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Abstract—In this paper, the problem of grid-to-vehicle en-
O)ergy exchange between a smart grid and plug-in electric vebie
5 groups (PEVGs) is studied using a noncooperative Stackellme
<E game. In this game, on the one hand, the smart grid that acts a3
leader, needs to decide on its price so as to optimize its reuge while

(C\] ensuring the PEVGS' participation. On the other hand, the PB/Gs,
which act as followers, need to decide on their charging sttagies so
——ias to optimize a tradeoff between the benefit from battery chaging
and the associated cost. Using variational inequalitiest is shown

LD that the proposed game possesses sacially optimal Stackelberg
_ equilibrium in which the grid optimizes its price while the PEVGs
choose their equilibrium strategies. A distributed algorthm that
() enables the PEVGs and the smart grid to reach this equilibrium is
——proposed and assessed by extensive simulations. Furthenetmodel

is extended to a time-varying case that can incorporate anddndle
< slowly varying environments.

— Index Terms—Power system economics, smart grids, electric
™ vehicles, game theory, energy exchange, energy management
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o D the environment, it is expected that plug-in electric vidsc

CF\{ (PEVs}
Therefore, several countries are working“on establishiogeh

. 2 PEV policies and plans because of their significant enviremtad

. INTRODUCTION

UE to the growing concerns for energy conservation ang,

will play a major role in the future smart grid (SG) [2].

vehicle owner. In [4], a real-time pricing algorithm is pasged

for smart grids considering smart‘meter and energy provider
teraction through control messages-‘exchange. A noncaiera
game model for pricing andfrequency regulation in smadgyri
with electric vehicles is 'studied in [5]. Using facility laton
games, in [6], optimallocations of battery exchange stativere
derived within a vehicle-to-grid (V2G) network. An optinaizon
framework is proposed in [7] for enabling the SG to determine
the time and ‘duration of the PEVs charging. In [8], a control
algorithm is developed based on queuing theory to control
the charging'of PEVs. A stochastic programming technique
is introduced in [9] to show the impact of charging PHEVs
on a residential distribution grid. The issue of vehiclegta
(V2G) integration and the prospective communication fiaies
to-enable this integration are addressed in [10]. In [11],eam
field game is proposed to investigate the competitive ictera
between electric vehicles in a Cournot market consistingjex-
tricity transactions to/ from an electricity distributioetwork. To
manage a large number of PHEVs at a municipal parking station
algorithm using particle swarm optimization is proposed
[12]. An intelligent method for scheduling the usage of the
available storage capacity from PHEVs and electric vehitde
proposed in [13]. Other aspects of electric vehicles in sigéas

in terms of energy storage, charging and greenhouse gasiemis

advantages and cost savings [3], | reduction are discussed in [14—16]. Beyond PEVs, many plessi
- The deployment of PEVs.will.introduce new challenges i§emand side management solutions are also foreseen for the

the design of SGs. These challenges include developinmabti_ smart grid [17] and each of these solutions has a number of

charging strategies for.the connected PEVS, ensuring &ffici ponefits and cost tradeoffs. Subsequently, it is anticipstat
communications between PEVs and the grid, and managifg,y of these solutions, including the incorporation ofcele
energy exchange. between regular loads of the grid and {agicles, will co-exist to provide smart energy managenient

PEVs. In [2], the optimal charge control of PEVs is analyzeg,

in deregulated electricity markets based on a forecast tofdu

electricity prices and the optimal economic solution foe th
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1PEVs include both battery-only electric vehicles (BEVsy aotug-in hybrid
electric vehicles (PHEVS) [1].

e power grid.

One of the key challenges of widespread penetration of PEVs
in the power network is the choice of an optimal charging
strategy for the PEVs. This is mainly due to the fact that the
integration of the PEVs into the network has a major impact on
the power grid and can potentially double the average load [4
18]. The simultaneous charging of several PEVs in a pastrcul
area can overload the network and, thus, lead to an intéorupt
services for other consumers. The problem of PEV charginlg an
its impact on the power distribution grid and electricity nket
have been addressed in [1-3,7, 8] and [19]. However, lide h
been done to develop distributed models and algorithmsctrat
capture the interactions between PEVs and the grid, in & grid
to-vehicle scenario. There is a need to develop solutioas th
capture the often conflicting objectives between the SGgclwhi
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seeks to maximize its revenue, and the PEVs, which seekgiid at peak hours of energy demand e.g., frofrpm to 4 pn?
optimize their charging behavior. Because of the limitedl gr[20]. The total charging period for the PEVGs is consideied t
capacity and PEVs’ energy demands, it is of interest to @gvelbe divided into multiple time slots. Each time slot has a tara
a model that can capture the decision making process of thfeanywhere betweef minutes and half an hour based on the
PEVs and the grid when the grid’s limited energy needs to lseanging traffic conditions of the PEVs in the group [21]. For
allocated among the PEVs based on their needs. a particular time slot, the power grid has a maximum energy
The main contribution of this paper is to provide a com¢ that it can sell to the connected PEVGs, allowing them to
prehensive analytical framework that is suitable for cepty meet their demarid The power grid will set an appropriate price
the interactions between an SG and a number of PEV groupéper unit of energy) for selling its surplus so-as-to optinitze
(PEVGS), e.g., parking lots, which must decide on their gimgy revenue.
profiles. We model the problem as a generalized Stackelbergzach PEVGn € N, where\ is the set of allv PEVGs, will
game in which the SG is the leader and the PEVGs are tiggjuest a certain amount of energy from the grid so as to
followers. The objective of the PEVGs is to strategicallpeke Meet its energy requirements (e.g., to-go back home aftereoffi
the amount that they need to charge, so as to optimize ayutiltork). This demand of energy may vary for the PEVs in the
that captures the tradeoff between the charging benefits @i@up based on different parameters such as the battergigapa
the associated costs, given various practical constraintthe b, of the PEVG, the available energy in the PEVG’s battery at
PEVGs and the main grid. Based on the strategy choices of the time of plug-in to-the grid, the prige per unit of electricity
PEVGs, the leader aims to optimize its price so as to maximiaad the nature of usage (e.g., two identical PEVGs with diffe
its revenues. We analyze the properties of the resultingegatfavel plans may need different amounts of energy). Durieakp
within the studied model, including existence of an equilim hours, the available‘energy for servicing PEVGs is oftentéth
and optimality, and show that there exists an efficient,(i.d20], and, thus, the PEVGs will request only the amount néede
socially optimal) generalized Stackelberg equilibriume ¥how due to their immediate need for charging. Since the net gnerg
that, due to the coupled capacity constraints between tSBE C' available for the PEVGs at the grid is fixed, the demands of
the noncooperative followers’ game leads to a generalizashN the PEVGs must satisfy
equilibrium, and the solution enables the capture of noy time an <C. (1)

charging behavior of the vehicles but also the decisionsentgd _ n .
the SG. We propose a novel algorithm that the PEVGs dnd.the>Ven the amount requested by the PEVGs, the SG sets a price

grid can use, in a distributed manner, so as to reach theedesif PEr unit of energy so as to optimize its revenue from selling
equilibrium. We also show that the proposed algorithm-esmbl€N€rgy by strategically choosing its price per unit of egerg
the system to adapt to time-varying environmentalconuditio Although the SG can choose the pripewithin any range to

such as arrival/departure of PEVs. Using extensive siilat MaXimize its total revenue, a very largemay compel a PEVG
we assess the properties of the proposed scherie. to withdraw its demand from the grid and to search for alterna

