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Intelligent Energy Optimization for User Intelligible
Goals in Smart Home Environments

Fulvio Corno,Member, IEEE,and Faisal Razzak,Student Member, IEEE,

Abstract—Intelligent management of energy consumption is
one of the key issues for future energy distribution systems,
smart buildings, and consumer appliances. The problem can be
tackled both from the point of view of the utility provider, with
the intelligence embedded in the smart grid, or from the point of
view of the consumer, thanks to suitable local energy management
systems (EMS). Conserving energy, however, should respect the
user requirements regarding the desired state of the environment,
therefore an EMS should constantly and intelligently find the
balance between user requirements and energy saving. The paper
proposes a solution to this problem, based on explicit high-level
modeling of user intentions and automatic control of device
states through the solution and optimization of a constrained
Boolean satisfiability problem. The proposed approach has been
integrated into a smart environment framework, and promising
preliminary results are reported.

Index Terms—Building automation, Home automation, Do-
motic Effects, Electrical power optimization, Energy Manage-
ment Systems, Energy optimization heuristic

I. I NTRODUCTION

I N the last decade, intelligence emerged as the basic com-
ponent to design modern home and building automation

systems. The term “intelligence” implies a provision of au-
tomated control over the buildings to solve interoperability
issues among devices from different vendors, to sense the
environment, to provide context-aware services to the residents
and to manage safety and security issues. Regardless of how
ambitious and diverse the notions might seem, the research
community has demonstrated the ability to achieve such goals
using pilot projects [1]–[4]. In the past few years, energy
efficiency has become a key requirement for designing modern
buildings and industries. The approaches in this regard not
only rely on improving building structures and adopting more
efficient appliances but also aim at increasing user awareness
towards their energy usage.

Energy efficiency has become one of the major concerns
in today’s life, impacting almost all human activities, from
industrial and commercial, to leisure and vacation. According
to the statistics from the US Department of Energy and the
European Union Energy Commission, global energy consump-
tion is likely to increase in the next decade, with residential
and commercial buildings raising their aggregate figure to 20-
40% of the total yearly consumption. If only electricity is
considered, the consumption share allocated to buildings is
suppose to increase up to 73%, evenly distributed between
residential and commercial buildings [5].
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To cope with increasing energy needs the smart grid is a
promising infrastructure [6] which focuses on demand side
management. It provides customers an ability to make in-
formed decisions about their energy consumption by adjusting
timing and quantity of their electrical usage [7], [8]. This
flexibility is enabled by pricing policies for electrical usage
over time [9], [10] and/or by dynamic demand scheduling
algorithms to optimize energy services in buildings [11], [12].
The smart grid infrastructure requires a two-way communica-
tion through which appliances can be monitored and controlled
by a control center installed on the premises of the energy
provider which may lead to privacy and security issues [13].

A complementary approach to energy management is the
local optimization of energy consumption using a locally
installed Energy Management System (EMS) on the building
premises. Most EMS focus on making the consumer more
aware of their electrical power usage and/or providing methods
to share this information with energy providers or third party
application developers [14]–[17]. The research focuses on
different graphical illustrations of data related to consumed
energy to ease consumer comprehension [18], [19] and on
different tools and methodologies to share this data over the
web [14]. All these approaches need active user participation
in order to implement energy management strategies.

This paper proposes a more automated approach, where the
EMS may automatically act on appliances and control their
power consumption, while satisfying user requirements about
the current environment state. The presented approach is based
on two pillars: the availability of an explicit model for the
smart home (such as provided by intelligent home gateways),
and the expression of user needs in a more abstract way. The
environment should be controlled by “user intelligible goals”
that represent the state of the environment perceived by the
user, on an abstract level. For example, the user may wish to
illuminate a room and this may be done by acting on lamps,
curtains and shutters in different ways. Therefore, the user
achieves the effect of illuminating the room on an abstract
level.

