the performance of the GLRT detector

with two classical bad data detectors [8], [9], both based on ATTACK OPERATING CHARACTERISTICS AND OPTIMAL
the residual error = z — Hx resulted from the MMSE state ATTACKS

estimator. K _ We now study the impact of malicious data attack from the
The first is theJ(x) detector, given by perspective of an attacker. We assume that the attackersknow
o1 M the (MMSE) state estimator and the (GLRT) detector used
r¥;r % T (23) by the control center. We also assume that the attacker can



choosek meters arbitrarily in which to inject malicious data. In particular, for fixed sparsity patter§, let ag be the
In practice, however, the attacker may be much more limitedonzero subvector ai, Kgs the corresponding submatrix of
Thus our results here are perhaps more pessimistic thankinandGsg similarly defined. The problem (32) becomes
reality.
min |Gsul3 subject to |[Ksulj3 > C. (33)
uceRk
A. AOC and Optimal Attack Formulations

The attacker faces two conflicting objectives: maximizin
the MSE by choosing the best data injectiarvs. avoiding
being detected by the control center. The tradeoff between
increasing MSE of the state estimator and lower the prob- aj = LQV (34)
ability of detection is characterized battacker operating IKsvl3
characteristics (AOC), analogous to the receiver operatin
characteristics (ROC) at the control center. SpecificAYC
is the probability of detection of the detectr(é(z) =1 a)
as a function of the extra MSE(a) = & + ||Ka||3 (16) at
the state estimator, whet® is the MMSE in the absence of Qcv — AminQxv = 0.
attack.

The optimal attack in the sense of maximizing the msghis & dimensional symmetrical generglized eigenvalue prob-
while limiting the probability of detection can be formugat €M can be solved using the QZ algorithm [31].
as the following constrained optimization

max |Ka|2 subject to Pr(5(z) = 1|a) < 3, (28) VI. ATTACKS ON ELECTRICITY MARKETS
acAg

Since malicious attacks can change the state estimation
significantly even in the weak regime, it is natural to coesid
min Pr(§(z) = 1|a) subjectto |[Ka|3>C.  (29) theimpactof an attack on the electricity market, since ikesa
s/ use of state estimation to set prices and calculate payment.
In order to evaluate the true worst-case performance for anyost deregulated electricity markets in the United States
detector, (28) or (29) would need to be solved. This is vegpnsist of two components: a day-ahead market and a real-tim
difficult, due to the lack of analytical expressions for thetet- market. In the the day-ahead market, given the load forecast
tion error probabilityPr(6(z) = 1|a). We propose a heuristic | pased on the DC lossless model, the following problem is

for Pr(6(z) = 1la), which will allow us to approximate the golved to findP*, the vector of predicted power generated at
above optimization with one that is easier to solve. each bus:

get Q¢ = GLGs, Qk = KLKs. It can be shown that the
ptimal attack pattern has the form

%\/herev is the generalized eigenvector corresponding to the
smallest generalized eigenvalugi, of the following matrix
pencil

or equivalently,

minimize Y, C;P;

B. Minimum Residue Energy Attack subject to 5 P, — ¥, L; = 0

Given the naive MMSE state estimatér= Kz (14-15), pmin < p, < pmax (35)
the estimation residue error is given by i S P, :le SiyL; < T
i R j =
r=Gz, G2I-HK (30)

where L; is the forecast load at bug P™" and P/ are
Substituting the measurement model, we have the lower and upper capacity bound for the generator at bus

r— GHx + Ga + Ge i, T;)"* is the line flow limit for brancht, andSy; is the shift

’ factor of branchk to busi with respect to the reference bus.

