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Abstract
The adoption of smart meters may bring new privacy concerns to the general public. Given the
fact that metering data of individual homes/factories is accumulated every 15 minutes, it is
possible to infer the pattern of electricity consumption of individual users. In order to protect the
privacy of users in a completely de-centralized setting (i.e., individuals do not communicate with
one another), we propose a novel protocol, which allows individual meters to report the true
electricity consumption reading with a pre-determinted probability. Load serving entities (LSE)
can reconstruct the total electricity consumption of a region or a district through inference
algorithm, but their ability of identifying individual users’ energy consumption pattern is
significantly reduced. Using simulated data, we verify the feasibility of the proposed method and
demonstrate performance advantages over existing approaches.
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I. Introduction
With profound changes of the electric power industry towards a smarter grid in support of
sustainable energy utilization, many utility companies are in the process of replacing
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conventional metering devices with smart meters [1]. Smart meters make it possible to
provide near real-time price incentives to customers which could potentially reduce the need
for expensive peak capacity and energy. The successful adoption of smart metering and
pricing could offer many benefits, including: reduction in wholesale prices [2], enhanced
reliability [3], and environmental improvement [4].

However, the massive deployment of smart meters also raises a series of concerns, for
example, (1) depending on the utility, the “gap” between the operational benefits and
infrastructural investment is large [4]; and (2) the fear of loss of privacy (i.e., “spy at home”)
may arise in ordinary customers. The first problem might be obviated by benefits in the long
run but the second problem becomes increasingly more challenging [5] [6]. It would be
possible for utilities to infer the type of appliances individual customers are using at every
15 minutes (i.e., when you are using your computer and when your garage door is activated).
The compromise of customers’ privacy would be significant if they are left unprotected.

User privacy has been an important issue in various applications involving information
exchange, data sharing, and medical data dissemination [7], [8], [9]. Many previous studies
have been conducted in a centralized environment, where owners have the ability to adjust
the data in a global manner. Oftentimes, privacy is protected by suppression, generalization,
and randomization to ensure properties such as K-anonymization [10], l-divergence [11], or
t-closeness [12]. Most of these techniques intend to hide identities of individuals in a crowd
of others so that no single identity can be uniquely distinguished. Recently, some researchers
have also considered privacy protection in a distributed environment, e.g., making peer-to-
peer communication accountable without losing privacy [13] and preserving location
privacy in distributed environments [14].

Unfortunately, none of these models are suited to privacy problems of smart electricity
meters, which are setup in a decentralized environment. Individual smart meters report their
reading to the load serving entity (LSE) but they do not communicate with one another. It
remains an open question of how to preserve the ability of the LSE to compute an
approximation of the current electricity consumption (i.e., for dynamic pricing) while
protecting the privacy of individual users.

Efthymiou and Kalogridis [15] suggested an approach to protecting smart metering data via
anonymization but their approach requires the participation of a third party. Similarly, Quinn
[16] suggested that metering data can be aggregated and encrypted so that an individual’s
information is anonymised to roughly the scale of a city block. Recently, Kalogridis et. al.
introduced a new approach to enable privacy protection of smart meters toward undetectable
appliance load signatures, which used a rechargeable battery to moderate the home’s load
signature in order to hide appliance usage information [17]. All these techniques, however,
require a significant effort in technology development, standards, policy, and regulatory
activities, which are not yet available.

In this paper, a privacy protection solution based on the existing infrastructure and
technology is proposed. Most directly related to our research is a recent paper by Bohli et al
[18], which added Gaussian noises to each smart meter to prevent the adversary from
guessing the patterns of energy consumption correctly. There are several issues with that
approach: (1) a substantial amount of smart meters are required to ensure the accurate
aggregated reading and protect the privacy of individuals (i.e., 3,810,000 customers are
necessary to sufficiently hide the usage of a washing machine per household); (2) it is easy
to recover true readings because the Gaussian noise added to each smart meter follows the
same distribution; and (3) approximately half of the smart meters report negative readings
because their added noise was to cover 50% confidence interval of the typical household
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power consumption, rending erroneous outputs. In other words, half of these readings are
meaningless to the LSE. These limitations reduce the applicability of their method in
practice.