The rest of this paper is organized as, follows. Section r|r|1arkets or wait until the prices_drop. Therefore, an optiprie .
describes the system model. In Section-lll, we formulate t geds to be chosen by the grid operator which is not very high

noncooperative generalized Stackelberg game and we digsus 1o avoid I_osmg customers) _an_d npt very low (to avoid losing
properties. In Section IV, we.propose a distributed altonit re\_/renue), n afn”effort tolmaX|rr]n|ze its proflt(.j_ he PEVG d
for finding the equilibrium. /Adaptation of the proposed game 0 s_t:jcc_ess Uty C(.)T:p eteht ehenergydtra Ing, the h s an
to time-varying conditions is discussed in Section V. Nuicar the grid Interact with each other and agree on the energy
results are analyzed in“Section VI and conclusions are dmwnexchange parameters, such as the ;elhpg price and the afoun
Section VII. energy demanded, that meet the objectives of the both Sitles.
amount of requested energy, is determined by the physical
characteristics of PEVG: as well as by the tradeoff between
the potential benefit that PEV@ is expecting from buying:,,
and the selling price of the grid. Moreover, the selling price
Consider a power system consisting of a single power gidPer unit of energy is strongly dependent upon the amount
(i.e., an SG), several primary and secondary load subssriire demanded by the PEV(_BS as.w.ell as the number of PEVGs that
consumers and a smart energy manager (SEM). Here, the && connecteq to the grid. Th|§ is d_ue to the fact that the anou
refers to the main electric grid which is connected to theaar@f €nergy available from the grid is fixed and, thus, as thelrem
of interest via one or more substations. Further, we considd PEVGs increases, the amount that each PEVG can acquire
that the SG is servicing a certain area or groups of primaﬁ?comes_smaller. As a result, the grid can set a higher pice t
consumers such as industries, houses and offices. AfteingeetCrease Its revenues.
the demands of the primary consumers the grid wishes totsell i 2the proposed scheme is not only restricted to the considgzedd but can
excess of energy (if any) to the secondary users, such as,PEA& apply for any time duration.
connected to it in that area. Consider a number of groups V\(/)lfvxhtiLeethirsidp?]gesré?];?cusgitogatrt:ebigterrﬁ\c/ﬂjogds gemgeSEP\fg@r’mtgégr&
PEVs (hereinafter, we use the term PEVG to denote a groupteﬁnded t% cases in Wr?izh there are mFlJJItipIe energy sotlmeyesnszi the main
PEVs, acting as a single PEV entity), which are connectellgo fgrid.

Il. SYSTEM MODEL



It is clear that the demands of the connected PEVGs ahe satisfaction parameter of each PEVG. The price per unit
coupled through the energy constraint in (1), and are alsbenergy can also affect the demand of the PEVG. Thus, the
dependent on the physical characteristics and capasilidfe properties that the utility of a PEVG must satisfy are asofof:

the PEVGs. Also it is important to note that the price set by(j) The utility functions of the PEVGs are considered to
the grid is dependent on the demand of each PEVG. Thus, be non-decreasing because each PEVG is interested in

the main challenges faced when developing an approach that consuming more energy if possible unless it reaches its
can successfully capture the decision making process df bot  maximum consumption level. Mathematically;

the PEVGs and the grid are: i)- modeling the decision making U (2, X n» Sy by D)
processes and the interactions between the connected PEVGs oL,

in the network given the constraint in (1); ii)- developing a (jiy The marginal benefit of a PEVG is.considered as a non-
algorithm that enables the PEVGs in the network to stratdigic increasing function, as the level.of satisfaction of the

decide on the amount of energy that they will request from the  peygg gradually gets saturated as-more energy is con-
grid so as to optimize their satisfaction levels given thestaint sumed. i.e.

in (1); and iii)- enabling the grid to optimize its price wéil 52U (20, X s S13 b, D)
capturing the tradeoff between the PEVGS' participation an B
revenue maximization. To address these challenges we $zop
a framework based on noncooperative game theory.

> 0. )

<0.
o <0 3

%ii) Hereinafter, we consider that, for a fixed consumptievel
xn, @ largerb,, implies a large,,(z,, X—n, $n, bn, p) and

a largers,, leads to a smallet/,,(z,,X—n, Sn,bpn,p). SO
IIl. NONCOOPERATIVE GENERALIZEDSTACKELBERG GAME

we have

A. Game formulation OUn (Ty, X—n, Sn, bn, p) -0 @)

To formally study the interactions between the SG and the Obn ’
PEVGs, we use a Stackelberg game [22] which is a type of .and
noncooperative game that deals with the multi-level denisi 0Un (0, X—n; $n, b, ) < 0. (5)
making process of a number of independent decision makers or Osn
players (followers) in response to the decision taken byaditeg "\(iv)/ The price per unit of energy set by the grid affects the
player (the leader) [22]. Hence, we formulate a noncooperat utilities of the PEVGs and the utility of a PEVG decreases
Stackelberg game in which the SG is the leader and the PEVGs Wwith a higher price. That is,
are the followers. This game is defined by its strategic form, OUn(Tp,X—n, Sn, bn, p) <0 (6)
I = {(NU{SG}), {Xu},en s {Un}en» L(p), p}, having the op '
following components: In this work we consider the particular utility

(i) The PEVGs inN act as the followers in .the game and _ 1 2
respond to the price set by the SG. Un(@n, X, $nbns P) = bon g Snin — Pln, ")
(i) The strategy of each PEVG € A.which corresponds to where z, ¢ 0, — ij:l pin@k) aNd x ., =

the amount of energy demandeq € X, from the grid (4, 2, ..., 2, 1, 2n.1,...,2n], although many of our results

satisfying the constraint_, x, < ©. can be generalized.
(iii) The utility function U, ofieach PEVGn that captures the  From (7), the utility of PEVGn is affected by its battery
benefit of consuming the demanded energy capacityb,. This is due to the fact that a PEVG with higher

(iv) The utility functiond(p) for the SG (leader of the game),p,, will have higher marginal utility and thus, needs to consume
which captures/the total profit that the grid can receive iyore energy to reach its maximum satisfaction level [23]e Th
selling the surplus energy with prige utility also depends on the satisfaction parametgrof the

(v) The pricep'per unit of energy charged by the SG. PEVG. PEVGs with the same capacity but with a different

1) Utility Function of a PEVG:For each PEVG: € A/, we satisfaction parameter will have different marginal tigé and,

define a utility functionl,,(x,,, x—n, $n, bn, p), Which represents thus, will be satisfied by different amounts of energy. Te #md,

the level of satisfaction that a PEVG obtains as a functiothef we assume that a PEVG does not consume any energy beyond its

energy it consumes. Herlg, is the battery capacity of PEVG maximum satisfaction level, i.el/,, = 0 if z,, > (x,* — z),

n and z,, is the requested energy from the grigl; is the wherez™ is the initial energy in PEVG’s battery at the time

satisfaction parameter of PEV@, which is a measure of the of plug-in to the grid andz,,* is the energy that maximizes its

satisfaction the PEVG can achieve from consuming one unit aiility within the given constraint in (1).

energy. Thiss,, may depend on PEVG's battery state at the 2) Utility Function of the Power grid: A PEVG n that

time of plug-in to the grid, the available energy at the gridonsumese,, MWh of electricity during a designated period of

and/or the travel plan of the corresponding PEVG. For examptime at a ratep per MWh is chargedx, which is the cost

a PEVG1 having less need for energy than another PE¥G imposed by the SG on the PEVG. The objective of the SG is to

(e.g., due to having a fuller battery) will need less enettgnt maximize its revenue by selling the available energy surjpdu

PEVG 2 to attain the same satisfaction level (i.&,< s1). The the PEVGs after meeting the demand of its primary consumers,

energy demand may vary based on the battery capacity andiod also to control the nature of energy consumption of the



PEVGs. While this energy surplus is fixed, the SG wants to and

s_et a pricep per unit of energy so as to optimize its revenue, L(p*,x*) > L(p, x*). (12)

given the demands of the PEVGs. Thus, we assume the utility

function for the grid is Thus, when all the PEVGs’ demands are at the GSE, no PEVG
L(p, zn(p me (8) can improve its utility by deviating from its GSE demand and

similarly, no price other than the optimal price* set by the
which captures the total revenue of the grid when selling thgid at the GSE, can improve the utility for the,grid.
energy required by all PEVGs at a pripegper unit of energy.

