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Abstract—In this paper, the problem of grid-to-vehicle en-
ergy exchange between a smart grid and plug-in electric vehicle
groups (PEVGs) is studied using a noncooperative Stackelberg
game. In this game, on the one hand, the smart grid that acts asa
leader, needs to decide on its price so as to optimize its revenue while
ensuring the PEVGs’ participation. On the other hand, the PEVGs,
which act as followers, need to decide on their charging strategies so
as to optimize a tradeoff between the benefit from battery charging
and the associated cost. Using variational inequalities, it is shown
that the proposed game possesses asocially optimal Stackelberg
equilibrium in which the grid optimizes its price while the PEVGs
choose their equilibrium strategies. A distributed algorithm that
enables the PEVGs and the smart grid to reach this equilibrium is
proposed and assessed by extensive simulations. Further, the model
is extended to a time-varying case that can incorporate and handle
slowly varying environments.

Index Terms—Power system economics, smart grids, electric
vehicles, game theory, energy exchange, energy management.

I. I NTRODUCTION

DUE to the growing concerns for energy conservation and
the environment, it is expected that plug-in electric vehicles

(PEVs)1 will play a major role in the future smart grid (SG) [2].
Therefore, several countries are working on establishing novel
PEV policies and plans because of their significant environmental
advantages and cost savings [3].

The deployment of PEVs will introduce new challenges in
the design of SGs. These challenges include developing optimal
charging strategies for the connected PEVs, ensuring efficient
communications between PEVs and the grid, and managing
energy exchange between regular loads of the grid and the
PEVs. In [2], the optimal charge control of PEVs is analyzed
in deregulated electricity markets based on a forecast of future
electricity prices and the optimal economic solution for the
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1PEVs include both battery-only electric vehicles (BEVs) and plug-in hybrid
electric vehicles (PHEVs) [1].

vehicle owner. In [4], a real-time pricing algorithm is proposed
for smart grids considering smart meter and energy providerin-
teraction through control messages exchange. A noncooperative
game model for pricing and frequency regulation in smart grids
with electric vehicles is studied in [5]. Using facility location
games, in [6], optimal locations of battery exchange stations were
derived within a vehicle-to-grid (V2G) network. An optimization
framework is proposed in [7] for enabling the SG to determine
the time and duration of the PEVs charging. In [8], a control
algorithm is developed based on queuing theory to control
the charging of PEVs. A stochastic programming technique
is introduced in [9] to show the impact of charging PHEVs
on a residential distribution grid. The issue of vehicle-to-grid
(V2G) integration and the prospective communication interface
to enable this integration are addressed in [10]. In [11], a mean
field game is proposed to investigate the competitive interaction
between electric vehicles in a Cournot market consisting ofelec-
tricity transactions to/ from an electricity distributionnetwork. To
manage a large number of PHEVs at a municipal parking station,
an algorithm using particle swarm optimization is proposedin
[12]. An intelligent method for scheduling the usage of the
available storage capacity from PHEVs and electric vehicles is
proposed in [13]. Other aspects of electric vehicles in smart grids
in terms of energy storage, charging and greenhouse gas emission
reduction are discussed in [14–16]. Beyond PEVs, many possible
demand side management solutions are also foreseen for the
smart grid [17] and each of these solutions has a number of
benefits and cost tradeoffs. Subsequently, it is anticipated that
many of these solutions, including the incorporation of electric
vehicles, will co-exist to provide smart energy managementfor
the power grid.

One of the key challenges of widespread penetration of PEVs
in the power network is the choice of an optimal charging
strategy for the PEVs. This is mainly due to the fact that the
integration of the PEVs into the network has a major impact on
the power grid and can potentially double the average load [4,
18]. The simultaneous charging of several PEVs in a particular
area can overload the network and, thus, lead to an interruption of
services for other consumers. The problem of PEV charging and
its impact on the power distribution grid and electricity market
have been addressed in [1–3,7, 8] and [19]. However, little has
been done to develop distributed models and algorithms thatcan
capture the interactions between PEVs and the grid, in a grid-
to-vehicle scenario. There is a need to develop solutions that
capture the often conflicting objectives between the SG, which
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seeks to maximize its revenue, and the PEVs, which seek to
optimize their charging behavior. Because of the limited grid
capacity and PEVs’ energy demands, it is of interest to develop
a model that can capture the decision making process of the
PEVs and the grid when the grid’s limited energy needs to be
allocated among the PEVs based on their needs.

The main contribution of this paper is to provide a com-
prehensive analytical framework that is suitable for capturing
the interactions between an SG and a number of PEV groups
(PEVGs), e.g., parking lots, which must decide on their charging
profiles. We model the problem as a generalized Stackelberg
game in which the SG is the leader and the PEVGs are the
followers. The objective of the PEVGs is to strategically choose
the amount that they need to charge, so as to optimize a utility
that captures the tradeoff between the charging benefits and
the associated costs, given various practical constraintson the
PEVGs and the main grid. Based on the strategy choices of the
PEVGs, the leader aims to optimize its price so as to maximize
its revenues. We analyze the properties of the resulting game
within the studied model, including existence of an equilibrium
and optimality, and show that there exists an efficient (i.e.,
socially optimal) generalized Stackelberg equilibrium. We show
that, due to the coupled capacity constraints between the PEVGs,
the noncooperative followers’ game leads to a generalized Nash
equilibrium, and the solution enables the capture of not only the
charging behavior of the vehicles but also the decisions made by
the SG. We propose a novel algorithm that the PEVGs and the
grid can use, in a distributed manner, so as to reach the desired
equilibrium. We also show that the proposed algorithm enables
the system to adapt to time-varying environmental conditions
such as arrival/departure of PEVs. Using extensive simulations,
we assess the properties of the proposed scheme.

The rest of this paper is organized as follows. Section II
describes the system model. In Section III, we formulate the
noncooperative generalized Stackelberg game and we discuss its
properties. In Section IV, we propose a distributed algorithm
for finding the equilibrium. Adaptation of the proposed game
to time-varying conditions is discussed in Section V. Numerical
results are analyzed in Section VI and conclusions are drawnin
Section VII.