In summary, the main contribution of this paper is twofold:

• A practical and novel privacy protection method for smart metering is proposed. In
this method smart meters report samples from Gaussian Mixture Models (GMM)
rather than post-randomized absolute readings to the LSE. In particular, these
samples can be used to recover the distribution of energy consumption at time t and
calculate the total amount of energy consumption without revealing the actual
individualized energy consumption patterns.

• The performance of the proposed method is verified in two parts corresponding to:
(1) privacy protection analysis; and (2) data usability preservation analysis. Both
analyses evaluate two performance indices, the capability of privacy protection and
the accuracy of estimating the aggregated smart meter readings using some
statistical tests, respectively.

This paper is organized as follows. In Section II, the concept of the GMM is briefly
reviewed. Then, the parameter estimation algorithms and the formulation of the proposed
privacy protocol for smart metering are introduced. The variance estimation technique using
expectation propagation (EP) is discussed with more detail in Section III. The simulation
results for the proposed method are presented in Section IV. Discussion and concluding
remarks are summarized in Section V and Section VI.

II. Proposed Method
In this section, we propose a novel approach to protecting the privacy of smart meter users
while achieving more accurate estimate for aggregated meter readings with sometimes large
errors beyond typical confidence interval of Gaussian noise. Our approach utilizes a
statistical method based on GMM with mixtures of K Gaussian components to mix actual
smart meter readings with faked readings from K − 1 pre-determined distributions so that
the appliance usage information of individual users is protected. In the next subsection the
GMM is briefly reviewed. This is followed by the introduction of privacy protection
protocol based on GMM and inference algorithms for estimating the total electricity
consumption in Subsection II-B and Subsection II-C, respectively.

A. Preliminary of Gaussian mixture model
In statistics, a mixture model represents the probabilistic distribution of sub-populations
within a large population. In particular, the GMM is a linear superposition of Gaussian
components, which provides a richer class of density models than the single Gaussian
model. The GMM has been widely used in machine learning with different applications,
e.g., speech recognitions [19] and image retrieval [20]. The GMM can be written as follows:

(1)

where ωk is the weight of each Gaussian component such that  ωk = 1, and μk and 
are the mean and variance of each Gaussian component, respectively. In the context of
statistical machine learning, the process of learning model parameters (i.e. ωk, μk and σk)
based on observations is referred to as inference process. In the past decades, many
inference algorithms have been studied, among which EM citation and EP citation are two
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popular inference algorithms for solving the inference problem of GMM. In the rest of this
section, we will introduce the proposed privacy protocol for GMM based smart metering
and two inference algorithms (EM and EP), which estimate the unknown parameters (e.g.,
aggregated smart meter readings).

B. Privacy protocol for smart metering
Generally, normal distribution model of smart meter readings with the independent and
identically distributed (i.i.d.) assumption has been widely used in many previous smart
meter studies [18], [21], [22]. Therefore, we also assume that the readings of smart meters
are i.i.d., and their distributions are modeled with a normal distribution parameterized by
mean and variance.

In our application, an LSE gets the readings from a set of smart meters S = {s1, s2, ⋯, sN}
for N > 1. We denote these readings by eit ∈ R where eit represents the electricity
consumption measured by smart meter si in the period t and R is the range of measures. We
use T and N to denote the total time ticks and the total number of smart meters of interest.

The readings of a period t from all smart meters {si} follow a Gaussian distribution

 with mean μt and variance . From the distribution of {eit}, the LSE needs to

know two critical values: (1) The marginal of , ∀t ∈ 1, ⋯, T, which can be also

written as , corresponds to the total energy consumption of n smart meters

at time t, which is necessary for dynamic pricing; and (2) The marginal of  for all
smart meters si ∈ S is needed for each billing cycle.

For the protection of users’ privacy, the surrogate readings generated by GMM, , are
transmitted to the LSE, rather than the actual readings {eit}. We construct a mixture model
with K = 3 mixture components which all follow the Gaussian distribution but with different
parameters

(2)

where  corresponds to the Main Gaussian Component (MGC) which represents the
Gaussian distribution of the actual smart meter readings, while the other two components

 introduce uncertainty into actual readings for privacy
protection.