In this proposed game, the SG can control the priceer
unit of energy it wishes to sell. Connected PEVGs respond
the price by demanding a certain amount of energy, given thelD noncooperative games, the existence of an equilibrium
constraint in (1), so as to maximize their utilities. Thusy & Solution (in pure strategies) is not-always guaranteed.[22]

I?o Existence and efficiency of GSE

fixed pricep, the objective of any PEVG: is Therefore, for our follower game,-we need to investigate the
max  Up(Zn, Xons $ns by D), existence of the GNE in response. to a priceSpecifically, we
2, €(C—x_n) are interested in investigating.the existence and prasewi
st an <. @ @ variational equilibrium{(VE), which is a type of GNE to be

defined below (see also [24]), for our case. This is due to the
Here, we can see that the amount of energy demanded by efach that a VE is more socially stable than another GNE (if
PEVG n depends, not only on its own strategies and price btlitere exists any) and thus, is a desirable target for anyitigo
also on the demand of other PEVGs in the network through (tb) achieve [25].%Particularly for the proposed case, where a
and the constraint is the same for all players. This leads caumber of /PEVGs in the SG network are demanding energy
nected PEVGSs to engage in a noncooperative resource shafiogh a constrained reserve, an efficient VE would be the most
game, which is a jointly convex generalized Nash equilioriu appropriate solution to be considered. Hereinafter, we \(Se
problem (GNEP) due to the same shared constraint (1). Neted GNE-interchangeably.
that, in game theory, a noncooperative game in which theepay ~~ Theorem 1: For a fixed pricep, a socially optimal VE exists
actions are coupled solely through the constraints, sudh & ‘in the proposed gamE between the PEVGs connected to the
proposed model, is a special class of games whose solutiba isgrid.
generalized Nash equilibrium [24, 25], and hence, the pegdo Proof: First, clearly, by adding the quantlgjm#n( mLom —
followers’ game, for any price, is a noncooperative resource%sma;m% — Zmin px,, to U, in (7) and treating the resulting
sharing game whose solution is the generalized Nash equitib utility function as the new objective function for PEVi&G will
(GNE). Then, given all the PEVGs’ demands are atithe GNE, thet affect the solution [26]. Thus, the original game is gglént
leader, i.e., the grid, chooses the price to maximize itemae. to one in which all PEVGs have the same utility function,
Thus, for the given GNE demands of the PEVGs, the objective

of the grid is U(Z1, oy TN 81y ey SN 015 oy bN; )
max L(p = max Z P (10) al 1
P n = Z (bmxm — =SmTm ) —p Z T, (13)
Thus, one suitable solution for the formulated games the m=1

Stackelberg equilibrium at which the leader reaches itin@t Hence, to determine the socially stable outcome of the gémee,
price, given the followers” optimal response at their GNEt#s existence of a solution that maximizes (13) is our main comce
equilibrium, no player(leader or follower) can improveuitsity Using the method of Lagrange multipliers [27], the Karush-
by unilaterally changing its strategy. In classical Stackelberguhn-Tucker (KKT) conditions for the!" player GNEP is given
games, the followers ‘typically choose their Nash equilibori by

strategies. In ‘our.model, due to the coupled strategies as pe

(1), the PEVGs need to seek a GNE instead of a classical

Nash equilibrium. To this end, hereinafter, we refer to oaime =V, Un(@n, X-n, 81, bn, p) + Va, (Z Tn = O) An =0,

as a generalized Stackelberg game (GSG) whose solution is "

the generalized Stackelberg equilibrium (GSE) in which the A ZI _c)=o0 >0
followers reach a GNE. T\ =
Definition 1: Consider the GSG T = (14)

{NUSG), {Xn}en - {Un}en» L(p), p} defined in 1II-A  where), is the Lagrange multiplier for PEVG.

whereU,, and L(p) are given by (7) and (8) respectively. A set First, we note that, for a fixed price, the followers’ game

of strategies X*,p*) constitutes the GSE of this game, if anchdmits a jointly convex GNEP, hence, the solution of the GNEP

only if it satisfies the following set of inequalities: with (1) can be found via a variational inequality(X, F'). This
Un(n*,X—n™, Sy b, %) > Un(@ny X—n™, Sy by DY), essentially reduces to determining a vectdre X C R", such

* *
Ve, € x*, neN, ZIH <C (11 4The optimal pricep* maximizes the utility of the SG for the given GNE
n

demand vectox™ of the PEVGs in the smart grid network.



that (F(z*),z —z*) > 0, for all z € X whereX is the setin  For solving the monotone VI in our proposed game, we
the definition of joint convexity and(x) = —(V,U,(x))Y. consider the Solodov and Svaiter (S-S) hyperplane projecti

n=1
[25]. The solution of V(X, F) is a variational equilibrium. method [28, 29]. In the S-S method, two projections per fiena
Now the KKT conditions can be written as [24] are required using a geometric interpretation (see [28fis T
F(x) + /\VI(Z 2, —C) =0, hyperplane projection algorithm works as follows [28]: $ape
- we havez®, which is a current approximation to the solution
)‘(Z o —C) =0, \>0. (15) of VI(X, F). First the point Proj [z* — F(2%)] is"cemputefl

Next, the line segment betweerf and Proj [z%—F(z"*)] is

Note that the subscript on Lagrange multiplieis dropped in Searched for a point* such that the hyperplan@H, := {z €
(15) . This is due to the fact that the solution of a jointly een R"|(F(*),z—z*) = 0} strictly separates™from any solution
GNEP is a VE if and only if the shared constraint has the sarmé Of the problem. A computationally inexpensive Armijo-type

multiplier \ for all players [24]. procedure [30] is used in this S-S algorithm to find suthOnce
Now from the definition ofF [25], we have the hyperplane is constructed, the next itetdté! is computed
s1z1+p— by by projectingz* onto the intersection of the feasible sétwith
S9o + p — by the hyperspacdl;, = {z € R “(F(zF), 2z — 2¥) < 0}, i.e.
F= ) . (16) X N Hy, which contains the solution set [28] [29].
: Next, we show how,the REVGs reach the VE, for a price
S$nn + P = bn following the optimization of price by the grid when all PE¥G
Therefore, the Jacobian & is are in VE. Then, we'detail the algorithm at the end of thisisact
S1 0o ... 0
wo | (17) A GNEfor g fixecp
L . From'(13) and (15), for any PEV@, the solution of the KKT
0 0 ... Sn system,of variational inequalities is
JF is a diagonal matrix with all positive diagonal elements. by — Spxn —p—A =0, (18)

Hence, JF is positive definite onX, and so,F is strictly

monotone. Thus, the GNEP admits a unique global VE soluti¥fhere

[24] A —c)=0 2120 19
Because of the jointly convex nature of the GNEP.the VE is Xn:x” T (19)

the unique global maximizer of (13) [24], which completes thFor )\ > 0, the inequality constraint in (19) becomes as equality

proof. B and hence at the VE,
As a result, from Theorem 1, the GSE, in which the SG sets an —C. (20)
its optimal price in response to the VE demands of the PEVGs, "
admits the socially optimal solution of-the proposed game.  Thus, for a fixedp at the grid, the sum of demands of all
the PEVGs connected to the grid at the VE is equal to the total
IV. PROPOSED SOLUTION AND ALGORITHM energyC' available at the grid.