The paper describes a novel approach to optimize the energy
usage in a building while achieving user intelligible goals. The
main contributions of the paper are: adopting an explicit formal
modeling for user goals (based on the Domotic Effects mod-
eling framework); proposing an architecture that is compatible
with existing ambient intelligence solutions; describingan
algorithm based on Boolean satisfiability (SAT) for computing
the optimal solution and integrating the SAT algorithm witha
suitable heuristic in order to tackle combinatorial explosion.

The paper is divided into seven sections. A literature
overview is first provided in Section II. Section III describes
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the theoretical framework of the paper, i.e., the explicit high-
level modeling of user intention. The problem tackled in the
paper is then formalized in Section IV, while the approach
adopted for optimization is described in Section V. SectionVI
shows detailed results of a preliminary experiment. Finally,
Section VII concludes the paper and highlights future work.

II. RELATED WORKS

Hubert et al. [20] outlined that in order to realize the
potential of the smart grid, optimization of energy usage is
required at different consumer levels, i.e., residential,com-
mercial, industrial. In the domain of EMS, the literature on
optimizing the electrical power usage while achieving user
intelligible goals (in real time) is scarce but several researchers
have addressed the energy optimization issue at different
consumer levels.

Reference [21] advocates the need to build an intelligent
decision support system which takes into account user prefer-
ences and behavior, and then tries to assist the user in reducing
the energy consumption according to a dynamic notion of
price. A model is proposed that learns user preferences and
characteristics over time, and provides different alternatives for
efficient energy usage. However, the practical implementation
of such model, i.e., how to integrate it with a home automa-
tion system and its feasibility was not discussed. Moreover,
the model focuses on user’s preferences over devices rather
than on higher level intelligible goal. A similar approach
is proposed in [22]. Dynamic pricing and incentive pricing
policies are adopted and advocated by many in the smart grid
community to optimize the energy usage [9], [23] but the user
perspective is often missing.

Amir-Hamed et al. [24] propose optimization of residential
load control with price prediction in a Real-Time electricity
pricing environment. It minimizes the householder’s electricity
costs by scheduling the operations of each appliance, subject
to special needs of the user. The user perspective is modeled
as a waiting parameter in the scheduling problem, whose cost
increases with time. Therefore, each appliance operation is
scheduled based on price of electricity and the value of the
waiting parameter.

Reference [25] proposed a system model that uses game
theory to design a energy consumption scheduling game
among consumers to address demand side management. It
considers a single energy source and multiple consumers.
The consumers automatically coordinate among each other
to find optimal energy consumption on an hourly basis. The
scheduling problem is modeled over a set of consumers and
could face scalability issues when the number of consumers
increases. This technique also lacks the description of model-
ing consumer requirements.

One potential weakness of all above proposals is that they
focus entirely on minimizing energy consumption and ignore
other environment aspects, especially the user’s perspective.
The Ambient Intelligence (AmI) community has addressed
such aspects in the domain of smart environments. Often
missed is the point that the EMS inside a building will be
part of a larger smart environment system, providing sensing,
actuation and user interaction.

III. U SER INTENTION MODELING

To control the environment, an EMS needs to be aware
of the structure of the environment, including a list of de-
vices, their locations, their available commands, and most
importantly their power consumption in their various operating
states. For environment and device modeling the DogOnt [26]
ontology was adopted which is supported by the Dog [3]
automation gateway. Device models include device features,
functionalities, commands and attainable states. In particular,
for each device the set of possible internal working states is
represented, and each state may influence power consumption.
Information about power consumption of devices or device
classes is encoded in a simple light-weight DogPower ontol-
ogy, derived from the Energy Profile ontology proposed in
[14]. The combination of DogOnt and DogPower gives all
needed information about the environment.

User intentions, on the other hand, are modeled thanks to
the “Domotic Effects” framework, presented in this section. It
is an abstract high level modeling approach, which addresses
the concerns from both AmI designer and resident points of
view. Domotic Effects allow them to concentrate on high-
level goals that the environment should accomplish, without
worrying about the underlying device(s) fulfilling the goal.