We denote Ω = (ω0, ω1, ω2) as a vector of mixture weights, which represents the prior

probabilities of the distribution components and . More specifically, the LSE
only knows that a smart meter is reporting a true reading with probability ω0 and a fake
reading with probability ω1 + ω2 which either follows the distribution

. Here, two parameter pairs  are known to
the LSE.

From a Bayesian perspective, the mixture of weights Ω are prior probabilities, which often
correspond to the knowledge about the population or expert opinions. In this paper, we
consider the scenario where the LSE and users, through negotiation with each other,
determine a unique weight vector to be programmed into individual smart meters. Large
weights on MGC will lead to accurate but less private readings, and vice versa.
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C. Inference algorithms for data aggregation
Given all the smart meter readings in the period t, the primary goal of the LSE is to estimate
the parameters μt and σt of the Main Gaussian Component in order to aggregate the total
current electricity consumption. A general technique for finding these parameters through
the maximum likelihood in latent variable models is the expectation maximization (EM)
algorithm [23]. EM is an efficient iterative optimization method for solving statistical
parameter estimation problem in the presence of incomplete data. The EM algorithm has
been widely used in data clustering and computer vision. EM works by iteratively
performing two processes: expectation step (E-step) and maximization step (M-step).
According to one of the most insightful explanations of EM in terms of lower-bound
maximization [24], [25], E-step can be interpreted as finding an optimal local bound to the
posterior distribution, then M-step maximizes the bound to refine the estimate of the
unknown parameter. However, EM algorithm is sensitive to the initialization and only
converges to the local maxima. Our simulation results show that EM algorithm provides

accurate estimates for the mean μt and variance  of MGC, leading to the aggregation of
the total electricity consumption with a high accuracy.

Another technique for statistical parameter estimation is a deterministic approximate
method, which is based on analytical approximations to the posterior distribution from
Bayesian inference perspective. Among deterministic approximate methods, expectation
propagation (EP) [26] has a higher accuracy comparing to others (e.g. Laplace
approximation (LA) and variational Bayes (VB)). Since EP algorithm has been widely used
to solve different inference problems [27], [28], in this paper, we also apply EP algorithm to
our parameter estimation problem. Our simulation results show that EP leads to more
improvement on the estimation accuracy than EM in some cases. The details of the variance
estimation using EP will be described in Section III.

III. Variance estimation with EP

In this section, we will describe the variance  estimation using EP algorithm. Usually, the
variance estimation problem can be depicted as a learning or inference problem on graphical
models, especially the factor graph. In Bayesian inference perspective, the estimation of
variance corresponds to the estimation of the posterior distribution of the variance. Belief
propagation (BP)-like algorithms such as the sum-product and the max-product algorithms
are the popular techniques for inference problem. Thus, our variance estimation problem can
be depicted on the factor graph in Fig.1, where all circle nodes denote variable nodes, and all
square nodes denote factor nodes. Here, for the ease of exposition, we let

, μ = μt, μ1 = μ1t and μ2 = μ2t. The posterior distribution of the
variance can be described as the product of all the incoming messages p(υ|y) ∝ mg→V (υ)
∏i∈ \ g(V) mfi→V (υ), where mg→V (υ) corresponds to the a priori distribution p(υ) for υ
modeled by a factor function g(υ), mfi→V (υ) corresponds to the likelihood for observation
yi (smart meter reading (SMR)) modeled by factor function f (y, υ). However, it is infeasible
to calculate the posterior distribution directly using BP algorithm, since the belief state of υ
is a mixture of 3N Gaussian distributions when each observation yi follows a Gaussian
mixture model with three components (see (2)). Thus, we resort to approximate the posterior
distribution by q(υ) through EP algorithm. The key idea of EP is to sequentially compute
approximate messages m̃g→V (υ) and m̃fi→V (υ) in replace of true messages mg→V (υ) and
mfi→V (υ), then get a posterior on υ by combining these approximations together.

The formula of EP is given as follows:
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1. Initialize the term approximation m̃g→V (υ) (i.e. the priori knowledge of the
variance), and m̃fi→V (υ) (i.e. the approximate likelihood of the variance based on
the noise SMR).

2. Compute the posterior approximation for υ as:

(3)

where \ g(V) denotes the set of all neighbors’ indices for variable node V except
the index of g, Z = ∫υ m̃g→V (υ) ∏i∈ \ g(V) m̃fi→V (υ) is a normalization factor.