where Ga is the only term from the attack. Therefore, ain particular, Sy; is the amount the flow in branch would
attack vectora will be more difficult to detect at the control change if one additional MW were transfered from bu®
center if Ga is small. Recall from (16) that the damage irthe reference bus. The solutid?* to (35) is the economic
MSE done by injectinga is ||Kal|3. We therefore consider dispatch, and the locational marginal price (LMP) at bus
the following equivalent problems: given by

max |Ka|2 subject to ||Gal|? <1, (31) A =A= Sk (36)
acAg k

or equivalently, where), 1 are the dual variables corresponding to the equation

min |Gal|? subject to |Kal|?2 > C. (32) and line flow constraints respectively.

acdy The real-time market prices are based on the state estima-
The above optimizations remain difficult due to the conatraition, which yields an estimat&, for the power generated at
a € Aj. However, given a specific sparsity patte3nc busi and L; for the power load at bus. Based on these,
{1,---,n} for whicha; = 0 for all i ¢ 8, solving the optimal we can calculate the power flow through each line; a line is
attack vectora for the above two formulations amounts to aaid to becongested if the estimated power flow through it
standard generalized eigenvalue problem. exceeds the line flow limd;"™. Let C be the set of congested
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lines. The real-time market uses the following increment 1

OPF formulation around the operating point found in (35):
minimize > C;AP, — > C;AL; 2
subjectto Y AP, =Y AL; §
APl-mm < APZ- < Apl_max E
> SkAP+Y SiALj <0 forall ke C. s
i j D oal 1
(37) T |4
In our simulations, the upper and lower bound &f; are . 03w i
chosen as 0.1MW and -2MW. The real-time LMP is calculate o2p ]
as 0'10 0. 2)1 0. ;32 0.‘03 0. ;JA 0. ‘05 0. ‘06 0}07 0,2)8 0,2)9 0.1
5\1- =\ Z Ajl-ﬂj (38) False Alarm
jeC . _

N = GLRT
where A and 4; are the dual variables corresponding to th ar -- =)
linear constraint and line flow constraints respectively. 20 - LNR

In the day-ahead market, the operator calculates the e §° i
nomic dispatch, yielding?* and \*; the generator at bus i ]
i receivesP;\;, and the customer at bus pays L;A}. In g o 1
the real time market, the operator uses the state estim B o ]
to calculate the real-time LMR, then the generator at bus B i
1 receives (P - P*))\ and the customer at bug pays 02 .
(L; — )A Note thatP; and L; are calculated from the oaf 1
state estimate, and so may be mfluenced by the adversary o n L L - = L )

Hence, in the real-time market, we see that state estimat Attack MSE (dB)

is involved in two parts: the calculation of the congestion _
pattern, and the estimation of generations and loads. Tate ré 9 3. #bove: ROC Performance of GLRT far the 2 sparsity cas8E
time LMP is determined entirely by the congestion pattergparsity case. False alarm rate is 0.05. SNR=10dB.

Under the simple scenario that every participant follows th

day-ahead optimal dispatch, the differences between tie da

head dispatch and the estimation of generations and loads r various sparsity levels and all three detectors. FOADE
P—P" =HpKz - P = (HpK)(e + a) (39) curve, we fix a probability of false alarm and vary the length
. . of the attack vector along the direction minimizing the gyer
L-L=H;Kz-L"=(H.K)(e +a) (40) residue, plotting the MSE vs. the probability of detectiBor
whereH, K, z, e, anda are the same as in previous sectionghe ROC curve, we fix the length of the attack vector, but vary
andH p andH, are the corresponding partHi to generation the detector’s threshold and plot the probability of falkera

and load respectively. vs. probability of detector. In our simulations, we chaesizie
Finally, the real-time revenue for a generator at bus the mean square error increase at the control center using
given by the ratio between the resulting MSE from the attack and the
(HpK)i(e +a)k; (41) MSE under no attack (i.ea = 0) in dB. We assume that
the prior distribution on the state is given By, = o2,
where(HpK); is theith row of Hp K. and measurement noise distribution is given Yy = Io

In Sec. VII, we present numerical simulations of maliciougve characterize the noise level in terms of SNR, defined as
data attacks in the weak regime on the IEEE 14-bus t%ﬁog

system. We illustrate that with some probability of detewati
the adversary can inject an attack vector to alter real-LiMe
and potentially make a profit.