Domotic Effects provide AmI designers with an abstraction
layer that enables defining generic goals inside the environ-
ment, in a declarative way, and designing and developing
intelligent applications. The high-level nature of Domotic
Effects also allows the residents to program their personal,
office or work spaces as they see fit: they can define different
achievement criteria for a particular generic goal, by using
domain-specific operators.

A. Conceptual Modeling

The Domotic Effects modeling framework is organized in
three tiers (Fig. 1), supporting the needs of designers and
users. Thecore layer contains the basic class definitions for
expressing Domotic Effects. Each Domotic Effect (DE) is
expressed as a function of existing device states or sensor
values. Such function is expressed using a set of operators
that can be extended or modified by the AmI designer. The
AmI layerencodes the set of operators defined or customized
by the AmI designer, depending on the application domain.
Finally, the Instance layerrepresents the specific Domotic
Effects being defined in a specific environment.

The choice of operators, and their associated numerical
domains and ranges, are customized depending on the domain
of application requirements. For example, in monitoring and
control applications, Domotic Effects express logical values (in
Boolean algebra), and the AmI designer would define Boolean
operators to construct effects. On the other hand, in energy
management applications, Domotic Effects would represent
power and energy values, and AmI designers would define
real-valued aggregation operators.

A DE can be aSimple Effect(SE) if it depends upon a single
device being in a particular state or a sensor having some
value range; otherwise it is aComplex Effect(CE) and depends
upon combinations of other DEs (both simple and complex). A
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Figure 1. Domotic Effect Modeling Framework

modular “DogEffects” ontology provides a formal knowledge
base for describing DEs, and is organized in a structure that
corresponds to the three tiers modeling framework.

Users can define several domotic effects, based on the
operators defined for the environment. At any instant, each DE
has a (Boolean or real) value associated with it. For example,
a user may describe a Boolean Domotic Effect corresponding
to the generic goal of lighting up a room, and this goal may
be reached by acting, in different ways, on lamps, curtains,
and window shutters in that room, possibly by taking in to
account external conditions.

B. Domotic Effect Formalization

Given an intelligent ambient managing a set of devicesD,
each deviced is associated with a set of allowed statesS(d);
depending on the nature of the device, states may be discrete
(e.g.,{On, Off} for a lamp) or continuous (e.g., [0, 100] for
a volume knob). During system evolution, the actual state of
each device is a time-dependent functions(d, t) ∈ S(d).

The whole environment possesses aglobal state spaceG,
represented by the Cartesian product of all device state spaces:
G =

∏
d∈D

S(d), thus defining a global environment state
g ∈ G.

Formally, a Domotic EffectDE is defined as a function of
the global state space:DE : G → V, whereV is an application-
dependent value space. For Boolean application domains,
V = {0, 1}. A Simple EffectSE is a function that considers
the state of only one device,SE : S(d) → V; such function
is time-dependent since it depends ons(d, t). An operator
op is a function op : VN → V, whereN represents the
number of operands of the specificop. A Complex EffectCE
is represented by a couple(op, (DE 1 . . .DEN )) composed
of an operator nameop and a list of Domotic EffectsDE i

whose values are used as operands. Such function is also time-
dependent.

A setI contains all domotic effects defined for an environ-
ment, i.e.,I = {DE 1,DE 2 . . .DEM}.

C. Representing Power with Domotic Effects

Each device, in each operating state, consumes some amount
of electrical power1, thas is represented as a real-valued Simple
Effect P (s), P : S(d) → ℜ+.

The instantaneous power consumed by the whole environ-
ment is therefore represented as a Complex EffectP : G →
ℜ+ aggregating all individual power measurements:

P(g) =
∑

d∈D

P (s(d)) (1)

D. Domotic Effect Enforcement

For Boolean valued domotic effects, the user can request the
system to enforce particular domotic effects. “Effect Enforce-
ment” addresses the problem of finding at least one configura-
tion g that satisfies the user request and using the automation
system to bring the home devices into that satisfying state.

The user requestR is defined as a subset of the declared
Boolean domotic effects:R ⊆ I. In simple terms, the user
requestR is the subset ofDE i that the user wants to be
active (true) at a given instant.