In this section, we formulate the GNEP among the followers asAt thz_peakdhﬁur of dTlmr?n(;,Es/rgrgy in the gr_i(:l is a scarﬁe
a variational inequality (V1). problefand propose an algorithmCommo Ity and, hence, all the S compete with one another

that leads to the socially optimal VE. Note that the VE furthétor ? fairl a!locatifor;] of the av;ilable %rid energr)]/. -IETELSG forh
leads to the GSE_state of the game as defined in Definitionﬂi‘? ormulation of the proposed game between the s the

Now, we first state.thefollowing corollary and then expldie t available energy at the grid should be less than the totabgne
solut’ion methdd for.the considered GNEP consumption capacity of the connected PEVGs. This is es$ent

Corollary 1: The VI associated with the proposed GNEP ofPr a"Oid"_‘g the irivial case in Whi_Ch all the PEVGs should ge
the connected PEVGs for a prigeis a strongly monotone VI an allocation equal to their capacity. From (18), we have
and thus, the unique VE can be calculated by solving a moeoton bn = sptn —p >0
VL. i.e., by > Spxp + p. (22)

Proof: By Theorem 1, we know that the VI associated with o _ )

the proposed GNEP of the connected PEVGs for any fixed prit@king all N PEVGs connected to the grid into consideration,
p is a strongly monotone VI and the VE is unique. It is showf?1) becomes
in [24] that the solution of a VE can be calculated by solving an > pN + anxm (22)
a monotone VI. Hence, the unique VE solution of the PEVGS’ n

GNEP of energy demand within constraint (1) can be calcdlat@hich leads to the following proposition:
by solving the strongly monotone \X(, F). n Proposition 1: To achieve the maximum utilities at the VE,

within the constraint in (1), the total capacities of the grid

5Given X C R™ and F : R” — R”, the VI(X, F) consists of finding a
vector z* € X such that(F(z*),z — z*) > 0, for all z € X. 6Projy (2) = arg min{||w — z||, w € X} Vz € R™.



connected PEVGs must be greater than their total VE demagorithm 1 Algorithm to reach GSE
plus a constant equal @V . 1. Solving VI o .

For the special case in which the PEVGs have different ca-py, - " © A 2upmis s inffal demand, T (o the SEM
pacities (i.e.p,, is different for eactn) but the same satisfaction a) The SEM checks\,, ” for the demandz.,* of all

- n € N using (15).
parameter (|.e.$n =sforallne N)' (22) becomes b) Each PEVGr?é j\)/ updates its demand,,” using the
S-S hyperplane projection method [29].
Z bn > pN + sC (23) S — S method
i) The PEVGn computes the projection(z,,*).
" ii) The PEVGn updatest,, "+ equal tor(z,")
where Z x, = C, from (20) if »(2»") = 0 and submit to the SEM.
otherwise
n iii) The PEVG n dete,:crmine the hyperplane, * and
H e : : the half space,,” from the projection.
Now, while Proposition 1 holds for a prigeat t_he grid, from ) The iy o Souates its derﬁar{ﬂnkﬂ X
(18), the demand of the PEVGs at the VE is given by the projection of its previous demand, ¥ on to
b — (p + )\) A X N H,"* and submit to the SEM.
l'n*(p) — n77 (24) until all \,, converge tox > 0.
Sn The SEM determines the VE demand of the PEVGs.
2. Optimizing Price
where a) The SEM submits the VE. demand-of the PEVGs
. * to the grid.
A=bn—snxn" —p for anyn c N. (25) b) The grid optimizes its pricg'to p* using (28).

The VE demand and price of the GSG are achieved.

B. Price optimization until all A\, converge-to a single valud > 0. In this algo-
) , rithm we use the hyperplane projection method to solve the

Having analyzed the followers’ game, we now show how th&,,osed Vi jproblem. By using this technique, we guarantee
SG can set its optimal price” given the VE of the PEVGS. 4 oypalgorithm always converges to a non-empty soltifion

For the KKT system of Vis described in (18) and (19), g js-strongly monotone [31] which is always verified in our
selling price for per unit energy is game, as previously shown. Thus, the proposed algorithm is

P < by — Snp. (26) (guaranteed to converge to a unique solution of the gamen give
. the‘demand constraints of the PEVGs and the grid’s capétity
ég;ll;l, g(c))n:h(:i))rliézepgfTri?(llf%rneerr]g)r/gga%fizg\f&t the Y& As we explained in Section Ill, this convergence implied tha
o A proposed GSG reaches its GSE as soon as the grid optimizes the
P < bn = sn@n” (27) price using (28) for the given VE demand of the PEVGs.

The proposed algorithm uses the S-S hyperplane projection
method [29] to calculate the demand at the VE for a pyice
Each PEVG and the SG can implement the proposed algorithm
revenue-maximizing pr?ce of the grid should be the uppeitlimto reach the GSE in a distributed fashion with the assumtian
of (27). Thus, the optimal prideof the proposed GSG is the SEM can communicate with both the grid and the PEVGs.

p* = by — Snant. (28) The SEM can use any vehicle to grid infrastructure technique
[6], for this communication. As soon as any PEVGis con-
nected to the grid, the SEM receives the utility paramebgrs
C. Proposed algorithm ands,, using V2G. The algorithm starts with the announcement
o& the available energg’ and the price per unit energyby the

Now, with the condition in (27) and the utility-of the SG from
(8), which isL(p) = prn over p > 0, this dictates that the

In order to reach the equilibrium, the PEVGs and the smat. . . . . ; .
grid must make their strategy choices with little commutiara % id. At any given iteration, in response to this pricg, each

between one afother”To this end. we bropose an al oritrﬁ)EVGn updates its demand for a particular amount of energy
' ' prop 9OMAMY: £rom the fixed amoun€’ of the grid using the S-S method.

that all the PEVGs_and the grid can implement in a distributequle SEM gets the pricefrom the grid and checks the parameter
fashion and reach the efficient GSE of the game. We note th/@t,k using (15). To enable the SEM to check the value\gf

) - o N
in a jointly convex GNEP wherd(x) = —(V.Un(x)) 'S each PEVGn submits its demand,* to the SEM at the end

n=1
strongly monotone, such as our proposed game, the solution

. of iteration k. The process continues until all the PEVGs make
the VI converges to a unique VE [24] when the demand of ea fg :

=)\> .
PEVG n is such that the parametey, in (15) for alln € N their demands such thai,, = A > 0 vn. The demand of the

. PEVGs reaches a VE as the SEM determines Mat= A > 0
possesses the same value 0. In other words, if the parameter, . c N Then. the SEM submits the VE demand of the
A, converges to a single value > 0 for all n € N, thenx*, o . . . .
the demand vector of the PEVGs contains the VE demand of t?}%\)/gr? dtot:\rs;i gtrf:(; 2?3;33663@ Ssgtfeglfhgst;?eag%mémsmg

PEFVGS‘ thi ; d After the execution of the algorithm the demand of each PEVG
or our game, we can use this property and propose afle,cpes jts equilibrium value’, which is given by
algorithm in which each PEVG updates its demand |terat,|ve@ by, — p*
“From (25), atp = p*, the slack variable\ = 0. Hence\,, converges to ] ) . Sn o
A =0, ¥n as the game reaches its GSE. with the optimal pricep*. This is the equilibrium of the game.
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Here, we extend our approach so as to accommodate time- ,
varying conditions using a discrete time feedback Staekglb all 2
game model with dependent followers [32]. We assume that
the number of vehicles at a given location, e.g., a parking lo
changes gradually in real time with a moderate time durdfion
example,5 minutes to30 minutes) [21]. We also assume that
the available energy from the grid varies across moderate ti
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intervals, e.g., once in an hour [33]. Hence, using a diedigte - ©=-PEVG-1

feedback Stackelberg game, we can capture changes in systenr s i f;f eve_ s

variables from one time instant to another. Prior to disitigss ) S =

how the proposed scheme can be adapted in a time-varying 0 ‘ ‘ ‘
environment, we define the following parameters: 0 ® umberofferaions %

C, : the state variable of the game, which indicates the state of
available charge at time instant

bj, : the battery capacity of PEVG, which depends on the for the SG, and
aggregate quantity of the number of PEVs in the group atmtsta

Fig. 1. Convergence of the . demand of each PEVG to the GSE.