Fig. 3 shows the ROC and AOC curves for the worst-case
2-sparse attack. We implement the GLRT using exhaustive
search over all possible sparsity patterns. This is feasibl
because of the low sparsity level, so we need not resort to the
L; minimization as in (22). Observe that the GLRT performs
A. GLRT Performance consistently better than the other two conventional detsct

We present some simulation results on the IEEE 14 busFig. 4 shows the ROC and AOC curves for the worst-
system shown in Fig. 1 to compare the performance of tikase 3-sparse attack, again using exhaustive search for the
GLRT with the J(z) test and the LNR test [8], [9]. For variousGLRT. Interestingly, the LNR test outperforms the GLRT at
sparsity levels, we find the minimum energy residue attathis sparsity level. We believe the reason for this is that th
as discussed in Sec. V-B. The adversary may then scale BisRT has little recourse when there is significant uncetyain
attack vector depending on how much it wishes to influenge the sparsity pattern of the attack. In particular, the eret
the mean square error. We plot both the ROC and AOC curniasing controlled by the adversary here are the bus injection

VIlI. NUMERICAL SIMULATIONS



meter at bus 1, and the two meters on the transmission i

11

between bus 1 and 2. These constitute three of the sevensme T rE Lo il e it
that hold any information about the state at bus 1. Thus, t m acw"" - nJ)
be difficult for the detector to determine which of the seteri = | = ='LNR ||
meters around bus 1 are the true adversarial meters. The GL § wsl i
does not react to this uncertainty: it can only choose theem« & | il
likely sparsity pattern, which is often wrong. Indeed, inrou § ol i
simulations the GLRT identified the correct sparsity pattel % |
only 4.2% of the time. a | |
0 0.01 0.02 0.03 0. O'éalsgosAlar(;‘:‘lﬁ 0.07 0.08 0.09 0.1
——GLRT||

- =309
= =LNR |

Detection Probability

Detection Probability

I I I I I I I
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01

False Alarm

0 I I I I I I I I I

4 5 6
Attack MSE (dB)

Fig. 5. Above: ROC Performance of GLRT under random attaak 3fo
sparsity case. MSE with attack is 6dB. SNR=10dB. Below: AQEfdtmance
of GLRT under random attack for 3 sparsity case. False alate is 0.05.
SNR=10dB

Detection Probability

the attack within it. Fig. 6 compares the performance of the
GLRT implemented via.; minimization as in (22) to the two
conventional detectors. Note again that the GLRT outper$or

0 I

’ * Attack MSE (dB) ¢ the others.
Fig. 4. Above: ROC Performance of GLRT for the 3 sparsity cA48E 1
with attack is 10db. SNR=10db. Below: AOC Performance of GLfBr 3
sparsity case. False alarm rate is 0.05. SNR=10dB oor 1
2
Continuing our analysis of 3-sparsity attacks, we condu £
simulations when the adversaries are placed randomly g
the network, instead of at the worst-case meters. Once th =
random meters are chosen, we find the worst-case atti g
vector using the energy residual heuristic. This simul#tes gw . |
situation that the adversaries cannot choose their latstio e
but are intelligent and cooperative in their attack. Theltesy oot 7
performance of the three detectors is shown in Fig. 5. Olesel o

that we have recovered the outperformance of the GLRT False Alarm

compared to the conventional detectors, if only slighthhéf
the placement of the adversaries is random, they are notFis6. _ROC Performance of GLRT under random attack for 6ssfyacase.
. . . MSE with attack is 6db. SNR=10db.

capable of cooperating with one another, therefore thedclt
is easier to detect.