Satisfying user requests amounts to solving the Boolean
functionFR(g) defined as:

FR(g) =
∏

DE∈R

DE (2)

To address the problem, the user request is transformed into
a Boolean satisfiability problem (SAT). SAT is the problem of
determining if the variables of a given Boolean expression
can be assigned in such a way as to make the expression
evaluate totrue. Each domotic effect defined in the DogEffects
ontology is mapped to a Boolean variable. The functionality
of each effect operator defined in the AmI layer is mapped in
terms of a Boolean sub-expression in the SAT problem. The
Boolean expressions for all complex domotic effects present in
the user requestR are recursively constructed and conjuncted.
The Boolean expressions are solved using a SAT solver, which
if satisfiable gives the values (true or false) of all the variables.
As simple domotic effects represent the terminal nodes of the
expressions, the values corresponding to their variables give
us the device configurations that will satisfy the user request.

IV. PROBLEM STATEMENT

Given the definitions in the previous sections, the goal of
the paper is to compute the minimum value ofP(g), while
satisfying the user requestR. This correspond to a constrained
optimization ofP(g) subject to the Boolean constraintFR(g).
In this paper, the basic SAT-based approach for effect en-
forcement has been extended to find a solution with minimum
power consumption. Since the set of possible solutions may
be extremely large, a suitable heuristic is proposed to get a
satisfactory low-power solution in acceptable CPU times.

Energy management techniques should in fact respond in
near real-time (NRT), by acting on a time scale compara-
ble with user requests and device state change frequencies.

1in this paper active instantaneous power is considered, although the
modeling approach can be trivially extended to other electrical properties
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Figure 2. Architecture of proposed approach

Normally, the computational delay should be less than a few
seconds.

V. PROPOSEDAPPROACH

To minimize powerP(g) subject to user-requested domotic
effectsFR(g), a Domotic Effect Optimizermodule is devel-
oped (Fig. 2). TheDomotic Effect Optimizerreceives a user
request and transforms it into a SAT problem, that is solved to
find valid configuration(s). The number of configurations may
be zero or more. If zero, the user request is not satisfiable.
Otherwise, a configuration with minimum power consumption
needs to be determined.

An exhaustive enumeration approach can be adopted, in
which each valid configuration is checked for its total power
consumption valueP(g) and the one with minimum value
is enforced on the environment. However, the enumerated
approach becomes computationally expensive and practically
infeasible if the number of configurations is too large.

To guarantee near real-time (NRT) execution, the number
of configurations returned by the SAT solver is compared
with an experimentally-tuned configurable thresholdTc that
roughly corresponds to the number of configurations that may
be enumerated in one second. If the number of configurations
is lower thanTc, then exhaustive enumeration is fast enough to
achieve NRT responsiveness. Otherwise, a heuristic is applied
to guarantee results in NRT, even if the absolute optimum is
no longer guaranteed.

The complete approach is highlighted in Fig. 2. At startup,
the Domotic Effect Optimizerqueries the DogEffects and
DogPower ontologies to get all the domotic effects and their
associated (device and power) information. TheDomotic Effect
Optimizer transforms the user request for particular values of
domotic effects in to a correct set of Boolean equations and
constraints, constructing a SAT problem. Then it feeds the
SAT problem to a SAT solver. For our current implementation,
the Sat4j [27] solver is used. Based on the set of Boolean
equations, the Sat4j solver determines (if possible) the total
number of configurations that satisfy the set of Boolean
equations.

A. Heuristic

A novel power minimizing heuristic is proposed to deter-
mine in near real-time a configuration that consumes minimal
electrical power and satisfies the user’s request. Since the
heuristic is called only when the solution space is large (> Tc),
this degree of freedom is exploited by trying to switch off
appliances that have the highest electrical power consumption.