II. SYSTEM MODEL

Consider a power system consisting of a single power grid
(i.e., an SG), several primary and secondary load subscribers or
consumers and a smart energy manager (SEM). Here, the SG
refers to the main electric grid which is connected to the area
of interest via one or more substations. Further, we consider
that the SG is servicing a certain area or groups of primary
consumers such as industries, houses and offices. After meeting
the demands of the primary consumers the grid wishes to sell its
excess of energy (if any) to the secondary users, such as PEVs,
connected to it in that area. Consider a number of groups of
PEVs (hereinafter, we use the term PEVG to denote a group of
PEVs, acting as a single PEV entity), which are connected to the

grid at peak hours of energy demand e.g., from12 pm to 4 pm2

[20]. The total charging period for the PEVGs is considered to
be divided into multiple time slots. Each time slot has a duration
of anywhere between5 minutes and half an hour based on the
changing traffic conditions of the PEVs in the group [21]. For
a particular time slot, the power grid has a maximum energy
C that it can sell to the connectedN PEVGs, allowing them to
meet their demand3. The power grid will set an appropriate price
p (per unit of energy) for selling its surplus so as to optimizeits
revenue.

Each PEVGn ∈ N , whereN is the set of allN PEVGs, will
request a certain amount of energyxn from the grid so as to
meet its energy requirements (e.g., to go back home after office
work). This demand of energy may vary for the PEVs in the
group based on different parameters such as the battery capacity
bn of the PEVG, the available energy in the PEVG’s battery at
the time of plug-in to the grid, the pricep per unit of electricity
and the nature of usage (e.g., two identical PEVGs with different
travel plans may need different amounts of energy). During peak
hours, the available energy for servicing PEVGs is often limited
[20], and, thus, the PEVGs will request only the amount needed
due to their immediate need for charging. Since the net energy
C available for the PEVGs at the grid is fixed, the demands of
the PEVGs must satisfy

∑

n

xn ≤ C. (1)

Given the amount requested by the PEVGs, the SG sets a price
p per unit of energy so as to optimize its revenue from selling
energy by strategically choosing its price per unit of energy.
Although the SG can choose the pricep within any range to
maximize its total revenue, a very largep may compel a PEVG
to withdraw its demand from the grid and to search for alternate
markets or wait until the prices drop. Therefore, an optimalprice
needs to be chosen by the grid operator which is not very high
(to avoid losing customers) and not very low (to avoid losing
revenue), in an effort to maximize its profit.

To successfully complete the energy trading, the PEVGs and
the grid interact with each other and agree on the energy
exchange parameters, such as the selling price and the amount of
energy demanded, that meet the objectives of the both sides.The
amount of requested energyxn is determined by the physical
characteristics of PEVGn as well as by the tradeoff between
the potential benefit that PEVGn is expecting from buyingxn

and the selling pricep of the grid. Moreover, the selling price
p per unit of energy is strongly dependent upon the amount
demanded by the PEVGs as well as the number of PEVGs that
are connected to the grid. This is due to the fact that the amount
of energy available from the grid is fixed and, thus, as the number
of PEVGs increases, the amount that each PEVG can acquire
becomes smaller. As a result, the grid can set a higher price to
increase its revenues.

2The proposed scheme is not only restricted to the consideredperiod but can
also apply for any time duration.

3While this paper is focused on the interactions between PEVGs and the grid,
when the grid has energy that can be provided to the PEVGs, it can also be
extended to cases in which there are multiple energy sourcesbeyond the main
grid.
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It is clear that the demands of the connected PEVGs are
coupled through the energy constraint in (1), and are also
dependent on the physical characteristics and capabilities of
the PEVGs. Also it is important to note that the price set by
the grid is dependent on the demand of each PEVG. Thus,
the main challenges faced when developing an approach that
can successfully capture the decision making process of both
the PEVGs and the grid are: i)- modeling the decision making
processes and the interactions between the connected PEVGs
in the network given the constraint in (1); ii)- developing an
algorithm that enables the PEVGs in the network to strategically
decide on the amount of energy that they will request from the
grid so as to optimize their satisfaction levels given the constraint
in (1); and iii)- enabling the grid to optimize its price while
capturing the tradeoff between the PEVGs’ participation and
revenue maximization. To address these challenges we propose
a framework based on noncooperative game theory.

III. N ONCOOPERATIVE GENERALIZEDSTACKELBERG GAME

A. Game formulation

To formally study the interactions between the SG and the
PEVGs, we use a Stackelberg game [22] which is a type of
noncooperative game that deals with the multi-level decision
making process of a number of independent decision makers or
players (followers) in response to the decision taken by a leading
player (the leader) [22]. Hence, we formulate a noncooperative
Stackelberg game in which the SG is the leader and the PEVGs
are the followers. This game is defined by its strategic form,
Γ =

{

(N ∪ {SG}), {Xn}n∈N , {Un}n∈N , L(p), p
}

, having the
following components:

(i) The PEVGs inN act as the followers in the game and
respond to the price set by the SG.

(ii) The strategy of each PEVGn ∈ N which corresponds to
the amount of energy demandedxn ∈ Xn from the grid
satisfying the constraint

∑

n xn ≤ C.
(iii) The utility functionUn of each PEVGn that captures the

benefit of consuming the demanded energyxn.
(iv) The utility functionL(p) for the SG (leader of the game),

which captures the total profit that the grid can receive by
selling the surplus energy with pricep.

(v) The pricep per unit of energy charged by the SG.