1 2
t. maxUp_; = max (bflel — —s;x; —ptxfl) (32)
st . the satisfaction paramefeof PEVG n at t. ; zy Xn: 2
t .
x!, : the energy dem_and by PEVfBz_ﬂt. Zx; <Coatt=01.2 .1
p¢ : the price per unit of energy at instant —
t

xt = (2,24, ..., 2% ) : the vector of demands of all the PEVGs o .
for the PEVGn. The objective functions in (31) and (32) refer

fto-a‘feedback Stackelberg game with Nash game constraints
in the lower level decision making process [32] (similar he t
game proposed in Section Il for a single time instant) oher t
whole time horizon. Here, we assume that the leader of theegam
can perfectly gain the information aboGt from (30) [35]. At

in the network at time.
xt, = (2,2l 2l .. 2l) : the vector of strategies o

all PEVGs except PEVG at instantt.
Lr—y =Y ,p"Y, = : the payoff function of the grid which'it

wants to maximize over the entire peak hour duration.
any instantt, the SG gets the information about the volume of

Urt = 53,50, éb;x; — Lstat® —puat) : the joint, ufility
function of the PEVGs in the network. the parking lot (i.e.p!' ands!~! for all n = 1,2,.., N), the

Consequently, th_e state transition equation forthe timging  yomand of the PEVGs in the previous time slot 1 as well as
system can be defined as [34] the per unit pricep,_1. Then, it estimates the amount of energy
B ¢ B that needs to be provided to the PEVGS$ titrough (30). The SG
Crt1 = fi(Copr,X7), £=0,1, 25T 1, (30) feedsC; back to the PEVGs through the SEM and the PEVGs

wheret is an integer time index, andis the entire peak hour play the jointly convex generalized Nash game of Algorithm 1

duration. For a feedback Stackelberg gafigis the information for the allolcfltlo; of engigy withity_,, 7, < C;. )

about the available energy supply at timewhich is gained  Here (' ,x*",...x" ) and (pi, p3, ..., p) constitute the
by the grid from (30) aridfed back to the PEVGs through ﬂﬁé)lunon _of the discrete Flme Stackelberg game unde_r a @db
SEM [34]. The state 6f available energy supply at any instanfnformation struc_turetXVHh the.correspondmg state infation
is a function of the demand for energy by the PEVGs, and ﬂ(lgl’CQ’ - Or), if x COmprises the solution of the GNE
energy available_at thé previous time slot. The state tiansi 2MO"Y the followers for price at eacht = 1,2,.., T [32]

from ¢ to ¢ + Intakés place when a change occurs either ifhe solution will be team optimal if the solution at the GNE

the number of PEVs in the PEVG, or in the available enerdy OPtimal, that is if the GNE is a VE [24], for the sub game

from the grid. The objective of both the SG and the PEVGE €acht = 1,2,...T" [32]. Now, given that the Stackelberg
is to choose their strategies so as to maximize their eslith 92Me described in Section Ill constitutes a sub-game in each

each time interval, and thus to maximize their total payaifs time inter\{alt of_the feedpack Stackelbgrg game, the sup-game
the entire time horizon of peak hours. Hence, the problems ‘il reach its optimal solution (as shown in Section Iil-B)thin

i t —
payoff maximization of the players for a discrete time feao € constrain®_, z;, < C at eacht = 1,2,..., T'. Therefore,
Stackelberg game can be formally expressed as the solution of the discrete time feedback Stackelberg game

possesses a team optimal solution.
max Lr_; = Z max py Z xy, (32)
v P n VI. NUMERICAL ANALYSIS

s _ - For our simulations, we consider a number of PEVGs that
Here, we consider that the satisfaction parameter chamsgemly between

consecutive time slots, for example, due to the random @anyehicles in a ar€ Conne_Cted to the grid dur_ing peak hour_s_' Here*_ a single
parking lot from one time slot to the next. PEVG entity represents000 vehicles at a specific location [2],
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Fig. 2: Convergence of the utility of each PEVG to the GSE. Fig. 3: Convergence of the valuesaf,, Vn to A > 0 as the solution
) ) ) of the GSG converges to GSE.
where each single vehicle is assumed to req@itekWh for

every 100 miles [36,37]. The maximum battery capacity of angonverge to the GSE.

single vehicle is chosen betwe&B0 and300 miles. Hence, the In Fig. 3, we_analyze the convergence speed of the proposed
maximum capacityp,, of any PEVGn ranges betwees> MWh algorithm by ‘plotting the values oh,, as a function of the
and 65 MWh, which is chosen randomly for each PEVG. Thaumber of iterations forN = 5 PEVGs. First, recall that
available energy at the grid is chosen®sMWh. Initially, the the demands-of all PEVGs converge to GSE for the optimal
grid sets the selling price to7r USD per MWh. We note that the price p* when all the PEVGs reach their VE and at this VE
chosen parameters correspond to a typical PEVG use cas® [2)8, = X.> 0, Vn. Fig. 3 shows that our algorithm converges
37]. However, we duly highlight that these parameters cag vdo the GSE afte® iterations (i.e., the PEVGs reach their VE).
considerably according to PEVG usage and type, and economdince, as shown by Fig. 3, the convergence speed of our
conditions within a given city, or country. algorithm is reasonable.

The satisfaction parametey, is chosen randomly in the'range In Fig. 4, we show how the price set by the grid converges to
of [1, 2]. The range of,, is chosen based on the assumption thés optimal value as the strategies of the PEVGs convergedo t
the PEVG with the lowest satisfaction parametgr=:1 will VE for networks of various sizes\( = 5,10, and 15 PEVGSs)
get full satisfaction from each unit of energy it-will consem with an initial SG price set ta7 USD per unit of energy. Fig. 4
whereas the PEVG with the highest parameter-&g5 2, will  shows that the price converges to an approximate optimakval
reach the same satisfaction level from consuming half theusatn  within 5 iterations. This is due to the fact that the SG sets its
due to its smaller limitations in terms.of its initial batgestate price in response to the demand strategies of the PEVGscin fa
and travel plah We do not consider the ' PEVGs with), > 2 the PEVGs reach an approximate GSE within five iterations, as
as they do not have an immediate 'need for energy at the pshkbwn for5 PEVGs in Fig. 1, and, then, they optimize their
hour. All statistical results are averaged over all possibBhdom demands within constraint (1). The PEVGs eventually re&eh t
values of the PEVGS’ capacitiestusing arouid0 independent unique GSE that maximizes their utilities under this caaistr
simulation runs. Hence, the priceo converges quickly to its optimal valug®.