Forcing a device to be switched off reduces the size of the
solution space, but it might render the SAT problem infeasible.
Therefore a greedy approach was adopted which tries to force
all the involved devices off, one by one, starting from the
highest-consuming SE. Those SE that render the problem
infeasible are kept free in the SAT problem. The others
are forced off. There is no guarantee that the configuration
received after applying the heuristic has the minimum power
consumption. There might be cases in which the combination
of small power consuming devices in total consumes more
than the device with high power consumption, but such
conditions are rare and the experiments (Section VI) prove the
configuration with minimum power value is ususally achieved.
Algorithm 1 shows the overall steps taken to find the optimized
configuration, and Algorithm 2 details the greedy procedure
used to simplify the SAT problem.

Algorithm 1 Overall approach
SAT = SAT problem derived fromFR(g)
if (solvable(SAT))then

if (num solutions(SAT)> Tc) then
SAT = Heuristic Algorithm (SAT)

end if
device states = solve (SAT)

end if

Algorithm 2 Heuristic Algorithm (SAT)
sorted SE = sort( all SE, decreasingpower )
for all ( SE in sortedSE ) do

SAT’ = SAT ∩ ( SE=false )
if (solvable(SAT’))then

SAT = SAT’
end if

end for
return SAT

VI. EXPERIMENTAL EVALUATION

To prove the validity of the proposed approach and measure
the performance of the proposed heuristic, a set of experiments
were carried out. The “Domotic Effect” modeling framework
was developed and integrated with Dog2.1 [3] as a new
Domotic Effect Optimizerbundle running in the Dog OSGi
framework.

A complete house environment was simulated, whose do-
motic structure was modeled as an instance of DogOnt ontol-
ogy. A new test bundle was developed to test the approach
and the proposed heuristic. The house environment contains
1500 user-defined Domotic Effects. These DE correspond to
generic goals like securing or illuminating the house.
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The experiments have been run on a standard personal
computer with a quad-core Intel i5 processor and 4GB of
RAM.

A. Use Cases

In the experiments, all possible combinations of six use
cases were enforced on the environment one after another.
These use casesI wereSecure Home, BathRoom Illumination,
Home Illumination, Afternoon Lunch, Isolated Kitchenand
Morning Wakeupscenarios. The “Secure Home” use case
secures all the exit points of the house, i.e., all exit doors
and windows. This use case comprises many DEs providing
the ability to secure different rooms of the house. This can
be used in case of emergency, theft, robbery or fire etc.
The “BathRoom Illumination” combines small use cases that
represent alternative ways to illuminate the bathroom. The
“Home Illumination” requires that all the rooms of the house
are illuminated. Illumination can be either natural or artificial.
The “Afternoon Lunch” deals with the daily routine of cooking
lunch inside the kitchen. The “Isolated Kitchen” use case
represents isolating the kitchen from the rest of the house
during cooking hours; this scenario does not consider the
energy spent for cooking, since that action is not automated.
The “Morning WakeUp” use case maps a typical scenario
when a resident wants to perform a sequence of activities
after waking up in morning, like illuminating the bedroom,
the kitchen and the bathroom, switching off the gas heater
inside the bedroom, switching on the kitchen television and
the bathroom radio.

Since |I| = 6, there were26 = 64 possible user requests,
or 63 if the trivialR = ∅ is omitted, where no domotic effect
is enforced.

Table I shows the total number of configurations and the
time taken by theexhaustive enumerationapproach to find the
total number of configurations, compute their power consump-
tion and determine the configuration with minimum power
consumption. The first 6 columns report which use cases are
enforced (1) or not (0) by the user. The time is calculated in
milliseconds. When the number of configurations were very
large, the enumeration was stopped at100, 000.

For the application of the heuristic optimization, the prob-
lems that require more that one second to be enumerated were
selected. From the analysis of the computation times in Table I,
it is evident that these cases can be selected by choosing a
threshold valueTc equal to 150.

From Table I, three types of cases are observed. They are:

1) Zero Configurations: It refers to the case when the Sat4j
solver cannot find a configuration satisfying the user’s
request, which means that the current combination of use
cases can not be enforced together.