1) Utility Function of a PEVG:For each PEVGn ∈ N , we
define a utility functionUn(xn,x−n, sn, bn, p), which represents
the level of satisfaction that a PEVG obtains as a function ofthe
energy it consumes. Herebn is the battery capacity of PEVG
n and xn is the requested energy from the grid;sn is the
satisfaction parameter of PEVGn, which is a measure of the
satisfaction the PEVG can achieve from consuming one unit of
energy. Thissn may depend on PEVG’s battery state at the
time of plug-in to the grid, the available energy at the grid
and/or the travel plan of the corresponding PEVG. For example,
a PEVG 1 having less need for energy than another PEVG2
(e.g., due to having a fuller battery) will need less energy than
PEVG2 to attain the same satisfaction level (i.e.,s2 < s1). The
energy demand may vary based on the battery capacity and/or

the satisfaction parameter of each PEVG. The price per unit
of energy can also affect the demand of the PEVG. Thus, the
properties that the utility of a PEVG must satisfy are as follows:

(i) The utility functions of the PEVGs are considered to
be non-decreasing because each PEVG is interested in
consuming more energy if possible unless it reaches its
maximum consumption level. Mathematically,

δUn(xn,x−n, sn, bn, p)

δxn

≥ 0. (2)

(ii) The marginal benefit of a PEVG is considered as a non-
increasing function, as the level of satisfaction of the
PEVGs gradually gets saturated as more energy is con-
sumed, i.e.,

δ2Un(xn,x−n, sn, bn, p)

δxn
2

≤ 0. (3)

(iii) Hereinafter, we consider that, for a fixed consumptionlevel
xn, a largerbn implies a largerUn(xn,x−n, sn, bn, p) and
a largersn leads to a smallerUn(xn,x−n, sn, bn, p). So
we have

δUn(xn,x−n, sn, bn, p)

δbn
> 0, (4)

and
δUn(xn,x−n, sn, bn, p)

δsn
< 0. (5)

(iv) The price per unit of energy set by the grid affects the
utilities of the PEVGs and the utility of a PEVG decreases
with a higher price. That is,

δUn(xn,x−n, sn, bn, p)

δp
< 0. (6)

In this work we consider the particular utility

Un(xn,x−n, sn, bn, p) = bnxn −
1

2
snxn

2 − pxn, (7)

where xn ∈ [0, C −
∑N

k=1,k 6=n xk] and x−n =
[x1, x2, ..., xn−1, xn+1, ..., xN ], although many of our results
can be generalized.

From (7), the utility of PEVGn is affected by its battery
capacitybn. This is due to the fact that a PEVG with higher
bn will have higher marginal utility and thus, needs to consume
more energy to reach its maximum satisfaction level [23]. The
utility also depends on the satisfaction parametersn of the
PEVG. PEVGs with the same capacity but with a different
satisfaction parameter will have different marginal utilities and,
thus, will be satisfied by different amounts of energy. To this end,
we assume that a PEVG does not consume any energy beyond its
maximum satisfaction level, i.e.,Un = 0 if xn > (xn

∗ − xini
n ),

wherexini
n is the initial energy in PEVG’s battery at the time

of plug-in to the grid andxn
∗ is the energy that maximizes its

utility within the given constraint in (1).
2) Utility Function of the Power grid: A PEVG n that

consumesxn MWh of electricity during a designated period of
time at a ratep per MWh is chargedpxn which is the cost
imposed by the SG on the PEVG. The objective of the SG is to
maximize its revenue by selling the available energy surplus to
the PEVGs after meeting the demand of its primary consumers,
and also to control the nature of energy consumption of the
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PEVGs. While this energy surplusC is fixed, the SG wants to
set a pricep per unit of energy so as to optimize its revenue,
given the demands of the PEVGs. Thus, we assume the utility
function for the grid is

L(p, xn(p)) = p
∑

n

xn, (8)

which captures the total revenue of the grid when selling the
energy required by all PEVGs at a pricep per unit of energy.

In this proposed game, the SG can control the pricep per
unit of energy it wishes to sell. Connected PEVGs respond to
the price by demanding a certain amount of energy, given the
constraint in (1), so as to maximize their utilities. Thus, for a
fixed pricep, the objective of any PEVGn is

max
xn∈(C−x−n)

Un(xn,x−n, sn, bn, p),

s. t.
∑

n

xn ≤ C. (9)

Here, we can see that the amount of energy demanded by each
PEVG n depends, not only on its own strategies and price but
also on the demand of other PEVGs in the network through (1)
and the constraint is the same for all players. This leads con-
nected PEVGs to engage in a noncooperative resource sharing
game, which is a jointly convex generalized Nash equilibrium
problem (GNEP) due to the same shared constraint (1). Note
that, in game theory, a noncooperative game in which the players’
actions are coupled solely through the constraints, such asin the
proposed model, is a special class of games whose solution isthe
generalized Nash equilibrium [24, 25], and hence, the proposed
followers’ game, for any pricep, is a noncooperative resource
sharing game whose solution is the generalized Nash equilibrium
(GNE). Then, given all the PEVGs’ demands are at the GNE, the
leader, i.e., the grid, chooses the price to maximize its revenue.
Thus, for the given GNE demands of the PEVGs, the objective
of the grid is

max
p

L(p) = max
p

∑

n

pxn. (10)

Thus, one suitable solution for the formulated gameΓ is the
Stackelberg equilibrium at which the leader reaches its optimal
price, given the followers’ optimal response at their GNE. At this
equilibrium, no player (leader or follower) can improve itsutility
by unilaterally changing its strategy. In classical Stackelberg
games, the followers typically choose their Nash equilibrium
strategies. In our model, due to the coupled strategies as per
(1), the PEVGs need to seek a GNE instead of a classical
Nash equilibrium. To this end, hereinafter, we refer to our game
as a generalized Stackelberg game (GSG) whose solution is
the generalized Stackelberg equilibrium (GSE) in which the
followers reach a GNE.

Definition 1: Consider the GSG Γ =
{

(N ∪ SG), {Xn}n∈N , {Un}n∈N , L(p), p
}

defined in III-A
whereUn andL(p) are given by (7) and (8) respectively. A set
of strategies (x∗, p∗) constitutes the GSE of this game, if and
only if it satisfies the following set of inequalities:

Un(xn
∗,x−n

∗, sn, bn, p
∗) ≥ Un(xn,x−n

∗, sn, bn, p
∗),

∀xn
∗ ∈ x

∗, n ∈ N ,
∑

n

xn ≤ C (11)

and

L(p∗,x∗) ≥ L(p,x∗). (12)

Thus, when all the PEVGs’ demands are at the GSE, no PEVG
can improve its utility by deviating from its GSE demand and
similarly, no price other than the optimal price4 p∗ set by the
grid at the GSE, can improve the utility for the grid.