3. Until messages converge:

For each factor node fi (capturing the likelihood of the variance based on the noise
SMR), where i ∈ \ g(V)

a. Remove the approximate message m ̃fi→V (υ) from the posterior
approximation q(υ) to generate

(4)

where q\ i(υ) represent the product of all the incoming messages for
variable υ except the message sent from factor node fi.

b. To update q(υ), combine q\ i(υ), the current message mfi→V (υ) and the
normalization constant Z to get a complex posterior p̂(υ). Then minimize
the Kullback Leibler (KL) divergence D(p̂(υ)‖q(υ)) by performing
moment matching (Proj[·]). Thus,

(5)

where Z = ∫υ q\ i(υ)mfi→V (υ).

c. Set approximate message

(6)

A detailed derivation of the proposed EP algorithm is provided in the Appendix Section.

IV. Simulation Results
In this section, we show the simulation results of our proposed scheme in two subsections:

• Subsection IV-B: The privacy protection capability of the proposed method is
evaluated.

• Subsection IV-C: The estimation accuracy of the smart meter readings aggregated
by the LSE is measured.

In Subsection IV-B, we use two statistical tests, a paired F-test for individual smart meters
over time and a Kolmogorov-Smirnov test (KS-test) [29] for all smart meters at a given time
tick. The null hypothesis here is that the difference is significant. We would use the
percentage of rejecting the null hypothesis as our index to measure the extent of privacy
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protection. The reasons why we choose the aforementioned two tests as the metrics of
privacy risk are as follows. From statistical inference perspective, the learning of user
behavior corresponds to the estimate of the posterior distribution of user behavior based on
observations. However, the inference outcome in statistics highly relies on the model
observations (i.e. smart meter readings in our problem). Therefore, we can interpret the
problem of minimizing privacy risk of each user as introducing significantly changes the
smart meter reading distribution over temporal and spatial axes but preserving their
marginals. In other words, in order to protect the privacy of users the inference outcomes
about personal information (i.e., energy consumption) based on the original readings and
surrogate readings should be highly different with each other. Now, we address the problem
how much different the aforementioned two meter readings are. In statistics, the goal of
applying these tests is to check whether the smart meter readings before and after applying
our protection model are significantly different in terms of distribution and variance. That is,
data collected in one situation (i.e. the original smart meter readings in our problem) is
compared to data collected in a different situation (i.e. the surrogate smart meter readings
after applying the proposed algorithm) with the aim of examining if the first situation
produces different results from the second situation. If surrogate readings can pass the
aforementioned statistical tests, we conclude that the inference outcome based on the
surrogate readings will be different from that based on the original readings with a high
probability in statistics. With that discussed, the proposed F-test and KS-test reference
provide two valid metrics to quantify privacy risk.

In Subsection IV-C, we measure the differences (i.e., mean and standard deviation (SD))
between the aggregated actual readings and the recovered total readings using our approach.
This subsection demonstrates that the introduced techniques used for data recovering (e.g.,
EM or EP) lead to different statistics of the recovered total readings. The results from
Subsection IV-B and Subsection IV-C are based on the simulation setup for the performance
analysis of the proposed method described in the next subsection.

A. Simulation Setup
We use simulated data to evaluate the performance of the proposed method in a Close-to-
Real environment. We use hourly demands reported by California ISO (CAISO) [30] to
simulate our data in the following steps:

1. Estimate the number of users: According to the report from US department of
energy [31], a typical household in US uses 920 kW of electricity per month. By
numerically integrating the hourly electricity demands within Jun 2011 from
CAISO, we can obtain the total monthly electricity consumption of the whole
California (CA) area. Then, the total monthly electricity consumption is divided by
the average monthly usage (920 kW) to approximate the number of users in CA. By
calculation, the approximate number of users in CA is about 22.44 million, which
quite matches the US 2010 census data [32].

2. Estimate aggregated power consumption of every 15 minutes: Given the
approximate number of users and hourly demands of the whole CA area, we can
easily estimate the average hourly demands of each user. Since we are interested in
the aggregated power consumption of every 15 minutes, it is required to interpolate
quarter demands between hourly demands followed by numerical integration. Fig.
2 shows the average aggregated power consumption of every 15 minutes by using
the proposed data simulation strategy.