We increase the sparsity level to 6, at which it is impossible ) o
to perform exhaustive search for the GLRT. At this sparsify- Residue Energy Heuristic
level, it becomes possible to perform an unobservablelgttac We present some numerical evidence that the residue energy
so it is not as illuminating to choose the worst-case sparsidescribed in Sec. V-B works well as a heuristic in that
pattern, as that would be very difficult to detect. Instead, is roughly increasing with the probability of detection
we again choose the sparsity pattern randomly but optimiPe(d(z) = 1|a) no matter what detector is used. For thgk)
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Fig. 7. Comparison of the residue energy heuristic with thie detection
probability for 1-sparse attack vectors for botfix) and LNR detectors. False
alarm rate is 0.05. SNR is 10dB. Attack MSE is 3dB.

osf 'S

2 i
% 0.7 . '
and LNR detectors, we consider the detection probability fi §
all 1-sparse vectora satisfying||[Kal||3 = C on the 14-bus E”’
test system. We plot in Fig. 7 the value of the residue ener g
vs. the true probability of detector of for both detectors. £ os
Observe that the scatter plots are roughly increasing. Q|
We evaluate the performance of the residue energy heuris
on 2-sparse vectors in the following way. For each pair « ot
entriesi,j of a, we optimize (32) wherea is constrained 01— 7 : ; ‘ : S )

to have sparsity patterdi,j}. We then evaluate the true Residue Energy

probability of detection for the two detectors, with the gam

parameter values as above. The results are shown in Fi(fi@B 8. Comparison of the residue energy heuristic with tine tetection
f he J (% d LNR d Agai he h - Probability for 2-sparse attack vectors. False alarm =@05. SNR is 10dB.
or the (X) an etectors. Again, the heuristic appealgack Mse is 3dB. Above: Scatter plot for thEX) detector. Below: Scatter
to track the true probabilities reasonably well. This pd®& plot for the LNR detector.

some justification for our use earlier in the ROC and AOC

curves of approximating the worst-case performance ofethes TABLE |
detectors by assume the maximum residue energy attack.  Thg ErrecT OFMALICIOUS DATA ATTACK ON REAL-TIME MARKET
PRICE
C. EIeCtr|C|ty Markets congestion pattern A1 A2 A3 A6 A
In IEEE 14-bus system, we assume the generators at 1, 2, @3,7”9 311 ??11 3311 3?11 233
6 and 8 can generate real power, with the cost 15, 31, 30, 1¢,, 15 31 2925 92703 2755
and 20 respectively. We assume the forecasted load at every and 8-7 15 31 2925 27.03 20

buses is 100MW. In the day-ahead market, the congestion
pattern is branch 1-2 and 8-7. The LMPs at bus 1, 2, 3, 6,
8 are 15, 31, 29.25, 27.02, and 20. Table. | shows that the . . . . ) . .
adversary can disturb the real-time LMP. The leftmost calun} a3 divided into two regimes: the strong aftack regime, in

is the possible congestion pattern the adversary can indl\JA(/:@.Ch so-call unobservable attacks exist, and the weaklatta

by injecting an attack vector under detection probability.0 regime, in which t_hey do not. The boundary between_these
gimes isy*, the size of the smallest unobservable malicious

Each row shows the real-time LMPs with the correspondii&dt ttack. which b idered it index f
congestion pattern. Note that if the congestion patteriés t a atlack, which can be considered a security index for a
wer system. We provided a characterizationy®f which

same as the economic dispatch, the LMPs are the same aspﬁ1w for it 10 b lculated in moutationally efficient
day-ahead market. allows fo 0 be calculate a computationally efficie

Fig. 9 plots the real-time revenue of generation at bus{ganner making use of submodular function minimization. In

. . e weak attack regime, we studied the generalized liketiho
versus detection probability. We compare the effect of an_ : ) ) :

. ratio test as a detector for this problem; in particulars thi
attack on a single meter and an attack on two meters.

detector was implemented using convex optimization Kja
norm regularization. We also provided a residue energyisieur
VIIl. CONCLUSIONS tic to find particularly damaging attacks in this regime. We
We studied both adversarial schemes and countermeasagslied these weak regime techniques to determine thet effec
for the control center for malicious data attacks. The probl of malicious data attacks on prices in electricity markets.
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