B. Existence and efficiency of GSE

In noncooperative games, the existence of an equilibrium
solution (in pure strategies) is not always guaranteed [22].
Therefore, for our follower game, we need to investigate the
existence of the GNE in response to a pricep. Specifically, we
are interested in investigating the existence and properties of
a variational equilibrium (VE), which is a type of GNE to be
defined below (see also [24]), for our case. This is due to the
fact that a VE is more socially stable than another GNE (if
there exists any) and thus, is a desirable target for any algorithm
to achieve [25]. Particularly for the proposed case, where a
number of PEVGs in the SG network are demanding energy
from a constrained reserve, an efficient VE would be the most
appropriate solution to be considered. Hereinafter, we useVE
and GNE interchangeably.

Theorem 1: For a fixed pricep, a socially optimal VE exists
in the proposed gameΓ between the PEVGs connected to the
grid.

Proof: First, clearly, by adding the quantity
∑

m 6=n(bmxm−
1
2smxm

2)−
∑

m 6=n pxm to Un in (7) and treating the resulting
utility function as the new objective function for PEVGn will
not affect the solution [26]. Thus, the original game is equivalent
to one in which all PEVGs have the same utility function,

U(x1, ..., xN ; s1, ..., sN ; b1, ..., bN ; p)

=

N
∑

m=1

(

bmxm −
1

2
smxm

2

)

− p

N
∑

m=1

xm. (13)

Hence, to determine the socially stable outcome of the game,the
existence of a solution that maximizes (13) is our main concern.

Using the method of Lagrange multipliers [27], the Karush-
Kuhn-Tucker (KKT) conditions for thenth player GNEP is given
by

−∇xn
Un(xn,x−n, sn, bn, p) +∇xn

(

∑

n

xn − C

)

λn = 0,

λn

(

∑

n

xn − C

)

= 0, λn ≥ 0

(14)
whereλn is the Lagrange multiplier for PEVGn.

First, we note that, for a fixed pricep, the followers’ game
admits a jointly convex GNEP, hence, the solution of the GNEP
with (1) can be found via a variational inequality VI(X,F). This
essentially reduces to determining a vectorz∗ ∈ X ⊂ R

n, such

4The optimal pricep∗ maximizes the utility of the SG for the given GNE
demand vectorx∗ of the PEVGs in the smart grid network.
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that 〈F(z∗), z− z
∗〉 ≥ 0, for all z ∈ X whereX is the set in

the definition of joint convexity andF(x) = −(∇xUn(x))
N
n=1

[25]. The solution of VI(X,F) is a variational equilibrium.
Now the KKT conditions can be written as [24]

F(x) + λ∇x(
∑

n

xn − C) = 0,

λ(
∑

n

xn − C) = 0, λ ≥ 0. (15)

Note that the subscript on Lagrange multiplierλ is dropped in
(15) . This is due to the fact that the solution of a jointly convex
GNEP is a VE if and only if the shared constraint has the same
multiplier λ for all players [24].

Now from the definition ofF [25], we have

F =











s1x1 + p− b1
s2x2 + p− b2

...
snxn + p− bn











. (16)

Therefore, the Jacobian ofF is

JF =













s1 0 ..... 0
. s2 ..... .

. . ..... .

. . ..... .

0 0 ..... sn













. (17)

JF is a diagonal matrix with all positive diagonal elements.
Hence, JF is positive definite onX, and so,F is strictly
monotone. Thus, the GNEP admits a unique global VE solution
[24].

Because of the jointly convex nature of the GNEP the VE is
the unique global maximizer of (13) [24], which completes the
proof.

As a result, from Theorem 1, the GSE, in which the SG sets
its optimal price in response to the VE demands of the PEVGs,
admits the socially optimal solution of the proposed game.

IV. PROPOSED SOLUTION AND ALGORITHM

In this section, we formulate the GNEP among the followers as
a variational inequality (VI) problem5 and propose an algorithm
that leads to the socially optimal VE. Note that the VE further
leads to the GSE state of the game as defined in Definition 1.
Now, we first state the following corollary and then explain the
solution method for the considered GNEP.

Corollary 1: The VI associated with the proposed GNEP of
the connected PEVGs for a pricep is a strongly monotone VI
and thus, the unique VE can be calculated by solving a monotone
VI.

Proof: By Theorem 1, we know that the VI associated with
the proposed GNEP of the connected PEVGs for any fixed price
p is a strongly monotone VI and the VE is unique. It is shown
in [24] that the solution of a VE can be calculated by solving
a monotone VI. Hence, the unique VE solution of the PEVGs’
GNEP of energy demand within constraint (1) can be calculated
by solving the strongly monotone VI(X,F).

5Given X ⊆ R
n and F : R

n → R
n, the VI(X,F) consists of finding a

vector z∗ ∈ X such that〈F(z∗), z− z
∗〉 ≥ 0, for all z ∈ X.

For solving the monotone VI in our proposed game, we
consider the Solodov and Svaiter (S-S) hyperplane projection
method [28, 29]. In the S-S method, two projections per iteration
are required using a geometric interpretation (see [28]). This
hyperplane projection algorithm works as follows [28]: Suppose
we havexk, which is a current approximation to the solution
of VI(X,F ). First the point ProjX [xk − F (xk)] is computed6.
Next, the line segment betweenxk and ProjX [xk − F (xk)] is
searched for a pointzk such that the hyperplane∂Hk := {x ∈
R

n|〈F (zk), x−zk〉 = 0} strictly separatesxk from any solution
x∗ of the problem. A computationally inexpensive Armijo-type
procedure [30] is used in this S-S algorithm to find suchzk. Once
the hyperplane is constructed, the next iteratexk+1 is computed
by projectingxk onto the intersection of the feasible setX with
the hyperspaceHk := {x ∈ R

n : 〈F (zk), x − zk〉 ≤ 0}, i.e.
X ∩Hk, which contains the solution set [28] [29].

Next, we show how the PEVGs reach the VE, for a pricep,
following the optimization of price by the grid when all PEVGs
are in VE. Then, we detail the algorithm at the end of this section.