3. Sample individual power consumption: As we justified in section II-B, the readings
of smart meters are i.i.d. and their distributions can be modeled with a normal
distribution [18], [21], [22] parameterized by mean μ and variance σ2, where the
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mean μ is equal to the corresponding aggregated power consumption estimated in
step 2). Then we can sample individual power consumption from these normal
distributions with different SD σ to build a Close-to-Real simulation environment.

In our experiment, we consider a GMM with three components (K = 3). Moreover, to make
the simulation more reasonable, the number of smart meters N in our study is set equal to
500, which is a typical size of a small community. The SD σt of the MGC is calculated by
choosing different percentages of the mean μt of the corresponding MGC. In our simulation,
the affection of sampling data from different σt’s is discussed later in this paper.
Furthermore, SD’s σit of the other two Gaussian mixtures are always β times bigger than σt.
The means of the other two Gaussian components are decided by setting μ1t = icdf(α,
icdf(α, μt, σt), βσt) and μ2t = icdf(1−α, icdf(1−α, μt, σt), βσt), respectively, where icdf(α,
μ, σ) evaluates the inverse Gaussian cumulative distribution at the values α with parameter

values given by μ and σ. Furthermore, we set  for all i ≠ 0. The above settings
guarantee that the generated GMM is symmetric. In addition, the parameters α and β can
provide a trade-off between privacy protection and data usability preservation. In our
simulation, we choose α = 0.01 and β = 2. Finally, all results presented below are averaged
over 100 trials and the error bar in each figure indicates the corresponding standard
deviation.

B. Privacy Protection Analysis
First, we study the privacy protection capability of the proposed method by selecting
different σt, where σt is represented by the percentage of μt in our results. In this case, we
choose w0 = 0.7 and vary σt from 2% to 20% percentage of μt. In Fig.3, we presented the F-
test and KS-test results for each user tick and KS-test for each time. The former two tests
aim to verify that the variance and the distribution for each time tick before and after
introducing our protection model are significantly different, while the last test focuses on
verifying that the distribution changes of each user’s SMR during a 24-hour period are also
significant before and after implementing the proposed model. Given fixed parameters α =
0.01 and β = 2, Fig.3 shows that the proposed method can protect nearly 90% users (KS-test

for each user) on a one day time series, when  is larger than 8%. Moreover, the KS-test for
each time in Fig.3 shows a 100% protection for all σt’s, where 96 time ticks during a 24-
hour period are included in our test. Similar to the result of KS-test for each user, the
protection index of F-test decreases significantly, since σt is very small at 5%μt point. To
avoid degradations of protection with respect to F-test for each user and KS-test for each
time, one can increase β, so that the other two Gaussian components have large enough σit
to generate a significantly mixed distribution.

Second, we study the privacy protection capability of the proposed method by changing the
weights on Main Gaussian Component w0. In this case, we fix σt = 20%μt and vary w0 from
0.7 to 0.95. In Fig. 4, we can see that almost 99% time, the proposed model can sufficiently
protect each user away from privacy risk, if w0 < 0.8. Furthermore, if w0 < 0.7, the proposed
method can efficiently protect more than 95% users on their daily electricity consumption.
However, the protection indices with respect to all tests, especially the KS-tests for each
time and each user, decrease very fast as the weight w0 increase. It is due to the fact that the
MGC will dominate the GMM for large w0’s.
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C. Data Usability Preservation Analysis
To preserve data usability to the LSE, it requires the accurate estimate of the aggregation of
all SMR at a given time tick. In this paper, we use relative accuracy (RA) and the mean

square error (MSE) to quantify the estimation accuracy, where RA is defined as .

First, we analyze the impact of w0 on the estimation accuracy and compare our results with
Bohil’s results, where we fix σt = 20%μt. Fig. 5 shows that the proposed algorithm can
achieve at least 99% RA by using 500 smart meters and the RA increases as w0 increases.
However, the required number of smart meters in Bohli’s method is at least 12, 000 to
obtain the same accuracy. Furthermore, this number in Bohil’s method increases
significantly as the weight w0 increases. Thus the proposed method is more flexible to
provide privacy protection at a community level with high confidence. Moreover, regarding
different w0, we also study the estimation accuracy in terms of MSE in Fig. 6. Fig. 6 shows
that the proposed method provides a high accurate estimate for both μt and σt in terms of
low MSE. In addition, when w0 is small (equal or less than 0.75), EP algorithm provides a
better estimation accuracy of σt than EM algorithm, while EM algorithm works better as w0
is larger than 0.75.