2) Below Threshold: It refers to the cases when the total
number of configurations satisfying the user’s request are
less thanTc. In such cases, the enumeration approach
is sufficient to determine in NRT a configuration with
minimum power consumption and enforce it.

3) Above Threshold: It refers to the case when the total
number of configurations satisfying the user’s request

exceeds the configuration thresholdTc. For such cases,
the time to determine a configuration with minimum
power consumption exceeds the NRT requirements, or
is marked asunknown. Unknown refers to cases in
which the number of configurations exceed100, 000. The
enumeration approach is practically infeasible in such
cases and the proposed heuristic must be applied.

B. Results

To demonstrate the applicability and results of the proposed
heuristic theAbove Thresholdcases were focused, only, since
the exhaustive enumeration approach is sufficient for theZero
Configuration and Below Thresholdcases, that have been
dropped from the subsequent tables.

Table II compares the time taken by the exhaustive enu-
meration approach against the time taken by the heuristic
described in Section V-A to determine a configuration with
minimal power usage. TheEnumeration Solution Timecolumn
represents the time (in milliseconds) taken by the enumeration
approach. TheHeuristic Solution Timecolumn represents the
time (in milliseconds) taken by the heuristic. TheResultcol-
umn reports the comparison, i.e., Solved, Good, or Responsive.
The case is “Solved” when the heuristic is able to find a
configuration with minimal power consumption in NRT while
the enumeration approach is infeasible. The “Good” cases
mean that the heuristic solution is faster than enumeration,
while the “Responsive” label means that the heuristic solution
is slower but still well inside NRT.

Table III shows the comparison of the computed power
consumption values between the enumeration and the heuristic
approaches. TheEnumeration Power Valuecolumn shows the
minimum electrical power (Watt), when it can be exhaustively
computed. TheEnumeration Est. Power Valuecolumn shows
the estimated minimum electrical power (Watt) found after
100, 000 iterations; this value is useful only as a comparison,
since the involved CPU time is unrealistic. The columnHeuris-
tic Power Valueshows the power value (Watt) of the config-
uration found by the heuristic. TheResultcolumn shows our
observations, i.e., Better, Poor, or Equal. In the “Better”cases
the heuristic was able to find a configuration that consumes
less than the configuration found by the enumeration approach.
The “Equal” label shows cases in which the heuristic was able
to find the configuration that consumes minimum electrical
power in a shorter time than the enumeration approach. Only
two cases are marked with “Poor”, where the heuristic was
not able to find the minimum power, but this happened for
infeasible cases, only, where no practical alternative approach
is available.

The size of the search space seems also to influence the
effectiveness of the heuristic procedure: for example, thefirst
row in Table III puts very few constraints over device states,
and the heuristic is usable to find a good solution, while the
second row adds some constraints (i.e., Isolated Kitchen),and
the narrower search space allows to find a better solution. The
same applies to rows 5 and 6.
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Table I
ENUMERATION APPROACH STATISTICS