A. GNE for a fixedp

From (13) and (15), for any PEVGn, the solution of the KKT
system of variational inequalities is

bn − snxn − p− λ = 0, (18)

where

λ

(

∑

n

xn − C

)

= 0; λ ≥ 0. (19)

For λ > 0, the inequality constraint in (19) becomes as equality
and hence at the VE,

∑

n

xn = C. (20)

Thus, for a fixedp at the grid, the sum of demands of all
the PEVGs connected to the grid at the VE is equal to the total
energyC available at the grid.

At the peak hour of demand, energy in the grid is a scarce
commodity and, hence, all the PEVGs compete with one another
for a fair allocation of the available grid energy. Thus, for
the formulation of the proposed game between the PEVGs the
available energy at the grid should be less than the total energy
consumption capacity of the connected PEVGs. This is essential
for avoiding the trivial case in which all the PEVGs should get
an allocation equal to their capacity. From (18), we have

bn − snxn − p > 0

i.e., bn > snxn + p. (21)

Taking all N PEVGs connected to the grid into consideration,
(21) becomes

∑

n

bn > pN +
∑

n

snxn, (22)

which leads to the following proposition:
Proposition 1: To achieve the maximum utilities at the VE,

within the constraint in (1), the total capacities of theN grid

6Proj
X
(z) = argmin{||w − z||, w ∈ X} ∀z ∈ R

n.



IE
EE

Tr
an

s.
Sm

ar
t G

rid
20

12
(A

cc
ep

te
d)

6

connected PEVGs must be greater than their total VE demand
plus a constant equal topN .

For the special case in which the PEVGs have different ca-
pacities (i.e.,bn is different for eachn) but the same satisfaction
parameter (i.e.,sn = s for all n ∈ N ), (22) becomes

∑

n

bn > pN + sC (23)

where
∑

n

xn = C, from (20).

Now, while Proposition 1 holds for a pricep at the grid, from
(18), the demand of the PEVGs at the VE is given by

xn
∗(p) =

bn − (p+ λ)

sn
, (24)

where

λ = bn − snxn
∗ − p for anyn ∈ N . (25)

B. Price optimization

Having analyzed the followers’ game, we now show how the
SG can set its optimal pricep∗ given the VE of the PEVGs.

For the KKT system of VIs described in (18) and (19), the
selling price for per unit energy is

p ≤ bn − snxn. (26)

Again, from (24), the demand for energy by PEVGn at the VE
is xn

∗. So the price per unit of energy satisfies

p ≤ bn − snxn
∗. (27)

Now, with the condition in (27) and the utility of the SG from
(8), which isL(p) = p

∑

n

xn over p ≥ 0, this dictates that the

revenue-maximizing price of the grid should be the upper limit
of (27). Thus, the optimal price7 of the proposed GSG is

p∗ = bn − snxn
∗. (28)

C. Proposed algorithm

In order to reach the equilibrium, the PEVGs and the smart
grid must make their strategy choices with little communication
between one another. To this end, we propose an algorithm
that all the PEVGs and the grid can implement in a distributed
fashion and reach the efficient GSE of the game. We note that,
in a jointly convex GNEP whereF(x) = −(∇xUn(x))

N
n=1 is

strongly monotone, such as our proposed game, the solution of
the VI converges to a unique VE [24] when the demand of each
PEVG n is such that the parameterλn in (15) for all n ∈ N
possesses the same valueλ ≥ 0. In other words, if the parameter
λn converges to a single valueλ ≥ 0 for all n ∈ N , thenx

∗,
the demand vector of the PEVGs contains the VE demand of the
PEVGs.

For our game, we can use this property and propose an
algorithm in which each PEVG updates its demand iteratively,

7From (25), atp = p∗, the slack variableλ = 0. Henceλn converges to
λ = 0, ∀n as the game reaches its GSE.

Algorithm 1 Algorithm to reach GSE
1. Solving VI
Each PEVGn ∈ N submits its initial demandxn

ini to the SEM.
repeat

a) The SEM checksλn
k for the demandxn

k of all
n ∈ N using (15).

b) Each PEVGn ∈ N updates its demandxn
k using the

S-S hyperplane projection method [29].
S − S method

i) The PEVGn computes the projectionr(xn
k).

ii) The PEVGn updatesxn
k+1 equal tor(xn

k)
if r(xn

k) = 0 and submit to the SEM.
otherwise

iii) The PEVGn determine the hyperplanezn
k and

the half spaceHn
k from the projection.

iv) The PEVGn updates its demandxn
k+1 from

the projection of its previous demandxn
k on to

X ∩ Hn
k and submit to the SEM.

until all λn converge toλ ≥ 0.
The SEM determines the VE demand of the PEVGs.
2. Optimizing Price

a) The SEM submits the VE demand of the PEVGs
to the grid.

b) The grid optimizes its pricep to p∗ using (28).
The VE demand and price of the GSG are achieved.

until all λn converge to a single valueλ ≥ 0. In this algo-
rithm we use the hyperplane projection method to solve the
proposed VI problem. By using this technique, we guarantee
that our algorithm always converges to a non-empty solutionif
F is strongly monotone [31] which is always verified in our
game, as previously shown. Thus, the proposed algorithm is
guaranteed to converge to a unique solution of the game, given
the demand constraints of the PEVGs and the grid’s capacityC.
As we explained in Section III, this convergence implies that the
proposed GSG reaches its GSE as soon as the grid optimizes the
price using (28) for the given VE demand of the PEVGs.

The proposed algorithm uses the S-S hyperplane projection
method [29] to calculate the demand at the VE for a pricep.
Each PEVG and the SG can implement the proposed algorithm
to reach the GSE in a distributed fashion with the assumptionthat
the SEM can communicate with both the grid and the PEVGs.
The SEM can use any vehicle to grid infrastructure technique,
[6], for this communication. As soon as any PEVGn is con-
nected to the grid, the SEM receives the utility parametersbn
andsn using V2G. The algorithm starts with the announcement
of the available energyC and the price per unit energyp by the
grid. At any given iterationk, in response to this pricep, each
PEVG n updates its demand for a particular amount of energy
xn

k from the fixed amountC of the grid using the S-S method.
The SEM gets the pricep from the grid and checks the parameter
λn

k using (15). To enable the SEM to check the value ofλn
k,

each PEVGn submits its demandxn
k to the SEM at the end

of iterationk. The process continues until all the PEVGs make
their demands such thatλn = λ ≥ 0 ∀n. The demand of the
PEVGs reaches a VE as the SEM determines thatλn = λ ≥ 0
for all n ∈ N . Then, the SEM submits the VE demand of the
PEVGs to the grid and the grid sets the optimal pricep∗ using
(28) and, thus, the proposed GSG reaches the GSE.