Second, we study the estimation accuracy with respect to different σt, for which we set w0 =
0.7. The relationship between RA and σt is, firstly, shown in Fig.7, where the RA decreases
as σt increases. As a reference, the number of smart meters required in Bohli’s method has
also been plotted in Fig. 7. As mentioned earlier, to reach the same estimation accuracy,
Bohli’s method needs a huge number of smart meters (e.g. more than 3 million smart meters
are needed to achieve a 99.95% accuracy). Moreover, the estimation accuracy of mean and
SD with respects to changing σt is given in Fig.8 in terms of MSE. We can see that MSE of
the estimated mean and SD increases as σt increases. In addition, the estimation accuracy of
EP algorithm for SD estimation always outperforms EM algorithm.

Third, we investigate the accuracy of the marginal of  for all smart meters si ∈ S,
which corresponds the total energy consumption of each user during a given period T. Since
smart meter reports its reading every 15 minutes, there are total = 96 reports per day.
Therefore, we choose T = 30(days) = 2, 880 to study the accuracy of monthly energy
consumption. Fig. 9 depicts the aggregation accuracies of the proposed privacy protection
algorithm for a month period by varying the weight of MGC, where 500 smart meters are
used in this experiment. In Fig. 9, the proposed algorithm achieves a high RA, (i.e. 98.78%),
even though the weight ω0 is equal to 0.7. Moreover, as the weight ω0 increases, the RA can
achieve as high as 99.5%. Although we have shown that the proposed algorithm can provide
the high fidelity of monthly aggregation, it is necessary to point out, in practice, neither the
user nor the LSE would like to compromise for paying the difference. Thus, a practical
workaround is to incorporate a local aggregator on each smart meter, which can losslessly
collect the monthly usage of each user and report the corresponding sum total at the end of
each billing cycle.

In addition to estimation accuracy, we study the distributions of SMR of a given time tick
before and after applying protection methods. In Fig. 10, we can see that both the proposed
method and Bohli’s method change the true distribution of SMR a lot. Notably, the changes
introduced by the proposed method only occur at the lower and upper ends of the true
distribution. It can be interpreted that our method dedicates to protect these users who really
need to be protected. In the proposed method, we provide a tunable parameter α to control
the protection coverage, where a larger α means a wider protection coverage of the lower
and upper ends. In contrast, Bohli’s method adds huge noise on all SMR, which intensely
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destroys the true distribution. Fig. 10 shows that the estimated distribution of SMR
generated by the proposed method quite fits the true distribution, while the estimated
distribution of the data obtained from Bohli’s method is totally different from the true
distribution. Thus, the surrogate SMR generated by the proposed method is more acceptable,
because it sufficiently preserves important information of the true distribution. Another
significant advantage of the proposed method is that it can avoid negative SMR report by
controlling the Gaussian mixture component at the lower end. In contrast, Bohli’s method
reports a large portion of negative SMR to make sure a high accuracy of the aggregated
SMR. Thus, we conclude that the data generated by Bohli’s method is lack of utility and
practical value.

Finally, we investigate the SMR of a given user during a 24 hours period in Fig. 11. We can
see that the proposed method only adds minor changes at a few time ticks to protect the
individual privacy, while Bohli’s method adds huge noises at almost all SMR. In Fig. 11, it
can be seen clearer that more than half of the surrogate data generated by Bohli’s method are
negative values. Although both proposed method and Bohli’s method can provide high
accurate aggregated SMR and privacy protection on SMR, Bohli’s method needs a huge
number of smart meters and a large portion of negative SMR. The proposed algorithm
sufficiently solves these drawbacks within Bohli’s methods. Thus we conclude that the
proposed algorithm outperforms the Bohli’s method.

V. Discussion
Privacy is a less studied but important aspect of dynamic pricing associated with smart
metering, particularly when readings are required to be reported in a timely manner (e.g.,
every 15 minutes). While previous efforts to protect privacy suggested solutions based on
non-existing conditions (i.e., trusted third parties and/or rechargeable batteries), our solution
is based on available resources, and it can be realized with a reasonable size of population,
e.g., about 500 ~ 1000 smart meters in one load district with performance guarantees.