In Fig. 1 and Fig. 2, we show the demand and the utility at tieurthermore, Fig. 4 shows that the variation of the gridiseis
GSE for a network withV' = 5 PEVGs. Here, we can see thatmore noticeable when fewer PEVGs exist. This is due to thie fac
a similar demand by different PEVGs does not always lead tloat, for a fixed grid capacity, as the number of PEVGs in@eas
a similar utility for the PEVGs. For example, although PEVGthere are fewer possibilities of variations in the demanaks th
2 and5 in Fig. 1 have almost the same demand at the GS@,).
their utilities are different from one another as shown ig.FH. In Fig. 5, we show the effect of the number of PEVGs on
This is due to their different battery capacities and satigbn the optimal price choice of the grid. To do so, we increase the
parameters. From the utility in (7), we can see that the masim number of PEVGs in the network for different grid capacities
utility level of a PEVG varies significantly for different kees C = 60,80 and90 MWh. Fig. 5 shows that the average optimal
of b, ands,. Therefore, with the same energy consumptiopyrice increases with the number of PEVGs in the network
different PEVGs may obtain a different utility (e.g., PEV@s because of the increasing energy demand on the SG’s limited
and5). Fig. 1 and 2 show that, after thi®™ iteration, all the resources. In contrast, increasing the grid’s capacitddea a
PEVGs reach their maximum utilities, and, thus, their dedsandecrease in the optimal prigg*. This is due to the fact that,

as the total available capacity of the grid increases, titkhas

*Although a PEVG may not be able to demand the amount of enargsle more energy to sell and, thus, it can decrease its price while
to its total battery capacity due to the scarcity of energpestk hour, it can ask . . . .

maintaining desirable revenues. Moreover, for a fixed numbe

for an amount that must be satisfied in order for its consiitiREVGs to reach ) e
their satisfactions. of PEVGSs, as the available energy at the grid increases,@e S
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Fig. 4: Convergence of the price per unit of energy to themogkiprice Fig. 6: Effect of increasing the number of PEVGs on the averagd
for a network with different numbers of PEVGs. maximum number of iterations to reach the GSE.

considered to bd0. The parameters are updated in such a way
that the constraintuin. (1) is satisfied. For the ED scheme, the
. available grid ‘energy is distributed equally among the eated
S : PEVGs in the network. That is, if the available energy at thé g
________ is C MWh and'there aréV PEVGs connected to the grid, then
‘ each PEVG receives an allocation %f MWh of energy from
e —coeommn the grid.as long as this allocation does not exceed the mawimu
—8—C =80 MWh that.a ' PEVG can be charged.
07 c =9 ] Fig. 7 shows that the average utility achieved by the propose
scheme is better for most of the PEVGs in the network, except
PEVGs 9 and 10, when compared to the PSO scheme. This
is due to the fact that the PSO scheme optimizes the energy
‘ for each PEVG according to the better particle position i@ th
2 5 available energy space. This may lead to a better utility for
PEVGs9 and 10 at the expense of much lower utilities for the
Fig. 5: Effect of increasing the number of PEV®S in the network rest of the PEVGs. However, the proposed scheme allocages th
and the grid energy” on the average Stackeloety price. energy among the PEVGs so that the socially optimal soltigion
reduces its optimal prié@ to encourage.the PEVGs to demand@chieved. Therefore, most of the PEVGSs in the network aehiev
more energy. improved utilities compared with the PSO scheme. From Fig. 7
Fig. 6 shows the average‘and maximum number of iteratioee proposed scheme has a total utility, on the averagdimes
needed to reach the GSE of the proposed game with respedih® utility achieved by the PSO scheme. Moreover, the prepos
the number of PEVGs.{In-Fig. 6, we can see that, whenever $gheme has, on the average, twice the utility achieved biihe
number of PEVGs in‘the network increases, for the same amoggheme which is a significant improvement.
of capacity from the grid, the PEVGs require more iteratitms  Fig. 8 shows the average demand per PEVG as the number
reach their optimal demands. For example, when the numlséPEVGs varies. In Fig. 8, we can see that the average demand
of PEVGs in theunetwork increases from to 25, the average per PEVG decreases as the number of PEVGs increases. This is
number of iterations needed to reach the GSE increasesis?2oma direct result of (1) and of the fact that the optimal pricé se
to 79. Similar behavior is also seen for the maximum number b the grid increases as the number of PEVGs increases. From
iterations. Fig. 8, we can see that average PEVG demand for our scheme,
In Fig. 7, we compare the results of the proposed schefifie PSO scheme, and the ED case decreases as the number of
with a particle swarm optimization (PSO) [12] and an equ&EVGs increases. Fig. 8 shows that the energy demand for the
distribution (ED) scheme [39]. In a PSO scheme, a group pfoposed scheme is lower than that for both the PSO and ED
random solution's (i.e., particles) are scattered over the searctheme for allV. This can be interpreted by the fact that, in our
space, and the particles converge to a near optimal solaften proposed scheme, each PEVG demands a required amount of
a number of iterations. For the PSO algorithm, the partide is energy within constraint (1) based on its satisfaction ipeter
and available grid energy. Therefore, each PEVG requests a
""We assume that the initial price is chosen based on stafistitimation = gqcially optimalamount of energy from the grid rather than
such as in [38], so that the grid can maintain a revenue wittmiged price as . . .
the grid capacity increases. a predefined amount (as in the ED scheme), or near optimal
Hn this case the energy demand of a PEVG. amount according to a random search space (as in the PSO
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Fig. 7: Comparison of the average utilities of the PEVGs at @8E Fig. 9: Effect of the number of PEVGs in the network on the ager

for the proposed scheme, the PSO scheme and ED scheme. utility per PEVG.
times the average ‘available energy [40]. The capacity of the
- ‘ ‘ ‘ PEVGs Y, Vn €N _att = 1,2,....,T, is assumed to be a
. uniformly distributed random variable in the range.5] 1.5]
S e 1 times the average battery capacity [40]. Assuming thatrtféic
16y - © - PSO scheme 1 conditions in any PEVG changes ev&y minutes, we have run
1Y —#&— Proposed scheme

independent simulations for allocating energy to the PEYBs
eight timeslots in peak hours (from 12 pm to 4 pm). The average
available energy in the grid 86 MWh (assuming a range from
33 10 99 MWh), and the variation of energy across time slots
is modeled by a uniformly distributed random variable betwe
0.5 and1.5 of this amount [40]. Similarly, the random variation
in PEVGs’ capacity at different time slots is captured assgm
a maximum of55 MWh (for 1000 PEVs in a PEVG) and a
minimum of 9.9 MWh (for 300 PEVs) [20].
Number of PEVGs In Fig. 10 it is shown that the demand of any PEVG varies
Fig. 8: Effect of the number of PEVGs in the network on the ager across time slots due 1o Va_riation in both satisfaction rpmt_ar_s
demand of a PEVG. of the PEVGs and the available energy. However, the minimum
energy demand by any PEVG is always well above its minimum
scheme). Clearly, Fig. 8 shows that the proposed schems lebattery requirement. For example, the minimum demand by
to better energy utilization than either the PSO or ED schem&EVG4 is 5.5 MWh in time slot1, which exceeds the minimum
In Fig. 9, we show the average utility achieved by all thre@attery requirement of a mid-size car, assuming0 PEVs are
schemes as a function/of.the number of PEVGs. In this figuf8,that PEVG [41].
we can see that the’average utility per PEVG decreases as 1he change of utility per PEVG in a time-varying environment
increases for all threé schemes. This is due to the fact kieat t shown in Fig. 11 for the proposed, PSO and ED schemes.
benefit extracted.by each PEVG decreases as more PEVGs shiffe 11 shows that the team optimal solution achieved by the
the fixed available énergy from the grid. However, impotttant Proposed scheme leads to an improved average utility for the
Fig. 9 shows that the proposed scheme has a performaf&G when compared to the PSO and ED schemes. However,
advantage at all network sizes which is, on the averagdimes the improvement varies across time slots due to variations i
that of the PSO scheme. When compared to the ED scheme,a4gilable energy and the number of PEVs in the smart grid
proposed scheme shows significant improvements for allarétw Network. As shown in Fig. 11, the average utility achieved pe
sizes, reaching an improvement of up36 times over the ED PEVG by our proposed scheme is, on the averagetimes the
scheme forN = 25 PEVGs. utility achieved by the PSO scheme aha times that achieved

In Fig. 10, we assess the average demand of energy per PEWGhe ED scheme.
in a time-varying environment. Here, the state transitibithe
variable C; in (30) is modeled as an independent stochastic VII. CONCLUSIONS
process [34], due to the random changes in traffic conditionsin this paper, we have formulated a noncooperatibe Stack-
and grid energy from one time instant to another [40]. Theesteelberg game to study the problem of energy trading between
of available energy at the grid at any timds assumed to be an SG and a number of PEV groups. In this game, the SG
a uniformly distributed random variable in the range5[1.5] chooses its price to maximize its revenue whereas the PEVGs

Average demand per PEVG
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properties of this solution and we have shown that this game

admits a socially optimal‘generalized Stackelberg equuiih.