After the execution of the algorithm the demand of each PEVG
n reaches its equilibrium valuex∗

n which is given by

xn
∗(p∗) =

bn − p∗

sn
, (29)

with the optimal pricep∗. This is the equilibrium of the game.
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V. A DAPTATION TO TIME-VARYING CONDITIONS

Here, we extend our approach so as to accommodate time-
varying conditions using a discrete time feedback Stackelberg
game model with dependent followers [32]. We assume that
the number of vehicles at a given location, e.g., a parking lot,
changes gradually in real time with a moderate time duration(for
example,5 minutes to30 minutes) [21]. We also assume that
the available energy from the grid varies across moderate time
intervals, e.g., once in an hour [33]. Hence, using a discrete time
feedback Stackelberg game, we can capture changes in system
variables from one time instant to another. Prior to discussing
how the proposed scheme can be adapted in a time-varying
environment, we define the following parameters:
Ct : the state variable of the game, which indicates the state of
available charge at time instantt.
btn : the battery capacity of PEVGn, which depends on the
aggregate quantity of the number of PEVs in the group at instant
t.
stn : the satisfaction parameter8 of PEVGn at t.
xt
n : the energy demand by PEVGn at t.

pt : the price per unit of energy at instantt.
x
t = (xt

1, x
t
2, ..., x

t
N ) : the vector of demands of all the PEVGs

in the network at timet.
x
t

−n
= (xt

1, ..., x
t
n−1, x

t
n+1, ..., x

t
N ) : the vector of strategies of

all PEVGs except PEVGn at instantt.
LT−t =

∑

t p
t
∑

n x
t
n : the payoff function of the grid which it

wants to maximize over the entire peak hour duration.
UT−t =

∑

t

∑

n

(

btnx
t
n − 1

2s
t
nx

t
n

2
− ptx

t
n

)

: the joint utility
function of the PEVGs in the network.

Consequently, the state transition equation for the time-varying
system can be defined as [34]

Ct+1 = ft(Ct, pt,x
t), t = 0, 1, 2, ..., T − 1, (30)

wheret is an integer time index, andT is the entire peak hour
duration. For a feedback Stackelberg game,Ct is the information
about the available energy supply at timet, which is gained
by the grid from (30) and fed back to the PEVGs through the
SEM [34]. The state of available energy supply at any instantt

is a function of the demand for energy by the PEVGs, and the
energy available at the previous time slot. The state transition
from t to t + 1 takes place when a change occurs either in
the number of PEVs in the PEVG, or in the available energy
from the grid. The objective of both the SG and the PEVGs
is to choose their strategies so as to maximize their utilities in
each time interval, and thus to maximize their total payoffsin
the entire time horizon of peak hours. Hence, the problems of
payoff maximization of the players for a discrete time feedback
Stackelberg game can be formally expressed as

maxLT−t =
∑

t

max
pt

pt
∑

n

xn
t , (31)

8Here, we consider that the satisfaction parameter changes randomly between
consecutive time slots, for example, due to the random change of vehicles in a
parking lot from one time slot to the next.
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Fig. 1: Convergence of the demand of each PEVG to the GSE.

for the SG, and

maxUT−t =
∑

t

max
xn
t

∑

n

(

btnx
t
n −

1

2
stnx

t
n

2
− ptx

t
n

)

(32)

∑

n

xt
n ≤ Ct at t = 0, 1, 2, ..., T,

for the PEVGn. The objective functions in (31) and (32) refer
to a feedback Stackelberg game with Nash game constraints
in the lower level decision making process [32] (similar to the
game proposed in Section III for a single time instant) over the
whole time horizon. Here, we assume that the leader of the game
can perfectly gain the information aboutCt from (30) [35]. At
any instantt, the SG gets the information about the volume of
the parking lot (i.e.,bt−1

n and st−1
n for all n = 1, 2, .., N ), the

demand of the PEVGs in the previous time slott− 1 as well as
the per unit pricept−1. Then, it estimates the amount of energy
that needs to be provided to the PEVGs att through (30). The SG
feedsCt back to the PEVGs through the SEM and the PEVGs
play the jointly convex generalized Nash game of Algorithm 1
for the allocation of energy within

∑

n x
t
n ≤ Ct.

Here, (x1∗,x2∗, ...,xT∗
) and (p∗1, p

∗
2, ..., p

∗
T ) constitute the

solution of the discrete time Stackelberg game under a feedback
information structure with the corresponding state information
(C1, C2, ..., CT ), if x

t∗ comprises the solution of the GNE
among the followers for pricep∗t at eacht = 1, 2, ..., T [32].
The solution will be team optimal if the solution at the GNE
is optimal, that is if the GNE is a VE [24], for the sub game
in each t = 1, 2, ..., T [32]. Now, given that the Stackelberg
game described in Section III constitutes a sub-game in each
time intervalt of the feedback Stackelberg game, the sub-game
will reach its optimal solution (as shown in Section III-B) within
the constraint

∑

n x
t
n ≤ Ct at eacht = 1, 2, ..., T . Therefore,

the solution of the discrete time feedback Stackelberg game
possesses a team optimal solution.

VI. N UMERICAL ANALYSIS

For our simulations, we consider a number of PEVGs that
are connected to the grid during peak hours. Here, a single
PEVG entity represents1000 vehicles at a specific location [2],



IE
EE

Tr
an

s.
Sm

ar
t G

rid
20

12
(A

cc
ep

te
d)

8

0 2 3 5 7 10 12 15
0

100

200

300

400

500

600

Number of iterations

U
til

ity
 a

t G
S

E

 

 

PEVG − 1
PEVG − 2
PEVG − 3
PEVG − 4
PEVG − 5

Fig. 2: Convergence of the utility of each PEVG to the GSE.

where each single vehicle is assumed to require22 kWh for
every100 miles [36, 37]. The maximum battery capacity of any
single vehicle is chosen between150 and300 miles. Hence, the
maximum capacitybn of any PEVGn ranges between35 MWh
and 65 MWh, which is chosen randomly for each PEVG. The
available energy at the grid is chosen as99 MWh. Initially, the
grid sets the selling price to17 USD per MWh. We note that the
chosen parameters correspond to a typical PEVG use case [2, 36,
37]. However, we duly highlight that these parameters can vary
considerably according to PEVG usage and type, and economic
conditions within a given city, or country.