Without increasing computational complexity, our approach demonstrates better
performance in experiments using synthetic data compared to a recent approach based on
post-randomization [18]. Because the summation of Gaussian random variables is still a
Gaussian random variable, our proposed framework can be generalized towards more
complicated scenarios where different smart meters carry different uncertainties in reporting
their readings to achieve fine-grained privacy protection.

The limitation of this study is that the authors only considered smart meter-based security
protocol. For example, all kinds of energy consumption at home are reported to the LSE
with the same level security. In the future, we would need more intelligent smart meter with
a quality of service-based security protocol. That is, a single smart meter at home must be
able to allocate different security levels for different services. Therefore, GMM model
proposed in this paper may need to be updated in order to accommodate future needs of
differentiated privacy levels.

VI. Conclusion
We propose a novel method to protect the privacy of customers with smart meters while
assuring the capability to load serving entities to estimate the current electricity
consumption. Uncertainty is introduced to the readings of smart meters by shuffling actual
values with faked ones at a given prior probability. We show in our experiments that
recovered total electricity consumption can approximate the aggregated actual readings with
very high accuracy (~99%), whereas the ability of identifying individual usage patterns are
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largely obviated. The proposed framework provides a privacy-preserving approach to
utilizing smart meters at end users’ levels. Future work will include testing of this proposed
method with large-scale realistic smart metering data.
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Appendix

A. IG Distribution Approximation using EP
Since the inverse gamma (IG) distribution is a conjugate prior for Gaussian distribution with
variance as a parameter, we choose the a priori distribution as an IG distribution. Then we
will explain the EP algorithm on the problem of variance estimation based on the IG
distribution.

Each iteration of EP based IG distribution approximation proceeds as follows:

1. Initialize the prior messages (i.e. initial knowledge of the variance) for the variance
variable

(7)

with

(8)
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where υ0 is the initial variance, β0 and α0 are scale and shape parameters for IG
distribution, respectively.

2. Initialize the likelihood messages

(9)

with

(10)

3. Initialize the posterior probability distributions of the variance

(11)

with

(12)

4. Until all messages converge:

For each factor node fi, where i ∈ \ g(V)

a. Remove m̃fi→V (υ) from the posterior q(υ)

(13)

b. Update αnew and βnew according to moment matching. (See Section VI-B
for more details about the derivation of αnew, βnew updates.)

c. Set approximate message

(14)

B. Moment Matching for IG distribution
By the technique of moment matching [33], q(υ) is obtained by matching the mean and
variance of q(υ) to those of p̂(υ). Then we get αnew and βnew, the parameters of q(υ). We
simplify the notations and let α′ = αtmp, β′= βtmp.

The mean and variance of IG distribution are matched by the following updates
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(15)

(16)

where .
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Fig. 1.
Factor graph of variance estimation with known mean.
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Fig. 2.
Average aggregated power consumption of every 15 minutes for each individual user
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Fig. 3.
The privacy protection performance of different SD’s
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Fig. 4.
The privacy protection performance of different weights
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Fig. 5.
Weight of the main Gaussian component vs confidence interval.

Wang et al. Page 19

IEEE Trans Smart Grid. Author manuscript; available in PMC 2012 December 12.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 6.
Weight of the main Gaussian component vs MSE.
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Fig. 7.
SD of the main Gaussian component (%) vs Confidence interval.

Wang et al. Page 21

IEEE Trans Smart Grid. Author manuscript; available in PMC 2012 December 12.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 8.
SD of the main Gaussian component (%) vs MSE.
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Fig. 9.
Weight of the main Gaussian component vs relative accuracy of monthly energy
consumption
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Fig. 10.
Distribution of SMR of a given time tick from a) true report (blue solid line); b) proposed
method protected report (black dash-dot line); c) Bohli’s method protected report (blue dots
line); d) estimated distribution from protected report (red solid line); e) estimated
distribution from Bohli’s method protected report (red dots line).
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Fig. 11.
SMR of a given user from a) true report (red solid line); b) proposed protected report (black
dash line); c) Bohli’s method protected report (blue dots line).
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