[17]

11

N. Rotering and M. llic, “Optimal charge control of plug-hybrid electric
vehicles in deregulated electricity marketdEEE Trans. Power Syst.
vol. 26, pp. 1021-1029, 2011.

A. M. Foley, I. J. Winning, and B. P. O. Gallachoir, “Stadéthe-art in
electric vehicle charging infrastructure,” Proc. IEEE Vehicle Power and
Propulsion Conferencelille, France, Sep. 2010.

P. Samadi, A. H. Mohsenian-Rad, R. Schober, V. W. S. Wang, J. Jatske-
vich, “Optimal real-time pricing algorithm based on utilimaximization
for smart grid,” in Proc. IEEE International Conference on Smart Grid
Communication Gaithersburg, MD, Nov. 2010.

C. Wu, H. Mohsenian-Rad, and J. Huang, “Vehicle-to-aggtor interac-
tion game,”|IEEE Trans. Smart Gridvol. 3, pp. 434-442, Mar. 2012.

F. Pan, R. Bent, A. Bercheid, and D. lzraelevitz, “LoogtiPHEV ex-
change stations in V2G,” iRroc. International Conference on Smart Grid
CommunicationsGaithersburg, MD, Nov.-2010:

S. Sojoudi and S. H. Low, “Optimal charging of plug-in hid electric
vehicles in smart grid,” inProc. |IEEE Power and Energy Society (PES)
General Meeting Detroit, MI, Jul. 2011.

K. Turitsyn, N. Sinitsyn, S. Backhaus, and M. ChertkoRdbust broadcast-
communication control ofi electric vehicle charging,” ftoc. IEEE Inter-
national Conference on Smart Grid Communicatio@sithersburg, MD,
Oct. 2010.

K. C. Nyns, E. Haesen, and J. Driesen, “The impact of charglug-
in hybrid electric vehicles on a residential distributiorid§ IEEE Trans.
Power Syst.vol.. 25, pp. 371-380, 2010.

S. Kabirch, A. Schmitt, M. Winter, and J. Heuer, “Intennections and
communications” of electric vehicles and smart grids,” Rroc. IEEE
International .Conference on Smart Grid Communicatjo@sithersburg,
MD,-Oct. 2010.

R« Couillet, S. Perlaza, H. Tembine, and M. Debbah, ¢Eleal vehicles
in the smart grid: A mean field game analysi$ZEE J. Select. Areas
Commun,. vol. 30, no. 6, pp. 1086 —1096, july 2012.

W. Su and M. Y. Chow, “Performance evaluation of a PHEYkpay station
using particle swarm optimization,” ifProc. IEEE Power and Energy
Society General Meetindetroit, MI, Jul. 2011.

C. Hutson, G. K. Venayagamoorthy, and K. A. Corzine, télligent
scheduling of hybrid and electric vehicle storage capaicitg parking lot
for profit maximization in grid power transactions,” Rroc. IEEE Energy
2030 ConferencgAtlanta, GA, Nov. 2008.

A. Foley, B. Tyther, and BO. Gallachoir, “Modelling of impacts of electric
vehicle charging in the single electricity market,” iroc. Dubrovnik
Conference on Sustainable Development of Energy, WateEamdonment
SystemDubrovnik, Croatia, Sep. 2011.

A. Foley, H. Daly, E. McKeogh, and BO. Gallachoir, “Quantifying the
energy & carbon emissions implications of a 10 percent etegehicles
target,” inProc. International Energy WOrkshptockholm, Sweden, Jun.
2010.

A. Foley, P. G. Leahy, BO. Gallachoir, and E. McKeogh, “Electric vehicles
and energy storage: A case study on IrelandPiiac. IEEE Electric Vehicle
Power and Propulsion ConferencBearborn, Ml, Sep. 2009.

P. Palensky and D. Dietrich, “Demand side managemesthahd response,

We have also extended and analyzed the proposed game in aintelligent energy systems, and smart load&EE Trans. Ind. Informat.

time-varying environment. To reach the equilibrium of treae,

shown that the proposed approach yields improved perfou:mal['fLg

vol. 7, pp. 381-388, 2011.

. 18] W. Zhenpo and L. Peng, “Analysis on storage power of teleaehicle
we have proposed a novel algorithm that can be adopted by

the PEVGs, in a distributed manner. Simulation results have

gains, in terms of the average utility per PEVG, compared to a

particle swarm optimization and an equal distribution scbe

Several future extensions can be foreseen for this worky asc [20]

handling rapidly changing dynamics or determining the ropti
deployment of charging stations depending on a varietyaibfa
such as the parking duration, battery state, and the lotatio

the vehicles.

REFERENCES
[1] P. Bauer, Y. Zhou, J. Doppler, and N. Stembridge, “Chaggof electric

[21]

[22]

(23]

vehicles and impact on the grid,” iRroc. 131" International Symposium [24]

MECHATRONIKA Trencianske Teplice, Jun. 2010.

charging station,” inProc. Asia-Pacific Power and Energy Engineering
Conference Chengdu, China, Mar. 2010.

] P. Stroehle, S. Becher, S. Lamparter, A. Schuller, andiV€nhardt, “The

impact of charging strategies for electric vehicles on podistribution
networks,” in Proc. International Conference on the European Energy
Market Zagreb, Croatia, May 2011.

M. D. Galus and G. Anderson, “Demand management of goithected
plug-in hybrid electric vehicles (PHEV),” irProc. IEEE Energy 2030
Conference Atlanta, GA, Feb. 2008.

W. H. Lin, “A Gaussian maximum likelihood formulatiororf short-term
forecasting of traffic flow,” inProc. IEEE Intelligent Transportation Systems
Conference Oakland, CA, Aug. 2001.

T. Basar and G. J. OlsdeDynamic Noncooperative Game Theory
Philadelphia, PA: SIAM, 1999.

M. Fahrioglu, M. Fern, and F. Alvarado, “Designing ceffective demand
management contracts using game theoryPiiac. IEEE Power Eng. Soc.
1999 Winter MeetingNew York, NY, Jan. 1999.

F. Facchinei and C. Kanzow, “Generalized Nash equilior problems,”
40R vol. 5, pp. 173-210, Mar. 2007.



[25] D. Ardagna, B. Panicucci, and M. Passacantando, “A gdhemretic
formulation of the service provisioning problem in cloudt®ms,” inProc.
International World Wide Web Conferenddyderabad, India, Apr. 2011.
T. Basar and R. Srikant, “Revenue maximizing pricingd acapacity
expansion in a many-users regime,’Hroc. IEEE International Conference
on Computer Communicationslew York, NY, Jun. 2002.