The satisfaction parametersn is chosen randomly in the range
of [1, 2]. The range ofsn is chosen based on the assumption that
the PEVG with the lowest satisfaction parametersn = 1 will
get full satisfaction from each unit of energy it will consume
whereas the PEVG with the highest parameter i.e.,sn = 2, will
reach the same satisfaction level from consuming half the amount
due to its smaller limitations in terms of its initial battery state
and travel plan9. We do not consider the PEVGs withsn > 2
as they do not have an immediate need for energy at the peak
hour. All statistical results are averaged over all possible random
values of the PEVGs’ capacities using around1000 independent
simulation runs.

In Fig. 1 and Fig. 2, we show the demand and the utility at the
GSE for a network withN = 5 PEVGs. Here, we can see that
a similar demand by different PEVGs does not always lead to
a similar utility for the PEVGs. For example, although PEVGs
2 and 5 in Fig. 1 have almost the same demand at the GSE,
their utilities are different from one another as shown in Fig. 2.
This is due to their different battery capacities and satisfaction
parameters. From the utility in (7), we can see that the maximum
utility level of a PEVG varies significantly for different values
of bn and sn. Therefore, with the same energy consumption,
different PEVGs may obtain a different utility (e.g., PEVGs2
and 5). Fig. 1 and 2 show that, after the10th iteration, all the
PEVGs reach their maximum utilities, and, thus, their demands

9Although a PEVG may not be able to demand the amount of energy equal
to its total battery capacity due to the scarcity of energy atpeak hour, it can ask
for an amount that must be satisfied in order for its constituent PEVGs to reach
their satisfactions.
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Fig. 3: Convergence of the values ofλn, ∀n to λ ≥ 0 as the solution
of the GSG converges to GSE.

converge to the GSE.
In Fig. 3, we analyze the convergence speed of the proposed

algorithm by plotting the values ofλn as a function of the
number of iterations forN = 5 PEVGs. First, recall that
the demands of all PEVGs converge to GSE for the optimal
price p∗ when all the PEVGs reach their VE and at this VE
λn = λ ≥ 0, ∀n. Fig. 3 shows that our algorithm converges
to the GSE after9 iterations (i.e., the PEVGs reach their VE).
Hence, as shown by Fig. 3, the convergence speed of our
algorithm is reasonable.

In Fig. 4, we show how the price set by the grid converges to
its optimal value as the strategies of the PEVGs converge to the
VE for networks of various sizes (N = 5, 10, and15 PEVGs)
with an initial SG price set to17 USD per unit of energy. Fig. 4
shows that the price converges to an approximate optimal value
within 5 iterations. This is due to the fact that the SG sets its
price in response to the demand strategies of the PEVGs. In fact,
the PEVGs reach an approximate GSE within five iterations, as
shown for 5 PEVGs in Fig. 1, and, then, they optimize their
demands within constraint (1). The PEVGs eventually reach the
unique GSE that maximizes their utilities under this constraint.
Hence, the pricep converges quickly to its optimal valuep∗.
Furthermore, Fig. 4 shows that the variation of the grid’s price is
more noticeable when fewer PEVGs exist. This is due to the fact
that, for a fixed grid capacity, as the number of PEVGs increases,
there are fewer possibilities of variations in the demands due to
(1).

In Fig. 5, we show the effect of the number of PEVGs on
the optimal price choice of the grid. To do so, we increase the
number of PEVGs in the network for different grid capacities
C = 60, 80 and90 MWh. Fig. 5 shows that the average optimal
price increases with the number of PEVGs in the network
because of the increasing energy demand on the SG’s limited
resources. In contrast, increasing the grid’s capacity leads to a
decrease in the optimal pricep∗. This is due to the fact that,
as the total available capacity of the grid increases, the grid has
more energy to sell and, thus, it can decrease its price while
maintaining desirable revenues. Moreover, for a fixed number
of PEVGs, as the available energy at the grid increases, the SG
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Fig. 5: Effect of increasing the number of PEVGsN in the network
and the grid energyC on the average Stackelberg price.

reduces its optimal price10 to encourage the PEVGs to demand
more energy.

Fig. 6 shows the average and maximum number of iterations
needed to reach the GSE of the proposed game with respect to
the number of PEVGs. In Fig. 6, we can see that, whenever the
number of PEVGs in the network increases, for the same amount
of capacity from the grid, the PEVGs require more iterationsto
reach their optimal demands. For example, when the number
of PEVGs in the network increases from15 to 25, the average
number of iterations needed to reach the GSE increases from52
to 79. Similar behavior is also seen for the maximum number of
iterations.

In Fig. 7, we compare the results of the proposed scheme
with a particle swarm optimization (PSO) [12] and an equal
distribution (ED) scheme [39]. In a PSO scheme, a group of
random solutions11 (i.e., particles) are scattered over the search
space, and the particles converge to a near optimal solutionafter
a number of iterations. For the PSO algorithm, the particle size is

10We assume that the initial price is chosen based on statistical estimation
such as in [38], so that the grid can maintain a revenue with optimized price as
the grid capacity increases.

11In this case the energy demand of a PEVG.
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Fig. 6: Effect of increasing the number of PEVGs on the average and
maximum number of iterations to reach the GSE.

considered to be40. The parameters are updated in such a way
that the constraint in (1) is satisfied. For the ED scheme, the
available grid energy is distributed equally among the connected
PEVGs in the network. That is, if the available energy at the grid
is C MWh and there areN PEVGs connected to the grid, then
each PEVG receives an allocation ofC

N
MWh of energy from

the grid as long as this allocation does not exceed the maximum
that a PEVG can be charged.