Secure Home BathRoom Illumination Home Illumination Afternoon Lunch Isolated Kitchen Morning Wake Up No. Of Configurations Time (ms)
0 0 0 0 0 1 32 220
0 0 0 0 1 0 3 16
0 0 0 0 1 1 32 56
0 0 0 1 0 0 3 18
0 0 0 1 0 1 32 65
0 0 0 1 1 0 3 13
0 0 0 1 1 1 32 73
0 0 1 0 0 0 >100000 unknown
0 0 1 0 0 1 0 10
0 0 1 0 1 0 >100000 unknown
0 0 1 0 1 1 0 14
0 0 1 1 0 0 >100000 unknown
0 0 1 1 0 1 0 15
0 0 1 1 1 0 >100000 unknown
0 0 1 1 1 1 0 13
0 1 0 0 0 0 16 94
0 1 0 0 0 1 32 111
0 1 0 0 1 0 48 65
0 1 0 0 1 1 32 67
0 1 0 1 0 0 48 74
0 1 0 1 0 1 32 86
0 1 0 1 1 0 48 84
0 1 0 1 1 1 32 58
0 1 1 0 0 0 >100000 unknown
0 1 1 0 0 1 0 11
0 1 1 0 1 0 >100000 unknown
0 1 1 0 1 1 0 11
0 1 1 1 0 0 >100000 unknown
0 1 1 1 0 1 0 11
0 1 1 1 1 0 >100000 unknown
0 1 1 1 1 1 0 9
1 0 0 0 0 0 192 534
1 0 0 0 0 1 0 12
1 0 0 0 1 0 48 97
1 0 0 0 1 1 0 16
1 0 0 1 0 0 48 95
1 0 0 1 0 1 0 19
1 0 0 1 1 0 48 113
1 0 0 1 1 1 0 14
1 0 1 0 0 0 2304 5100
1 0 1 0 0 1 0 18
1 0 1 0 1 0 576 1285
1 0 1 0 1 1 0 16
1 0 1 1 0 0 576 1424
1 0 1 1 0 1 0 15
1 0 1 1 1 0 576 1392
1 0 1 1 1 1 0 12
1 1 0 0 0 0 768 1421
1 1 0 0 0 1 0 13
1 1 0 0 1 0 192 394
1 1 0 0 1 1 0 13
1 1 0 1 0 0 192 416
1 1 0 1 0 1 0 50
1 1 0 1 1 0 192 417
1 1 0 1 1 1 0 13
1 1 1 0 0 0 2304 4650
1 1 1 0 0 1 0 39
1 1 1 0 1 0 576 1215
1 1 1 0 1 1 0 30
1 1 1 1 0 0 576 1195
1 1 1 1 0 1 0 9
1 1 1 1 1 0 576 1387
1 1 1 1 1 1 0 13

C. Discussion

In our experiments, a total of 63 iterations were performed,
corresponding to each possibleR defined over an environment
with over 1500 declared DEs. Two performance comparisons
were measured between the proposed heuristic and the enu-
meration approach.

• the comparison of time taken by the approaches to
compute the best solution to the user’s request (Table II).

• the consumed electrical power by the enforced settings
of domotic effects (Table III).

From Table II, it can be seen that our proposed heuristic was
able to solve all cases in NRT, even where the total number
of configurations made the enumeration approach infeasible.
Most cases took around 1 second to be solved by the heuristic.
By observing the results, it can be stated that the proposed
approach is feasible for integration with intelligent building
systems.

Table III compares the power values of the configuration
obtained using the enumeration and the heuristic approach.
In cases where the total number of configurations were less
than 100,000 it can be seen that the proposed heuristic always
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Table II
COMPARISON OF SOLUTION TIME(MILLISECONDS) BETWEEN THE ENUMERATION APPROACH AND THE PROPOSED HEURISTIC APPROACH

Secure
Home

BathRoom
Illumina-
tion

Home
Illumina-
tion

Afternoon
Lunch

Isolated
Kitchen

Morning
Wake Up

No. Of
Solution

Enumeration
Solution Time

(ms)