D. BertsekasNonlinear Programming Belmont, MA: Athena Scientific,
1995.

M. V. Solodov and B. F. Svaiter, “A new projection methfmt variational
inequality problems,SIAM J. Control Optim.vol. 37, pp. 765-776, 1999.
F. Tinti, “Numerical solution for pseudo monotone \&ional inequality
problems by extra gradient methods,” Website, 2003, Hdip:tinife.it/
~tinti/Software/Extragradient/methods/vipsegm.pdf.

L. Armijo, “Minimization of functions having continugs partial deriva-
tives,” Pacific Journal of Mathemati¢sL966.

A. Nedic and U. V. Shanbhag, “Lecture 21: Algorithms faonotone vis
projection methods,” Website, 2008, https://netfileigdu/angelia/www/
ie598nslect21 2.pdf.

[26]

[27]
[28]

[29]

[30]

(31]

12

Walid Saad received his B.E. from the Lebanese
University in 2004, his M.E. in Computer and Commu-
nications Engineering from the American University of
Beirut in 2007, and his Ph.D degree from the University

PLACE of Oslo in 2010. From August 2008 till July 2009
PHHEC;%TEO he was a visiting scholar at the Coordinated Science

Laboratory at the University of lllinois at Urbana
Champaign. From January 2011 till July 2011, he was
a Postdoctoral Research Associate “at the Electrical
Engineering Department at Princeton:University.
Currently, he is an Assistant Professor ‘at the Elec-
trical and Computer Engineering Department at the Unitiersf Miami. His
research interests span the areas of game theory, wirettaorks, and the
smart grid. He was the first author of the papers that receiliedBest Paper
Award at the 7th International Symposium on.Modeling andi®@ization in
Mobile, Ad Hoc and Wireless Networks (WiOpt),sin " June 2009 a the 5th
International Conference on Internet Monitoring and Retd@ (ICIMP) in May
2010. He is a co-author of the paper that won the best papedatdhe IEEE

[32]

(33]

[34]

[35]

P. Y. Nie, L. H. Chen, and M. Fukushima, “Dynamic prograing ap-
proach to discrete time dynamic feedback Stackelberg garitesndepen-
dent and dependent followersElsevier European Journal of Operational

Researchvol. 169, pp. 310-328, 2006.

O. Derin and A. Ferrante, “Scheduling energy consuamptwith local
renewable micro-generation and dynamic electricity picén Proc. of
The First Workshop on Green and Smart Embedded System Tagyino
Infrastructures, methods and TopBtockholm, Sweden, Apr. 2010.

K. Stankova and B. D. Schutter, “Stackelberg equiibfor discrete-time
dynamic games part Il: Stochastic games with deterministiormation
structure,” inProc. International Conference on Networking, Sensing and
Control, Deift, the Netherlands, Apr. 2011.

B. Tolwinski, “A Stackelberg solution of dynamic ganje$EEE Trans.

PLACE
PHOTO,
HERE

Automat. Contr.vol. AC-28, pp. 85-93, 1983.

Wireless Communications and Networking Conference (WChMC)012.

H. Vincent Poor (S'72, M'77, SM’'82, F'87) received
the Ph.D. degree in EECS from Princeton University in
1977. From 1977 until 1990, he was on the faculty of
the University of lllinois at Urbana-Champaign. Since
1990 he has been on the faculty at Princeton, where
he is the Michael Henry Strater University Professor
of Electrical Engineering and Dean of the School of
Engineering and Applied Science. Dr. Poor’s research
interests are in the areas of stochastic analysis, statisti
cal signal processing, and information theory, and their
applications in wireless networks and related fields such

[36] C. Silva, M. Ross, and T. Farias, “Evaluation of energynsumption,
emissions and cost of plug-in hybrid vehicleglsvier Energy Conversion
and Managementvol. 50, pp. 1635-1643, Jul. 2009.

T. Motors, “Roadster innovations: Motor,” Website, 2011, http://www.
teslamotors.com/roadster/technology/motor.

C. H. Chen, S. Y. Lin, H. C. Chang, and C. C. Lo, “On the dasand
development of a novel real-time transaction price estamasystem,”
Advanced Material Researchol. 393-395, pp. 213-216, Nov. 2011.

C. C. Chan and Y. S. Wong, “Electric vehicles charge, fandy’ IEEE
Power and Energy Magazin@ol. 2, pp. 24-33, 2004.

F. Pan, R. Bent, A. Bercheid, and D. Izraelevitz, “LacgtPHEV exchange
stations in V2G,” inProc. IEEE First International. Conference on Smart
Grid Communication Gaithersburg, MD, Ogct.. 2010.

A. Roussean, N. Shidore, R. Carlson, and V. FrevermtResearch on
PHEV battery requirements and evaluation of early protegypin Proc.
IEEE Advanced Automotive Battey Conferenteng Beach, CA, May

[37]

(38]

[39]

[40]

[41]

as social networks and smart grid. Among his publicationshase areas are
the recent book€lassical, Semi-classical and Quantum No{Springer, 2012)

and Smart Grid Communications and Networki@ambridge University Press,
2012).

Dr. Poor is a member of the National Academy of Engineering &me
National Academy of Sciences, a Fellow of the American Aoaglef Arts and
Sciences, and an International Fellow of the Royal AcadernyErmmineering
(U.K.). He is also a Fellow of the Institute of Mathematicalat&tics, the
Acoustical Society of America, and other organizations1990, he served as
President of the IEEE Information Theory Society, and in4200 he served as
the Editor-in-Chief of thdEEE Transactions on Information Theotye received
a Guggenheim Fellowship in 2002 and the IEEE Education Méua2005.
Recent recognition of his work includes the 2010 IET AmbrBaming Medal,
the 2011 IEEE Eric E. Sumner Award, the 2011 Society Awardhef tEEE
Signal Processing Society, and honorary doctorates frofbhofg University,
the Hong Kong University of Science and Technology and thévéssity of

2007. Edinburgh.
David Smith is a Senior Researcher at National ICT
Australia (NICTA) and is an adjunct Fellow with the
Australian National University (ANU), and has been
with NICTA and the ANU since 2004. He received the
PLACE B.E. degree in Electrical Engineering from the Univer-
PHOTO sity of N.S.W. Australia in 1997, and while studying
Wayes Tusharreceived his B.Sc. degree in Electrical HERE toward this degree he was on a CO-OP scholarship.
and Electronic Engineering from Bangladesh Univer He obtained an M.E. (research) degree in 2001 and a
sity of Engineering and Technology in 2007. He ig Ph.D. in 2004 both from the University of Technol-
currently a Ph.D. Candidate at the Research School pf ogy, Sydney (UTS), and both in Telecommunications
PLACE Engineering in Australian National University (ANU). Engineering. His research interests are in technology
PHOTO From May 2011 to June 2011 he was a visiting studeraind systems for wireless body area networks; game theorydifdributed
HERE research collaborator at the School of Engineering andetworks; mesh networks; radio propagation and electroetag modeling;
Applied Science in Princeton University. He receivedMIMO wireless systems; coherent and non-coherent spawe-tioding; and
the best student paper award in the Australian Comantenna design, including the design of smart antennas.ld¢ehas research
munications Theory Workshop in 2012. His researchnterest in optimization for smart grid. He has also had aetarof industry ex-

signal processing.

interests include smart grid systems, game theory amgkrience in electrical engineering; telecommunicatioasming; radio frequency,

optoelectronic and electronic communications design amegiation. He has
published numerous technical refereed papers and madsusacontributions
to IEEE standardization activity; and has received a beptpaward as first
author at 1st International Symposium on Applied SciencesBwmmedical
and Communication Technologies, 2008, (ISABEL '08); and tao other
conference best paper awards, one as first author and arsthoer-author.