Fig. 7 shows that the average utility achieved by the proposed
scheme is better for most of the PEVGs in the network, except
PEVGs 9 and 10, when compared to the PSO scheme. This
is due to the fact that the PSO scheme optimizes the energy
for each PEVG according to the better particle position in the
available energy space. This may lead to a better utility for
PEVGs9 and10 at the expense of much lower utilities for the
rest of the PEVGs. However, the proposed scheme allocates the
energy among the PEVGs so that the socially optimal solutionis
achieved. Therefore, most of the PEVGs in the network achieve
improved utilities compared with the PSO scheme. From Fig. 7,
the proposed scheme has a total utility, on the average,1.3 times
the utility achieved by the PSO scheme. Moreover, the proposed
scheme has, on the average, twice the utility achieved by theED
scheme which is a significant improvement.

Fig. 8 shows the average demand per PEVG as the number
of PEVGs varies. In Fig. 8, we can see that the average demand
per PEVG decreases as the number of PEVGs increases. This is
a direct result of (1) and of the fact that the optimal price set
by the grid increases as the number of PEVGs increases. From
Fig. 8, we can see that average PEVG demand for our scheme,
the PSO scheme, and the ED case decreases as the number of
PEVGs increases. Fig. 8 shows that the energy demand for the
proposed scheme is lower than that for both the PSO and ED
scheme for allN . This can be interpreted by the fact that, in our
proposed scheme, each PEVG demands a required amount of
energy within constraint (1) based on its satisfaction parameter
and available grid energy. Therefore, each PEVG requests a
socially optimal amount of energy from the grid rather than
a predefined amount (as in the ED scheme), or near optimal
amount according to a random search space (as in the PSO
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Fig. 7: Comparison of the average utilities of the PEVGs at the GSE
for the proposed scheme, the PSO scheme and ED scheme.
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Fig. 8: Effect of the number of PEVGs in the network on the average
demand of a PEVG.

scheme). Clearly, Fig. 8 shows that the proposed scheme leads
to better energy utilization than either the PSO or ED scheme.

In Fig. 9, we show the average utility achieved by all three
schemes as a function of the number of PEVGs. In this figure,
we can see that the average utility per PEVG decreases asN

increases for all three schemes. This is due to the fact that the
benefit extracted by each PEVG decreases as more PEVGs share
the fixed available energy from the grid. However, importantly,
Fig. 9 shows that the proposed scheme has a performance
advantage at all network sizes which is, on the average,1.6 times
that of the PSO scheme. When compared to the ED scheme, the
proposed scheme shows significant improvements for all network
sizes, reaching an improvement of up to3.5 times over the ED
scheme forN = 25 PEVGs.

In Fig. 10, we assess the average demand of energy per PEVG
in a time-varying environment. Here, the state transition of the
variable Ct in (30) is modeled as an independent stochastic
process [34], due to the random changes in traffic conditions
and grid energy from one time instant to another [40]. The state
of available energy at the grid at any timet is assumed to be
a uniformly distributed random variable in the range [0.5, 1.5]
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Fig. 9: Effect of the number of PEVGs in the network on the average
utility per PEVG.

times the average available energy [40]. The capacity of the
PEVGs btn ∀n ∈ N at t = 1, 2, ....., T , is assumed to be a
uniformly distributed random variable in the range [0.5, 1.5]
times the average battery capacity [40]. Assuming that the traffic
conditions in any PEVG changes every30 minutes, we have run
independent simulations for allocating energy to the PEVGsfor
eight time slots in peak hours (from 12 pm to 4 pm). The average
available energy in the grid is66 MWh (assuming a range from
33 to 99 MWh), and the variation of energy across time slots
is modeled by a uniformly distributed random variable between
0.5 and1.5 of this amount [40]. Similarly, the random variation
in PEVGs’ capacity at different time slots is captured assuming
a maximum of55 MWh (for 1000 PEVs in a PEVG) and a
minimum of 9.9 MWh (for 300 PEVs) [20].

In Fig. 10 it is shown that the demand of any PEVG varies
across time slots due to variation in both satisfaction parameters
of the PEVGs and the available energy. However, the minimum
energy demand by any PEVG is always well above its minimum
battery requirement. For example, the minimum demand by
PEVG4 is 5.5 MWh in time slot1, which exceeds the minimum
battery requirement of a mid-size car, assuming1000 PEVs are
in that PEVG [41].

The change of utility per PEVG in a time-varying environment
is shown in Fig. 11 for the proposed, PSO and ED schemes.
Fig. 11 shows that the team optimal solution achieved by the
proposed scheme leads to an improved average utility for the
PEVG when compared to the PSO and ED schemes. However,
the improvement varies across time slots due to variations in
available energy and the number of PEVs in the smart grid
network. As shown in Fig. 11, the average utility achieved per
PEVG by our proposed scheme is, on the average,1.6 times the
utility achieved by the PSO scheme and3.8 times that achieved
by the ED scheme.

VII. C ONCLUSIONS

In this paper, we have formulated a noncooperatibe Stack-
elberg game to study the problem of energy trading between
an SG and a number of PEV groups. In this game, the SG
chooses its price to maximize its revenue whereas the PEVGs
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Fig. 10: Average demands of the PEVGs at the GSE for the proposed
scheme in a dynamic environment.
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Fig. 11: Comparison of the average utility per PEVG in the dynamic
case.

strategically choose the amounts of energy they wish to buy
from the grid so as to optimize a tradeoff between the benefit
of battery charging and associated costs. We have studied the
properties of this solution and we have shown that this game
admits a socially optimal generalized Stackelberg equilibrium.
We have also extended and analyzed the proposed game in a
time-varying environment. To reach the equilibrium of the game,
we have proposed a novel algorithm that can be adopted by
the PEVGs, in a distributed manner. Simulation results have
shown that the proposed approach yields improved performance
gains, in terms of the average utility per PEVG, compared to a
particle swarm optimization and an equal distribution scheme.
Several future extensions can be foreseen for this work, such as
handling rapidly changing dynamics or determining the optimal
deployment of charging stations depending on a variety of factors
such as the parking duration, battery state, and the location of
the vehicles.
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