Heuristic
Solution Time

Result

0 0 1 0 0 0 >100000 unknown 556 Solved

0 0 1 0 1 0 >100000 unknown 743 Solved

0 0 1 1 0 0 >100000 unknown 689 Solved

0 0 1 1 1 0 >100000 unknown 1123 Solved

0 1 1 0 0 0 >100000 unknown 829 Solved

0 1 1 0 1 0 >100000 unknown 463 Solved

0 1 1 1 0 0 >100000 unknown 760 Solved

0 1 1 1 1 0 >100000 unknown 1172 Solved

1 0 0 0 0 0 192 534 506 Good

1 0 1 0 0 0 2304 5100 708 Good

1 0 1 0 1 0 576 1285 662 Good

1 0 1 1 0 0 576 1424 1299 Good

1 0 1 1 1 0 576 1392 907 Good

1 1 0 0 0 0 768 1421 443 Good

1 1 0 0 1 0 192 394 972 Responsive

1 1 0 1 0 0 192 416 578 Responsive

1 1 0 1 1 0 192 417 1252 Responsive

1 1 1 0 0 0 2304 4650 2358 Good

1 1 1 0 1 0 576 1215 1296 Responsive

1 1 1 1 0 0 576 1195 1018 Good

1 1 1 1 1 0 576 1387 1371 Good

Table III
COMPARISON OF COMPUTED POWER VALUE BETWEEN THE ENUMERATION APPROACH AND THE PROPOSED HEURISTIC APPROACH

Secure
Home

BathRoom
Illumina-
tion

Home
Illumina-
tion

Afternoon
Lunch

Isolated
Kitchen

Morning
Wake Up

No. Of
Solution

Enumeration
Power Value

Enumeration
Est. Power

Value

Heuristic
Power Value

Result

0 0 1 0 0 0 >100000 N/A 4047.02 5411.29 Poor

0 0 1 0 1 0 >100000 N/A 3355.93 2763.87 Better

0 0 1 1 0 0 >100000 N/A 4728.43 4136.37 Better

0 0 1 1 1 0 >100000 N/A 4728.43 4136.37 Better

0 1 1 0 0 0 >100000 N/A 3408.39 5411.29 Poor

0 1 1 0 1 0 >100000 N/A 2961.98 2763.87 Better

0 1 1 1 0 0 >100000 N/A 4334.48 4136.37 Better

0 1 1 1 1 0 >100000 N/A 4334.48 4136.37 Better

1 0 0 0 0 0 192 0 N/A 0 Equal

1 0 1 0 0 0 2304 2583.16 N/A 2583.16 Equal

1 0 1 0 1 0 576 2763.87 N/A 2763.87 Equal

1 0 1 1 0 0 576 4136.37 N/A 4136.37 Equal

1 0 1 1 1 0 576 4136.37 N/A 4136.37 Equal

1 1 0 0 0 0 768 175.88 N/A 175.88 Equal

1 1 0 0 1 0 192 1146.36 N/A 1146.36 Equal

1 1 0 1 0 0 192 2518.86 N/A 2518.86 Equal

1 1 0 1 1 0 192 2518.86 N/A 2518.86 Equal

1 1 1 0 0 0 2304 2583.16 N/A 2583.16 Equal

1 1 1 0 1 0 576 2763.87 N/A 2763.87 Equal

1 1 1 1 0 0 576 4136.37 N/A 4136.37 Equal

1 1 1 1 1 0 576 4136.37 N/A 4136.37 Equal
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finds the configuration with the absolute minimum electrical
power value. On the other hand, the cases in which the
number of configurations exceeds 100,000, the heuristic was
able to quickly solve all of them, and in most of the cases it
was able to find a configuration that consumed less electrical
power, compared to an (inapplicable) enumeration approach.
Hence the experiments prove the feasibility of the complete
approach as well as highlighting the robustness of the proposed
optimization heuristic.

VII. C ONCLUSION

This paper tackles the minimization of power consumption
from the point of view of individual buildings or homes. Smart
environments may be equipped with an energy management
system that is able to intelligently control the activation
of devices and to minimize power accordingly, taking into
account the varying requirements of the users. The approach
exploits the degrees of freedom that are available when the
users express their requirements at a higher level, in a user-
intelligible way, rather than directly controlling the state of
each device.

The Domotic Effects modeling framework that has been
presented effectively enables users to easily express their needs
at a higher level, by means of a Boolean formalization of
the Domotic Effects enforcement and a SAT problem. The
Boolean problem has been extended to minimize power con-
sumption, in near real-time, while satisfying user requirements,
and a heuristic algorithm has been proposed to find satisfactory
power results while respecting timing constraints.

The extensive results reported on a case study show the
feasibility and the robustness of the approach, making it
suitable for adoption in smart environments. The proposed
approach can be extended to include further constraints like
reducing the number of state changes to conserve the life-time
of the appliances, or taking into account the energy needed to
switch between states (e.g., for mechanically actuated devices).

Currently the work is being done towards a better integration
of the approach in the Dog gateway open source distribution,
and on devising intuitive user interfaces to monitor and control
the environments through the Domotic Effects paradigm.
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